Use @defvar to document gdb.pretty_printers
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* The target stack. */
114
115 static target_stack g_target_stack;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 target_ops *
122 current_top_target ()
123 {
124 return g_target_stack.top ();
125 }
126
127 /* Command list for target. */
128
129 static struct cmd_list_element *targetlist = NULL;
130
131 /* Nonzero if we should trust readonly sections from the
132 executable when reading memory. */
133
134 static int trust_readonly = 0;
135
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
138
139 static int show_memory_breakpoints = 0;
140
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertant disruption, such as in non-stop mode. */
144
145 int may_write_registers = 1;
146
147 int may_write_memory = 1;
148
149 int may_insert_breakpoints = 1;
150
151 int may_insert_tracepoints = 1;
152
153 int may_insert_fast_tracepoints = 1;
154
155 int may_stop = 1;
156
157 /* Non-zero if we want to see trace of target level stuff. */
158
159 static unsigned int targetdebug = 0;
160
161 static void
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
163 {
164 if (targetdebug)
165 push_target (the_debug_target);
166 else
167 unpush_target (the_debug_target);
168 }
169
170 static void
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 }
176
177 /* The user just typed 'target' without the name of a target. */
178
179 static void
180 target_command (const char *arg, int from_tty)
181 {
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
183 gdb_stdout);
184 }
185
186 int
187 target_has_all_memory_1 (void)
188 {
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
191 return 1;
192
193 return 0;
194 }
195
196 int
197 target_has_memory_1 (void)
198 {
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
201 return 1;
202
203 return 0;
204 }
205
206 int
207 target_has_stack_1 (void)
208 {
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
210 if (t->has_stack ())
211 return 1;
212
213 return 0;
214 }
215
216 int
217 target_has_registers_1 (void)
218 {
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
221 return 1;
222
223 return 0;
224 }
225
226 int
227 target_has_execution_1 (ptid_t the_ptid)
228 {
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
231 return 1;
232
233 return 0;
234 }
235
236 int
237 target_has_execution_current (void)
238 {
239 return target_has_execution_1 (inferior_ptid);
240 }
241
242 /* This is used to implement the various target commands. */
243
244 static void
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
246 {
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
249
250 if (targetdebug)
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
252 ti->shortname);
253
254 func (args, from_tty);
255
256 if (targetdebug)
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
259 }
260
261 /* See target.h. */
262
263 void
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
266 {
267 struct cmd_list_element *c;
268
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
273 func_slot = func;
274
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
288 }
289
290 /* See target.h. */
291
292 void
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
294 {
295 struct cmd_list_element *c;
296 char *alt;
297
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
299 see PR cli/15104. */
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
305 }
306
307 /* Stub functions */
308
309 void
310 target_kill (void)
311 {
312 current_top_target ()->kill ();
313 }
314
315 void
316 target_load (const char *arg, int from_tty)
317 {
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
320 }
321
322 /* Define it. */
323
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
326
327 /* See target/target.h. */
328
329 void
330 target_terminal::init (void)
331 {
332 current_top_target ()->terminal_init ();
333
334 m_terminal_state = target_terminal_state::is_ours;
335 }
336
337 /* See target/target.h. */
338
339 void
340 target_terminal::inferior (void)
341 {
342 struct ui *ui = current_ui;
343
344 /* A background resume (``run&'') should leave GDB in control of the
345 terminal. */
346 if (ui->prompt_state != PROMPT_BLOCKED)
347 return;
348
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
353 if (ui != main_ui)
354 return;
355
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
358
359 struct inferior *inf = current_inferior ();
360
361 if (inf->terminal_state != target_terminal_state::is_inferior)
362 {
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
365 }
366
367 m_terminal_state = target_terminal_state::is_inferior;
368
369 /* If the user hit C-c before, pretend that it was hit right
370 here. */
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
373 }
374
375 /* See target/target.h. */
376
377 void
378 target_terminal::restore_inferior (void)
379 {
380 struct ui *ui = current_ui;
381
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
384 return;
385
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
389
390 {
391 scoped_restore_current_inferior restore_inferior;
392
393 for (::inferior *inf : all_inferiors ())
394 {
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
396 {
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
400 }
401 }
402 }
403
404 m_terminal_state = target_terminal_state::is_inferior;
405
406 /* If the user hit C-c before, pretend that it was hit right
407 here. */
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
410 }
411
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
414
415 static void
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
417 {
418 scoped_restore_current_inferior restore_inferior;
419
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
424
425 for (inferior *inf : all_inferiors ())
426 {
427 if (inf->terminal_state == target_terminal_state::is_inferior)
428 {
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
431 }
432 }
433
434 for (inferior *inf : all_inferiors ())
435 {
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
439 though. */
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
442 {
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
448 else
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
451 }
452 }
453 }
454
455 /* See target/target.h. */
456
457 void
458 target_terminal::ours ()
459 {
460 struct ui *ui = current_ui;
461
462 /* See target_terminal::inferior. */
463 if (ui != main_ui)
464 return;
465
466 if (m_terminal_state == target_terminal_state::is_ours)
467 return;
468
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
471 }
472
473 /* See target/target.h. */
474
475 void
476 target_terminal::ours_for_output ()
477 {
478 struct ui *ui = current_ui;
479
480 /* See target_terminal::inferior. */
481 if (ui != main_ui)
482 return;
483
484 if (!target_terminal::is_inferior ())
485 return;
486
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
489 }
490
491 /* See target/target.h. */
492
493 void
494 target_terminal::info (const char *arg, int from_tty)
495 {
496 current_top_target ()->terminal_info (arg, from_tty);
497 }
498
499 /* See target.h. */
500
501 bool
502 target_supports_terminal_ours (void)
503 {
504 /* This can be called before there is any target, so we must check
505 for nullptr here. */
506 target_ops *top = current_top_target ();
507
508 if (top == nullptr)
509 return false;
510 return top->supports_terminal_ours ();
511 }
512
513 static void
514 tcomplain (void)
515 {
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
518 }
519
520 void
521 noprocess (void)
522 {
523 error (_("You can't do that without a process to debug."));
524 }
525
526 static void
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
528 {
529 printf_unfiltered (_("No saved terminal information.\n"));
530 }
531
532 /* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
538 static ptid_t
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
540 {
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
542 }
543
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
546 {
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
554 }
555
556 /* See target.h. */
557
558 void
559 target_stack::push (target_ops *t)
560 {
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
563
564 if (m_stack[stratum] != NULL)
565 {
566 target_ops *prev = m_stack[stratum];
567 m_stack[stratum] = NULL;
568 target_close (prev);
569 }
570
571 /* Now add the new one. */
572 m_stack[stratum] = t;
573
574 if (m_top < stratum)
575 m_top = stratum;
576 }
577
578 /* See target.h. */
579
580 void
581 push_target (struct target_ops *t)
582 {
583 g_target_stack.push (t);
584 }
585
586 /* See target.h */
587
588 void
589 push_target (target_ops_up &&t)
590 {
591 g_target_stack.push (t.get ());
592 t.release ();
593 }
594
595 /* See target.h. */
596
597 int
598 unpush_target (struct target_ops *t)
599 {
600 return g_target_stack.unpush (t);
601 }
602
603 /* See target.h. */
604
605 bool
606 target_stack::unpush (target_ops *t)
607 {
608 gdb_assert (t != NULL);
609
610 strata stratum = t->stratum ();
611
612 if (stratum == dummy_stratum)
613 internal_error (__FILE__, __LINE__,
614 _("Attempt to unpush the dummy target"));
615
616 /* Look for the specified target. Note that a target can only occur
617 once in the target stack. */
618
619 if (m_stack[stratum] != t)
620 {
621 /* If T wasn't pushed, quit. Only open targets should be
622 closed. */
623 return false;
624 }
625
626 /* Unchain the target. */
627 m_stack[stratum] = NULL;
628
629 if (m_top == stratum)
630 m_top = t->beneath ()->stratum ();
631
632 /* Finally close the target. Note we do this after unchaining, so
633 any target method calls from within the target_close
634 implementation don't end up in T anymore. */
635 target_close (t);
636
637 return true;
638 }
639
640 /* Unpush TARGET and assert that it worked. */
641
642 static void
643 unpush_target_and_assert (struct target_ops *target)
644 {
645 if (!unpush_target (target))
646 {
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
652 }
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
660 }
661
662 /* See target.h. */
663
664 void
665 pop_all_targets_at_and_above (enum strata stratum)
666 {
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
669 }
670
671 void
672 pop_all_targets (void)
673 {
674 pop_all_targets_above (dummy_stratum);
675 }
676
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679 int
680 target_is_pushed (struct target_ops *t)
681 {
682 return g_target_stack.is_pushed (t);
683 }
684
685 /* Default implementation of to_get_thread_local_address. */
686
687 static void
688 generic_tls_error (void)
689 {
690 throw_error (TLS_GENERIC_ERROR,
691 _("Cannot find thread-local variables on this target"));
692 }
693
694 /* Using the objfile specified in OBJFILE, find the address for the
695 current thread's thread-local storage with offset OFFSET. */
696 CORE_ADDR
697 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
698 {
699 volatile CORE_ADDR addr = 0;
700 struct target_ops *target = current_top_target ();
701 struct gdbarch *gdbarch = target_gdbarch ();
702
703 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
704 {
705 ptid_t ptid = inferior_ptid;
706
707 TRY
708 {
709 CORE_ADDR lm_addr;
710
711 /* Fetch the load module address for this objfile. */
712 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
713 objfile);
714
715 if (gdbarch_get_thread_local_address_p (gdbarch))
716 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
717 offset);
718 else
719 addr = target->get_thread_local_address (ptid, lm_addr, offset);
720 }
721 /* If an error occurred, print TLS related messages here. Otherwise,
722 throw the error to some higher catcher. */
723 CATCH (ex, RETURN_MASK_ALL)
724 {
725 int objfile_is_library = (objfile->flags & OBJF_SHARED);
726
727 switch (ex.error)
728 {
729 case TLS_NO_LIBRARY_SUPPORT_ERROR:
730 error (_("Cannot find thread-local variables "
731 "in this thread library."));
732 break;
733 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
734 if (objfile_is_library)
735 error (_("Cannot find shared library `%s' in dynamic"
736 " linker's load module list"), objfile_name (objfile));
737 else
738 error (_("Cannot find executable file `%s' in dynamic"
739 " linker's load module list"), objfile_name (objfile));
740 break;
741 case TLS_NOT_ALLOCATED_YET_ERROR:
742 if (objfile_is_library)
743 error (_("The inferior has not yet allocated storage for"
744 " thread-local variables in\n"
745 "the shared library `%s'\n"
746 "for %s"),
747 objfile_name (objfile),
748 target_pid_to_str (ptid).c_str ());
749 else
750 error (_("The inferior has not yet allocated storage for"
751 " thread-local variables in\n"
752 "the executable `%s'\n"
753 "for %s"),
754 objfile_name (objfile),
755 target_pid_to_str (ptid).c_str ());
756 break;
757 case TLS_GENERIC_ERROR:
758 if (objfile_is_library)
759 error (_("Cannot find thread-local storage for %s, "
760 "shared library %s:\n%s"),
761 target_pid_to_str (ptid).c_str (),
762 objfile_name (objfile), ex.message);
763 else
764 error (_("Cannot find thread-local storage for %s, "
765 "executable file %s:\n%s"),
766 target_pid_to_str (ptid).c_str (),
767 objfile_name (objfile), ex.message);
768 break;
769 default:
770 throw_exception (ex);
771 break;
772 }
773 }
774 END_CATCH
775 }
776 else
777 error (_("Cannot find thread-local variables on this target"));
778
779 return addr;
780 }
781
782 const char *
783 target_xfer_status_to_string (enum target_xfer_status status)
784 {
785 #define CASE(X) case X: return #X
786 switch (status)
787 {
788 CASE(TARGET_XFER_E_IO);
789 CASE(TARGET_XFER_UNAVAILABLE);
790 default:
791 return "<unknown>";
792 }
793 #undef CASE
794 };
795
796
797 #undef MIN
798 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
799
800 /* target_read_string -- read a null terminated string, up to LEN bytes,
801 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
802 Set *STRING to a pointer to malloc'd memory containing the data; the caller
803 is responsible for freeing it. Return the number of bytes successfully
804 read. */
805
806 int
807 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
808 int len, int *errnop)
809 {
810 int tlen, offset, i;
811 gdb_byte buf[4];
812 int errcode = 0;
813 char *buffer;
814 int buffer_allocated;
815 char *bufptr;
816 unsigned int nbytes_read = 0;
817
818 gdb_assert (string);
819
820 /* Small for testing. */
821 buffer_allocated = 4;
822 buffer = (char *) xmalloc (buffer_allocated);
823 bufptr = buffer;
824
825 while (len > 0)
826 {
827 tlen = MIN (len, 4 - (memaddr & 3));
828 offset = memaddr & 3;
829
830 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
831 if (errcode != 0)
832 {
833 /* The transfer request might have crossed the boundary to an
834 unallocated region of memory. Retry the transfer, requesting
835 a single byte. */
836 tlen = 1;
837 offset = 0;
838 errcode = target_read_memory (memaddr, buf, 1);
839 if (errcode != 0)
840 goto done;
841 }
842
843 if (bufptr - buffer + tlen > buffer_allocated)
844 {
845 unsigned int bytes;
846
847 bytes = bufptr - buffer;
848 buffer_allocated *= 2;
849 buffer = (char *) xrealloc (buffer, buffer_allocated);
850 bufptr = buffer + bytes;
851 }
852
853 for (i = 0; i < tlen; i++)
854 {
855 *bufptr++ = buf[i + offset];
856 if (buf[i + offset] == '\000')
857 {
858 nbytes_read += i + 1;
859 goto done;
860 }
861 }
862
863 memaddr += tlen;
864 len -= tlen;
865 nbytes_read += tlen;
866 }
867 done:
868 string->reset (buffer);
869 if (errnop != NULL)
870 *errnop = errcode;
871 return nbytes_read;
872 }
873
874 struct target_section_table *
875 target_get_section_table (struct target_ops *target)
876 {
877 return target->get_section_table ();
878 }
879
880 /* Find a section containing ADDR. */
881
882 struct target_section *
883 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
884 {
885 struct target_section_table *table = target_get_section_table (target);
886 struct target_section *secp;
887
888 if (table == NULL)
889 return NULL;
890
891 for (secp = table->sections; secp < table->sections_end; secp++)
892 {
893 if (addr >= secp->addr && addr < secp->endaddr)
894 return secp;
895 }
896 return NULL;
897 }
898
899
900 /* Helper for the memory xfer routines. Checks the attributes of the
901 memory region of MEMADDR against the read or write being attempted.
