* gdb.python/py-type.exp (test_enums): Fix typo.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
86 ptid_t ptid);
87
88 static void init_dummy_target (void);
89
90 static struct target_ops debug_target;
91
92 static void debug_to_open (char *, int);
93
94 static void debug_to_prepare_to_store (struct regcache *);
95
96 static void debug_to_files_info (struct target_ops *);
97
98 static int debug_to_insert_breakpoint (struct gdbarch *,
99 struct bp_target_info *);
100
101 static int debug_to_remove_breakpoint (struct gdbarch *,
102 struct bp_target_info *);
103
104 static int debug_to_can_use_hw_breakpoint (int, int, int);
105
106 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
113 struct expression *);
114
115 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
116 struct expression *);
117
118 static int debug_to_stopped_by_watchpoint (void);
119
120 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
121
122 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
123 CORE_ADDR, CORE_ADDR, int);
124
125 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
126
127 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
128 struct expression *);
129
130 static void debug_to_terminal_init (void);
131
132 static void debug_to_terminal_inferior (void);
133
134 static void debug_to_terminal_ours_for_output (void);
135
136 static void debug_to_terminal_save_ours (void);
137
138 static void debug_to_terminal_ours (void);
139
140 static void debug_to_load (char *, int);
141
142 static int debug_to_can_run (void);
143
144 static void debug_to_stop (ptid_t);
145
146 /* Pointer to array of target architecture structures; the size of the
147 array; the current index into the array; the allocated size of the
148 array. */
149 struct target_ops **target_structs;
150 unsigned target_struct_size;
151 unsigned target_struct_allocsize;
152 #define DEFAULT_ALLOCSIZE 10
153
154 /* The initial current target, so that there is always a semi-valid
155 current target. */
156
157 static struct target_ops dummy_target;
158
159 /* Top of target stack. */
160
161 static struct target_ops *target_stack;
162
163 /* The target structure we are currently using to talk to a process
164 or file or whatever "inferior" we have. */
165
166 struct target_ops current_target;
167
168 /* Command list for target. */
169
170 static struct cmd_list_element *targetlist = NULL;
171
172 /* Nonzero if we should trust readonly sections from the
173 executable when reading memory. */
174
175 static int trust_readonly = 0;
176
177 /* Nonzero if we should show true memory content including
178 memory breakpoint inserted by gdb. */
179
180 static int show_memory_breakpoints = 0;
181
182 /* These globals control whether GDB attempts to perform these
183 operations; they are useful for targets that need to prevent
184 inadvertant disruption, such as in non-stop mode. */
185
186 int may_write_registers = 1;
187
188 int may_write_memory = 1;
189
190 int may_insert_breakpoints = 1;
191
192 int may_insert_tracepoints = 1;
193
194 int may_insert_fast_tracepoints = 1;
195
196 int may_stop = 1;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static unsigned int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 /* The user just typed 'target' without the name of a target. */
211
212 static void
213 target_command (char *arg, int from_tty)
214 {
215 fputs_filtered ("Argument required (target name). Try `help target'\n",
216 gdb_stdout);
217 }
218
219 /* Default target_has_* methods for process_stratum targets. */
220
221 int
222 default_child_has_all_memory (struct target_ops *ops)
223 {
224 /* If no inferior selected, then we can't read memory here. */
225 if (ptid_equal (inferior_ptid, null_ptid))
226 return 0;
227
228 return 1;
229 }
230
231 int
232 default_child_has_memory (struct target_ops *ops)
233 {
234 /* If no inferior selected, then we can't read memory here. */
235 if (ptid_equal (inferior_ptid, null_ptid))
236 return 0;
237
238 return 1;
239 }
240
241 int
242 default_child_has_stack (struct target_ops *ops)
243 {
244 /* If no inferior selected, there's no stack. */
245 if (ptid_equal (inferior_ptid, null_ptid))
246 return 0;
247
248 return 1;
249 }
250
251 int
252 default_child_has_registers (struct target_ops *ops)
253 {
254 /* Can't read registers from no inferior. */
255 if (ptid_equal (inferior_ptid, null_ptid))
256 return 0;
257
258 return 1;
259 }
260
261 int
262 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
263 {
264 /* If there's no thread selected, then we can't make it run through
265 hoops. */
266 if (ptid_equal (the_ptid, null_ptid))
267 return 0;
268
269 return 1;
270 }
271
272
273 int
274 target_has_all_memory_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_all_memory (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_memory_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_memory (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_stack_1 (void)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_stack (t))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_registers_1 (void)
311 {
312 struct target_ops *t;
313
314 for (t = current_target.beneath; t != NULL; t = t->beneath)
315 if (t->to_has_registers (t))
316 return 1;
317
318 return 0;
319 }
320
321 int
322 target_has_execution_1 (ptid_t the_ptid)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_execution (t, the_ptid))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_execution_current (void)
335 {
336 return target_has_execution_1 (inferior_ptid);
337 }
338
339 /* Complete initialization of T. This ensures that various fields in
340 T are set, if needed by the target implementation. */
341
342 void
343 complete_target_initialization (struct target_ops *t)
344 {
345 /* Provide default values for all "must have" methods. */
346 if (t->to_xfer_partial == NULL)
347 t->to_xfer_partial = default_xfer_partial;
348
349 if (t->to_has_all_memory == NULL)
350 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
351
352 if (t->to_has_memory == NULL)
353 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
354
355 if (t->to_has_stack == NULL)
356 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
357
358 if (t->to_has_registers == NULL)
359 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
360
361 if (t->to_has_execution == NULL)
362 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 if (!target_structs)
378 {
379 target_struct_allocsize = DEFAULT_ALLOCSIZE;
380 target_structs = (struct target_ops **) xmalloc
381 (target_struct_allocsize * sizeof (*target_structs));
382 }
383 if (target_struct_size >= target_struct_allocsize)
384 {
385 target_struct_allocsize *= 2;
386 target_structs = (struct target_ops **)
387 xrealloc ((char *) target_structs,
388 target_struct_allocsize * sizeof (*target_structs));
389 }
390 target_structs[target_struct_size++] = t;
391
392 if (targetlist == NULL)
393 add_prefix_cmd ("target", class_run, target_command, _("\
394 Connect to a target machine or process.\n\
395 The first argument is the type or protocol of the target machine.\n\
396 Remaining arguments are interpreted by the target protocol. For more\n\
397 information on the arguments for a particular protocol, type\n\
398 `help target ' followed by the protocol name."),
399 &targetlist, "target ", 0, &cmdlist);
400 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
401 &targetlist);
402 if (completer != NULL)
403 set_cmd_completer (c, completer);
404 }
405
406 /* Add a possible target architecture to the list. */
407
408 void
409 add_target (struct target_ops *t)
410 {
411 add_target_with_completer (t, NULL);
412 }
413
414 /* See target.h. */
415
416 void
417 add_deprecated_target_alias (struct target_ops *t, char *alias)
418 {
419 struct cmd_list_element *c;
420 char *alt;
421
422 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
423 see PR cli/15104. */
424 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
425 alt = xstrprintf ("target %s", t->to_shortname);
426 deprecate_cmd (c, alt);
427 }
428
429 /* Stub functions */
430
431 void
432 target_ignore (void)
433 {
434 }
435
436 void
437 target_kill (void)
438 {
439 struct target_ops *t;
440
441 for (t = current_target.beneath; t != NULL; t = t->beneath)
442 if (t->to_kill != NULL)
443 {
444 if (targetdebug)
445 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
446
447 t->to_kill (t);
448 return;
449 }
450
451 noprocess ();
452 }
453
454 void
455 target_load (char *arg, int from_tty)
456 {
457 target_dcache_invalidate ();
458 (*current_target.to_load) (arg, from_tty);
459 }
460
461 void
462 target_create_inferior (char *exec_file, char *args,
463 char **env, int from_tty)
464 {
465 struct target_ops *t;
466
467 for (t = current_target.beneath; t != NULL; t = t->beneath)
468 {
469 if (t->to_create_inferior != NULL)
470 {
471 t->to_create_inferior (t, exec_file, args, env, from_tty);
472 if (targetdebug)
473 fprintf_unfiltered (gdb_stdlog,
474 "target_create_inferior (%s, %s, xxx, %d)\n",
475 exec_file, args, from_tty);
476 return;
477 }
478 }
479
480 internal_error (__FILE__, __LINE__,
481 _("could not find a target to create inferior"));
482 }
483
484 void
485 target_terminal_inferior (void)
486 {
487 /* A background resume (``run&'') should leave GDB in control of the
488 terminal. Use target_can_async_p, not target_is_async_p, since at
489 this point the target is not async yet. However, if sync_execution
490 is not set, we know it will become async prior to resume. */
491 if (target_can_async_p () && !sync_execution)
492 return;
493
494 /* If GDB is resuming the inferior in the foreground, install
495 inferior's terminal modes. */
496 (*current_target.to_terminal_inferior) ();
497 }
498
499 static int
500 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
501 struct target_ops *t)
502 {
503 errno = EIO; /* Can't read/write this location. */
504 return 0; /* No bytes handled. */
505 }
506
507 static void
508 tcomplain (void)
509 {
510 error (_("You can't do that when your target is `%s'"),
511 current_target.to_shortname);
512 }
513
514 void
515 noprocess (void)
516 {
517 error (_("You can't do that without a process to debug."));
518 }
519
520 static void
521 default_terminal_info (const char *args, int from_tty)
522 {
523 printf_unfiltered (_("No saved terminal information.\n"));
524 }
525
526 /* A default implementation for the to_get_ada_task_ptid target method.
527
528 This function builds the PTID by using both LWP and TID as part of
529 the PTID lwp and tid elements. The pid used is the pid of the
530 inferior_ptid. */
531
532 static ptid_t
533 default_get_ada_task_ptid (long lwp, long tid)
534 {
535 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
536 }
537
538 static enum exec_direction_kind
539 default_execution_direction (void)
540 {
541 if (!target_can_execute_reverse)
542 return EXEC_FORWARD;
543 else if (!target_can_async_p ())
544 return EXEC_FORWARD;
545 else
546 gdb_assert_not_reached ("\
547 to_execution_direction must be implemented for reverse async");
548 }
549
550 /* Go through the target stack from top to bottom, copying over zero
551 entries in current_target, then filling in still empty entries. In
552 effect, we are doing class inheritance through the pushed target
553 vectors.
554
555 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
556 is currently implemented, is that it discards any knowledge of
557 which target an inherited method originally belonged to.
558 Consequently, new new target methods should instead explicitly and
559 locally search the target stack for the target that can handle the
560 request. */
561
562 static void
563 update_current_target (void)
564 {
565 struct target_ops *t;
566
567 /* First, reset current's contents. */
568 memset (&current_target, 0, sizeof (current_target));
569
570 #define INHERIT(FIELD, TARGET) \
571 if (!current_target.FIELD) \
572 current_target.FIELD = (TARGET)->FIELD
573
574 for (t = target_stack; t; t = t->beneath)
575 {
576 INHERIT (to_shortname, t);
577 INHERIT (to_longname, t);
578 INHERIT (to_doc, t);
579 /* Do not inherit to_open. */
580 /* Do not inherit to_close. */
581 /* Do not inherit to_attach. */
582 INHERIT (to_post_attach, t);
583 INHERIT (to_attach_no_wait, t);
584 /* Do not inherit to_detach. */
585 /* Do not inherit to_disconnect. */
586 /* Do not inherit to_resume. */
587 /* Do not inherit to_wait. */
588 /* Do not inherit to_fetch_registers. */
589 /* Do not inherit to_store_registers. */
590 INHERIT (to_prepare_to_store, t);
591 INHERIT (deprecated_xfer_memory, t);
592 INHERIT (to_files_info, t);
593 INHERIT (to_insert_breakpoint, t);
594 INHERIT (to_remove_breakpoint, t);
595 INHERIT (to_can_use_hw_breakpoint, t);
596 INHERIT (to_insert_hw_breakpoint, t);
597 INHERIT (to_remove_hw_breakpoint, t);
598 /* Do not inherit to_ranged_break_num_registers. */
599 INHERIT (to_insert_watchpoint, t);
600 INHERIT (to_remove_watchpoint, t);
601 /* Do not inherit to_insert_mask_watchpoint. */
602 /* Do not inherit to_remove_mask_watchpoint. */
603 INHERIT (to_stopped_data_address, t);
604 INHERIT (to_have_steppable_watchpoint, t);
605 INHERIT (to_have_continuable_watchpoint, t);
606 INHERIT (to_stopped_by_watchpoint, t);
607 INHERIT (to_watchpoint_addr_within_range, t);
608 INHERIT (to_region_ok_for_hw_watchpoint, t);
609 INHERIT (to_can_accel_watchpoint_condition, t);
610 /* Do not inherit to_masked_watch_num_registers. */
611 INHERIT (to_terminal_init, t);
612 INHERIT (to_terminal_inferior, t);
613 INHERIT (to_terminal_ours_for_output, t);
614 INHERIT (to_terminal_ours, t);
615 INHERIT (to_terminal_save_ours, t);
616 INHERIT (to_terminal_info, t);
617 /* Do not inherit to_kill. */
618 INHERIT (to_load, t);
619 /* Do no inherit to_create_inferior. */
620 INHERIT (to_post_startup_inferior, t);
621 INHERIT (to_insert_fork_catchpoint, t);
622 INHERIT (to_remove_fork_catchpoint, t);
623 INHERIT (to_insert_vfork_catchpoint, t);
624 INHERIT (to_remove_vfork_catchpoint, t);
625 /* Do not inherit to_follow_fork. */
626 INHERIT (to_insert_exec_catchpoint, t);
627 INHERIT (to_remove_exec_catchpoint, t);
628 INHERIT (to_set_syscall_catchpoint, t);
629 INHERIT (to_has_exited, t);
630 /* Do not inherit to_mourn_inferior. */
631 INHERIT (to_can_run, t);
632 /* Do not inherit to_pass_signals. */
633 /* Do not inherit to_program_signals. */
634 /* Do not inherit to_thread_alive. */
635 /* Do not inherit to_find_new_threads. */
636 /* Do not inherit to_pid_to_str. */
637 INHERIT (to_extra_thread_info, t);
638 INHERIT (to_thread_name, t);
639 INHERIT (to_stop, t);
640 /* Do not inherit to_xfer_partial. */
641 INHERIT (to_rcmd, t);
642 INHERIT (to_pid_to_exec_file, t);
643 INHERIT (to_log_command, t);
644 INHERIT (to_stratum, t);
645 /* Do not inherit to_has_all_memory. */
646 /* Do not inherit to_has_memory. */
647 /* Do not inherit to_has_stack. */
648 /* Do not inherit to_has_registers. */
649 /* Do not inherit to_has_execution. */
650 INHERIT (to_has_thread_control, t);
651 INHERIT (to_can_async_p, t);
652 INHERIT (to_is_async_p, t);
653 INHERIT (to_async, t);
654 INHERIT (to_find_memory_regions, t);
655 INHERIT (to_make_corefile_notes, t);
656 INHERIT (to_get_bookmark, t);
657 INHERIT (to_goto_bookmark, t);
658 /* Do not inherit to_get_thread_local_address. */
659 INHERIT (to_can_execute_reverse, t);
660 INHERIT (to_execution_direction, t);
661 INHERIT (to_thread_architecture, t);
662 /* Do not inherit to_read_description. */
663 INHERIT (to_get_ada_task_ptid, t);
664 /* Do not inherit to_search_memory. */
665 INHERIT (to_supports_multi_process, t);
666 INHERIT (to_supports_enable_disable_tracepoint, t);
667 INHERIT (to_supports_string_tracing, t);
668 INHERIT (to_trace_init, t);
669 INHERIT (to_download_tracepoint, t);
670 INHERIT (to_can_download_tracepoint, t);
671 INHERIT (to_download_trace_state_variable, t);
672 INHERIT (to_enable_tracepoint, t);
673 INHERIT (to_disable_tracepoint, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_get_tracepoint_status, t);
678 INHERIT (to_trace_stop, t);
679 INHERIT (to_trace_find, t);
680 INHERIT (to_get_trace_state_variable_value, t);
681 INHERIT (to_save_trace_data, t);
682 INHERIT (to_upload_tracepoints, t);
683 INHERIT (to_upload_trace_state_variables, t);
684 INHERIT (to_get_raw_trace_data, t);
685 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
686 INHERIT (to_set_disconnected_tracing, t);
687 INHERIT (to_set_circular_trace_buffer, t);
688 INHERIT (to_set_trace_buffer_size, t);
689 INHERIT (to_set_trace_notes, t);
690 INHERIT (to_get_tib_address, t);
691 INHERIT (to_set_permissions, t);
692 INHERIT (to_static_tracepoint_marker_at, t);
693 INHERIT (to_static_tracepoint_markers_by_strid, t);
694 INHERIT (to_traceframe_info, t);
695 INHERIT (to_use_agent, t);
696 INHERIT (to_can_use_agent, t);
697 INHERIT (to_augmented_libraries_svr4_read, t);
698 INHERIT (to_magic, t);
699 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
700 INHERIT (to_can_run_breakpoint_commands, t);
701 /* Do not inherit to_memory_map. */
702 /* Do not inherit to_flash_erase. */
703 /* Do not inherit to_flash_done. */
704 }
705 #undef INHERIT
706
707 /* Clean up a target struct so it no longer has any zero pointers in
708 it. Some entries are defaulted to a method that print an error,
709 others are hard-wired to a standard recursive default. */
710
711 #define de_fault(field, value) \
712 if (!current_target.field) \
713 current_target.field = value
714
715 de_fault (to_open,
716 (void (*) (char *, int))
717 tcomplain);
718 de_fault (to_close,
719 (void (*) (void))
