690e4303b51b088062a33c39df0e7f2edd5a8d49
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42
43 static void target_info (char *, int);
44
45 static void maybe_kill_then_attach (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53 static int nosymbol (char *, CORE_ADDR *);
54
55 static void tcomplain (void) ATTR_NORETURN;
56
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59 static int return_zero (void);
60
61 static int return_one (void);
62
63 static int return_minus_one (void);
64
65 void target_ignore (void);
66
67 static void target_command (char *, int);
68
69 static struct target_ops *find_default_run_target (char *);
70
71 static void nosupport_runtime (void);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static void init_dummy_target (void);
92
93 static struct target_ops debug_target;
94
95 static void debug_to_open (char *, int);
96
97 static void debug_to_close (int);
98
99 static void debug_to_attach (char *, int);
100
101 static void debug_to_detach (char *, int);
102
103 static void debug_to_resume (ptid_t, int, enum target_signal);
104
105 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
106
107 static void debug_to_fetch_registers (int);
108
109 static void debug_to_store_registers (int);
110
111 static void debug_to_prepare_to_store (void);
112
113 static void debug_to_files_info (struct target_ops *);
114
115 static int debug_to_insert_breakpoint (struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct bp_target_info *);
118
119 static int debug_to_can_use_hw_breakpoint (int, int, int);
120
121 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
122
123 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_stopped_by_watchpoint (void);
130
131 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_kill (void);
148
149 static void debug_to_load (char *, int);
150
151 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153 static void debug_to_mourn_inferior (void);
154
155 static int debug_to_can_run (void);
156
157 static void debug_to_notice_signals (ptid_t);
158
159 static int debug_to_thread_alive (ptid_t);
160
161 static void debug_to_stop (void);
162
163 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
164 wierd and mysterious ways. Putting the variable here lets those
165 wierd and mysterious ways keep building while they are being
166 converted to the inferior inheritance structure. */
167 struct target_ops deprecated_child_ops;
168
169 /* Pointer to array of target architecture structures; the size of the
170 array; the current index into the array; the allocated size of the
171 array. */
172 struct target_ops **target_structs;
173 unsigned target_struct_size;
174 unsigned target_struct_index;
175 unsigned target_struct_allocsize;
176 #define DEFAULT_ALLOCSIZE 10
177
178 /* The initial current target, so that there is always a semi-valid
179 current target. */
180
181 static struct target_ops dummy_target;
182
183 /* Top of target stack. */
184
185 static struct target_ops *target_stack;
186
187 /* The target structure we are currently using to talk to a process
188 or file or whatever "inferior" we have. */
189
190 struct target_ops current_target;
191
192 /* Command list for target. */
193
194 static struct cmd_list_element *targetlist = NULL;
195
196 /* Nonzero if we are debugging an attached outside process
197 rather than an inferior. */
198
199 int attach_flag;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 DCACHE *target_dcache;
219
220 /* The user just typed 'target' without the name of a target. */
221
222 static void
223 target_command (char *arg, int from_tty)
224 {
225 fputs_filtered ("Argument required (target name). Try `help target'\n",
226 gdb_stdout);
227 }
228
229 /* Add a possible target architecture to the list. */
230
231 void
232 add_target (struct target_ops *t)
233 {
234 /* Provide default values for all "must have" methods. */
235 if (t->to_xfer_partial == NULL)
236 t->to_xfer_partial = default_xfer_partial;
237
238 if (!target_structs)
239 {
240 target_struct_allocsize = DEFAULT_ALLOCSIZE;
241 target_structs = (struct target_ops **) xmalloc
242 (target_struct_allocsize * sizeof (*target_structs));
243 }
244 if (target_struct_size >= target_struct_allocsize)
245 {
246 target_struct_allocsize *= 2;
247 target_structs = (struct target_ops **)
248 xrealloc ((char *) target_structs,
249 target_struct_allocsize * sizeof (*target_structs));
250 }
251 target_structs[target_struct_size++] = t;
252
253 if (targetlist == NULL)
254 add_prefix_cmd ("target", class_run, target_command, _("\
255 Connect to a target machine or process.\n\
256 The first argument is the type or protocol of the target machine.\n\
257 Remaining arguments are interpreted by the target protocol. For more\n\
258 information on the arguments for a particular protocol, type\n\
259 `help target ' followed by the protocol name."),
260 &targetlist, "target ", 0, &cmdlist);
261 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
262 }
263
264 /* Stub functions */
265
266 void
267 target_ignore (void)
268 {
269 }
270
271 void
272 target_load (char *arg, int from_tty)
273 {
274 dcache_invalidate (target_dcache);
275 (*current_target.to_load) (arg, from_tty);
276 }
277
278 static int
279 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
280 struct target_ops *t)
281 {
282 errno = EIO; /* Can't read/write this location */
283 return 0; /* No bytes handled */
284 }
285
286 static void
287 tcomplain (void)
288 {
289 error (_("You can't do that when your target is `%s'"),
290 current_target.to_shortname);
291 }
292
293 void
294 noprocess (void)
295 {
296 error (_("You can't do that without a process to debug."));
297 }
298
299 static int
300 nosymbol (char *name, CORE_ADDR *addrp)
301 {
302 return 1; /* Symbol does not exist in target env */
303 }
304
305 static void
306 nosupport_runtime (void)
307 {
308 if (ptid_equal (inferior_ptid, null_ptid))
309 noprocess ();
310 else
311 error (_("No run-time support for this"));
312 }
313
314
315 static void
316 default_terminal_info (char *args, int from_tty)
317 {
318 printf_unfiltered (_("No saved terminal information.\n"));
319 }
320
321 /* This is the default target_create_inferior and target_attach function.