902 If the access is permitted returns true, otherwise returns false.
903 REGION_P is an optional output parameter. If not-NULL, it is
904 filled with a pointer to the memory region of MEMADDR. REG_LEN
905 returns LEN trimmed to the end of the region. This is how much the
906 caller can continue requesting, if the access is permitted. A
907 single xfer request must not straddle memory region boundaries. */
908
909 static int
910 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
911 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
912 struct mem_region **region_p)
913 {
914 struct mem_region *region;
915
916 region = lookup_mem_region (memaddr);
917
918 if (region_p != NULL)
919 *region_p = region;
920
921 switch (region->attrib.mode)
922 {
923 case MEM_RO:
924 if (writebuf != NULL)
925 return 0;
926 break;
927
928 case MEM_WO:
929 if (readbuf != NULL)
930 return 0;
931 break;
932
933 case MEM_FLASH:
934 /* We only support writing to flash during "load" for now. */
935 if (writebuf != NULL)
936 error (_("Writing to flash memory forbidden in this context"));
937 break;
938
939 case MEM_NONE:
940 return 0;
941 }
942
943 /* region->hi == 0 means there's no upper bound. */
944 if (memaddr + len < region->hi || region->hi == 0)
945 *reg_len = len;
946 else
947 *reg_len = region->hi - memaddr;
948
949 return 1;
950 }
951
952 /* Read memory from more than one valid target. A core file, for
953 instance, could have some of memory but delegate other bits to
954 the target below it. So, we must manually try all targets. */
955
956 enum target_xfer_status
957 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
958 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
959 ULONGEST *xfered_len)
960 {
961 enum target_xfer_status res;
962
963 do
964 {
965 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
966 readbuf, writebuf, memaddr, len,
967 xfered_len);
968 if (res == TARGET_XFER_OK)
969 break;
970
971 /* Stop if the target reports that the memory is not available. */
972 if (res == TARGET_XFER_UNAVAILABLE)
973 break;
974
975 /* We want to continue past core files to executables, but not
976 past a running target's memory. */
977 if (ops->has_all_memory ())
978 break;
979
980 ops = ops->beneath ();
981 }
982 while (ops != NULL);
983
984 /* The cache works at the raw memory level. Make sure the cache
985 gets updated with raw contents no matter what kind of memory
986 object was originally being written. Note we do write-through
987 first, so that if it fails, we don't write to the cache contents
988 that never made it to the target. */
989 if (writebuf != NULL
990 && inferior_ptid != null_ptid
991 && target_dcache_init_p ()
992 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
993 {
994 DCACHE *dcache = target_dcache_get ();
995
996 /* Note that writing to an area of memory which wasn't present
997 in the cache doesn't cause it to be loaded in. */
998 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
999 }
1000
1001 return res;
1002 }
1003
1004 /* Perform a partial memory transfer.
1005 For docs see target.h, to_xfer_partial. */
1006
1007 static enum target_xfer_status
1008 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1009 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1010 ULONGEST len, ULONGEST *xfered_len)
1011 {
1012 enum target_xfer_status res;
1013 ULONGEST reg_len;
1014 struct mem_region *region;
1015 struct inferior *inf;
1016
1017 /* For accesses to unmapped overlay sections, read directly from
1018 files. Must do this first, as MEMADDR may need adjustment. */
1019 if (readbuf != NULL && overlay_debugging)
1020 {
1021 struct obj_section *section = find_pc_overlay (memaddr);
1022
1023 if (pc_in_unmapped_range (memaddr, section))
1024 {
1025 struct target_section_table *table
1026 = target_get_section_table (ops);
1027 const char *section_name = section->the_bfd_section->name;
1028
1029 memaddr = overlay_mapped_address (memaddr, section);
1030 return section_table_xfer_memory_partial (readbuf, writebuf,
1031 memaddr, len, xfered_len,
1032 table->sections,
1033 table->sections_end,
1034 section_name);
1035 }
1036 }
1037
1038 /* Try the executable files, if "trust-readonly-sections" is set. */
1039 if (readbuf != NULL && trust_readonly)
1040 {
1041 struct target_section *secp;
1042 struct target_section_table *table;
1043
1044 secp = target_section_by_addr (ops, memaddr);
1045 if (secp != NULL
1046 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1047 secp->the_bfd_section)
1048 & SEC_READONLY))
1049 {
1050 table = target_get_section_table (ops);
1051 return section_table_xfer_memory_partial (readbuf, writebuf,
1052 memaddr, len, xfered_len,
1053 table->sections,
1054 table->sections_end,
1055 NULL);
1056 }
1057 }
1058
1059 /* Try GDB's internal data cache. */
1060
1061 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1062 &region))
1063 return TARGET_XFER_E_IO;
1064
1065 if (inferior_ptid != null_ptid)
1066 inf = current_inferior ();
1067 else
1068 inf = NULL;
1069
1070 if (inf != NULL
1071 && readbuf != NULL
1072 /* The dcache reads whole cache lines; that doesn't play well
1073 with reading from a trace buffer, because reading outside of
1074 the collected memory range fails. */
1075 && get_traceframe_number () == -1
1076 && (region->attrib.cache
1077 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1078 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1079 {
1080 DCACHE *dcache = target_dcache_get_or_init ();
1081
1082 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1083 reg_len, xfered_len);
1084 }
1085
1086 /* If none of those methods found the memory we wanted, fall back
1087 to a target partial transfer. Normally a single call to
1088 to_xfer_partial is enough; if it doesn't recognize an object
1089 it will call the to_xfer_partial of the next target down.
1090 But for memory this won't do. Memory is the only target
1091 object which can be read from more than one valid target.
1092 A core file, for instance, could have some of memory but
1093 delegate other bits to the target below it. So, we must
1094 manually try all targets. */
1095
1096 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1097 xfered_len);
1098
1099 /* If we still haven't got anything, return the last error. We
1100 give up. */
1101 return res;
1102 }
1103
1104 /* Perform a partial memory transfer. For docs see target.h,
1105 to_xfer_partial. */
1106
1107 static enum target_xfer_status
1108 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1109 gdb_byte *readbuf, const gdb_byte *writebuf,
1110 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1111 {
1112 enum target_xfer_status res;
1113
1114 /* Zero length requests are ok and require no work. */
1115 if (len == 0)
1116 return TARGET_XFER_EOF;
1117
1118 memaddr = address_significant (target_gdbarch (), memaddr);
1119
1120 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1121 breakpoint insns, thus hiding out from higher layers whether
1122 there are software breakpoints inserted in the code stream. */
1123 if (readbuf != NULL)
1124 {
1125 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1126 xfered_len);
1127
1128 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1129 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1130 }
1131 else
1132 {
1133 /* A large write request is likely to be partially satisfied
1134 by memory_xfer_partial_1. We will continually malloc
1135 and free a copy of the entire write request for breakpoint
1136 shadow handling even though we only end up writing a small
1137 subset of it. Cap writes to a limit specified by the target
1138 to mitigate this. */
1139 len = std::min (ops->get_memory_xfer_limit (), len);
1140
1141 gdb::byte_vector buf (writebuf, writebuf + len);
1142 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1143 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1144 xfered_len);
1145 }
1146
1147 return res;
1148 }
1149
1150 scoped_restore_tmpl<int>
1151 make_scoped_restore_show_memory_breakpoints (int show)
1152 {
1153 return make_scoped_restore (&show_memory_breakpoints, show);
1154 }
1155
1156 /* For docs see target.h, to_xfer_partial. */
1157
1158 enum target_xfer_status
1159 target_xfer_partial (struct target_ops *ops,
1160 enum target_object object, const char *annex,
1161 gdb_byte *readbuf, const gdb_byte *writebuf,
1162 ULONGEST offset, ULONGEST len,
1163 ULONGEST *xfered_len)
1164 {
1165 enum target_xfer_status retval;
1166
1167 /* Transfer is done when LEN is zero. */
1168 if (len == 0)
1169 return TARGET_XFER_EOF;
1170
1171 if (writebuf && !may_write_memory)
1172 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1173 core_addr_to_string_nz (offset), plongest (len));
1174
1175 *xfered_len = 0;
1176
1177 /* If this is a memory transfer, let the memory-specific code
1178 have a look at it instead. Memory transfers are more
1179 complicated. */
1180 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1181 || object == TARGET_OBJECT_CODE_MEMORY)
1182 retval = memory_xfer_partial (ops, object, readbuf,
1183 writebuf, offset, len, xfered_len);
1184 else if (object == TARGET_OBJECT_RAW_MEMORY)
1185 {
1186 /* Skip/avoid accessing the target if the memory region
1187 attributes block the access. Check this here instead of in
1188 raw_memory_xfer_partial as otherwise we'd end up checking
1189 this twice in the case of the memory_xfer_partial path is
1190 taken; once before checking the dcache, and another in the
1191 tail call to raw_memory_xfer_partial. */
1192 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1193 NULL))
1194 return TARGET_XFER_E_IO;
1195
1196 /* Request the normal memory object from other layers. */
1197 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1198 xfered_len);
1199 }
1200 else
1201 retval = ops->xfer_partial (object, annex, readbuf,
1202 writebuf, offset, len, xfered_len);
1203
1204 if (targetdebug)
1205 {
1206 const unsigned char *myaddr = NULL;
1207
1208 fprintf_unfiltered (gdb_stdlog,
1209 "%s:target_xfer_partial "
1210 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1211 ops->shortname (),
1212 (int) object,
1213 (annex ? annex : "(null)"),
1214 host_address_to_string (readbuf),
1215 host_address_to_string (writebuf),
1216 core_addr_to_string_nz (offset),
1217 pulongest (len), retval,
1218 pulongest (*xfered_len));
1219
1220 if (readbuf)
1221 myaddr = readbuf;
1222 if (writebuf)
1223 myaddr = writebuf;
1224 if (retval == TARGET_XFER_OK && myaddr != NULL)
1225 {
1226 int i;
1227
1228 fputs_unfiltered (", bytes =", gdb_stdlog);
1229 for (i = 0; i < *xfered_len; i++)
1230 {
1231 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1232 {
1233 if (targetdebug < 2 && i > 0)
1234 {
1235 fprintf_unfiltered (gdb_stdlog, " ...");
1236 break;
1237 }
1238 fprintf_unfiltered (gdb_stdlog, "\n");
1239 }
1240
1241 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1242 }
1243 }
1244
1245 fputc_unfiltered ('\n', gdb_stdlog);
1246 }
1247
1248 /* Check implementations of to_xfer_partial update *XFERED_LEN
1249 properly. Do assertion after printing debug messages, so that we
1250 can find more clues on assertion failure from debugging messages. */
1251 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1252 gdb_assert (*xfered_len > 0);
1253
1254 return retval;
1255 }
1256
1257 /* Read LEN bytes of target memory at address MEMADDR, placing the
1258 results in GDB's memory at MYADDR. Returns either 0 for success or
1259 -1 if any error occurs.
