Introduce 'enum remove_bp_reason'
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Since we always run the inferior in the main console (unless "set
490 inferior-tty" is in effect), when some UI other than the main one
491 calls target_terminal_inferior/target_terminal_inferior, then we
492 leave the main UI's terminal settings as is. */
493 if (ui != main_ui)
494 return;
495
496 if (terminal_state == terminal_is_inferior)
497 return;
498
499 /* If GDB is resuming the inferior in the foreground, install
500 inferior's terminal modes. */
501 (*current_target.to_terminal_inferior) (&current_target);
502 terminal_state = terminal_is_inferior;
503
504 /* If the user hit C-c before, pretend that it was hit right
505 here. */
506 if (check_quit_flag ())
507 target_pass_ctrlc ();
508 }
509
510 /* See target.h. */
511
512 void
513 target_terminal_ours (void)
514 {
515 struct ui *ui = current_ui;
516
517 /* See target_terminal_inferior. */
518 if (ui != main_ui)
519 return;
520
521 if (terminal_state == terminal_is_ours)
522 return;
523
524 (*current_target.to_terminal_ours) (&current_target);
525 terminal_state = terminal_is_ours;
526 }
527
528 /* See target.h. */
529
530 void
531 target_terminal_ours_for_output (void)
532 {
533 struct ui *ui = current_ui;
534
535 /* See target_terminal_inferior. */
536 if (ui != main_ui)
537 return;
538
539 if (terminal_state != terminal_is_inferior)
540 return;
541 (*current_target.to_terminal_ours_for_output) (&current_target);
542 terminal_state = terminal_is_ours_for_output;
543 }
544
545 /* See target.h. */
546
547 int
548 target_supports_terminal_ours (void)
549 {
550 struct target_ops *t;
551
552 for (t = current_target.beneath; t != NULL; t = t->beneath)
553 {
554 if (t->to_terminal_ours != delegate_terminal_ours
555 && t->to_terminal_ours != tdefault_terminal_ours)
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Restore the terminal to its previous state (helper for
563 make_cleanup_restore_target_terminal). */
564
565 static void
566 cleanup_restore_target_terminal (void *arg)
567 {
568 enum terminal_state *previous_state = (enum terminal_state *) arg;
569
570 switch (*previous_state)
571 {
572 case terminal_is_ours:
573 target_terminal_ours ();
574 break;
575 case terminal_is_ours_for_output:
576 target_terminal_ours_for_output ();
577 break;
578 case terminal_is_inferior:
579 target_terminal_inferior ();
580 break;
581 }
582 }
583
584 /* See target.h. */
585
586 struct cleanup *
587 make_cleanup_restore_target_terminal (void)
588 {
589 enum terminal_state *ts = XNEW (enum terminal_state);
590
591 *ts = terminal_state;
592
593 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594 }
595
596 static void
597 tcomplain (void)
598 {
599 error (_("You can't do that when your target is `%s'"),
600 current_target.to_shortname);
601 }
602
603 void
604 noprocess (void)
605 {
606 error (_("You can't do that without a process to debug."));
607 }
608
609 static void
610 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
611 {
612 printf_unfiltered (_("No saved terminal information.\n"));
613 }
614
615 /* A default implementation for the to_get_ada_task_ptid target method.
616
617 This function builds the PTID by using both LWP and TID as part of
618 the PTID lwp and tid elements. The pid used is the pid of the
619 inferior_ptid. */
620
621 static ptid_t
622 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
623 {
624 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625 }
626
627 static enum exec_direction_kind
628 default_execution_direction (struct target_ops *self)
629 {
630 if (!target_can_execute_reverse)
631 return EXEC_FORWARD;
632 else if (!target_can_async_p ())
633 return EXEC_FORWARD;
634 else
635 gdb_assert_not_reached ("\
636 to_execution_direction must be implemented for reverse async");
637 }
638
639 /* Go through the target stack from top to bottom, copying over zero
640 entries in current_target, then filling in still empty entries. In
641 effect, we are doing class inheritance through the pushed target
642 vectors.
643
644 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645 is currently implemented, is that it discards any knowledge of
646 which target an inherited method originally belonged to.
647 Consequently, new new target methods should instead explicitly and
648 locally search the target stack for the target that can handle the
649 request. */
650
651 static void
652 update_current_target (void)
653 {
654 struct target_ops *t;
655
656 /* First, reset current's contents. */
657 memset (&current_target, 0, sizeof (current_target));
658
659 /* Install the delegators. */
660 install_delegators (&current_target);
661
662 current_target.to_stratum = target_stack->to_stratum;
663
664 #define INHERIT(FIELD, TARGET) \
665 if (!current_target.FIELD) \
666 current_target.FIELD = (TARGET)->FIELD
667
668 /* Do not add any new INHERITs here. Instead, use the delegation
669 mechanism provided by make-target-delegates. */
670 for (t = target_stack; t; t = t->beneath)
671 {
672 INHERIT (to_shortname, t);
673 INHERIT (to_longname, t);
674 INHERIT (to_attach_no_wait, t);
675 INHERIT (to_have_steppable_watchpoint, t);
676 INHERIT (to_have_continuable_watchpoint, t);
677 INHERIT (to_has_thread_control, t);
678 }
679 #undef INHERIT
680
681 /* Finally, position the target-stack beneath the squashed
682 "current_target". That way code looking for a non-inherited
683 target method can quickly and simply find it. */
684 current_target.beneath = target_stack;
685
686 if (targetdebug)
687 setup_target_debug ();
688 }
689
690 /* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
697 void
698 push_target (struct target_ops *t)
699 {
700 struct target_ops **cur;
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
711 }
712
713 /* Find the proper stratum to install this target in. */
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
715 {
716 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
717 break;
718 }
719
720 /* If there's already targets at this stratum, remove them. */
721 /* FIXME: cagney/2003-10-15: I think this should be popping all
722 targets to CUR, and not just those at this stratum level. */
723 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724 {
725 /* There's already something at this stratum level. Close it,
726 and un-hook it from the stack. */
727 struct target_ops *tmp = (*cur);
728
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
731 target_close (tmp);
732 }
733
734 /* We have removed all targets in our stratum, now add the new one. */
735 t->beneath = (*cur);
736 (*cur) = t;
737
738 update_current_target ();
739 }
740
741 /* Remove a target_ops vector from the stack, wherever it may be.
742 Return how many times it was removed (0 or 1). */
743
744 int
745 unpush_target (struct target_ops *t)
746 {
747 struct target_ops **cur;
748 struct target_ops *tmp;
749
750 if (t->to_stratum == dummy_stratum)
751 internal_error (__FILE__, __LINE__,
752 _("Attempt to unpush the dummy target"));
753
754 /* Look for the specified target. Note that we assume that a target
755 can only occur once in the target stack. */
756
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
762
763 /* If we don't find target_ops, quit. Only open targets should be
764 closed. */
765 if ((*cur) == NULL)
766 return 0;
767
768 /* Unchain the target. */
769 tmp = (*cur);
770 (*cur) = (*cur)->beneath;
771 tmp->beneath = NULL;
772
773 update_current_target ();
774
775 /* Finally close the target. Note we do this after unchaining, so
776 any target method calls from within the target_close
777 implementation don't end up in T anymore. */
778 target_close (t);
779
780 return 1;
781 }
782
783 /* Unpush TARGET and assert that it worked. */
784
785 static void
786 unpush_target_and_assert (struct target_ops *target)
787 {
788 if (!unpush_target (target))
789 {
790 fprintf_unfiltered (gdb_stderr,
791 "pop_all_targets couldn't find target %s\n",
792 target->to_shortname);
793 internal_error (__FILE__, __LINE__,
794 _("failed internal consistency check"));
795 }
796 }
797
798 void
799 pop_all_targets_above (enum strata above_stratum)
800 {
801 while ((int) (current_target.to_stratum) > (int) above_stratum)
802 unpush_target_and_assert (target_stack);
803 }
804
805 /* See target.h. */
806
807 void
808 pop_all_targets_at_and_above (enum strata stratum)
809 {
810 while ((int) (current_target.to_stratum) >= (int) stratum)
811 unpush_target_and_assert (target_stack);
812 }
813
814 void
815 pop_all_targets (void)
816 {
817 pop_all_targets_above (dummy_stratum);
818 }
819
820 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
821
822 int
823 target_is_pushed (struct target_ops *t)
824 {
825 struct target_ops *cur;
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
836 }
837
838 for (cur = target_stack; cur != NULL; cur = cur->beneath)
839 if (cur == t)
840 return 1;
841
842 return 0;
843 }
844
845 /* Default implementation of to_get_thread_local_address. */
846
847 static void
848 generic_tls_error (void)
849 {
850 throw_error (TLS_GENERIC_ERROR,
851 _("Cannot find thread-local variables on this target"));
852 }
853
854 /* Using the objfile specified in OBJFILE, find the address for the
855 current thread's thread-local storage with offset OFFSET. */
856 CORE_ADDR
857 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858 {
859 volatile CORE_ADDR addr = 0;
860 struct target_ops *target = &current_target;
861
862 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
863 {
864 ptid_t ptid = inferior_ptid;
865
866 TRY
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
872 objfile);
873
874 addr = target->to_get_thread_local_address (target, ptid,
875 lm_addr, offset);
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
879 CATCH (ex, RETURN_MASK_ALL)
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
886 error (_("Cannot find thread-local variables "
887 "in this thread library."));
888 break;
889 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 if (objfile_is_library)
891 error (_("Cannot find shared library `%s' in dynamic"
892 " linker's load module list"), objfile_name (objfile));
893 else
894 error (_("Cannot find executable file `%s' in dynamic"
895 " linker's load module list"), objfile_name (objfile));
896 break;
897 case TLS_NOT_ALLOCATED_YET_ERROR:
898 if (objfile_is_library)
899 error (_("The inferior has not yet allocated storage for"
900 " thread-local variables in\n"
901 "the shared library `%s'\n"
902 "for %s"),
903 objfile_name (objfile), target_pid_to_str (ptid));
904 else
905 error (_("The inferior has not yet allocated storage for"
906 " thread-local variables in\n"
907 "the executable `%s'\n"
908 "for %s"),
909 objfile_name (objfile), target_pid_to_str (ptid));
910 break;
911 case TLS_GENERIC_ERROR:
912 if (objfile_is_library)
913 error (_("Cannot find thread-local storage for %s, "
914 "shared library %s:\n%s"),
915 target_pid_to_str (ptid),
916 objfile_name (objfile), ex.message);
917 else
918 error (_("Cannot find thread-local storage for %s, "
919 "executable file %s:\n%s"),
920 target_pid_to_str (ptid),
921 objfile_name (objfile), ex.message);
922 break;
923 default:
924 throw_exception (ex);
925 break;
926 }
927 }
928 END_CATCH
929 }
930 /* It wouldn't be wrong here to try a gdbarch method, too; finding
931 TLS is an ABI-specific thing. But we don't do that yet. */
932 else
933 error (_("Cannot find thread-local variables on this target"));
934
935 return addr;
936 }
937
938 const char *
939 target_xfer_status_to_string (enum target_xfer_status status)
940 {
941 #define CASE(X) case X: return #X
942 switch (status)
943 {
944 CASE(TARGET_XFER_E_IO);
945 CASE(TARGET_XFER_UNAVAILABLE);
946 default:
947 return "<unknown>";
948 }
949 #undef CASE
950 };
951
952
953 #undef MIN
954 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955
956 /* target_read_string -- read a null terminated string, up to LEN bytes,
957 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
958 Set *STRING to a pointer to malloc'd memory containing the data; the caller
959 is responsible for freeing it. Return the number of bytes successfully
960 read. */
961
962 int
963 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
964 {
965 int tlen, offset, i;
966 gdb_byte buf[4];
967 int errcode = 0;
968 char *buffer;
969 int buffer_allocated;
970 char *bufptr;
971 unsigned int nbytes_read = 0;
972
973 gdb_assert (string);
974
975 /* Small for testing. */
976 buffer_allocated = 4;
977 buffer = (char *) xmalloc (buffer_allocated);
978 bufptr = buffer;
979
980 while (len > 0)
981 {
982 tlen = MIN (len, 4 - (memaddr & 3));
983 offset = memaddr & 3;
984
985 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
986 if (errcode != 0)
987 {
988 /* The transfer request might have crossed the boundary to an
989 unallocated region of memory. Retry the transfer, requesting
990 a single byte. */
991 tlen = 1;
992 offset = 0;
993 errcode = target_read_memory (memaddr, buf, 1);
994 if (errcode != 0)
995 goto done;
996 }
997
998 if (bufptr - buffer + tlen > buffer_allocated)
999 {
1000 unsigned int bytes;
1001
1002 bytes = bufptr - buffer;
1003 buffer_allocated *= 2;
1004 buffer = (char *) xrealloc (buffer, buffer_allocated);
1005 bufptr = buffer + bytes;
1006 }
1007
1008 for (i = 0; i < tlen; i++)
1009 {
1010 *bufptr++ = buf[i + offset];
1011 if (buf[i + offset] == '\000')
1012 {
1013 nbytes_read += i + 1;
1014 goto done;
1015 }
1016 }
1017
1018 memaddr += tlen;
1019 len -= tlen;
1020 nbytes_read += tlen;
1021 }
1022 done:
1023 *string = buffer;
1024 if (errnop != NULL)
1025 *errnop = errcode;
1026 return nbytes_read;
1027 }
1028
1029 struct target_section_table *
1030 target_get_section_table (struct target_ops *target)
1031 {
1032 return (*target->to_get_section_table) (target);
1033 }
1034
1035 /* Find a section containing ADDR. */
1036
1037 struct target_section *
1038 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039 {
1040 struct target_section_table *table = target_get_section_table (target);
1041 struct target_section *secp;
1042
1043 if (table == NULL)
1044 return NULL;
1045
1046 for (secp = table->sections; secp < table->sections_end; secp++)
1047 {
1048 if (addr >= secp->addr && addr < secp->endaddr)
1049 return secp;
1050 }
1051 return NULL;
1052 }
1053
1054
1055 /* Helper for the memory xfer routines. Checks the attributes of the
1056 memory region of MEMADDR against the read or write being attempted.
