384fa209fb9e013ef9532d8668d8d2357a8e3288
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
57
58 static int nosymbol (char *, CORE_ADDR *);
59
60 static void tcomplain (void) ATTR_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_one (void);
67
68 static int return_minus_one (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static void nosupport_runtime (void);
77
78 static LONGEST default_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST current_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex, gdb_byte *readbuf,
87 const gdb_byte *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static LONGEST target_xfer_partial (struct target_ops *ops,
91 enum target_object object,
92 const char *annex,
93 void *readbuf, const void *writebuf,
94 ULONGEST offset, LONGEST len);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_close (int);
103
104 static void debug_to_attach (char *, int);
105
106 static void debug_to_detach (char *, int);
107
108 static void debug_to_resume (ptid_t, int, enum target_signal);
109
110 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
111
112 static void debug_to_fetch_registers (struct regcache *, int);
113
114 static void debug_to_store_registers (struct regcache *, int);
115
116 static void debug_to_prepare_to_store (struct regcache *);
117
118 static void debug_to_files_info (struct target_ops *);
119
120 static int debug_to_insert_breakpoint (struct bp_target_info *);
121
122 static int debug_to_remove_breakpoint (struct bp_target_info *);
123
124 static int debug_to_can_use_hw_breakpoint (int, int, int);
125
126 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
129
130 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
133
134 static int debug_to_stopped_by_watchpoint (void);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
142
143 static void debug_to_terminal_init (void);
144
145 static void debug_to_terminal_inferior (void);
146
147 static void debug_to_terminal_ours_for_output (void);
148
149 static void debug_to_terminal_save_ours (void);
150
151 static void debug_to_terminal_ours (void);
152
153 static void debug_to_terminal_info (char *, int);
154
155 static void debug_to_kill (void);
156
157 static void debug_to_load (char *, int);
158
159 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
160
161 static void debug_to_mourn_inferior (void);
162
163 static int debug_to_can_run (void);
164
165 static void debug_to_notice_signals (ptid_t);
166
167 static int debug_to_thread_alive (ptid_t);
168
169 static void debug_to_stop (ptid_t);
170
171 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
172 wierd and mysterious ways. Putting the variable here lets those
173 wierd and mysterious ways keep building while they are being
174 converted to the inferior inheritance structure. */
175 struct target_ops deprecated_child_ops;
176
177 /* Pointer to array of target architecture structures; the size of the
178 array; the current index into the array; the allocated size of the
179 array. */
180 struct target_ops **target_structs;
181 unsigned target_struct_size;
182 unsigned target_struct_index;
183 unsigned target_struct_allocsize;
184 #define DEFAULT_ALLOCSIZE 10
185
186 /* The initial current target, so that there is always a semi-valid
187 current target. */
188
189 static struct target_ops dummy_target;
190
191 /* Top of target stack. */
192
193 static struct target_ops *target_stack;
194
195 /* The target structure we are currently using to talk to a process
196 or file or whatever "inferior" we have. */
197
198 struct target_ops current_target;
199
200 /* Command list for target. */
201
202 static struct cmd_list_element *targetlist = NULL;
203
204 /* Nonzero if we are debugging an attached outside process
205 rather than an inferior. */
206
207 int attach_flag;
208
209 /* Nonzero if we should trust readonly sections from the
210 executable when reading memory. */
211
212 static int trust_readonly = 0;
213
214 /* Nonzero if we should show true memory content including
215 memory breakpoint inserted by gdb. */
216
217 static int show_memory_breakpoints = 0;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 DCACHE *target_dcache;
232
233 /* The user just typed 'target' without the name of a target. */
234
235 static void
236 target_command (char *arg, int from_tty)
237 {
238 fputs_filtered ("Argument required (target name). Try `help target'\n",
239 gdb_stdout);
240 }
241
242 /* Add a possible target architecture to the list. */
243
244 void
245 add_target (struct target_ops *t)
246 {
247 /* Provide default values for all "must have" methods. */
248 if (t->to_xfer_partial == NULL)
249 t->to_xfer_partial = default_xfer_partial;
250
251 if (!target_structs)
252 {
253 target_struct_allocsize = DEFAULT_ALLOCSIZE;
254 target_structs = (struct target_ops **) xmalloc
255 (target_struct_allocsize * sizeof (*target_structs));
256 }
257 if (target_struct_size >= target_struct_allocsize)
258 {
259 target_struct_allocsize *= 2;
260 target_structs = (struct target_ops **)
261 xrealloc ((char *) target_structs,
262 target_struct_allocsize * sizeof (*target_structs));
263 }
264 target_structs[target_struct_size++] = t;
265
266 if (targetlist == NULL)
267 add_prefix_cmd ("target", class_run, target_command, _("\
268 Connect to a target machine or process.\n\
269 The first argument is the type or protocol of the target machine.\n\
270 Remaining arguments are interpreted by the target protocol. For more\n\
271 information on the arguments for a particular protocol, type\n\
272 `help target ' followed by the protocol name."),
273 &targetlist, "target ", 0, &cmdlist);
274 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
275 }
276
277 /* Stub functions */
278
279 void
280 target_ignore (void)
281 {
282 }
283
284 void
285 target_load (char *arg, int from_tty)
286 {
287 dcache_invalidate (target_dcache);
288 (*current_target.to_load) (arg, from_tty);
289 }
290
291 static int
292 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
293 struct target_ops *t)
294 {
295 errno = EIO; /* Can't read/write this location */
296 return 0; /* No bytes handled */
297 }
298
299 static void
300 tcomplain (void)
301 {
302 error (_("You can't do that when your target is `%s'"),
303 current_target.to_shortname);
304 }
305
306 void
307 noprocess (void)
308 {
309 error (_("You can't do that without a process to debug."));
310 }
311
312 static int
313 nosymbol (char *name, CORE_ADDR *addrp)
314 {
315 return 1; /* Symbol does not exist in target env */
316 }
317
318 static void
319 nosupport_runtime (void)
320 {
321 if (ptid_equal (inferior_ptid, null_ptid))
322 noprocess ();
323 else
324 error (_("No run-time support for this"));
325 }
326
327
328 static void
329 default_terminal_info (char *args, int from_tty)
330 {
331 printf_unfiltered (_("No saved terminal information.\n"));
332 }
333
334 /* This is the default target_create_inferior and target_attach function.
335 If the current target is executing, it asks whether to kill it off.
336 If this function returns without calling error(), it has killed off
337 the target, and the operation should be attempted. */
338
339 static void
340 kill_or_be_killed (int from_tty)
341 {
342 if (target_has_execution)
343 {
344 printf_unfiltered (_("You are already running a program:\n"));
345 target_files_info ();
346 if (query ("Kill it? "))
347 {
348 target_kill ();
349 if (target_has_execution)
350 error (_("Killing the program did not help."));
351 return;
352 }
353 else
354 {
355 error (_("Program not killed."));
356 }
357 }
358 tcomplain ();
359 }
360
361 static void
362 maybe_kill_then_attach (char *args, int from_tty)
363 {
364 kill_or_be_killed (from_tty);
365 target_attach (args, from_tty);
366 }
367
368 static void
369 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
370 int from_tty)
371 {
372 kill_or_be_killed (0);
373 target_create_inferior (exec, args, env, from_tty);
374 }
375
376 /* Go through the target stack from top to bottom, copying over zero
377 entries in current_target, then filling in still empty entries. In
378 effect, we are doing class inheritance through the pushed target
379 vectors.
380
381 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
382 is currently implemented, is that it discards any knowledge of
383 which target an inherited method originally belonged to.
384 Consequently, new new target methods should instead explicitly and
385 locally search the target stack for the target that can handle the
386 request. */
387
388 static void
389 update_current_target (void)
390 {
391 struct target_ops *t;
392
393 /* First, reset current's contents. */
394 memset (&current_target, 0, sizeof (current_target));
395
396 #define INHERIT(FIELD, TARGET) \
397 if (!current_target.FIELD) \
398 current_target.FIELD = (TARGET)->FIELD
399
400 for (t = target_stack; t; t = t->beneath)
401 {
402 INHERIT (to_shortname, t);
403 INHERIT (to_longname, t);
404 INHERIT (to_doc, t);
405 INHERIT (to_open, t);
406 INHERIT (to_close, t);
407 INHERIT (to_attach, t);
408 INHERIT (to_post_attach, t);
409 INHERIT (to_attach_no_wait, t);
410 INHERIT (to_detach, t);
411 /* Do not inherit to_disconnect. */
412 INHERIT (to_resume, t);
413 INHERIT (to_wait, t);
414 INHERIT (to_fetch_registers, t);
415 INHERIT (to_store_registers, t);
416 INHERIT (to_prepare_to_store, t);
417 INHERIT (deprecated_xfer_memory, t);
418 INHERIT (to_files_info, t);
419 INHERIT (to_insert_breakpoint, t);
420 INHERIT (to_remove_breakpoint, t);
421 INHERIT (to_can_use_hw_breakpoint, t);
422 INHERIT (to_insert_hw_breakpoint, t);
423 INHERIT (to_remove_hw_breakpoint, t);
424 INHERIT (to_insert_watchpoint, t);
425 INHERIT (to_remove_watchpoint, t);
426 INHERIT (to_stopped_data_address, t);
427 INHERIT (to_have_steppable_watchpoint, t);
428 INHERIT (to_have_continuable_watchpoint, t);
429 INHERIT (to_stopped_by_watchpoint, t);
430 INHERIT (to_watchpoint_addr_within_range, t);
431 INHERIT (to_region_ok_for_hw_watchpoint, t);
432 INHERIT (to_terminal_init, t);
433 INHERIT (to_terminal_inferior, t);
434 INHERIT (to_terminal_ours_for_output, t);