1260
1261 If an error occurs, no guarantee is made about the contents of the data at
1262 MYADDR. In particular, the caller should not depend upon partial reads
1263 filling the buffer with good data. There is no way for the caller to know
1264 how much good data might have been transfered anyway. Callers that can
1265 deal with partial reads should call target_read (which will retry until
1266 it makes no progress, and then return how much was transferred). */
1267
1268 int
1269 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1270 {
1271 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1272 myaddr, memaddr, len) == len)
1273 return 0;
1274 else
1275 return -1;
1276 }
1277
1278 /* See target/target.h. */
1279
1280 int
1281 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1282 {
1283 gdb_byte buf[4];
1284 int r;
1285
1286 r = target_read_memory (memaddr, buf, sizeof buf);
1287 if (r != 0)
1288 return r;
1289 *result = extract_unsigned_integer (buf, sizeof buf,
1290 gdbarch_byte_order (target_gdbarch ()));
1291 return 0;
1292 }
1293
1294 /* Like target_read_memory, but specify explicitly that this is a read
1295 from the target's raw memory. That is, this read bypasses the
1296 dcache, breakpoint shadowing, etc. */
1297
1298 int
1299 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1300 {
1301 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1302 myaddr, memaddr, len) == len)
1303 return 0;
1304 else
1305 return -1;
1306 }
1307
1308 /* Like target_read_memory, but specify explicitly that this is a read from
1309 the target's stack. This may trigger different cache behavior. */
1310
1311 int
1312 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1313 {
1314 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1315 myaddr, memaddr, len) == len)
1316 return 0;
1317 else
1318 return -1;
1319 }
1320
1321 /* Like target_read_memory, but specify explicitly that this is a read from
1322 the target's code. This may trigger different cache behavior. */
1323
1324 int
1325 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1326 {
1327 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return -1;
1332 }
1333
1334 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1335 Returns either 0 for success or -1 if any error occurs. If an
1336 error occurs, no guarantee is made about how much data got written.
1337 Callers that can deal with partial writes should call
1338 target_write. */
1339
1340 int
1341 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1342 {
1343 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1344 myaddr, memaddr, len) == len)
1345 return 0;
1346 else
1347 return -1;
1348 }
1349
1350 /* Write LEN bytes from MYADDR to target raw memory at address
1351 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1352 If an error occurs, no guarantee is made about how much data got
1353 written. Callers that can deal with partial writes should call
1354 target_write. */
1355
1356 int
1357 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1358 {
1359 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1360 myaddr, memaddr, len) == len)
1361 return 0;
1362 else
1363 return -1;
1364 }
1365
1366 /* Fetch the target's memory map. */
1367
1368 std::vector<mem_region>
1369 target_memory_map (void)
1370 {
1371 std::vector<mem_region> result = current_top_target ()->memory_map ();
1372 if (result.empty ())
1373 return result;
1374
1375 std::sort (result.begin (), result.end ());
1376
1377 /* Check that regions do not overlap. Simultaneously assign
1378 a numbering for the "mem" commands to use to refer to
1379 each region. */
1380 mem_region *last_one = NULL;
1381 for (size_t ix = 0; ix < result.size (); ix++)
1382 {
1383 mem_region *this_one = &result[ix];
1384 this_one->number = ix;
1385
1386 if (last_one != NULL && last_one->hi > this_one->lo)
1387 {
1388 warning (_("Overlapping regions in memory map: ignoring"));
1389 return std::vector<mem_region> ();
1390 }
1391
1392 last_one = this_one;
1393 }
1394
1395 return result;
1396 }
1397
1398 void
1399 target_flash_erase (ULONGEST address, LONGEST length)
1400 {
1401 current_top_target ()->flash_erase (address, length);
1402 }
1403
1404 void
1405 target_flash_done (void)
1406 {
1407 current_top_target ()->flash_done ();
1408 }
1409
1410 static void
1411 show_trust_readonly (struct ui_file *file, int from_tty,
1412 struct cmd_list_element *c, const char *value)
1413 {
1414 fprintf_filtered (file,
1415 _("Mode for reading from readonly sections is %s.\n"),
1416 value);
1417 }
1418
1419 /* Target vector read/write partial wrapper functions. */
1420
1421 static enum target_xfer_status
1422 target_read_partial (struct target_ops *ops,
1423 enum target_object object,
1424 const char *annex, gdb_byte *buf,
1425 ULONGEST offset, ULONGEST len,
1426 ULONGEST *xfered_len)
1427 {
1428 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1429 xfered_len);
1430 }
1431
1432 static enum target_xfer_status
1433 target_write_partial (struct target_ops *ops,
1434 enum target_object object,
1435 const char *annex, const gdb_byte *buf,
1436 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1437 {
1438 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1439 xfered_len);
1440 }
1441
1442 /* Wrappers to perform the full transfer. */
1443
1444 /* For docs on target_read see target.h. */
1445
1446 LONGEST
1447 target_read (struct target_ops *ops,
1448 enum target_object object,
1449 const char *annex, gdb_byte *buf,
1450 ULONGEST offset, LONGEST len)
1451 {
1452 LONGEST xfered_total = 0;
1453 int unit_size = 1;
1454
1455 /* If we are reading from a memory object, find the length of an addressable
1456 unit for that architecture. */
1457 if (object == TARGET_OBJECT_MEMORY
1458 || object == TARGET_OBJECT_STACK_MEMORY
1459 || object == TARGET_OBJECT_CODE_MEMORY
1460 || object == TARGET_OBJECT_RAW_MEMORY)
1461 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1462
1463 while (xfered_total < len)
1464 {
1465 ULONGEST xfered_partial;
1466 enum target_xfer_status status;
1467
1468 status = target_read_partial (ops, object, annex,
1469 buf + xfered_total * unit_size,
1470 offset + xfered_total, len - xfered_total,
1471 &xfered_partial);
1472
1473 /* Call an observer, notifying them of the xfer progress? */
1474 if (status == TARGET_XFER_EOF)
1475 return xfered_total;
1476 else if (status == TARGET_XFER_OK)
1477 {
1478 xfered_total += xfered_partial;
1479 QUIT;
1480 }
1481 else
1482 return TARGET_XFER_E_IO;
1483
1484 }
1485 return len;
1486 }
1487
1488 /* Assuming that the entire [begin, end) range of memory cannot be
1489 read, try to read whatever subrange is possible to read.
1490
1491 The function returns, in RESULT, either zero or one memory block.
1492 If there's a readable subrange at the beginning, it is completely
1493 read and returned. Any further readable subrange will not be read.
1494 Otherwise, if there's a readable subrange at the end, it will be
1495 completely read and returned. Any readable subranges before it
1496 (obviously, not starting at the beginning), will be ignored. In
1497 other cases -- either no readable subrange, or readable subrange(s)
1498 that is neither at the beginning, or end, nothing is returned.
1499
1500 The purpose of this function is to handle a read across a boundary
1501 of accessible memory in a case when memory map is not available.
1502 The above restrictions are fine for this case, but will give
1503 incorrect results if the memory is 'patchy'. However, supporting
1504 'patchy' memory would require trying to read every single byte,
1505 and it seems unacceptable solution. Explicit memory map is
1506 recommended for this case -- and target_read_memory_robust will
1507 take care of reading multiple ranges then. */
1508
1509 static void
1510 read_whatever_is_readable (struct target_ops *ops,
1511 const ULONGEST begin, const ULONGEST end,
1512 int unit_size,
1513 std::vector<memory_read_result> *result)
1514 {
1515 ULONGEST current_begin = begin;
1516 ULONGEST current_end = end;
1517 int forward;
1518 ULONGEST xfered_len;
1519
1520 /* If we previously failed to read 1 byte, nothing can be done here. */
1521 if (end - begin <= 1)
1522 return;
1523
1524 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1525
1526 /* Check that either first or the last byte is readable, and give up
1527 if not. This heuristic is meant to permit reading accessible memory
1528 at the boundary of accessible region. */
1529 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1530 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1531 {
1532 forward = 1;
1533 ++current_begin;
1534 }
1535 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1536 buf.get () + (end - begin) - 1, end - 1, 1,
1537 &xfered_len) == TARGET_XFER_OK)
1538 {
1539 forward = 0;
1540 --current_end;
1541 }
1542 else
1543 return;
1544
1545 /* Loop invariant is that the [current_begin, current_end) was previously
1546 found to be not readable as a whole.
1547
1548 Note loop condition -- if the range has 1 byte, we can't divide the range
1549 so there's no point trying further. */
1550 while (current_end - current_begin > 1)
1551 {
1552 ULONGEST first_half_begin, first_half_end;
1553 ULONGEST second_half_begin, second_half_end;
1554 LONGEST xfer;
1555 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1556
1557 if (forward)
1558 {
1559 first_half_begin = current_begin;
1560 first_half_end = middle;
1561 second_half_begin = middle;
1562 second_half_end = current_end;
1563 }
1564 else
1565 {
1566 first_half_begin = middle;
1567 first_half_end = current_end;
1568 second_half_begin = current_begin;
1569 second_half_end = middle;
1570 }
1571
1572 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1573 buf.get () + (first_half_begin - begin) * unit_size,
1574 first_half_begin,
1575 first_half_end - first_half_begin);
1576
1577 if (xfer == first_half_end - first_half_begin)
1578 {
1579 /* This half reads up fine. So, the error must be in the
1580 other half. */
1581 current_begin = second_half_begin;
1582 current_end = second_half_end;
1583 }
1584 else
1585 {
1586 /* This half is not readable. Because we've tried one byte, we
1587 know some part of this half if actually readable. Go to the next
1588 iteration to divide again and try to read.
1589
1590 We don't handle the other half, because this function only tries
1591 to read a single readable subrange. */
1592 current_begin = first_half_begin;
1593 current_end = first_half_end;
1594 }
1595 }
1596
1597 if (forward)
1598 {
1599 /* The [begin, current_begin) range has been read. */
1600 result->emplace_back (begin, current_end, std::move (buf));
1601 }
1602 else
1603 {
1604 /* The [current_end, end) range has been read. */
1605 LONGEST region_len = end - current_end;
1606
1607 gdb::unique_xmalloc_ptr<gdb_byte> data
1608 ((gdb_byte *) xmalloc (region_len * unit_size));
1609 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1610 region_len * unit_size);
1611 result->emplace_back (current_end, end, std::move (data));
1612 }
1613 }
1614
1615 std::vector<memory_read_result>
1616 read_memory_robust (struct target_ops *ops,
1617 const ULONGEST offset, const LONGEST len)
1618 {
1619 std::vector<memory_read_result> result;
1620 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1621
1622 LONGEST xfered_total = 0;
1623 while (xfered_total < len)
1624 {
1625 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1626 LONGEST region_len;
1627
1628 /* If there is no explicit region, a fake one should be created. */
1629 gdb_assert (region);
1630
1631 if (region->hi == 0)
1632 region_len = len - xfered_total;
1633 else
1634 region_len = region->hi - offset;
1635
1636 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1637 {
1638 /* Cannot read this region. Note that we can end up here only
1639 if the region is explicitly marked inaccessible, or
1640 'inaccessible-by-default' is in effect. */
1641 xfered_total += region_len;
1642 }
1643 else
1644 {
1645 LONGEST to_read = std::min (len - xfered_total, region_len);
1646 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1647 ((gdb_byte *) xmalloc (to_read * unit_size));
1648
1649 LONGEST xfered_partial =
1650 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1651 offset + xfered_total, to_read);
1652 /* Call an observer, notifying them of the xfer progress? */
1653 if (xfered_partial <= 0)
1654 {
1655 /* Got an error reading full chunk. See if maybe we can read
1656 some subrange. */
1657 read_whatever_is_readable (ops, offset + xfered_total,
1658 offset + xfered_total + to_read,
1659 unit_size, &result);
1660 xfered_total += to_read;
1661 }
1662 else
1663 {
1664 result.emplace_back (offset + xfered_total,
1665 offset + xfered_total + xfered_partial,
1666 std::move (buffer));
1667 xfered_total += xfered_partial;
1668 }
1669 QUIT;
1670 }
1671 }
1672
1673 return result;
1674 }
1675
1676
1677 /* An alternative to target_write with progress callbacks. */
1678
1679 LONGEST
1680 target_write_with_progress (struct target_ops *ops,
1681 enum target_object object,
1682 const char *annex, const gdb_byte *buf,
1683 ULONGEST offset, LONGEST len,
1684 void (*progress) (ULONGEST, void *), void *baton)
1685 {
1686 LONGEST xfered_total = 0;
1687 int unit_size = 1;
1688
1689 /* If we are writing to a memory object, find the length of an addressable
1690 unit for that architecture. */
1691 if (object == TARGET_OBJECT_MEMORY
1692 || object == TARGET_OBJECT_STACK_MEMORY
1693 || object == TARGET_OBJECT_CODE_MEMORY
1694 || object == TARGET_OBJECT_RAW_MEMORY)
1695 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1696
1697 /* Give the progress callback a chance to set up. */
1698 if (progress)
1699 (*progress) (0, baton);
1700
1701 while (xfered_total < len)