720 target_ignore);
721 de_fault (to_post_attach,
722 (void (*) (int))
723 target_ignore);
724 de_fault (to_prepare_to_store,
725 (void (*) (struct regcache *))
726 noprocess);
727 de_fault (deprecated_xfer_memory,
728 (int (*) (CORE_ADDR, gdb_byte *, int, int,
729 struct mem_attrib *, struct target_ops *))
730 nomemory);
731 de_fault (to_files_info,
732 (void (*) (struct target_ops *))
733 target_ignore);
734 de_fault (to_insert_breakpoint,
735 memory_insert_breakpoint);
736 de_fault (to_remove_breakpoint,
737 memory_remove_breakpoint);
738 de_fault (to_can_use_hw_breakpoint,
739 (int (*) (int, int, int))
740 return_zero);
741 de_fault (to_insert_hw_breakpoint,
742 (int (*) (struct gdbarch *, struct bp_target_info *))
743 return_minus_one);
744 de_fault (to_remove_hw_breakpoint,
745 (int (*) (struct gdbarch *, struct bp_target_info *))
746 return_minus_one);
747 de_fault (to_insert_watchpoint,
748 (int (*) (CORE_ADDR, int, int, struct expression *))
749 return_minus_one);
750 de_fault (to_remove_watchpoint,
751 (int (*) (CORE_ADDR, int, int, struct expression *))
752 return_minus_one);
753 de_fault (to_stopped_by_watchpoint,
754 (int (*) (void))
755 return_zero);
756 de_fault (to_stopped_data_address,
757 (int (*) (struct target_ops *, CORE_ADDR *))
758 return_zero);
759 de_fault (to_watchpoint_addr_within_range,
760 default_watchpoint_addr_within_range);
761 de_fault (to_region_ok_for_hw_watchpoint,
762 default_region_ok_for_hw_watchpoint);
763 de_fault (to_can_accel_watchpoint_condition,
764 (int (*) (CORE_ADDR, int, int, struct expression *))
765 return_zero);
766 de_fault (to_terminal_init,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_inferior,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_ours_for_output,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_ours,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_save_ours,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_info,
782 default_terminal_info);
783 de_fault (to_load,
784 (void (*) (char *, int))
785 tcomplain);
786 de_fault (to_post_startup_inferior,
787 (void (*) (ptid_t))
788 target_ignore);
789 de_fault (to_insert_fork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_remove_fork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_insert_vfork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_vfork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_exec_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_exec_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_set_syscall_catchpoint,
808 (int (*) (int, int, int, int, int *))
809 return_one);
810 de_fault (to_has_exited,
811 (int (*) (int, int, int *))
812 return_zero);
813 de_fault (to_can_run,
814 return_zero);
815 de_fault (to_extra_thread_info,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_thread_name,
819 (char *(*) (struct thread_info *))
820 return_zero);
821 de_fault (to_stop,
822 (void (*) (ptid_t))
823 target_ignore);
824 current_target.to_xfer_partial = current_xfer_partial;
825 de_fault (to_rcmd,
826 (void (*) (char *, struct ui_file *))
827 tcomplain);
828 de_fault (to_pid_to_exec_file,
829 (char *(*) (int))
830 return_zero);
831 de_fault (to_async,
832 (void (*) (void (*) (enum inferior_event_type, void*), void*))
833 tcomplain);
834 de_fault (to_thread_architecture,
835 default_thread_architecture);
836 current_target.to_read_description = NULL;
837 de_fault (to_get_ada_task_ptid,
838 (ptid_t (*) (long, long))
839 default_get_ada_task_ptid);
840 de_fault (to_supports_multi_process,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_supports_enable_disable_tracepoint,
844 (int (*) (void))
845 return_zero);
846 de_fault (to_supports_string_tracing,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_trace_init,
850 (void (*) (void))
851 tcomplain);
852 de_fault (to_download_tracepoint,
853 (void (*) (struct bp_location *))
854 tcomplain);
855 de_fault (to_can_download_tracepoint,
856 (int (*) (void))
857 return_zero);
858 de_fault (to_download_trace_state_variable,
859 (void (*) (struct trace_state_variable *))
860 tcomplain);
861 de_fault (to_enable_tracepoint,
862 (void (*) (struct bp_location *))
863 tcomplain);
864 de_fault (to_disable_tracepoint,
865 (void (*) (struct bp_location *))
866 tcomplain);
867 de_fault (to_trace_set_readonly_regions,
868 (void (*) (void))
869 tcomplain);
870 de_fault (to_trace_start,
871 (void (*) (void))
872 tcomplain);
873 de_fault (to_get_trace_status,
874 (int (*) (struct trace_status *))
875 return_minus_one);
876 de_fault (to_get_tracepoint_status,
877 (void (*) (struct breakpoint *, struct uploaded_tp *))
878 tcomplain);
879 de_fault (to_trace_stop,
880 (void (*) (void))
881 tcomplain);
882 de_fault (to_trace_find,
883 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
884 return_minus_one);
885 de_fault (to_get_trace_state_variable_value,
886 (int (*) (int, LONGEST *))
887 return_zero);
888 de_fault (to_save_trace_data,
889 (int (*) (const char *))
890 tcomplain);
891 de_fault (to_upload_tracepoints,
892 (int (*) (struct uploaded_tp **))
893 return_zero);
894 de_fault (to_upload_trace_state_variables,
895 (int (*) (struct uploaded_tsv **))
896 return_zero);
897 de_fault (to_get_raw_trace_data,
898 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
899 tcomplain);
900 de_fault (to_get_min_fast_tracepoint_insn_len,
901 (int (*) (void))
902 return_minus_one);
903 de_fault (to_set_disconnected_tracing,
904 (void (*) (int))
905 target_ignore);
906 de_fault (to_set_circular_trace_buffer,
907 (void (*) (int))
908 target_ignore);
909 de_fault (to_set_trace_buffer_size,
910 (void (*) (LONGEST))
911 target_ignore);
912 de_fault (to_set_trace_notes,
913 (int (*) (const char *, const char *, const char *))
914 return_zero);
915 de_fault (to_get_tib_address,
916 (int (*) (ptid_t, CORE_ADDR *))
917 tcomplain);
918 de_fault (to_set_permissions,
919 (void (*) (void))
920 target_ignore);
921 de_fault (to_static_tracepoint_marker_at,
922 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
923 return_zero);
924 de_fault (to_static_tracepoint_markers_by_strid,
925 (VEC(static_tracepoint_marker_p) * (*) (const char *))
926 tcomplain);
927 de_fault (to_traceframe_info,
928 (struct traceframe_info * (*) (void))
929 return_zero);
930 de_fault (to_supports_evaluation_of_breakpoint_conditions,
931 (int (*) (void))
932 return_zero);
933 de_fault (to_can_run_breakpoint_commands,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_use_agent,
937 (int (*) (int))
938 tcomplain);
939 de_fault (to_can_use_agent,
940 (int (*) (void))
941 return_zero);
942 de_fault (to_augmented_libraries_svr4_read,
943 (int (*) (void))
944 return_zero);
945 de_fault (to_execution_direction, default_execution_direction);
946
947 #undef de_fault
948
949 /* Finally, position the target-stack beneath the squashed
950 "current_target". That way code looking for a non-inherited
951 target method can quickly and simply find it. */
952 current_target.beneath = target_stack;
953
954 if (targetdebug)
955 setup_target_debug ();
956 }
957
958 /* Push a new target type into the stack of the existing target accessors,
959 possibly superseding some of the existing accessors.
960
961 Rather than allow an empty stack, we always have the dummy target at
962 the bottom stratum, so we can call the function vectors without
963 checking them. */
964
965 void
966 push_target (struct target_ops *t)
967 {
968 struct target_ops **cur;
969
970 /* Check magic number. If wrong, it probably means someone changed
971 the struct definition, but not all the places that initialize one. */
972 if (t->to_magic != OPS_MAGIC)
973 {
974 fprintf_unfiltered (gdb_stderr,
975 "Magic number of %s target struct wrong\n",
976 t->to_shortname);
977 internal_error (__FILE__, __LINE__,
978 _("failed internal consistency check"));
979 }
980
981 /* Find the proper stratum to install this target in. */
982 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
983 {
984 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
985 break;
986 }
987
988 /* If there's already targets at this stratum, remove them. */
989 /* FIXME: cagney/2003-10-15: I think this should be popping all
990 targets to CUR, and not just those at this stratum level. */
991 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
992 {
993 /* There's already something at this stratum level. Close it,
994 and un-hook it from the stack. */
995 struct target_ops *tmp = (*cur);
996
997 (*cur) = (*cur)->beneath;
998 tmp->beneath = NULL;
999 target_close (tmp);
1000 }
1001
1002 /* We have removed all targets in our stratum, now add the new one. */
1003 t->beneath = (*cur);
1004 (*cur) = t;
1005
1006 update_current_target ();
1007 }
1008
1009 /* Remove a target_ops vector from the stack, wherever it may be.
1010 Return how many times it was removed (0 or 1). */
1011
1012 int
1013 unpush_target (struct target_ops *t)
1014 {
1015 struct target_ops **cur;
1016 struct target_ops *tmp;
1017
1018 if (t->to_stratum == dummy_stratum)
1019 internal_error (__FILE__, __LINE__,
1020 _("Attempt to unpush the dummy target"));
1021
1022 /* Look for the specified target. Note that we assume that a target
1023 can only occur once in the target stack. */
1024
1025 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1026 {
1027 if ((*cur) == t)
1028 break;
1029 }
1030
1031 /* If we don't find target_ops, quit. Only open targets should be
1032 closed. */
1033 if ((*cur) == NULL)
1034 return 0;
1035
1036 /* Unchain the target. */
1037 tmp = (*cur);
1038 (*cur) = (*cur)->beneath;
1039 tmp->beneath = NULL;
1040
1041 update_current_target ();
1042
1043 /* Finally close the target. Note we do this after unchaining, so
1044 any target method calls from within the target_close
1045 implementation don't end up in T anymore. */
1046 target_close (t);
1047
1048 return 1;
1049 }
1050
1051 void
1052 pop_all_targets_above (enum strata above_stratum)
1053 {
1054 while ((int) (current_target.to_stratum) > (int) above_stratum)
1055 {
1056 if (!unpush_target (target_stack))
1057 {
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_all_targets couldn't find target %s\n",
1060 target_stack->to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 break;
1064 }
1065 }
1066 }
1067
1068 void
1069 pop_all_targets (void)
1070 {
1071 pop_all_targets_above (dummy_stratum);
1072 }
1073
1074 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1075
1076 int
1077 target_is_pushed (struct target_ops *t)
1078 {
1079 struct target_ops **cur;
1080
1081 /* Check magic number. If wrong, it probably means someone changed
1082 the struct definition, but not all the places that initialize one. */
1083 if (t->to_magic != OPS_MAGIC)
1084 {
1085 fprintf_unfiltered (gdb_stderr,
1086 "Magic number of %s target struct wrong\n",
1087 t->to_shortname);
1088 internal_error (__FILE__, __LINE__,
1089 _("failed internal consistency check"));
1090 }
1091
1092 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1093 if (*cur == t)
1094 return 1;
1095
1096 return 0;
1097 }
1098
1099 /* Using the objfile specified in OBJFILE, find the address for the
1100 current thread's thread-local storage with offset OFFSET. */
1101 CORE_ADDR
1102 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1103 {
1104 volatile CORE_ADDR addr = 0;
1105 struct target_ops *target;
1106
1107 for (target = current_target.beneath;
1108 target != NULL;
1109 target = target->beneath)
1110 {
1111 if (target->to_get_thread_local_address != NULL)
1112 break;
1113 }
1114
1115 if (target != NULL
1116 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1117 {
1118 ptid_t ptid = inferior_ptid;
1119 volatile struct gdb_exception ex;
1120
1121 TRY_CATCH (ex, RETURN_MASK_ALL)
1122 {
1123 CORE_ADDR lm_addr;
1124
1125 /* Fetch the load module address for this objfile. */
1126 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1127 objfile);
1128 /* If it's 0, throw the appropriate exception. */
1129 if (lm_addr == 0)
1130 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1131 _("TLS load module not found"));
1132
1133 addr = target->to_get_thread_local_address (target, ptid,
1134 lm_addr, offset);
1135 }
1136 /* If an error occurred, print TLS related messages here. Otherwise,
1137 throw the error to some higher catcher. */
1138 if (ex.reason < 0)
1139 {
1140 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1141
1142 switch (ex.error)
1143 {
1144 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1145 error (_("Cannot find thread-local variables "
1146 "in this thread library."));
1147 break;
1148 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1149 if (objfile_is_library)
1150 error (_("Cannot find shared library `%s' in dynamic"
1151 " linker's load module list"), objfile_name (objfile));
1152 else
1153 error (_("Cannot find executable file `%s' in dynamic"
1154 " linker's load module list"), objfile_name (objfile));
1155 break;
1156 case TLS_NOT_ALLOCATED_YET_ERROR:
1157 if (objfile_is_library)
1158 error (_("The inferior has not yet allocated storage for"
1159 " thread-local variables in\n"
1160 "the shared library `%s'\n"
1161 "for %s"),
1162 objfile_name (objfile), target_pid_to_str (ptid));
1163 else
1164 error (_("The inferior has not yet allocated storage for"
1165 " thread-local variables in\n"
1166 "the executable `%s'\n"
1167 "for %s"),
1168 objfile_name (objfile), target_pid_to_str (ptid));
1169 break;
1170 case TLS_GENERIC_ERROR:
1171 if (objfile_is_library)
1172 error (_("Cannot find thread-local storage for %s, "
1173 "shared library %s:\n%s"),
1174 target_pid_to_str (ptid),
1175 objfile_name (objfile), ex.message);
1176 else
1177 error (_("Cannot find thread-local storage for %s, "
1178 "executable file %s:\n%s"),
1179 target_pid_to_str (ptid),
1180 objfile_name (objfile), ex.message);
1181 break;
1182 default:
1183 throw_exception (ex);
1184 break;
1185 }
1186 }
1187 }
1188 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1189 TLS is an ABI-specific thing. But we don't do that yet. */
1190 else
1191 error (_("Cannot find thread-local variables on this target"));
1192
1193 return addr;
1194 }
1195
1196 const char *
1197 target_xfer_error_to_string (enum target_xfer_error err)
1198 {
1199 #define CASE(X) case X: return #X
1200 switch (err)
1201 {
1202 CASE(TARGET_XFER_E_IO);
1203 CASE(TARGET_XFER_E_UNAVAILABLE);
1204 default:
1205 return "<unknown>";
1206 }
1207 #undef CASE
1208 };
1209
1210
1211 #undef MIN
1212 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1213
1214 /* target_read_string -- read a null terminated string, up to LEN bytes,
1215 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1216 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1217 is responsible for freeing it. Return the number of bytes successfully
1218 read. */
1219
1220 int
1221 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1222 {
1223 int tlen, offset, i;
1224 gdb_byte buf[4];
1225 int errcode = 0;
1226 char *buffer;
1227 int buffer_allocated;
1228 char *bufptr;
1229 unsigned int nbytes_read = 0;
1230
1231 gdb_assert (string);
1232
1233 /* Small for testing. */
1234 buffer_allocated = 4;
1235 buffer = xmalloc (buffer_allocated);
1236 bufptr = buffer;
1237
1238 while (len > 0)
1239 {
1240 tlen = MIN (len, 4 - (memaddr & 3));
1241 offset = memaddr & 3;
1242
1243 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1244 if (errcode != 0)
1245 {
1246 /* The transfer request might have crossed the boundary to an
1247 unallocated region of memory. Retry the transfer, requesting
1248 a single byte. */
1249 tlen = 1;
1250 offset = 0;
1251 errcode = target_read_memory (memaddr, buf, 1);
1252 if (errcode != 0)
1253 goto done;
1254 }
1255
1256 if (bufptr - buffer + tlen > buffer_allocated)
1257 {
1258 unsigned int bytes;
1259
1260 bytes = bufptr - buffer;
1261 buffer_allocated *= 2;
1262 buffer = xrealloc (buffer, buffer_allocated);
1263 bufptr = buffer + bytes;
1264 }
1265
1266 for (i = 0; i < tlen; i++)
1267 {
1268 *bufptr++ = buf[i + offset];
1269 if (buf[i + offset] == '\000')
1270 {
1271 nbytes_read += i + 1;
1272 goto done;
1273 }
1274 }
1275
1276 memaddr += tlen;
1277 len -= tlen;
1278 nbytes_read += tlen;
1279 }
1280 done:
1281 *string = buffer;
1282 if (errnop != NULL)
1283 *errnop = errcode;
1284 return nbytes_read;
1285 }
1286
1287 struct target_section_table *
1288 target_get_section_table (struct target_ops *target)
1289 {
1290 struct target_ops *t;
1291
1292 if (targetdebug)
1293 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1294
1295 for (t = target; t != NULL; t = t->beneath)
1296 if (t->to_get_section_table != NULL)
1297 return (*t->to_get_section_table) (t);
1298
1299 return NULL;
1300 }
1301
1302 /* Find a section containing ADDR. */
1303
1304 struct target_section *
1305 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1306 {
1307 struct target_section_table *table = target_get_section_table (target);
1308 struct target_section *secp;
1309
1310 if (table == NULL)
1311 return NULL;
1312
1313 for (secp = table->sections; secp < table->sections_end; secp++)
1314 {
1315 if (addr >= secp->addr && addr < secp->endaddr)
1316 return secp;
1317 }
1318 return NULL;
1319 }
1320
1321 /* Read memory from the live target, even if currently inspecting a
1322 traceframe. The return is the same as that of target_read. */
1323
1324 static LONGEST
1325 target_read_live_memory (enum target_object object,
1326 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1327 {
1328 LONGEST ret;
1329 struct cleanup *cleanup;
1330
1331 /* Switch momentarily out of tfind mode so to access live memory.