435 INHERIT (to_terminal_ours, t);
436 INHERIT (to_terminal_save_ours, t);
437 INHERIT (to_terminal_info, t);
438 INHERIT (to_kill, t);
439 INHERIT (to_load, t);
440 INHERIT (to_lookup_symbol, t);
441 INHERIT (to_create_inferior, t);
442 INHERIT (to_post_startup_inferior, t);
443 INHERIT (to_acknowledge_created_inferior, t);
444 INHERIT (to_insert_fork_catchpoint, t);
445 INHERIT (to_remove_fork_catchpoint, t);
446 INHERIT (to_insert_vfork_catchpoint, t);
447 INHERIT (to_remove_vfork_catchpoint, t);
448 /* Do not inherit to_follow_fork. */
449 INHERIT (to_insert_exec_catchpoint, t);
450 INHERIT (to_remove_exec_catchpoint, t);
451 INHERIT (to_has_exited, t);
452 INHERIT (to_mourn_inferior, t);
453 INHERIT (to_can_run, t);
454 INHERIT (to_notice_signals, t);
455 INHERIT (to_thread_alive, t);
456 INHERIT (to_find_new_threads, t);
457 INHERIT (to_pid_to_str, t);
458 INHERIT (to_extra_thread_info, t);
459 INHERIT (to_stop, t);
460 /* Do not inherit to_xfer_partial. */
461 INHERIT (to_rcmd, t);
462 INHERIT (to_pid_to_exec_file, t);
463 INHERIT (to_log_command, t);
464 INHERIT (to_stratum, t);
465 INHERIT (to_has_all_memory, t);
466 INHERIT (to_has_memory, t);
467 INHERIT (to_has_stack, t);
468 INHERIT (to_has_registers, t);
469 INHERIT (to_has_execution, t);
470 INHERIT (to_has_thread_control, t);
471 INHERIT (to_sections, t);
472 INHERIT (to_sections_end, t);
473 INHERIT (to_can_async_p, t);
474 INHERIT (to_is_async_p, t);
475 INHERIT (to_async, t);
476 INHERIT (to_async_mask, t);
477 INHERIT (to_find_memory_regions, t);
478 INHERIT (to_make_corefile_notes, t);
479 INHERIT (to_get_thread_local_address, t);
480 /* Do not inherit to_read_description. */
481 /* Do not inherit to_search_memory. */
482 INHERIT (to_magic, t);
483 /* Do not inherit to_memory_map. */
484 /* Do not inherit to_flash_erase. */
485 /* Do not inherit to_flash_done. */
486 }
487 #undef INHERIT
488
489 /* Clean up a target struct so it no longer has any zero pointers in
490 it. Some entries are defaulted to a method that print an error,
491 others are hard-wired to a standard recursive default. */
492
493 #define de_fault(field, value) \
494 if (!current_target.field) \
495 current_target.field = value
496
497 de_fault (to_open,
498 (void (*) (char *, int))
499 tcomplain);
500 de_fault (to_close,
501 (void (*) (int))
502 target_ignore);
503 de_fault (to_attach,
504 maybe_kill_then_attach);
505 de_fault (to_post_attach,
506 (void (*) (int))
507 target_ignore);
508 de_fault (to_detach,
509 (void (*) (char *, int))
510 target_ignore);
511 de_fault (to_resume,
512 (void (*) (ptid_t, int, enum target_signal))
513 noprocess);
514 de_fault (to_wait,
515 (ptid_t (*) (ptid_t, struct target_waitstatus *))
516 noprocess);
517 de_fault (to_fetch_registers,
518 (void (*) (struct regcache *, int))
519 target_ignore);
520 de_fault (to_store_registers,
521 (void (*) (struct regcache *, int))
522 noprocess);
523 de_fault (to_prepare_to_store,
524 (void (*) (struct regcache *))
525 noprocess);
526 de_fault (deprecated_xfer_memory,
527 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
528 nomemory);
529 de_fault (to_files_info,
530 (void (*) (struct target_ops *))
531 target_ignore);
532 de_fault (to_insert_breakpoint,
533 memory_insert_breakpoint);
534 de_fault (to_remove_breakpoint,
535 memory_remove_breakpoint);
536 de_fault (to_can_use_hw_breakpoint,
537 (int (*) (int, int, int))
538 return_zero);
539 de_fault (to_insert_hw_breakpoint,
540 (int (*) (struct bp_target_info *))
541 return_minus_one);
542 de_fault (to_remove_hw_breakpoint,
543 (int (*) (struct bp_target_info *))
544 return_minus_one);
545 de_fault (to_insert_watchpoint,
546 (int (*) (CORE_ADDR, int, int))
547 return_minus_one);
548 de_fault (to_remove_watchpoint,
549 (int (*) (CORE_ADDR, int, int))
550 return_minus_one);
551 de_fault (to_stopped_by_watchpoint,
552 (int (*) (void))
553 return_zero);
554 de_fault (to_stopped_data_address,
555 (int (*) (struct target_ops *, CORE_ADDR *))
556 return_zero);
557 de_fault (to_watchpoint_addr_within_range,
558 default_watchpoint_addr_within_range);
559 de_fault (to_region_ok_for_hw_watchpoint,
560 default_region_ok_for_hw_watchpoint);
561 de_fault (to_terminal_init,
562 (void (*) (void))
563 target_ignore);
564 de_fault (to_terminal_inferior,
565 (void (*) (void))
566 target_ignore);
567 de_fault (to_terminal_ours_for_output,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_ours,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_save_ours,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_info,
577 default_terminal_info);
578 de_fault (to_kill,
579 (void (*) (void))
580 noprocess);
581 de_fault (to_load,
582 (void (*) (char *, int))
583 tcomplain);
584 de_fault (to_lookup_symbol,
585 (int (*) (char *, CORE_ADDR *))
586 nosymbol);
587 de_fault (to_create_inferior,
588 maybe_kill_then_create_inferior);
589 de_fault (to_post_startup_inferior,
590 (void (*) (ptid_t))
591 target_ignore);
592 de_fault (to_acknowledge_created_inferior,
593 (void (*) (int))
594 target_ignore);
595 de_fault (to_insert_fork_catchpoint,
596 (void (*) (int))
597 tcomplain);
598 de_fault (to_remove_fork_catchpoint,
599 (int (*) (int))
600 tcomplain);
601 de_fault (to_insert_vfork_catchpoint,
602 (void (*) (int))
603 tcomplain);
604 de_fault (to_remove_vfork_catchpoint,
605 (int (*) (int))
606 tcomplain);
607 de_fault (to_insert_exec_catchpoint,
608 (void (*) (int))
609 tcomplain);
610 de_fault (to_remove_exec_catchpoint,
611 (int (*) (int))
612 tcomplain);
613 de_fault (to_has_exited,
614 (int (*) (int, int, int *))
615 return_zero);
616 de_fault (to_mourn_inferior,
617 (void (*) (void))
618 noprocess);
619 de_fault (to_can_run,
620 return_zero);
621 de_fault (to_notice_signals,
622 (void (*) (ptid_t))
623 target_ignore);
624 de_fault (to_thread_alive,
625 (int (*) (ptid_t))
626 return_zero);
627 de_fault (to_find_new_threads,
628 (void (*) (void))
629 target_ignore);
630 de_fault (to_extra_thread_info,
631 (char *(*) (struct thread_info *))
632 return_zero);
633 de_fault (to_stop,
634 (void (*) (ptid_t))
635 target_ignore);
636 current_target.to_xfer_partial = current_xfer_partial;
637 de_fault (to_rcmd,
638 (void (*) (char *, struct ui_file *))
639 tcomplain);
640 de_fault (to_pid_to_exec_file,
641 (char *(*) (int))
642 return_zero);
643 de_fault (to_can_async_p,
644 (int (*) (void))
645 return_zero);
646 de_fault (to_is_async_p,
647 (int (*) (void))
648 return_zero);
649 de_fault (to_async,
650 (void (*) (void (*) (enum inferior_event_type, void*), void*))
651 tcomplain);
652 de_fault (to_async_mask,
653 (int (*) (int))
654 return_one);
655 current_target.to_read_description = NULL;
656 #undef de_fault
657
658 /* Finally, position the target-stack beneath the squashed
659 "current_target". That way code looking for a non-inherited
660 target method can quickly and simply find it. */
661 current_target.beneath = target_stack;
662
663 if (targetdebug)
664 setup_target_debug ();
665 }
666
667 /* Mark OPS as a running target. This reverses the effect
668 of target_mark_exited. */
669
670 void
671 target_mark_running (struct target_ops *ops)
672 {
673 struct target_ops *t;
674
675 for (t = target_stack; t != NULL; t = t->beneath)
676 if (t == ops)
677 break;
678 if (t == NULL)
679 internal_error (__FILE__, __LINE__,
680 "Attempted to mark unpushed target \"%s\" as running",
681 ops->to_shortname);
682
683 ops->to_has_execution = 1;
684 ops->to_has_all_memory = 1;
685 ops->to_has_memory = 1;
686 ops->to_has_stack = 1;
687 ops->to_has_registers = 1;
688
689 update_current_target ();
690 }
691
692 /* Mark OPS as a non-running target. This reverses the effect
693 of target_mark_running. */
694
695 void
696 target_mark_exited (struct target_ops *ops)
697 {
698 struct target_ops *t;
699
700 for (t = target_stack; t != NULL; t = t->beneath)
701 if (t == ops)
702 break;
703 if (t == NULL)
704 internal_error (__FILE__, __LINE__,
705 "Attempted to mark unpushed target \"%s\" as running",
706 ops->to_shortname);
707
708 ops->to_has_execution = 0;
709 ops->to_has_all_memory = 0;
710 ops->to_has_memory = 0;
711 ops->to_has_stack = 0;
712 ops->to_has_registers = 0;
713
714 update_current_target ();
715 }
716
717 /* Push a new target type into the stack of the existing target accessors,
718 possibly superseding some of the existing accessors.
719
720 Result is zero if the pushed target ended up on top of the stack,
721 nonzero if at least one target is on top of it.
722
723 Rather than allow an empty stack, we always have the dummy target at
724 the bottom stratum, so we can call the function vectors without
725 checking them. */
726
727 int
728 push_target (struct target_ops *t)
729 {
730 struct target_ops **cur;
731
732 /* Check magic number. If wrong, it probably means someone changed
733 the struct definition, but not all the places that initialize one. */
734 if (t->to_magic != OPS_MAGIC)
735 {
736 fprintf_unfiltered (gdb_stderr,
737 "Magic number of %s target struct wrong\n",
738 t->to_shortname);
739 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
740 }
741
742 /* Find the proper stratum to install this target in. */
743 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
744 {
745 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
746 break;
747 }
748
749 /* If there's already targets at this stratum, remove them. */
750 /* FIXME: cagney/2003-10-15: I think this should be popping all
751 targets to CUR, and not just those at this stratum level. */
752 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
753 {
754 /* There's already something at this stratum level. Close it,
755 and un-hook it from the stack. */
756 struct target_ops *tmp = (*cur);
757 (*cur) = (*cur)->beneath;
758 tmp->beneath = NULL;
759 target_close (tmp, 0);
760 }
761
762 /* We have removed all targets in our stratum, now add the new one. */
763 t->beneath = (*cur);
764 (*cur) = t;
765
766 update_current_target ();
767
768 /* Not on top? */
769 return (t != target_stack);
770 }
771
772 /* Remove a target_ops vector from the stack, wherever it may be.