1702 {
1703 ULONGEST xfered_partial;
1704 enum target_xfer_status status;
1705
1706 status = target_write_partial (ops, object, annex,
1707 buf + xfered_total * unit_size,
1708 offset + xfered_total, len - xfered_total,
1709 &xfered_partial);
1710
1711 if (status != TARGET_XFER_OK)
1712 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1713
1714 if (progress)
1715 (*progress) (xfered_partial, baton);
1716
1717 xfered_total += xfered_partial;
1718 QUIT;
1719 }
1720 return len;
1721 }
1722
1723 /* For docs on target_write see target.h. */
1724
1725 LONGEST
1726 target_write (struct target_ops *ops,
1727 enum target_object object,
1728 const char *annex, const gdb_byte *buf,
1729 ULONGEST offset, LONGEST len)
1730 {
1731 return target_write_with_progress (ops, object, annex, buf, offset, len,
1732 NULL, NULL);
1733 }
1734
1735 /* Help for target_read_alloc and target_read_stralloc. See their comments
1736 for details. */
1737
1738 template <typename T>
1739 gdb::optional<gdb::def_vector<T>>
1740 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1741 const char *annex)
1742 {
1743 gdb::def_vector<T> buf;
1744 size_t buf_pos = 0;
1745 const int chunk = 4096;
1746
1747 /* This function does not have a length parameter; it reads the
1748 entire OBJECT). Also, it doesn't support objects fetched partly
1749 from one target and partly from another (in a different stratum,
1750 e.g. a core file and an executable). Both reasons make it
1751 unsuitable for reading memory. */
1752 gdb_assert (object != TARGET_OBJECT_MEMORY);
1753
1754 /* Start by reading up to 4K at a time. The target will throttle
1755 this number down if necessary. */
1756 while (1)
1757 {
1758 ULONGEST xfered_len;
1759 enum target_xfer_status status;
1760
1761 buf.resize (buf_pos + chunk);
1762
1763 status = target_read_partial (ops, object, annex,
1764 (gdb_byte *) &buf[buf_pos],
1765 buf_pos, chunk,
1766 &xfered_len);
1767
1768 if (status == TARGET_XFER_EOF)
1769 {
1770 /* Read all there was. */
1771 buf.resize (buf_pos);
1772 return buf;
1773 }
1774 else if (status != TARGET_XFER_OK)
1775 {
1776 /* An error occurred. */
1777 return {};
1778 }
1779
1780 buf_pos += xfered_len;
1781
1782 QUIT;
1783 }
1784 }
1785
1786 /* See target.h */
1787
1788 gdb::optional<gdb::byte_vector>
1789 target_read_alloc (struct target_ops *ops, enum target_object object,
1790 const char *annex)
1791 {
1792 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1793 }
1794
1795 /* See target.h. */
1796
1797 gdb::optional<gdb::char_vector>
1798 target_read_stralloc (struct target_ops *ops, enum target_object object,
1799 const char *annex)
1800 {
1801 gdb::optional<gdb::char_vector> buf
1802 = target_read_alloc_1<char> (ops, object, annex);
1803
1804 if (!buf)
1805 return {};
1806
1807 if (buf->empty () || buf->back () != '\0')
1808 buf->push_back ('\0');
1809
1810 /* Check for embedded NUL bytes; but allow trailing NULs. */
1811 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1812 it != buf->end (); it++)
1813 if (*it != '\0')
1814 {
1815 warning (_("target object %d, annex %s, "
1816 "contained unexpected null characters"),
1817 (int) object, annex ? annex : "(none)");
1818 break;
1819 }
1820
1821 return buf;
1822 }
1823
1824 /* Memory transfer methods. */
1825
1826 void
1827 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1828 LONGEST len)
1829 {
1830 /* This method is used to read from an alternate, non-current
1831 target. This read must bypass the overlay support (as symbols
1832 don't match this target), and GDB's internal cache (wrong cache
1833 for this target). */
1834 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1835 != len)
1836 memory_error (TARGET_XFER_E_IO, addr);
1837 }
1838
1839 ULONGEST
1840 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1841 int len, enum bfd_endian byte_order)
1842 {
1843 gdb_byte buf[sizeof (ULONGEST)];
1844
1845 gdb_assert (len <= sizeof (buf));
1846 get_target_memory (ops, addr, buf, len);
1847 return extract_unsigned_integer (buf, len, byte_order);
1848 }
1849
1850 /* See target.h. */
1851
1852 int
1853 target_insert_breakpoint (struct gdbarch *gdbarch,
1854 struct bp_target_info *bp_tgt)
1855 {
1856 if (!may_insert_breakpoints)
1857 {
1858 warning (_("May not insert breakpoints"));
1859 return 1;
1860 }
1861
1862 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1863 }
1864
1865 /* See target.h. */
1866
1867 int
1868 target_remove_breakpoint (struct gdbarch *gdbarch,
1869 struct bp_target_info *bp_tgt,
1870 enum remove_bp_reason reason)
1871 {
1872 /* This is kind of a weird case to handle, but the permission might
1873 have been changed after breakpoints were inserted - in which case
1874 we should just take the user literally and assume that any
1875 breakpoints should be left in place. */
1876 if (!may_insert_breakpoints)
1877 {
1878 warning (_("May not remove breakpoints"));
1879 return 1;
1880 }
1881
1882 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1883 }
1884
1885 static void
1886 info_target_command (const char *args, int from_tty)
1887 {
1888 int has_all_mem = 0;
1889
1890 if (symfile_objfile != NULL)
1891 printf_unfiltered (_("Symbols from \"%s\".\n"),
1892 objfile_name (symfile_objfile));
1893
1894 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1895 {
1896 if (!t->has_memory ())
1897 continue;
1898
1899 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1900 continue;
1901 if (has_all_mem)
1902 printf_unfiltered (_("\tWhile running this, "
1903 "GDB does not access memory from...\n"));
1904 printf_unfiltered ("%s:\n", t->longname ());
1905 t->files_info ();
1906 has_all_mem = t->has_all_memory ();
1907 }
1908 }
1909
1910 /* This function is called before any new inferior is created, e.g.
1911 by running a program, attaching, or connecting to a target.
1912 It cleans up any state from previous invocations which might
1913 change between runs. This is a subset of what target_preopen
1914 resets (things which might change between targets). */
1915
1916 void
1917 target_pre_inferior (int from_tty)
1918 {
1919 /* Clear out solib state. Otherwise the solib state of the previous
1920 inferior might have survived and is entirely wrong for the new
1921 target. This has been observed on GNU/Linux using glibc 2.3. How
1922 to reproduce:
1923
1924 bash$ ./foo&
1925 [1] 4711
1926 bash$ ./foo&
1927 [1] 4712
1928 bash$ gdb ./foo
1929 [...]
1930 (gdb) attach 4711
1931 (gdb) detach
1932 (gdb) attach 4712
1933 Cannot access memory at address 0xdeadbeef
1934 */
1935
1936 /* In some OSs, the shared library list is the same/global/shared
1937 across inferiors. If code is shared between processes, so are
1938 memory regions and features. */
1939 if (!gdbarch_has_global_solist (target_gdbarch ()))
1940 {
1941 no_shared_libraries (NULL, from_tty);
1942
1943 invalidate_target_mem_regions ();
1944
1945 target_clear_description ();
1946 }
1947
1948 /* attach_flag may be set if the previous process associated with
1949 the inferior was attached to. */
1950 current_inferior ()->attach_flag = 0;
1951
1952 current_inferior ()->highest_thread_num = 0;
1953
1954 agent_capability_invalidate ();
1955 }
1956
1957 /* Callback for iterate_over_inferiors. Gets rid of the given
1958 inferior. */
1959
1960 static int
1961 dispose_inferior (struct inferior *inf, void *args)
1962 {
1963 /* Not all killed inferiors can, or will ever be, removed from the
1964 inferior list. Killed inferiors clearly don't need to be killed
1965 again, so, we're done. */
1966 if (inf->pid == 0)
1967 return 0;
1968
1969 thread_info *thread = any_thread_of_inferior (inf);
1970 if (thread != NULL)
1971 {
1972 switch_to_thread (thread);
1973
1974 /* Core inferiors actually should be detached, not killed. */
1975 if (target_has_execution)
1976 target_kill ();
1977 else
1978 target_detach (inf, 0);
1979 }
1980
1981 return 0;
1982 }
1983
1984 /* This is to be called by the open routine before it does
1985 anything. */
1986
1987 void
1988 target_preopen (int from_tty)
1989 {
1990 dont_repeat ();
1991
1992 if (have_inferiors ())
1993 {
1994 if (!from_tty
1995 || !have_live_inferiors ()
1996 || query (_("A program is being debugged already. Kill it? ")))
1997 iterate_over_inferiors (dispose_inferior, NULL);
1998 else
1999 error (_("Program not killed."));
2000 }
2001
2002 /* Calling target_kill may remove the target from the stack. But if
2003 it doesn't (which seems like a win for UDI), remove it now. */
2004 /* Leave the exec target, though. The user may be switching from a
2005 live process to a core of the same program. */
2006 pop_all_targets_above (file_stratum);
2007
2008 target_pre_inferior (from_tty);
2009 }
2010
2011 /* See target.h. */
2012
2013 void
2014 target_detach (inferior *inf, int from_tty)
2015 {
2016 /* As long as some to_detach implementations rely on the current_inferior
2017 (either directly, or indirectly, like through target_gdbarch or by
2018 reading memory), INF needs to be the current inferior. When that
2019 requirement will become no longer true, then we can remove this
2020 assertion. */
2021 gdb_assert (inf == current_inferior ());
2022
2023 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2024 /* Don't remove global breakpoints here. They're removed on
2025 disconnection from the target. */
2026 ;
2027 else
2028 /* If we're in breakpoints-always-inserted mode, have to remove
2029 breakpoints before detaching. */
2030 remove_breakpoints_inf (current_inferior ());
2031
2032 prepare_for_detach ();
2033
2034 current_top_target ()->detach (inf, from_tty);
2035
2036 /* After we have detached, clear the register cache for this inferior. */
2037 ptid_t pid_ptid = ptid_t (inf->pid);
2038
2039 registers_changed_ptid (pid_ptid);
2040
2041 /* We have to ensure we have no frame cache left. Normally,
2042 registers_changed_ptid (pid_ptid) calls reinit_frame_cache when
2043 inferior_ptid matches pid_ptid, but in our case, it does not
2044 call it, as inferior_ptid has been reset. */
2045 reinit_frame_cache ();
2046 }
2047
2048 void
2049 target_disconnect (const char *args, int from_tty)
2050 {
2051 /* If we're in breakpoints-always-inserted mode or if breakpoints
2052 are global across processes, we have to remove them before
2053 disconnecting. */
2054 remove_breakpoints ();
2055
2056 current_top_target ()->disconnect (args, from_tty);
2057 }
2058
2059 /* See target/target.h. */
2060
2061 ptid_t
2062 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2063 {
2064 return current_top_target ()->wait (ptid, status, options);
2065 }
2066
2067 /* See target.h. */
2068
2069 ptid_t
2070 default_target_wait (struct target_ops *ops,
2071 ptid_t ptid, struct target_waitstatus *status,
2072 int options)
2073 {
2074 status->kind = TARGET_WAITKIND_IGNORE;
2075 return minus_one_ptid;
2076 }
2077
2078 std::string
2079 target_pid_to_str (ptid_t ptid)
2080 {
2081 return current_top_target ()->pid_to_str (ptid);
2082 }
2083
2084 const char *
2085 target_thread_name (struct thread_info *info)
2086 {
2087 return current_top_target ()->thread_name (info);
2088 }
2089
2090 struct thread_info *
2091 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2092 int handle_len,
2093 struct inferior *inf)
2094 {
2095 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2096 handle_len, inf);
2097 }
2098
2099 void
2100 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2101 {
2102 target_dcache_invalidate ();
2103
2104 current_top_target ()->resume (ptid, step, signal);
2105
2106 registers_changed_ptid (ptid);
2107 /* We only set the internal executing state here. The user/frontend
2108 running state is set at a higher level. This also clears the
2109 thread's stop_pc as side effect. */
2110 set_executing (ptid, 1);
2111 clear_inline_frame_state (ptid);
2112 }
2113
2114 /* If true, target_commit_resume is a nop. */
2115 static int defer_target_commit_resume;
2116
2117 /* See target.h. */
2118
2119 void
2120 target_commit_resume (void)
2121 {
2122 if (defer_target_commit_resume)
2123 return;
2124
2125 current_top_target ()->commit_resume ();
2126 }
2127
2128 /* See target.h. */
2129
2130 scoped_restore_tmpl<int>
2131 make_scoped_defer_target_commit_resume ()
2132 {
2133 return make_scoped_restore (&defer_target_commit_resume, 1);
2134 }
2135
2136 void
2137 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2138 {
2139 current_top_target ()->pass_signals (pass_signals);
2140 }
2141
2142 void
2143 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2144 {
2145 current_top_target ()->program_signals (program_signals);
2146 }
2147
2148 static int
2149 default_follow_fork (struct target_ops *self, int follow_child,
2150 int detach_fork)
2151 {
2152 /* Some target returned a fork event, but did not know how to follow it. */
2153 internal_error (__FILE__, __LINE__,
2154 _("could not find a target to follow fork"));
2155 }
2156
2157 /* Look through the list of possible targets for a target that can
2158 follow forks. */
2159
2160 int
2161 target_follow_fork (int follow_child, int detach_fork)
2162 {
2163 return current_top_target ()->follow_fork (follow_child, detach_fork);
2164 }
2165
2166 /* Target wrapper for follow exec hook. */
2167
2168 void
2169 target_follow_exec (struct inferior *inf, char *execd_pathname)
2170 {
2171 current_top_target ()->follow_exec (inf, execd_pathname);
2172 }
2173
2174 static void
2175 default_mourn_inferior (struct target_ops *self)
2176 {
2177 internal_error (__FILE__, __LINE__,
2178 _("could not find a target to follow mourn inferior"));
2179 }
2180
2181 void
2182 target_mourn_inferior (ptid_t ptid)
2183 {
2184 gdb_assert (ptid == inferior_ptid);
2185 current_top_target ()->mourn_inferior ();
2186
2187 /* We no longer need to keep handles on any of the object files.