1057 If the access is permitted returns true, otherwise returns false.
1058 REGION_P is an optional output parameter. If not-NULL, it is
1059 filled with a pointer to the memory region of MEMADDR. REG_LEN
1060 returns LEN trimmed to the end of the region. This is how much the
1061 caller can continue requesting, if the access is permitted. A
1062 single xfer request must not straddle memory region boundaries. */
1063
1064 static int
1065 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 struct mem_region **region_p)
1068 {
1069 struct mem_region *region;
1070
1071 region = lookup_mem_region (memaddr);
1072
1073 if (region_p != NULL)
1074 *region_p = region;
1075
1076 switch (region->attrib.mode)
1077 {
1078 case MEM_RO:
1079 if (writebuf != NULL)
1080 return 0;
1081 break;
1082
1083 case MEM_WO:
1084 if (readbuf != NULL)
1085 return 0;
1086 break;
1087
1088 case MEM_FLASH:
1089 /* We only support writing to flash during "load" for now. */
1090 if (writebuf != NULL)
1091 error (_("Writing to flash memory forbidden in this context"));
1092 break;
1093
1094 case MEM_NONE:
1095 return 0;
1096 }
1097
1098 /* region->hi == 0 means there's no upper bound. */
1099 if (memaddr + len < region->hi || region->hi == 0)
1100 *reg_len = len;
1101 else
1102 *reg_len = region->hi - memaddr;
1103
1104 return 1;
1105 }
1106
1107 /* Read memory from more than one valid target. A core file, for
1108 instance, could have some of memory but delegate other bits to
1109 the target below it. So, we must manually try all targets. */
1110
1111 enum target_xfer_status
1112 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1113 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 ULONGEST *xfered_len)
1115 {
1116 enum target_xfer_status res;
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1121 readbuf, writebuf, memaddr, len,
1122 xfered_len);
1123 if (res == TARGET_XFER_OK)
1124 break;
1125
1126 /* Stop if the target reports that the memory is not available. */
1127 if (res == TARGET_XFER_UNAVAILABLE)
1128 break;
1129
1130 /* We want to continue past core files to executables, but not
1131 past a running target's memory. */
1132 if (ops->to_has_all_memory (ops))
1133 break;
1134
1135 ops = ops->beneath;
1136 }
1137 while (ops != NULL);
1138
1139 /* The cache works at the raw memory level. Make sure the cache
1140 gets updated with raw contents no matter what kind of memory
1141 object was originally being written. Note we do write-through
1142 first, so that if it fails, we don't write to the cache contents
1143 that never made it to the target. */
1144 if (writebuf != NULL
1145 && !ptid_equal (inferior_ptid, null_ptid)
1146 && target_dcache_init_p ()
1147 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148 {
1149 DCACHE *dcache = target_dcache_get ();
1150
1151 /* Note that writing to an area of memory which wasn't present
1152 in the cache doesn't cause it to be loaded in. */
1153 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154 }
1155
1156 return res;
1157 }
1158
1159 /* Perform a partial memory transfer.
1160 For docs see target.h, to_xfer_partial. */
1161
1162 static enum target_xfer_status
1163 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1164 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1165 ULONGEST len, ULONGEST *xfered_len)
1166 {
1167 enum target_xfer_status res;
1168 ULONGEST reg_len;
1169 struct mem_region *region;
1170 struct inferior *inf;
1171
1172 /* For accesses to unmapped overlay sections, read directly from
1173 files. Must do this first, as MEMADDR may need adjustment. */
1174 if (readbuf != NULL && overlay_debugging)
1175 {
1176 struct obj_section *section = find_pc_overlay (memaddr);
1177
1178 if (pc_in_unmapped_range (memaddr, section))
1179 {
1180 struct target_section_table *table
1181 = target_get_section_table (ops);
1182 const char *section_name = section->the_bfd_section->name;
1183
1184 memaddr = overlay_mapped_address (memaddr, section);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
1186 memaddr, len, xfered_len,
1187 table->sections,
1188 table->sections_end,
1189 section_name);
1190 }
1191 }
1192
1193 /* Try the executable files, if "trust-readonly-sections" is set. */
1194 if (readbuf != NULL && trust_readonly)
1195 {
1196 struct target_section *secp;
1197 struct target_section_table *table;
1198
1199 secp = target_section_by_addr (ops, memaddr);
1200 if (secp != NULL
1201 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 secp->the_bfd_section)
1203 & SEC_READONLY))
1204 {
1205 table = target_get_section_table (ops);
1206 return section_table_xfer_memory_partial (readbuf, writebuf,
1207 memaddr, len, xfered_len,
1208 table->sections,
1209 table->sections_end,
1210 NULL);
1211 }
1212 }
1213
1214 /* Try GDB's internal data cache. */
1215
1216 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 &region))
1218 return TARGET_XFER_E_IO;
1219
1220 if (!ptid_equal (inferior_ptid, null_ptid))
1221 inf = find_inferior_ptid (inferior_ptid);
1222 else
1223 inf = NULL;
1224
1225 if (inf != NULL
1226 && readbuf != NULL
1227 /* The dcache reads whole cache lines; that doesn't play well
1228 with reading from a trace buffer, because reading outside of
1229 the collected memory range fails. */
1230 && get_traceframe_number () == -1
1231 && (region->attrib.cache
1232 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1234 {
1235 DCACHE *dcache = target_dcache_get_or_init ();
1236
1237 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 reg_len, xfered_len);
1239 }
1240
1241 /* If none of those methods found the memory we wanted, fall back
1242 to a target partial transfer. Normally a single call to
1243 to_xfer_partial is enough; if it doesn't recognize an object
1244 it will call the to_xfer_partial of the next target down.
1245 But for memory this won't do. Memory is the only target
1246 object which can be read from more than one valid target.
1247 A core file, for instance, could have some of memory but
1248 delegate other bits to the target below it. So, we must
1249 manually try all targets. */
1250
1251 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 xfered_len);
1253
1254 /* If we still haven't got anything, return the last error. We
1255 give up. */
1256 return res;
1257 }
1258
1259 /* Perform a partial memory transfer. For docs see target.h,
1260 to_xfer_partial. */
1261
1262 static enum target_xfer_status
1263 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1264 gdb_byte *readbuf, const gdb_byte *writebuf,
1265 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1266 {
1267 enum target_xfer_status res;
1268
1269 /* Zero length requests are ok and require no work. */
1270 if (len == 0)
1271 return TARGET_XFER_EOF;
1272
1273 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274 breakpoint insns, thus hiding out from higher layers whether
1275 there are software breakpoints inserted in the code stream. */
1276 if (readbuf != NULL)
1277 {
1278 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 xfered_len);
1280
1281 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1282 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1283 }
1284 else
1285 {
1286 gdb_byte *buf;
1287 struct cleanup *old_chain;
1288
1289 /* A large write request is likely to be partially satisfied
1290 by memory_xfer_partial_1. We will continually malloc
1291 and free a copy of the entire write request for breakpoint
1292 shadow handling even though we only end up writing a small
1293 subset of it. Cap writes to a limit specified by the target
1294 to mitigate this. */
1295 len = min (ops->to_get_memory_xfer_limit (ops), len);
1296
1297 buf = (gdb_byte *) xmalloc (len);
1298 old_chain = make_cleanup (xfree, buf);
1299 memcpy (buf, writebuf, len);
1300
1301 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1302 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 xfered_len);
1304
1305 do_cleanups (old_chain);
1306 }
1307
1308 return res;
1309 }
1310
1311 static void
1312 restore_show_memory_breakpoints (void *arg)
1313 {
1314 show_memory_breakpoints = (uintptr_t) arg;
1315 }
1316
1317 struct cleanup *
1318 make_show_memory_breakpoints_cleanup (int show)
1319 {
1320 int current = show_memory_breakpoints;
1321
1322 show_memory_breakpoints = show;
1323 return make_cleanup (restore_show_memory_breakpoints,
1324 (void *) (uintptr_t) current);
1325 }
1326
1327 /* For docs see target.h, to_xfer_partial. */
1328
1329 enum target_xfer_status
1330 target_xfer_partial (struct target_ops *ops,
1331 enum target_object object, const char *annex,
1332 gdb_byte *readbuf, const gdb_byte *writebuf,
1333 ULONGEST offset, ULONGEST len,
1334 ULONGEST *xfered_len)
1335 {
1336 enum target_xfer_status retval;
1337
1338 gdb_assert (ops->to_xfer_partial != NULL);
1339
1340 /* Transfer is done when LEN is zero. */
1341 if (len == 0)
1342 return TARGET_XFER_EOF;
1343
1344 if (writebuf && !may_write_memory)
1345 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 core_addr_to_string_nz (offset), plongest (len));
1347
1348 *xfered_len = 0;
1349
1350 /* If this is a memory transfer, let the memory-specific code
1351 have a look at it instead. Memory transfers are more
1352 complicated. */
1353 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354 || object == TARGET_OBJECT_CODE_MEMORY)
1355 retval = memory_xfer_partial (ops, object, readbuf,
1356 writebuf, offset, len, xfered_len);
1357 else if (object == TARGET_OBJECT_RAW_MEMORY)
1358 {
1359 /* Skip/avoid accessing the target if the memory region
1360 attributes block the access. Check this here instead of in
1361 raw_memory_xfer_partial as otherwise we'd end up checking
1362 this twice in the case of the memory_xfer_partial path is
1363 taken; once before checking the dcache, and another in the
1364 tail call to raw_memory_xfer_partial. */
1365 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 NULL))
1367 return TARGET_XFER_E_IO;
1368
1369 /* Request the normal memory object from other layers. */
1370 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 xfered_len);
1372 }
1373 else
1374 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1375 writebuf, offset, len, xfered_len);
1376
1377 if (targetdebug)
1378 {
1379 const unsigned char *myaddr = NULL;
1380
1381 fprintf_unfiltered (gdb_stdlog,
1382 "%s:target_xfer_partial "
1383 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1384 ops->to_shortname,
1385 (int) object,
1386 (annex ? annex : "(null)"),
1387 host_address_to_string (readbuf),
1388 host_address_to_string (writebuf),
1389 core_addr_to_string_nz (offset),
1390 pulongest (len), retval,
1391 pulongest (*xfered_len));
1392
1393 if (readbuf)
1394 myaddr = readbuf;
1395 if (writebuf)
1396 myaddr = writebuf;
1397 if (retval == TARGET_XFER_OK && myaddr != NULL)
1398 {
1399 int i;
1400
1401 fputs_unfiltered (", bytes =", gdb_stdlog);
1402 for (i = 0; i < *xfered_len; i++)
1403 {
1404 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1405 {
1406 if (targetdebug < 2 && i > 0)
1407 {
1408 fprintf_unfiltered (gdb_stdlog, " ...");
1409 break;
1410 }
1411 fprintf_unfiltered (gdb_stdlog, "\n");
1412 }
1413
1414 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 }
1416 }
1417
1418 fputc_unfiltered ('\n', gdb_stdlog);
1419 }
1420
1421 /* Check implementations of to_xfer_partial update *XFERED_LEN
1422 properly. Do assertion after printing debug messages, so that we
1423 can find more clues on assertion failure from debugging messages. */
1424 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1425 gdb_assert (*xfered_len > 0);
1426
1427 return retval;
1428 }
1429
1430 /* Read LEN bytes of target memory at address MEMADDR, placing the
1431 results in GDB's memory at MYADDR. Returns either 0 for success or
1432 -1 if any error occurs.
1433
1434 If an error occurs, no guarantee is made about the contents of the data at
1435 MYADDR. In particular, the caller should not depend upon partial reads
1436 filling the buffer with good data. There is no way for the caller to know
1437 how much good data might have been transfered anyway. Callers that can
1438 deal with partial reads should call target_read (which will retry until
1439 it makes no progress, and then return how much was transferred). */
1440
1441 int
1442 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1443 {
1444 /* Dispatch to the topmost target, not the flattened current_target.