322 If the current target is executing, it asks whether to kill it off.
323 If this function returns without calling error(), it has killed off
324 the target, and the operation should be attempted. */
325
326 static void
327 kill_or_be_killed (int from_tty)
328 {
329 if (target_has_execution)
330 {
331 printf_unfiltered (_("You are already running a program:\n"));
332 target_files_info ();
333 if (query ("Kill it? "))
334 {
335 target_kill ();
336 if (target_has_execution)
337 error (_("Killing the program did not help."));
338 return;
339 }
340 else
341 {
342 error (_("Program not killed."));
343 }
344 }
345 tcomplain ();
346 }
347
348 static void
349 maybe_kill_then_attach (char *args, int from_tty)
350 {
351 kill_or_be_killed (from_tty);
352 target_attach (args, from_tty);
353 }
354
355 static void
356 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
357 int from_tty)
358 {
359 kill_or_be_killed (0);
360 target_create_inferior (exec, args, env, from_tty);
361 }
362
363 /* Go through the target stack from top to bottom, copying over zero
364 entries in current_target, then filling in still empty entries. In
365 effect, we are doing class inheritance through the pushed target
366 vectors.
367
368 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
369 is currently implemented, is that it discards any knowledge of
370 which target an inherited method originally belonged to.
371 Consequently, new new target methods should instead explicitly and
372 locally search the target stack for the target that can handle the
373 request. */
374
375 static void
376 update_current_target (void)
377 {
378 struct target_ops *t;
379
380 /* First, reset curren'ts contents. */
381 memset (&current_target, 0, sizeof (current_target));
382
383 #define INHERIT(FIELD, TARGET) \
384 if (!current_target.FIELD) \
385 current_target.FIELD = (TARGET)->FIELD
386
387 for (t = target_stack; t; t = t->beneath)
388 {
389 INHERIT (to_shortname, t);
390 INHERIT (to_longname, t);
391 INHERIT (to_doc, t);
392 INHERIT (to_open, t);
393 INHERIT (to_close, t);
394 INHERIT (to_attach, t);
395 INHERIT (to_post_attach, t);
396 INHERIT (to_detach, t);
397 /* Do not inherit to_disconnect. */
398 INHERIT (to_resume, t);
399 INHERIT (to_wait, t);
400 INHERIT (to_fetch_registers, t);
401 INHERIT (to_store_registers, t);
402 INHERIT (to_prepare_to_store, t);
403 INHERIT (deprecated_xfer_memory, t);
404 INHERIT (to_files_info, t);
405 INHERIT (to_insert_breakpoint, t);
406 INHERIT (to_remove_breakpoint, t);
407 INHERIT (to_can_use_hw_breakpoint, t);
408 INHERIT (to_insert_hw_breakpoint, t);
409 INHERIT (to_remove_hw_breakpoint, t);
410 INHERIT (to_insert_watchpoint, t);
411 INHERIT (to_remove_watchpoint, t);
412 INHERIT (to_stopped_data_address, t);
413 INHERIT (to_stopped_by_watchpoint, t);
414 INHERIT (to_have_continuable_watchpoint, t);
415 INHERIT (to_region_ok_for_hw_watchpoint, t);
416 INHERIT (to_terminal_init, t);
417 INHERIT (to_terminal_inferior, t);
418 INHERIT (to_terminal_ours_for_output, t);
419 INHERIT (to_terminal_ours, t);
420 INHERIT (to_terminal_save_ours, t);
421 INHERIT (to_terminal_info, t);
422 INHERIT (to_kill, t);
423 INHERIT (to_load, t);
424 INHERIT (to_lookup_symbol, t);
425 INHERIT (to_create_inferior, t);
426 INHERIT (to_post_startup_inferior, t);
427 INHERIT (to_acknowledge_created_inferior, t);
428 INHERIT (to_insert_fork_catchpoint, t);
429 INHERIT (to_remove_fork_catchpoint, t);