2188 Make sure to release them to avoid unnecessarily locking any
2189 of them while we're not actually debugging. */
2190 bfd_cache_close_all ();
2191 }
2192
2193 /* Look for a target which can describe architectural features, starting
2194 from TARGET. If we find one, return its description. */
2195
2196 const struct target_desc *
2197 target_read_description (struct target_ops *target)
2198 {
2199 return target->read_description ();
2200 }
2201
2202 /* This implements a basic search of memory, reading target memory and
2203 performing the search here (as opposed to performing the search in on the
2204 target side with, for example, gdbserver). */
2205
2206 int
2207 simple_search_memory (struct target_ops *ops,
2208 CORE_ADDR start_addr, ULONGEST search_space_len,
2209 const gdb_byte *pattern, ULONGEST pattern_len,
2210 CORE_ADDR *found_addrp)
2211 {
2212 /* NOTE: also defined in find.c testcase. */
2213 #define SEARCH_CHUNK_SIZE 16000
2214 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2215 /* Buffer to hold memory contents for searching. */
2216 unsigned search_buf_size;
2217
2218 search_buf_size = chunk_size + pattern_len - 1;
2219
2220 /* No point in trying to allocate a buffer larger than the search space. */
2221 if (search_space_len < search_buf_size)
2222 search_buf_size = search_space_len;
2223
2224 gdb::byte_vector search_buf (search_buf_size);
2225
2226 /* Prime the search buffer. */
2227
2228 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2229 search_buf.data (), start_addr, search_buf_size)
2230 != search_buf_size)
2231 {
2232 warning (_("Unable to access %s bytes of target "
2233 "memory at %s, halting search."),
2234 pulongest (search_buf_size), hex_string (start_addr));
2235 return -1;
2236 }
2237
2238 /* Perform the search.
2239
2240 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2241 When we've scanned N bytes we copy the trailing bytes to the start and
2242 read in another N bytes. */
2243
2244 while (search_space_len >= pattern_len)
2245 {
2246 gdb_byte *found_ptr;
2247 unsigned nr_search_bytes
2248 = std::min (search_space_len, (ULONGEST) search_buf_size);
2249
2250 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2251 pattern, pattern_len);
2252
2253 if (found_ptr != NULL)
2254 {
2255 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2256
2257 *found_addrp = found_addr;
2258 return 1;
2259 }
2260
2261 /* Not found in this chunk, skip to next chunk. */
2262
2263 /* Don't let search_space_len wrap here, it's unsigned. */
2264 if (search_space_len >= chunk_size)
2265 search_space_len -= chunk_size;
2266 else
2267 search_space_len = 0;
2268
2269 if (search_space_len >= pattern_len)
2270 {
2271 unsigned keep_len = search_buf_size - chunk_size;
2272 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2273 int nr_to_read;
2274
2275 /* Copy the trailing part of the previous iteration to the front
2276 of the buffer for the next iteration. */
2277 gdb_assert (keep_len == pattern_len - 1);
2278 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2279
2280 nr_to_read = std::min (search_space_len - keep_len,
2281 (ULONGEST) chunk_size);
2282
2283 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2284 &search_buf[keep_len], read_addr,
2285 nr_to_read) != nr_to_read)
2286 {
2287 warning (_("Unable to access %s bytes of target "
2288 "memory at %s, halting search."),
2289 plongest (nr_to_read),
2290 hex_string (read_addr));
2291 return -1;
2292 }
2293
2294 start_addr += chunk_size;
2295 }
2296 }
2297
2298 /* Not found. */
2299
2300 return 0;
2301 }
2302
2303 /* Default implementation of memory-searching. */
2304
2305 static int
2306 default_search_memory (struct target_ops *self,
2307 CORE_ADDR start_addr, ULONGEST search_space_len,
2308 const gdb_byte *pattern, ULONGEST pattern_len,
2309 CORE_ADDR *found_addrp)
2310 {
2311 /* Start over from the top of the target stack. */
2312 return simple_search_memory (current_top_target (),
2313 start_addr, search_space_len,
2314 pattern, pattern_len, found_addrp);
2315 }
2316
2317 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2318 sequence of bytes in PATTERN with length PATTERN_LEN.
2319
2320 The result is 1 if found, 0 if not found, and -1 if there was an error
2321 requiring halting of the search (e.g. memory read error).
2322 If the pattern is found the address is recorded in FOUND_ADDRP. */
2323
2324 int
2325 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2326 const gdb_byte *pattern, ULONGEST pattern_len,
2327 CORE_ADDR *found_addrp)
2328 {
2329 return current_top_target ()->search_memory (start_addr, search_space_len,
2330 pattern, pattern_len, found_addrp);
2331 }
2332
2333 /* Look through the currently pushed targets. If none of them will
2334 be able to restart the currently running process, issue an error
2335 message. */
2336
2337 void
2338 target_require_runnable (void)
2339 {
2340 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2341 {
2342 /* If this target knows how to create a new program, then
2343 assume we will still be able to after killing the current
2344 one. Either killing and mourning will not pop T, or else
2345 find_default_run_target will find it again. */
2346 if (t->can_create_inferior ())
2347 return;
2348
2349 /* Do not worry about targets at certain strata that can not
2350 create inferiors. Assume they will be pushed again if
2351 necessary, and continue to the process_stratum. */
2352 if (t->stratum () > process_stratum)
2353 continue;
2354
2355 error (_("The \"%s\" target does not support \"run\". "
2356 "Try \"help target\" or \"continue\"."),
2357 t->shortname ());
2358 }
2359
2360 /* This function is only called if the target is running. In that
2361 case there should have been a process_stratum target and it
2362 should either know how to create inferiors, or not... */
2363 internal_error (__FILE__, __LINE__, _("No targets found"));
2364 }
2365
2366 /* Whether GDB is allowed to fall back to the default run target for
2367 "run", "attach", etc. when no target is connected yet. */
2368 static int auto_connect_native_target = 1;
2369
2370 static void
2371 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2372 struct cmd_list_element *c, const char *value)
2373 {
2374 fprintf_filtered (file,
2375 _("Whether GDB may automatically connect to the "
2376 "native target is %s.\n"),
2377 value);
2378 }
2379
2380 /* A pointer to the target that can respond to "run" or "attach".
2381 Native targets are always singletons and instantiated early at GDB
2382 startup. */
2383 static target_ops *the_native_target;
2384
2385 /* See target.h. */
2386
2387 void
2388 set_native_target (target_ops *target)
2389 {
2390 if (the_native_target != NULL)
2391 internal_error (__FILE__, __LINE__,
2392 _("native target already set (\"%s\")."),
2393 the_native_target->longname ());
2394
2395 the_native_target = target;
2396 }
2397
2398 /* See target.h. */
2399
2400 target_ops *
2401 get_native_target ()
2402 {
2403 return the_native_target;
2404 }
2405
2406 /* Look through the list of possible targets for a target that can
2407 execute a run or attach command without any other data. This is
2408 used to locate the default process stratum.
2409
2410 If DO_MESG is not NULL, the result is always valid (error() is
2411 called for errors); else, return NULL on error. */
2412
2413 static struct target_ops *
2414 find_default_run_target (const char *do_mesg)
2415 {
2416 if (auto_connect_native_target && the_native_target != NULL)
2417 return the_native_target;
2418
2419 if (do_mesg != NULL)
2420 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2421 return NULL;
2422 }
2423
2424 /* See target.h. */
2425
2426 struct target_ops *
2427 find_attach_target (void)
2428 {
2429 /* If a target on the current stack can attach, use it. */
2430 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2431 {
2432 if (t->can_attach ())
2433 return t;
2434 }
2435
2436 /* Otherwise, use the default run target for attaching. */
2437 return find_default_run_target ("attach");
2438 }
2439
2440 /* See target.h. */
2441
2442 struct target_ops *
2443 find_run_target (void)
2444 {
2445 /* If a target on the current stack can run, use it. */
2446 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2447 {
2448 if (t->can_create_inferior ())
2449 return t;
2450 }
2451
2452 /* Otherwise, use the default run target. */
2453 return find_default_run_target ("run");
2454 }
2455
2456 bool
2457 target_ops::info_proc (const char *args, enum info_proc_what what)
2458 {
2459 return false;
2460 }
2461
2462 /* Implement the "info proc" command. */
2463
2464 int
2465 target_info_proc (const char *args, enum info_proc_what what)
2466 {
2467 struct target_ops *t;
2468
2469 /* If we're already connected to something that can get us OS
2470 related data, use it. Otherwise, try using the native
2471 target. */
2472 t = find_target_at (process_stratum);
2473 if (t == NULL)
2474 t = find_default_run_target (NULL);
2475
2476 for (; t != NULL; t = t->beneath ())
2477 {
2478 if (t->info_proc (args, what))
2479 {
2480 if (targetdebug)
2481 fprintf_unfiltered (gdb_stdlog,
2482 "target_info_proc (\"%s\", %d)\n", args, what);
2483
2484 return 1;
2485 }
2486 }
2487
2488 return 0;
2489 }
2490
2491 static int
2492 find_default_supports_disable_randomization (struct target_ops *self)
2493 {
2494 struct target_ops *t;
2495
2496 t = find_default_run_target (NULL);
2497 if (t != NULL)
2498 return t->supports_disable_randomization ();
2499 return 0;
2500 }
2501
2502 int
2503 target_supports_disable_randomization (void)
2504 {
2505 return current_top_target ()->supports_disable_randomization ();
2506 }
2507
2508 /* See target/target.h. */
2509
2510 int
2511 target_supports_multi_process (void)
2512 {
2513 return current_top_target ()->supports_multi_process ();
2514 }
2515
2516 /* See target.h. */
2517
2518 gdb::optional<gdb::char_vector>
2519 target_get_osdata (const char *type)
2520 {
2521 struct target_ops *t;
2522
2523 /* If we're already connected to something that can get us OS
2524 related data, use it. Otherwise, try using the native
2525 target. */
2526 t = find_target_at (process_stratum);
2527 if (t == NULL)
2528 t = find_default_run_target ("get OS data");
2529
2530 if (!t)
2531 return {};
2532
2533 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2534 }
2535
2536
2537 /* Determine the current address space of thread PTID. */
2538
2539 struct address_space *
2540 target_thread_address_space (ptid_t ptid)
2541 {
2542 struct address_space *aspace;
2543
2544 aspace = current_top_target ()->thread_address_space (ptid);
2545 gdb_assert (aspace != NULL);
2546
2547 return aspace;
2548 }
2549
2550 /* See target.h. */
2551
2552 target_ops *
2553 target_ops::beneath () const
2554 {
2555 return g_target_stack.find_beneath (this);
2556 }
2557
2558 void
2559 target_ops::close ()
2560 {
2561 }
2562
2563 bool
2564 target_ops::can_attach ()
2565 {
2566 return 0;
2567 }
2568
2569 void
2570 target_ops::attach (const char *, int)
2571 {
2572 gdb_assert_not_reached ("target_ops::attach called");
2573 }
2574
2575 bool
2576 target_ops::can_create_inferior ()
2577 {
2578 return 0;
2579 }
2580
2581 void
2582 target_ops::create_inferior (const char *, const std::string &,
2583 char **, int)
2584 {
2585 gdb_assert_not_reached ("target_ops::create_inferior called");
2586 }
2587
2588 bool
2589 target_ops::can_run ()
2590 {
2591 return false;
2592 }
2593
2594 int
2595 target_can_run ()
2596 {
2597 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2598 {
2599 if (t->can_run ())
2600 return 1;
2601 }
2602
2603 return 0;
2604 }
2605
2606 /* Target file operations. */
2607
2608 static struct target_ops *
2609 default_fileio_target (void)
2610 {
2611 struct target_ops *t;
2612
2613 /* If we're already connected to something that can perform
2614 file I/O, use it. Otherwise, try using the native target. */
2615 t = find_target_at (process_stratum);
2616 if (t != NULL)
2617 return t;
2618 return find_default_run_target ("file I/O");
2619 }
2620
2621 /* File handle for target file operations. */
2622
2623 struct fileio_fh_t
2624 {
2625 /* The target on which this file is open. NULL if the target is
2626 meanwhile closed while the handle is open. */
2627 target_ops *target;
2628
2629 /* The file descriptor on the target. */
2630 int target_fd;
2631
2632 /* Check whether this fileio_fh_t represents a closed file. */
2633 bool is_closed ()
2634 {
2635 return target_fd < 0;
2636 }
2637 };
2638
2639 /* Vector of currently open file handles. The value returned by
2640 target_fileio_open and passed as the FD argument to other
2641 target_fileio_* functions is an index into this vector. This
2642 vector's entries are never freed; instead, files are marked as
2643 closed, and the handle becomes available for reuse. */
2644 static std::vector<fileio_fh_t> fileio_fhandles;
2645
2646 /* Index into fileio_fhandles of the lowest handle that might be
2647 closed. This permits handle reuse without searching the whole