1445 Memory accesses check target->to_has_(all_)memory, and the
1446 flattened target doesn't inherit those. */
1447 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1448 myaddr, memaddr, len) == len)
1449 return 0;
1450 else
1451 return -1;
1452 }
1453
1454 /* See target/target.h. */
1455
1456 int
1457 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458 {
1459 gdb_byte buf[4];
1460 int r;
1461
1462 r = target_read_memory (memaddr, buf, sizeof buf);
1463 if (r != 0)
1464 return r;
1465 *result = extract_unsigned_integer (buf, sizeof buf,
1466 gdbarch_byte_order (target_gdbarch ()));
1467 return 0;
1468 }
1469
1470 /* Like target_read_memory, but specify explicitly that this is a read
1471 from the target's raw memory. That is, this read bypasses the
1472 dcache, breakpoint shadowing, etc. */
1473
1474 int
1475 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476 {
1477 /* See comment in target_read_memory about why the request starts at
1478 current_target.beneath. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
1483 return -1;
1484 }
1485
1486 /* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489 int
1490 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1491 {
1492 /* See comment in target_read_memory about why the request starts at
1493 current_target.beneath. */
1494 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 myaddr, memaddr, len) == len)
1496 return 0;
1497 else
1498 return -1;
1499 }
1500
1501 /* Like target_read_memory, but specify explicitly that this is a read from
1502 the target's code. This may trigger different cache behavior. */
1503
1504 int
1505 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506 {
1507 /* See comment in target_read_memory about why the request starts at
1508 current_target.beneath. */
1509 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
1513 return -1;
1514 }
1515
1516 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1517 Returns either 0 for success or -1 if any error occurs. If an
1518 error occurs, no guarantee is made about how much data got written.
1519 Callers that can deal with partial writes should call
1520 target_write. */
1521
1522 int
1523 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1524 {
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
1527 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1528 myaddr, memaddr, len) == len)
1529 return 0;
1530 else
1531 return -1;
1532 }
1533
1534 /* Write LEN bytes from MYADDR to target raw memory at address
1535 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1536 If an error occurs, no guarantee is made about how much data got
1537 written. Callers that can deal with partial writes should call
1538 target_write. */
1539
1540 int
1541 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1542 {
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
1545 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
1549 return -1;
1550 }
1551
1552 /* Fetch the target's memory map. */
1553
1554 VEC(mem_region_s) *
1555 target_memory_map (void)
1556 {
1557 VEC(mem_region_s) *result;
1558 struct mem_region *last_one, *this_one;
1559 int ix;
1560 result = current_target.to_memory_map (&current_target);
1561 if (result == NULL)
1562 return NULL;
1563
1564 qsort (VEC_address (mem_region_s, result),
1565 VEC_length (mem_region_s, result),
1566 sizeof (struct mem_region), mem_region_cmp);
1567
1568 /* Check that regions do not overlap. Simultaneously assign
1569 a numbering for the "mem" commands to use to refer to
1570 each region. */
1571 last_one = NULL;
1572 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573 {
1574 this_one->number = ix;
1575
1576 if (last_one && last_one->hi > this_one->lo)
1577 {
1578 warning (_("Overlapping regions in memory map: ignoring"));
1579 VEC_free (mem_region_s, result);
1580 return NULL;
1581 }
1582 last_one = this_one;
1583 }
1584
1585 return result;
1586 }
1587
1588 void
1589 target_flash_erase (ULONGEST address, LONGEST length)
1590 {
1591 current_target.to_flash_erase (&current_target, address, length);
1592 }
1593
1594 void
1595 target_flash_done (void)
1596 {
1597 current_target.to_flash_done (&current_target);
1598 }
1599
1600 static void
1601 show_trust_readonly (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603 {
1604 fprintf_filtered (file,
1605 _("Mode for reading from readonly sections is %s.\n"),
1606 value);
1607 }
1608
1609 /* Target vector read/write partial wrapper functions. */
1610
1611 static enum target_xfer_status
1612 target_read_partial (struct target_ops *ops,
1613 enum target_object object,
1614 const char *annex, gdb_byte *buf,
1615 ULONGEST offset, ULONGEST len,
1616 ULONGEST *xfered_len)
1617 {
1618 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 xfered_len);
1620 }
1621
1622 static enum target_xfer_status
1623 target_write_partial (struct target_ops *ops,
1624 enum target_object object,
1625 const char *annex, const gdb_byte *buf,
1626 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1627 {
1628 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 xfered_len);
1630 }
1631
1632 /* Wrappers to perform the full transfer. */
1633
1634 /* For docs on target_read see target.h. */
1635
1636 LONGEST
1637 target_read (struct target_ops *ops,
1638 enum target_object object,
1639 const char *annex, gdb_byte *buf,
1640 ULONGEST offset, LONGEST len)
1641 {
1642 LONGEST xfered_total = 0;
1643 int unit_size = 1;
1644
1645 /* If we are reading from a memory object, find the length of an addressable
1646 unit for that architecture. */
1647 if (object == TARGET_OBJECT_MEMORY
1648 || object == TARGET_OBJECT_STACK_MEMORY
1649 || object == TARGET_OBJECT_CODE_MEMORY
1650 || object == TARGET_OBJECT_RAW_MEMORY)
1651 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1652
1653 while (xfered_total < len)
1654 {
1655 ULONGEST xfered_partial;
1656 enum target_xfer_status status;
1657
1658 status = target_read_partial (ops, object, annex,
1659 buf + xfered_total * unit_size,
1660 offset + xfered_total, len - xfered_total,
1661 &xfered_partial);
1662
1663 /* Call an observer, notifying them of the xfer progress? */
1664 if (status == TARGET_XFER_EOF)
1665 return xfered_total;
1666 else if (status == TARGET_XFER_OK)
1667 {
1668 xfered_total += xfered_partial;
1669 QUIT;
1670 }
1671 else
1672 return TARGET_XFER_E_IO;
1673
1674 }
1675 return len;
1676 }
1677
1678 /* Assuming that the entire [begin, end) range of memory cannot be
1679 read, try to read whatever subrange is possible to read.
1680
1681 The function returns, in RESULT, either zero or one memory block.
1682 If there's a readable subrange at the beginning, it is completely
1683 read and returned. Any further readable subrange will not be read.
1684 Otherwise, if there's a readable subrange at the end, it will be
1685 completely read and returned. Any readable subranges before it
1686 (obviously, not starting at the beginning), will be ignored. In
1687 other cases -- either no readable subrange, or readable subrange(s)
1688 that is neither at the beginning, or end, nothing is returned.
1689
1690 The purpose of this function is to handle a read across a boundary
1691 of accessible memory in a case when memory map is not available.
1692 The above restrictions are fine for this case, but will give
1693 incorrect results if the memory is 'patchy'. However, supporting
1694 'patchy' memory would require trying to read every single byte,
1695 and it seems unacceptable solution. Explicit memory map is
1696 recommended for this case -- and target_read_memory_robust will
1697 take care of reading multiple ranges then. */
1698
1699 static void
1700 read_whatever_is_readable (struct target_ops *ops,
1701 const ULONGEST begin, const ULONGEST end,
1702 int unit_size,
1703 VEC(memory_read_result_s) **result)
1704 {
1705 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1706 ULONGEST current_begin = begin;
1707 ULONGEST current_end = end;
1708 int forward;
1709 memory_read_result_s r;
1710 ULONGEST xfered_len;
1711
1712 /* If we previously failed to read 1 byte, nothing can be done here. */
1713 if (end - begin <= 1)
1714 {
1715 xfree (buf);
1716 return;
1717 }
1718
1719 /* Check that either first or the last byte is readable, and give up
1720 if not. This heuristic is meant to permit reading accessible memory
1721 at the boundary of accessible region. */
1722 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1723 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1724 {
1725 forward = 1;
1726 ++current_begin;
1727 }
1728 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1729 buf + (end - begin) - 1, end - 1, 1,
1730 &xfered_len) == TARGET_XFER_OK)
1731 {
1732 forward = 0;
1733 --current_end;
1734 }
1735 else
1736 {
1737 xfree (buf);
1738 return;
1739 }
1740
1741 /* Loop invariant is that the [current_begin, current_end) was previously
1742 found to be not readable as a whole.
1743
1744 Note loop condition -- if the range has 1 byte, we can't divide the range
1745 so there's no point trying further. */
1746 while (current_end - current_begin > 1)
1747 {
1748 ULONGEST first_half_begin, first_half_end;
1749 ULONGEST second_half_begin, second_half_end;
1750 LONGEST xfer;
1751 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1752
1753 if (forward)
1754 {
1755 first_half_begin = current_begin;
1756 first_half_end = middle;
1757 second_half_begin = middle;
1758 second_half_end = current_end;
1759 }
1760 else
1761 {
1762 first_half_begin = middle;
1763 first_half_end = current_end;
1764 second_half_begin = current_begin;
1765 second_half_end = middle;
1766 }
1767
1768 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1769 buf + (first_half_begin - begin) * unit_size,
1770 first_half_begin,
1771 first_half_end - first_half_begin);
1772
1773 if (xfer == first_half_end - first_half_begin)
1774 {
1775 /* This half reads up fine. So, the error must be in the
1776 other half. */
1777 current_begin = second_half_begin;
1778 current_end = second_half_end;
1779 }
1780 else
1781 {
1782 /* This half is not readable. Because we've tried one byte, we
1783 know some part of this half if actually readable. Go to the next
1784 iteration to divide again and try to read.