430 INHERIT (to_insert_vfork_catchpoint, t);
431 INHERIT (to_remove_vfork_catchpoint, t);
432 /* Do not inherit to_follow_fork. */
433 INHERIT (to_insert_exec_catchpoint, t);
434 INHERIT (to_remove_exec_catchpoint, t);
435 INHERIT (to_reported_exec_events_per_exec_call, t);
436 INHERIT (to_has_exited, t);
437 INHERIT (to_mourn_inferior, t);
438 INHERIT (to_can_run, t);
439 INHERIT (to_notice_signals, t);
440 INHERIT (to_thread_alive, t);
441 INHERIT (to_find_new_threads, t);
442 INHERIT (to_pid_to_str, t);
443 INHERIT (to_extra_thread_info, t);
444 INHERIT (to_stop, t);
445 /* Do not inherit to_xfer_partial. */
446 INHERIT (to_rcmd, t);
447 INHERIT (to_enable_exception_callback, t);
448 INHERIT (to_get_current_exception_event, t);
449 INHERIT (to_pid_to_exec_file, t);
450 INHERIT (to_stratum, t);
451 INHERIT (to_has_all_memory, t);
452 INHERIT (to_has_memory, t);
453 INHERIT (to_has_stack, t);
454 INHERIT (to_has_registers, t);
455 INHERIT (to_has_execution, t);
456 INHERIT (to_has_thread_control, t);
457 INHERIT (to_sections, t);
458 INHERIT (to_sections_end, t);
459 INHERIT (to_can_async_p, t);
460 INHERIT (to_is_async_p, t);
461 INHERIT (to_async, t);
462 INHERIT (to_async_mask_value, t);
463 INHERIT (to_find_memory_regions, t);
464 INHERIT (to_make_corefile_notes, t);
465 INHERIT (to_get_thread_local_address, t);
466 INHERIT (to_magic, t);
467 /* Do not inherit to_memory_map. */
468 /* Do not inherit to_flash_erase. */
469 /* Do not inherit to_flash_done. */
470 }
471 #undef INHERIT
472
473 /* Clean up a target struct so it no longer has any zero pointers in
474 it. Some entries are defaulted to a method that print an error,
475 others are hard-wired to a standard recursive default. */
476
477 #define de_fault(field, value) \
478 if (!current_target.field) \
479 current_target.field = value
480
481 de_fault (to_open,
482 (void (*) (char *, int))
483 tcomplain);
484 de_fault (to_close,
485 (void (*) (int))
486 target_ignore);
487 de_fault (to_attach,
488 maybe_kill_then_attach);
489 de_fault (to_post_attach,
490 (void (*) (int))
491 target_ignore);
492 de_fault (to_detach,
493 (void (*) (char *, int))
494 target_ignore);
495 de_fault (to_resume,
496 (void (*) (ptid_t, int, enum target_signal))
497 noprocess);
498 de_fault (to_wait,
499 (ptid_t (*) (ptid_t, struct target_waitstatus *))
500 noprocess);
501 de_fault (to_fetch_registers,
502 (void (*) (int))
503 target_ignore);
504 de_fault (to_store_registers,
505 (void (*) (int))
506 noprocess);
507 de_fault (to_prepare_to_store,
508 (void (*) (void))
509 noprocess);
510 de_fault (deprecated_xfer_memory,
511 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
512 nomemory);
513 de_fault (to_files_info,
514 (void (*) (struct target_ops *))
515 target_ignore);
516 de_fault (to_insert_breakpoint,
517 memory_insert_breakpoint);
518 de_fault (to_remove_breakpoint,
519 memory_remove_breakpoint);
520 de_fault (to_can_use_hw_breakpoint,
521 (int (*) (int, int, int))
522 return_zero);
523 de_fault (to_insert_hw_breakpoint,
524 (int (*) (struct bp_target_info *))
525 return_minus_one);
526 de_fault (to_remove_hw_breakpoint,
527 (int (*) (struct bp_target_info *))
528 return_minus_one);
529 de_fault (to_insert_watchpoint,
530 (int (*) (CORE_ADDR, int, int))
531 return_minus_one);
532 de_fault (to_remove_watchpoint,
533 (int (*) (CORE_ADDR, int, int))
534 return_minus_one);
535 de_fault (to_stopped_by_watchpoint,
