Implement mount namespace support for native Linux targets
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 void
470 target_terminal_inferior (void)
471 {
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486 }
487
488 /* See target.h. */
489
490 void
491 target_terminal_ours (void)
492 {
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target.h. */
501
502 void
503 target_terminal_ours_for_output (void)
504 {
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509 }
510
511 /* See target.h. */
512
513 int
514 target_supports_terminal_ours (void)
515 {
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526 }
527
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534 enum terminal_state *previous_state = arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548 }
549
550 /* See target.h. */
551
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555 enum terminal_state *ts = xmalloc (sizeof (*ts));
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561
562 static void
563 tcomplain (void)
564 {
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567 }
568
569 void
570 noprocess (void)
571 {
572 error (_("You can't do that without a process to debug."));
573 }
574
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578 printf_unfiltered (_("No saved terminal information.\n"));
579 }
580
581 /* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617 static void
618 update_current_target (void)
619 {
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645 #undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663 void
664 push_target (struct target_ops *t)
665 {
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747 }
748
749 void
750 pop_all_targets_above (enum strata above_stratum)
751 {
752 while ((int) (current_target.to_stratum) > (int) above_stratum)
753 {
754 if (!unpush_target (target_stack))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target_stack->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
762 }
763 }
764 }
765
766 void
767 pop_all_targets (void)
768 {
769 pop_all_targets_above (dummy_stratum);
770 }
771
772 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
773
774 int
775 target_is_pushed (struct target_ops *t)
776 {
777 struct target_ops *cur;
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
788 }
789
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
792 return 1;
793
794 return 0;
795 }
796
797 /* Default implementation of to_get_thread_local_address. */
798
799 static void
800 generic_tls_error (void)
801 {
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
804 }
805
806 /* Using the objfile specified in OBJFILE, find the address for the
807 current thread's thread-local storage with offset OFFSET. */
808 CORE_ADDR
809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810 {
811 volatile CORE_ADDR addr = 0;
812 struct target_ops *target = &current_target;
813
814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
815 {
816 ptid_t ptid = inferior_ptid;
817
818 TRY
819 {
820 CORE_ADDR lm_addr;
821
822 /* Fetch the load module address for this objfile. */
823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 objfile);
825
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
828 }
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
831 CATCH (ex, RETURN_MASK_ALL)
832 {
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
834
835 switch (ex.error)
836 {
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
844 " linker's load module list"), objfile_name (objfile));
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
847 " linker's load module list"), objfile_name (objfile));
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
861 objfile_name (objfile), target_pid_to_str (ptid));
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
868 objfile_name (objfile), ex.message);
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
873 objfile_name (objfile), ex.message);
874 break;
875 default:
876 throw_exception (ex);
877 break;
878 }
879 }
880 END_CATCH
881 }
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
886
887 return addr;
888 }
889
890 const char *
891 target_xfer_status_to_string (enum target_xfer_status status)
892 {
893 #define CASE(X) case X: return #X
894 switch (status)
895 {
896 CASE(TARGET_XFER_E_IO);
897 CASE(TARGET_XFER_UNAVAILABLE);
898 default:
899 return "<unknown>";
900 }
901 #undef CASE
902 };
903
904
905 #undef MIN
906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907
908 /* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
913
914 int
915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
916 {
917 int tlen, offset, i;
918 gdb_byte buf[4];
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
924
925 gdb_assert (string);
926
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = xmalloc (buffer_allocated);
930 bufptr = buffer;
931
932 while (len > 0)
933 {
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
936
937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938 if (errcode != 0)
939 {
940 /* The transfer request might have crossed the boundary to an
941 unallocated region of memory. Retry the transfer, requesting
942 a single byte. */
943 tlen = 1;
944 offset = 0;
945 errcode = target_read_memory (memaddr, buf, 1);
946 if (errcode != 0)
947 goto done;
948 }
949
950 if (bufptr - buffer + tlen > buffer_allocated)
951 {
952 unsigned int bytes;
953
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
958 }
959
960 for (i = 0; i < tlen; i++)
961 {
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
964 {
965 nbytes_read += i + 1;
966 goto done;
967 }
968 }
969
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
973 }
974 done:
975 *string = buffer;
976 if (errnop != NULL)
977 *errnop = errcode;
978 return nbytes_read;
979 }
980
981 struct target_section_table *
982 target_get_section_table (struct target_ops *target)
983 {
984 return (*target->to_get_section_table) (target);
985 }
986
987 /* Find a section containing ADDR. */
988
989 struct target_section *
990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991 {
992 struct target_section_table *table = target_get_section_table (target);
993 struct target_section *secp;
994
995 if (table == NULL)
996 return NULL;
997
998 for (secp = table->sections; secp < table->sections_end; secp++)
999 {
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1002 }
1003 return NULL;
1004 }
1005
1006
1007 /* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1015
1016 static int
1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1020 {
1021 struct mem_region *region;
1022
1023 region = lookup_mem_region (memaddr);
1024
1025 if (region_p != NULL)
1026 *region_p = region;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return 0;
1048 }
1049
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1055
1056 return 1;
1057 }
1058
1059 /* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1062
1063 static enum target_xfer_status
1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
1067 {
1068 enum target_xfer_status res;
1069
1070 do
1071 {
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
1076 break;
1077
1078 /* Stop if the target reports that the memory is not available. */
1079 if (res == TARGET_XFER_UNAVAILABLE)
1080 break;
1081
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100 {
1101 DCACHE *dcache = target_dcache_get ();
1102
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106 }
1107
1108 return res;
1109 }
1110
1111 /* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
1113
1114 static enum target_xfer_status
1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 ULONGEST len, ULONGEST *xfered_len)
1118 {
1119 enum target_xfer_status res;
1120 ULONGEST reg_len;
1121 struct mem_region *region;
1122 struct inferior *inf;
1123
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1127 {
1128 struct obj_section *section = find_pc_overlay (memaddr);
1129
1130 if (pc_in_unmapped_range (memaddr, section))
1131 {
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
1135
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
1138 memaddr, len, xfered_len,
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1142 }
1143 }
1144
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
1146 if (readbuf != NULL && trust_readonly)
1147 {
1148 struct target_section *secp;
1149 struct target_section_table *table;
1150
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
1155 & SEC_READONLY))
1156 {
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
1159 memaddr, len, xfered_len,
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1163 }
1164 }
1165
1166 /* Try GDB's internal data cache. */
1167
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
1171
1172 if (!ptid_equal (inferior_ptid, null_ptid))
1173 inf = find_inferior_ptid (inferior_ptid);
1174 else
1175 inf = NULL;
1176
1177 if (inf != NULL
1178 && readbuf != NULL
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
1183 && (region->attrib.cache
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1186 {
1187 DCACHE *dcache = target_dcache_get_or_init ();
1188
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
1191 }
1192
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1202
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
1205
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
1209 }
1210
1211 /* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1213
1214 static enum target_xfer_status
1215 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1218 {
1219 enum target_xfer_status res;
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return TARGET_XFER_EOF;
1224
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1229 {
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
1232
1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1235 }
1236 else
1237 {
1238 void *buf;
1239 struct cleanup *old_chain;
1240
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1247
1248 buf = xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1251
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
1255
1256 do_cleanups (old_chain);
1257 }
1258
1259 return res;
1260 }
1261
1262 static void
1263 restore_show_memory_breakpoints (void *arg)
1264 {
1265 show_memory_breakpoints = (uintptr_t) arg;
1266 }
1267
1268 struct cleanup *
1269 make_show_memory_breakpoints_cleanup (int show)
1270 {
1271 int current = show_memory_breakpoints;
1272
1273 show_memory_breakpoints = show;
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1276 }
1277
1278 /* For docs see target.h, to_xfer_partial. */
1279
1280 enum target_xfer_status
1281 target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
1286 {
1287 enum target_xfer_status retval;
1288
1289 gdb_assert (ops->to_xfer_partial != NULL);
1290
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
1293 return TARGET_XFER_EOF;
1294
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1298
1299 *xfered_len = 0;
1300
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
1306 retval = memory_xfer_partial (ops, object, readbuf,
1307 writebuf, offset, len, xfered_len);
1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
1309 {
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1319
1320 /* Request the normal memory object from other layers. */
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
1323 }
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 writebuf, offset, len, xfered_len);
1327
1328 if (targetdebug)
1329 {
1330 const unsigned char *myaddr = NULL;
1331
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s:target_xfer_partial "
1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
1340 core_addr_to_string_nz (offset),
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
1343
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
1349 {
1350 int i;
1351
1352 fputs_unfiltered (", bytes =", gdb_stdlog);
1353 for (i = 0; i < *xfered_len; i++)
1354 {
1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1356 {
1357 if (targetdebug < 2 && i > 0)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1361 }
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1363 }
1364
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 }
1367 }
1368
1369 fputc_unfiltered ('\n', gdb_stdlog);
1370 }
1371
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376 gdb_assert (*xfered_len > 0);
1377
1378 return retval;