1332 Note that this must not clear global state, such as the frame
1333 cache, which must still remain valid for the previous traceframe.
1334 We may be _building_ the frame cache at this point. */
1335 cleanup = make_cleanup_restore_traceframe_number ();
1336 set_traceframe_number (-1);
1337
1338 ret = target_read (current_target.beneath, object, NULL,
1339 myaddr, memaddr, len);
1340
1341 do_cleanups (cleanup);
1342 return ret;
1343 }
1344
1345 /* Using the set of read-only target sections of OPS, read live
1346 read-only memory. Note that the actual reads start from the
1347 top-most target again.
1348
1349 For interface/parameters/return description see target.h,
1350 to_xfer_partial. */
1351
1352 static LONGEST
1353 memory_xfer_live_readonly_partial (struct target_ops *ops,
1354 enum target_object object,
1355 gdb_byte *readbuf, ULONGEST memaddr,
1356 LONGEST len)
1357 {
1358 struct target_section *secp;
1359 struct target_section_table *table;
1360
1361 secp = target_section_by_addr (ops, memaddr);
1362 if (secp != NULL
1363 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1364 secp->the_bfd_section)
1365 & SEC_READONLY))
1366 {
1367 struct target_section *p;
1368 ULONGEST memend = memaddr + len;
1369
1370 table = target_get_section_table (ops);
1371
1372 for (p = table->sections; p < table->sections_end; p++)
1373 {
1374 if (memaddr >= p->addr)
1375 {
1376 if (memend <= p->endaddr)
1377 {
1378 /* Entire transfer is within this section. */
1379 return target_read_live_memory (object, memaddr,
1380 readbuf, len);
1381 }
1382 else if (memaddr >= p->endaddr)
1383 {
1384 /* This section ends before the transfer starts. */
1385 continue;
1386 }
1387 else
1388 {
1389 /* This section overlaps the transfer. Just do half. */
1390 len = p->endaddr - memaddr;
1391 return target_read_live_memory (object, memaddr,
1392 readbuf, len);
1393 }
1394 }
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
1401 /* Perform a partial memory transfer.
1402 For docs see target.h, to_xfer_partial. */
1403
1404 static LONGEST
1405 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1406 void *readbuf, const void *writebuf, ULONGEST memaddr,
1407 LONGEST len)
1408 {
1409 LONGEST res;
1410 int reg_len;
1411 struct mem_region *region;
1412 struct inferior *inf;
1413
1414 /* For accesses to unmapped overlay sections, read directly from
1415 files. Must do this first, as MEMADDR may need adjustment. */
1416 if (readbuf != NULL && overlay_debugging)
1417 {
1418 struct obj_section *section = find_pc_overlay (memaddr);
1419
1420 if (pc_in_unmapped_range (memaddr, section))
1421 {
1422 struct target_section_table *table
1423 = target_get_section_table (ops);
1424 const char *section_name = section->the_bfd_section->name;
1425
1426 memaddr = overlay_mapped_address (memaddr, section);
1427 return section_table_xfer_memory_partial (readbuf, writebuf,
1428 memaddr, len,
1429 table->sections,
1430 table->sections_end,
1431 section_name);
1432 }
1433 }
1434
1435 /* Try the executable files, if "trust-readonly-sections" is set. */
1436 if (readbuf != NULL && trust_readonly)
1437 {
1438 struct target_section *secp;
1439 struct target_section_table *table;
1440
1441 secp = target_section_by_addr (ops, memaddr);
1442 if (secp != NULL
1443 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1444 secp->the_bfd_section)
1445 & SEC_READONLY))
1446 {
1447 table = target_get_section_table (ops);
1448 return section_table_xfer_memory_partial (readbuf, writebuf,
1449 memaddr, len,
1450 table->sections,
1451 table->sections_end,
1452 NULL);
1453 }
1454 }
1455
1456 /* If reading unavailable memory in the context of traceframes, and
1457 this address falls within a read-only section, fallback to
1458 reading from live memory. */
1459 if (readbuf != NULL && get_traceframe_number () != -1)
1460 {
1461 VEC(mem_range_s) *available;
1462
1463 /* If we fail to get the set of available memory, then the
1464 target does not support querying traceframe info, and so we
1465 attempt reading from the traceframe anyway (assuming the
1466 target implements the old QTro packet then). */
1467 if (traceframe_available_memory (&available, memaddr, len))
1468 {
1469 struct cleanup *old_chain;
1470
1471 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1472
1473 if (VEC_empty (mem_range_s, available)
1474 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1475 {
1476 /* Don't read into the traceframe's available
1477 memory. */
1478 if (!VEC_empty (mem_range_s, available))
1479 {
1480 LONGEST oldlen = len;
1481
1482 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1483 gdb_assert (len <= oldlen);
1484 }
1485
1486 do_cleanups (old_chain);
1487
1488 /* This goes through the topmost target again. */
1489 res = memory_xfer_live_readonly_partial (ops, object,
1490 readbuf, memaddr, len);
1491 if (res > 0)
1492 return res;
1493
1494 /* No use trying further, we know some memory starting
1495 at MEMADDR isn't available. */
1496 return TARGET_XFER_E_UNAVAILABLE;
1497 }
1498
1499 /* Don't try to read more than how much is available, in
1500 case the target implements the deprecated QTro packet to
1501 cater for older GDBs (the target's knowledge of read-only
1502 sections may be outdated by now). */
1503 len = VEC_index (mem_range_s, available, 0)->length;
1504
1505 do_cleanups (old_chain);
1506 }
1507 }
1508
1509 /* Try GDB's internal data cache. */
1510 region = lookup_mem_region (memaddr);
1511 /* region->hi == 0 means there's no upper bound. */
1512 if (memaddr + len < region->hi || region->hi == 0)
1513 reg_len = len;
1514 else
1515 reg_len = region->hi - memaddr;
1516
1517 switch (region->attrib.mode)
1518 {
1519 case MEM_RO:
1520 if (writebuf != NULL)
1521 return -1;
1522 break;
1523
1524 case MEM_WO:
1525 if (readbuf != NULL)
1526 return -1;
1527 break;
1528
1529 case MEM_FLASH:
1530 /* We only support writing to flash during "load" for now. */
1531 if (writebuf != NULL)
1532 error (_("Writing to flash memory forbidden in this context"));
1533 break;
1534
1535 case MEM_NONE:
1536 return -1;
1537 }
1538
1539 if (!ptid_equal (inferior_ptid, null_ptid))
1540 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1541 else
1542 inf = NULL;
1543
1544 if (inf != NULL
1545 /* The dcache reads whole cache lines; that doesn't play well
1546 with reading from a trace buffer, because reading outside of
1547 the collected memory range fails. */
1548 && get_traceframe_number () == -1
1549 && (region->attrib.cache
1550 || (stack_cache_enabled () && object == TARGET_OBJECT_STACK_MEMORY)))
1551 {
1552 DCACHE *dcache = target_dcache_get_or_init ();
1553
1554 if (readbuf != NULL)
1555 res = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1556 else
1557 /* FIXME drow/2006-08-09: If we're going to preserve const
1558 correctness dcache_xfer_memory should take readbuf and
1559 writebuf. */
1560 res = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1561 reg_len, 1);
1562 if (res <= 0)
1563 return -1;
1564 else
1565 return res;
1566 }
1567
1568 /* If none of those methods found the memory we wanted, fall back
1569 to a target partial transfer. Normally a single call to
1570 to_xfer_partial is enough; if it doesn't recognize an object
1571 it will call the to_xfer_partial of the next target down.
1572 But for memory this won't do. Memory is the only target
1573 object which can be read from more than one valid target.
1574 A core file, for instance, could have some of memory but
1575 delegate other bits to the target below it. So, we must
1576 manually try all targets. */
1577
1578 do
1579 {
1580 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1581 readbuf, writebuf, memaddr, reg_len);
1582 if (res > 0)
1583 break;
1584
1585 /* We want to continue past core files to executables, but not
1586 past a running target's memory. */
1587 if (ops->to_has_all_memory (ops))
1588 break;
1589
1590 ops = ops->beneath;
1591 }
1592 while (ops != NULL);
1593
1594 /* Make sure the cache gets updated no matter what - if we are writing
1595 to the stack. Even if this write is not tagged as such, we still need
1596 to update the cache. */
1597
1598 if (res > 0
1599 && inf != NULL
1600 && writebuf != NULL
1601 && target_dcache_init_p ()
1602 && !region->attrib.cache
1603 && stack_cache_enabled ()
1604 && object != TARGET_OBJECT_STACK_MEMORY)
1605 {
1606 DCACHE *dcache = target_dcache_get ();
1607
1608 dcache_update (dcache, memaddr, (void *) writebuf, res);
1609 }
1610
1611 /* If we still haven't got anything, return the last error. We
1612 give up. */
1613 return res;
1614 }
1615
1616 /* Perform a partial memory transfer. For docs see target.h,
1617 to_xfer_partial. */
1618
1619 static LONGEST
1620 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1621 void *readbuf, const void *writebuf, ULONGEST memaddr,
1622 LONGEST len)
1623 {
1624 int res;
1625
1626 /* Zero length requests are ok and require no work. */
1627 if (len == 0)
1628 return 0;
1629
1630 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1631 breakpoint insns, thus hiding out from higher layers whether
1632 there are software breakpoints inserted in the code stream. */
1633 if (readbuf != NULL)
1634 {
1635 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1636
1637 if (res > 0 && !show_memory_breakpoints)
1638 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1639 }
1640 else
1641 {
1642 void *buf;
1643 struct cleanup *old_chain;
1644
1645 /* A large write request is likely to be partially satisfied
1646 by memory_xfer_partial_1. We will continually malloc
1647 and free a copy of the entire write request for breakpoint
1648 shadow handling even though we only end up writing a small
1649 subset of it. Cap writes to 4KB to mitigate this. */
1650 len = min (4096, len);
1651
1652 buf = xmalloc (len);
1653 old_chain = make_cleanup (xfree, buf);
1654 memcpy (buf, writebuf, len);
1655
1656 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1657 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1658
1659 do_cleanups (old_chain);
1660 }
1661
1662 return res;
1663 }
1664
1665 static void
1666 restore_show_memory_breakpoints (void *arg)
1667 {
1668 show_memory_breakpoints = (uintptr_t) arg;
1669 }
1670
1671 struct cleanup *
1672 make_show_memory_breakpoints_cleanup (int show)
1673 {
1674 int current = show_memory_breakpoints;
1675
1676 show_memory_breakpoints = show;
1677 return make_cleanup (restore_show_memory_breakpoints,
1678 (void *) (uintptr_t) current);
1679 }
1680
1681 /* For docs see target.h, to_xfer_partial. */
1682
1683 LONGEST
1684 target_xfer_partial (struct target_ops *ops,
1685 enum target_object object, const char *annex,
1686 void *readbuf, const void *writebuf,
1687 ULONGEST offset, LONGEST len)
1688 {
1689 LONGEST retval;
1690
1691 gdb_assert (ops->to_xfer_partial != NULL);
1692
1693 if (writebuf && !may_write_memory)
1694 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1695 core_addr_to_string_nz (offset), plongest (len));
1696
1697 /* If this is a memory transfer, let the memory-specific code
1698 have a look at it instead. Memory transfers are more
1699 complicated. */
1700 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1701 retval = memory_xfer_partial (ops, object, readbuf,
1702 writebuf, offset, len);
1703 else
1704 {
1705 enum target_object raw_object = object;
1706
1707 /* If this is a raw memory transfer, request the normal
1708 memory object from other layers. */
1709 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1710 raw_object = TARGET_OBJECT_MEMORY;
1711
1712 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1713 writebuf, offset, len);
1714 }
1715
1716 if (targetdebug)
1717 {
1718 const unsigned char *myaddr = NULL;
1719
1720 fprintf_unfiltered (gdb_stdlog,
1721 "%s:target_xfer_partial "
1722 "(%d, %s, %s, %s, %s, %s) = %s",
1723 ops->to_shortname,
1724 (int) object,
1725 (annex ? annex : "(null)"),
1726 host_address_to_string (readbuf),
1727 host_address_to_string (writebuf),
1728 core_addr_to_string_nz (offset),
1729 plongest (len), plongest (retval));
1730
1731 if (readbuf)
1732 myaddr = readbuf;
1733 if (writebuf)
1734 myaddr = writebuf;
1735 if (retval > 0 && myaddr != NULL)
1736 {
1737 int i;
1738
1739 fputs_unfiltered (", bytes =", gdb_stdlog);
1740 for (i = 0; i < retval; i++)
1741 {
1742 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1743 {
1744 if (targetdebug < 2 && i > 0)
1745 {
1746 fprintf_unfiltered (gdb_stdlog, " ...");
1747 break;
1748 }
1749 fprintf_unfiltered (gdb_stdlog, "\n");
1750 }
1751
1752 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1753 }
1754 }
1755
1756 fputc_unfiltered ('\n', gdb_stdlog);
1757 }
1758 return retval;
1759 }
1760
1761 /* Read LEN bytes of target memory at address MEMADDR, placing the
1762 results in GDB's memory at MYADDR. Returns either 0 for success or
1763 a target_xfer_error value if any error occurs.
1764
1765 If an error occurs, no guarantee is made about the contents of the data at
1766 MYADDR. In particular, the caller should not depend upon partial reads
1767 filling the buffer with good data. There is no way for the caller to know
1768 how much good data might have been transfered anyway. Callers that can
1769 deal with partial reads should call target_read (which will retry until
1770 it makes no progress, and then return how much was transferred). */
1771
1772 int
1773 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1774 {
1775 /* Dispatch to the topmost target, not the flattened current_target.
1776 Memory accesses check target->to_has_(all_)memory, and the
1777 flattened target doesn't inherit those. */
1778 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1779 myaddr, memaddr, len) == len)
1780 return 0;
1781 else
1782 return TARGET_XFER_E_IO;
1783 }
1784
1785 /* Like target_read_memory, but specify explicitly that this is a read from
1786 the target's stack. This may trigger different cache behavior. */
1787
1788 int
1789 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1790 {
1791 /* Dispatch to the topmost target, not the flattened current_target.
1792 Memory accesses check target->to_has_(all_)memory, and the
1793 flattened target doesn't inherit those. */
1794
1795 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1796 myaddr, memaddr, len) == len)
1797 return 0;
1798 else
1799 return TARGET_XFER_E_IO;
1800 }
1801
1802 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1803 Returns either 0 for success or a target_xfer_error value if any
1804 error occurs. If an error occurs, no guarantee is made about how
1805 much data got written. Callers that can deal with partial writes
1806 should call target_write. */
1807
1808 int
1809 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1810 {
1811 /* Dispatch to the topmost target, not the flattened current_target.
1812 Memory accesses check target->to_has_(all_)memory, and the
1813 flattened target doesn't inherit those. */
1814 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1815 myaddr, memaddr, len) == len)
1816 return 0;
1817 else
1818 return TARGET_XFER_E_IO;
1819 }
1820
1821 /* Write LEN bytes from MYADDR to target raw memory at address
1822 MEMADDR. Returns either 0 for success or a target_xfer_error value
1823 if any error occurs. If an error occurs, no guarantee is made
1824 about how much data got written. Callers that can deal with
1825 partial writes should call target_write. */
1826
1827 int
1828 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1829 {
1830 /* Dispatch to the topmost target, not the flattened current_target.