536 (int (*) (void))
537 return_zero);
538 de_fault (to_stopped_data_address,
539 (int (*) (struct target_ops *, CORE_ADDR *))
540 return_zero);
541 de_fault (to_region_ok_for_hw_watchpoint,
542 default_region_ok_for_hw_watchpoint);
543 de_fault (to_terminal_init,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_inferior,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_ours_for_output,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_ours,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_save_ours,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_info,
559 default_terminal_info);
560 de_fault (to_kill,
561 (void (*) (void))
562 noprocess);
563 de_fault (to_load,
564 (void (*) (char *, int))
565 tcomplain);
566 de_fault (to_lookup_symbol,
567 (int (*) (char *, CORE_ADDR *))
568 nosymbol);
569 de_fault (to_create_inferior,
570 maybe_kill_then_create_inferior);
571 de_fault (to_post_startup_inferior,
572 (void (*) (ptid_t))
573 target_ignore);
574 de_fault (to_acknowledge_created_inferior,
575 (void (*) (int))
576 target_ignore);
577 de_fault (to_insert_fork_catchpoint,
578 (void (*) (int))
579 tcomplain);
580 de_fault (to_remove_fork_catchpoint,
581 (int (*) (int))
582 tcomplain);
583 de_fault (to_insert_vfork_catchpoint,
584 (void (*) (int))
585 tcomplain);
586 de_fault (to_remove_vfork_catchpoint,
587 (int (*) (int))
588 tcomplain);
589 de_fault (to_insert_exec_catchpoint,
590 (void (*) (int))
591 tcomplain);
592 de_fault (to_remove_exec_catchpoint,
593 (int (*) (int))
594 tcomplain);
595 de_fault (to_reported_exec_events_per_exec_call,
596 (int (*) (void))
597 return_one);
598 de_fault (to_has_exited,
599 (int (*) (int, int, int *))
600 return_zero);
601 de_fault (to_mourn_inferior,
602 (void (*) (void))
603 noprocess);
604 de_fault (to_can_run,
605 return_zero);
606 de_fault (to_notice_signals,
607 (void (*) (ptid_t))
608 target_ignore);
609 de_fault (to_thread_alive,
610 (int (*) (ptid_t))
611 return_zero);
612 de_fault (to_find_new_threads,
613 (void (*) (void))
614 target_ignore);
615 de_fault (to_extra_thread_info,
616 (char *(*) (struct thread_info *))
617 return_zero);
618 de_fault (to_stop,
619 (void (*) (void))
620 target_ignore);
621 current_target.to_xfer_partial = current_xfer_partial;
622 de_fault (to_rcmd,
623 (void (*) (char *, struct ui_file *))
624 tcomplain);
625 de_fault (to_enable_exception_callback,
626 (struct symtab_and_line * (*) (enum exception_event_kind, int))
627 nosupport_runtime);
628 de_fault (to_get_current_exception_event,
629 (struct exception_event_record * (*) (void))
630 nosupport_runtime);
631 de_fault (to_pid_to_exec_file,
632 (char *(*) (int))
633 return_zero);
634 de_fault (to_can_async_p,
635 (int (*) (void))
636 return_zero);
637 de_fault (to_is_async_p,
638 (int (*) (void))
639 return_zero);
640 de_fault (to_async,
641 (void (*) (void (*) (enum inferior_event_type, void*), void*))
642 tcomplain);
643 #undef de_fault
644
645 /* Finally, position the target-stack beneath the squashed
646 "current_target". That way code looking for a non-inherited
647 target method can quickly and simply find it. */
648 current_target.beneath = target_stack;
649 }
650
651 /* Push a new target type into the stack of the existing target accessors,
652 possibly superseding some of the existing accessors.
653
654 Result is zero if the pushed target ended up on top of the stack,
655 nonzero if at least one target is on top of it.