1379 }
1380
1381 /* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
1383 TARGET_XFER_E_IO if any error occurs.
1384
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
1389 deal with partial reads should call target_read (which will retry until
1390 it makes no progress, and then return how much was transferred). */
1391
1392 int
1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394 {
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return TARGET_XFER_E_IO;
1403 }
1404
1405 /* See target/target.h. */
1406
1407 int
1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409 {
1410 gdb_byte buf[4];
1411 int r;
1412
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1419 }
1420
1421 /* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1424
1425 int
1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427 {
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return TARGET_XFER_E_IO;
1435 }
1436
1437 /* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1439
1440 int
1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1442 {
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
1449 return TARGET_XFER_E_IO;
1450 }
1451
1452 /* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1454
1455 int
1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457 {
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return TARGET_XFER_E_IO;
1465 }
1466
1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468 Returns either 0 for success or TARGET_XFER_E_IO if any
1469 error occurs. If an error occurs, no guarantee is made about how
1470 much data got written. Callers that can deal with partial writes
1471 should call target_write. */
1472
1473 int
1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1475 {
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return TARGET_XFER_E_IO;
1483 }
1484
1485 /* Write LEN bytes from MYADDR to target raw memory at address
1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1487 if any error occurs. If an error occurs, no guarantee is made
1488 about how much data got written. Callers that can deal with
1489 partial writes should call target_write. */
1490
1491 int
1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1493 {
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return TARGET_XFER_E_IO;
1501 }
1502
1503 /* Fetch the target's memory map. */
1504
1505 VEC(mem_region_s) *
1506 target_memory_map (void)
1507 {
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1512
1513 result = current_target.to_memory_map (&current_target);
1514 if (result == NULL)
1515 return NULL;
1516
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1520
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526 {
1527 this_one->number = ix;
1528
1529 if (last_one && last_one->hi > this_one->lo)
1530 {
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1534 }
1535 last_one = this_one;
1536 }
1537
1538 return result;
1539 }
1540
1541 void
1542 target_flash_erase (ULONGEST address, LONGEST length)
1543 {
1544 current_target.to_flash_erase (&current_target, address, length);
1545 }
1546
1547 void
1548 target_flash_done (void)
1549 {
1550 current_target.to_flash_done (&current_target);
1551 }
1552
1553 static void
1554 show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1556 {
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
1559 value);
1560 }
1561
1562 /* Target vector read/write partial wrapper functions. */
1563
1564 static enum target_xfer_status
1565 target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1570 {
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1573 }
1574
1575 static enum target_xfer_status
1576 target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1580 {
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1583 }
1584
1585 /* Wrappers to perform the full transfer. */
1586
1587 /* For docs on target_read see target.h. */
1588
1589 LONGEST
1590 target_read (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, LONGEST len)
1594 {
1595 LONGEST xfered = 0;
1596
1597 while (xfered < len)
1598 {
1599 ULONGEST xfered_len;
1600 enum target_xfer_status status;
1601
1602 status = target_read_partial (ops, object, annex,
1603 (gdb_byte *) buf + xfered,
1604 offset + xfered, len - xfered,
1605 &xfered_len);
1606
1607 /* Call an observer, notifying them of the xfer progress? */
1608 if (status == TARGET_XFER_EOF)
1609 return xfered;
1610 else if (status == TARGET_XFER_OK)
1611 {
1612 xfered += xfered_len;
1613 QUIT;
1614 }
1615 else
1616 return -1;
1617
1618 }
1619 return len;
1620 }
1621
1622 /* Assuming that the entire [begin, end) range of memory cannot be
1623 read, try to read whatever subrange is possible to read.
1624
1625 The function returns, in RESULT, either zero or one memory block.
1626 If there's a readable subrange at the beginning, it is completely
1627 read and returned. Any further readable subrange will not be read.
1628 Otherwise, if there's a readable subrange at the end, it will be
1629 completely read and returned. Any readable subranges before it
1630 (obviously, not starting at the beginning), will be ignored. In
1631 other cases -- either no readable subrange, or readable subrange(s)
1632 that is neither at the beginning, or end, nothing is returned.
1633
1634 The purpose of this function is to handle a read across a boundary
1635 of accessible memory in a case when memory map is not available.
1636 The above restrictions are fine for this case, but will give
1637 incorrect results if the memory is 'patchy'. However, supporting
1638 'patchy' memory would require trying to read every single byte,
1639 and it seems unacceptable solution. Explicit memory map is
1640 recommended for this case -- and target_read_memory_robust will
1641 take care of reading multiple ranges then. */
1642
1643 static void
1644 read_whatever_is_readable (struct target_ops *ops,
1645 ULONGEST begin, ULONGEST end,
1646 VEC(memory_read_result_s) **result)
1647 {
1648 gdb_byte *buf = xmalloc (end - begin);
1649 ULONGEST current_begin = begin;
1650 ULONGEST current_end = end;
1651 int forward;
1652 memory_read_result_s r;
1653 ULONGEST xfered_len;
1654
1655 /* If we previously failed to read 1 byte, nothing can be done here. */
1656 if (end - begin <= 1)
1657 {
1658 xfree (buf);
1659 return;
1660 }
1661
1662 /* Check that either first or the last byte is readable, and give up
1663 if not. This heuristic is meant to permit reading accessible memory
1664 at the boundary of accessible region. */
1665 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1666 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1667 {
1668 forward = 1;
1669 ++current_begin;
1670 }
1671 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1672 buf + (end-begin) - 1, end - 1, 1,
1673 &xfered_len) == TARGET_XFER_OK)
1674 {
1675 forward = 0;
1676 --current_end;
1677 }
1678 else
1679 {
1680 xfree (buf);
1681 return;
1682 }
1683
1684 /* Loop invariant is that the [current_begin, current_end) was previously
1685 found to be not readable as a whole.
1686
1687 Note loop condition -- if the range has 1 byte, we can't divide the range
1688 so there's no point trying further. */
1689 while (current_end - current_begin > 1)
1690 {
1691 ULONGEST first_half_begin, first_half_end;
1692 ULONGEST second_half_begin, second_half_end;
1693 LONGEST xfer;
1694 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1695
1696 if (forward)
1697 {
1698 first_half_begin = current_begin;
1699 first_half_end = middle;
1700 second_half_begin = middle;
1701 second_half_end = current_end;
1702 }
1703 else
1704 {
1705 first_half_begin = middle;
1706 first_half_end = current_end;
1707 second_half_begin = current_begin;
1708 second_half_end = middle;
1709 }
1710
1711 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1712 buf + (first_half_begin - begin),
1713 first_half_begin,
1714 first_half_end - first_half_begin);
1715
1716 if (xfer == first_half_end - first_half_begin)
1717 {
1718 /* This half reads up fine. So, the error must be in the
1719 other half. */
1720 current_begin = second_half_begin;
1721 current_end = second_half_end;
1722 }
1723 else
1724 {
1725 /* This half is not readable. Because we've tried one byte, we
1726 know some part of this half if actually redable. Go to the next
1727 iteration to divide again and try to read.
1728
1729 We don't handle the other half, because this function only tries
1730 to read a single readable subrange. */
1731 current_begin = first_half_begin;
1732 current_end = first_half_end;
1733 }
1734 }
1735
1736 if (forward)
1737 {
1738 /* The [begin, current_begin) range has been read. */
1739 r.begin = begin;
1740 r.end = current_begin;
1741 r.data = buf;
1742 }
1743 else
1744 {
1745 /* The [current_end, end) range has been read. */
1746 LONGEST rlen = end - current_end;
1747
1748 r.data = xmalloc (rlen);
1749 memcpy (r.data, buf + current_end - begin, rlen);
1750 r.begin = current_end;
1751 r.end = end;
1752 xfree (buf);
1753 }
1754 VEC_safe_push(memory_read_result_s, (*result), &r);
1755 }
1756
1757 void
1758 free_memory_read_result_vector (void *x)
1759 {
1760 VEC(memory_read_result_s) *v = x;
1761 memory_read_result_s *current;
1762 int ix;
1763
1764 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1765 {
1766 xfree (current->data);
1767 }
1768 VEC_free (memory_read_result_s, v);
1769 }
1770
1771 VEC(memory_read_result_s) *
1772 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1773 {
1774 VEC(memory_read_result_s) *result = 0;
1775
1776 LONGEST xfered = 0;
1777 while (xfered < len)
1778 {
1779 struct mem_region *region = lookup_mem_region (offset + xfered);
1780 LONGEST rlen;
1781
1782 /* If there is no explicit region, a fake one should be created. */
1783 gdb_assert (region);
1784
1785 if (region->hi == 0)
1786 rlen = len - xfered;
1787 else
1788 rlen = region->hi - offset;
1789
1790 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1791 {
1792 /* Cannot read this region. Note that we can end up here only
1793 if the region is explicitly marked inaccessible, or
1794 'inaccessible-by-default' is in effect. */
1795 xfered += rlen;
1796 }
1797 else
1798 {
1799 LONGEST to_read = min (len - xfered, rlen);
1800 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1801
1802 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1803 (gdb_byte *) buffer,
1804 offset + xfered, to_read);
1805 /* Call an observer, notifying them of the xfer progress? */
1806 if (xfer <= 0)
1807 {
1808 /* Got an error reading full chunk. See if maybe we can read
1809 some subrange. */
1810 xfree (buffer);
1811 read_whatever_is_readable (ops, offset + xfered,
1812 offset + xfered + to_read, &result);
1813 xfered += to_read;
1814 }
1815 else
1816 {
1817 struct memory_read_result r;
1818 r.data = buffer;
1819 r.begin = offset + xfered;
1820 r.end = r.begin + xfer;
1821 VEC_safe_push (memory_read_result_s, result, &r);
1822 xfered += xfer;
1823 }
1824 QUIT;
1825 }
1826 }
1827 return result;
1828 }
1829
1830
1831 /* An alternative to target_write with progress callbacks. */
1832
1833 LONGEST
1834 target_write_with_progress (struct target_ops *ops,
1835 enum target_object object,
1836 const char *annex, const gdb_byte *buf,
1837 ULONGEST offset, LONGEST len,
1838 void (*progress) (ULONGEST, void *), void *baton)
1839 {
1840 LONGEST xfered = 0;
1841
1842 /* Give the progress callback a chance to set up. */
1843 if (progress)
1844 (*progress) (0, baton);
1845
1846 while (xfered < len)
1847 {
1848 ULONGEST xfered_len;
1849 enum target_xfer_status status;
1850
1851 status = target_write_partial (ops, object, annex,
1852 (gdb_byte *) buf + xfered,
1853 offset + xfered, len - xfered,
1854 &xfered_len);
1855
1856 if (status != TARGET_XFER_OK)
1857 return status == TARGET_XFER_EOF ? xfered : -1;
1858
1859 if (progress)
1860 (*progress) (xfered_len, baton);
1861
1862 xfered += xfered_len;
1863 QUIT;