2648 list each time a new file is opened. */
2649 static int lowest_closed_fd;
2650
2651 /* Invalidate the target associated with open handles that were open
2652 on target TARG, since we're about to close (and maybe destroy) the
2653 target. The handles remain open from the client's perspective, but
2654 trying to do anything with them other than closing them will fail
2655 with EIO. */
2656
2657 static void
2658 fileio_handles_invalidate_target (target_ops *targ)
2659 {
2660 for (fileio_fh_t &fh : fileio_fhandles)
2661 if (fh.target == targ)
2662 fh.target = NULL;
2663 }
2664
2665 /* Acquire a target fileio file descriptor. */
2666
2667 static int
2668 acquire_fileio_fd (target_ops *target, int target_fd)
2669 {
2670 /* Search for closed handles to reuse. */
2671 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2672 {
2673 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2674
2675 if (fh.is_closed ())
2676 break;
2677 }
2678
2679 /* Push a new handle if no closed handles were found. */
2680 if (lowest_closed_fd == fileio_fhandles.size ())
2681 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2682 else
2683 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2684
2685 /* Should no longer be marked closed. */
2686 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2687
2688 /* Return its index, and start the next lookup at
2689 the next index. */
2690 return lowest_closed_fd++;
2691 }
2692
2693 /* Release a target fileio file descriptor. */
2694
2695 static void
2696 release_fileio_fd (int fd, fileio_fh_t *fh)
2697 {
2698 fh->target_fd = -1;
2699 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2700 }
2701
2702 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2703
2704 static fileio_fh_t *
2705 fileio_fd_to_fh (int fd)
2706 {
2707 return &fileio_fhandles[fd];
2708 }
2709
2710
2711 /* Default implementations of file i/o methods. We don't want these
2712 to delegate automatically, because we need to know which target
2713 supported the method, in order to call it directly from within
2714 pread/pwrite, etc. */
2715
2716 int
2717 target_ops::fileio_open (struct inferior *inf, const char *filename,
2718 int flags, int mode, int warn_if_slow,
2719 int *target_errno)
2720 {
2721 *target_errno = FILEIO_ENOSYS;
2722 return -1;
2723 }
2724
2725 int
2726 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2727 ULONGEST offset, int *target_errno)
2728 {
2729 *target_errno = FILEIO_ENOSYS;
2730 return -1;
2731 }
2732
2733 int
2734 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2735 ULONGEST offset, int *target_errno)
2736 {
2737 *target_errno = FILEIO_ENOSYS;
2738 return -1;
2739 }
2740
2741 int
2742 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2743 {
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746 }
2747
2748 int
2749 target_ops::fileio_close (int fd, int *target_errno)
2750 {
2751 *target_errno = FILEIO_ENOSYS;
2752 return -1;
2753 }
2754
2755 int
2756 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2757 int *target_errno)
2758 {
2759 *target_errno = FILEIO_ENOSYS;
2760 return -1;
2761 }
2762
2763 gdb::optional<std::string>
2764 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2765 int *target_errno)
2766 {
2767 *target_errno = FILEIO_ENOSYS;
2768 return {};
2769 }
2770
2771 /* Helper for target_fileio_open and
2772 target_fileio_open_warn_if_slow. */
2773
2774 static int
2775 target_fileio_open_1 (struct inferior *inf, const char *filename,
2776 int flags, int mode, int warn_if_slow,
2777 int *target_errno)
2778 {
2779 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2780 {
2781 int fd = t->fileio_open (inf, filename, flags, mode,
2782 warn_if_slow, target_errno);
2783
2784 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2785 continue;
2786
2787 if (fd < 0)
2788 fd = -1;
2789 else
2790 fd = acquire_fileio_fd (t, fd);
2791
2792 if (targetdebug)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2795 " = %d (%d)\n",
2796 inf == NULL ? 0 : inf->num,
2797 filename, flags, mode,
2798 warn_if_slow, fd,
2799 fd != -1 ? 0 : *target_errno);
2800 return fd;
2801 }
2802
2803 *target_errno = FILEIO_ENOSYS;
2804 return -1;
2805 }
2806
2807 /* See target.h. */
2808
2809 int
2810 target_fileio_open (struct inferior *inf, const char *filename,
2811 int flags, int mode, int *target_errno)
2812 {
2813 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2814 target_errno);
2815 }
2816
2817 /* See target.h. */
2818
2819 int
2820 target_fileio_open_warn_if_slow (struct inferior *inf,
2821 const char *filename,
2822 int flags, int mode, int *target_errno)
2823 {
2824 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2825 target_errno);
2826 }
2827
2828 /* See target.h. */
2829
2830 int
2831 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2832 ULONGEST offset, int *target_errno)
2833 {
2834 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2835 int ret = -1;
2836
2837 if (fh->is_closed ())
2838 *target_errno = EBADF;
2839 else if (fh->target == NULL)
2840 *target_errno = EIO;
2841 else
2842 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2843 len, offset, target_errno);
2844
2845 if (targetdebug)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "target_fileio_pwrite (%d,...,%d,%s) "
2848 "= %d (%d)\n",
2849 fd, len, pulongest (offset),
2850 ret, ret != -1 ? 0 : *target_errno);
2851 return ret;
2852 }
2853
2854 /* See target.h. */
2855
2856 int
2857 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2858 ULONGEST offset, int *target_errno)
2859 {
2860 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2861 int ret = -1;
2862
2863 if (fh->is_closed ())
2864 *target_errno = EBADF;
2865 else if (fh->target == NULL)
2866 *target_errno = EIO;
2867 else
2868 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2869 len, offset, target_errno);
2870
2871 if (targetdebug)
2872 fprintf_unfiltered (gdb_stdlog,
2873 "target_fileio_pread (%d,...,%d,%s) "
2874 "= %d (%d)\n",
2875 fd, len, pulongest (offset),
2876 ret, ret != -1 ? 0 : *target_errno);
2877 return ret;
2878 }
2879
2880 /* See target.h. */
2881
2882 int
2883 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2884 {
2885 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2886 int ret = -1;
2887
2888 if (fh->is_closed ())
2889 *target_errno = EBADF;
2890 else if (fh->target == NULL)
2891 *target_errno = EIO;
2892 else
2893 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2894
2895 if (targetdebug)
2896 fprintf_unfiltered (gdb_stdlog,
2897 "target_fileio_fstat (%d) = %d (%d)\n",
2898 fd, ret, ret != -1 ? 0 : *target_errno);
2899 return ret;
2900 }
2901
2902 /* See target.h. */
2903
2904 int
2905 target_fileio_close (int fd, int *target_errno)
2906 {
2907 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2908 int ret = -1;
2909
2910 if (fh->is_closed ())
2911 *target_errno = EBADF;
2912 else
2913 {
2914 if (fh->target != NULL)
2915 ret = fh->target->fileio_close (fh->target_fd,
2916 target_errno);
2917 else
2918 ret = 0;
2919 release_fileio_fd (fd, fh);
2920 }
2921
2922 if (targetdebug)
2923 fprintf_unfiltered (gdb_stdlog,
2924 "target_fileio_close (%d) = %d (%d)\n",
2925 fd, ret, ret != -1 ? 0 : *target_errno);
2926 return ret;
2927 }
2928
2929 /* See target.h. */
2930
2931 int
2932 target_fileio_unlink (struct inferior *inf, const char *filename,
2933 int *target_errno)
2934 {
2935 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2936 {
2937 int ret = t->fileio_unlink (inf, filename, target_errno);
2938
2939 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2940 continue;
2941
2942 if (targetdebug)
2943 fprintf_unfiltered (gdb_stdlog,
2944 "target_fileio_unlink (%d,%s)"
2945 " = %d (%d)\n",
2946 inf == NULL ? 0 : inf->num, filename,
2947 ret, ret != -1 ? 0 : *target_errno);
2948 return ret;
2949 }
2950
2951 *target_errno = FILEIO_ENOSYS;
2952 return -1;
2953 }
2954
2955 /* See target.h. */
2956
2957 gdb::optional<std::string>
2958 target_fileio_readlink (struct inferior *inf, const char *filename,
2959 int *target_errno)
2960 {
2961 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2962 {
2963 gdb::optional<std::string> ret
2964 = t->fileio_readlink (inf, filename, target_errno);
2965
2966 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2967 continue;
2968
2969 if (targetdebug)
2970 fprintf_unfiltered (gdb_stdlog,
2971 "target_fileio_readlink (%d,%s)"
2972 " = %s (%d)\n",
2973 inf == NULL ? 0 : inf->num,
2974 filename, ret ? ret->c_str () : "(nil)",
2975 ret ? 0 : *target_errno);
2976 return ret;
2977 }
2978
2979 *target_errno = FILEIO_ENOSYS;
2980 return {};
2981 }
2982
2983 /* Like scoped_fd, but specific to target fileio. */
2984
2985 class scoped_target_fd
2986 {
2987 public:
2988 explicit scoped_target_fd (int fd) noexcept
2989 : m_fd (fd)
2990 {
2991 }
2992
2993 ~scoped_target_fd ()
2994 {
2995 if (m_fd >= 0)
2996 {
2997 int target_errno;
2998
2999 target_fileio_close (m_fd, &target_errno);
3000 }
3001 }
3002
3003 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3004
3005 int get () const noexcept
3006 {
3007 return m_fd;
3008 }
3009
3010 private:
3011 int m_fd;
3012 };
3013
3014 /* Read target file FILENAME, in the filesystem as seen by INF. If
3015 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3016 remote targets, the remote stub). Store the result in *BUF_P and
3017 return the size of the transferred data. PADDING additional bytes
3018 are available in *BUF_P. This is a helper function for
3019 target_fileio_read_alloc; see the declaration of that function for
3020 more information. */
3021
3022 static LONGEST
3023 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3024 gdb_byte **buf_p, int padding)
3025 {
3026 size_t buf_alloc, buf_pos;
3027 gdb_byte *buf;
3028 LONGEST n;
3029 int target_errno;
3030
3031 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3032 0700, &target_errno));
3033 if (fd.get () == -1)
3034 return -1;
3035
3036 /* Start by reading up to 4K at a time. The target will throttle
3037 this number down if necessary. */
3038 buf_alloc = 4096;
3039 buf = (gdb_byte *) xmalloc (buf_alloc);
3040 buf_pos = 0;
3041 while (1)
3042 {
3043 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3044 buf_alloc - buf_pos - padding, buf_pos,
3045 &target_errno);
3046 if (n < 0)
3047 {
3048 /* An error occurred. */
3049 xfree (buf);
3050 return -1;
3051 }
3052 else if (n == 0)
3053 {
3054 /* Read all there was. */
3055 if (buf_pos == 0)
3056 xfree (buf);
3057 else
3058 *buf_p = buf;
3059 return buf_pos;
3060 }
3061
3062 buf_pos += n;
3063
3064 /* If the buffer is filling up, expand it. */
3065 if (buf_alloc < buf_pos * 2)
3066 {
3067 buf_alloc *= 2;
3068 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3069 }
3070
3071 QUIT;
3072 }
3073 }
3074
3075 /* See target.h. */
3076
3077 LONGEST
3078 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3079 gdb_byte **buf_p)
3080 {
3081 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3082 }
3083
3084 /* See target.h. */
3085
3086 gdb::unique_xmalloc_ptr<char>
3087 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3088 {
3089 gdb_byte *buffer;
3090 char *bufstr;
3091 LONGEST i, transferred;
3092
3093 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3094 bufstr = (char *) buffer;
3095
3096 if (transferred < 0)
3097 return gdb::unique_xmalloc_ptr<char> (nullptr);
3098
3099 if (transferred == 0)
3100 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3101
3102 bufstr[transferred] = 0;
3103
3104 /* Check for embedded NUL bytes; but allow trailing NULs. */
3105 for (i = strlen (bufstr); i < transferred; i++)
3106 if (bufstr[i] != 0)
3107 {
3108 warning (_("target file %s "
3109 "contained unexpected null characters"),
3110 filename);
3111 break;
3112 }
3113
3114 return gdb::unique_xmalloc_ptr<char> (bufstr);
3115 }
3116
3117
3118 static int
3119 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3120 CORE_ADDR addr, int len)
3121 {
3122 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3123 }
3124
3125 static int
3126 default_watchpoint_addr_within_range (struct target_ops *target,
3127 CORE_ADDR addr,
3128 CORE_ADDR start, int length)
3129 {
3130 return addr >= start && addr < start + length;
3131 }
3132
3133 /* See target.h. */
3134
3135 target_ops *
3136 target_stack::find_beneath (const target_ops *t) const
3137 {
3138 /* Look for a non-empty slot at stratum levels beneath T's. */
3139 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3140 if (m_stack[stratum] != NULL)
3141 return m_stack[stratum];
3142
3143 return NULL;
3144 }
3145
3146 /* See target.h. */
3147
3148 struct target_ops *
3149 find_target_at (enum strata stratum)
3150 {
3151 return g_target_stack.at (stratum);
3152 }
3153
3154 \f
3155
3156 /* See target.h */
3157
3158 void
3159 target_announce_detach (int from_tty)
3160 {
3161 pid_t pid;
3162 const char *exec_file;
3163
3164 if (!from_tty)
3165 return;
3166
3167 exec_file = get_exec_file (0);
3168 if (exec_file == NULL)
3169 exec_file = "";
3170
3171 pid = inferior_ptid.pid ();