773 Return how many times it was removed (0 or 1). */
774
775 int
776 unpush_target (struct target_ops *t)
777 {
778 struct target_ops **cur;
779 struct target_ops *tmp;
780
781 /* Look for the specified target. Note that we assume that a target
782 can only occur once in the target stack. */
783
784 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
785 {
786 if ((*cur) == t)
787 break;
788 }
789
790 if ((*cur) == NULL)
791 return 0; /* Didn't find target_ops, quit now */
792
793 /* NOTE: cagney/2003-12-06: In '94 the close call was made
794 unconditional by moving it to before the above check that the
795 target was in the target stack (something about "Change the way
796 pushing and popping of targets work to support target overlays
797 and inheritance"). This doesn't make much sense - only open
798 targets should be closed. */
799 target_close (t, 0);
800
801 /* Unchain the target */
802 tmp = (*cur);
803 (*cur) = (*cur)->beneath;
804 tmp->beneath = NULL;
805
806 update_current_target ();
807
808 return 1;
809 }
810
811 void
812 pop_target (void)
813 {
814 target_close (&current_target, 0); /* Let it clean up */
815 if (unpush_target (target_stack) == 1)
816 return;
817
818 fprintf_unfiltered (gdb_stderr,
819 "pop_target couldn't find target %s\n",
820 current_target.to_shortname);
821 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
822 }
823
824 void
825 pop_all_targets (int quitting)
826 {
827 while ((int) (current_target.to_stratum) > (int) dummy_stratum)
828 {
829 target_close (&current_target, quitting);
830 if (!unpush_target (target_stack))
831 {
832 fprintf_unfiltered (gdb_stderr,
833 "pop_all_targets couldn't find target %s\n",
834 current_target.to_shortname);
835 internal_error (__FILE__, __LINE__,
836 _("failed internal consistency check"));
837 break;
838 }
839 }
840 }
841
842 /* Using the objfile specified in OBJFILE, find the address for the
843 current thread's thread-local storage with offset OFFSET. */
844 CORE_ADDR
845 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
846 {
847 volatile CORE_ADDR addr = 0;
848
849 if (target_get_thread_local_address_p ()
850 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
851 {
852 ptid_t ptid = inferior_ptid;
853 volatile struct gdb_exception ex;
854
855 TRY_CATCH (ex, RETURN_MASK_ALL)
856 {
857 CORE_ADDR lm_addr;
858
859 /* Fetch the load module address for this objfile. */
860 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
861 objfile);
862 /* If it's 0, throw the appropriate exception. */
863 if (lm_addr == 0)
864 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
865 _("TLS load module not found"));
866
867 addr = target_get_thread_local_address (ptid, lm_addr, offset);
868 }
869 /* If an error occurred, print TLS related messages here. Otherwise,
870 throw the error to some higher catcher. */
871 if (ex.reason < 0)
872 {
873 int objfile_is_library = (objfile->flags & OBJF_SHARED);
874
875 switch (ex.error)
876 {
877 case TLS_NO_LIBRARY_SUPPORT_ERROR:
878 error (_("Cannot find thread-local variables in this thread library."));
879 break;
880 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
881 if (objfile_is_library)
882 error (_("Cannot find shared library `%s' in dynamic"
883 " linker's load module list"), objfile->name);
884 else
885 error (_("Cannot find executable file `%s' in dynamic"
886 " linker's load module list"), objfile->name);
887 break;
888 case TLS_NOT_ALLOCATED_YET_ERROR:
889 if (objfile_is_library)
890 error (_("The inferior has not yet allocated storage for"
891 " thread-local variables in\n"
892 "the shared library `%s'\n"
893 "for %s"),
894 objfile->name, target_pid_to_str (ptid));
895 else
896 error (_("The inferior has not yet allocated storage for"
897 " thread-local variables in\n"
898 "the executable `%s'\n"
899 "for %s"),
900 objfile->name, target_pid_to_str (ptid));
901 break;
902 case TLS_GENERIC_ERROR:
903 if (objfile_is_library)
904 error (_("Cannot find thread-local storage for %s, "
905 "shared library %s:\n%s"),
906 target_pid_to_str (ptid),
907 objfile->name, ex.message);
908 else
909 error (_("Cannot find thread-local storage for %s, "
910 "executable file %s:\n%s"),
911 target_pid_to_str (ptid),
912 objfile->name, ex.message);
913 break;
914 default:
915 throw_exception (ex);
916 break;
917 }
918 }
919 }
920 /* It wouldn't be wrong here to try a gdbarch method, too; finding
921 TLS is an ABI-specific thing. But we don't do that yet. */
922 else
923 error (_("Cannot find thread-local variables on this target"));
924
925 return addr;
926 }
927
928 #undef MIN
929 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
930
931 /* target_read_string -- read a null terminated string, up to LEN bytes,
932 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
933 Set *STRING to a pointer to malloc'd memory containing the data; the caller
934 is responsible for freeing it. Return the number of bytes successfully
935 read. */
936
937 int
938 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
939 {
940 int tlen, origlen, offset, i;
941 gdb_byte buf[4];
942 int errcode = 0;
943 char *buffer;
944 int buffer_allocated;
945 char *bufptr;
946 unsigned int nbytes_read = 0;
947
948 gdb_assert (string);
949
950 /* Small for testing. */
951 buffer_allocated = 4;
952 buffer = xmalloc (buffer_allocated);
953 bufptr = buffer;
954
955 origlen = len;
956
957 while (len > 0)
958 {
959 tlen = MIN (len, 4 - (memaddr & 3));
960 offset = memaddr & 3;
961
962 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
963 if (errcode != 0)
964 {
965 /* The transfer request might have crossed the boundary to an
966 unallocated region of memory. Retry the transfer, requesting
967 a single byte. */
968 tlen = 1;
969 offset = 0;
970 errcode = target_read_memory (memaddr, buf, 1);
971 if (errcode != 0)
972 goto done;
973 }
974
975 if (bufptr - buffer + tlen > buffer_allocated)
976 {
977 unsigned int bytes;
978 bytes = bufptr - buffer;
979 buffer_allocated *= 2;
980 buffer = xrealloc (buffer, buffer_allocated);
981 bufptr = buffer + bytes;
982 }
983
984 for (i = 0; i < tlen; i++)
985 {
986 *bufptr++ = buf[i + offset];
987 if (buf[i + offset] == '\000')
988 {
989 nbytes_read += i + 1;
990 goto done;
991 }
992 }
993
994 memaddr += tlen;
995 len -= tlen;
996 nbytes_read += tlen;
997 }
998 done:
999 *string = buffer;
1000 if (errnop != NULL)
1001 *errnop = errcode;
1002 return nbytes_read;
1003 }
1004
1005 /* Find a section containing ADDR. */
1006 struct section_table *
1007 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1008 {
1009 struct section_table *secp;
1010 for (secp = target->to_sections;
1011 secp < target->to_sections_end;
1012 secp++)
1013 {
1014 if (addr >= secp->addr && addr < secp->endaddr)
1015 return secp;
1016 }
1017 return NULL;
1018 }
1019
1020 /* Perform a partial memory transfer. The arguments and return
1021 value are just as for target_xfer_partial. */
1022
1023 static LONGEST
1024 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1025 ULONGEST memaddr, LONGEST len)
1026 {
1027 LONGEST res;
1028 int reg_len;
1029 struct mem_region *region;
1030
1031 /* Zero length requests are ok and require no work. */
1032 if (len == 0)
1033 return 0;
1034
1035 /* Try the executable file, if "trust-readonly-sections" is set. */
1036 if (readbuf != NULL && trust_readonly)
1037 {
1038 struct section_table *secp;
1039
1040 secp = target_section_by_addr (ops, memaddr);
1041 if (secp != NULL
1042 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1043 & SEC_READONLY))
1044 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1045 }
1046
1047 /* Likewise for accesses to unmapped overlay sections. */
1048 if (readbuf != NULL && overlay_debugging)
1049 {
1050 asection *section = find_pc_overlay (memaddr);
1051 if (pc_in_unmapped_range (memaddr, section))
1052 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1053 }
1054
1055 /* Try GDB's internal data cache. */
1056 region = lookup_mem_region (memaddr);
1057 /* region->hi == 0 means there's no upper bound. */
1058 if (memaddr + len < region->hi || region->hi == 0)
1059 reg_len = len;
1060 else
1061 reg_len = region->hi - memaddr;
1062
1063 switch (region->attrib.mode)
1064 {
1065 case MEM_RO:
1066 if (writebuf != NULL)
1067 return -1;
1068 break;
1069
1070 case MEM_WO:
1071 if (readbuf != NULL)
1072 return -1;
1073 break;
1074
1075 case MEM_FLASH:
1076 /* We only support writing to flash during "load" for now. */
1077 if (writebuf != NULL)
1078 error (_("Writing to flash memory forbidden in this context"));
1079 break;
1080
1081 case MEM_NONE:
1082 return -1;
1083 }
1084
1085 if (region->attrib.cache)
1086 {
1087 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1088 memory request will start back at current_target. */
1089 if (readbuf != NULL)
1090 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1091 reg_len, 0);
1092 else
1093 /* FIXME drow/2006-08-09: If we're going to preserve const
1094 correctness dcache_xfer_memory should take readbuf and
1095 writebuf. */
1096 res = dcache_xfer_memory (target_dcache, memaddr,
1097 (void *) writebuf,
1098 reg_len, 1);
1099 if (res <= 0)
1100 return -1;
1101 else
1102 {
1103 if (readbuf && !show_memory_breakpoints)
1104 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1105 return res;
1106 }
1107 }
1108
1109 /* If none of those methods found the memory we wanted, fall back
1110 to a target partial transfer. Normally a single call to
1111 to_xfer_partial is enough; if it doesn't recognize an object
1112 it will call the to_xfer_partial of the next target down.
1113 But for memory this won't do. Memory is the only target
1114 object which can be read from more than one valid target.
1115 A core file, for instance, could have some of memory but
1116 delegate other bits to the target below it. So, we must
1117 manually try all targets. */
1118
1119 do
1120 {
1121 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1122 readbuf, writebuf, memaddr, reg_len);
1123 if (res > 0)
1124 break;
1125
1126 /* We want to continue past core files to executables, but not
1127 past a running target's memory. */
1128 if (ops->to_has_all_memory)
1129 break;
1130
1131 ops = ops->beneath;
1132 }
1133 while (ops != NULL);
1134
1135 if (readbuf && !show_memory_breakpoints)
1136 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1137
1138 /* If we still haven't got anything, return the last error. We
1139 give up. */
1140 return res;
1141 }
1142
1143 static void
1144 restore_show_memory_breakpoints (void *arg)
1145 {
1146 show_memory_breakpoints = (uintptr_t) arg;
1147 }
1148
1149 struct cleanup *
1150 make_show_memory_breakpoints_cleanup (int show)
1151 {
1152 int current = show_memory_breakpoints;
1153 show_memory_breakpoints = show;
1154
1155 return make_cleanup (restore_show_memory_breakpoints,
1156 (void *) (uintptr_t) current);
1157 }
1158
1159 static LONGEST
1160 target_xfer_partial (struct target_ops *ops,
1161 enum target_object object, const char *annex,
1162 void *readbuf, const void *writebuf,
1163 ULONGEST offset, LONGEST len)
1164 {
1165 LONGEST retval;
1166
1167 gdb_assert (ops->to_xfer_partial != NULL);
1168
1169 /* If this is a memory transfer, let the memory-specific code
1170 have a look at it instead. Memory transfers are more
1171 complicated. */
1172 if (object == TARGET_OBJECT_MEMORY)
1173 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1174 else
1175 {
1176 enum target_object raw_object = object;
1177
1178 /* If this is a raw memory transfer, request the normal
1179 memory object from other layers. */
1180 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1181 raw_object = TARGET_OBJECT_MEMORY;
1182
1183 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1184 writebuf, offset, len);
1185 }
1186
1187 if (targetdebug)
1188 {
1189 const unsigned char *myaddr = NULL;
1190
1191 fprintf_unfiltered (gdb_stdlog,
1192 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1193 ops->to_shortname,
1194 (int) object,
1195 (annex ? annex : "(null)"),
1196 (long) readbuf, (long) writebuf,
1197 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1198
1199 if (readbuf)
1200 myaddr = readbuf;
1201 if (writebuf)
1202 myaddr = writebuf;
1203 if (retval > 0 && myaddr != NULL)
1204 {
1205 int i;
1206
1207 fputs_unfiltered (", bytes =", gdb_stdlog);
1208 for (i = 0; i < retval; i++)
1209 {
1210 if ((((long) &(myaddr[i])) & 0xf) == 0)
1211 {
1212 if (targetdebug < 2 && i > 0)
1213 {
1214 fprintf_unfiltered (gdb_stdlog, " ...");
1215 break;
1216 }
1217 fprintf_unfiltered (gdb_stdlog, "\n");
1218 }
1219
1220 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1221 }
1222 }
1223
1224 fputc_unfiltered ('\n', gdb_stdlog);
1225 }
1226 return retval;
1227 }
1228
1229 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1230 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1231 if any error occurs.