1864 }
1865 return len;
1866 }
1867
1868 /* For docs on target_write see target.h. */
1869
1870 LONGEST
1871 target_write (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len)
1875 {
1876 return target_write_with_progress (ops, object, annex, buf, offset, len,
1877 NULL, NULL);
1878 }
1879
1880 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1881 the size of the transferred data. PADDING additional bytes are
1882 available in *BUF_P. This is a helper function for
1883 target_read_alloc; see the declaration of that function for more
1884 information. */
1885
1886 static LONGEST
1887 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1888 const char *annex, gdb_byte **buf_p, int padding)
1889 {
1890 size_t buf_alloc, buf_pos;
1891 gdb_byte *buf;
1892
1893 /* This function does not have a length parameter; it reads the
1894 entire OBJECT). Also, it doesn't support objects fetched partly
1895 from one target and partly from another (in a different stratum,
1896 e.g. a core file and an executable). Both reasons make it
1897 unsuitable for reading memory. */
1898 gdb_assert (object != TARGET_OBJECT_MEMORY);
1899
1900 /* Start by reading up to 4K at a time. The target will throttle
1901 this number down if necessary. */
1902 buf_alloc = 4096;
1903 buf = xmalloc (buf_alloc);
1904 buf_pos = 0;
1905 while (1)
1906 {
1907 ULONGEST xfered_len;
1908 enum target_xfer_status status;
1909
1910 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1911 buf_pos, buf_alloc - buf_pos - padding,
1912 &xfered_len);
1913
1914 if (status == TARGET_XFER_EOF)
1915 {
1916 /* Read all there was. */
1917 if (buf_pos == 0)
1918 xfree (buf);
1919 else
1920 *buf_p = buf;
1921 return buf_pos;
1922 }
1923 else if (status != TARGET_XFER_OK)
1924 {
1925 /* An error occurred. */
1926 xfree (buf);
1927 return TARGET_XFER_E_IO;
1928 }
1929
1930 buf_pos += xfered_len;
1931
1932 /* If the buffer is filling up, expand it. */
1933 if (buf_alloc < buf_pos * 2)
1934 {
1935 buf_alloc *= 2;
1936 buf = xrealloc (buf, buf_alloc);
1937 }
1938
1939 QUIT;
1940 }
1941 }
1942
1943 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1944 the size of the transferred data. See the declaration in "target.h"
1945 function for more information about the return value. */
1946
1947 LONGEST
1948 target_read_alloc (struct target_ops *ops, enum target_object object,
1949 const char *annex, gdb_byte **buf_p)
1950 {
1951 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1952 }
1953
1954 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1955 returned as a string, allocated using xmalloc. If an error occurs
1956 or the transfer is unsupported, NULL is returned. Empty objects
1957 are returned as allocated but empty strings. A warning is issued
1958 if the result contains any embedded NUL bytes. */
1959
1960 char *
1961 target_read_stralloc (struct target_ops *ops, enum target_object object,
1962 const char *annex)
1963 {
1964 gdb_byte *buffer;
1965 char *bufstr;
1966 LONGEST i, transferred;
1967
1968 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1969 bufstr = (char *) buffer;
1970
1971 if (transferred < 0)
1972 return NULL;
1973
1974 if (transferred == 0)
1975 return xstrdup ("");
1976
1977 bufstr[transferred] = 0;
1978
1979 /* Check for embedded NUL bytes; but allow trailing NULs. */
1980 for (i = strlen (bufstr); i < transferred; i++)
1981 if (bufstr[i] != 0)
1982 {
1983 warning (_("target object %d, annex %s, "
1984 "contained unexpected null characters"),
1985 (int) object, annex ? annex : "(none)");
1986 break;
1987 }
1988
1989 return bufstr;
1990 }
1991
1992 /* Memory transfer methods. */
1993
1994 void
1995 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1996 LONGEST len)
1997 {
1998 /* This method is used to read from an alternate, non-current
1999 target. This read must bypass the overlay support (as symbols
2000 don't match this target), and GDB's internal cache (wrong cache
2001 for this target). */
2002 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2003 != len)
2004 memory_error (TARGET_XFER_E_IO, addr);
2005 }
2006
2007 ULONGEST
2008 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2009 int len, enum bfd_endian byte_order)
2010 {
2011 gdb_byte buf[sizeof (ULONGEST)];
2012
2013 gdb_assert (len <= sizeof (buf));
2014 get_target_memory (ops, addr, buf, len);
2015 return extract_unsigned_integer (buf, len, byte_order);
2016 }
2017
2018 /* See target.h. */
2019
2020 int
2021 target_insert_breakpoint (struct gdbarch *gdbarch,
2022 struct bp_target_info *bp_tgt)
2023 {
2024 if (!may_insert_breakpoints)
2025 {
2026 warning (_("May not insert breakpoints"));
2027 return 1;
2028 }
2029
2030 return current_target.to_insert_breakpoint (&current_target,
2031 gdbarch, bp_tgt);
2032 }
2033
2034 /* See target.h. */
2035
2036 int
2037 target_remove_breakpoint (struct gdbarch *gdbarch,
2038 struct bp_target_info *bp_tgt)
2039 {
2040 /* This is kind of a weird case to handle, but the permission might
2041 have been changed after breakpoints were inserted - in which case
2042 we should just take the user literally and assume that any
2043 breakpoints should be left in place. */
2044 if (!may_insert_breakpoints)
2045 {
2046 warning (_("May not remove breakpoints"));
2047 return 1;
2048 }
2049
2050 return current_target.to_remove_breakpoint (&current_target,
2051 gdbarch, bp_tgt);
2052 }
2053
2054 static void
2055 target_info (char *args, int from_tty)
2056 {
2057 struct target_ops *t;
2058 int has_all_mem = 0;
2059
2060 if (symfile_objfile != NULL)
2061 printf_unfiltered (_("Symbols from \"%s\".\n"),
2062 objfile_name (symfile_objfile));
2063
2064 for (t = target_stack; t != NULL; t = t->beneath)
2065 {
2066 if (!(*t->to_has_memory) (t))
2067 continue;
2068
2069 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2070 continue;
2071 if (has_all_mem)
2072 printf_unfiltered (_("\tWhile running this, "
2073 "GDB does not access memory from...\n"));
2074 printf_unfiltered ("%s:\n", t->to_longname);
2075 (t->to_files_info) (t);
2076 has_all_mem = (*t->to_has_all_memory) (t);
2077 }
2078 }
2079
2080 /* This function is called before any new inferior is created, e.g.
2081 by running a program, attaching, or connecting to a target.
2082 It cleans up any state from previous invocations which might
2083 change between runs. This is a subset of what target_preopen
2084 resets (things which might change between targets). */
2085
2086 void
2087 target_pre_inferior (int from_tty)
2088 {
2089 /* Clear out solib state. Otherwise the solib state of the previous
2090 inferior might have survived and is entirely wrong for the new
2091 target. This has been observed on GNU/Linux using glibc 2.3. How
2092 to reproduce:
2093
2094 bash$ ./foo&
2095 [1] 4711
2096 bash$ ./foo&
2097 [1] 4712
2098 bash$ gdb ./foo
2099 [...]
2100 (gdb) attach 4711
2101 (gdb) detach
2102 (gdb) attach 4712
2103 Cannot access memory at address 0xdeadbeef
2104 */
2105
2106 /* In some OSs, the shared library list is the same/global/shared
2107 across inferiors. If code is shared between processes, so are
2108 memory regions and features. */
2109 if (!gdbarch_has_global_solist (target_gdbarch ()))
2110 {
2111 no_shared_libraries (NULL, from_tty);
2112
2113 invalidate_target_mem_regions ();
2114
2115 target_clear_description ();
2116 }
2117
2118 agent_capability_invalidate ();
2119 }
2120
2121 /* Callback for iterate_over_inferiors. Gets rid of the given
2122 inferior. */
2123
2124 static int
2125 dispose_inferior (struct inferior *inf, void *args)
2126 {
2127 struct thread_info *thread;
2128
2129 thread = any_thread_of_process (inf->pid);
2130 if (thread)
2131 {
2132 switch_to_thread (thread->ptid);
2133
2134 /* Core inferiors actually should be detached, not killed. */
2135 if (target_has_execution)
2136 target_kill ();
2137 else
2138 target_detach (NULL, 0);
2139 }
2140
2141 return 0;
2142 }
2143
2144 /* This is to be called by the open routine before it does
2145 anything. */
2146
2147 void
2148 target_preopen (int from_tty)
2149 {
2150 dont_repeat ();
2151
2152 if (have_inferiors ())
2153 {
2154 if (!from_tty
2155 || !have_live_inferiors ()
2156 || query (_("A program is being debugged already. Kill it? ")))
2157 iterate_over_inferiors (dispose_inferior, NULL);
2158 else
2159 error (_("Program not killed."));
2160 }
2161
2162 /* Calling target_kill may remove the target from the stack. But if
2163 it doesn't (which seems like a win for UDI), remove it now. */
2164 /* Leave the exec target, though. The user may be switching from a
2165 live process to a core of the same program. */
2166 pop_all_targets_above (file_stratum);
2167
2168 target_pre_inferior (from_tty);
2169 }
2170
2171 /* Detach a target after doing deferred register stores. */
2172
2173 void
2174 target_detach (const char *args, int from_tty)
2175 {
2176 struct target_ops* t;
2177
2178 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2179 /* Don't remove global breakpoints here. They're removed on
2180 disconnection from the target. */
2181 ;
2182 else
2183 /* If we're in breakpoints-always-inserted mode, have to remove
2184 them before detaching. */
2185 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2186
2187 prepare_for_detach ();
2188
2189 current_target.to_detach (&current_target, args, from_tty);
2190 }
2191
2192 void
2193 target_disconnect (const char *args, int from_tty)
2194 {
2195 /* If we're in breakpoints-always-inserted mode or if breakpoints
2196 are global across processes, we have to remove them before
2197 disconnecting. */
2198 remove_breakpoints ();
2199
2200 current_target.to_disconnect (&current_target, args, from_tty);
2201 }
2202
2203 ptid_t
2204 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2205 {
2206 return (current_target.to_wait) (&current_target, ptid, status, options);
2207 }
2208
2209 char *
2210 target_pid_to_str (ptid_t ptid)
2211 {
2212 return (*current_target.to_pid_to_str) (&current_target, ptid);
2213 }
2214
2215 char *
2216 target_thread_name (struct thread_info *info)
2217 {
2218 return current_target.to_thread_name (&current_target, info);
2219 }
2220
2221 void
2222 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2223 {
2224 struct target_ops *t;
2225
2226 target_dcache_invalidate ();
2227
2228 current_target.to_resume (&current_target, ptid, step, signal);
2229
2230 registers_changed_ptid (ptid);
2231 /* We only set the internal executing state here. The user/frontend
2232 running state is set at a higher level. */
2233 set_executing (ptid, 1);
2234 clear_inline_frame_state (ptid);
2235 }
2236
2237 void
2238 target_pass_signals (int numsigs, unsigned char *pass_signals)
2239 {
2240 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2241 }
2242
2243 void
2244 target_program_signals (int numsigs, unsigned char *program_signals)
2245 {
2246 (*current_target.to_program_signals) (&current_target,
2247 numsigs, program_signals);
2248 }
2249
2250 static int
2251 default_follow_fork (struct target_ops *self, int follow_child,
2252 int detach_fork)
2253 {
2254 /* Some target returned a fork event, but did not know how to follow it. */
2255 internal_error (__FILE__, __LINE__,
2256 _("could not find a target to follow fork"));
2257 }
2258
2259 /* Look through the list of possible targets for a target that can
2260 follow forks. */
2261
2262 int
2263 target_follow_fork (int follow_child, int detach_fork)
2264 {
2265 return current_target.to_follow_fork (&current_target,
2266 follow_child, detach_fork);
2267 }
2268
2269 static void
2270 default_mourn_inferior (struct target_ops *self)
2271 {
2272 internal_error (__FILE__, __LINE__,
2273 _("could not find a target to follow mourn inferior"));
2274 }
2275
2276 void
2277 target_mourn_inferior (void)
2278 {
2279 current_target.to_mourn_inferior (&current_target);
2280
2281 /* We no longer need to keep handles on any of the object files.