1785
1786 We don't handle the other half, because this function only tries
1787 to read a single readable subrange. */
1788 current_begin = first_half_begin;
1789 current_end = first_half_end;
1790 }
1791 }
1792
1793 if (forward)
1794 {
1795 /* The [begin, current_begin) range has been read. */
1796 r.begin = begin;
1797 r.end = current_begin;
1798 r.data = buf;
1799 }
1800 else
1801 {
1802 /* The [current_end, end) range has been read. */
1803 LONGEST region_len = end - current_end;
1804
1805 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1806 memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 region_len * unit_size);
1808 r.begin = current_end;
1809 r.end = end;
1810 xfree (buf);
1811 }
1812 VEC_safe_push(memory_read_result_s, (*result), &r);
1813 }
1814
1815 void
1816 free_memory_read_result_vector (void *x)
1817 {
1818 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1819 memory_read_result_s *current;
1820 int ix;
1821
1822 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1823 {
1824 xfree (current->data);
1825 }
1826 VEC_free (memory_read_result_s, *v);
1827 }
1828
1829 VEC(memory_read_result_s) *
1830 read_memory_robust (struct target_ops *ops,
1831 const ULONGEST offset, const LONGEST len)
1832 {
1833 VEC(memory_read_result_s) *result = 0;
1834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1835 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 &result);
1837
1838 LONGEST xfered_total = 0;
1839 while (xfered_total < len)
1840 {
1841 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842 LONGEST region_len;
1843
1844 /* If there is no explicit region, a fake one should be created. */
1845 gdb_assert (region);
1846
1847 if (region->hi == 0)
1848 region_len = len - xfered_total;
1849 else
1850 region_len = region->hi - offset;
1851
1852 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1853 {
1854 /* Cannot read this region. Note that we can end up here only
1855 if the region is explicitly marked inaccessible, or
1856 'inaccessible-by-default' is in effect. */
1857 xfered_total += region_len;
1858 }
1859 else
1860 {
1861 LONGEST to_read = min (len - xfered_total, region_len);
1862 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1863 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1864
1865 LONGEST xfered_partial =
1866 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 (gdb_byte *) buffer,
1868 offset + xfered_total, to_read);
1869 /* Call an observer, notifying them of the xfer progress? */
1870 if (xfered_partial <= 0)
1871 {
1872 /* Got an error reading full chunk. See if maybe we can read
1873 some subrange. */
1874 do_cleanups (inner_cleanup);
1875 read_whatever_is_readable (ops, offset + xfered_total,
1876 offset + xfered_total + to_read,
1877 unit_size, &result);
1878 xfered_total += to_read;
1879 }
1880 else
1881 {
1882 struct memory_read_result r;
1883
1884 discard_cleanups (inner_cleanup);
1885 r.data = buffer;
1886 r.begin = offset + xfered_total;
1887 r.end = r.begin + xfered_partial;
1888 VEC_safe_push (memory_read_result_s, result, &r);
1889 xfered_total += xfered_partial;
1890 }
1891 QUIT;
1892 }
1893 }
1894
1895 discard_cleanups (cleanup);
1896 return result;
1897 }
1898
1899
1900 /* An alternative to target_write with progress callbacks. */
1901
1902 LONGEST
1903 target_write_with_progress (struct target_ops *ops,
1904 enum target_object object,
1905 const char *annex, const gdb_byte *buf,
1906 ULONGEST offset, LONGEST len,
1907 void (*progress) (ULONGEST, void *), void *baton)
1908 {
1909 LONGEST xfered_total = 0;
1910 int unit_size = 1;
1911
1912 /* If we are writing to a memory object, find the length of an addressable
1913 unit for that architecture. */
1914 if (object == TARGET_OBJECT_MEMORY
1915 || object == TARGET_OBJECT_STACK_MEMORY
1916 || object == TARGET_OBJECT_CODE_MEMORY
1917 || object == TARGET_OBJECT_RAW_MEMORY)
1918 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1919
1920 /* Give the progress callback a chance to set up. */
1921 if (progress)
1922 (*progress) (0, baton);
1923
1924 while (xfered_total < len)
1925 {
1926 ULONGEST xfered_partial;
1927 enum target_xfer_status status;
1928
1929 status = target_write_partial (ops, object, annex,
1930 buf + xfered_total * unit_size,
1931 offset + xfered_total, len - xfered_total,
1932 &xfered_partial);
1933
1934 if (status != TARGET_XFER_OK)
1935 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1936
1937 if (progress)
1938 (*progress) (xfered_partial, baton);
1939
1940 xfered_total += xfered_partial;
1941 QUIT;
1942 }
1943 return len;
1944 }
1945
1946 /* For docs on target_write see target.h. */
1947
1948 LONGEST
1949 target_write (struct target_ops *ops,
1950 enum target_object object,
1951 const char *annex, const gdb_byte *buf,
1952 ULONGEST offset, LONGEST len)
1953 {
1954 return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 NULL, NULL);
1956 }
1957
1958 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1959 the size of the transferred data. PADDING additional bytes are
1960 available in *BUF_P. This is a helper function for
1961 target_read_alloc; see the declaration of that function for more
1962 information. */
1963
1964 static LONGEST
1965 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 const char *annex, gdb_byte **buf_p, int padding)
1967 {
1968 size_t buf_alloc, buf_pos;
1969 gdb_byte *buf;
1970
1971 /* This function does not have a length parameter; it reads the
1972 entire OBJECT). Also, it doesn't support objects fetched partly
1973 from one target and partly from another (in a different stratum,
1974 e.g. a core file and an executable). Both reasons make it
1975 unsuitable for reading memory. */
1976 gdb_assert (object != TARGET_OBJECT_MEMORY);
1977
1978 /* Start by reading up to 4K at a time. The target will throttle
1979 this number down if necessary. */
1980 buf_alloc = 4096;
1981 buf = (gdb_byte *) xmalloc (buf_alloc);
1982 buf_pos = 0;
1983 while (1)
1984 {
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 buf_pos, buf_alloc - buf_pos - padding,
1990 &xfered_len);
1991
1992 if (status == TARGET_XFER_EOF)
1993 {
1994 /* Read all there was. */
1995 if (buf_pos == 0)
1996 xfree (buf);
1997 else
1998 *buf_p = buf;
1999 return buf_pos;
2000 }
2001 else if (status != TARGET_XFER_OK)
2002 {
2003 /* An error occurred. */
2004 xfree (buf);
2005 return TARGET_XFER_E_IO;
2006 }
2007
2008 buf_pos += xfered_len;
2009
2010 /* If the buffer is filling up, expand it. */
2011 if (buf_alloc < buf_pos * 2)
2012 {
2013 buf_alloc *= 2;
2014 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2015 }
2016
2017 QUIT;
2018 }
2019 }
2020
2021 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2022 the size of the transferred data. See the declaration in "target.h"
2023 function for more information about the return value. */
2024
2025 LONGEST
2026 target_read_alloc (struct target_ops *ops, enum target_object object,
2027 const char *annex, gdb_byte **buf_p)
2028 {
2029 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030 }
2031
2032 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2033 returned as a string, allocated using xmalloc. If an error occurs
2034 or the transfer is unsupported, NULL is returned. Empty objects
2035 are returned as allocated but empty strings. A warning is issued
2036 if the result contains any embedded NUL bytes. */
2037
2038 char *
2039 target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 const char *annex)
2041 {
2042 gdb_byte *buffer;
2043 char *bufstr;
2044 LONGEST i, transferred;
2045
2046 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047 bufstr = (char *) buffer;
2048
2049 if (transferred < 0)
2050 return NULL;
2051
2052 if (transferred == 0)
2053 return xstrdup ("");
2054
2055 bufstr[transferred] = 0;
2056
2057 /* Check for embedded NUL bytes; but allow trailing NULs. */
2058 for (i = strlen (bufstr); i < transferred; i++)
2059 if (bufstr[i] != 0)
2060 {
2061 warning (_("target object %d, annex %s, "
2062 "contained unexpected null characters"),
2063 (int) object, annex ? annex : "(none)");
2064 break;
2065 }
2066
2067 return bufstr;
2068 }
2069
2070 /* Memory transfer methods. */
2071
2072 void
2073 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2074 LONGEST len)
2075 {
2076 /* This method is used to read from an alternate, non-current
2077 target. This read must bypass the overlay support (as symbols
2078 don't match this target), and GDB's internal cache (wrong cache
2079 for this target). */
2080 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2081 != len)
2082 memory_error (TARGET_XFER_E_IO, addr);
2083 }
2084
2085 ULONGEST
2086 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 int len, enum bfd_endian byte_order)
2088 {
2089 gdb_byte buf[sizeof (ULONGEST)];
2090
2091 gdb_assert (len <= sizeof (buf));
2092 get_target_memory (ops, addr, buf, len);
2093 return extract_unsigned_integer (buf, len, byte_order);
2094 }
2095
2096 /* See target.h. */
2097
2098 int
2099 target_insert_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt)
2101 {
2102 if (!may_insert_breakpoints)
2103 {
2104 warning (_("May not insert breakpoints"));
2105 return 1;
2106 }
2107
2108 return current_target.to_insert_breakpoint (&current_target,
2109 gdbarch, bp_tgt);
2110 }
2111
2112 /* See target.h. */
2113
2114 int
2115 target_remove_breakpoint (struct gdbarch *gdbarch,
2116 struct bp_target_info *bp_tgt)
2117 {
2118 /* This is kind of a weird case to handle, but the permission might
2119 have been changed after breakpoints were inserted - in which case
2120 we should just take the user literally and assume that any
2121 breakpoints should be left in place. */
2122 if (!may_insert_breakpoints)
2123 {
2124 warning (_("May not remove breakpoints"));
2125 return 1;
2126 }
2127
2128 return current_target.to_remove_breakpoint (&current_target,
2129 gdbarch, bp_tgt);
2130 }
2131
2132 static void
2133 target_info (char *args, int from_tty)
2134 {
2135 struct target_ops *t;
2136 int has_all_mem = 0;
2137
2138 if (symfile_objfile != NULL)
2139 printf_unfiltered (_("Symbols from \"%s\".\n"),
2140 objfile_name (symfile_objfile));
2141
2142 for (t = target_stack; t != NULL; t = t->beneath)
2143 {
2144 if (!(*t->to_has_memory) (t))
2145 continue;
2146
2147 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2148 continue;
2149 if (has_all_mem)
2150 printf_unfiltered (_("\tWhile running this, "
2151 "GDB does not access memory from...\n"));
2152 printf_unfiltered ("%s:\n", t->to_longname);
2153 (t->to_files_info) (t);
2154 has_all_mem = (*t->to_has_all_memory) (t);
2155 }
2156 }
2157
2158 /* This function is called before any new inferior is created, e.g.
2159 by running a program, attaching, or connecting to a target.
2160 It cleans up any state from previous invocations which might
2161 change between runs. This is a subset of what target_preopen
2162 resets (things which might change between targets). */
2163
2164 void
2165 target_pre_inferior (int from_tty)
2166 {
2167 /* Clear out solib state. Otherwise the solib state of the previous
2168 inferior might have survived and is entirely wrong for the new
2169 target. This has been observed on GNU/Linux using glibc 2.3. How
2170 to reproduce:
2171
2172 bash$ ./foo&
2173 [1] 4711
2174 bash$ ./foo&
2175 [1] 4712
2176 bash$ gdb ./foo
2177 [...]
2178 (gdb) attach 4711
2179 (gdb) detach
2180 (gdb) attach 4712
2181 Cannot access memory at address 0xdeadbeef
2182 */
2183
2184 /* In some OSs, the shared library list is the same/global/shared
2185 across inferiors. If code is shared between processes, so are
2186 memory regions and features. */
2187 if (!gdbarch_has_global_solist (target_gdbarch ()))
2188 {
2189 no_shared_libraries (NULL, from_tty);
2190
2191 invalidate_target_mem_regions ();
2192
2193 target_clear_description ();
2194 }
2195
2196 /* attach_flag may be set if the previous process associated with
2197 the inferior was attached to. */
2198 current_inferior ()->attach_flag = 0;
2199
2200 current_inferior ()->highest_thread_num = 0;
2201
2202 agent_capability_invalidate ();
2203 }
2204
2205 /* Callback for iterate_over_inferiors. Gets rid of the given
2206 inferior. */
2207
2208 static int
2209 dispose_inferior (struct inferior *inf, void *args)
2210 {
2211 struct thread_info *thread;
2212
2213 thread = any_thread_of_process (inf->pid);
2214 if (thread)
2215 {
2216 switch_to_thread (thread->ptid);
2217
2218 /* Core inferiors actually should be detached, not killed. */
2219 if (target_has_execution)
2220 target_kill ();
2221 else
2222 target_detach (NULL, 0);
2223 }
2224
2225 return 0;
2226 }
2227
2228 /* This is to be called by the open routine before it does
2229 anything. */
2230
2231 void
2232 target_preopen (int from_tty)
2233 {
2234 dont_repeat ();
2235
2236 if (have_inferiors ())
2237 {
2238 if (!from_tty
2239 || !have_live_inferiors ()
2240 || query (_("A program is being debugged already. Kill it? ")))
2241 iterate_over_inferiors (dispose_inferior, NULL);
2242 else
2243 error (_("Program not killed."));
2244 }
2245
2246 /* Calling target_kill may remove the target from the stack. But if
2247 it doesn't (which seems like a win for UDI), remove it now. */
2248 /* Leave the exec target, though. The user may be switching from a
2249 live process to a core of the same program. */
2250 pop_all_targets_above (file_stratum);
2251
2252 target_pre_inferior (from_tty);
2253 }
2254
2255 /* Detach a target after doing deferred register stores. */
2256
2257 void
2258 target_detach (const char *args, int from_tty)
2259 {
2260 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2261 /* Don't remove global breakpoints here. They're removed on
2262 disconnection from the target. */
2263 ;
2264 else
2265 /* If we're in breakpoints-always-inserted mode, have to remove
2266 them before detaching. */
2267 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2268
2269 prepare_for_detach ();
2270
2271 current_target.to_detach (&current_target, args, from_tty);
2272 }
2273
2274 void
2275 target_disconnect (const char *args, int from_tty)
2276 {
2277 /* If we're in breakpoints-always-inserted mode or if breakpoints
2278 are global across processes, we have to remove them before
2279 disconnecting. */
2280 remove_breakpoints ();
2281
2282 current_target.to_disconnect (&current_target, args, from_tty);
2283 }
2284
2285 ptid_t
2286 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2287 {
2288 return (current_target.to_wait) (&current_target, ptid, status, options);
2289 }
2290
2291 /* See target.h. */
2292
2293 ptid_t
2294 default_target_wait (struct target_ops *ops,
2295 ptid_t ptid, struct target_waitstatus *status,
2296 int options)
2297 {
2298 status->kind = TARGET_WAITKIND_IGNORE;
2299 return minus_one_ptid;
2300 }
2301
2302 char *
2303 target_pid_to_str (ptid_t ptid)
2304 {
2305 return (*current_target.to_pid_to_str) (&current_target, ptid);
2306 }
2307
2308 const char *
2309 target_thread_name (struct thread_info *info)
2310 {
2311 return current_target.to_thread_name (&current_target, info);
2312 }
2313
2314 void
2315 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2316 {
2317 target_dcache_invalidate ();
2318
2319 current_target.to_resume (&current_target, ptid, step, signal);
2320
2321 registers_changed_ptid (ptid);
2322 /* We only set the internal executing state here. The user/frontend
2323 running state is set at a higher level. */
2324 set_executing (ptid, 1);
2325 clear_inline_frame_state (ptid);
2326 }
2327
2328 void
2329 target_pass_signals (int numsigs, unsigned char *pass_signals)
2330 {
2331 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2332 }
2333
2334 void
2335 target_program_signals (int numsigs, unsigned char *program_signals)
2336 {
2337 (*current_target.to_program_signals) (&current_target,
2338 numsigs, program_signals);
2339 }
2340
2341 static int
2342 default_follow_fork (struct target_ops *self, int follow_child,
2343 int detach_fork)
2344 {
2345 /* Some target returned a fork event, but did not know how to follow it. */
2346 internal_error (__FILE__, __LINE__,
2347 _("could not find a target to follow fork"));
2348 }
2349
2350 /* Look through the list of possible targets for a target that can
2351 follow forks. */
2352
2353 int
2354 target_follow_fork (int follow_child, int detach_fork)
2355 {
2356 return current_target.to_follow_fork (&current_target,
2357 follow_child, detach_fork);
2358 }
2359
2360 /* Target wrapper for follow exec hook. */
2361
2362 void
2363 target_follow_exec (struct inferior *inf, char *execd_pathname)
2364 {
2365 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2366 }
2367
2368 static void
2369 default_mourn_inferior (struct target_ops *self)
2370 {
2371 internal_error (__FILE__, __LINE__,
2372 _("could not find a target to follow mourn inferior"));
2373 }
2374
2375 void
2376 target_mourn_inferior (void)
2377 {
2378 current_target.to_mourn_inferior (&current_target);
2379
2380 /* We no longer need to keep handles on any of the object files.