1831 Memory accesses check target->to_has_(all_)memory, and the
1832 flattened target doesn't inherit those. */
1833 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1834 myaddr, memaddr, len) == len)
1835 return 0;
1836 else
1837 return TARGET_XFER_E_IO;
1838 }
1839
1840 /* Fetch the target's memory map. */
1841
1842 VEC(mem_region_s) *
1843 target_memory_map (void)
1844 {
1845 VEC(mem_region_s) *result;
1846 struct mem_region *last_one, *this_one;
1847 int ix;
1848 struct target_ops *t;
1849
1850 if (targetdebug)
1851 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1852
1853 for (t = current_target.beneath; t != NULL; t = t->beneath)
1854 if (t->to_memory_map != NULL)
1855 break;
1856
1857 if (t == NULL)
1858 return NULL;
1859
1860 result = t->to_memory_map (t);
1861 if (result == NULL)
1862 return NULL;
1863
1864 qsort (VEC_address (mem_region_s, result),
1865 VEC_length (mem_region_s, result),
1866 sizeof (struct mem_region), mem_region_cmp);
1867
1868 /* Check that regions do not overlap. Simultaneously assign
1869 a numbering for the "mem" commands to use to refer to
1870 each region. */
1871 last_one = NULL;
1872 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1873 {
1874 this_one->number = ix;
1875
1876 if (last_one && last_one->hi > this_one->lo)
1877 {
1878 warning (_("Overlapping regions in memory map: ignoring"));
1879 VEC_free (mem_region_s, result);
1880 return NULL;
1881 }
1882 last_one = this_one;
1883 }
1884
1885 return result;
1886 }
1887
1888 void
1889 target_flash_erase (ULONGEST address, LONGEST length)
1890 {
1891 struct target_ops *t;
1892
1893 for (t = current_target.beneath; t != NULL; t = t->beneath)
1894 if (t->to_flash_erase != NULL)
1895 {
1896 if (targetdebug)
1897 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1898 hex_string (address), phex (length, 0));
1899 t->to_flash_erase (t, address, length);
1900 return;
1901 }
1902
1903 tcomplain ();
1904 }
1905
1906 void
1907 target_flash_done (void)
1908 {
1909 struct target_ops *t;
1910
1911 for (t = current_target.beneath; t != NULL; t = t->beneath)
1912 if (t->to_flash_done != NULL)
1913 {
1914 if (targetdebug)
1915 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1916 t->to_flash_done (t);
1917 return;
1918 }
1919
1920 tcomplain ();
1921 }
1922
1923 static void
1924 show_trust_readonly (struct ui_file *file, int from_tty,
1925 struct cmd_list_element *c, const char *value)
1926 {
1927 fprintf_filtered (file,
1928 _("Mode for reading from readonly sections is %s.\n"),
1929 value);
1930 }
1931
1932 /* More generic transfers. */
1933
1934 static LONGEST
1935 default_xfer_partial (struct target_ops *ops, enum target_object object,
1936 const char *annex, gdb_byte *readbuf,
1937 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1938 {
1939 if (object == TARGET_OBJECT_MEMORY
1940 && ops->deprecated_xfer_memory != NULL)
1941 /* If available, fall back to the target's
1942 "deprecated_xfer_memory" method. */
1943 {
1944 int xfered = -1;
1945
1946 errno = 0;
1947 if (writebuf != NULL)
1948 {
1949 void *buffer = xmalloc (len);
1950 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1951
1952 memcpy (buffer, writebuf, len);
1953 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1954 1/*write*/, NULL, ops);
1955 do_cleanups (cleanup);
1956 }
1957 if (readbuf != NULL)
1958 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1959 0/*read*/, NULL, ops);
1960 if (xfered > 0)
1961 return xfered;
1962 else if (xfered == 0 && errno == 0)
1963 /* "deprecated_xfer_memory" uses 0, cross checked against
1964 ERRNO as one indication of an error. */
1965 return 0;
1966 else
1967 return -1;
1968 }
1969 else if (ops->beneath != NULL)
1970 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1971 readbuf, writebuf, offset, len);
1972 else
1973 return -1;
1974 }
1975
1976 /* The xfer_partial handler for the topmost target. Unlike the default,
1977 it does not need to handle memory specially; it just passes all
1978 requests down the stack. */
1979
1980 static LONGEST
1981 current_xfer_partial (struct target_ops *ops, enum target_object object,
1982 const char *annex, gdb_byte *readbuf,
1983 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1984 {
1985 if (ops->beneath != NULL)
1986 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1987 readbuf, writebuf, offset, len);
1988 else
1989 return -1;
1990 }
1991
1992 /* Target vector read/write partial wrapper functions. */
1993
1994 static LONGEST
1995 target_read_partial (struct target_ops *ops,
1996 enum target_object object,
1997 const char *annex, gdb_byte *buf,
1998 ULONGEST offset, LONGEST len)
1999 {
2000 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2001 }
2002
2003 static LONGEST
2004 target_write_partial (struct target_ops *ops,
2005 enum target_object object,
2006 const char *annex, const gdb_byte *buf,
2007 ULONGEST offset, LONGEST len)
2008 {
2009 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2010 }
2011
2012 /* Wrappers to perform the full transfer. */
2013
2014 /* For docs on target_read see target.h. */
2015
2016 LONGEST
2017 target_read (struct target_ops *ops,
2018 enum target_object object,
2019 const char *annex, gdb_byte *buf,
2020 ULONGEST offset, LONGEST len)
2021 {
2022 LONGEST xfered = 0;
2023
2024 while (xfered < len)
2025 {
2026 LONGEST xfer = target_read_partial (ops, object, annex,
2027 (gdb_byte *) buf + xfered,
2028 offset + xfered, len - xfered);
2029
2030 /* Call an observer, notifying them of the xfer progress? */
2031 if (xfer == 0)
2032 return xfered;
2033 if (xfer < 0)
2034 return -1;
2035 xfered += xfer;
2036 QUIT;
2037 }
2038 return len;
2039 }
2040
2041 /* Assuming that the entire [begin, end) range of memory cannot be
2042 read, try to read whatever subrange is possible to read.
2043
2044 The function returns, in RESULT, either zero or one memory block.
2045 If there's a readable subrange at the beginning, it is completely
2046 read and returned. Any further readable subrange will not be read.
2047 Otherwise, if there's a readable subrange at the end, it will be
2048 completely read and returned. Any readable subranges before it
2049 (obviously, not starting at the beginning), will be ignored. In
2050 other cases -- either no readable subrange, or readable subrange(s)
2051 that is neither at the beginning, or end, nothing is returned.
2052
2053 The purpose of this function is to handle a read across a boundary
2054 of accessible memory in a case when memory map is not available.
2055 The above restrictions are fine for this case, but will give
2056 incorrect results if the memory is 'patchy'. However, supporting
2057 'patchy' memory would require trying to read every single byte,
2058 and it seems unacceptable solution. Explicit memory map is
2059 recommended for this case -- and target_read_memory_robust will
2060 take care of reading multiple ranges then. */
2061
2062 static void
2063 read_whatever_is_readable (struct target_ops *ops,
2064 ULONGEST begin, ULONGEST end,
2065 VEC(memory_read_result_s) **result)
2066 {
2067 gdb_byte *buf = xmalloc (end - begin);
2068 ULONGEST current_begin = begin;
2069 ULONGEST current_end = end;
2070 int forward;
2071 memory_read_result_s r;
2072
2073 /* If we previously failed to read 1 byte, nothing can be done here. */
2074 if (end - begin <= 1)
2075 {
2076 xfree (buf);
2077 return;
2078 }
2079
2080 /* Check that either first or the last byte is readable, and give up
2081 if not. This heuristic is meant to permit reading accessible memory
2082 at the boundary of accessible region. */
2083 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2084 buf, begin, 1) == 1)
2085 {
2086 forward = 1;
2087 ++current_begin;
2088 }
2089 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2090 buf + (end-begin) - 1, end - 1, 1) == 1)
2091 {
2092 forward = 0;
2093 --current_end;
2094 }
2095 else
2096 {
2097 xfree (buf);
2098 return;
2099 }
2100
2101 /* Loop invariant is that the [current_begin, current_end) was previously
2102 found to be not readable as a whole.
2103
2104 Note loop condition -- if the range has 1 byte, we can't divide the range
2105 so there's no point trying further. */
2106 while (current_end - current_begin > 1)
2107 {
2108 ULONGEST first_half_begin, first_half_end;
2109 ULONGEST second_half_begin, second_half_end;
2110 LONGEST xfer;
2111 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2112
2113 if (forward)
2114 {
2115 first_half_begin = current_begin;
2116 first_half_end = middle;
2117 second_half_begin = middle;
2118 second_half_end = current_end;
2119 }
2120 else
2121 {
2122 first_half_begin = middle;
2123 first_half_end = current_end;
2124 second_half_begin = current_begin;
2125 second_half_end = middle;
2126 }
2127
2128 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2129 buf + (first_half_begin - begin),
2130 first_half_begin,
2131 first_half_end - first_half_begin);
2132
2133 if (xfer == first_half_end - first_half_begin)
2134 {
2135 /* This half reads up fine. So, the error must be in the
2136 other half. */
2137 current_begin = second_half_begin;
2138 current_end = second_half_end;
2139 }
2140 else
2141 {
2142 /* This half is not readable. Because we've tried one byte, we
2143 know some part of this half if actually redable. Go to the next
2144 iteration to divide again and try to read.
2145
2146 We don't handle the other half, because this function only tries
2147 to read a single readable subrange. */
2148 current_begin = first_half_begin;
2149 current_end = first_half_end;
2150 }
2151 }
2152
2153 if (forward)
2154 {
2155 /* The [begin, current_begin) range has been read. */
2156 r.begin = begin;
2157 r.end = current_begin;
2158 r.data = buf;
2159 }
2160 else
2161 {
2162 /* The [current_end, end) range has been read. */
2163 LONGEST rlen = end - current_end;
2164
2165 r.data = xmalloc (rlen);
2166 memcpy (r.data, buf + current_end - begin, rlen);
2167 r.begin = current_end;
2168 r.end = end;
2169 xfree (buf);
2170 }
2171 VEC_safe_push(memory_read_result_s, (*result), &r);
2172 }
2173
2174 void
2175 free_memory_read_result_vector (void *x)
2176 {
2177 VEC(memory_read_result_s) *v = x;
2178 memory_read_result_s *current;
2179 int ix;
2180
2181 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2182 {
2183 xfree (current->data);
2184 }
2185 VEC_free (memory_read_result_s, v);
2186 }
2187
2188 VEC(memory_read_result_s) *
2189 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2190 {
2191 VEC(memory_read_result_s) *result = 0;
2192
2193 LONGEST xfered = 0;
2194 while (xfered < len)
2195 {
2196 struct mem_region *region = lookup_mem_region (offset + xfered);
2197 LONGEST rlen;
2198
2199 /* If there is no explicit region, a fake one should be created. */
2200 gdb_assert (region);
2201
2202 if (region->hi == 0)
2203 rlen = len - xfered;
2204 else
2205 rlen = region->hi - offset;
2206
2207 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2208 {
2209 /* Cannot read this region. Note that we can end up here only
2210 if the region is explicitly marked inaccessible, or
2211 'inaccessible-by-default' is in effect. */
2212 xfered += rlen;
2213 }
2214 else
2215 {
2216 LONGEST to_read = min (len - xfered, rlen);
2217 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2218
2219 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2220 (gdb_byte *) buffer,
2221 offset + xfered, to_read);
2222 /* Call an observer, notifying them of the xfer progress? */
2223 if (xfer <= 0)
2224 {
2225 /* Got an error reading full chunk. See if maybe we can read
2226 some subrange. */
2227 xfree (buffer);
2228 read_whatever_is_readable (ops, offset + xfered,
2229 offset + xfered + to_read, &result);
2230 xfered += to_read;
2231 }
2232 else
2233 {
2234 struct memory_read_result r;
2235 r.data = buffer;
2236 r.begin = offset + xfered;
2237 r.end = r.begin + xfer;
2238 VEC_safe_push (memory_read_result_s, result, &r);
2239 xfered += xfer;
2240 }
2241 QUIT;
2242 }
2243 }
2244 return result;
2245 }
2246
2247
2248 /* An alternative to target_write with progress callbacks. */
2249
2250 LONGEST
2251 target_write_with_progress (struct target_ops *ops,
2252 enum target_object object,
2253 const char *annex, const gdb_byte *buf,
2254 ULONGEST offset, LONGEST len,
2255 void (*progress) (ULONGEST, void *), void *baton)
2256 {
2257 LONGEST xfered = 0;
2258
2259 /* Give the progress callback a chance to set up. */
2260 if (progress)
2261 (*progress) (0, baton);
2262
2263 while (xfered < len)
2264 {
2265 LONGEST xfer = target_write_partial (ops, object, annex,
2266 (gdb_byte *) buf + xfered,
2267 offset + xfered, len - xfered);
2268
2269 if (xfer == 0)
2270 return xfered;
2271 if (xfer < 0)
2272 return -1;
2273
2274 if (progress)
2275 (*progress) (xfer, baton);
2276
2277 xfered += xfer;
2278 QUIT;
2279 }
2280 return len;
2281 }
2282
2283 /* For docs on target_write see target.h. */
2284
2285 LONGEST
2286 target_write (struct target_ops *ops,
2287 enum target_object object,
2288 const char *annex, const gdb_byte *buf,
2289 ULONGEST offset, LONGEST len)
2290 {
2291 return target_write_with_progress (ops, object, annex, buf, offset, len,
2292 NULL, NULL);
2293 }
2294
2295 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2296 the size of the transferred data. PADDING additional bytes are
2297 available in *BUF_P. This is a helper function for
2298 target_read_alloc; see the declaration of that function for more
2299 information. */
2300
2301 static LONGEST
2302 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2303 const char *annex, gdb_byte **buf_p, int padding)
2304 {
2305 size_t buf_alloc, buf_pos;
2306 gdb_byte *buf;
2307 LONGEST n;
2308
2309 /* This function does not have a length parameter; it reads the
2310 entire OBJECT). Also, it doesn't support objects fetched partly
2311 from one target and partly from another (in a different stratum,
2312 e.g. a core file and an executable). Both reasons make it
2313 unsuitable for reading memory. */
2314 gdb_assert (object != TARGET_OBJECT_MEMORY);
2315
2316 /* Start by reading up to 4K at a time. The target will throttle
2317 this number down if necessary. */
2318 buf_alloc = 4096;
2319 buf = xmalloc (buf_alloc);
2320 buf_pos = 0;
2321 while (1)
2322 {
2323 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2324 buf_pos, buf_alloc - buf_pos - padding);
2325 if (n < 0)
2326 {
2327 /* An error occurred. */
2328 xfree (buf);
2329 return -1;
2330 }
2331 else if (n == 0)
2332 {
2333 /* Read all there was. */
2334 if (buf_pos == 0)
2335 xfree (buf);
2336 else
2337 *buf_p = buf;
2338 return buf_pos;
2339 }
2340
2341 buf_pos += n;
2342
2343 /* If the buffer is filling up, expand it. */
2344 if (buf_alloc < buf_pos * 2)
2345 {
2346 buf_alloc *= 2;
2347 buf = xrealloc (buf, buf_alloc);
2348 }
2349
2350 QUIT;
2351 }
2352 }
2353
2354 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2355 the size of the transferred data. See the declaration in "target.h"
2356 function for more information about the return value. */
2357
2358 LONGEST
2359 target_read_alloc (struct target_ops *ops, enum target_object object,
2360 const char *annex, gdb_byte **buf_p)
2361 {
2362 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2363 }
2364
2365 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2366 returned as a string, allocated using xmalloc. If an error occurs
2367 or the transfer is unsupported, NULL is returned. Empty objects
2368 are returned as allocated but empty strings. A warning is issued
2369 if the result contains any embedded NUL bytes. */
2370
2371 char *
2372 target_read_stralloc (struct target_ops *ops, enum target_object object,
2373 const char *annex)
2374 {
2375 gdb_byte *buffer;
2376 char *bufstr;
2377 LONGEST i, transferred;
2378
2379 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2380 bufstr = (char *) buffer;
2381
2382 if (transferred < 0)
2383 return NULL;
2384
2385 if (transferred == 0)
2386 return xstrdup ("");
2387
2388 bufstr[transferred] = 0;
2389
2390 /* Check for embedded NUL bytes; but allow trailing NULs. */
2391 for (i = strlen (bufstr); i < transferred; i++)
2392 if (bufstr[i] != 0)
2393 {
2394 warning (_("target object %d, annex %s, "
2395 "contained unexpected null characters"),
2396 (int) object, annex ? annex : "(none)");
2397 break;
2398 }
2399
2400 return bufstr;
2401 }
2402
2403 /* Memory transfer methods. */
2404
2405 void
2406 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2407 LONGEST len)
2408 {
2409 /* This method is used to read from an alternate, non-current
2410 target. This read must bypass the overlay support (as symbols
2411 don't match this target), and GDB's internal cache (wrong cache
2412 for this target). */
2413 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2414 != len)
2415 memory_error (TARGET_XFER_E_IO, addr);
2416 }
2417
2418 ULONGEST
2419 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2420 int len, enum bfd_endian byte_order)
2421 {
2422 gdb_byte buf[sizeof (ULONGEST)];
2423
2424 gdb_assert (len <= sizeof (buf));
2425 get_target_memory (ops, addr, buf, len);
2426 return extract_unsigned_integer (buf, len, byte_order);
2427 }
2428
2429 int
2430 target_insert_breakpoint (struct gdbarch *gdbarch,
2431 struct bp_target_info *bp_tgt)
2432 {
2433 if (!may_insert_breakpoints)
2434 {
2435 warning (_("May not insert breakpoints"));
2436 return 1;
2437 }
2438
2439 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2440 }
2441
2442 int
2443 target_remove_breakpoint (struct gdbarch *gdbarch,
2444 struct bp_target_info *bp_tgt)
2445 {
2446 /* This is kind of a weird case to handle, but the permission might
2447 have been changed after breakpoints were inserted - in which case
2448 we should just take the user literally and assume that any
2449 breakpoints should be left in place. */
2450 if (!may_insert_breakpoints)
2451 {
2452 warning (_("May not remove breakpoints"));
2453 return 1;
2454 }
2455
2456 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2457 }
2458
2459 static void
2460 target_info (char *args, int from_tty)
2461 {
2462 struct target_ops *t;
2463 int has_all_mem = 0;
2464
2465 if (symfile_objfile != NULL)
2466 printf_unfiltered (_("Symbols from \"%s\".\n"),
2467 objfile_name (symfile_objfile));
2468
2469 for (t = target_stack; t != NULL; t = t->beneath)
2470 {
2471 if (!(*t->to_has_memory) (t))
2472 continue;
2473
2474 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2475 continue;
2476 if (has_all_mem)
2477 printf_unfiltered (_("\tWhile running this, "
2478 "GDB does not access memory from...\n"));
2479 printf_unfiltered ("%s:\n", t->to_longname);
2480 (t->to_files_info) (t);
2481 has_all_mem = (*t->to_has_all_memory) (t);
2482 }
2483 }
2484
2485 /* This function is called before any new inferior is created, e.g.
2486 by running a program, attaching, or connecting to a target.
2487 It cleans up any state from previous invocations which might
2488 change between runs. This is a subset of what target_preopen
2489 resets (things which might change between targets). */
2490
2491 void
2492 target_pre_inferior (int from_tty)
2493 {
2494 /* Clear out solib state. Otherwise the solib state of the previous
2495 inferior might have survived and is entirely wrong for the new
2496 target. This has been observed on GNU/Linux using glibc 2.3. How
2497 to reproduce:
2498
2499 bash$ ./foo&
2500 [1] 4711
2501 bash$ ./foo&
2502 [1] 4712
2503 bash$ gdb ./foo
2504 [...]