2282 Make sure to release them to avoid unnecessarily locking any
2283 of them while we're not actually debugging. */
2284 bfd_cache_close_all ();
2285 }
2286
2287 /* Look for a target which can describe architectural features, starting
2288 from TARGET. If we find one, return its description. */
2289
2290 const struct target_desc *
2291 target_read_description (struct target_ops *target)
2292 {
2293 return target->to_read_description (target);
2294 }
2295
2296 /* This implements a basic search of memory, reading target memory and
2297 performing the search here (as opposed to performing the search in on the
2298 target side with, for example, gdbserver). */
2299
2300 int
2301 simple_search_memory (struct target_ops *ops,
2302 CORE_ADDR start_addr, ULONGEST search_space_len,
2303 const gdb_byte *pattern, ULONGEST pattern_len,
2304 CORE_ADDR *found_addrp)
2305 {
2306 /* NOTE: also defined in find.c testcase. */
2307 #define SEARCH_CHUNK_SIZE 16000
2308 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2309 /* Buffer to hold memory contents for searching. */
2310 gdb_byte *search_buf;
2311 unsigned search_buf_size;
2312 struct cleanup *old_cleanups;
2313
2314 search_buf_size = chunk_size + pattern_len - 1;
2315
2316 /* No point in trying to allocate a buffer larger than the search space. */
2317 if (search_space_len < search_buf_size)
2318 search_buf_size = search_space_len;
2319
2320 search_buf = malloc (search_buf_size);
2321 if (search_buf == NULL)
2322 error (_("Unable to allocate memory to perform the search."));
2323 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2324
2325 /* Prime the search buffer. */
2326
2327 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2328 search_buf, start_addr, search_buf_size) != search_buf_size)
2329 {
2330 warning (_("Unable to access %s bytes of target "
2331 "memory at %s, halting search."),
2332 pulongest (search_buf_size), hex_string (start_addr));
2333 do_cleanups (old_cleanups);
2334 return -1;
2335 }
2336
2337 /* Perform the search.
2338
2339 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2340 When we've scanned N bytes we copy the trailing bytes to the start and
2341 read in another N bytes. */
2342
2343 while (search_space_len >= pattern_len)
2344 {
2345 gdb_byte *found_ptr;
2346 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2347
2348 found_ptr = memmem (search_buf, nr_search_bytes,
2349 pattern, pattern_len);
2350
2351 if (found_ptr != NULL)
2352 {
2353 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2354
2355 *found_addrp = found_addr;
2356 do_cleanups (old_cleanups);
2357 return 1;
2358 }
2359
2360 /* Not found in this chunk, skip to next chunk. */
2361
2362 /* Don't let search_space_len wrap here, it's unsigned. */
2363 if (search_space_len >= chunk_size)
2364 search_space_len -= chunk_size;
2365 else
2366 search_space_len = 0;
2367
2368 if (search_space_len >= pattern_len)
2369 {
2370 unsigned keep_len = search_buf_size - chunk_size;
2371 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2372 int nr_to_read;
2373
2374 /* Copy the trailing part of the previous iteration to the front
2375 of the buffer for the next iteration. */
2376 gdb_assert (keep_len == pattern_len - 1);
2377 memcpy (search_buf, search_buf + chunk_size, keep_len);
2378
2379 nr_to_read = min (search_space_len - keep_len, chunk_size);
2380
2381 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2382 search_buf + keep_len, read_addr,
2383 nr_to_read) != nr_to_read)
2384 {
2385 warning (_("Unable to access %s bytes of target "
2386 "memory at %s, halting search."),
2387 plongest (nr_to_read),
2388 hex_string (read_addr));
2389 do_cleanups (old_cleanups);
2390 return -1;
2391 }
2392
2393 start_addr += chunk_size;
2394 }
2395 }
2396
2397 /* Not found. */
2398
2399 do_cleanups (old_cleanups);
2400 return 0;
2401 }
2402
2403 /* Default implementation of memory-searching. */
2404
2405 static int
2406 default_search_memory (struct target_ops *self,
2407 CORE_ADDR start_addr, ULONGEST search_space_len,
2408 const gdb_byte *pattern, ULONGEST pattern_len,
2409 CORE_ADDR *found_addrp)
2410 {
2411 /* Start over from the top of the target stack. */
2412 return simple_search_memory (current_target.beneath,
2413 start_addr, search_space_len,
2414 pattern, pattern_len, found_addrp);
2415 }
2416
2417 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2418 sequence of bytes in PATTERN with length PATTERN_LEN.
2419
2420 The result is 1 if found, 0 if not found, and -1 if there was an error
2421 requiring halting of the search (e.g. memory read error).
2422 If the pattern is found the address is recorded in FOUND_ADDRP. */
2423
2424 int
2425 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2426 const gdb_byte *pattern, ULONGEST pattern_len,
2427 CORE_ADDR *found_addrp)
2428 {
2429 return current_target.to_search_memory (&current_target, start_addr,
2430 search_space_len,
2431 pattern, pattern_len, found_addrp);
2432 }
2433
2434 /* Look through the currently pushed targets. If none of them will
2435 be able to restart the currently running process, issue an error
2436 message. */
2437
2438 void
2439 target_require_runnable (void)
2440 {
2441 struct target_ops *t;
2442
2443 for (t = target_stack; t != NULL; t = t->beneath)
2444 {
2445 /* If this target knows how to create a new program, then
2446 assume we will still be able to after killing the current
2447 one. Either killing and mourning will not pop T, or else
2448 find_default_run_target will find it again. */
2449 if (t->to_create_inferior != NULL)
2450 return;
2451
2452 /* Do not worry about targets at certain strata that can not
2453 create inferiors. Assume they will be pushed again if
2454 necessary, and continue to the process_stratum. */
2455 if (t->to_stratum == thread_stratum
2456 || t->to_stratum == record_stratum
2457 || t->to_stratum == arch_stratum)
2458 continue;
2459
2460 error (_("The \"%s\" target does not support \"run\". "
2461 "Try \"help target\" or \"continue\"."),
2462 t->to_shortname);
2463 }
2464
2465 /* This function is only called if the target is running. In that
2466 case there should have been a process_stratum target and it
2467 should either know how to create inferiors, or not... */
2468 internal_error (__FILE__, __LINE__, _("No targets found"));
2469 }
2470
2471 /* Whether GDB is allowed to fall back to the default run target for
2472 "run", "attach", etc. when no target is connected yet. */
2473 static int auto_connect_native_target = 1;
2474
2475 static void
2476 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2477 struct cmd_list_element *c, const char *value)
2478 {
2479 fprintf_filtered (file,
2480 _("Whether GDB may automatically connect to the "
2481 "native target is %s.\n"),
2482 value);
2483 }
2484
2485 /* Look through the list of possible targets for a target that can
2486 execute a run or attach command without any other data. This is
2487 used to locate the default process stratum.