2381 Make sure to release them to avoid unnecessarily locking any
2382 of them while we're not actually debugging. */
2383 bfd_cache_close_all ();
2384 }
2385
2386 /* Look for a target which can describe architectural features, starting
2387 from TARGET. If we find one, return its description. */
2388
2389 const struct target_desc *
2390 target_read_description (struct target_ops *target)
2391 {
2392 return target->to_read_description (target);
2393 }
2394
2395 /* This implements a basic search of memory, reading target memory and
2396 performing the search here (as opposed to performing the search in on the
2397 target side with, for example, gdbserver). */
2398
2399 int
2400 simple_search_memory (struct target_ops *ops,
2401 CORE_ADDR start_addr, ULONGEST search_space_len,
2402 const gdb_byte *pattern, ULONGEST pattern_len,
2403 CORE_ADDR *found_addrp)
2404 {
2405 /* NOTE: also defined in find.c testcase. */
2406 #define SEARCH_CHUNK_SIZE 16000
2407 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2408 /* Buffer to hold memory contents for searching. */
2409 gdb_byte *search_buf;
2410 unsigned search_buf_size;
2411 struct cleanup *old_cleanups;
2412
2413 search_buf_size = chunk_size + pattern_len - 1;
2414
2415 /* No point in trying to allocate a buffer larger than the search space. */
2416 if (search_space_len < search_buf_size)
2417 search_buf_size = search_space_len;
2418
2419 search_buf = (gdb_byte *) malloc (search_buf_size);
2420 if (search_buf == NULL)
2421 error (_("Unable to allocate memory to perform the search."));
2422 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2423
2424 /* Prime the search buffer. */
2425
2426 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2427 search_buf, start_addr, search_buf_size) != search_buf_size)
2428 {
2429 warning (_("Unable to access %s bytes of target "
2430 "memory at %s, halting search."),
2431 pulongest (search_buf_size), hex_string (start_addr));
2432 do_cleanups (old_cleanups);
2433 return -1;
2434 }
2435
2436 /* Perform the search.
2437
2438 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2439 When we've scanned N bytes we copy the trailing bytes to the start and
2440 read in another N bytes. */
2441
2442 while (search_space_len >= pattern_len)
2443 {
2444 gdb_byte *found_ptr;
2445 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2446
2447 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2448 pattern, pattern_len);
2449
2450 if (found_ptr != NULL)
2451 {
2452 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2453
2454 *found_addrp = found_addr;
2455 do_cleanups (old_cleanups);
2456 return 1;
2457 }
2458
2459 /* Not found in this chunk, skip to next chunk. */
2460
2461 /* Don't let search_space_len wrap here, it's unsigned. */
2462 if (search_space_len >= chunk_size)
2463 search_space_len -= chunk_size;
2464 else
2465 search_space_len = 0;
2466
2467 if (search_space_len >= pattern_len)
2468 {
2469 unsigned keep_len = search_buf_size - chunk_size;
2470 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2471 int nr_to_read;
2472
2473 /* Copy the trailing part of the previous iteration to the front
2474 of the buffer for the next iteration. */
2475 gdb_assert (keep_len == pattern_len - 1);
2476 memcpy (search_buf, search_buf + chunk_size, keep_len);
2477
2478 nr_to_read = min (search_space_len - keep_len, chunk_size);
2479
2480 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2481 search_buf + keep_len, read_addr,
2482 nr_to_read) != nr_to_read)
2483 {
2484 warning (_("Unable to access %s bytes of target "
2485 "memory at %s, halting search."),
2486 plongest (nr_to_read),
2487 hex_string (read_addr));
2488 do_cleanups (old_cleanups);
2489 return -1;
2490 }
2491
2492 start_addr += chunk_size;
2493 }
2494 }
2495
2496 /* Not found. */
2497
2498 do_cleanups (old_cleanups);
2499 return 0;
2500 }
2501
2502 /* Default implementation of memory-searching. */
2503
2504 static int
2505 default_search_memory (struct target_ops *self,
2506 CORE_ADDR start_addr, ULONGEST search_space_len,
2507 const gdb_byte *pattern, ULONGEST pattern_len,
2508 CORE_ADDR *found_addrp)
2509 {
2510 /* Start over from the top of the target stack. */
2511 return simple_search_memory (current_target.beneath,
2512 start_addr, search_space_len,
2513 pattern, pattern_len, found_addrp);
2514 }
2515
2516 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2517 sequence of bytes in PATTERN with length PATTERN_LEN.
2518
2519 The result is 1 if found, 0 if not found, and -1 if there was an error
2520 requiring halting of the search (e.g. memory read error).
2521 If the pattern is found the address is recorded in FOUND_ADDRP. */
2522
2523 int
2524 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2525 const gdb_byte *pattern, ULONGEST pattern_len,
2526 CORE_ADDR *found_addrp)
2527 {
2528 return current_target.to_search_memory (&current_target, start_addr,
2529 search_space_len,
2530 pattern, pattern_len, found_addrp);
2531 }
2532
2533 /* Look through the currently pushed targets. If none of them will
2534 be able to restart the currently running process, issue an error
2535 message. */
2536
2537 void
2538 target_require_runnable (void)
2539 {
2540 struct target_ops *t;
2541
2542 for (t = target_stack; t != NULL; t = t->beneath)
2543 {
2544 /* If this target knows how to create a new program, then
2545 assume we will still be able to after killing the current
2546 one. Either killing and mourning will not pop T, or else
2547 find_default_run_target will find it again. */
2548 if (t->to_create_inferior != NULL)
2549 return;
2550
2551 /* Do not worry about targets at certain strata that can not
2552 create inferiors. Assume they will be pushed again if
2553 necessary, and continue to the process_stratum. */
2554 if (t->to_stratum == thread_stratum
2555 || t->to_stratum == record_stratum
2556 || t->to_stratum == arch_stratum)
2557 continue;
2558
2559 error (_("The \"%s\" target does not support \"run\". "
2560 "Try \"help target\" or \"continue\"."),
2561 t->to_shortname);
2562 }
2563
2564 /* This function is only called if the target is running. In that
2565 case there should have been a process_stratum target and it
2566 should either know how to create inferiors, or not... */
2567 internal_error (__FILE__, __LINE__, _("No targets found"));
2568 }
2569
2570 /* Whether GDB is allowed to fall back to the default run target for
2571 "run", "attach", etc. when no target is connected yet. */
2572 static int auto_connect_native_target = 1;
2573
2574 static void
2575 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2576 struct cmd_list_element *c, const char *value)
2577 {
2578 fprintf_filtered (file,
2579 _("Whether GDB may automatically connect to the "
2580 "native target is %s.\n"),
2581 value);
2582 }
2583
2584 /* Look through the list of possible targets for a target that can
2585 execute a run or attach command without any other data. This is
2586 used to locate the default process stratum.
2587
2588 If DO_MESG is not NULL, the result is always valid (error() is
2589 called for errors); else, return NULL on error. */
2590
2591 static struct target_ops *
2592 find_default_run_target (char *do_mesg)
2593 {
2594 struct target_ops *runable = NULL;
2595
2596 if (auto_connect_native_target)
2597 {
2598 struct target_ops *t;
2599 int count = 0;
2600 int i;
2601
2602 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2603 {
2604 if (t->to_can_run != delegate_can_run && target_can_run (t))
2605 {
2606 runable = t;
2607 ++count;
2608 }
2609 }
2610
2611 if (count != 1)
2612 runable = NULL;
2613 }
2614
2615 if (runable == NULL)
2616 {
2617 if (do_mesg)
2618 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2619 else
2620 return NULL;
2621 }
2622
2623 return runable;
2624 }
2625
2626 /* See target.h. */
2627
2628 struct target_ops *
2629 find_attach_target (void)
2630 {
2631 struct target_ops *t;
2632
2633 /* If a target on the current stack can attach, use it. */
2634 for (t = current_target.beneath; t != NULL; t = t->beneath)
2635 {
2636 if (t->to_attach != NULL)
2637 break;
2638 }
2639
2640 /* Otherwise, use the default run target for attaching. */
2641 if (t == NULL)
2642 t = find_default_run_target ("attach");
2643
2644 return t;
2645 }
2646
2647 /* See target.h. */
2648
2649 struct target_ops *
2650 find_run_target (void)
2651 {
2652 struct target_ops *t;
2653
2654 /* If a target on the current stack can attach, use it. */
2655 for (t = current_target.beneath; t != NULL; t = t->beneath)
2656 {
2657 if (t->to_create_inferior != NULL)
2658 break;
2659 }
2660
2661 /* Otherwise, use the default run target. */
2662 if (t == NULL)
2663 t = find_default_run_target ("run");
2664
2665 return t;
2666 }
2667
2668 /* Implement the "info proc" command. */
2669
2670 int
2671 target_info_proc (const char *args, enum info_proc_what what)
2672 {
2673 struct target_ops *t;
2674
2675 /* If we're already connected to something that can get us OS
2676 related data, use it. Otherwise, try using the native
2677 target. */
2678 if (current_target.to_stratum >= process_stratum)
2679 t = current_target.beneath;
2680 else
2681 t = find_default_run_target (NULL);
2682
2683 for (; t != NULL; t = t->beneath)
2684 {
2685 if (t->to_info_proc != NULL)
2686 {
2687 t->to_info_proc (t, args, what);
2688
2689 if (targetdebug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 "target_info_proc (\"%s\", %d)\n", args, what);
2692
2693 return 1;
2694 }
2695 }
2696
2697 return 0;
2698 }
2699
2700 static int
2701 find_default_supports_disable_randomization (struct target_ops *self)
2702 {
2703 struct target_ops *t;
2704
2705 t = find_default_run_target (NULL);
2706 if (t && t->to_supports_disable_randomization)
2707 return (t->to_supports_disable_randomization) (t);
2708 return 0;
2709 }
2710
2711 int
2712 target_supports_disable_randomization (void)
2713 {
2714 struct target_ops *t;
2715
2716 for (t = &current_target; t != NULL; t = t->beneath)
2717 if (t->to_supports_disable_randomization)
2718 return t->to_supports_disable_randomization (t);
2719
2720 return 0;
2721 }
2722
2723 char *
2724 target_get_osdata (const char *type)
2725 {
2726 struct target_ops *t;
2727
2728 /* If we're already connected to something that can get us OS
2729 related data, use it. Otherwise, try using the native
2730 target. */
2731 if (current_target.to_stratum >= process_stratum)
2732 t = current_target.beneath;
2733 else
2734 t = find_default_run_target ("get OS data");
2735
2736 if (!t)
2737 return NULL;
2738
2739 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2740 }
2741
2742 static struct address_space *
2743 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2744 {
2745 struct inferior *inf;
2746
2747 /* Fall-back to the "main" address space of the inferior. */
2748 inf = find_inferior_ptid (ptid);
2749
2750 if (inf == NULL || inf->aspace == NULL)
2751 internal_error (__FILE__, __LINE__,
2752 _("Can't determine the current "
2753 "address space of thread %s\n"),
2754 target_pid_to_str (ptid));
2755
2756 return inf->aspace;
2757 }
2758
2759 /* Determine the current address space of thread PTID. */
2760
2761 struct address_space *
2762 target_thread_address_space (ptid_t ptid)
2763 {
2764 struct address_space *aspace;
2765
2766 aspace = current_target.to_thread_address_space (&current_target, ptid);
2767 gdb_assert (aspace != NULL);
2768
2769 return aspace;
2770 }