1232
1233 If an error occurs, no guarantee is made about the contents of the data at
1234 MYADDR. In particular, the caller should not depend upon partial reads
1235 filling the buffer with good data. There is no way for the caller to know
1236 how much good data might have been transfered anyway. Callers that can
1237 deal with partial reads should call target_read (which will retry until
1238 it makes no progress, and then return how much was transferred). */
1239
1240 int
1241 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1242 {
1243 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1244 myaddr, memaddr, len) == len)
1245 return 0;
1246 else
1247 return EIO;
1248 }
1249
1250 int
1251 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1252 {
1253 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1254 myaddr, memaddr, len) == len)
1255 return 0;
1256 else
1257 return EIO;
1258 }
1259
1260 /* Fetch the target's memory map. */
1261
1262 VEC(mem_region_s) *
1263 target_memory_map (void)
1264 {
1265 VEC(mem_region_s) *result;
1266 struct mem_region *last_one, *this_one;
1267 int ix;
1268 struct target_ops *t;
1269
1270 if (targetdebug)
1271 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1272
1273 for (t = current_target.beneath; t != NULL; t = t->beneath)
1274 if (t->to_memory_map != NULL)
1275 break;
1276
1277 if (t == NULL)
1278 return NULL;
1279
1280 result = t->to_memory_map (t);
1281 if (result == NULL)
1282 return NULL;
1283
1284 qsort (VEC_address (mem_region_s, result),
1285 VEC_length (mem_region_s, result),
1286 sizeof (struct mem_region), mem_region_cmp);
1287
1288 /* Check that regions do not overlap. Simultaneously assign
1289 a numbering for the "mem" commands to use to refer to
1290 each region. */
1291 last_one = NULL;
1292 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1293 {
1294 this_one->number = ix;
1295
1296 if (last_one && last_one->hi > this_one->lo)
1297 {
1298 warning (_("Overlapping regions in memory map: ignoring"));
1299 VEC_free (mem_region_s, result);
1300 return NULL;
1301 }
1302 last_one = this_one;
1303 }
1304
1305 return result;
1306 }
1307
1308 void
1309 target_flash_erase (ULONGEST address, LONGEST length)
1310 {
1311 struct target_ops *t;
1312
1313 for (t = current_target.beneath; t != NULL; t = t->beneath)
1314 if (t->to_flash_erase != NULL)
1315 {
1316 if (targetdebug)
1317 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1318 paddr (address), phex (length, 0));
1319 t->to_flash_erase (t, address, length);
1320 return;
1321 }
1322
1323 tcomplain ();
1324 }
1325
1326 void
1327 target_flash_done (void)
1328 {
1329 struct target_ops *t;
1330
1331 for (t = current_target.beneath; t != NULL; t = t->beneath)
1332 if (t->to_flash_done != NULL)
1333 {
1334 if (targetdebug)
1335 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1336 t->to_flash_done (t);
1337 return;
1338 }
1339
1340 tcomplain ();
1341 }
1342
1343 #ifndef target_stopped_data_address_p
1344 int
1345 target_stopped_data_address_p (struct target_ops *target)
1346 {
1347 if (target->to_stopped_data_address
1348 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1349 return 0;
1350 if (target->to_stopped_data_address == debug_to_stopped_data_address
1351 && (debug_target.to_stopped_data_address
1352 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1353 return 0;
1354 return 1;
1355 }
1356 #endif
1357
1358 static void
1359 show_trust_readonly (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361 {
1362 fprintf_filtered (file, _("\
1363 Mode for reading from readonly sections is %s.\n"),
1364 value);
1365 }
1366
1367 /* More generic transfers. */
1368
1369 static LONGEST
1370 default_xfer_partial (struct target_ops *ops, enum target_object object,
1371 const char *annex, gdb_byte *readbuf,
1372 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1373 {
1374 if (object == TARGET_OBJECT_MEMORY
1375 && ops->deprecated_xfer_memory != NULL)
1376 /* If available, fall back to the target's
1377 "deprecated_xfer_memory" method. */
1378 {
1379 int xfered = -1;
1380 errno = 0;
1381 if (writebuf != NULL)
1382 {
1383 void *buffer = xmalloc (len);
1384 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1385 memcpy (buffer, writebuf, len);
1386 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1387 1/*write*/, NULL, ops);
1388 do_cleanups (cleanup);
1389 }
1390 if (readbuf != NULL)
1391 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1392 0/*read*/, NULL, ops);
1393 if (xfered > 0)
1394 return xfered;
1395 else if (xfered == 0 && errno == 0)
1396 /* "deprecated_xfer_memory" uses 0, cross checked against
1397 ERRNO as one indication of an error. */
1398 return 0;
1399 else
1400 return -1;
1401 }
1402 else if (ops->beneath != NULL)
1403 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1404 readbuf, writebuf, offset, len);
1405 else
1406 return -1;
1407 }
1408
1409 /* The xfer_partial handler for the topmost target. Unlike the default,
1410 it does not need to handle memory specially; it just passes all
1411 requests down the stack. */
1412
1413 static LONGEST
1414 current_xfer_partial (struct target_ops *ops, enum target_object object,
1415 const char *annex, gdb_byte *readbuf,
1416 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1417 {
1418 if (ops->beneath != NULL)
1419 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1420 readbuf, writebuf, offset, len);
1421 else
1422 return -1;
1423 }
1424
1425 /* Target vector read/write partial wrapper functions.
1426
1427 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1428 (inbuf, outbuf)", instead of separate read/write methods, make life
1429 easier. */
1430
1431 static LONGEST
1432 target_read_partial (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, LONGEST len)
1436 {
1437 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1438 }
1439
1440 static LONGEST
1441 target_write_partial (struct target_ops *ops,
1442 enum target_object object,
1443 const char *annex, const gdb_byte *buf,
1444 ULONGEST offset, LONGEST len)
1445 {
1446 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1447 }
1448
1449 /* Wrappers to perform the full transfer. */
1450 LONGEST
1451 target_read (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455 {
1456 LONGEST xfered = 0;
1457 while (xfered < len)
1458 {
1459 LONGEST xfer = target_read_partial (ops, object, annex,
1460 (gdb_byte *) buf + xfered,
1461 offset + xfered, len - xfered);
1462 /* Call an observer, notifying them of the xfer progress? */
1463 if (xfer == 0)
1464 return xfered;
1465 if (xfer < 0)
1466 return -1;
1467 xfered += xfer;
1468 QUIT;
1469 }
1470 return len;
1471 }
1472
1473 LONGEST
1474 target_read_until_error (struct target_ops *ops,
1475 enum target_object object,
1476 const char *annex, gdb_byte *buf,
1477 ULONGEST offset, LONGEST len)
1478 {
1479 LONGEST xfered = 0;
1480 while (xfered < len)
1481 {
1482 LONGEST xfer = target_read_partial (ops, object, annex,
1483 (gdb_byte *) buf + xfered,
1484 offset + xfered, len - xfered);
1485 /* Call an observer, notifying them of the xfer progress? */
1486 if (xfer == 0)
1487 return xfered;
1488 if (xfer < 0)
1489 {
1490 /* We've got an error. Try to read in smaller blocks. */
1491 ULONGEST start = offset + xfered;
1492 ULONGEST remaining = len - xfered;
1493 ULONGEST half;
1494
1495 /* If an attempt was made to read a random memory address,
1496 it's likely that the very first byte is not accessible.