2488
2489 If DO_MESG is not NULL, the result is always valid (error() is
2490 called for errors); else, return NULL on error. */
2491
2492 static struct target_ops *
2493 find_default_run_target (char *do_mesg)
2494 {
2495 struct target_ops *runable = NULL;
2496
2497 if (auto_connect_native_target)
2498 {
2499 struct target_ops *t;
2500 int count = 0;
2501 int i;
2502
2503 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2504 {
2505 if (t->to_can_run != delegate_can_run && target_can_run (t))
2506 {
2507 runable = t;
2508 ++count;
2509 }
2510 }
2511
2512 if (count != 1)
2513 runable = NULL;
2514 }
2515
2516 if (runable == NULL)
2517 {
2518 if (do_mesg)
2519 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2520 else
2521 return NULL;
2522 }
2523
2524 return runable;
2525 }
2526
2527 /* See target.h. */
2528
2529 struct target_ops *
2530 find_attach_target (void)
2531 {
2532 struct target_ops *t;
2533
2534 /* If a target on the current stack can attach, use it. */
2535 for (t = current_target.beneath; t != NULL; t = t->beneath)
2536 {
2537 if (t->to_attach != NULL)
2538 break;
2539 }
2540
2541 /* Otherwise, use the default run target for attaching. */
2542 if (t == NULL)
2543 t = find_default_run_target ("attach");
2544
2545 return t;
2546 }
2547
2548 /* See target.h. */
2549
2550 struct target_ops *
2551 find_run_target (void)
2552 {
2553 struct target_ops *t;
2554
2555 /* If a target on the current stack can attach, use it. */
2556 for (t = current_target.beneath; t != NULL; t = t->beneath)
2557 {
2558 if (t->to_create_inferior != NULL)
2559 break;
2560 }
2561
2562 /* Otherwise, use the default run target. */
2563 if (t == NULL)
2564 t = find_default_run_target ("run");
2565
2566 return t;
2567 }
2568
2569 /* Implement the "info proc" command. */
2570
2571 int
2572 target_info_proc (const char *args, enum info_proc_what what)
2573 {
2574 struct target_ops *t;
2575
2576 /* If we're already connected to something that can get us OS
2577 related data, use it. Otherwise, try using the native
2578 target. */
2579 if (current_target.to_stratum >= process_stratum)
2580 t = current_target.beneath;
2581 else
2582 t = find_default_run_target (NULL);
2583
2584 for (; t != NULL; t = t->beneath)
2585 {
2586 if (t->to_info_proc != NULL)
2587 {
2588 t->to_info_proc (t, args, what);
2589
2590 if (targetdebug)
2591 fprintf_unfiltered (gdb_stdlog,
2592 "target_info_proc (\"%s\", %d)\n", args, what);
2593
2594 return 1;
2595 }
2596 }
2597
2598 return 0;
2599 }
2600
2601 static int
2602 find_default_supports_disable_randomization (struct target_ops *self)
2603 {
2604 struct target_ops *t;
2605
2606 t = find_default_run_target (NULL);
2607 if (t && t->to_supports_disable_randomization)
2608 return (t->to_supports_disable_randomization) (t);
2609 return 0;
2610 }
2611
2612 int
2613 target_supports_disable_randomization (void)
2614 {
2615 struct target_ops *t;
2616
2617 for (t = &current_target; t != NULL; t = t->beneath)
2618 if (t->to_supports_disable_randomization)
2619 return t->to_supports_disable_randomization (t);
2620
2621 return 0;
2622 }
2623
2624 char *
2625 target_get_osdata (const char *type)
2626 {
2627 struct target_ops *t;
2628
2629 /* If we're already connected to something that can get us OS
2630 related data, use it. Otherwise, try using the native
2631 target. */
2632 if (current_target.to_stratum >= process_stratum)
2633 t = current_target.beneath;
2634 else
2635 t = find_default_run_target ("get OS data");
2636
2637 if (!t)
2638 return NULL;
2639
2640 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2641 }
2642
2643 static struct address_space *
2644 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2645 {
2646 struct inferior *inf;
2647
2648 /* Fall-back to the "main" address space of the inferior. */
2649 inf = find_inferior_ptid (ptid);
2650
2651 if (inf == NULL || inf->aspace == NULL)
2652 internal_error (__FILE__, __LINE__,
2653 _("Can't determine the current "
2654 "address space of thread %s\n"),
2655 target_pid_to_str (ptid));
2656
2657 return inf->aspace;
2658 }
2659
2660 /* Determine the current address space of thread PTID. */
2661
2662 struct address_space *
2663 target_thread_address_space (ptid_t ptid)
2664 {
2665 struct address_space *aspace;
2666
2667 aspace = current_target.to_thread_address_space (&current_target, ptid);
2668 gdb_assert (aspace != NULL);
2669
2670 return aspace;
2671 }
2672
2673
2674 /* Target file operations. */
2675
2676 static struct target_ops *
2677 default_fileio_target (void)
2678 {
2679 /* If we're already connected to something that can perform
2680 file I/O, use it. Otherwise, try using the native target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 return current_target.beneath;
2683 else
2684 return find_default_run_target ("file I/O");
2685 }
2686
2687 /* File handle for target file operations. */
2688
2689 typedef struct
2690 {
2691 /* The target on which this file is open. */
2692 struct target_ops *t;
2693
2694 /* The file descriptor on the target. */
2695 int fd;
2696 } fileio_fh_t;
2697
2698 DEF_VEC_O (fileio_fh_t);
2699
2700 /* Vector of currently open file handles. The value returned by
2701 target_fileio_open and passed as the FD argument to other
2702 target_fileio_* functions is an index into this vector. This
2703 vector's entries are never freed; instead, files are marked as
2704 closed, and the handle becomes available for reuse. */
2705 static VEC (fileio_fh_t) *fileio_fhandles;
2706
2707 /* Macro to check whether a fileio_fh_t represents a closed file. */
2708 #define is_closed_fileio_fh(fd) ((fd) < 0)
2709
2710 /* Index into fileio_fhandles of the lowest handle that might be
2711 closed. This permits handle reuse without searching the whole
2712 list each time a new file is opened. */
2713 static int lowest_closed_fd;
2714
2715 /* Acquire a target fileio file descriptor. */
2716
2717 static int
2718 acquire_fileio_fd (struct target_ops *t, int fd)
2719 {
2720 fileio_fh_t *fh, buf;
2721
2722 gdb_assert (!is_closed_fileio_fh (fd));
2723
2724 /* Search for closed handles to reuse. */
2725 for (;
2726 VEC_iterate (fileio_fh_t, fileio_fhandles,
2727 lowest_closed_fd, fh);
2728 lowest_closed_fd++)
2729 if (is_closed_fileio_fh (fh->fd))
2730 break;
2731
2732 /* Push a new handle if no closed handles were found. */
2733 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2734 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2735
2736 /* Fill in the handle. */
2737 fh->t = t;
2738 fh->fd = fd;
2739
2740 /* Return its index, and start the next lookup at
2741 the next index. */
2742 return lowest_closed_fd++;
2743 }
2744
2745 /* Release a target fileio file descriptor. */
2746
2747 static void
2748 release_fileio_fd (int fd, fileio_fh_t *fh)
2749 {
2750 fh->fd = -1;
2751 lowest_closed_fd = min (lowest_closed_fd, fd);
2752 }
2753
2754 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2755
2756 #define fileio_fd_to_fh(fd) \
2757 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2758
2759 /* See target.h. */
2760
2761 int
2762 target_fileio_open (struct inferior *inf, const char *filename,
2763 int flags, int mode, int *target_errno)
2764 {
2765 struct target_ops *t;
2766
2767 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2768 {
2769 if (t->to_fileio_open != NULL)
2770 {
2771 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2772 target_errno);
2773
2774 if (fd < 0)
2775 fd = -1;
2776 else
2777 fd = acquire_fileio_fd (t, fd);
2778
2779 if (targetdebug)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "target_fileio_open (%d,%s,0x%x,0%o)"
2782 " = %d (%d)\n",
2783 inf == NULL ? 0 : inf->num,
2784 filename, flags, mode,
2785 fd, fd != -1 ? 0 : *target_errno);
2786 return fd;
2787 }
2788 }
2789
2790 *target_errno = FILEIO_ENOSYS;
2791 return -1;
2792 }
2793
2794 /* See target.h. */
2795
2796 int
2797 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2798 ULONGEST offset, int *target_errno)
2799 {
2800 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2801 int ret = -1;
2802
2803 if (is_closed_fileio_fh (fh->fd))
2804 *target_errno = EBADF;
2805 else
2806 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2807 len, offset, target_errno);
2808
2809 if (targetdebug)
2810 fprintf_unfiltered (gdb_stdlog,
2811 "target_fileio_pwrite (%d,...,%d,%s) "
2812 "= %d (%d)\n",
2813 fd, len, pulongest (offset),
2814 ret, ret != -1 ? 0 : *target_errno);
2815 return ret;
2816 }
2817
2818 /* See target.h. */
2819
2820 int
2821 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2822 ULONGEST offset, int *target_errno)
2823 {
2824 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2825 int ret = -1;
2826
2827 if (is_closed_fileio_fh (fh->fd))
2828 *target_errno = EBADF;
2829 else
2830 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2831 len, offset, target_errno);
2832
2833 if (targetdebug)
2834 fprintf_unfiltered (gdb_stdlog,
2835 "target_fileio_pread (%d,...,%d,%s) "
2836 "= %d (%d)\n",
2837 fd, len, pulongest (offset),
2838 ret, ret != -1 ? 0 : *target_errno);
2839 return ret;
2840 }
2841
2842 /* See target.h. */
2843
2844 int
2845 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2846 {
2847 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2848 int ret = -1;
2849
2850 if (is_closed_fileio_fh (fh->fd))
2851 *target_errno = EBADF;
2852 else
2853 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2854
2855 if (targetdebug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_fileio_fstat (%d) = %d (%d)\n",
2858 fd, ret, ret != -1 ? 0 : *target_errno);
2859 return ret;
2860 }
2861
2862 /* See target.h. */
2863
2864 int
2865 target_fileio_close (int fd, int *target_errno)
2866 {