2771
2772
2773 /* Target file operations. */
2774
2775 static struct target_ops *
2776 default_fileio_target (void)
2777 {
2778 /* If we're already connected to something that can perform
2779 file I/O, use it. Otherwise, try using the native target. */
2780 if (current_target.to_stratum >= process_stratum)
2781 return current_target.beneath;
2782 else
2783 return find_default_run_target ("file I/O");
2784 }
2785
2786 /* File handle for target file operations. */
2787
2788 typedef struct
2789 {
2790 /* The target on which this file is open. */
2791 struct target_ops *t;
2792
2793 /* The file descriptor on the target. */
2794 int fd;
2795 } fileio_fh_t;
2796
2797 DEF_VEC_O (fileio_fh_t);
2798
2799 /* Vector of currently open file handles. The value returned by
2800 target_fileio_open and passed as the FD argument to other
2801 target_fileio_* functions is an index into this vector. This
2802 vector's entries are never freed; instead, files are marked as
2803 closed, and the handle becomes available for reuse. */
2804 static VEC (fileio_fh_t) *fileio_fhandles;
2805
2806 /* Macro to check whether a fileio_fh_t represents a closed file. */
2807 #define is_closed_fileio_fh(fd) ((fd) < 0)
2808
2809 /* Index into fileio_fhandles of the lowest handle that might be
2810 closed. This permits handle reuse without searching the whole
2811 list each time a new file is opened. */
2812 static int lowest_closed_fd;
2813
2814 /* Acquire a target fileio file descriptor. */
2815
2816 static int
2817 acquire_fileio_fd (struct target_ops *t, int fd)
2818 {
2819 fileio_fh_t *fh;
2820
2821 gdb_assert (!is_closed_fileio_fh (fd));
2822
2823 /* Search for closed handles to reuse. */
2824 for (;
2825 VEC_iterate (fileio_fh_t, fileio_fhandles,
2826 lowest_closed_fd, fh);
2827 lowest_closed_fd++)
2828 if (is_closed_fileio_fh (fh->fd))
2829 break;
2830
2831 /* Push a new handle if no closed handles were found. */
2832 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2833 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2834
2835 /* Fill in the handle. */
2836 fh->t = t;
2837 fh->fd = fd;
2838
2839 /* Return its index, and start the next lookup at
2840 the next index. */
2841 return lowest_closed_fd++;
2842 }
2843
2844 /* Release a target fileio file descriptor. */
2845
2846 static void
2847 release_fileio_fd (int fd, fileio_fh_t *fh)
2848 {
2849 fh->fd = -1;
2850 lowest_closed_fd = min (lowest_closed_fd, fd);
2851 }
2852
2853 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2854
2855 #define fileio_fd_to_fh(fd) \
2856 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2857
2858 /* Helper for target_fileio_open and
2859 target_fileio_open_warn_if_slow. */
2860
2861 static int
2862 target_fileio_open_1 (struct inferior *inf, const char *filename,
2863 int flags, int mode, int warn_if_slow,
2864 int *target_errno)
2865 {
2866 struct target_ops *t;
2867
2868 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2869 {
2870 if (t->to_fileio_open != NULL)
2871 {
2872 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2873 warn_if_slow, target_errno);
2874
2875 if (fd < 0)
2876 fd = -1;
2877 else
2878 fd = acquire_fileio_fd (t, fd);
2879
2880 if (targetdebug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2883 " = %d (%d)\n",
2884 inf == NULL ? 0 : inf->num,
2885 filename, flags, mode,
2886 warn_if_slow, fd,
2887 fd != -1 ? 0 : *target_errno);
2888 return fd;
2889 }
2890 }
2891
2892 *target_errno = FILEIO_ENOSYS;
2893 return -1;
2894 }
2895
2896 /* See target.h. */
2897
2898 int
2899 target_fileio_open (struct inferior *inf, const char *filename,
2900 int flags, int mode, int *target_errno)
2901 {
2902 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2903 target_errno);
2904 }
2905
2906 /* See target.h. */
2907
2908 int
2909 target_fileio_open_warn_if_slow (struct inferior *inf,
2910 const char *filename,
2911 int flags, int mode, int *target_errno)
2912 {
2913 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2914 target_errno);
2915 }
2916
2917 /* See target.h. */
2918
2919 int
2920 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2921 ULONGEST offset, int *target_errno)
2922 {
2923 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2924 int ret = -1;
2925
2926 if (is_closed_fileio_fh (fh->fd))
2927 *target_errno = EBADF;
2928 else
2929 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2930 len, offset, target_errno);
2931
2932 if (targetdebug)
2933 fprintf_unfiltered (gdb_stdlog,
2934 "target_fileio_pwrite (%d,...,%d,%s) "
2935 "= %d (%d)\n",
2936 fd, len, pulongest (offset),
2937 ret, ret != -1 ? 0 : *target_errno);
2938 return ret;
2939 }
2940
2941 /* See target.h. */
2942
2943 int
2944 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2945 ULONGEST offset, int *target_errno)
2946 {
2947 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2948 int ret = -1;
2949
2950 if (is_closed_fileio_fh (fh->fd))
2951 *target_errno = EBADF;
2952 else
2953 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2954 len, offset, target_errno);
2955
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "target_fileio_pread (%d,...,%d,%s) "
2959 "= %d (%d)\n",
2960 fd, len, pulongest (offset),
2961 ret, ret != -1 ? 0 : *target_errno);
2962 return ret;
2963 }
2964
2965 /* See target.h. */
2966
2967 int
2968 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2969 {
2970 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2971 int ret = -1;
2972
2973 if (is_closed_fileio_fh (fh->fd))
2974 *target_errno = EBADF;
2975 else
2976 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2977
2978 if (targetdebug)
2979 fprintf_unfiltered (gdb_stdlog,
2980 "target_fileio_fstat (%d) = %d (%d)\n",
2981 fd, ret, ret != -1 ? 0 : *target_errno);
2982 return ret;
2983 }
2984
2985 /* See target.h. */
2986
2987 int
2988 target_fileio_close (int fd, int *target_errno)
2989 {
2990 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2991 int ret = -1;
2992
2993 if (is_closed_fileio_fh (fh->fd))
2994 *target_errno = EBADF;
2995 else
2996 {
2997 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2998 release_fileio_fd (fd, fh);
2999 }
3000
3001 if (targetdebug)
3002 fprintf_unfiltered (gdb_stdlog,
3003 "target_fileio_close (%d) = %d (%d)\n",
3004 fd, ret, ret != -1 ? 0 : *target_errno);
3005 return ret;
3006 }
3007
3008 /* See target.h. */
3009
3010 int
3011 target_fileio_unlink (struct inferior *inf, const char *filename,
3012 int *target_errno)
3013 {
3014 struct target_ops *t;
3015
3016 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3017 {
3018 if (t->to_fileio_unlink != NULL)
3019 {
3020 int ret = t->to_fileio_unlink (t, inf, filename,
3021 target_errno);
3022
3023 if (targetdebug)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "target_fileio_unlink (%d,%s)"
3026 " = %d (%d)\n",
3027 inf == NULL ? 0 : inf->num, filename,
3028 ret, ret != -1 ? 0 : *target_errno);
3029 return ret;
3030 }
3031 }
3032
3033 *target_errno = FILEIO_ENOSYS;
3034 return -1;
3035 }
3036
3037 /* See target.h. */
3038
3039 char *
3040 target_fileio_readlink (struct inferior *inf, const char *filename,
3041 int *target_errno)
3042 {
3043 struct target_ops *t;
3044
3045 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3046 {
3047 if (t->to_fileio_readlink != NULL)
3048 {
3049 char *ret = t->to_fileio_readlink (t, inf, filename,
3050 target_errno);
3051
3052 if (targetdebug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "target_fileio_readlink (%d,%s)"
3055 " = %s (%d)\n",
3056 inf == NULL ? 0 : inf->num,
3057 filename, ret? ret : "(nil)",
3058 ret? 0 : *target_errno);
3059 return ret;
3060 }
3061 }
3062
3063 *target_errno = FILEIO_ENOSYS;
3064 return NULL;
3065 }
3066
3067 static void
3068 target_fileio_close_cleanup (void *opaque)
3069 {
3070 int fd = *(int *) opaque;
3071 int target_errno;
3072
3073 target_fileio_close (fd, &target_errno);
3074 }
3075
3076 /* Read target file FILENAME, in the filesystem as seen by INF. If
3077 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3078 remote targets, the remote stub). Store the result in *BUF_P and
3079 return the size of the transferred data. PADDING additional bytes
3080 are available in *BUF_P. This is a helper function for
3081 target_fileio_read_alloc; see the declaration of that function for
3082 more information. */
3083
3084 static LONGEST
3085 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3086 gdb_byte **buf_p, int padding)
3087 {
3088 struct cleanup *close_cleanup;
3089 size_t buf_alloc, buf_pos;
3090 gdb_byte *buf;
3091 LONGEST n;
3092 int fd;
3093 int target_errno;
3094
3095 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3096 &target_errno);
3097 if (fd == -1)
3098 return -1;
3099
3100 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3101
3102 /* Start by reading up to 4K at a time. The target will throttle
3103 this number down if necessary. */
3104 buf_alloc = 4096;
3105 buf = (gdb_byte *) xmalloc (buf_alloc);
3106 buf_pos = 0;
3107 while (1)
3108 {
3109 n = target_fileio_pread (fd, &buf[buf_pos],
3110 buf_alloc - buf_pos - padding, buf_pos,
3111 &target_errno);
3112 if (n < 0)
3113 {
3114 /* An error occurred. */
3115 do_cleanups (close_cleanup);
3116 xfree (buf);
3117 return -1;
3118 }
3119 else if (n == 0)
3120 {
3121 /* Read all there was. */
3122 do_cleanups (close_cleanup);
3123 if (buf_pos == 0)
3124 xfree (buf);
3125 else
3126 *buf_p = buf;
3127 return buf_pos;
3128 }
3129
3130 buf_pos += n;
3131
3132 /* If the buffer is filling up, expand it. */
3133 if (buf_alloc < buf_pos * 2)
3134 {
3135 buf_alloc *= 2;
3136 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3137 }
3138
3139 QUIT;
3140 }
3141 }
3142
3143 /* See target.h. */
3144
3145 LONGEST
3146 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3147 gdb_byte **buf_p)
3148 {
3149 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3150 }
3151
3152 /* See target.h. */
3153
3154 char *
3155 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3156 {
3157 gdb_byte *buffer;
3158 char *bufstr;
3159 LONGEST i, transferred;
3160
3161 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3162 bufstr = (char *) buffer;
3163
3164 if (transferred < 0)
3165 return NULL;
3166
3167 if (transferred == 0)
3168 return xstrdup ("");
3169
3170 bufstr[transferred] = 0;
3171
3172 /* Check for embedded NUL bytes; but allow trailing NULs. */
3173 for (i = strlen (bufstr); i < transferred; i++)
3174 if (bufstr[i] != 0)
3175 {
3176 warning (_("target file %s "
3177 "contained unexpected null characters"),
3178 filename);
3179 break;
3180 }
3181
3182 return bufstr;
3183 }
3184
3185
3186 static int
3187 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3188 CORE_ADDR addr, int len)
3189 {
3190 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3191 }
3192
3193 static int
3194 default_watchpoint_addr_within_range (struct target_ops *target,
3195 CORE_ADDR addr,
3196 CORE_ADDR start, int length)
3197 {
3198 return addr >= start && addr < start + length;
3199 }
3200
3201 static struct gdbarch *
3202 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3203 {
3204 return target_gdbarch ();
3205 }
3206
3207 static int
3208 return_zero (struct target_ops *ignore)
3209 {
3210 return 0;
3211 }
3212
3213 static int
3214 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3215 {
3216 return 0;
3217 }
3218
3219 /*
3220 * Find the next target down the stack from the specified target.