1497 Try reading the first byte, to avoid doing log N tries
1498 below. */
1499 xfer = target_read_partial (ops, object, annex,
1500 (gdb_byte *) buf + xfered, start, 1);
1501 if (xfer <= 0)
1502 return xfered;
1503 start += 1;
1504 remaining -= 1;
1505 half = remaining/2;
1506
1507 while (half > 0)
1508 {
1509 xfer = target_read_partial (ops, object, annex,
1510 (gdb_byte *) buf + xfered,
1511 start, half);
1512 if (xfer == 0)
1513 return xfered;
1514 if (xfer < 0)
1515 {
1516 remaining = half;
1517 }
1518 else
1519 {
1520 /* We have successfully read the first half. So, the
1521 error must be in the second half. Adjust start and
1522 remaining to point at the second half. */
1523 xfered += xfer;
1524 start += xfer;
1525 remaining -= xfer;
1526 }
1527 half = remaining/2;
1528 }
1529
1530 return xfered;
1531 }
1532 xfered += xfer;
1533 QUIT;
1534 }
1535 return len;
1536 }
1537
1538
1539 /* An alternative to target_write with progress callbacks. */
1540
1541 LONGEST
1542 target_write_with_progress (struct target_ops *ops,
1543 enum target_object object,
1544 const char *annex, const gdb_byte *buf,
1545 ULONGEST offset, LONGEST len,
1546 void (*progress) (ULONGEST, void *), void *baton)
1547 {
1548 LONGEST xfered = 0;
1549
1550 /* Give the progress callback a chance to set up. */
1551 if (progress)
1552 (*progress) (0, baton);
1553
1554 while (xfered < len)
1555 {
1556 LONGEST xfer = target_write_partial (ops, object, annex,
1557 (gdb_byte *) buf + xfered,
1558 offset + xfered, len - xfered);
1559
1560 if (xfer == 0)
1561 return xfered;
1562 if (xfer < 0)
1563 return -1;
1564
1565 if (progress)
1566 (*progress) (xfer, baton);
1567
1568 xfered += xfer;
1569 QUIT;
1570 }
1571 return len;
1572 }
1573
1574 LONGEST
1575 target_write (struct target_ops *ops,
1576 enum target_object object,
1577 const char *annex, const gdb_byte *buf,
1578 ULONGEST offset, LONGEST len)
1579 {
1580 return target_write_with_progress (ops, object, annex, buf, offset, len,
1581 NULL, NULL);
1582 }
1583
1584 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1585 the size of the transferred data. PADDING additional bytes are
1586 available in *BUF_P. This is a helper function for
1587 target_read_alloc; see the declaration of that function for more
1588 information. */
1589
1590 static LONGEST
1591 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1592 const char *annex, gdb_byte **buf_p, int padding)
1593 {
1594 size_t buf_alloc, buf_pos;
1595 gdb_byte *buf;
1596 LONGEST n;
1597
1598 /* This function does not have a length parameter; it reads the
1599 entire OBJECT). Also, it doesn't support objects fetched partly
1600 from one target and partly from another (in a different stratum,
1601 e.g. a core file and an executable). Both reasons make it
1602 unsuitable for reading memory. */
1603 gdb_assert (object != TARGET_OBJECT_MEMORY);
1604
1605 /* Start by reading up to 4K at a time. The target will throttle
1606 this number down if necessary. */
1607 buf_alloc = 4096;
1608 buf = xmalloc (buf_alloc);
1609 buf_pos = 0;
1610 while (1)
1611 {
1612 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1613 buf_pos, buf_alloc - buf_pos - padding);
1614 if (n < 0)
1615 {
1616 /* An error occurred. */
1617 xfree (buf);
1618 return -1;
1619 }
1620 else if (n == 0)
1621 {
1622 /* Read all there was. */
1623 if (buf_pos == 0)
1624 xfree (buf);
1625 else
1626 *buf_p = buf;
1627 return buf_pos;
1628 }
1629
1630 buf_pos += n;
1631
1632 /* If the buffer is filling up, expand it. */
1633 if (buf_alloc < buf_pos * 2)
1634 {
1635 buf_alloc *= 2;
1636 buf = xrealloc (buf, buf_alloc);
1637 }
1638
1639 QUIT;
1640 }
1641 }
1642
1643 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1644 the size of the transferred data. See the declaration in "target.h"
1645 function for more information about the return value. */
1646
1647 LONGEST
1648 target_read_alloc (struct target_ops *ops, enum target_object object,
1649 const char *annex, gdb_byte **buf_p)
1650 {
1651 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1652 }
1653
1654 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1655 returned as a string, allocated using xmalloc. If an error occurs
1656 or the transfer is unsupported, NULL is returned. Empty objects
1657 are returned as allocated but empty strings. A warning is issued
1658 if the result contains any embedded NUL bytes. */
1659
1660 char *
1661 target_read_stralloc (struct target_ops *ops, enum target_object object,
1662 const char *annex)
1663 {
1664 gdb_byte *buffer;
1665 LONGEST transferred;
1666
1667 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1668
1669 if (transferred < 0)
1670 return NULL;
1671
1672 if (transferred == 0)
1673 return xstrdup ("");
1674
1675 buffer[transferred] = 0;
1676 if (strlen (buffer) < transferred)
1677 warning (_("target object %d, annex %s, "
1678 "contained unexpected null characters"),
1679 (int) object, annex ? annex : "(none)");
1680
1681 return (char *) buffer;
1682 }
1683
1684 /* Memory transfer methods. */
1685
1686 void
1687 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1688 LONGEST len)
1689 {
1690 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1691 != len)
1692 memory_error (EIO, addr);
1693 }
1694
1695 ULONGEST
1696 get_target_memory_unsigned (struct target_ops *ops,
1697 CORE_ADDR addr, int len)
1698 {
1699 gdb_byte buf[sizeof (ULONGEST)];
1700
1701 gdb_assert (len <= sizeof (buf));
1702 get_target_memory (ops, addr, buf, len);
1703 return extract_unsigned_integer (buf, len);
1704 }
1705
1706 static void
1707 target_info (char *args, int from_tty)
1708 {
1709 struct target_ops *t;
1710 int has_all_mem = 0;
1711
1712 if (symfile_objfile != NULL)
1713 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1714
1715 for (t = target_stack; t != NULL; t = t->beneath)
1716 {
1717 if (!t->to_has_memory)
1718 continue;
1719
1720 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1721 continue;
1722 if (has_all_mem)
1723 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1724 printf_unfiltered ("%s:\n", t->to_longname);
1725 (t->to_files_info) (t);
1726 has_all_mem = t->to_has_all_memory;
1727 }
1728 }
1729
1730 /* This function is called before any new inferior is created, e.g.
1731 by running a program, attaching, or connecting to a target.
1732 It cleans up any state from previous invocations which might
1733 change between runs. This is a subset of what target_preopen
1734 resets (things which might change between targets). */
1735
1736 void
1737 target_pre_inferior (int from_tty)
1738 {
1739 /* Clear out solib state. Otherwise the solib state of the previous
1740 inferior might have survived and is entirely wrong for the new
1741 target. This has been observed on GNU/Linux using glibc 2.3. How
1742 to reproduce:
1743
1744 bash$ ./foo&
1745 [1] 4711
1746 bash$ ./foo&
1747 [1] 4712
1748 bash$ gdb ./foo
1749 [...]
1750 (gdb) attach 4711
1751 (gdb) detach
1752 (gdb) attach 4712
1753 Cannot access memory at address 0xdeadbeef
1754 */
1755 no_shared_libraries (NULL, from_tty);
1756
1757 invalidate_target_mem_regions ();
1758
1759 target_clear_description ();
1760 }
1761
1762 /* This is to be called by the open routine before it does
1763 anything. */
1764
1765 void
1766 target_preopen (int from_tty)
1767 {
1768 dont_repeat ();
1769
1770 if (target_has_execution)
1771 {
1772 if (!from_tty
1773 || query (_("A program is being debugged already. Kill it? ")))
1774 target_kill ();
1775 else
1776 error (_("Program not killed."));
1777 }
1778
1779 /* Calling target_kill may remove the target from the stack. But if
1780 it doesn't (which seems like a win for UDI), remove it now. */
1781
1782 if (target_has_execution)
1783 pop_target ();
1784
1785 target_pre_inferior (from_tty);
1786 }
1787
1788 /* Detach a target after doing deferred register stores. */
1789
1790 void
1791 target_detach (char *args, int from_tty)
1792 {
1793 /* If we're in breakpoints-always-inserted mode, have to
1794 remove them before detaching. */
1795 remove_breakpoints ();
1796
1797 (current_target.to_detach) (args, from_tty);
1798 }
1799
1800 void
1801 target_disconnect (char *args, int from_tty)
1802 {
1803 struct target_ops *t;
1804
1805 /* If we're in breakpoints-always-inserted mode, have to
1806 remove them before disconnecting. */
1807 remove_breakpoints ();
1808
1809 for (t = current_target.beneath; t != NULL; t = t->beneath)
1810 if (t->to_disconnect != NULL)
1811 {
1812 if (targetdebug)
1813 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1814 args, from_tty);
1815 t->to_disconnect (t, args, from_tty);
1816 return;
1817 }
1818
1819 tcomplain ();
1820 }
1821
1822 void
1823 target_resume (ptid_t ptid, int step, enum target_signal signal)
1824 {
1825 dcache_invalidate (target_dcache);
1826 (*current_target.to_resume) (ptid, step, signal);
1827 set_executing (ptid, 1);
1828 set_running (ptid, 1);
1829 }
1830 /* Look through the list of possible targets for a target that can
1831 follow forks. */
1832
1833 int
1834 target_follow_fork (int follow_child)
1835 {
1836 struct target_ops *t;
1837
1838 for (t = current_target.beneath; t != NULL; t = t->beneath)
1839 {
1840 if (t->to_follow_fork != NULL)
1841 {
1842 int retval = t->to_follow_fork (t, follow_child);
1843 if (targetdebug)
1844 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1845 follow_child, retval);
1846 return retval;
1847 }
1848 }
1849
1850 /* Some target returned a fork event, but did not know how to follow it. */
1851 internal_error (__FILE__, __LINE__,
1852 "could not find a target to follow fork");
1853 }
1854
1855 /* Look for a target which can describe architectural features, starting
1856 from TARGET. If we find one, return its description. */
1857
1858 const struct target_desc *
1859 target_read_description (struct target_ops *target)
1860 {
1861 struct target_ops *t;
1862
1863 for (t = target; t != NULL; t = t->beneath)
1864 if (t->to_read_description != NULL)
1865 {
1866 const struct target_desc *tdesc;
1867
1868 tdesc = t->to_read_description (t);
1869 if (tdesc)
1870 return tdesc;
1871 }
1872
1873 return NULL;
1874 }
1875
1876 /* The default implementation of to_search_memory.
1877 This implements a basic search of memory, reading target memory and
1878 performing the search here (as opposed to performing the search in on the
1879 target side with, for example, gdbserver). */
1880
1881 int
1882 simple_search_memory (struct target_ops *ops,
1883 CORE_ADDR start_addr, ULONGEST search_space_len,
1884 const gdb_byte *pattern, ULONGEST pattern_len,
1885 CORE_ADDR *found_addrp)
1886 {
1887 /* NOTE: also defined in find.c testcase. */
1888 #define SEARCH_CHUNK_SIZE 16000
1889 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1890 /* Buffer to hold memory contents for searching. */
1891 gdb_byte *search_buf;
1892 unsigned search_buf_size;
1893 struct cleanup *old_cleanups;
1894
1895 search_buf_size = chunk_size + pattern_len - 1;
1896
1897 /* No point in trying to allocate a buffer larger than the search space. */
1898 if (search_space_len < search_buf_size)
1899 search_buf_size = search_space_len;
1900
1901 search_buf = malloc (search_buf_size);
1902 if (search_buf == NULL)
1903 error (_("Unable to allocate memory to perform the search."));
1904 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1905
1906 /* Prime the search buffer. */
1907
1908 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1909 search_buf, start_addr, search_buf_size) != search_buf_size)
1910 {
1911 warning (_("Unable to access target memory at %s, halting search."),
1912 hex_string (start_addr));
1913 do_cleanups (old_cleanups);
1914 return -1;
1915 }
1916
1917 /* Perform the search.