3172 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3173 target_pid_to_str (ptid_t (pid)).c_str ());
3174 }
3175
3176 /* The inferior process has died. Long live the inferior! */
3177
3178 void
3179 generic_mourn_inferior (void)
3180 {
3181 inferior *inf = current_inferior ();
3182
3183 inferior_ptid = null_ptid;
3184
3185 /* Mark breakpoints uninserted in case something tries to delete a
3186 breakpoint while we delete the inferior's threads (which would
3187 fail, since the inferior is long gone). */
3188 mark_breakpoints_out ();
3189
3190 if (inf->pid != 0)
3191 exit_inferior (inf);
3192
3193 /* Note this wipes step-resume breakpoints, so needs to be done
3194 after exit_inferior, which ends up referencing the step-resume
3195 breakpoints through clear_thread_inferior_resources. */
3196 breakpoint_init_inferior (inf_exited);
3197
3198 registers_changed ();
3199
3200 reopen_exec_file ();
3201 reinit_frame_cache ();
3202
3203 if (deprecated_detach_hook)
3204 deprecated_detach_hook ();
3205 }
3206 \f
3207 /* Convert a normal process ID to a string. Returns the string in a
3208 static buffer. */
3209
3210 std::string
3211 normal_pid_to_str (ptid_t ptid)
3212 {
3213 return string_printf ("process %d", ptid.pid ());
3214 }
3215
3216 static std::string
3217 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3218 {
3219 return normal_pid_to_str (ptid);
3220 }
3221
3222 /* Error-catcher for target_find_memory_regions. */
3223 static int
3224 dummy_find_memory_regions (struct target_ops *self,
3225 find_memory_region_ftype ignore1, void *ignore2)
3226 {
3227 error (_("Command not implemented for this target."));
3228 return 0;
3229 }
3230
3231 /* Error-catcher for target_make_corefile_notes. */
3232 static char *
3233 dummy_make_corefile_notes (struct target_ops *self,
3234 bfd *ignore1, int *ignore2)
3235 {
3236 error (_("Command not implemented for this target."));
3237 return NULL;
3238 }
3239
3240 #include "target-delegates.c"
3241
3242 /* The initial current target, so that there is always a semi-valid
3243 current target. */
3244
3245 static dummy_target the_dummy_target;
3246
3247 static const target_info dummy_target_info = {
3248 "None",
3249 N_("None"),
3250 ""
3251 };
3252
3253 strata
3254 dummy_target::stratum () const
3255 {
3256 return dummy_stratum;
3257 }
3258
3259 strata
3260 debug_target::stratum () const
3261 {
3262 return debug_stratum;
3263 }
3264
3265 const target_info &
3266 dummy_target::info () const
3267 {
3268 return dummy_target_info;
3269 }
3270
3271 const target_info &
3272 debug_target::info () const
3273 {
3274 return beneath ()->info ();
3275 }
3276
3277 \f
3278
3279 void
3280 target_close (struct target_ops *targ)
3281 {
3282 gdb_assert (!target_is_pushed (targ));
3283
3284 fileio_handles_invalidate_target (targ);
3285
3286 targ->close ();
3287
3288 if (targetdebug)
3289 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3290 }
3291
3292 int
3293 target_thread_alive (ptid_t ptid)
3294 {
3295 return current_top_target ()->thread_alive (ptid);
3296 }
3297
3298 void
3299 target_update_thread_list (void)
3300 {
3301 current_top_target ()->update_thread_list ();
3302 }
3303
3304 void
3305 target_stop (ptid_t ptid)
3306 {
3307 if (!may_stop)
3308 {
3309 warning (_("May not interrupt or stop the target, ignoring attempt"));
3310 return;
3311 }
3312
3313 current_top_target ()->stop (ptid);
3314 }
3315
3316 void
3317 target_interrupt ()
3318 {
3319 if (!may_stop)
3320 {
3321 warning (_("May not interrupt or stop the target, ignoring attempt"));
3322 return;
3323 }
3324
3325 current_top_target ()->interrupt ();
3326 }
3327
3328 /* See target.h. */
3329
3330 void
3331 target_pass_ctrlc (void)
3332 {
3333 current_top_target ()->pass_ctrlc ();
3334 }
3335
3336 /* See target.h. */
3337
3338 void
3339 default_target_pass_ctrlc (struct target_ops *ops)
3340 {
3341 target_interrupt ();
3342 }
3343
3344 /* See target/target.h. */
3345
3346 void
3347 target_stop_and_wait (ptid_t ptid)
3348 {
3349 struct target_waitstatus status;
3350 int was_non_stop = non_stop;
3351
3352 non_stop = 1;
3353 target_stop (ptid);
3354
3355 memset (&status, 0, sizeof (status));
3356 target_wait (ptid, &status, 0);
3357
3358 non_stop = was_non_stop;
3359 }
3360
3361 /* See target/target.h. */
3362
3363 void
3364 target_continue_no_signal (ptid_t ptid)
3365 {
3366 target_resume (ptid, 0, GDB_SIGNAL_0);
3367 }
3368
3369 /* See target/target.h. */
3370
3371 void
3372 target_continue (ptid_t ptid, enum gdb_signal signal)
3373 {
3374 target_resume (ptid, 0, signal);
3375 }
3376
3377 /* Concatenate ELEM to LIST, a comma-separated list. */
3378
3379 static void
3380 str_comma_list_concat_elem (std::string *list, const char *elem)
3381 {
3382 if (!list->empty ())
3383 list->append (", ");
3384
3385 list->append (elem);
3386 }
3387
3388 /* Helper for target_options_to_string. If OPT is present in
3389 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3390 OPT is removed from TARGET_OPTIONS. */
3391
3392 static void
3393 do_option (int *target_options, std::string *ret,
3394 int opt, const char *opt_str)
3395 {
3396 if ((*target_options & opt) != 0)
3397 {
3398 str_comma_list_concat_elem (ret, opt_str);
3399 *target_options &= ~opt;
3400 }
3401 }
3402
3403 /* See target.h. */
3404
3405 std::string
3406 target_options_to_string (int target_options)
3407 {
3408 std::string ret;
3409
3410 #define DO_TARG_OPTION(OPT) \
3411 do_option (&target_options, &ret, OPT, #OPT)
3412
3413 DO_TARG_OPTION (TARGET_WNOHANG);
3414
3415 if (target_options != 0)
3416 str_comma_list_concat_elem (&ret, "unknown???");
3417
3418 return ret;
3419 }
3420
3421 void
3422 target_fetch_registers (struct regcache *regcache, int regno)
3423 {
3424 current_top_target ()->fetch_registers (regcache, regno);
3425 if (targetdebug)
3426 regcache->debug_print_register ("target_fetch_registers", regno);
3427 }
3428
3429 void
3430 target_store_registers (struct regcache *regcache, int regno)
3431 {
3432 if (!may_write_registers)
3433 error (_("Writing to registers is not allowed (regno %d)"), regno);
3434
3435 current_top_target ()->store_registers (regcache, regno);
3436 if (targetdebug)
3437 {
3438 regcache->debug_print_register ("target_store_registers", regno);
3439 }
3440 }
3441
3442 int
3443 target_core_of_thread (ptid_t ptid)
3444 {
3445 return current_top_target ()->core_of_thread (ptid);
3446 }
3447
3448 int
3449 simple_verify_memory (struct target_ops *ops,
3450 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3451 {
3452 LONGEST total_xfered = 0;
3453
3454 while (total_xfered < size)
3455 {
3456 ULONGEST xfered_len;
3457 enum target_xfer_status status;
3458 gdb_byte buf[1024];
3459 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3460
3461 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3462 buf, NULL, lma + total_xfered, howmuch,
3463 &xfered_len);
3464 if (status == TARGET_XFER_OK
3465 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3466 {
3467 total_xfered += xfered_len;
3468 QUIT;
3469 }
3470 else
3471 return 0;
3472 }
3473 return 1;
3474 }
3475
3476 /* Default implementation of memory verification. */
3477
3478 static int
3479 default_verify_memory (struct target_ops *self,
3480 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3481 {
3482 /* Start over from the top of the target stack. */
3483 return simple_verify_memory (current_top_target (),
3484 data, memaddr, size);
3485 }
3486
3487 int
3488 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3489 {
3490 return current_top_target ()->verify_memory (data, memaddr, size);
3491 }
3492
3493 /* The documentation for this function is in its prototype declaration in
3494 target.h. */
3495
3496 int
3497 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3498 enum target_hw_bp_type rw)
3499 {
3500 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3501 }
3502
3503 /* The documentation for this function is in its prototype declaration in
3504 target.h. */
3505
3506 int
3507 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3508 enum target_hw_bp_type rw)
3509 {
3510 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3511 }
3512
3513 /* The documentation for this function is in its prototype declaration
3514 in target.h. */
3515
3516 int
3517 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3518 {
3519 return current_top_target ()->masked_watch_num_registers (addr, mask);
3520 }
3521
3522 /* The documentation for this function is in its prototype declaration
3523 in target.h. */
3524
3525 int
3526 target_ranged_break_num_registers (void)
3527 {
3528 return current_top_target ()->ranged_break_num_registers ();
3529 }
3530
3531 /* See target.h. */
3532
3533 struct btrace_target_info *
3534 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3535 {
3536 return current_top_target ()->enable_btrace (ptid, conf);
3537 }
3538
3539 /* See target.h. */
3540
3541 void
3542 target_disable_btrace (struct btrace_target_info *btinfo)
3543 {
3544 current_top_target ()->disable_btrace (btinfo);
3545 }
3546
3547 /* See target.h. */
3548
3549 void
3550 target_teardown_btrace (struct btrace_target_info *btinfo)
3551 {
3552 current_top_target ()->teardown_btrace (btinfo);
3553 }
3554
3555 /* See target.h. */
3556
3557 enum btrace_error
3558 target_read_btrace (struct btrace_data *btrace,
3559 struct btrace_target_info *btinfo,
3560 enum btrace_read_type type)
3561 {
3562 return current_top_target ()->read_btrace (btrace, btinfo, type);
3563 }
3564
3565 /* See target.h. */
3566
3567 const struct btrace_config *
3568 target_btrace_conf (const struct btrace_target_info *btinfo)
3569 {
3570 return current_top_target ()->btrace_conf (btinfo);
3571 }
3572
3573 /* See target.h. */
3574
3575 void
3576 target_stop_recording (void)
3577 {
3578 current_top_target ()->stop_recording ();
3579 }
3580
3581 /* See target.h. */
3582
3583 void
3584 target_save_record (const char *filename)
3585 {
3586 current_top_target ()->save_record (filename);
3587 }
3588
3589 /* See target.h. */
3590
3591 int
3592 target_supports_delete_record ()
3593 {
3594 return current_top_target ()->supports_delete_record ();
3595 }
3596
3597 /* See target.h. */
3598
3599 void
3600 target_delete_record (void)
3601 {
3602 current_top_target ()->delete_record ();
3603 }
3604
3605 /* See target.h. */
3606
3607 enum record_method
3608 target_record_method (ptid_t ptid)
3609 {
3610 return current_top_target ()->record_method (ptid);
3611 }
3612
3613 /* See target.h. */
3614
3615 int
3616 target_record_is_replaying (ptid_t ptid)
3617 {
3618 return current_top_target ()->record_is_replaying (ptid);
3619 }
3620
3621 /* See target.h. */
3622
3623 int
3624 target_record_will_replay (ptid_t ptid, int dir)
3625 {
3626 return current_top_target ()->record_will_replay (ptid, dir);
3627 }
3628
3629 /* See target.h. */
3630
3631 void
3632 target_record_stop_replaying (void)
3633 {
3634 current_top_target ()->record_stop_replaying ();
3635 }
3636
3637 /* See target.h. */
3638
3639 void
3640 target_goto_record_begin (void)
3641 {
3642 current_top_target ()->goto_record_begin ();
3643 }
3644
3645 /* See target.h. */
3646
3647 void
3648 target_goto_record_end (void)
3649 {
3650 current_top_target ()->goto_record_end ();
3651 }
3652
3653 /* See target.h. */
3654
3655 void
3656 target_goto_record (ULONGEST insn)
3657 {
3658 current_top_target ()->goto_record (insn);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_insn_history (int size, gdb_disassembly_flags flags)
3665 {
3666 current_top_target ()->insn_history (size, flags);
3667 }
3668
3669 /* See target.h. */
3670
3671 void
3672 target_insn_history_from (ULONGEST from, int size,
3673 gdb_disassembly_flags flags)
3674 {
3675 current_top_target ()->insn_history_from (from, size, flags);
3676 }
3677
3678 /* See target.h. */
3679
3680 void
3681 target_insn_history_range (ULONGEST begin, ULONGEST end,
3682 gdb_disassembly_flags flags)
3683 {
3684 current_top_target ()->insn_history_range (begin, end, flags);
3685 }
3686
3687 /* See target.h. */
3688
3689 void
3690 target_call_history (int size, record_print_flags flags)
3691 {
3692 current_top_target ()->call_history (size, flags);
3693 }
3694
3695 /* See target.h. */
3696
3697 void
3698 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3699 {
3700 current_top_target ()->call_history_from (begin, size, flags);
3701 }
3702
3703 /* See target.h. */
3704
3705 void
3706 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3707 {
3708 current_top_target ()->call_history_range (begin, end, flags);
3709 }
3710
3711 /* See target.h. */
3712
3713 const struct frame_unwind *
3714 target_get_unwinder (void)
3715 {
3716 return current_top_target ()->get_unwinder ();
3717 }
3718
3719 /* See target.h. */
3720
3721 const struct frame_unwind *
3722 target_get_tailcall_unwinder (void)
3723 {
3724 return current_top_target ()->get_tailcall_unwinder ();
3725 }
3726
3727 /* See target.h. */
3728
3729 void
3730 target_prepare_to_generate_core (void)
3731 {
3732 current_top_target ()->prepare_to_generate_core ();
3733 }
3734