2867 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2868 int ret = -1;
2869
2870 if (is_closed_fileio_fh (fh->fd))
2871 *target_errno = EBADF;
2872 else
2873 {
2874 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2875 release_fileio_fd (fd, fh);
2876 }
2877
2878 if (targetdebug)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "target_fileio_close (%d) = %d (%d)\n",
2881 fd, ret, ret != -1 ? 0 : *target_errno);
2882 return ret;
2883 }
2884
2885 /* See target.h. */
2886
2887 int
2888 target_fileio_unlink (struct inferior *inf, const char *filename,
2889 int *target_errno)
2890 {
2891 struct target_ops *t;
2892
2893 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2894 {
2895 if (t->to_fileio_unlink != NULL)
2896 {
2897 int ret = t->to_fileio_unlink (t, inf, filename,
2898 target_errno);
2899
2900 if (targetdebug)
2901 fprintf_unfiltered (gdb_stdlog,
2902 "target_fileio_unlink (%d,%s)"
2903 " = %d (%d)\n",
2904 inf == NULL ? 0 : inf->num, filename,
2905 ret, ret != -1 ? 0 : *target_errno);
2906 return ret;
2907 }
2908 }
2909
2910 *target_errno = FILEIO_ENOSYS;
2911 return -1;
2912 }
2913
2914 /* See target.h. */
2915
2916 char *
2917 target_fileio_readlink (struct inferior *inf, const char *filename,
2918 int *target_errno)
2919 {
2920 struct target_ops *t;
2921
2922 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2923 {
2924 if (t->to_fileio_readlink != NULL)
2925 {
2926 char *ret = t->to_fileio_readlink (t, inf, filename,
2927 target_errno);
2928
2929 if (targetdebug)
2930 fprintf_unfiltered (gdb_stdlog,
2931 "target_fileio_readlink (%d,%s)"
2932 " = %s (%d)\n",
2933 inf == NULL ? 0 : inf->num,
2934 filename, ret? ret : "(nil)",
2935 ret? 0 : *target_errno);
2936 return ret;
2937 }
2938 }
2939
2940 *target_errno = FILEIO_ENOSYS;
2941 return NULL;
2942 }
2943
2944 static void
2945 target_fileio_close_cleanup (void *opaque)
2946 {
2947 int fd = *(int *) opaque;
2948 int target_errno;
2949
2950 target_fileio_close (fd, &target_errno);
2951 }
2952
2953 /* Read target file FILENAME, in the filesystem as seen by INF. If
2954 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2955 remote targets, the remote stub). Store the result in *BUF_P and
2956 return the size of the transferred data. PADDING additional bytes
2957 are available in *BUF_P. This is a helper function for
2958 target_fileio_read_alloc; see the declaration of that function for
2959 more information. */
2960
2961 static LONGEST
2962 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2963 gdb_byte **buf_p, int padding)
2964 {
2965 struct cleanup *close_cleanup;
2966 size_t buf_alloc, buf_pos;
2967 gdb_byte *buf;
2968 LONGEST n;
2969 int fd;
2970 int target_errno;
2971
2972 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
2973 &target_errno);
2974 if (fd == -1)
2975 return -1;
2976
2977 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2978
2979 /* Start by reading up to 4K at a time. The target will throttle
2980 this number down if necessary. */
2981 buf_alloc = 4096;
2982 buf = xmalloc (buf_alloc);
2983 buf_pos = 0;
2984 while (1)
2985 {
2986 n = target_fileio_pread (fd, &buf[buf_pos],
2987 buf_alloc - buf_pos - padding, buf_pos,
2988 &target_errno);
2989 if (n < 0)
2990 {
2991 /* An error occurred. */
2992 do_cleanups (close_cleanup);
2993 xfree (buf);
2994 return -1;
2995 }
2996 else if (n == 0)
2997 {
2998 /* Read all there was. */
2999 do_cleanups (close_cleanup);
3000 if (buf_pos == 0)
3001 xfree (buf);
3002 else
3003 *buf_p = buf;
3004 return buf_pos;
3005 }
3006
3007 buf_pos += n;
3008
3009 /* If the buffer is filling up, expand it. */
3010 if (buf_alloc < buf_pos * 2)
3011 {
3012 buf_alloc *= 2;
3013 buf = xrealloc (buf, buf_alloc);
3014 }
3015
3016 QUIT;
3017 }
3018 }
3019
3020 /* See target.h. */
3021
3022 LONGEST
3023 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3024 gdb_byte **buf_p)
3025 {
3026 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3027 }
3028
3029 /* See target.h. */
3030
3031 char *
3032 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3033 {
3034 gdb_byte *buffer;
3035 char *bufstr;
3036 LONGEST i, transferred;
3037
3038 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3039 bufstr = (char *) buffer;
3040
3041 if (transferred < 0)
3042 return NULL;
3043
3044 if (transferred == 0)
3045 return xstrdup ("");
3046
3047 bufstr[transferred] = 0;
3048
3049 /* Check for embedded NUL bytes; but allow trailing NULs. */
3050 for (i = strlen (bufstr); i < transferred; i++)
3051 if (bufstr[i] != 0)
3052 {
3053 warning (_("target file %s "
3054 "contained unexpected null characters"),
3055 filename);
3056 break;
3057 }
3058
3059 return bufstr;
3060 }
3061
3062
3063 static int
3064 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3065 CORE_ADDR addr, int len)
3066 {
3067 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3068 }
3069
3070 static int
3071 default_watchpoint_addr_within_range (struct target_ops *target,
3072 CORE_ADDR addr,
3073 CORE_ADDR start, int length)
3074 {
3075 return addr >= start && addr < start + length;
3076 }
3077
3078 static struct gdbarch *
3079 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3080 {
3081 return target_gdbarch ();
3082 }
3083
3084 static int
3085 return_zero (struct target_ops *ignore)
3086 {
3087 return 0;
3088 }
3089
3090 static int
3091 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3092 {
3093 return 0;
3094 }
3095
3096 /*
3097 * Find the next target down the stack from the specified target.
3098 */
3099
3100 struct target_ops *
3101 find_target_beneath (struct target_ops *t)
3102 {
3103 return t->beneath;
3104 }
3105
3106 /* See target.h. */
3107
3108 struct target_ops *
3109 find_target_at (enum strata stratum)
3110 {
3111 struct target_ops *t;
3112
3113 for (t = current_target.beneath; t != NULL; t = t->beneath)
3114 if (t->to_stratum == stratum)
3115 return t;
3116
3117 return NULL;
3118 }
3119
3120 \f
3121 /* The inferior process has died. Long live the inferior! */
3122
3123 void
3124 generic_mourn_inferior (void)
3125 {
3126 ptid_t ptid;
3127
3128 ptid = inferior_ptid;
3129 inferior_ptid = null_ptid;
3130
3131 /* Mark breakpoints uninserted in case something tries to delete a
3132 breakpoint while we delete the inferior's threads (which would
3133 fail, since the inferior is long gone). */
3134 mark_breakpoints_out ();
3135
3136 if (!ptid_equal (ptid, null_ptid))
3137 {
3138 int pid = ptid_get_pid (ptid);
3139 exit_inferior (pid);
3140 }
3141
3142 /* Note this wipes step-resume breakpoints, so needs to be done
3143 after exit_inferior, which ends up referencing the step-resume
3144 breakpoints through clear_thread_inferior_resources. */
3145 breakpoint_init_inferior (inf_exited);
3146
3147 registers_changed ();
3148
3149 reopen_exec_file ();
3150 reinit_frame_cache ();
3151
3152 if (deprecated_detach_hook)
3153 deprecated_detach_hook ();
3154 }
3155 \f
3156 /* Convert a normal process ID to a string. Returns the string in a
3157 static buffer. */
3158
3159 char *
3160 normal_pid_to_str (ptid_t ptid)
3161 {
3162 static char buf[32];
3163
3164 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3165 return buf;
3166 }
3167
3168 static char *
3169 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3170 {
3171 return normal_pid_to_str (ptid);
3172 }
3173
3174 /* Error-catcher for target_find_memory_regions. */
3175 static int
3176 dummy_find_memory_regions (struct target_ops *self,
3177 find_memory_region_ftype ignore1, void *ignore2)
3178 {
3179 error (_("Command not implemented for this target."));
3180 return 0;
3181 }
3182
3183 /* Error-catcher for target_make_corefile_notes. */
3184 static char *
3185 dummy_make_corefile_notes (struct target_ops *self,
3186 bfd *ignore1, int *ignore2)
3187 {
3188 error (_("Command not implemented for this target."));
3189 return NULL;
3190 }
3191
3192 /* Set up the handful of non-empty slots needed by the dummy target
3193 vector. */
3194
3195 static void
3196 init_dummy_target (void)
3197 {
3198 dummy_target.to_shortname = "None";
3199 dummy_target.to_longname = "None";
3200 dummy_target.to_doc = "";
3201 dummy_target.to_supports_disable_randomization
3202 = find_default_supports_disable_randomization;
3203 dummy_target.to_stratum = dummy_stratum;
3204 dummy_target.to_has_all_memory = return_zero;
3205 dummy_target.to_has_memory = return_zero;
3206 dummy_target.to_has_stack = return_zero;
3207 dummy_target.to_has_registers = return_zero;
3208 dummy_target.to_has_execution = return_zero_has_execution;
3209 dummy_target.to_magic = OPS_MAGIC;
3210
3211 install_dummy_methods (&dummy_target);
3212 }
3213 \f
3214
3215 void
3216 target_close (struct target_ops *targ)
3217 {
3218 gdb_assert (!target_is_pushed (targ));
3219
3220 if (targ->to_xclose != NULL)
3221 targ->to_xclose (targ);
3222 else if (targ->to_close != NULL)
3223 targ->to_close (targ);
3224
3225 if (targetdebug)
3226 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3227 }
3228
3229 int
3230 target_thread_alive (ptid_t ptid)
3231 {
3232 return current_target.to_thread_alive (&current_target, ptid);
3233 }
3234
3235 void
3236 target_update_thread_list (void)
3237 {
3238 current_target.to_update_thread_list (&current_target);
3239 }
3240
3241 void
3242 target_stop (ptid_t ptid)
3243 {
3244 if (!may_stop)
3245 {
3246 warning (_("May not interrupt or stop the target, ignoring attempt"));
3247 return;
3248 }
3249
3250 (*current_target.to_stop) (&current_target, ptid);
3251 }
3252
3253 /* See target/target.h. */
3254
3255 void
3256 target_stop_and_wait (ptid_t ptid)
3257 {
3258 struct target_waitstatus status;
3259 int was_non_stop = non_stop;
3260
3261 non_stop = 1;
3262 target_stop (ptid);
3263