2505 (gdb) attach 4711
2506 (gdb) detach
2507 (gdb) attach 4712
2508 Cannot access memory at address 0xdeadbeef
2509 */
2510
2511 /* In some OSs, the shared library list is the same/global/shared
2512 across inferiors. If code is shared between processes, so are
2513 memory regions and features. */
2514 if (!gdbarch_has_global_solist (target_gdbarch ()))
2515 {
2516 no_shared_libraries (NULL, from_tty);
2517
2518 invalidate_target_mem_regions ();
2519
2520 target_clear_description ();
2521 }
2522
2523 agent_capability_invalidate ();
2524 }
2525
2526 /* Callback for iterate_over_inferiors. Gets rid of the given
2527 inferior. */
2528
2529 static int
2530 dispose_inferior (struct inferior *inf, void *args)
2531 {
2532 struct thread_info *thread;
2533
2534 thread = any_thread_of_process (inf->pid);
2535 if (thread)
2536 {
2537 switch_to_thread (thread->ptid);
2538
2539 /* Core inferiors actually should be detached, not killed. */
2540 if (target_has_execution)
2541 target_kill ();
2542 else
2543 target_detach (NULL, 0);
2544 }
2545
2546 return 0;
2547 }
2548
2549 /* This is to be called by the open routine before it does
2550 anything. */
2551
2552 void
2553 target_preopen (int from_tty)
2554 {
2555 dont_repeat ();
2556
2557 if (have_inferiors ())
2558 {
2559 if (!from_tty
2560 || !have_live_inferiors ()
2561 || query (_("A program is being debugged already. Kill it? ")))
2562 iterate_over_inferiors (dispose_inferior, NULL);
2563 else
2564 error (_("Program not killed."));
2565 }
2566
2567 /* Calling target_kill may remove the target from the stack. But if
2568 it doesn't (which seems like a win for UDI), remove it now. */
2569 /* Leave the exec target, though. The user may be switching from a
2570 live process to a core of the same program. */
2571 pop_all_targets_above (file_stratum);
2572
2573 target_pre_inferior (from_tty);
2574 }
2575
2576 /* Detach a target after doing deferred register stores. */
2577
2578 void
2579 target_detach (const char *args, int from_tty)
2580 {
2581 struct target_ops* t;
2582
2583 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2584 /* Don't remove global breakpoints here. They're removed on
2585 disconnection from the target. */
2586 ;
2587 else
2588 /* If we're in breakpoints-always-inserted mode, have to remove
2589 them before detaching. */
2590 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2591
2592 prepare_for_detach ();
2593
2594 for (t = current_target.beneath; t != NULL; t = t->beneath)
2595 {
2596 if (t->to_detach != NULL)
2597 {
2598 t->to_detach (t, args, from_tty);
2599 if (targetdebug)
2600 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2601 args, from_tty);
2602 return;
2603 }
2604 }
2605
2606 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2607 }
2608
2609 void
2610 target_disconnect (char *args, int from_tty)
2611 {
2612 struct target_ops *t;
2613
2614 /* If we're in breakpoints-always-inserted mode or if breakpoints
2615 are global across processes, we have to remove them before
2616 disconnecting. */
2617 remove_breakpoints ();
2618
2619 for (t = current_target.beneath; t != NULL; t = t->beneath)
2620 if (t->to_disconnect != NULL)
2621 {
2622 if (targetdebug)
2623 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2624 args, from_tty);
2625 t->to_disconnect (t, args, from_tty);
2626 return;
2627 }
2628
2629 tcomplain ();
2630 }
2631
2632 ptid_t
2633 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2634 {
2635 struct target_ops *t;
2636
2637 for (t = current_target.beneath; t != NULL; t = t->beneath)
2638 {
2639 if (t->to_wait != NULL)
2640 {
2641 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2642
2643 if (targetdebug)
2644 {
2645 char *status_string;
2646 char *options_string;
2647
2648 status_string = target_waitstatus_to_string (status);
2649 options_string = target_options_to_string (options);
2650 fprintf_unfiltered (gdb_stdlog,
2651 "target_wait (%d, status, options={%s})"
2652 " = %d, %s\n",
2653 ptid_get_pid (ptid), options_string,
2654 ptid_get_pid (retval), status_string);
2655 xfree (status_string);
2656 xfree (options_string);
2657 }
2658
2659 return retval;
2660 }
2661 }
2662
2663 noprocess ();
2664 }
2665
2666 char *
2667 target_pid_to_str (ptid_t ptid)
2668 {
2669 struct target_ops *t;
2670
2671 for (t = current_target.beneath; t != NULL; t = t->beneath)
2672 {
2673 if (t->to_pid_to_str != NULL)
2674 return (*t->to_pid_to_str) (t, ptid);
2675 }
2676
2677 return normal_pid_to_str (ptid);
2678 }
2679
2680 char *
2681 target_thread_name (struct thread_info *info)
2682 {
2683 struct target_ops *t;
2684
2685 for (t = current_target.beneath; t != NULL; t = t->beneath)
2686 {
2687 if (t->to_thread_name != NULL)
2688 return (*t->to_thread_name) (info);
2689 }
2690
2691 return NULL;
2692 }
2693
2694 void
2695 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2696 {
2697 struct target_ops *t;
2698
2699 target_dcache_invalidate ();
2700
2701 for (t = current_target.beneath; t != NULL; t = t->beneath)
2702 {
2703 if (t->to_resume != NULL)
2704 {
2705 t->to_resume (t, ptid, step, signal);
2706 if (targetdebug)
2707 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2708 ptid_get_pid (ptid),
2709 step ? "step" : "continue",
2710 gdb_signal_to_name (signal));
2711
2712 registers_changed_ptid (ptid);
2713 set_executing (ptid, 1);
2714 set_running (ptid, 1);
2715 clear_inline_frame_state (ptid);
2716 return;
2717 }
2718 }
2719
2720 noprocess ();
2721 }
2722
2723 void
2724 target_pass_signals (int numsigs, unsigned char *pass_signals)
2725 {
2726 struct target_ops *t;
2727
2728 for (t = current_target.beneath; t != NULL; t = t->beneath)
2729 {
2730 if (t->to_pass_signals != NULL)
2731 {
2732 if (targetdebug)
2733 {
2734 int i;
2735
2736 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2737 numsigs);
2738
2739 for (i = 0; i < numsigs; i++)
2740 if (pass_signals[i])
2741 fprintf_unfiltered (gdb_stdlog, " %s",
2742 gdb_signal_to_name (i));
2743
2744 fprintf_unfiltered (gdb_stdlog, " })\n");
2745 }
2746
2747 (*t->to_pass_signals) (numsigs, pass_signals);
2748 return;
2749 }
2750 }
2751 }
2752
2753 void
2754 target_program_signals (int numsigs, unsigned char *program_signals)
2755 {
2756 struct target_ops *t;
2757
2758 for (t = current_target.beneath; t != NULL; t = t->beneath)
2759 {
2760 if (t->to_program_signals != NULL)
2761 {
2762 if (targetdebug)
2763 {
2764 int i;
2765
2766 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2767 numsigs);
2768
2769 for (i = 0; i < numsigs; i++)
2770 if (program_signals[i])
2771 fprintf_unfiltered (gdb_stdlog, " %s",
2772 gdb_signal_to_name (i));
2773
2774 fprintf_unfiltered (gdb_stdlog, " })\n");
2775 }
2776
2777 (*t->to_program_signals) (numsigs, program_signals);
2778 return;
2779 }
2780 }
2781 }
2782
2783 /* Look through the list of possible targets for a target that can
2784 follow forks. */
2785
2786 int
2787 target_follow_fork (int follow_child, int detach_fork)
2788 {
2789 struct target_ops *t;
2790
2791 for (t = current_target.beneath; t != NULL; t = t->beneath)
2792 {
2793 if (t->to_follow_fork != NULL)
2794 {
2795 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2796
2797 if (targetdebug)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "target_follow_fork (%d, %d) = %d\n",
2800 follow_child, detach_fork, retval);
2801 return retval;
2802 }
2803 }
2804
2805 /* Some target returned a fork event, but did not know how to follow it. */
2806 internal_error (__FILE__, __LINE__,
2807 _("could not find a target to follow fork"));
2808 }
2809
2810 void
2811 target_mourn_inferior (void)
2812 {
2813 struct target_ops *t;
2814
2815 for (t = current_target.beneath; t != NULL; t = t->beneath)
2816 {
2817 if (t->to_mourn_inferior != NULL)
2818 {
2819 t->to_mourn_inferior (t);
2820 if (targetdebug)
2821 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2822
2823 /* We no longer need to keep handles on any of the object files.
2824 Make sure to release them to avoid unnecessarily locking any
2825 of them while we're not actually debugging. */
2826 bfd_cache_close_all ();
2827
2828 return;
2829 }
2830 }
2831
2832 internal_error (__FILE__, __LINE__,
2833 _("could not find a target to follow mourn inferior"));
2834 }
2835
2836 /* Look for a target which can describe architectural features, starting
2837 from TARGET. If we find one, return its description. */
2838
2839 const struct target_desc *
2840 target_read_description (struct target_ops *target)
2841 {
2842 struct target_ops *t;
2843
2844 for (t = target; t != NULL; t = t->beneath)
2845 if (t->to_read_description != NULL)
2846 {
2847 const struct target_desc *tdesc;
2848
2849 tdesc = t->to_read_description (t);
2850 if (tdesc)
2851 return tdesc;
2852 }
2853
2854 return NULL;
2855 }
2856
2857 /* The default implementation of to_search_memory.
2858 This implements a basic search of memory, reading target memory and
2859 performing the search here (as opposed to performing the search in on the
2860 target side with, for example, gdbserver). */
2861
2862 int
2863 simple_search_memory (struct target_ops *ops,
2864 CORE_ADDR start_addr, ULONGEST search_space_len,
2865 const gdb_byte *pattern, ULONGEST pattern_len,
2866 CORE_ADDR *found_addrp)
2867 {
2868 /* NOTE: also defined in find.c testcase. */
2869 #define SEARCH_CHUNK_SIZE 16000
2870 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2871 /* Buffer to hold memory contents for searching. */
2872 gdb_byte *search_buf;
2873 unsigned search_buf_size;
2874 struct cleanup *old_cleanups;
2875
2876 search_buf_size = chunk_size + pattern_len - 1;
2877
2878 /* No point in trying to allocate a buffer larger than the search space. */
2879 if (search_space_len < search_buf_size)
2880 search_buf_size = search_space_len;
2881
2882 search_buf = malloc (search_buf_size);
2883 if (search_buf == NULL)
2884 error (_("Unable to allocate memory to perform the search."));
2885 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2886
2887 /* Prime the search buffer. */
2888
2889 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2890 search_buf, start_addr, search_buf_size) != search_buf_size)
2891 {
2892 warning (_("Unable to access %s bytes of target "
2893 "memory at %s, halting search."),
2894 pulongest (search_buf_size), hex_string (start_addr));
2895 do_cleanups (old_cleanups);
2896 return -1;
2897 }
2898
2899 /* Perform the search.
2900
2901 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2902 When we've scanned N bytes we copy the trailing bytes to the start and
2903 read in another N bytes. */
2904
2905 while (search_space_len >= pattern_len)
2906 {
2907 gdb_byte *found_ptr;
2908 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2909
2910 found_ptr = memmem (search_buf, nr_search_bytes,
2911 pattern, pattern_len);
2912
2913 if (found_ptr != NULL)
2914 {
2915 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2916
2917 *found_addrp = found_addr;
2918 do_cleanups (old_cleanups);
2919 return 1;
2920 }
2921
2922 /* Not found in this chunk, skip to next chunk. */
2923
2924 /* Don't let search_space_len wrap here, it's unsigned. */
2925 if (search_space_len >= chunk_size)
2926 search_space_len -= chunk_size;
2927 else
2928 search_space_len = 0;
2929
2930 if (search_space_len >= pattern_len)
2931 {
2932 unsigned keep_len = search_buf_size - chunk_size;
2933 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2934 int nr_to_read;
2935
2936 /* Copy the trailing part of the previous iteration to the front
2937 of the buffer for the next iteration. */
2938 gdb_assert (keep_len == pattern_len - 1);
2939 memcpy (search_buf, search_buf + chunk_size, keep_len);
2940
2941 nr_to_read = min (search_space_len - keep_len, chunk_size);
2942
2943 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2944 search_buf + keep_len, read_addr,
2945 nr_to_read) != nr_to_read)
2946 {
2947 warning (_("Unable to access %s bytes of target "
2948 "memory at %s, halting search."),
2949 plongest (nr_to_read),
2950 hex_string (read_addr));
2951 do_cleanups (old_cleanups);
2952 return -1;
2953 }
2954
2955 start_addr += chunk_size;
2956 }
2957 }
2958
2959 /* Not found. */
2960
2961 do_cleanups (old_cleanups);
2962 return 0;
2963 }
2964
2965 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2966 sequence of bytes in PATTERN with length PATTERN_LEN.
2967
2968 The result is 1 if found, 0 if not found, and -1 if there was an error
2969 requiring halting of the search (e.g. memory read error).
2970 If the pattern is found the address is recorded in FOUND_ADDRP. */
2971
2972 int
2973 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2974 const gdb_byte *pattern, ULONGEST pattern_len,
2975 CORE_ADDR *found_addrp)
2976 {
2977 struct target_ops *t;
2978 int found;
2979
2980 /* We don't use INHERIT to set current_target.to_search_memory,
2981 so we have to scan the target stack and handle targetdebug
2982 ourselves. */
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2986 hex_string (start_addr));
2987
2988 for (t = current_target.beneath; t != NULL; t = t->beneath)
2989 if (t->to_search_memory != NULL)
2990 break;
2991
2992 if (t != NULL)
2993 {
2994 found = t->to_search_memory (t, start_addr, search_space_len,
2995 pattern, pattern_len, found_addrp);
2996 }
2997 else
2998 {
2999 /* If a special version of to_search_memory isn't available, use the
3000 simple version. */
3001 found = simple_search_memory (current_target.beneath,
3002 start_addr, search_space_len,
3003 pattern, pattern_len, found_addrp);
3004 }
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3008
3009 return found;
3010 }
3011
3012 /* Look through the currently pushed targets. If none of them will
3013 be able to restart the currently running process, issue an error
3014 message. */
3015
3016 void
3017 target_require_runnable (void)
3018 {
3019 struct target_ops *t;
3020
3021 for (t = target_stack; t != NULL; t = t->beneath)
3022 {
3023 /* If this target knows how to create a new program, then
3024 assume we will still be able to after killing the current
3025 one. Either killing and mourning will not pop T, or else
3026 find_default_run_target will find it again. */
3027 if (t->to_create_inferior != NULL)
3028 return;
3029
3030 /* Do not worry about thread_stratum targets that can not
3031 create inferiors. Assume they will be pushed again if
3032 necessary, and continue to the process_stratum. */
3033 if (t->to_stratum == thread_stratum
3034 || t->to_stratum == arch_stratum)
3035 continue;
3036
3037 error (_("The \"%s\" target does not support \"run\". "
3038 "Try \"help target\" or \"continue\"."),
3039 t->to_shortname);
3040 }
3041
3042 /* This function is only called if the target is running. In that
3043 case there should have been a process_stratum target and it
3044 should either know how to create inferiors, or not... */
3045 internal_error (__FILE__, __LINE__, _("No targets found"));
3046 }
3047
3048 /* Look through the list of possible targets for a target that can
3049 execute a run or attach command without any other data. This is
3050 used to locate the default process stratum.