3221 */
3222
3223 struct target_ops *
3224 find_target_beneath (struct target_ops *t)
3225 {
3226 return t->beneath;
3227 }
3228
3229 /* See target.h. */
3230
3231 struct target_ops *
3232 find_target_at (enum strata stratum)
3233 {
3234 struct target_ops *t;
3235
3236 for (t = current_target.beneath; t != NULL; t = t->beneath)
3237 if (t->to_stratum == stratum)
3238 return t;
3239
3240 return NULL;
3241 }
3242
3243 \f
3244
3245 /* See target.h */
3246
3247 void
3248 target_announce_detach (int from_tty)
3249 {
3250 pid_t pid;
3251 char *exec_file;
3252
3253 if (!from_tty)
3254 return;
3255
3256 exec_file = get_exec_file (0);
3257 if (exec_file == NULL)
3258 exec_file = "";
3259
3260 pid = ptid_get_pid (inferior_ptid);
3261 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3262 target_pid_to_str (pid_to_ptid (pid)));
3263 gdb_flush (gdb_stdout);
3264 }
3265
3266 /* The inferior process has died. Long live the inferior! */
3267
3268 void
3269 generic_mourn_inferior (void)
3270 {
3271 ptid_t ptid;
3272
3273 ptid = inferior_ptid;
3274 inferior_ptid = null_ptid;
3275
3276 /* Mark breakpoints uninserted in case something tries to delete a
3277 breakpoint while we delete the inferior's threads (which would
3278 fail, since the inferior is long gone). */
3279 mark_breakpoints_out ();
3280
3281 if (!ptid_equal (ptid, null_ptid))
3282 {
3283 int pid = ptid_get_pid (ptid);
3284 exit_inferior (pid);
3285 }
3286
3287 /* Note this wipes step-resume breakpoints, so needs to be done
3288 after exit_inferior, which ends up referencing the step-resume
3289 breakpoints through clear_thread_inferior_resources. */
3290 breakpoint_init_inferior (inf_exited);
3291
3292 registers_changed ();
3293
3294 reopen_exec_file ();
3295 reinit_frame_cache ();
3296
3297 if (deprecated_detach_hook)
3298 deprecated_detach_hook ();
3299 }
3300 \f
3301 /* Convert a normal process ID to a string. Returns the string in a
3302 static buffer. */
3303
3304 char *
3305 normal_pid_to_str (ptid_t ptid)
3306 {
3307 static char buf[32];
3308
3309 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3310 return buf;
3311 }
3312
3313 static char *
3314 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3315 {
3316 return normal_pid_to_str (ptid);
3317 }
3318
3319 /* Error-catcher for target_find_memory_regions. */
3320 static int
3321 dummy_find_memory_regions (struct target_ops *self,
3322 find_memory_region_ftype ignore1, void *ignore2)
3323 {
3324 error (_("Command not implemented for this target."));
3325 return 0;
3326 }
3327
3328 /* Error-catcher for target_make_corefile_notes. */
3329 static char *
3330 dummy_make_corefile_notes (struct target_ops *self,
3331 bfd *ignore1, int *ignore2)
3332 {
3333 error (_("Command not implemented for this target."));
3334 return NULL;
3335 }
3336
3337 /* Set up the handful of non-empty slots needed by the dummy target
3338 vector. */
3339
3340 static void
3341 init_dummy_target (void)
3342 {
3343 dummy_target.to_shortname = "None";
3344 dummy_target.to_longname = "None";
3345 dummy_target.to_doc = "";
3346 dummy_target.to_supports_disable_randomization
3347 = find_default_supports_disable_randomization;
3348 dummy_target.to_stratum = dummy_stratum;
3349 dummy_target.to_has_all_memory = return_zero;
3350 dummy_target.to_has_memory = return_zero;
3351 dummy_target.to_has_stack = return_zero;
3352 dummy_target.to_has_registers = return_zero;
3353 dummy_target.to_has_execution = return_zero_has_execution;
3354 dummy_target.to_magic = OPS_MAGIC;
3355
3356 install_dummy_methods (&dummy_target);
3357 }
3358 \f
3359
3360 void
3361 target_close (struct target_ops *targ)
3362 {
3363 gdb_assert (!target_is_pushed (targ));
3364
3365 if (targ->to_xclose != NULL)
3366 targ->to_xclose (targ);
3367 else if (targ->to_close != NULL)
3368 targ->to_close (targ);
3369
3370 if (targetdebug)
3371 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3372 }
3373
3374 int
3375 target_thread_alive (ptid_t ptid)
3376 {
3377 return current_target.to_thread_alive (&current_target, ptid);
3378 }
3379
3380 void
3381 target_update_thread_list (void)
3382 {
3383 current_target.to_update_thread_list (&current_target);
3384 }
3385
3386 void
3387 target_stop (ptid_t ptid)
3388 {
3389 if (!may_stop)
3390 {
3391 warning (_("May not interrupt or stop the target, ignoring attempt"));
3392 return;
3393 }
3394
3395 (*current_target.to_stop) (&current_target, ptid);
3396 }
3397
3398 void
3399 target_interrupt (ptid_t ptid)
3400 {
3401 if (!may_stop)
3402 {
3403 warning (_("May not interrupt or stop the target, ignoring attempt"));
3404 return;
3405 }
3406
3407 (*current_target.to_interrupt) (&current_target, ptid);
3408 }
3409
3410 /* See target.h. */
3411
3412 void
3413 target_pass_ctrlc (void)
3414 {
3415 (*current_target.to_pass_ctrlc) (&current_target);
3416 }
3417
3418 /* See target.h. */
3419
3420 void
3421 default_target_pass_ctrlc (struct target_ops *ops)
3422 {
3423 target_interrupt (inferior_ptid);
3424 }
3425
3426 /* See target/target.h. */
3427
3428 void
3429 target_stop_and_wait (ptid_t ptid)
3430 {
3431 struct target_waitstatus status;
3432 int was_non_stop = non_stop;
3433
3434 non_stop = 1;
3435 target_stop (ptid);
3436
3437 memset (&status, 0, sizeof (status));
3438 target_wait (ptid, &status, 0);
3439
3440 non_stop = was_non_stop;
3441 }
3442
3443 /* See target/target.h. */
3444
3445 void
3446 target_continue_no_signal (ptid_t ptid)
3447 {
3448 target_resume (ptid, 0, GDB_SIGNAL_0);
3449 }
3450
3451 /* Concatenate ELEM to LIST, a comma separate list, and return the
3452 result. The LIST incoming argument is released. */
3453
3454 static char *
3455 str_comma_list_concat_elem (char *list, const char *elem)
3456 {
3457 if (list == NULL)
3458 return xstrdup (elem);
3459 else
3460 return reconcat (list, list, ", ", elem, (char *) NULL);
3461 }
3462
3463 /* Helper for target_options_to_string. If OPT is present in
3464 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3465 Returns the new resulting string. OPT is removed from
3466 TARGET_OPTIONS. */
3467
3468 static char *
3469 do_option (int *target_options, char *ret,
3470 int opt, char *opt_str)
3471 {
3472 if ((*target_options & opt) != 0)
3473 {
3474 ret = str_comma_list_concat_elem (ret, opt_str);
3475 *target_options &= ~opt;
3476 }
3477
3478 return ret;
3479 }
3480
3481 char *
3482 target_options_to_string (int target_options)
3483 {
3484 char *ret = NULL;
3485
3486 #define DO_TARG_OPTION(OPT) \
3487 ret = do_option (&target_options, ret, OPT, #OPT)
3488
3489 DO_TARG_OPTION (TARGET_WNOHANG);
3490
3491 if (target_options != 0)
3492 ret = str_comma_list_concat_elem (ret, "unknown???");
3493
3494 if (ret == NULL)
3495 ret = xstrdup ("");
3496 return ret;
3497 }
3498
3499 static void
3500 debug_print_register (const char * func,
3501 struct regcache *regcache, int regno)
3502 {
3503 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3504
3505 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3506 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3507 && gdbarch_register_name (gdbarch, regno) != NULL
3508 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3509 fprintf_unfiltered (gdb_stdlog, "(%s)",
3510 gdbarch_register_name (gdbarch, regno));
3511 else
3512 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3513 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3514 {
3515 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3516 int i, size = register_size (gdbarch, regno);
3517 gdb_byte buf[MAX_REGISTER_SIZE];
3518
3519 regcache_raw_collect (regcache, regno, buf);
3520 fprintf_unfiltered (gdb_stdlog, " = ");
3521 for (i = 0; i < size; i++)
3522 {
3523 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3524 }
3525 if (size <= sizeof (LONGEST))
3526 {
3527 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3528
3529 fprintf_unfiltered (gdb_stdlog, " %s %s",
3530 core_addr_to_string_nz (val), plongest (val));
3531 }
3532 }
3533 fprintf_unfiltered (gdb_stdlog, "\n");
3534 }
3535
3536 void
3537 target_fetch_registers (struct regcache *regcache, int regno)
3538 {
3539 current_target.to_fetch_registers (&current_target, regcache, regno);
3540 if (targetdebug)
3541 debug_print_register ("target_fetch_registers", regcache, regno);
3542 }
3543
3544 void
3545 target_store_registers (struct regcache *regcache, int regno)
3546 {
3547 if (!may_write_registers)
3548 error (_("Writing to registers is not allowed (regno %d)"), regno);
3549
3550 current_target.to_store_registers (&current_target, regcache, regno);
3551 if (targetdebug)
3552 {
3553 debug_print_register ("target_store_registers", regcache, regno);
3554 }
3555 }
3556
3557 int
3558 target_core_of_thread (ptid_t ptid)
3559 {
3560 return current_target.to_core_of_thread (&current_target, ptid);
3561 }
3562
3563 int
3564 simple_verify_memory (struct target_ops *ops,
3565 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3566 {
3567 LONGEST total_xfered = 0;
3568
3569 while (total_xfered < size)
3570 {
3571 ULONGEST xfered_len;
3572 enum target_xfer_status status;
3573 gdb_byte buf[1024];
3574 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3575
3576 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3577 buf, NULL, lma + total_xfered, howmuch,
3578 &xfered_len);
3579 if (status == TARGET_XFER_OK
3580 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3581 {
3582 total_xfered += xfered_len;
3583 QUIT;
3584 }
3585 else
3586 return 0;
3587 }
3588 return 1;
3589 }
3590
3591 /* Default implementation of memory verification. */
3592
3593 static int
3594 default_verify_memory (struct target_ops *self,
3595 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3596 {
3597 /* Start over from the top of the target stack. */
3598 return simple_verify_memory (current_target.beneath,
3599 data, memaddr, size);
3600 }
3601
3602 int
3603 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3604 {
3605 return current_target.to_verify_memory (&current_target,
3606 data, memaddr, size);
3607 }
3608
3609 /* The documentation for this function is in its prototype declaration in
3610 target.h. */
3611
3612 int
3613 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3614 enum target_hw_bp_type rw)
3615 {
3616 return current_target.to_insert_mask_watchpoint (&current_target,
3617 addr, mask, rw);
3618 }
3619
3620 /* The documentation for this function is in its prototype declaration in
3621 target.h. */
3622
3623 int
3624 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3625 enum target_hw_bp_type rw)
3626 {
3627 return current_target.to_remove_mask_watchpoint (&current_target,
3628 addr, mask, rw);
3629 }
3630
3631 /* The documentation for this function is in its prototype declaration
3632 in target.h. */
3633
3634 int
3635 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3636 {
3637 return current_target.to_masked_watch_num_registers (&current_target,
3638 addr, mask);
3639 }
3640
3641 /* The documentation for this function is in its prototype declaration
3642 in target.h. */
3643
3644 int
3645 target_ranged_break_num_registers (void)
3646 {
3647 return current_target.to_ranged_break_num_registers (&current_target);
3648 }
3649
3650 /* See target.h. */
3651
3652 int
3653 target_supports_btrace (enum btrace_format format)
3654 {
3655 return current_target.to_supports_btrace (&current_target, format);
3656 }
3657
3658 /* See target.h. */
3659
3660 struct btrace_target_info *
3661 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3662 {
3663 return current_target.to_enable_btrace (&current_target, ptid, conf);
3664 }
3665
3666 /* See target.h. */
3667
3668 void
3669 target_disable_btrace (struct btrace_target_info *btinfo)
3670 {
3671 current_target.to_disable_btrace (&current_target, btinfo);
3672 }
3673
3674 /* See target.h. */
3675
3676 void
3677 target_teardown_btrace (struct btrace_target_info *btinfo)
3678 {
3679 current_target.to_teardown_btrace (&current_target, btinfo);
3680 }
3681
3682 /* See target.h. */
3683
3684 enum btrace_error
3685 target_read_btrace (struct btrace_data *btrace,
3686 struct btrace_target_info *btinfo,
3687 enum btrace_read_type type)
3688 {
3689 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3690 }
3691
3692 /* See target.h. */
3693
3694 const struct btrace_config *
3695 target_btrace_conf (const struct btrace_target_info *btinfo)
3696 {
3697 return current_target.to_btrace_conf (&current_target, btinfo);
3698 }
3699
3700 /* See target.h. */
3701
3702 void
3703 target_stop_recording (void)
3704 {
3705 current_target.to_stop_recording (&current_target);
3706 }
3707
3708 /* See target.h. */
3709
3710 void
3711 target_save_record (const char *filename)
3712 {
3713 current_target.to_save_record (&current_target, filename);
3714 }
3715
3716 /* See target.h. */
3717
3718 int
3719 target_supports_delete_record (void)
3720 {
3721 struct target_ops *t;
3722
3723 for (t = current_target.beneath; t != NULL; t = t->beneath)
3724 if (t->to_delete_record != delegate_delete_record
3725 && t->to_delete_record != tdefault_delete_record)
3726 return 1;
3727
3728 return 0;
3729 }
3730
3731 /* See target.h. */
3732
3733 void
3734 target_delete_record (void)
3735 {
3736 current_target.to_delete_record (&current_target);
3737 }
3738
3739 /* See target.h. */
3740
3741 int
3742 target_record_is_replaying (ptid_t ptid)
3743 {
3744 return current_target.to_record_is_replaying (&current_target, ptid);
3745 }
3746
3747 /* See target.h. */
3748
3749 int
3750 target_record_will_replay (ptid_t ptid, int dir)
3751 {
3752 return current_target.to_record_will_replay (&current_target, ptid, dir);
3753 }
3754
3755 /* See target.h. */
3756
3757 void
3758 target_record_stop_replaying (void)
3759 {
3760 current_target.to_record_stop_replaying (&current_target);
3761 }
3762
3763 /* See target.h. */
3764
3765 void
3766 target_goto_record_begin (void)
3767 {