3264 memset (&status, 0, sizeof (status));
3265 target_wait (ptid, &status, 0);
3266
3267 non_stop = was_non_stop;
3268 }
3269
3270 /* See target/target.h. */
3271
3272 void
3273 target_continue_no_signal (ptid_t ptid)
3274 {
3275 target_resume (ptid, 0, GDB_SIGNAL_0);
3276 }
3277
3278 /* Concatenate ELEM to LIST, a comma separate list, and return the
3279 result. The LIST incoming argument is released. */
3280
3281 static char *
3282 str_comma_list_concat_elem (char *list, const char *elem)
3283 {
3284 if (list == NULL)
3285 return xstrdup (elem);
3286 else
3287 return reconcat (list, list, ", ", elem, (char *) NULL);
3288 }
3289
3290 /* Helper for target_options_to_string. If OPT is present in
3291 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3292 Returns the new resulting string. OPT is removed from
3293 TARGET_OPTIONS. */
3294
3295 static char *
3296 do_option (int *target_options, char *ret,
3297 int opt, char *opt_str)
3298 {
3299 if ((*target_options & opt) != 0)
3300 {
3301 ret = str_comma_list_concat_elem (ret, opt_str);
3302 *target_options &= ~opt;
3303 }
3304
3305 return ret;
3306 }
3307
3308 char *
3309 target_options_to_string (int target_options)
3310 {
3311 char *ret = NULL;
3312
3313 #define DO_TARG_OPTION(OPT) \
3314 ret = do_option (&target_options, ret, OPT, #OPT)
3315
3316 DO_TARG_OPTION (TARGET_WNOHANG);
3317
3318 if (target_options != 0)
3319 ret = str_comma_list_concat_elem (ret, "unknown???");
3320
3321 if (ret == NULL)
3322 ret = xstrdup ("");
3323 return ret;
3324 }
3325
3326 static void
3327 debug_print_register (const char * func,
3328 struct regcache *regcache, int regno)
3329 {
3330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3331
3332 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3333 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3334 && gdbarch_register_name (gdbarch, regno) != NULL
3335 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3336 fprintf_unfiltered (gdb_stdlog, "(%s)",
3337 gdbarch_register_name (gdbarch, regno));
3338 else
3339 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3340 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3341 {
3342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3343 int i, size = register_size (gdbarch, regno);
3344 gdb_byte buf[MAX_REGISTER_SIZE];
3345
3346 regcache_raw_collect (regcache, regno, buf);
3347 fprintf_unfiltered (gdb_stdlog, " = ");
3348 for (i = 0; i < size; i++)
3349 {
3350 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3351 }
3352 if (size <= sizeof (LONGEST))
3353 {
3354 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3355
3356 fprintf_unfiltered (gdb_stdlog, " %s %s",
3357 core_addr_to_string_nz (val), plongest (val));
3358 }
3359 }
3360 fprintf_unfiltered (gdb_stdlog, "\n");
3361 }
3362
3363 void
3364 target_fetch_registers (struct regcache *regcache, int regno)
3365 {
3366 current_target.to_fetch_registers (&current_target, regcache, regno);
3367 if (targetdebug)
3368 debug_print_register ("target_fetch_registers", regcache, regno);
3369 }
3370
3371 void
3372 target_store_registers (struct regcache *regcache, int regno)
3373 {
3374 struct target_ops *t;
3375
3376 if (!may_write_registers)
3377 error (_("Writing to registers is not allowed (regno %d)"), regno);
3378
3379 current_target.to_store_registers (&current_target, regcache, regno);
3380 if (targetdebug)
3381 {
3382 debug_print_register ("target_store_registers", regcache, regno);
3383 }
3384 }
3385
3386 int
3387 target_core_of_thread (ptid_t ptid)
3388 {
3389 return current_target.to_core_of_thread (&current_target, ptid);
3390 }
3391
3392 int
3393 simple_verify_memory (struct target_ops *ops,
3394 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3395 {
3396 LONGEST total_xfered = 0;
3397
3398 while (total_xfered < size)
3399 {
3400 ULONGEST xfered_len;
3401 enum target_xfer_status status;
3402 gdb_byte buf[1024];
3403 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3404
3405 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3406 buf, NULL, lma + total_xfered, howmuch,
3407 &xfered_len);
3408 if (status == TARGET_XFER_OK
3409 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3410 {
3411 total_xfered += xfered_len;
3412 QUIT;
3413 }
3414 else
3415 return 0;
3416 }
3417 return 1;
3418 }
3419
3420 /* Default implementation of memory verification. */
3421
3422 static int
3423 default_verify_memory (struct target_ops *self,
3424 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3425 {
3426 /* Start over from the top of the target stack. */
3427 return simple_verify_memory (current_target.beneath,
3428 data, memaddr, size);
3429 }
3430
3431 int
3432 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3433 {
3434 return current_target.to_verify_memory (&current_target,
3435 data, memaddr, size);
3436 }
3437
3438 /* The documentation for this function is in its prototype declaration in
3439 target.h. */
3440
3441 int
3442 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3443 {
3444 return current_target.to_insert_mask_watchpoint (&current_target,
3445 addr, mask, rw);
3446 }
3447
3448 /* The documentation for this function is in its prototype declaration in
3449 target.h. */
3450
3451 int
3452 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3453 {
3454 return current_target.to_remove_mask_watchpoint (&current_target,
3455 addr, mask, rw);
3456 }
3457
3458 /* The documentation for this function is in its prototype declaration
3459 in target.h. */
3460
3461 int
3462 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3463 {
3464 return current_target.to_masked_watch_num_registers (&current_target,
3465 addr, mask);
3466 }
3467
3468 /* The documentation for this function is in its prototype declaration
3469 in target.h. */
3470
3471 int
3472 target_ranged_break_num_registers (void)
3473 {
3474 return current_target.to_ranged_break_num_registers (&current_target);
3475 }
3476
3477 /* See target.h. */
3478
3479 int
3480 target_supports_btrace (enum btrace_format format)
3481 {
3482 return current_target.to_supports_btrace (&current_target, format);
3483 }
3484
3485 /* See target.h. */
3486
3487 struct btrace_target_info *
3488 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3489 {
3490 return current_target.to_enable_btrace (&current_target, ptid, conf);
3491 }
3492
3493 /* See target.h. */
3494
3495 void
3496 target_disable_btrace (struct btrace_target_info *btinfo)
3497 {
3498 current_target.to_disable_btrace (&current_target, btinfo);
3499 }
3500
3501 /* See target.h. */
3502
3503 void
3504 target_teardown_btrace (struct btrace_target_info *btinfo)
3505 {
3506 current_target.to_teardown_btrace (&current_target, btinfo);
3507 }
3508
3509 /* See target.h. */
3510
3511 enum btrace_error
3512 target_read_btrace (struct btrace_data *btrace,
3513 struct btrace_target_info *btinfo,
3514 enum btrace_read_type type)
3515 {
3516 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3517 }
3518
3519 /* See target.h. */
3520
3521 const struct btrace_config *
3522 target_btrace_conf (const struct btrace_target_info *btinfo)
3523 {
3524 return current_target.to_btrace_conf (&current_target, btinfo);
3525 }
3526
3527 /* See target.h. */
3528
3529 void
3530 target_stop_recording (void)
3531 {
3532 current_target.to_stop_recording (&current_target);
3533 }
3534
3535 /* See target.h. */
3536
3537 void
3538 target_save_record (const char *filename)
3539 {
3540 current_target.to_save_record (&current_target, filename);
3541 }
3542
3543 /* See target.h. */
3544
3545 int
3546 target_supports_delete_record (void)
3547 {
3548 struct target_ops *t;
3549
3550 for (t = current_target.beneath; t != NULL; t = t->beneath)
3551 if (t->to_delete_record != delegate_delete_record
3552 && t->to_delete_record != tdefault_delete_record)
3553 return 1;
3554
3555 return 0;
3556 }
3557
3558 /* See target.h. */
3559
3560 void
3561 target_delete_record (void)
3562 {
3563 current_target.to_delete_record (&current_target);
3564 }
3565
3566 /* See target.h. */
3567
3568 int
3569 target_record_is_replaying (void)
3570 {
3571 return current_target.to_record_is_replaying (&current_target);
3572 }
3573
3574 /* See target.h. */
3575
3576 void
3577 target_goto_record_begin (void)
3578 {
3579 current_target.to_goto_record_begin (&current_target);
3580 }
3581
3582 /* See target.h. */
3583
3584 void
3585 target_goto_record_end (void)
3586 {
3587 current_target.to_goto_record_end (&current_target);
3588 }
3589
3590 /* See target.h. */
3591
3592 void
3593 target_goto_record (ULONGEST insn)
3594 {
3595 current_target.to_goto_record (&current_target, insn);
3596 }
3597
3598 /* See target.h. */
3599
3600 void
3601 target_insn_history (int size, int flags)
3602 {
3603 current_target.to_insn_history (&current_target, size, flags);
3604 }
3605
3606 /* See target.h. */
3607
3608 void
3609 target_insn_history_from (ULONGEST from, int size, int flags)
3610 {
3611 current_target.to_insn_history_from (&current_target, from, size, flags);
3612 }
3613
3614 /* See target.h. */
3615
3616 void
3617 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3618 {
3619 current_target.to_insn_history_range (&current_target, begin, end, flags);
3620 }
3621
3622 /* See target.h. */
3623
3624 void
3625 target_call_history (int size, int flags)
3626 {
3627 current_target.to_call_history (&current_target, size, flags);
3628 }
3629
3630 /* See target.h. */
3631
3632 void
3633 target_call_history_from (ULONGEST begin, int size, int flags)
3634 {
3635 current_target.to_call_history_from (&current_target, begin, size, flags);
3636 }
3637
3638 /* See target.h. */
3639
3640 void
3641 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3642 {