3051
3052 If DO_MESG is not NULL, the result is always valid (error() is
3053 called for errors); else, return NULL on error. */
3054
3055 static struct target_ops *
3056 find_default_run_target (char *do_mesg)
3057 {
3058 struct target_ops **t;
3059 struct target_ops *runable = NULL;
3060 int count;
3061
3062 count = 0;
3063
3064 for (t = target_structs; t < target_structs + target_struct_size;
3065 ++t)
3066 {
3067 if ((*t)->to_can_run && target_can_run (*t))
3068 {
3069 runable = *t;
3070 ++count;
3071 }
3072 }
3073
3074 if (count != 1)
3075 {
3076 if (do_mesg)
3077 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3078 else
3079 return NULL;
3080 }
3081
3082 return runable;
3083 }
3084
3085 void
3086 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3087 {
3088 struct target_ops *t;
3089
3090 t = find_default_run_target ("attach");
3091 (t->to_attach) (t, args, from_tty);
3092 return;
3093 }
3094
3095 void
3096 find_default_create_inferior (struct target_ops *ops,
3097 char *exec_file, char *allargs, char **env,
3098 int from_tty)
3099 {
3100 struct target_ops *t;
3101
3102 t = find_default_run_target ("run");
3103 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3104 return;
3105 }
3106
3107 static int
3108 find_default_can_async_p (void)
3109 {
3110 struct target_ops *t;
3111
3112 /* This may be called before the target is pushed on the stack;
3113 look for the default process stratum. If there's none, gdb isn't
3114 configured with a native debugger, and target remote isn't
3115 connected yet. */
3116 t = find_default_run_target (NULL);
3117 if (t && t->to_can_async_p)
3118 return (t->to_can_async_p) ();
3119 return 0;
3120 }
3121
3122 static int
3123 find_default_is_async_p (void)
3124 {
3125 struct target_ops *t;
3126
3127 /* This may be called before the target is pushed on the stack;
3128 look for the default process stratum. If there's none, gdb isn't
3129 configured with a native debugger, and target remote isn't
3130 connected yet. */
3131 t = find_default_run_target (NULL);
3132 if (t && t->to_is_async_p)
3133 return (t->to_is_async_p) ();
3134 return 0;
3135 }
3136
3137 static int
3138 find_default_supports_non_stop (void)
3139 {
3140 struct target_ops *t;
3141
3142 t = find_default_run_target (NULL);
3143 if (t && t->to_supports_non_stop)
3144 return (t->to_supports_non_stop) ();
3145 return 0;
3146 }
3147
3148 int
3149 target_supports_non_stop (void)
3150 {
3151 struct target_ops *t;
3152
3153 for (t = &current_target; t != NULL; t = t->beneath)
3154 if (t->to_supports_non_stop)
3155 return t->to_supports_non_stop ();
3156
3157 return 0;
3158 }
3159
3160 /* Implement the "info proc" command. */
3161
3162 int
3163 target_info_proc (char *args, enum info_proc_what what)
3164 {
3165 struct target_ops *t;
3166
3167 /* If we're already connected to something that can get us OS
3168 related data, use it. Otherwise, try using the native
3169 target. */
3170 if (current_target.to_stratum >= process_stratum)
3171 t = current_target.beneath;
3172 else
3173 t = find_default_run_target (NULL);
3174
3175 for (; t != NULL; t = t->beneath)
3176 {
3177 if (t->to_info_proc != NULL)
3178 {
3179 t->to_info_proc (t, args, what);
3180
3181 if (targetdebug)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "target_info_proc (\"%s\", %d)\n", args, what);
3184
3185 return 1;
3186 }
3187 }
3188
3189 return 0;
3190 }
3191
3192 static int
3193 find_default_supports_disable_randomization (void)
3194 {
3195 struct target_ops *t;
3196
3197 t = find_default_run_target (NULL);
3198 if (t && t->to_supports_disable_randomization)
3199 return (t->to_supports_disable_randomization) ();
3200 return 0;
3201 }
3202
3203 int
3204 target_supports_disable_randomization (void)
3205 {
3206 struct target_ops *t;
3207
3208 for (t = &current_target; t != NULL; t = t->beneath)
3209 if (t->to_supports_disable_randomization)
3210 return t->to_supports_disable_randomization ();
3211
3212 return 0;
3213 }
3214
3215 char *
3216 target_get_osdata (const char *type)
3217 {
3218 struct target_ops *t;
3219
3220 /* If we're already connected to something that can get us OS
3221 related data, use it. Otherwise, try using the native
3222 target. */
3223 if (current_target.to_stratum >= process_stratum)
3224 t = current_target.beneath;
3225 else
3226 t = find_default_run_target ("get OS data");
3227
3228 if (!t)
3229 return NULL;
3230
3231 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3232 }
3233
3234 /* Determine the current address space of thread PTID. */
3235
3236 struct address_space *
3237 target_thread_address_space (ptid_t ptid)
3238 {
3239 struct address_space *aspace;
3240 struct inferior *inf;
3241 struct target_ops *t;
3242
3243 for (t = current_target.beneath; t != NULL; t = t->beneath)
3244 {
3245 if (t->to_thread_address_space != NULL)
3246 {
3247 aspace = t->to_thread_address_space (t, ptid);
3248 gdb_assert (aspace);
3249
3250 if (targetdebug)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "target_thread_address_space (%s) = %d\n",
3253 target_pid_to_str (ptid),
3254 address_space_num (aspace));
3255 return aspace;
3256 }
3257 }
3258
3259 /* Fall-back to the "main" address space of the inferior. */
3260 inf = find_inferior_pid (ptid_get_pid (ptid));
3261
3262 if (inf == NULL || inf->aspace == NULL)
3263 internal_error (__FILE__, __LINE__,
3264 _("Can't determine the current "
3265 "address space of thread %s\n"),
3266 target_pid_to_str (ptid));
3267
3268 return inf->aspace;
3269 }
3270
3271
3272 /* Target file operations. */
3273
3274 static struct target_ops *
3275 default_fileio_target (void)
3276 {
3277 /* If we're already connected to something that can perform
3278 file I/O, use it. Otherwise, try using the native target. */
3279 if (current_target.to_stratum >= process_stratum)
3280 return current_target.beneath;
3281 else
3282 return find_default_run_target ("file I/O");
3283 }
3284
3285 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3286 target file descriptor, or -1 if an error occurs (and set
3287 *TARGET_ERRNO). */
3288 int
3289 target_fileio_open (const char *filename, int flags, int mode,
3290 int *target_errno)
3291 {
3292 struct target_ops *t;
3293
3294 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3295 {
3296 if (t->to_fileio_open != NULL)
3297 {
3298 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3299
3300 if (targetdebug)
3301 fprintf_unfiltered (gdb_stdlog,
3302 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3303 filename, flags, mode,
3304 fd, fd != -1 ? 0 : *target_errno);
3305 return fd;
3306 }
3307 }
3308
3309 *target_errno = FILEIO_ENOSYS;
3310 return -1;
3311 }
3312
3313 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3314 Return the number of bytes written, or -1 if an error occurs
3315 (and set *TARGET_ERRNO). */
3316 int
3317 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3318 ULONGEST offset, int *target_errno)
3319 {
3320 struct target_ops *t;
3321
3322 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3323 {
3324 if (t->to_fileio_pwrite != NULL)
3325 {
3326 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3327 target_errno);
3328
3329 if (targetdebug)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "target_fileio_pwrite (%d,...,%d,%s) "
3332 "= %d (%d)\n",
3333 fd, len, pulongest (offset),
3334 ret, ret != -1 ? 0 : *target_errno);
3335 return ret;
3336 }
3337 }
3338
3339 *target_errno = FILEIO_ENOSYS;
3340 return -1;
3341 }
3342
3343 /* Read up to LEN bytes FD on the target into READ_BUF.
3344 Return the number of bytes read, or -1 if an error occurs
3345 (and set *TARGET_ERRNO). */
3346 int
3347 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3348 ULONGEST offset, int *target_errno)
3349 {
3350 struct target_ops *t;
3351
3352 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3353 {
3354 if (t->to_fileio_pread != NULL)
3355 {
3356 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3357 target_errno);
3358
3359 if (targetdebug)
3360 fprintf_unfiltered (gdb_stdlog,
3361 "target_fileio_pread (%d,...,%d,%s) "
3362 "= %d (%d)\n",
3363 fd, len, pulongest (offset),
3364 ret, ret != -1 ? 0 : *target_errno);
3365 return ret;
3366 }
3367 }
3368
3369 *target_errno = FILEIO_ENOSYS;
3370 return -1;
3371 }
3372
3373 /* Close FD on the target. Return 0, or -1 if an error occurs
3374 (and set *TARGET_ERRNO). */
3375 int
3376 target_fileio_close (int fd, int *target_errno)
3377 {
3378 struct target_ops *t;
3379
3380 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3381 {
3382 if (t->to_fileio_close != NULL)
3383 {
3384 int ret = t->to_fileio_close (fd, target_errno);
3385
3386 if (targetdebug)
3387 fprintf_unfiltered (gdb_stdlog,
3388 "target_fileio_close (%d) = %d (%d)\n",
3389 fd, ret, ret != -1 ? 0 : *target_errno);
3390 return ret;
3391 }
3392 }
3393
3394 *target_errno = FILEIO_ENOSYS;
3395 return -1;
3396 }
3397
3398 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3399 occurs (and set *TARGET_ERRNO). */
3400 int
3401 target_fileio_unlink (const char *filename, int *target_errno)
3402 {
3403 struct target_ops *t;
3404
3405 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3406 {
3407 if (t->to_fileio_unlink != NULL)
3408 {
3409 int ret = t->to_fileio_unlink (filename, target_errno);
3410
3411 if (targetdebug)
3412 fprintf_unfiltered (gdb_stdlog,
3413 "target_fileio_unlink (%s) = %d (%d)\n",
3414 filename, ret, ret != -1 ? 0 : *target_errno);
3415 return ret;
3416 }
3417 }
3418
3419 *target_errno = FILEIO_ENOSYS;
3420 return -1;
3421 }
3422
3423 /* Read value of symbolic link FILENAME on the target. Return a
3424 null-terminated string allocated via xmalloc, or NULL if an error
3425 occurs (and set *TARGET_ERRNO). */
3426 char *
3427 target_fileio_readlink (const char *filename, int *target_errno)
3428 {
3429 struct target_ops *t;
3430
3431 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3432 {
3433 if (t->to_fileio_readlink != NULL)
3434 {
3435 char *ret = t->to_fileio_readlink (filename, target_errno);
3436
3437 if (targetdebug)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "target_fileio_readlink (%s) = %s (%d)\n",
3440 filename, ret? ret : "(nil)",
3441 ret? 0 : *target_errno);
3442 return ret;
3443 }
3444 }
3445
3446 *target_errno = FILEIO_ENOSYS;
3447 return NULL;
3448 }
3449
3450 static void
3451 target_fileio_close_cleanup (void *opaque)
3452 {
3453 int fd = *(int *) opaque;
3454 int target_errno;
3455
3456 target_fileio_close (fd, &target_errno);
3457 }
3458
3459 /* Read target file FILENAME. Store the result in *BUF_P and
3460 return the size of the transferred data. PADDING additional bytes are
3461 available in *BUF_P. This is a helper function for
3462 target_fileio_read_alloc; see the declaration of that function for more
3463 information. */
3464
3465 static LONGEST
3466 target_fileio_read_alloc_1 (const char *filename,
3467 gdb_byte **buf_p, int padding)
3468 {
3469 struct cleanup *close_cleanup;
3470 size_t buf_alloc, buf_pos;
3471 gdb_byte *buf;
3472 LONGEST n;
3473 int fd;
3474 int target_errno;
3475
3476 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3477 if (fd == -1)
3478 return -1;
3479
3480 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3481
3482 /* Start by reading up to 4K at a time. The target will throttle
3483 this number down if necessary. */
3484 buf_alloc = 4096;
3485 buf = xmalloc (buf_alloc);
3486 buf_pos = 0;
3487 while (1)
3488 {
3489 n = target_fileio_pread (fd, &buf[buf_pos],
3490 buf_alloc - buf_pos - padding, buf_pos,
3491 &target_errno);
3492 if (n < 0)
3493 {
3494 /* An error occurred. */
3495 do_cleanups (close_cleanup);
3496 xfree (buf);
3497 return -1;
3498 }
3499 else if (n == 0)
3500 {
3501 /* Read all there was. */
3502 do_cleanups (close_cleanup);
3503 if (buf_pos == 0)
3504 xfree (buf);
3505 else
3506 *buf_p = buf;
3507 return buf_pos;
3508 }
3509
3510 buf_pos += n;
3511
3512 /* If the buffer is filling up, expand it. */
3513 if (buf_alloc < buf_pos * 2)
3514 {
3515 buf_alloc *= 2;
3516 buf = xrealloc (buf, buf_alloc);
3517 }
3518
3519 QUIT;
3520 }
3521 }
3522
3523 /* Read target file FILENAME. Store the result in *BUF_P and return
3524 the size of the transferred data. See the declaration in "target.h"
3525 function for more information about the return value. */
3526
3527 LONGEST
3528 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3529 {
3530 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3531 }
3532
3533 /* Read target file FILENAME. The result is NUL-terminated and
3534 returned as a string, allocated using xmalloc. If an error occurs
3535 or the transfer is unsupported, NULL is returned. Empty objects
3536 are returned as allocated but empty strings. A warning is issued
3537 if the result contains any embedded NUL bytes. */
3538
3539 char *
3540 target_fileio_read_stralloc (const char *filename)
3541 {
3542 gdb_byte *buffer;
3543 char *bufstr;
3544 LONGEST i, transferred;
3545
3546 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3547 bufstr = (char *) buffer;
3548
3549 if (transferred < 0)
3550 return NULL;
3551
3552 if (transferred == 0)
3553 return xstrdup ("");
3554
3555 bufstr[transferred] = 0;
3556
3557 /* Check for embedded NUL bytes; but allow trailing NULs. */
3558 for (i = strlen (bufstr); i < transferred; i++)
3559 if (bufstr[i] != 0)
3560 {
3561 warning (_("target file %s "
3562 "contained unexpected null characters"),
3563 filename);
3564 break;
3565 }
3566
3567 return bufstr;
3568 }
3569
3570
3571 static int
3572 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3573 {
3574 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3575 }
3576
3577 static int
3578 default_watchpoint_addr_within_range (struct target_ops *target,
3579 CORE_ADDR addr,
3580 CORE_ADDR start, int length)
3581 {
3582 return addr >= start && addr < start + length;
3583 }
3584
3585 static struct gdbarch *
3586 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3587 {
3588 return target_gdbarch ();
3589 }
3590
3591 static int
3592 return_zero (void)
3593 {
3594 return 0;
3595 }
3596
3597 static int
3598 return_one (void)
3599 {
3600 return 1;
3601 }
3602
3603 static int
3604 return_minus_one (void)
3605 {
3606 return -1;
3607 }
3608
3609 /*
3610 * Find the next target down the stack from the specified target.