3768 current_target.to_goto_record_begin (&current_target);
3769 }
3770
3771 /* See target.h. */
3772
3773 void
3774 target_goto_record_end (void)
3775 {
3776 current_target.to_goto_record_end (&current_target);
3777 }
3778
3779 /* See target.h. */
3780
3781 void
3782 target_goto_record (ULONGEST insn)
3783 {
3784 current_target.to_goto_record (&current_target, insn);
3785 }
3786
3787 /* See target.h. */
3788
3789 void
3790 target_insn_history (int size, int flags)
3791 {
3792 current_target.to_insn_history (&current_target, size, flags);
3793 }
3794
3795 /* See target.h. */
3796
3797 void
3798 target_insn_history_from (ULONGEST from, int size, int flags)
3799 {
3800 current_target.to_insn_history_from (&current_target, from, size, flags);
3801 }
3802
3803 /* See target.h. */
3804
3805 void
3806 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3807 {
3808 current_target.to_insn_history_range (&current_target, begin, end, flags);
3809 }
3810
3811 /* See target.h. */
3812
3813 void
3814 target_call_history (int size, int flags)
3815 {
3816 current_target.to_call_history (&current_target, size, flags);
3817 }
3818
3819 /* See target.h. */
3820
3821 void
3822 target_call_history_from (ULONGEST begin, int size, int flags)
3823 {
3824 current_target.to_call_history_from (&current_target, begin, size, flags);
3825 }
3826
3827 /* See target.h. */
3828
3829 void
3830 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3831 {
3832 current_target.to_call_history_range (&current_target, begin, end, flags);
3833 }
3834
3835 /* See target.h. */
3836
3837 const struct frame_unwind *
3838 target_get_unwinder (void)
3839 {
3840 return current_target.to_get_unwinder (&current_target);
3841 }
3842
3843 /* See target.h. */
3844
3845 const struct frame_unwind *
3846 target_get_tailcall_unwinder (void)
3847 {
3848 return current_target.to_get_tailcall_unwinder (&current_target);
3849 }
3850
3851 /* See target.h. */
3852
3853 void
3854 target_prepare_to_generate_core (void)
3855 {
3856 current_target.to_prepare_to_generate_core (&current_target);
3857 }
3858
3859 /* See target.h. */
3860
3861 void
3862 target_done_generating_core (void)
3863 {
3864 current_target.to_done_generating_core (&current_target);
3865 }
3866
3867 static void
3868 setup_target_debug (void)
3869 {
3870 memcpy (&debug_target, &current_target, sizeof debug_target);
3871
3872 init_debug_target (&current_target);
3873 }
3874 \f
3875
3876 static char targ_desc[] =
3877 "Names of targets and files being debugged.\nShows the entire \
3878 stack of targets currently in use (including the exec-file,\n\
3879 core-file, and process, if any), as well as the symbol file name.";
3880
3881 static void
3882 default_rcmd (struct target_ops *self, const char *command,
3883 struct ui_file *output)
3884 {
3885 error (_("\"monitor\" command not supported by this target."));
3886 }
3887
3888 static void
3889 do_monitor_command (char *cmd,
3890 int from_tty)
3891 {
3892 target_rcmd (cmd, gdb_stdtarg);
3893 }
3894
3895 /* Print the name of each layers of our target stack. */
3896
3897 static void
3898 maintenance_print_target_stack (char *cmd, int from_tty)
3899 {
3900 struct target_ops *t;
3901
3902 printf_filtered (_("The current target stack is:\n"));
3903
3904 for (t = target_stack; t != NULL; t = t->beneath)
3905 {
3906 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3907 }
3908 }
3909
3910 /* See target.h. */
3911
3912 void
3913 target_async (int enable)
3914 {
3915 infrun_async (enable);
3916 current_target.to_async (&current_target, enable);
3917 }
3918
3919 /* See target.h. */
3920
3921 void
3922 target_thread_events (int enable)
3923 {
3924 current_target.to_thread_events (&current_target, enable);
3925 }
3926
3927 /* Controls if targets can report that they can/are async. This is
3928 just for maintainers to use when debugging gdb. */
3929 int target_async_permitted = 1;
3930
3931 /* The set command writes to this variable. If the inferior is
3932 executing, target_async_permitted is *not* updated. */
3933 static int target_async_permitted_1 = 1;
3934
3935 static void
3936 maint_set_target_async_command (char *args, int from_tty,
3937 struct cmd_list_element *c)
3938 {
3939 if (have_live_inferiors ())
3940 {
3941 target_async_permitted_1 = target_async_permitted;
3942 error (_("Cannot change this setting while the inferior is running."));
3943 }
3944
3945 target_async_permitted = target_async_permitted_1;
3946 }
3947
3948 static void
3949 maint_show_target_async_command (struct ui_file *file, int from_tty,
3950 struct cmd_list_element *c,
3951 const char *value)
3952 {
3953 fprintf_filtered (file,
3954 _("Controlling the inferior in "
3955 "asynchronous mode is %s.\n"), value);
3956 }
3957
3958 /* Return true if the target operates in non-stop mode even with "set
3959 non-stop off". */
3960
3961 static int
3962 target_always_non_stop_p (void)
3963 {
3964 return current_target.to_always_non_stop_p (&current_target);
3965 }
3966
3967 /* See target.h. */
3968
3969 int
3970 target_is_non_stop_p (void)
3971 {
3972 return (non_stop
3973 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3974 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3975 && target_always_non_stop_p ()));
3976 }
3977
3978 /* Controls if targets can report that they always run in non-stop
3979 mode. This is just for maintainers to use when debugging gdb. */
3980 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3981
3982 /* The set command writes to this variable. If the inferior is
3983 executing, target_non_stop_enabled is *not* updated. */
3984 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3985
3986 /* Implementation of "maint set target-non-stop". */
3987
3988 static void
3989 maint_set_target_non_stop_command (char *args, int from_tty,
3990 struct cmd_list_element *c)
3991 {
3992 if (have_live_inferiors ())
3993 {
3994 target_non_stop_enabled_1 = target_non_stop_enabled;
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 target_non_stop_enabled = target_non_stop_enabled_1;
3999 }
4000
4001 /* Implementation of "maint show target-non-stop". */
4002
4003 static void
4004 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4005 struct cmd_list_element *c,
4006 const char *value)
4007 {
4008 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4009 fprintf_filtered (file,
4010 _("Whether the target is always in non-stop mode "
4011 "is %s (currently %s).\n"), value,
4012 target_always_non_stop_p () ? "on" : "off");
4013 else
4014 fprintf_filtered (file,
4015 _("Whether the target is always in non-stop mode "
4016 "is %s.\n"), value);
4017 }
4018
4019 /* Temporary copies of permission settings. */
4020
4021 static int may_write_registers_1 = 1;
4022 static int may_write_memory_1 = 1;
4023 static int may_insert_breakpoints_1 = 1;
4024 static int may_insert_tracepoints_1 = 1;
4025 static int may_insert_fast_tracepoints_1 = 1;
4026 static int may_stop_1 = 1;
4027
4028 /* Make the user-set values match the real values again. */
4029
4030 void
4031 update_target_permissions (void)
4032 {
4033 may_write_registers_1 = may_write_registers;
4034 may_write_memory_1 = may_write_memory;
4035 may_insert_breakpoints_1 = may_insert_breakpoints;
4036 may_insert_tracepoints_1 = may_insert_tracepoints;
4037 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4038 may_stop_1 = may_stop;
4039 }
4040
4041 /* The one function handles (most of) the permission flags in the same
4042 way. */
4043
4044 static void
4045 set_target_permissions (char *args, int from_tty,
4046 struct cmd_list_element *c)
4047 {
4048 if (target_has_execution)
4049 {
4050 update_target_permissions ();
4051 error (_("Cannot change this setting while the inferior is running."));
4052 }
4053
4054 /* Make the real values match the user-changed values. */
4055 may_write_registers = may_write_registers_1;
4056 may_insert_breakpoints = may_insert_breakpoints_1;
4057 may_insert_tracepoints = may_insert_tracepoints_1;
4058 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4059 may_stop = may_stop_1;
4060 update_observer_mode ();
4061 }
4062
4063 /* Set memory write permission independently of observer mode. */
4064
4065 static void
4066 set_write_memory_permission (char *args, int from_tty,
4067 struct cmd_list_element *c)
4068 {
4069 /* Make the real values match the user-changed values. */
4070 may_write_memory = may_write_memory_1;
4071 update_observer_mode ();
4072 }
4073
4074
4075 void
4076 initialize_targets (void)
4077 {
4078 init_dummy_target ();
4079 push_target (&dummy_target);
4080
4081 add_info ("target", target_info, targ_desc);
4082 add_info ("files", target_info, targ_desc);
4083
4084 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4085 Set target debugging."), _("\
4086 Show target debugging."), _("\
4087 When non-zero, target debugging is enabled. Higher numbers are more\n\
4088 verbose."),
4089 set_targetdebug,
4090 show_targetdebug,
4091 &setdebuglist, &showdebuglist);
4092
4093 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4094 &trust_readonly, _("\
4095 Set mode for reading from readonly sections."), _("\
4096 Show mode for reading from readonly sections."), _("\
4097 When this mode is on, memory reads from readonly sections (such as .text)\n\
4098 will be read from the object file instead of from the target. This will\n\
4099 result in significant performance improvement for remote targets."),
4100 NULL,
4101 show_trust_readonly,
4102 &setlist, &showlist);
4103
4104 add_com ("monitor", class_obscure, do_monitor_command,
4105 _("Send a command to the remote monitor (remote targets only)."));
4106
4107 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4108 _("Print the name of each layer of the internal target stack."),
4109 &maintenanceprintlist);
4110
4111 add_setshow_boolean_cmd ("target-async", no_class,
4112 &target_async_permitted_1, _("\
4113 Set whether gdb controls the inferior in asynchronous mode."), _("\
4114 Show whether gdb controls the inferior in asynchronous mode."), _("\
4115 Tells gdb whether to control the inferior in asynchronous mode."),
4116 maint_set_target_async_command,
4117 maint_show_target_async_command,
4118 &maintenance_set_cmdlist,
4119 &maintenance_show_cmdlist);
4120
4121 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4122 &target_non_stop_enabled_1, _("\
4123 Set whether gdb always controls the inferior in non-stop mode."), _("\
4124 Show whether gdb always controls the inferior in non-stop mode."), _("\
4125 Tells gdb whether to control the inferior in non-stop mode."),
4126 maint_set_target_non_stop_command,
4127 maint_show_target_non_stop_command,
4128 &maintenance_set_cmdlist,
4129 &maintenance_show_cmdlist);
4130
4131 add_setshow_boolean_cmd ("may-write-registers", class_support,
4132 &may_write_registers_1, _("\
4133 Set permission to write into registers."), _("\
4134 Show permission to write into registers."), _("\
4135 When this permission is on, GDB may write into the target's registers.\n\
4136 Otherwise, any sort of write attempt will result in an error."),
4137 set_target_permissions, NULL,
4138 &setlist, &showlist);
4139
4140 add_setshow_boolean_cmd ("may-write-memory", class_support,
4141 &may_write_memory_1, _("\
4142 Set permission to write into target memory."), _("\
4143 Show permission to write into target memory."), _("\
4144 When this permission is on, GDB may write into the target's memory.\n\
4145 Otherwise, any sort of write attempt will result in an error."),
4146 set_write_memory_permission, NULL,
4147 &setlist, &showlist);
4148
4149 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4150 &may_insert_breakpoints_1, _("\
4151 Set permission to insert breakpoints in the target."), _("\
4152 Show permission to insert breakpoints in the target."), _("\
4153 When this permission is on, GDB may insert breakpoints in the program.\n\
4154 Otherwise, any sort of insertion attempt will result in an error."),
4155 set_target_permissions, NULL,
4156 &setlist, &showlist);
4157
4158 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4159 &may_insert_tracepoints_1, _("\
4160 Set permission to insert tracepoints in the target."), _("\
4161 Show permission to insert tracepoints in the target."), _("\
4162 When this permission is on, GDB may insert tracepoints in the program.\n\
4163 Otherwise, any sort of insertion attempt will result in an error."),
4164 set_target_permissions, NULL,
4165 &setlist, &showlist);
4166
4167 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4168 &may_insert_fast_tracepoints_1, _("\
4169 Set permission to insert fast tracepoints in the target."), _("\
4170 Show permission to insert fast tracepoints in the target."), _("\
4171 When this permission is on, GDB may insert fast tracepoints.\n\
4172 Otherwise, any sort of insertion attempt will result in an error."),
4173 set_target_permissions, NULL,
4174 &setlist, &showlist);
4175
4176 add_setshow_boolean_cmd ("may-interrupt", class_support,
4177 &may_stop_1, _("\
4178 Set permission to interrupt or signal the target."), _("\
4179 Show permission to interrupt or signal the target."), _("\
4180 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4181 Otherwise, any attempt to interrupt or stop will be ignored."),
4182 set_target_permissions, NULL,
4183 &setlist, &showlist);
4184
4185 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4186 &auto_connect_native_target, _("\
4187 Set whether GDB may automatically connect to the native target."), _("\
4188 Show whether GDB may automatically connect to the native target."), _("\
4189 When on, and GDB is not connected to a target yet, GDB\n\
4190 attempts \"run\" and other commands with the native target."),
4191 NULL, show_auto_connect_native_target,
4192 &setlist, &showlist);
4193 }
This page took 0.116044 seconds and 4 git commands to generate.