3643 current_target.to_call_history_range (&current_target, begin, end, flags);
3644 }
3645
3646 /* See target.h. */
3647
3648 const struct frame_unwind *
3649 target_get_unwinder (void)
3650 {
3651 return current_target.to_get_unwinder (&current_target);
3652 }
3653
3654 /* See target.h. */
3655
3656 const struct frame_unwind *
3657 target_get_tailcall_unwinder (void)
3658 {
3659 return current_target.to_get_tailcall_unwinder (&current_target);
3660 }
3661
3662 /* See target.h. */
3663
3664 void
3665 target_prepare_to_generate_core (void)
3666 {
3667 current_target.to_prepare_to_generate_core (&current_target);
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_done_generating_core (void)
3674 {
3675 current_target.to_done_generating_core (&current_target);
3676 }
3677
3678 static void
3679 setup_target_debug (void)
3680 {
3681 memcpy (&debug_target, &current_target, sizeof debug_target);
3682
3683 init_debug_target (&current_target);
3684 }
3685 \f
3686
3687 static char targ_desc[] =
3688 "Names of targets and files being debugged.\nShows the entire \
3689 stack of targets currently in use (including the exec-file,\n\
3690 core-file, and process, if any), as well as the symbol file name.";
3691
3692 static void
3693 default_rcmd (struct target_ops *self, const char *command,
3694 struct ui_file *output)
3695 {
3696 error (_("\"monitor\" command not supported by this target."));
3697 }
3698
3699 static void
3700 do_monitor_command (char *cmd,
3701 int from_tty)
3702 {
3703 target_rcmd (cmd, gdb_stdtarg);
3704 }
3705
3706 /* Print the name of each layers of our target stack. */
3707
3708 static void
3709 maintenance_print_target_stack (char *cmd, int from_tty)
3710 {
3711 struct target_ops *t;
3712
3713 printf_filtered (_("The current target stack is:\n"));
3714
3715 for (t = target_stack; t != NULL; t = t->beneath)
3716 {
3717 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3718 }
3719 }
3720
3721 /* Controls if targets can report that they can/are async. This is
3722 just for maintainers to use when debugging gdb. */
3723 int target_async_permitted = 1;
3724
3725 /* The set command writes to this variable. If the inferior is
3726 executing, target_async_permitted is *not* updated. */
3727 static int target_async_permitted_1 = 1;
3728
3729 static void
3730 maint_set_target_async_command (char *args, int from_tty,
3731 struct cmd_list_element *c)
3732 {
3733 if (have_live_inferiors ())
3734 {
3735 target_async_permitted_1 = target_async_permitted;
3736 error (_("Cannot change this setting while the inferior is running."));
3737 }
3738
3739 target_async_permitted = target_async_permitted_1;
3740 }
3741
3742 static void
3743 maint_show_target_async_command (struct ui_file *file, int from_tty,
3744 struct cmd_list_element *c,
3745 const char *value)
3746 {
3747 fprintf_filtered (file,
3748 _("Controlling the inferior in "
3749 "asynchronous mode is %s.\n"), value);
3750 }
3751
3752 /* Temporary copies of permission settings. */
3753
3754 static int may_write_registers_1 = 1;
3755 static int may_write_memory_1 = 1;
3756 static int may_insert_breakpoints_1 = 1;
3757 static int may_insert_tracepoints_1 = 1;
3758 static int may_insert_fast_tracepoints_1 = 1;
3759 static int may_stop_1 = 1;
3760
3761 /* Make the user-set values match the real values again. */
3762
3763 void
3764 update_target_permissions (void)
3765 {
3766 may_write_registers_1 = may_write_registers;
3767 may_write_memory_1 = may_write_memory;
3768 may_insert_breakpoints_1 = may_insert_breakpoints;
3769 may_insert_tracepoints_1 = may_insert_tracepoints;
3770 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3771 may_stop_1 = may_stop;
3772 }
3773
3774 /* The one function handles (most of) the permission flags in the same
3775 way. */
3776
3777 static void
3778 set_target_permissions (char *args, int from_tty,
3779 struct cmd_list_element *c)
3780 {
3781 if (target_has_execution)
3782 {
3783 update_target_permissions ();
3784 error (_("Cannot change this setting while the inferior is running."));
3785 }
3786
3787 /* Make the real values match the user-changed values. */
3788 may_write_registers = may_write_registers_1;
3789 may_insert_breakpoints = may_insert_breakpoints_1;
3790 may_insert_tracepoints = may_insert_tracepoints_1;
3791 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3792 may_stop = may_stop_1;
3793 update_observer_mode ();
3794 }
3795
3796 /* Set memory write permission independently of observer mode. */
3797
3798 static void
3799 set_write_memory_permission (char *args, int from_tty,
3800 struct cmd_list_element *c)
3801 {
3802 /* Make the real values match the user-changed values. */
3803 may_write_memory = may_write_memory_1;
3804 update_observer_mode ();
3805 }
3806
3807
3808 void
3809 initialize_targets (void)
3810 {
3811 init_dummy_target ();
3812 push_target (&dummy_target);
3813
3814 add_info ("target", target_info, targ_desc);
3815 add_info ("files", target_info, targ_desc);
3816
3817 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3818 Set target debugging."), _("\
3819 Show target debugging."), _("\
3820 When non-zero, target debugging is enabled. Higher numbers are more\n\
3821 verbose."),
3822 set_targetdebug,
3823 show_targetdebug,
3824 &setdebuglist, &showdebuglist);
3825
3826 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3827 &trust_readonly, _("\
3828 Set mode for reading from readonly sections."), _("\
3829 Show mode for reading from readonly sections."), _("\
3830 When this mode is on, memory reads from readonly sections (such as .text)\n\
3831 will be read from the object file instead of from the target. This will\n\
3832 result in significant performance improvement for remote targets."),
3833 NULL,
3834 show_trust_readonly,
3835 &setlist, &showlist);
3836
3837 add_com ("monitor", class_obscure, do_monitor_command,
3838 _("Send a command to the remote monitor (remote targets only)."));
3839
3840 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3841 _("Print the name of each layer of the internal target stack."),
3842 &maintenanceprintlist);
3843
3844 add_setshow_boolean_cmd ("target-async", no_class,
3845 &target_async_permitted_1, _("\
3846 Set whether gdb controls the inferior in asynchronous mode."), _("\
3847 Show whether gdb controls the inferior in asynchronous mode."), _("\
3848 Tells gdb whether to control the inferior in asynchronous mode."),
3849 maint_set_target_async_command,
3850 maint_show_target_async_command,
3851 &maintenance_set_cmdlist,
3852 &maintenance_show_cmdlist);
3853
3854 add_setshow_boolean_cmd ("may-write-registers", class_support,
3855 &may_write_registers_1, _("\
3856 Set permission to write into registers."), _("\
3857 Show permission to write into registers."), _("\
3858 When this permission is on, GDB may write into the target's registers.\n\
3859 Otherwise, any sort of write attempt will result in an error."),
3860 set_target_permissions, NULL,
3861 &setlist, &showlist);
3862
3863 add_setshow_boolean_cmd ("may-write-memory", class_support,
3864 &may_write_memory_1, _("\
3865 Set permission to write into target memory."), _("\
3866 Show permission to write into target memory."), _("\
3867 When this permission is on, GDB may write into the target's memory.\n\
3868 Otherwise, any sort of write attempt will result in an error."),
3869 set_write_memory_permission, NULL,
3870 &setlist, &showlist);
3871
3872 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3873 &may_insert_breakpoints_1, _("\
3874 Set permission to insert breakpoints in the target."), _("\
3875 Show permission to insert breakpoints in the target."), _("\
3876 When this permission is on, GDB may insert breakpoints in the program.\n\
3877 Otherwise, any sort of insertion attempt will result in an error."),
3878 set_target_permissions, NULL,
3879 &setlist, &showlist);
3880
3881 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3882 &may_insert_tracepoints_1, _("\
3883 Set permission to insert tracepoints in the target."), _("\
3884 Show permission to insert tracepoints in the target."), _("\
3885 When this permission is on, GDB may insert tracepoints in the program.\n\
3886 Otherwise, any sort of insertion attempt will result in an error."),
3887 set_target_permissions, NULL,
3888 &setlist, &showlist);
3889
3890 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3891 &may_insert_fast_tracepoints_1, _("\
3892 Set permission to insert fast tracepoints in the target."), _("\
3893 Show permission to insert fast tracepoints in the target."), _("\
3894 When this permission is on, GDB may insert fast tracepoints.\n\
3895 Otherwise, any sort of insertion attempt will result in an error."),
3896 set_target_permissions, NULL,
3897 &setlist, &showlist);
3898
3899 add_setshow_boolean_cmd ("may-interrupt", class_support,
3900 &may_stop_1, _("\
3901 Set permission to interrupt or signal the target."), _("\
3902 Show permission to interrupt or signal the target."), _("\
3903 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3904 Otherwise, any attempt to interrupt or stop will be ignored."),
3905 set_target_permissions, NULL,
3906 &setlist, &showlist);
3907
3908 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3909 &auto_connect_native_target, _("\
3910 Set whether GDB may automatically connect to the native target."), _("\
3911 Show whether GDB may automatically connect to the native target."), _("\
3912 When on, and GDB is not connected to a target yet, GDB\n\
3913 attempts \"run\" and other commands with the native target."),
3914 NULL, show_auto_connect_native_target,
3915 &setlist, &showlist);
3916 }
This page took 0.110011 seconds and 4 git commands to generate.