3611 */
3612
3613 struct target_ops *
3614 find_target_beneath (struct target_ops *t)
3615 {
3616 return t->beneath;
3617 }
3618
3619 \f
3620 /* The inferior process has died. Long live the inferior! */
3621
3622 void
3623 generic_mourn_inferior (void)
3624 {
3625 ptid_t ptid;
3626
3627 ptid = inferior_ptid;
3628 inferior_ptid = null_ptid;
3629
3630 /* Mark breakpoints uninserted in case something tries to delete a
3631 breakpoint while we delete the inferior's threads (which would
3632 fail, since the inferior is long gone). */
3633 mark_breakpoints_out ();
3634
3635 if (!ptid_equal (ptid, null_ptid))
3636 {
3637 int pid = ptid_get_pid (ptid);
3638 exit_inferior (pid);
3639 }
3640
3641 /* Note this wipes step-resume breakpoints, so needs to be done
3642 after exit_inferior, which ends up referencing the step-resume
3643 breakpoints through clear_thread_inferior_resources. */
3644 breakpoint_init_inferior (inf_exited);
3645
3646 registers_changed ();
3647
3648 reopen_exec_file ();
3649 reinit_frame_cache ();
3650
3651 if (deprecated_detach_hook)
3652 deprecated_detach_hook ();
3653 }
3654 \f
3655 /* Convert a normal process ID to a string. Returns the string in a
3656 static buffer. */
3657
3658 char *
3659 normal_pid_to_str (ptid_t ptid)
3660 {
3661 static char buf[32];
3662
3663 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3664 return buf;
3665 }
3666
3667 static char *
3668 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3669 {
3670 return normal_pid_to_str (ptid);
3671 }
3672
3673 /* Error-catcher for target_find_memory_regions. */
3674 static int
3675 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3676 {
3677 error (_("Command not implemented for this target."));
3678 return 0;
3679 }
3680
3681 /* Error-catcher for target_make_corefile_notes. */
3682 static char *
3683 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3684 {
3685 error (_("Command not implemented for this target."));
3686 return NULL;
3687 }
3688
3689 /* Error-catcher for target_get_bookmark. */
3690 static gdb_byte *
3691 dummy_get_bookmark (char *ignore1, int ignore2)
3692 {
3693 tcomplain ();
3694 return NULL;
3695 }
3696
3697 /* Error-catcher for target_goto_bookmark. */
3698 static void
3699 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3700 {
3701 tcomplain ();
3702 }
3703
3704 /* Set up the handful of non-empty slots needed by the dummy target
3705 vector. */
3706
3707 static void
3708 init_dummy_target (void)
3709 {
3710 dummy_target.to_shortname = "None";
3711 dummy_target.to_longname = "None";
3712 dummy_target.to_doc = "";
3713 dummy_target.to_attach = find_default_attach;
3714 dummy_target.to_detach =
3715 (void (*)(struct target_ops *, const char *, int))target_ignore;
3716 dummy_target.to_create_inferior = find_default_create_inferior;
3717 dummy_target.to_can_async_p = find_default_can_async_p;
3718 dummy_target.to_is_async_p = find_default_is_async_p;
3719 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3720 dummy_target.to_supports_disable_randomization
3721 = find_default_supports_disable_randomization;
3722 dummy_target.to_pid_to_str = dummy_pid_to_str;
3723 dummy_target.to_stratum = dummy_stratum;
3724 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3725 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3726 dummy_target.to_get_bookmark = dummy_get_bookmark;
3727 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3728 dummy_target.to_xfer_partial = default_xfer_partial;
3729 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3730 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3731 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3732 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3733 dummy_target.to_has_execution
3734 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3735 dummy_target.to_stopped_by_watchpoint = return_zero;
3736 dummy_target.to_stopped_data_address =
3737 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3738 dummy_target.to_magic = OPS_MAGIC;
3739 }
3740 \f
3741 static void
3742 debug_to_open (char *args, int from_tty)
3743 {
3744 debug_target.to_open (args, from_tty);
3745
3746 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3747 }
3748
3749 void
3750 target_close (struct target_ops *targ)
3751 {
3752 gdb_assert (!target_is_pushed (targ));
3753
3754 if (targ->to_xclose != NULL)
3755 targ->to_xclose (targ);
3756 else if (targ->to_close != NULL)
3757 targ->to_close ();
3758
3759 if (targetdebug)
3760 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3761 }
3762
3763 void
3764 target_attach (char *args, int from_tty)
3765 {
3766 struct target_ops *t;
3767
3768 for (t = current_target.beneath; t != NULL; t = t->beneath)
3769 {
3770 if (t->to_attach != NULL)
3771 {
3772 t->to_attach (t, args, from_tty);
3773 if (targetdebug)
3774 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3775 args, from_tty);
3776 return;
3777 }
3778 }
3779
3780 internal_error (__FILE__, __LINE__,
3781 _("could not find a target to attach"));
3782 }
3783
3784 int
3785 target_thread_alive (ptid_t ptid)
3786 {
3787 struct target_ops *t;
3788
3789 for (t = current_target.beneath; t != NULL; t = t->beneath)
3790 {
3791 if (t->to_thread_alive != NULL)
3792 {
3793 int retval;
3794
3795 retval = t->to_thread_alive (t, ptid);
3796 if (targetdebug)
3797 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3798 ptid_get_pid (ptid), retval);
3799
3800 return retval;
3801 }
3802 }
3803
3804 return 0;
3805 }
3806
3807 void
3808 target_find_new_threads (void)
3809 {
3810 struct target_ops *t;
3811
3812 for (t = current_target.beneath; t != NULL; t = t->beneath)
3813 {
3814 if (t->to_find_new_threads != NULL)
3815 {
3816 t->to_find_new_threads (t);
3817 if (targetdebug)
3818 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3819
3820 return;
3821 }
3822 }
3823 }
3824
3825 void
3826 target_stop (ptid_t ptid)
3827 {
3828 if (!may_stop)
3829 {
3830 warning (_("May not interrupt or stop the target, ignoring attempt"));
3831 return;
3832 }
3833
3834 (*current_target.to_stop) (ptid);
3835 }
3836
3837 static void
3838 debug_to_post_attach (int pid)
3839 {
3840 debug_target.to_post_attach (pid);
3841
3842 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3843 }
3844
3845 /* Concatenate ELEM to LIST, a comma separate list, and return the
3846 result. The LIST incoming argument is released. */
3847
3848 static char *
3849 str_comma_list_concat_elem (char *list, const char *elem)
3850 {
3851 if (list == NULL)
3852 return xstrdup (elem);
3853 else
3854 return reconcat (list, list, ", ", elem, (char *) NULL);
3855 }
3856
3857 /* Helper for target_options_to_string. If OPT is present in
3858 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3859 Returns the new resulting string. OPT is removed from
3860 TARGET_OPTIONS. */
3861
3862 static char *
3863 do_option (int *target_options, char *ret,
3864 int opt, char *opt_str)
3865 {
3866 if ((*target_options & opt) != 0)
3867 {
3868 ret = str_comma_list_concat_elem (ret, opt_str);
3869 *target_options &= ~opt;
3870 }
3871
3872 return ret;
3873 }
3874
3875 char *
3876 target_options_to_string (int target_options)
3877 {
3878 char *ret = NULL;
3879
3880 #define DO_TARG_OPTION(OPT) \
3881 ret = do_option (&target_options, ret, OPT, #OPT)
3882
3883 DO_TARG_OPTION (TARGET_WNOHANG);
3884
3885 if (target_options != 0)
3886 ret = str_comma_list_concat_elem (ret, "unknown???");
3887
3888 if (ret == NULL)
3889 ret = xstrdup ("");
3890 return ret;
3891 }
3892
3893 static void
3894 debug_print_register (const char * func,
3895 struct regcache *regcache, int regno)
3896 {
3897 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3898
3899 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3900 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3901 && gdbarch_register_name (gdbarch, regno) != NULL
3902 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3903 fprintf_unfiltered (gdb_stdlog, "(%s)",
3904 gdbarch_register_name (gdbarch, regno));
3905 else
3906 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3907 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3908 {
3909 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3910 int i, size = register_size (gdbarch, regno);
3911 gdb_byte buf[MAX_REGISTER_SIZE];
3912
3913 regcache_raw_collect (regcache, regno, buf);
3914 fprintf_unfiltered (gdb_stdlog, " = ");
3915 for (i = 0; i < size; i++)
3916 {
3917 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3918 }
3919 if (size <= sizeof (LONGEST))
3920 {
3921 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3922
3923 fprintf_unfiltered (gdb_stdlog, " %s %s",
3924 core_addr_to_string_nz (val), plongest (val));
3925 }
3926 }
3927 fprintf_unfiltered (gdb_stdlog, "\n");
3928 }
3929
3930 void
3931 target_fetch_registers (struct regcache *regcache, int regno)
3932 {
3933 struct target_ops *t;
3934
3935 for (t = current_target.beneath; t != NULL; t = t->beneath)
3936 {
3937 if (t->to_fetch_registers != NULL)
3938 {
3939 t->to_fetch_registers (t, regcache, regno);
3940 if (targetdebug)
3941 debug_print_register ("target_fetch_registers", regcache, regno);
3942 return;
3943 }
3944 }
3945 }
3946
3947 void
3948 target_store_registers (struct regcache *regcache, int regno)
3949 {
3950 struct target_ops *t;
3951
3952 if (!may_write_registers)
3953 error (_("Writing to registers is not allowed (regno %d)"), regno);
3954
3955 for (t = current_target.beneath; t != NULL; t = t->beneath)
3956 {
3957 if (t->to_store_registers != NULL)
3958 {
3959 t->to_store_registers (t, regcache, regno);
3960 if (targetdebug)
3961 {
3962 debug_print_register ("target_store_registers", regcache, regno);
3963 }
3964 return;
3965 }
3966 }
3967
3968 noprocess ();
3969 }
3970
3971 int
3972 target_core_of_thread (ptid_t ptid)
3973 {
3974 struct target_ops *t;
3975
3976 for (t = current_target.beneath; t != NULL; t = t->beneath)
3977 {
3978 if (t->to_core_of_thread != NULL)
3979 {
3980 int retval = t->to_core_of_thread (t, ptid);
3981
3982 if (targetdebug)
3983 fprintf_unfiltered (gdb_stdlog,
3984 "target_core_of_thread (%d) = %d\n",
3985 ptid_get_pid (ptid), retval);
3986 return retval;
3987 }
3988 }
3989
3990 return -1;
3991 }
3992
3993 int
3994 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3995 {
3996 struct target_ops *t;
3997
3998 for (t = current_target.beneath; t != NULL; t = t->beneath)
3999 {
4000 if (t->to_verify_memory != NULL)
4001 {
4002 int retval = t->to_verify_memory (t, data, memaddr, size);
4003
4004 if (targetdebug)
4005 fprintf_unfiltered (gdb_stdlog,
4006 "target_verify_memory (%s, %s) = %d\n",
4007 paddress (target_gdbarch (), memaddr),
4008 pulongest (size),
4009 retval);
4010 return retval;
4011 }
4012 }
4013
4014 tcomplain ();
4015 }
4016
4017 /* The documentation for this function is in its prototype declaration in
4018 target.h. */
4019
4020 int
4021 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4022 {
4023 struct target_ops *t;
4024
4025 for (t = current_target.beneath; t != NULL; t = t->beneath)
4026 if (t->to_insert_mask_watchpoint != NULL)
4027 {
4028 int ret;
4029
4030 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4031
4032 if (targetdebug)
4033 fprintf_unfiltered (gdb_stdlog, "\
4034 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4035 core_addr_to_string (addr),
4036 core_addr_to_string (mask), rw, ret);
4037
4038 return ret;
4039 }
4040
4041 return 1;
4042 }
4043
4044 /* The documentation for this function is in its prototype declaration in
4045 target.h. */
4046
4047 int
4048 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4049 {
4050 struct target_ops *t;
4051
4052 for (t = current_target.beneath; t != NULL; t = t->beneath)
4053 if (t->to_remove_mask_watchpoint != NULL)
4054 {
4055 int ret;
4056
4057 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4058
4059 if (targetdebug)
4060 fprintf_unfiltered (gdb_stdlog, "\
4061 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4062 core_addr_to_string (addr),
4063 core_addr_to_string (mask), rw, ret);
4064
4065 return ret;
4066 }
4067
4068 return 1;
4069 }
4070
4071 /* The documentation for this function is in its prototype declaration
4072 in target.h. */
4073
4074 int
4075 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4076 {
4077 struct target_ops *t;
4078
4079 for (t = current_target.beneath; t != NULL; t = t->beneath)
4080 if (t->to_masked_watch_num_registers != NULL)
4081 return t->to_masked_watch_num_registers (t, addr, mask);
4082
4083 return -1;
4084 }
4085
4086 /* The documentation for this function is in its prototype declaration
4087 in target.h. */
4088
4089 int
4090 target_ranged_break_num_registers (void)
4091 {
4092 struct target_ops *t;
4093
4094 for (t = current_target.beneath; t != NULL; t = t->beneath)
4095 if (t->to_ranged_break_num_registers != NULL)
4096 return t->to_ranged_break_num_registers (t);
4097
4098 return -1;
4099 }
4100
4101 /* See target.h. */
4102
4103 int
4104 target_supports_btrace (void)
4105 {
4106 struct target_ops *t;
4107
4108 for (t = current_target.beneath; t != NULL; t = t->beneath)
4109 if (t->to_supports_btrace != NULL)
4110 return t->to_supports_btrace ();
4111
4112 return 0;
4113 }
4114
4115 /* See target.h. */
4116
4117 struct btrace_target_info *
4118 target_enable_btrace (ptid_t ptid)
4119 {
4120 struct target_ops *t;
4121
4122 for (t = current_target.beneath; t != NULL; t = t->beneath)
4123 if (t->to_enable_btrace != NULL)
4124 return t->to_enable_btrace (ptid);
4125
4126 tcomplain ();
4127 return NULL;
4128 }
4129
4130 /* See target.h. */
4131
4132 void
4133 target_disable_btrace (struct btrace_target_info *btinfo)
4134 {
4135 struct target_ops *t;
4136
4137 for (t = current_target.beneath; t != NULL; t = t->beneath)
4138 if (t->to_disable_btrace != NULL)
4139 {
4140 t->to_disable_btrace (btinfo);
4141 return;
4142 }
4143
4144 tcomplain ();
4145 }
4146
4147 /* See target.h. */
4148
4149 void
4150 target_teardown_btrace (struct btrace_target_info *btinfo)
4151 {
4152 struct target_ops *t;
4153
4154 for (t = current_target.beneath; t != NULL; t = t->beneath)
4155 if (t->to_teardown_btrace != NULL)
4156 {
4157 t->to_teardown_btrace (btinfo);
4158 return;
4159 }
4160
4161 tcomplain ();
4162 }
4163
4164 /* See target.h. */
4165
4166 VEC (btrace_block_s) *
4167 target_read_btrace (struct btrace_target_info *btinfo,
4168 enum btrace_read_type type)
4169 {
4170 struct target_ops *t;
4171
4172 for (t = current_target.beneath; t != NULL; t = t->beneath)
4173 if (t->to_read_btrace != NULL)
4174 return t->to_read_btrace (btinfo, type);
4175
4176 tcomplain ();
4177 return NULL;
4178 }
4179
4180 /* See target.h. */
4181
4182 void
4183 target_stop_recording (void)
4184 {
4185 struct target_ops *t;
4186
4187 for (t = current_target.beneath; t != NULL; t = t->beneath)
4188 if (t->to_stop_recording != NULL)
4189 {
4190 t->to_stop_recording ();
4191 return;
4192 }
4193
4194 /* This is optional. */
4195 }
4196
4197 /* See target.h. */
4198
4199 void
4200 target_info_record (void)
4201 {
4202 struct target_ops *t;
4203
4204 for (t = current_target.beneath; t != NULL; t = t->beneath)
4205 if (t->to_info_record != NULL)
4206 {
4207 t->to_info_record ();
4208 return;
4209 }
4210
4211 tcomplain ();
4212 }
4213
4214 /* See target.h. */
4215
4216 void
4217 target_save_record (const char *filename)
4218 {
4219 struct target_ops *t;
4220
4221 for (t = current_target.beneath; t != NULL; t = t->beneath)
4222 if (t->to_save_record != NULL)
4223 {
4224 t->to_save_record (filename);
4225 return;
4226 }
4227
4228 tcomplain ();
4229 }
4230
4231 /* See target.h. */
4232
4233 int
4234 target_supports_delete_record (void)
4235 {
4236 struct target_ops *t;
4237
4238 for (t = current_target.beneath; t != NULL; t = t->beneath)
4239 if (t->to_delete_record != NULL)
4240 return 1;
4241
4242 return 0;
4243 }
4244
4245 /* See target.h. */
4246
4247 void
4248 target_delete_record (void)
4249 {
4250 struct target_ops *t;
4251
4252 for (t = current_target.beneath; t != NULL; t = t->beneath)
4253 if (t->to_delete_record != NULL)
4254 {
4255 t->to_delete_record ();
4256 return;
4257 }
4258
4259 tcomplain ();
4260 }
4261
4262 /* See target.h. */
4263
4264 int
4265 target_record_is_replaying (void)
4266 {
4267 struct target_ops *t;
4268
4269 for (t = current_target.beneath; t != NULL; t = t->beneath)
4270 if (t->to_record_is_replaying != NULL)
4271 return t->to_record_is_replaying ();
4272
4273 return 0;
4274 }
4275
4276 /* See target.h. */
4277
4278 void
4279 target_goto_record_begin (void)
4280 {
4281 struct target_ops *t;
4282
4283 for (t = current_target.beneath; t != NULL; t = t->beneath)
4284 if (t->to_goto_record_begin != NULL)
4285 {
4286 t->to_goto_record_begin ();
4287 return;
4288 }
4289
4290 tcomplain ();
4291 }
4292
4293 /* See target.h. */
4294
4295 void
4296 target_goto_record_end (void)
4297 {
4298 struct target_ops *t;
4299
4300 for (t = current_target.beneath; t != NULL; t = t->beneath)
4301 if (t->to_goto_record_end != NULL)
4302 {
4303 t->to_goto_record_end ();
4304 return;
4305 }
4306
4307 tcomplain ();
4308 }
4309
4310 /* See target.h. */
4311
4312 void
4313 target_goto_record (ULONGEST insn)
4314 {
4315 struct target_ops *t;
4316
4317 for (t = current_target.beneath; t != NULL; t = t->beneath)
4318 if (t->to_goto_record != NULL)
4319 {
4320 t->to_goto_record (insn);
4321 return;
4322 }
4323
4324 tcomplain ();
4325 }
4326
4327 /* See target.h. */
4328
4329 void
4330 target_insn_history (int size, int flags)
4331 {
4332 struct target_ops *t;
4333
4334 for (t = current_target.beneath; t != NULL; t = t->beneath)
4335 if (t->to_insn_history != NULL)
4336 {
4337 t->to_insn_history (size, flags);
4338 return;
4339 }
4340
4341 tcomplain ();
4342 }
4343
4344 /* See target.h. */
4345
4346 void
4347 target_insn_history_from (ULONGEST from, int size, int flags)
4348 {
4349 struct target_ops *t;
4350
4351 for (t = current_target.beneath; t != NULL; t = t->beneath)
4352 if (t->to_insn_history_from != NULL)
4353 {
4354 t->to_insn_history_from (from, size, flags);
4355 return;
4356 }
4357
4358 tcomplain ();
4359 }
4360
4361 /* See target.h. */
4362
4363 void
4364 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4365 {
4366 struct target_ops *t;
4367
4368 for (t = current_target.beneath; t != NULL; t = t->beneath)
4369 if (t->to_insn_history_range != NULL)
4370 {
4371 t->to_insn_history_range (begin, end, flags);
4372 return;
4373 }
4374
4375 tcomplain ();
4376 }
4377
4378 /* See target.h. */
4379
4380 void
4381 target_call_history (int size, int flags)
4382 {
4383 struct target_ops *t;
4384
4385 for (t = current_target.beneath; t != NULL; t = t->beneath)
4386 if (t->to_call_history != NULL)
4387 {
4388 t->to_call_history (size, flags);
4389 return;
4390 }
4391
4392 tcomplain ();
4393 }
4394
4395 /* See target.h. */
4396
4397 void
4398 target_call_history_from (ULONGEST begin, int size, int flags)
4399 {
4400 struct target_ops *t;
4401
4402 for (t = current_target.beneath; t != NULL; t = t->beneath)
4403 if (t->to_call_history_from != NULL)
4404 {
4405 t->to_call_history_from (begin, size, flags);
4406 return;
4407 }
4408
4409 tcomplain ();
4410 }
4411
4412 /* See target.h. */
4413
4414 void
4415 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4416 {
4417 struct target_ops *t;
4418
4419 for (t = current_target.beneath; t != NULL; t = t->beneath)
4420 if (t->to_call_history_range != NULL)
4421 {
4422 t->to_call_history_range (begin, end, flags);
4423 return;
4424 }
4425
4426 tcomplain ();
4427 }
4428
4429 static void
4430 debug_to_prepare_to_store (struct regcache *regcache)
4431 {
4432 debug_target.to_prepare_to_store (regcache);
4433
4434 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4435 }
4436
4437 static int
4438 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4439 int write, struct mem_attrib *attrib,
4440 struct target_ops *target)
4441 {
4442 int retval;
4443
4444 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4445 attrib, target);
4446
4447 fprintf_unfiltered (gdb_stdlog,
4448 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4449 paddress (target_gdbarch (), memaddr), len,
4450 write ? "write" : "read", retval);
4451
4452 if (retval > 0)
4453 {
4454 int i;
4455
4456 fputs_unfiltered (", bytes =", gdb_stdlog);
4457 for (i = 0; i < retval; i++)
4458 {
4459 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4460 {
4461 if (targetdebug < 2 && i > 0)
4462 {
4463 fprintf_unfiltered (gdb_stdlog, " ...");
4464 break;
4465 }
4466 fprintf_unfiltered (gdb_stdlog, "\n");
4467 }
4468
4469 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4470 }
4471 }
4472