1918
1919 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1920 When we've scanned N bytes we copy the trailing bytes to the start and
1921 read in another N bytes. */
1922
1923 while (search_space_len >= pattern_len)
1924 {
1925 gdb_byte *found_ptr;
1926 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1927
1928 found_ptr = memmem (search_buf, nr_search_bytes,
1929 pattern, pattern_len);
1930
1931 if (found_ptr != NULL)
1932 {
1933 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1934 *found_addrp = found_addr;
1935 do_cleanups (old_cleanups);
1936 return 1;
1937 }
1938
1939 /* Not found in this chunk, skip to next chunk. */
1940
1941 /* Don't let search_space_len wrap here, it's unsigned. */
1942 if (search_space_len >= chunk_size)
1943 search_space_len -= chunk_size;
1944 else
1945 search_space_len = 0;
1946
1947 if (search_space_len >= pattern_len)
1948 {
1949 unsigned keep_len = search_buf_size - chunk_size;
1950 CORE_ADDR read_addr = start_addr + keep_len;
1951 int nr_to_read;
1952
1953 /* Copy the trailing part of the previous iteration to the front
1954 of the buffer for the next iteration. */
1955 gdb_assert (keep_len == pattern_len - 1);
1956 memcpy (search_buf, search_buf + chunk_size, keep_len);
1957
1958 nr_to_read = min (search_space_len - keep_len, chunk_size);
1959
1960 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1961 search_buf + keep_len, read_addr,
1962 nr_to_read) != nr_to_read)
1963 {
1964 warning (_("Unable to access target memory at %s, halting search."),
1965 hex_string (read_addr));
1966 do_cleanups (old_cleanups);
1967 return -1;
1968 }
1969
1970 start_addr += chunk_size;
1971 }
1972 }
1973
1974 /* Not found. */
1975
1976 do_cleanups (old_cleanups);
1977 return 0;
1978 }
1979
1980 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1981 sequence of bytes in PATTERN with length PATTERN_LEN.
1982
1983 The result is 1 if found, 0 if not found, and -1 if there was an error
1984 requiring halting of the search (e.g. memory read error).
1985 If the pattern is found the address is recorded in FOUND_ADDRP. */
1986
1987 int
1988 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1989 const gdb_byte *pattern, ULONGEST pattern_len,
1990 CORE_ADDR *found_addrp)
1991 {
1992 struct target_ops *t;
1993 int found;
1994
1995 /* We don't use INHERIT to set current_target.to_search_memory,
1996 so we have to scan the target stack and handle targetdebug
1997 ourselves. */
1998
1999 if (targetdebug)
2000 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2001 hex_string (start_addr));
2002
2003 for (t = current_target.beneath; t != NULL; t = t->beneath)
2004 if (t->to_search_memory != NULL)
2005 break;
2006
2007 if (t != NULL)
2008 {
2009 found = t->to_search_memory (t, start_addr, search_space_len,
2010 pattern, pattern_len, found_addrp);
2011 }
2012 else
2013 {
2014 /* If a special version of to_search_memory isn't available, use the
2015 simple version. */
2016 found = simple_search_memory (&current_target,
2017 start_addr, search_space_len,
2018 pattern, pattern_len, found_addrp);
2019 }
2020
2021 if (targetdebug)
2022 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2023
2024 return found;
2025 }
2026
2027 /* Look through the currently pushed targets. If none of them will
2028 be able to restart the currently running process, issue an error
2029 message. */
2030
2031 void
2032 target_require_runnable (void)
2033 {
2034 struct target_ops *t;
2035
2036 for (t = target_stack; t != NULL; t = t->beneath)
2037 {
2038 /* If this target knows how to create a new program, then
2039 assume we will still be able to after killing the current
2040 one. Either killing and mourning will not pop T, or else
2041 find_default_run_target will find it again. */
2042 if (t->to_create_inferior != NULL)
2043 return;
2044
2045 /* Do not worry about thread_stratum targets that can not
2046 create inferiors. Assume they will be pushed again if
2047 necessary, and continue to the process_stratum. */
2048 if (t->to_stratum == thread_stratum)
2049 continue;
2050
2051 error (_("\
2052 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2053 t->to_shortname);
2054 }
2055
2056 /* This function is only called if the target is running. In that
2057 case there should have been a process_stratum target and it
2058 should either know how to create inferiors, or not... */
2059 internal_error (__FILE__, __LINE__, "No targets found");
2060 }
2061
2062 /* Look through the list of possible targets for a target that can
2063 execute a run or attach command without any other data. This is
2064 used to locate the default process stratum.
2065
2066 If DO_MESG is not NULL, the result is always valid (error() is
2067 called for errors); else, return NULL on error. */
2068
2069 static struct target_ops *
2070 find_default_run_target (char *do_mesg)
2071 {
2072 struct target_ops **t;
2073 struct target_ops *runable = NULL;
2074 int count;
2075
2076 count = 0;
2077
2078 for (t = target_structs; t < target_structs + target_struct_size;
2079 ++t)
2080 {
2081 if ((*t)->to_can_run && target_can_run (*t))
2082 {
2083 runable = *t;
2084 ++count;
2085 }
2086 }
2087
2088 if (count != 1)
2089 {
2090 if (do_mesg)
2091 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2092 else
2093 return NULL;
2094 }
2095
2096 return runable;
2097 }
2098
2099 void
2100 find_default_attach (char *args, int from_tty)
2101 {
2102 struct target_ops *t;
2103
2104 t = find_default_run_target ("attach");
2105 (t->to_attach) (args, from_tty);
2106 return;
2107 }
2108
2109 void
2110 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2111 int from_tty)
2112 {
2113 struct target_ops *t;
2114
2115 t = find_default_run_target ("run");
2116 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2117 return;
2118 }
2119
2120 int
2121 find_default_can_async_p (void)
2122 {
2123 struct target_ops *t;
2124
2125 /* This may be called before the target is pushed on the stack;
2126 look for the default process stratum. If there's none, gdb isn't
2127 configured with a native debugger, and target remote isn't
2128 connected yet. */
2129 t = find_default_run_target (NULL);
2130 if (t && t->to_can_async_p)
2131 return (t->to_can_async_p) ();
2132 return 0;
2133 }
2134
2135 int
2136 find_default_is_async_p (void)
2137 {
2138 struct target_ops *t;
2139
2140 /* This may be called before the target is pushed on the stack;
2141 look for the default process stratum. If there's none, gdb isn't
2142 configured with a native debugger, and target remote isn't
2143 connected yet. */
2144 t = find_default_run_target (NULL);
2145 if (t && t->to_is_async_p)
2146 return (t->to_is_async_p) ();
2147 return 0;
2148 }
2149
2150 static int
2151 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2152 {
2153 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2154 }
2155
2156 static int
2157 default_watchpoint_addr_within_range (struct target_ops *target,
2158 CORE_ADDR addr,
2159 CORE_ADDR start, int length)
2160 {
2161 return addr >= start && addr < start + length;
2162 }
2163
2164 static int
2165 return_zero (void)
2166 {
2167 return 0;
2168 }
2169
2170 static int
2171 return_one (void)
2172 {
2173 return 1;
2174 }
2175
2176 static int
2177 return_minus_one (void)
2178 {
2179 return -1;
2180 }
2181
2182 /*
2183 * Resize the to_sections pointer. Also make sure that anyone that
2184 * was holding on to an old value of it gets updated.
2185 * Returns the old size.
2186 */
2187
2188 int
2189 target_resize_to_sections (struct target_ops *target, int num_added)
2190 {
2191 struct target_ops **t;
2192 struct section_table *old_value;
2193 int old_count;
2194
2195 old_value = target->to_sections;
2196
2197 if (target->to_sections)
2198 {
2199 old_count = target->to_sections_end - target->to_sections;
2200 target->to_sections = (struct section_table *)
2201 xrealloc ((char *) target->to_sections,
2202 (sizeof (struct section_table)) * (num_added + old_count));
2203 }
2204 else
2205 {
2206 old_count = 0;
2207 target->to_sections = (struct section_table *)
2208 xmalloc ((sizeof (struct section_table)) * num_added);
2209 }
2210 target->to_sections_end = target->to_sections + (num_added + old_count);
2211
2212 /* Check to see if anyone else was pointing to this structure.
2213 If old_value was null, then no one was. */
2214
2215 if (old_value)
2216 {
2217 for (t = target_structs; t < target_structs + target_struct_size;
2218 ++t)
2219 {
2220 if ((*t)->to_sections == old_value)
2221 {
2222 (*t)->to_sections = target->to_sections;
2223 (*t)->to_sections_end = target->to_sections_end;
2224 }
2225 }
2226 /* There is a flattened view of the target stack in current_target,
2227 so its to_sections pointer might also need updating. */
2228 if (current_target.to_sections == old_value)
2229 {
2230 current_target.to_sections = target->to_sections;
2231 current_target.to_sections_end = target->to_sections_end;
2232 }
2233 }
2234
2235 return old_count;
2236
2237 }
2238
2239 /* Remove all target sections taken from ABFD.
2240
2241 Scan the current target stack for targets whose section tables
2242 refer to sections from BFD, and remove those sections. We use this
2243 when we notice that the inferior has unloaded a shared object, for
2244 example. */
2245 void
2246 remove_target_sections (bfd *abfd)
2247 {
2248 struct target_ops **t;
2249
2250 for (t = target_structs; t < target_structs + target_struct_size; t++)
2251 {
2252 struct section_table *src, *dest;
2253
2254 dest = (*t)->to_sections;
2255 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2256 if (src->bfd != abfd)
2257 {
2258 /* Keep this section. */
2259 if (dest < src) *dest = *src;
2260 dest++;
2261 }
2262
2263 /* If we've dropped any sections, resize the section table. */
2264 if (dest < src)
2265 target_resize_to_sections (*t, dest - src);
2266 }
2267 }
2268
2269
2270
2271
2272 /* Find a single runnable target in the stack and return it. If for
2273 some reason there is more than one, return NULL. */
2274
2275 struct target_ops *
2276 find_run_target (void)
2277 {
2278 struct target_ops **t;
2279 struct target_ops *runable = NULL;
2280 int count;
2281
2282 count = 0;
2283
2284 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2285 {
2286 if ((*t)->to_can_run && target_can_run (*t))
2287 {
2288 runable = *t;
2289 ++count;
2290 }
2291 }
2292
2293 return (count == 1 ? runable : NULL);
2294 }
2295
2296 /* Find a single core_stratum target in the list of targets and return it.
2297 If for some reason there is more than one, return NULL. */
2298
2299 struct target_ops *
2300 find_core_target (void)
2301 {
2302 struct target_ops **t;
2303 struct target_ops *runable = NULL;
2304 int count;
2305
2306 count = 0;
2307
2308 for (t = target_structs; t < target_structs + target_struct_size;
2309 ++t)
2310 {
2311 if ((*t)->to_stratum == core_stratum)
2312 {
2313 runable = *t;
2314 ++count;
2315 }
2316 }
2317
2318 return (count == 1 ? runable : NULL);
2319 }
2320
2321 /*
2322 * Find the next target down the stack from the specified target.