3735 /* See target.h. */
3736
3737 void
3738 target_done_generating_core (void)
3739 {
3740 current_top_target ()->done_generating_core ();
3741 }
3742
3743 \f
3744
3745 static char targ_desc[] =
3746 "Names of targets and files being debugged.\nShows the entire \
3747 stack of targets currently in use (including the exec-file,\n\
3748 core-file, and process, if any), as well as the symbol file name.";
3749
3750 static void
3751 default_rcmd (struct target_ops *self, const char *command,
3752 struct ui_file *output)
3753 {
3754 error (_("\"monitor\" command not supported by this target."));
3755 }
3756
3757 static void
3758 do_monitor_command (const char *cmd, int from_tty)
3759 {
3760 target_rcmd (cmd, gdb_stdtarg);
3761 }
3762
3763 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3764 ignored. */
3765
3766 void
3767 flash_erase_command (const char *cmd, int from_tty)
3768 {
3769 /* Used to communicate termination of flash operations to the target. */
3770 bool found_flash_region = false;
3771 struct gdbarch *gdbarch = target_gdbarch ();
3772
3773 std::vector<mem_region> mem_regions = target_memory_map ();
3774
3775 /* Iterate over all memory regions. */
3776 for (const mem_region &m : mem_regions)
3777 {
3778 /* Is this a flash memory region? */
3779 if (m.attrib.mode == MEM_FLASH)
3780 {
3781 found_flash_region = true;
3782 target_flash_erase (m.lo, m.hi - m.lo);
3783
3784 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3785
3786 current_uiout->message (_("Erasing flash memory region at address "));
3787 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3788 current_uiout->message (", size = ");
3789 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3790 current_uiout->message ("\n");
3791 }
3792 }
3793
3794 /* Did we do any flash operations? If so, we need to finalize them. */
3795 if (found_flash_region)
3796 target_flash_done ();
3797 else
3798 current_uiout->message (_("No flash memory regions found.\n"));
3799 }
3800
3801 /* Print the name of each layers of our target stack. */
3802
3803 static void
3804 maintenance_print_target_stack (const char *cmd, int from_tty)
3805 {
3806 printf_filtered (_("The current target stack is:\n"));
3807
3808 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3809 {
3810 if (t->stratum () == debug_stratum)
3811 continue;
3812 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3813 }
3814 }
3815
3816 /* See target.h. */
3817
3818 void
3819 target_async (int enable)
3820 {
3821 infrun_async (enable);
3822 current_top_target ()->async (enable);
3823 }
3824
3825 /* See target.h. */
3826
3827 void
3828 target_thread_events (int enable)
3829 {
3830 current_top_target ()->thread_events (enable);
3831 }
3832
3833 /* Controls if targets can report that they can/are async. This is
3834 just for maintainers to use when debugging gdb. */
3835 int target_async_permitted = 1;
3836
3837 /* The set command writes to this variable. If the inferior is
3838 executing, target_async_permitted is *not* updated. */
3839 static int target_async_permitted_1 = 1;
3840
3841 static void
3842 maint_set_target_async_command (const char *args, int from_tty,
3843 struct cmd_list_element *c)
3844 {
3845 if (have_live_inferiors ())
3846 {
3847 target_async_permitted_1 = target_async_permitted;
3848 error (_("Cannot change this setting while the inferior is running."));
3849 }
3850
3851 target_async_permitted = target_async_permitted_1;
3852 }
3853
3854 static void
3855 maint_show_target_async_command (struct ui_file *file, int from_tty,
3856 struct cmd_list_element *c,
3857 const char *value)
3858 {
3859 fprintf_filtered (file,
3860 _("Controlling the inferior in "
3861 "asynchronous mode is %s.\n"), value);
3862 }
3863
3864 /* Return true if the target operates in non-stop mode even with "set
3865 non-stop off". */
3866
3867 static int
3868 target_always_non_stop_p (void)
3869 {
3870 return current_top_target ()->always_non_stop_p ();
3871 }
3872
3873 /* See target.h. */
3874
3875 int
3876 target_is_non_stop_p (void)
3877 {
3878 return (non_stop
3879 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3880 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3881 && target_always_non_stop_p ()));
3882 }
3883
3884 /* Controls if targets can report that they always run in non-stop
3885 mode. This is just for maintainers to use when debugging gdb. */
3886 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3887
3888 /* The set command writes to this variable. If the inferior is
3889 executing, target_non_stop_enabled is *not* updated. */
3890 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3891
3892 /* Implementation of "maint set target-non-stop". */
3893
3894 static void
3895 maint_set_target_non_stop_command (const char *args, int from_tty,
3896 struct cmd_list_element *c)
3897 {
3898 if (have_live_inferiors ())
3899 {
3900 target_non_stop_enabled_1 = target_non_stop_enabled;
3901 error (_("Cannot change this setting while the inferior is running."));
3902 }
3903
3904 target_non_stop_enabled = target_non_stop_enabled_1;
3905 }
3906
3907 /* Implementation of "maint show target-non-stop". */
3908
3909 static void
3910 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3911 struct cmd_list_element *c,
3912 const char *value)
3913 {
3914 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3915 fprintf_filtered (file,
3916 _("Whether the target is always in non-stop mode "
3917 "is %s (currently %s).\n"), value,
3918 target_always_non_stop_p () ? "on" : "off");
3919 else
3920 fprintf_filtered (file,
3921 _("Whether the target is always in non-stop mode "
3922 "is %s.\n"), value);
3923 }
3924
3925 /* Temporary copies of permission settings. */
3926
3927 static int may_write_registers_1 = 1;
3928 static int may_write_memory_1 = 1;
3929 static int may_insert_breakpoints_1 = 1;
3930 static int may_insert_tracepoints_1 = 1;
3931 static int may_insert_fast_tracepoints_1 = 1;
3932 static int may_stop_1 = 1;
3933
3934 /* Make the user-set values match the real values again. */
3935
3936 void
3937 update_target_permissions (void)
3938 {
3939 may_write_registers_1 = may_write_registers;
3940 may_write_memory_1 = may_write_memory;
3941 may_insert_breakpoints_1 = may_insert_breakpoints;
3942 may_insert_tracepoints_1 = may_insert_tracepoints;
3943 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3944 may_stop_1 = may_stop;
3945 }
3946
3947 /* The one function handles (most of) the permission flags in the same
3948 way. */
3949
3950 static void
3951 set_target_permissions (const char *args, int from_tty,
3952 struct cmd_list_element *c)
3953 {
3954 if (target_has_execution)
3955 {
3956 update_target_permissions ();
3957 error (_("Cannot change this setting while the inferior is running."));
3958 }
3959
3960 /* Make the real values match the user-changed values. */
3961 may_write_registers = may_write_registers_1;
3962 may_insert_breakpoints = may_insert_breakpoints_1;
3963 may_insert_tracepoints = may_insert_tracepoints_1;
3964 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3965 may_stop = may_stop_1;
3966 update_observer_mode ();
3967 }
3968
3969 /* Set memory write permission independently of observer mode. */
3970
3971 static void
3972 set_write_memory_permission (const char *args, int from_tty,
3973 struct cmd_list_element *c)
3974 {
3975 /* Make the real values match the user-changed values. */
3976 may_write_memory = may_write_memory_1;
3977 update_observer_mode ();
3978 }
3979
3980 void
3981 initialize_targets (void)
3982 {
3983 push_target (&the_dummy_target);
3984
3985 the_debug_target = new debug_target ();
3986
3987 add_info ("target", info_target_command, targ_desc);
3988 add_info ("files", info_target_command, targ_desc);
3989
3990 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3991 Set target debugging."), _("\
3992 Show target debugging."), _("\
3993 When non-zero, target debugging is enabled. Higher numbers are more\n\
3994 verbose."),
3995 set_targetdebug,
3996 show_targetdebug,
3997 &setdebuglist, &showdebuglist);
3998
3999 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4000 &trust_readonly, _("\
4001 Set mode for reading from readonly sections."), _("\
4002 Show mode for reading from readonly sections."), _("\
4003 When this mode is on, memory reads from readonly sections (such as .text)\n\
4004 will be read from the object file instead of from the target. This will\n\
4005 result in significant performance improvement for remote targets."),
4006 NULL,
4007 show_trust_readonly,
4008 &setlist, &showlist);
4009
4010 add_com ("monitor", class_obscure, do_monitor_command,
4011 _("Send a command to the remote monitor (remote targets only)."));
4012
4013 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4014 _("Print the name of each layer of the internal target stack."),
4015 &maintenanceprintlist);
4016
4017 add_setshow_boolean_cmd ("target-async", no_class,
4018 &target_async_permitted_1, _("\
4019 Set whether gdb controls the inferior in asynchronous mode."), _("\
4020 Show whether gdb controls the inferior in asynchronous mode."), _("\
4021 Tells gdb whether to control the inferior in asynchronous mode."),
4022 maint_set_target_async_command,
4023 maint_show_target_async_command,
4024 &maintenance_set_cmdlist,
4025 &maintenance_show_cmdlist);
4026
4027 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4028 &target_non_stop_enabled_1, _("\
4029 Set whether gdb always controls the inferior in non-stop mode."), _("\
4030 Show whether gdb always controls the inferior in non-stop mode."), _("\
4031 Tells gdb whether to control the inferior in non-stop mode."),
4032 maint_set_target_non_stop_command,
4033 maint_show_target_non_stop_command,
4034 &maintenance_set_cmdlist,
4035 &maintenance_show_cmdlist);
4036
4037 add_setshow_boolean_cmd ("may-write-registers", class_support,
4038 &may_write_registers_1, _("\
4039 Set permission to write into registers."), _("\
4040 Show permission to write into registers."), _("\
4041 When this permission is on, GDB may write into the target's registers.\n\
4042 Otherwise, any sort of write attempt will result in an error."),
4043 set_target_permissions, NULL,
4044 &setlist, &showlist);
4045
4046 add_setshow_boolean_cmd ("may-write-memory", class_support,
4047 &may_write_memory_1, _("\
4048 Set permission to write into target memory."), _("\
4049 Show permission to write into target memory."), _("\
4050 When this permission is on, GDB may write into the target's memory.\n\
4051 Otherwise, any sort of write attempt will result in an error."),
4052 set_write_memory_permission, NULL,
4053 &setlist, &showlist);
4054
4055 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4056 &may_insert_breakpoints_1, _("\
4057 Set permission to insert breakpoints in the target."), _("\
4058 Show permission to insert breakpoints in the target."), _("\
4059 When this permission is on, GDB may insert breakpoints in the program.\n\
4060 Otherwise, any sort of insertion attempt will result in an error."),
4061 set_target_permissions, NULL,
4062 &setlist, &showlist);
4063
4064 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4065 &may_insert_tracepoints_1, _("\
4066 Set permission to insert tracepoints in the target."), _("\
4067 Show permission to insert tracepoints in the target."), _("\
4068 When this permission is on, GDB may insert tracepoints in the program.\n\
4069 Otherwise, any sort of insertion attempt will result in an error."),
4070 set_target_permissions, NULL,
4071 &setlist, &showlist);
4072
4073 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4074 &may_insert_fast_tracepoints_1, _("\
4075 Set permission to insert fast tracepoints in the target."), _("\
4076 Show permission to insert fast tracepoints in the target."), _("\
4077 When this permission is on, GDB may insert fast tracepoints.\n\
4078 Otherwise, any sort of insertion attempt will result in an error."),
4079 set_target_permissions, NULL,
4080 &setlist, &showlist);
4081
4082 add_setshow_boolean_cmd ("may-interrupt", class_support,
4083 &may_stop_1, _("\
4084 Set permission to interrupt or signal the target."), _("\
4085 Show permission to interrupt or signal the target."), _("\
4086 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4087 Otherwise, any attempt to interrupt or stop will be ignored."),
4088 set_target_permissions, NULL,
4089 &setlist, &showlist);
4090
4091 add_com ("flash-erase", no_class, flash_erase_command,
4092 _("Erase all flash memory regions."));
4093
4094 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4095 &auto_connect_native_target, _("\
4096 Set whether GDB may automatically connect to the native target."), _("\
4097 Show whether GDB may automatically connect to the native target."), _("\
4098 When on, and GDB is not connected to a target yet, GDB\n\
4099 attempts \"run\" and other commands with the native target."),
4100 NULL, show_auto_connect_native_target,
4101 &setlist, &showlist);
4102 }
This page took 0.20652 seconds and 4 git commands to generate.