4473 fputc_unfiltered ('\n', gdb_stdlog);
4474
4475 return retval;
4476 }
4477
4478 static void
4479 debug_to_files_info (struct target_ops *target)
4480 {
4481 debug_target.to_files_info (target);
4482
4483 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4484 }
4485
4486 static int
4487 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4488 struct bp_target_info *bp_tgt)
4489 {
4490 int retval;
4491
4492 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4493
4494 fprintf_unfiltered (gdb_stdlog,
4495 "target_insert_breakpoint (%s, xxx) = %ld\n",
4496 core_addr_to_string (bp_tgt->placed_address),
4497 (unsigned long) retval);
4498 return retval;
4499 }
4500
4501 static int
4502 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4503 struct bp_target_info *bp_tgt)
4504 {
4505 int retval;
4506
4507 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4508
4509 fprintf_unfiltered (gdb_stdlog,
4510 "target_remove_breakpoint (%s, xxx) = %ld\n",
4511 core_addr_to_string (bp_tgt->placed_address),
4512 (unsigned long) retval);
4513 return retval;
4514 }
4515
4516 static int
4517 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4518 {
4519 int retval;
4520
4521 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4522
4523 fprintf_unfiltered (gdb_stdlog,
4524 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4525 (unsigned long) type,
4526 (unsigned long) cnt,
4527 (unsigned long) from_tty,
4528 (unsigned long) retval);
4529 return retval;
4530 }
4531
4532 static int
4533 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4534 {
4535 CORE_ADDR retval;
4536
4537 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4538
4539 fprintf_unfiltered (gdb_stdlog,
4540 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4541 core_addr_to_string (addr), (unsigned long) len,
4542 core_addr_to_string (retval));
4543 return retval;
4544 }
4545
4546 static int
4547 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4548 struct expression *cond)
4549 {
4550 int retval;
4551
4552 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4553 rw, cond);
4554
4555 fprintf_unfiltered (gdb_stdlog,
4556 "target_can_accel_watchpoint_condition "
4557 "(%s, %d, %d, %s) = %ld\n",
4558 core_addr_to_string (addr), len, rw,
4559 host_address_to_string (cond), (unsigned long) retval);
4560 return retval;
4561 }
4562
4563 static int
4564 debug_to_stopped_by_watchpoint (void)
4565 {
4566 int retval;
4567
4568 retval = debug_target.to_stopped_by_watchpoint ();
4569
4570 fprintf_unfiltered (gdb_stdlog,
4571 "target_stopped_by_watchpoint () = %ld\n",
4572 (unsigned long) retval);
4573 return retval;
4574 }
4575
4576 static int
4577 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4578 {
4579 int retval;
4580
4581 retval = debug_target.to_stopped_data_address (target, addr);
4582
4583 fprintf_unfiltered (gdb_stdlog,
4584 "target_stopped_data_address ([%s]) = %ld\n",
4585 core_addr_to_string (*addr),
4586 (unsigned long)retval);
4587 return retval;
4588 }
4589
4590 static int
4591 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4592 CORE_ADDR addr,
4593 CORE_ADDR start, int length)
4594 {
4595 int retval;
4596
4597 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4598 start, length);
4599
4600 fprintf_filtered (gdb_stdlog,
4601 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4602 core_addr_to_string (addr), core_addr_to_string (start),
4603 length, retval);
4604 return retval;
4605 }
4606
4607 static int
4608 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4609 struct bp_target_info *bp_tgt)
4610 {
4611 int retval;
4612
4613 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4614
4615 fprintf_unfiltered (gdb_stdlog,
4616 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4617 core_addr_to_string (bp_tgt->placed_address),
4618 (unsigned long) retval);
4619 return retval;
4620 }
4621
4622 static int
4623 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4624 struct bp_target_info *bp_tgt)
4625 {
4626 int retval;
4627
4628 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4629
4630 fprintf_unfiltered (gdb_stdlog,
4631 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4632 core_addr_to_string (bp_tgt->placed_address),
4633 (unsigned long) retval);
4634 return retval;
4635 }
4636
4637 static int
4638 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4639 struct expression *cond)
4640 {
4641 int retval;
4642
4643 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4644
4645 fprintf_unfiltered (gdb_stdlog,
4646 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4647 core_addr_to_string (addr), len, type,
4648 host_address_to_string (cond), (unsigned long) retval);
4649 return retval;
4650 }
4651
4652 static int
4653 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4654 struct expression *cond)
4655 {
4656 int retval;
4657
4658 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4659
4660 fprintf_unfiltered (gdb_stdlog,
4661 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4662 core_addr_to_string (addr), len, type,
4663 host_address_to_string (cond), (unsigned long) retval);
4664 return retval;
4665 }
4666
4667 static void
4668 debug_to_terminal_init (void)
4669 {
4670 debug_target.to_terminal_init ();
4671
4672 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4673 }
4674
4675 static void
4676 debug_to_terminal_inferior (void)
4677 {
4678 debug_target.to_terminal_inferior ();
4679
4680 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4681 }
4682
4683 static void
4684 debug_to_terminal_ours_for_output (void)
4685 {
4686 debug_target.to_terminal_ours_for_output ();
4687
4688 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4689 }
4690
4691 static void
4692 debug_to_terminal_ours (void)
4693 {
4694 debug_target.to_terminal_ours ();
4695
4696 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4697 }
4698
4699 static void
4700 debug_to_terminal_save_ours (void)
4701 {
4702 debug_target.to_terminal_save_ours ();
4703
4704 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4705 }
4706
4707 static void
4708 debug_to_terminal_info (const char *arg, int from_tty)
4709 {
4710 debug_target.to_terminal_info (arg, from_tty);
4711
4712 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4713 from_tty);
4714 }
4715
4716 static void
4717 debug_to_load (char *args, int from_tty)
4718 {
4719 debug_target.to_load (args, from_tty);
4720
4721 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4722 }
4723
4724 static void
4725 debug_to_post_startup_inferior (ptid_t ptid)
4726 {
4727 debug_target.to_post_startup_inferior (ptid);
4728
4729 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4730 ptid_get_pid (ptid));
4731 }
4732
4733 static int
4734 debug_to_insert_fork_catchpoint (int pid)
4735 {
4736 int retval;
4737
4738 retval = debug_target.to_insert_fork_catchpoint (pid);
4739
4740 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4741 pid, retval);
4742
4743 return retval;
4744 }
4745
4746 static int
4747 debug_to_remove_fork_catchpoint (int pid)
4748 {
4749 int retval;
4750
4751 retval = debug_target.to_remove_fork_catchpoint (pid);
4752
4753 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4754 pid, retval);
4755
4756 return retval;
4757 }
4758
4759 static int
4760 debug_to_insert_vfork_catchpoint (int pid)
4761 {
4762 int retval;
4763
4764 retval = debug_target.to_insert_vfork_catchpoint (pid);
4765
4766 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4767 pid, retval);
4768
4769 return retval;
4770 }
4771
4772 static int
4773 debug_to_remove_vfork_catchpoint (int pid)
4774 {
4775 int retval;
4776
4777 retval = debug_target.to_remove_vfork_catchpoint (pid);
4778
4779 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4780 pid, retval);
4781
4782 return retval;
4783 }
4784
4785 static int
4786 debug_to_insert_exec_catchpoint (int pid)
4787 {
4788 int retval;
4789
4790 retval = debug_target.to_insert_exec_catchpoint (pid);
4791
4792 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4793 pid, retval);
4794
4795 return retval;
4796 }
4797
4798 static int
4799 debug_to_remove_exec_catchpoint (int pid)
4800 {
4801 int retval;
4802
4803 retval = debug_target.to_remove_exec_catchpoint (pid);
4804
4805 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4806 pid, retval);
4807
4808 return retval;
4809 }
4810
4811 static int
4812 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4813 {
4814 int has_exited;
4815
4816 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4817
4818 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4819 pid, wait_status, *exit_status, has_exited);
4820
4821 return has_exited;
4822 }
4823
4824 static int
4825 debug_to_can_run (void)
4826 {
4827 int retval;
4828
4829 retval = debug_target.to_can_run ();
4830
4831 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4832
4833 return retval;
4834 }
4835
4836 static struct gdbarch *
4837 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4838 {
4839 struct gdbarch *retval;
4840
4841 retval = debug_target.to_thread_architecture (ops, ptid);
4842
4843 fprintf_unfiltered (gdb_stdlog,
4844 "target_thread_architecture (%s) = %s [%s]\n",
4845 target_pid_to_str (ptid),
4846 host_address_to_string (retval),
4847 gdbarch_bfd_arch_info (retval)->printable_name);
4848 return retval;
4849 }
4850
4851 static void
4852 debug_to_stop (ptid_t ptid)
4853 {
4854 debug_target.to_stop (ptid);
4855
4856 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4857 target_pid_to_str (ptid));
4858 }
4859
4860 static void
4861 debug_to_rcmd (char *command,
4862 struct ui_file *outbuf)
4863 {
4864 debug_target.to_rcmd (command, outbuf);
4865 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4866 }
4867
4868 static char *
4869 debug_to_pid_to_exec_file (int pid)
4870 {
4871 char *exec_file;
4872
4873 exec_file = debug_target.to_pid_to_exec_file (pid);
4874
4875 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4876 pid, exec_file);
4877
4878 return exec_file;
4879 }
4880
4881 static void
4882 setup_target_debug (void)
4883 {
4884 memcpy (&debug_target, &current_target, sizeof debug_target);
4885
4886 current_target.to_open = debug_to_open;
4887 current_target.to_post_attach = debug_to_post_attach;
4888 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4889 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4890 current_target.to_files_info = debug_to_files_info;
4891 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4892 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4893 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4894 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4895 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4896 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4897 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4898 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4899 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4900 current_target.to_watchpoint_addr_within_range
4901 = debug_to_watchpoint_addr_within_range;
4902 current_target.to_region_ok_for_hw_watchpoint
4903 = debug_to_region_ok_for_hw_watchpoint;
4904 current_target.to_can_accel_watchpoint_condition
4905 = debug_to_can_accel_watchpoint_condition;
4906 current_target.to_terminal_init = debug_to_terminal_init;
4907 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4908 current_target.to_terminal_ours_for_output
4909 = debug_to_terminal_ours_for_output;
4910 current_target.to_terminal_ours = debug_to_terminal_ours;
4911 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4912 current_target.to_terminal_info = debug_to_terminal_info;
4913 current_target.to_load = debug_to_load;
4914 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4915 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4916 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4917 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4918 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4919 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4920 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4921 current_target.to_has_exited = debug_to_has_exited;
4922 current_target.to_can_run = debug_to_can_run;
4923 current_target.to_stop = debug_to_stop;
4924 current_target.to_rcmd = debug_to_rcmd;
4925 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4926 current_target.to_thread_architecture = debug_to_thread_architecture;
4927 }
4928 \f
4929
4930 static char targ_desc[] =
4931 "Names of targets and files being debugged.\nShows the entire \
4932 stack of targets currently in use (including the exec-file,\n\
4933 core-file, and process, if any), as well as the symbol file name.";
4934
4935 static void
4936 do_monitor_command (char *cmd,
4937 int from_tty)
4938 {
4939 if ((current_target.to_rcmd
4940 == (void (*) (char *, struct ui_file *)) tcomplain)
4941 || (current_target.to_rcmd == debug_to_rcmd
4942 && (debug_target.to_rcmd
4943 == (void (*) (char *, struct ui_file *)) tcomplain)))
4944 error (_("\"monitor\" command not supported by this target."));
4945 target_rcmd (cmd, gdb_stdtarg);
4946 }
4947
4948 /* Print the name of each layers of our target stack. */
4949
4950 static void
4951 maintenance_print_target_stack (char *cmd, int from_tty)
4952 {
4953 struct target_ops *t;
4954
4955 printf_filtered (_("The current target stack is:\n"));
4956
4957 for (t = target_stack; t != NULL; t = t->beneath)
4958 {
4959 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4960 }
4961 }
4962
4963 /* Controls if async mode is permitted. */
4964 int target_async_permitted = 0;
4965
4966 /* The set command writes to this variable. If the inferior is
4967 executing, target_async_permitted is *not* updated. */
4968 static int target_async_permitted_1 = 0;
4969
4970 static void
4971 set_target_async_command (char *args, int from_tty,
4972 struct cmd_list_element *c)
4973 {
4974 if (have_live_inferiors ())
4975 {
4976 target_async_permitted_1 = target_async_permitted;
4977 error (_("Cannot change this setting while the inferior is running."));
4978 }
4979
4980 target_async_permitted = target_async_permitted_1;
4981 }
4982
4983 static void
4984 show_target_async_command (struct ui_file *file, int from_tty,
4985 struct cmd_list_element *c,
4986 const char *value)
4987 {
4988 fprintf_filtered (file,
4989 _("Controlling the inferior in "
4990 "asynchronous mode is %s.\n"), value);
4991 }
4992
4993 /* Temporary copies of permission settings. */
4994
4995 static int may_write_registers_1 = 1;
4996 static int may_write_memory_1 = 1;
4997 static int may_insert_breakpoints_1 = 1;
4998 static int may_insert_tracepoints_1 = 1;
4999 static int may_insert_fast_tracepoints_1 = 1;
5000 static int may_stop_1 = 1;
5001
5002 /* Make the user-set values match the real values again. */
5003
5004 void
5005 update_target_permissions (void)
5006 {
5007 may_write_registers_1 = may_write_registers;
5008 may_write_memory_1 = may_write_memory;
5009 may_insert_breakpoints_1 = may_insert_breakpoints;
5010 may_insert_tracepoints_1 = may_insert_tracepoints;
5011 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5012 may_stop_1 = may_stop;
5013 }
5014
5015 /* The one function handles (most of) the permission flags in the same
5016 way. */
5017
5018 static void
5019 set_target_permissions (char *args, int from_tty,
5020 struct cmd_list_element *c)
5021 {
5022 if (target_has_execution)
5023 {
5024 update_target_permissions ();
5025 error (_("Cannot change this setting while the inferior is running."));
5026 }
5027
5028 /* Make the real values match the user-changed values. */
5029 may_write_registers = may_write_registers_1;
5030 may_insert_breakpoints = may_insert_breakpoints_1;
5031 may_insert_tracepoints = may_insert_tracepoints_1;
5032 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5033 may_stop = may_stop_1;
5034 update_observer_mode ();
5035 }
5036
5037 /* Set memory write permission independently of observer mode. */
5038
5039 static void
5040 set_write_memory_permission (char *args, int from_tty,
5041 struct cmd_list_element *c)
5042 {
5043 /* Make the real values match the user-changed values. */
5044 may_write_memory = may_write_memory_1;
5045 update_observer_mode ();
5046 }
5047
5048
5049 void
5050 initialize_targets (void)
5051 {
5052 init_dummy_target ();
5053 push_target (&dummy_target);
5054
5055 add_info ("target", target_info, targ_desc);
5056 add_info ("files", target_info, targ_desc);
5057
5058 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5059 Set target debugging."), _("\
5060 Show target debugging."), _("\
5061 When non-zero, target debugging is enabled. Higher numbers are more\n\
5062 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5063 command."),
5064 NULL,
5065 show_targetdebug,
5066 &setdebuglist, &showdebuglist);
5067
5068 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5069 &trust_readonly, _("\
5070 Set mode for reading from readonly sections."), _("\
5071 Show mode for reading from readonly sections."), _("\
5072 When this mode is on, memory reads from readonly sections (such as .text)\n\
5073 will be read from the object file instead of from the target. This will\n\
5074 result in significant performance improvement for remote targets."),
5075 NULL,
5076 show_trust_readonly,
5077 &setlist, &showlist);
5078
5079 add_com ("monitor", class_obscure, do_monitor_command,
5080 _("Send a command to the remote monitor (remote targets only)."));
5081
5082 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5083 _("Print the name of each layer of the internal target stack."),
5084 &maintenanceprintlist);
5085
5086 add_setshow_boolean_cmd ("target-async", no_class,
5087 &target_async_permitted_1, _("\
5088 Set whether gdb controls the inferior in asynchronous mode."), _("\
5089 Show whether gdb controls the inferior in asynchronous mode."), _("\
5090 Tells gdb whether to control the inferior in asynchronous mode."),
5091 set_target_async_command,
5092 show_target_async_command,
5093 &setlist,
5094 &showlist);
5095
5096 add_setshow_boolean_cmd ("may-write-registers", class_support,
5097 &may_write_registers_1, _("\
5098 Set permission to write into registers."), _("\
5099 Show permission to write into registers."), _("\
5100 When this permission is on, GDB may write into the target's registers.\n\
5101 Otherwise, any sort of write attempt will result in an error."),
5102 set_target_permissions, NULL,
5103 &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("may-write-memory", class_support,
5106 &may_write_memory_1, _("\
5107 Set permission to write into target memory."), _("\
5108 Show permission to write into target memory."), _("\
5109 When this permission is on, GDB may write into the target's memory.\n\
5110 Otherwise, any sort of write attempt will result in an error."),
5111 set_write_memory_permission, NULL,
5112 &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5115 &may_insert_breakpoints_1, _("\
5116 Set permission to insert breakpoints in the target."), _("\
5117 Show permission to insert breakpoints in the target."), _("\
5118 When this permission is on, GDB may insert breakpoints in the program.\n\
5119 Otherwise, any sort of insertion attempt will result in an error."),
5120 set_target_permissions, NULL,
5121 &setlist, &showlist);
5122
5123 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5124 &may_insert_tracepoints_1, _("\
5125 Set permission to insert tracepoints in the target."), _("\
5126 Show permission to insert tracepoints in the target."), _("\
5127 When this permission is on, GDB may insert tracepoints in the program.\n\
5128 Otherwise, any sort of insertion attempt will result in an error."),
5129 set_target_permissions, NULL,
5130 &setlist, &showlist);
5131
5132 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5133 &may_insert_fast_tracepoints_1, _("\
5134 Set permission to insert fast tracepoints in the target."), _("\
5135 Show permission to insert fast tracepoints in the target."), _("\
5136 When this permission is on, GDB may insert fast tracepoints.\n\
5137 Otherwise, any sort of insertion attempt will result in an error."),
5138 set_target_permissions, NULL,
5139 &setlist, &showlist);
5140
5141 add_setshow_boolean_cmd ("may-interrupt", class_support,
5142 &may_stop_1, _("\
5143 Set permission to interrupt or signal the target."), _("\
5144 Show permission to interrupt or signal the target."), _("\
5145 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5146 Otherwise, any attempt to interrupt or stop will be ignored."),
5147 set_target_permissions, NULL,
5148 &setlist, &showlist);
5149 }
This page took 0.134252 seconds and 4 git commands to generate.