2323 */
2324
2325 struct target_ops *
2326 find_target_beneath (struct target_ops *t)
2327 {
2328 return t->beneath;
2329 }
2330
2331 \f
2332 /* The inferior process has died. Long live the inferior! */
2333
2334 void
2335 generic_mourn_inferior (void)
2336 {
2337 extern int show_breakpoint_hit_counts;
2338
2339 inferior_ptid = null_ptid;
2340 attach_flag = 0;
2341 breakpoint_init_inferior (inf_exited);
2342 registers_changed ();
2343
2344 reopen_exec_file ();
2345 reinit_frame_cache ();
2346
2347 /* It is confusing to the user for ignore counts to stick around
2348 from previous runs of the inferior. So clear them. */
2349 /* However, it is more confusing for the ignore counts to disappear when
2350 using hit counts. So don't clear them if we're counting hits. */
2351 if (!show_breakpoint_hit_counts)
2352 breakpoint_clear_ignore_counts ();
2353
2354 if (deprecated_detach_hook)
2355 deprecated_detach_hook ();
2356 }
2357 \f
2358 /* Helper function for child_wait and the derivatives of child_wait.
2359 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2360 translation of that in OURSTATUS. */
2361 void
2362 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2363 {
2364 if (WIFEXITED (hoststatus))
2365 {
2366 ourstatus->kind = TARGET_WAITKIND_EXITED;
2367 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2368 }
2369 else if (!WIFSTOPPED (hoststatus))
2370 {
2371 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2372 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2373 }
2374 else
2375 {
2376 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2377 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2378 }
2379 }
2380 \f
2381 /* Returns zero to leave the inferior alone, one to interrupt it. */
2382 int (*target_activity_function) (void);
2383 int target_activity_fd;
2384 \f
2385 /* Convert a normal process ID to a string. Returns the string in a
2386 static buffer. */
2387
2388 char *
2389 normal_pid_to_str (ptid_t ptid)
2390 {
2391 static char buf[32];
2392
2393 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2394 return buf;
2395 }
2396
2397 /* Error-catcher for target_find_memory_regions */
2398 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2399 {
2400 error (_("No target."));
2401 return 0;
2402 }
2403
2404 /* Error-catcher for target_make_corefile_notes */
2405 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2406 {
2407 error (_("No target."));
2408 return NULL;
2409 }
2410
2411 /* Set up the handful of non-empty slots needed by the dummy target
2412 vector. */
2413
2414 static void
2415 init_dummy_target (void)
2416 {
2417 dummy_target.to_shortname = "None";
2418 dummy_target.to_longname = "None";
2419 dummy_target.to_doc = "";
2420 dummy_target.to_attach = find_default_attach;
2421 dummy_target.to_create_inferior = find_default_create_inferior;
2422 dummy_target.to_can_async_p = find_default_can_async_p;
2423 dummy_target.to_is_async_p = find_default_is_async_p;
2424 dummy_target.to_pid_to_str = normal_pid_to_str;
2425 dummy_target.to_stratum = dummy_stratum;
2426 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2427 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2428 dummy_target.to_xfer_partial = default_xfer_partial;
2429 dummy_target.to_magic = OPS_MAGIC;
2430 }
2431 \f
2432 static void
2433 debug_to_open (char *args, int from_tty)
2434 {
2435 debug_target.to_open (args, from_tty);
2436
2437 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2438 }
2439
2440 static void
2441 debug_to_close (int quitting)
2442 {
2443 target_close (&debug_target, quitting);
2444 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2445 }
2446
2447 void
2448 target_close (struct target_ops *targ, int quitting)
2449 {
2450 if (targ->to_xclose != NULL)
2451 targ->to_xclose (targ, quitting);
2452 else if (targ->to_close != NULL)
2453 targ->to_close (quitting);
2454 }
2455
2456 static void
2457 debug_to_attach (char *args, int from_tty)
2458 {
2459 debug_target.to_attach (args, from_tty);
2460
2461 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2462 }
2463
2464
2465 static void
2466 debug_to_post_attach (int pid)
2467 {
2468 debug_target.to_post_attach (pid);
2469
2470 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2471 }
2472
2473 static void
2474 debug_to_detach (char *args, int from_tty)
2475 {
2476 debug_target.to_detach (args, from_tty);
2477
2478 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2479 }
2480
2481 static void
2482 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2483 {
2484 debug_target.to_resume (ptid, step, siggnal);
2485
2486 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2487 step ? "step" : "continue",
2488 target_signal_to_name (siggnal));
2489 }
2490
2491 static ptid_t
2492 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2493 {
2494 ptid_t retval;
2495
2496 retval = debug_target.to_wait (ptid, status);
2497
2498 fprintf_unfiltered (gdb_stdlog,
2499 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2500 PIDGET (retval));
2501 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2502 switch (status->kind)
2503 {
2504 case TARGET_WAITKIND_EXITED:
2505 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2506 status->value.integer);
2507 break;
2508 case TARGET_WAITKIND_STOPPED:
2509 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2510 target_signal_to_name (status->value.sig));
2511 break;
2512 case TARGET_WAITKIND_SIGNALLED:
2513 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2514 target_signal_to_name (status->value.sig));
2515 break;
2516 case TARGET_WAITKIND_LOADED:
2517 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2518 break;
2519 case TARGET_WAITKIND_FORKED:
2520 fprintf_unfiltered (gdb_stdlog, "forked\n");
2521 break;
2522 case TARGET_WAITKIND_VFORKED:
2523 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2524 break;
2525 case TARGET_WAITKIND_EXECD:
2526 fprintf_unfiltered (gdb_stdlog, "execd\n");
2527 break;
2528 case TARGET_WAITKIND_SPURIOUS:
2529 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2530 break;
2531 default:
2532 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2533 break;
2534 }
2535
2536 return retval;
2537 }
2538
2539 static void
2540 debug_print_register (const char * func,
2541 struct regcache *regcache, int regno)
2542 {
2543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2544 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2545 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2546 + gdbarch_num_pseudo_regs (gdbarch)
2547 && gdbarch_register_name (gdbarch, regno) != NULL
2548 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2549 fprintf_unfiltered (gdb_stdlog, "(%s)",
2550 gdbarch_register_name (gdbarch, regno));
2551 else
2552 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2553 if (regno >= 0)
2554 {
2555 int i, size = register_size (gdbarch, regno);
2556 unsigned char buf[MAX_REGISTER_SIZE];
2557 regcache_cooked_read (regcache, regno, buf);
2558 fprintf_unfiltered (gdb_stdlog, " = ");
2559 for (i = 0; i < size; i++)
2560 {
2561 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2562 }
2563 if (size <= sizeof (LONGEST))
2564 {
2565 ULONGEST val = extract_unsigned_integer (buf, size);
2566 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2567 paddr_nz (val), paddr_d (val));
2568 }
2569 }
2570 fprintf_unfiltered (gdb_stdlog, "\n");
2571 }
2572
2573 static void
2574 debug_to_fetch_registers (struct regcache *regcache, int regno)
2575 {
2576 debug_target.to_fetch_registers (regcache, regno);
2577 debug_print_register ("target_fetch_registers", regcache, regno);
2578 }
2579
2580 static void
2581 debug_to_store_registers (struct regcache *regcache, int regno)
2582 {
2583 debug_target.to_store_registers (regcache, regno);
2584 debug_print_register ("target_store_registers", regcache, regno);
2585 fprintf_unfiltered (gdb_stdlog, "\n");
2586 }
2587
2588 static void
2589 debug_to_prepare_to_store (struct regcache *regcache)
2590 {
2591 debug_target.to_prepare_to_store (regcache);
2592
2593 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2594 }
2595
2596 static int
2597 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2598 int write, struct mem_attrib *attrib,
2599 struct target_ops *target)
2600 {
2601 int retval;
2602
2603 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2604 attrib, target);
2605
2606 fprintf_unfiltered (gdb_stdlog,
2607 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2608 (unsigned int) memaddr, /* possable truncate long long */
2609 len, write ? "write" : "read", retval);
2610
2611 if (retval > 0)
2612 {
2613 int i;
2614
2615 fputs_unfiltered (", bytes =", gdb_stdlog);
2616 for (i = 0; i < retval; i++)
2617 {
2618 if ((((long) &(myaddr[i])) & 0xf) == 0)
2619 {
2620 if (targetdebug < 2 && i > 0)
2621 {
2622 fprintf_unfiltered (gdb_stdlog, " ...");
2623 break;
2624 }
2625 fprintf_unfiltered (gdb_stdlog, "\n");
2626 }
2627
2628 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2629 }
2630 }
2631
2632 fputc_unfiltered ('\n', gdb_stdlog);
2633
2634 return retval;
2635 }
2636
2637 static void
2638 debug_to_files_info (struct target_ops *target)
2639 {
2640 debug_target.to_files_info (target);
2641
2642 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2643 }
2644
2645 static int
2646 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2647 {
2648 int retval;
2649
2650 retval = debug_target.to_insert_breakpoint (bp_tgt);
2651
2652 fprintf_unfiltered (gdb_stdlog,
2653 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2654 (unsigned long) bp_tgt->placed_address,
2655 (unsigned long) retval);
2656 return retval;
2657 }
2658
2659 static int
2660 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2661 {
2662 int retval;
2663
2664 retval = debug_target.to_remove_breakpoint (bp_tgt);
2665
2666 fprintf_unfiltered (gdb_stdlog,
2667 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2668 (unsigned long) bp_tgt->placed_address,
2669 (unsigned long) retval);
2670 return retval;
2671 }
2672
2673 static int
2674 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2675 {
2676 int retval;
2677
2678 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2679
2680 fprintf_unfiltered (gdb_stdlog,
2681 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2682 (unsigned long) type,
2683 (unsigned long) cnt,
2684 (unsigned long) from_tty,
2685 (unsigned long) retval);
2686 return retval;
2687 }
2688
2689 static int
2690 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2691 {
2692 CORE_ADDR retval;
2693
2694 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2695
2696 fprintf_unfiltered (gdb_stdlog,
2697 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2698 (unsigned long) addr,
2699 (unsigned long) len,
2700 (unsigned long) retval);
2701 return retval;
2702 }
2703
2704 static int
2705 debug_to_stopped_by_watchpoint (void)
2706 {
2707 int retval;
2708
2709 retval = debug_target.to_stopped_by_watchpoint ();
2710
2711 fprintf_unfiltered (gdb_stdlog,
2712 "STOPPED_BY_WATCHPOINT () = %ld\n",
2713 (unsigned long) retval);
2714 return retval;
2715 }
2716
2717 static int
2718 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2719 {
2720 int retval;
2721
2722 retval = debug_target.to_stopped_data_address (target, addr);
2723
2724 fprintf_unfiltered (gdb_stdlog,
2725 "target_stopped_data_address ([0x%lx]) = %ld\n",
2726 (unsigned long)*addr,
2727 (unsigned long)retval);
2728 return retval;
2729 }
2730
2731 static int
2732 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2733 CORE_ADDR addr,
2734 CORE_ADDR start, int length)
2735 {
2736 int retval;
2737
2738 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2739 start, length);
2740
2741 fprintf_filtered (gdb_stdlog,
2742 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2743 (unsigned long) addr, (unsigned long) start, length,
2744 retval);
2745 return retval;
2746 }
2747
2748 static int
2749 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2750 {
2751 int retval;
2752
2753 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2754
2755 fprintf_unfiltered (gdb_stdlog,
2756 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2757 (unsigned long) bp_tgt->placed_address,
2758 (unsigned long) retval);
2759 return retval;
2760 }
2761
2762 static int
2763 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2764 {
2765 int retval;
2766
2767 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2768
2769 fprintf_unfiltered (gdb_stdlog,
2770 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2771 (unsigned long) bp_tgt->placed_address,
2772 (unsigned long) retval);
2773 return retval;
2774 }
2775
2776 static int
2777 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2778 {
2779 int retval;
2780
2781 retval = debug_target.to_insert_watchpoint (addr, len, type);
2782
2783 fprintf_unfiltered (gdb_stdlog,
2784 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2785 (unsigned long) addr, len, type, (unsigned long) retval);
2786 return retval;
2787 }
2788
2789 static int
2790 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2791 {
2792 int retval;
2793
2794 retval = debug_target.to_remove_watchpoint (addr, len, type);
2795
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2798 (unsigned long) addr, len, type, (unsigned long) retval);
2799 return retval;
2800 }
2801
2802 static void
2803 debug_to_terminal_init (void)
2804 {
2805 debug_target.to_terminal_init ();
2806
2807 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2808 }
2809
2810 static void
2811 debug_to_terminal_inferior (void)
2812 {
2813 debug_target.to_terminal_inferior ();
2814
2815 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2816 }
2817
2818 static void
2819 debug_to_terminal_ours_for_output (void)
2820 {
2821 debug_target.to_terminal_ours_for_output ();
2822
2823 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2824 }
2825
2826 static void
2827 debug_to_terminal_ours (void)
2828 {
2829 debug_target.to_terminal_ours ();
2830
2831 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2832 }
2833
2834 static void
2835 debug_to_terminal_save_ours (void)
2836 {
2837 debug_target.to_terminal_save_ours ();
2838
2839 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2840 }
2841
2842 static void
2843 debug_to_terminal_info (char *arg, int from_tty)
2844 {
2845 debug_target.to_terminal_info (arg, from_tty);
2846
2847 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2848 from_tty);
2849 }
2850
2851 static void
2852 debug_to_kill (void)
2853 {
2854 debug_target.to_kill ();
2855
2856 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2857 }
2858
2859 static void
2860 debug_to_load (char *args, int from_tty)
2861 {
2862 debug_target.to_load (args, from_tty);
2863
2864 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2865 }
2866
2867 static int
2868 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2869 {
2870 int retval;
2871
2872 retval = debug_target.to_lookup_symbol (name, addrp);
2873
2874 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2875
2876 return retval;
2877 }
2878
2879 static void
2880 debug_to_create_inferior (char *exec_file, char *args, char **env,
2881 int from_tty)
2882 {
2883 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2884
2885 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2886 exec_file, args, from_tty);
2887 }
2888
2889 static void
2890 debug_to_post_startup_inferior (ptid_t ptid)
2891 {
2892 debug_target.to_post_startup_inferior (ptid);
2893
2894 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2895 PIDGET (ptid));
2896 }
2897
2898 static void
2899 debug_to_acknowledge_created_inferior (int pid)
2900 {
2901 debug_target.to_acknowledge_created_inferior (pid);
2902
2903 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2904 pid);
2905 }
2906
2907 static void
2908 debug_to_insert_fork_catchpoint (int pid)
2909 {
2910 debug_target.to_insert_fork_catchpoint (pid);
2911
2912 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2913 pid);
2914 }
2915
2916 static int
2917 debug_to_remove_fork_catchpoint (int pid)
2918 {
2919 int retval;
2920
2921 retval = debug_target.to_remove_fork_catchpoint (pid);
2922
2923 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2924 pid, retval);
2925
2926 return retval;
2927 }
2928
2929 static void
2930 debug_to_insert_vfork_catchpoint (int pid)
2931 {
2932 debug_target.to_insert_vfork_catchpoint (pid);
2933
2934 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2935 pid);
2936 }
2937
2938 static int
2939 debug_to_remove_vfork_catchpoint (int pid)
2940 {
2941 int retval;
2942
2943 retval = debug_target.to_remove_vfork_catchpoint (pid);
2944
2945 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2946 pid, retval);
2947
2948 return retval;
2949 }
2950
2951 static void
2952 debug_to_insert_exec_catchpoint (int pid)
2953 {
2954 debug_target.to_insert_exec_catchpoint (pid);
2955
2956 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2957 pid);
2958 }
2959
2960 static int
2961 debug_to_remove_exec_catchpoint (int pid)
2962 {
2963 int retval;
2964
2965 retval = debug_target.to_remove_exec_catchpoint (pid);
2966
2967 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2968 pid, retval);
2969
2970 return retval;
2971 }
2972
2973 static int
2974 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2975 {
2976 int has_exited;
2977
2978 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2979
2980 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2981 pid, wait_status, *exit_status, has_exited);
2982
2983 return has_exited;
2984 }
2985
2986 static void
2987 debug_to_mourn_inferior (void)
2988 {
2989 debug_target.to_mourn_inferior ();
2990
2991 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2992 }
2993
2994 static int
2995 debug_to_can_run (void)
2996 {
2997 int retval;
2998
2999 retval = debug_target.to_can_run ();
3000
3001 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3002
3003 return retval;
3004 }
3005
3006 static void
3007 debug_to_notice_signals (ptid_t ptid)
3008 {
3009 debug_target.to_notice_signals (ptid);
3010
3011 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3012 PIDGET (ptid));
3013 }
3014
3015 static int
3016 debug_to_thread_alive (ptid_t ptid)
3017 {
3018 int retval;
3019
3020 retval = debug_target.to_thread_alive (ptid);
3021
3022 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3023 PIDGET (ptid), retval);
3024
3025 return retval;
3026 }
3027
3028 static void
3029 debug_to_find_new_threads (void)
3030 {
3031 debug_target.to_find_new_threads ();
3032
3033 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3034 }
3035
3036 static void
3037 debug_to_stop (ptid_t ptid)
3038 {
3039 debug_target.to_stop (ptid);
3040
3041 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3042 target_pid_to_str (ptid));
3043 }
3044
3045 static void
3046 debug_to_rcmd (char *command,
3047 struct ui_file *outbuf)
3048 {
3049 debug_target.to_rcmd (command, outbuf);
3050 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3051 }
3052
3053 static char *
3054 debug_to_pid_to_exec_file (int pid)
3055 {
3056 char *exec_file;
3057
3058 exec_file = debug_target.to_pid_to_exec_file (pid);
3059
3060 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3061 pid, exec_file);
3062
3063 return exec_file;
3064 }
3065
3066 static void
3067 setup_target_debug (void)
3068 {
3069 memcpy (&debug_target, &current_target, sizeof debug_target);
3070
3071 current_target.to_open = debug_to_open;
3072 current_target.to_close = debug_to_close;
3073 current_target.to_attach = debug_to_attach;
3074 current_target.to_post_attach = debug_to_post_attach;
3075 current_target.to_detach = debug_to_detach;
3076 current_target.to_resume = debug_to_resume;
3077 current_target.to_wait = debug_to_wait;
3078 current_target.to_fetch_registers = debug_to_fetch_registers;
3079 current_target.to_store_registers = debug_to_store_registers;
3080 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3081 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3082 current_target.to_files_info = debug_to_files_info;
3083 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3084 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3085 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3086 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3087 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3088 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3089 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3090 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3091 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3092 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3093 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3094 current_target.to_terminal_init = debug_to_terminal_init;
3095 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3096 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3097 current_target.to_terminal_ours = debug_to_terminal_ours;
3098 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3099 current_target.to_terminal_info = debug_to_terminal_info;
3100 current_target.to_kill = debug_to_kill;
3101 current_target.to_load = debug_to_load;
3102 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3103 current_target.to_create_inferior = debug_to_create_inferior;
3104 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3105 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3106 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3107 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3108 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3109 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3110 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3111 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3112 current_target.to_has_exited = debug_to_has_exited;
3113 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3114 current_target.to_can_run = debug_to_can_run;
3115 current_target.to_notice_signals = debug_to_notice_signals;
3116 current_target.to_thread_alive = debug_to_thread_alive;
3117 current_target.to_find_new_threads = debug_to_find_new_threads;
3118 current_target.to_stop = debug_to_stop;
3119 current_target.to_rcmd = debug_to_rcmd;
3120 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3121 }
3122 \f
3123
3124 static char targ_desc[] =
3125 "Names of targets and files being debugged.\n\
3126 Shows the entire stack of targets currently in use (including the exec-file,\n\
3127 core-file, and process, if any), as well as the symbol file name.";
3128
3129 static void
3130 do_monitor_command (char *cmd,
3131 int from_tty)
3132 {
3133 if ((current_target.to_rcmd
3134 == (void (*) (char *, struct ui_file *)) tcomplain)
3135 || (current_target.to_rcmd == debug_to_rcmd
3136 && (debug_target.to_rcmd
3137 == (void (*) (char *, struct ui_file *)) tcomplain)))
3138 error (_("\"monitor\" command not supported by this target."));
3139 target_rcmd (cmd, gdb_stdtarg);
3140 }
3141
3142 /* Print the name of each layers of our target stack. */
3143
3144 static void
3145 maintenance_print_target_stack (char *cmd, int from_tty)
3146 {
3147 struct target_ops *t;
3148
3149 printf_filtered (_("The current target stack is:\n"));
3150
3151 for (t = target_stack; t != NULL; t = t->beneath)
3152 {
3153 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3154 }
3155 }
3156
3157 void
3158 initialize_targets (void)
3159 {
3160 init_dummy_target ();
3161 push_target (&dummy_target);
3162
3163 add_info ("target", target_info, targ_desc);
3164 add_info ("files", target_info, targ_desc);
3165
3166 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3167 Set target debugging."), _("\
3168 Show target debugging."), _("\
3169 When non-zero, target debugging is enabled. Higher numbers are more\n\
3170 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3171 command."),
3172 NULL,
3173 show_targetdebug,
3174 &setdebuglist, &showdebuglist);
3175
3176 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3177 &trust_readonly, _("\
3178 Set mode for reading from readonly sections."), _("\
3179 Show mode for reading from readonly sections."), _("\
3180 When this mode is on, memory reads from readonly sections (such as .text)\n\
3181 will be read from the object file instead of from the target. This will\n\
3182 result in significant performance improvement for remote targets."),
3183 NULL,
3184 show_trust_readonly,
3185 &setlist, &showlist);
3186
3187 add_com ("monitor", class_obscure, do_monitor_command,
3188 _("Send a command to the remote monitor (remote targets only)."));
3189
3190 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3191 _("Print the name of each layer of the internal target stack."),
3192 &maintenanceprintlist);
3193
3194 target_dcache = dcache_init ();
3195 }
This page took 0.099573 seconds and 4 git commands to generate.