656
657 Rather than allow an empty stack, we always have the dummy target at
658 the bottom stratum, so we can call the function vectors without
659 checking them. */
660
661 int
662 push_target (struct target_ops *t)
663 {
664 struct target_ops **cur;
665
666 /* Check magic number. If wrong, it probably means someone changed
667 the struct definition, but not all the places that initialize one. */
668 if (t->to_magic != OPS_MAGIC)
669 {
670 fprintf_unfiltered (gdb_stderr,
671 "Magic number of %s target struct wrong\n",
672 t->to_shortname);
673 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
674 }
675
676 /* Find the proper stratum to install this target in. */
677 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
678 {
679 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
680 break;
681 }
682
683 /* If there's already targets at this stratum, remove them. */
684 /* FIXME: cagney/2003-10-15: I think this should be popping all
685 targets to CUR, and not just those at this stratum level. */
686 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
687 {
688 /* There's already something at this stratum level. Close it,
689 and un-hook it from the stack. */
690 struct target_ops *tmp = (*cur);
691 (*cur) = (*cur)->beneath;
692 tmp->beneath = NULL;
693 target_close (tmp, 0);
694 }
695
696 /* We have removed all targets in our stratum, now add the new one. */
697 t->beneath = (*cur);
698 (*cur) = t;
699
700 update_current_target ();
701
702 if (targetdebug)
703 setup_target_debug ();
704
705 /* Not on top? */
706 return (t != target_stack);
707 }
708
709 /* Remove a target_ops vector from the stack, wherever it may be.
710 Return how many times it was removed (0 or 1). */
711
712 int
713 unpush_target (struct target_ops *t)
714 {
715 struct target_ops **cur;
716 struct target_ops *tmp;
717
718 /* Look for the specified target. Note that we assume that a target
719 can only occur once in the target stack. */
720
721 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
722 {
723 if ((*cur) == t)
724 break;
725 }
726
727 if ((*cur) == NULL)
728 return 0; /* Didn't find target_ops, quit now */
729
730 /* NOTE: cagney/2003-12-06: In '94 the close call was made
731 unconditional by moving it to before the above check that the
732 target was in the target stack (something about "Change the way
733 pushing and popping of targets work to support target overlays
734 and inheritance"). This doesn't make much sense - only open
735 targets should be closed. */
736 target_close (t, 0);
737
738 /* Unchain the target */
739 tmp = (*cur);
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742
743 update_current_target ();
744
745 return 1;
746 }
747
748 void
749 pop_target (void)
750 {
751 target_close (&current_target, 0); /* Let it clean up */
752 if (unpush_target (target_stack) == 1)
753 return;
754
755 fprintf_unfiltered (gdb_stderr,
756 "pop_target couldn't find target %s\n",
757 current_target.to_shortname);
758 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
759 }
760
761 #undef MIN
762 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
763
764 /* target_read_string -- read a null terminated string, up to LEN bytes,
765 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
766 Set *STRING to a pointer to malloc'd memory containing the data; the caller
767 is responsible for freeing it. Return the number of bytes successfully
768 read. */
769
770 int
771 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
772 {
773 int tlen, origlen, offset, i;
774 gdb_byte buf[4];
775 int errcode = 0;
776 char *buffer;
777 int buffer_allocated;
778 char *bufptr;
779 unsigned int nbytes_read = 0;
780
781 /* Small for testing. */
782 buffer_allocated = 4;
783 buffer = xmalloc (buffer_allocated);
784 bufptr = buffer;
785
786 origlen = len;
787
788 while (len > 0)
789 {
790 tlen = MIN (len, 4 - (memaddr & 3));
791 offset = memaddr & 3;
792
793 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
794 if (errcode != 0)
795 {
796 /* The transfer request might have crossed the boundary to an
797 unallocated region of memory. Retry the transfer, requesting
798 a single byte. */
799 tlen = 1;
800 offset = 0;
801 errcode = target_read_memory (memaddr, buf, 1);
802 if (errcode != 0)
803 goto done;
804 }
805
806 if (bufptr - buffer + tlen > buffer_allocated)
807 {
808 unsigned int bytes;
809 bytes = bufptr - buffer;
810 buffer_allocated *= 2;
811 buffer = xrealloc (buffer, buffer_allocated);
812 bufptr = buffer + bytes;
813 }
814
815 for (i = 0; i < tlen; i++)
816 {
817 *bufptr++ = buf[i + offset];
818 if (buf[i + offset] == '\000')
819 {
820 nbytes_read += i + 1;
821 goto done;
822 }
823 }
824
825 memaddr += tlen;
826 len -= tlen;
827 nbytes_read += tlen;
828 }
829 done:
830 if (errnop != NULL)
831 *errnop = errcode;
832 if (string != NULL)
833 *string = buffer;
834 return nbytes_read;
835 }
836
837 /* Find a section containing ADDR. */
838 struct section_table *
839 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
840 {
841 struct section_table *secp;
842 for (secp = target->to_sections;
843 secp < target->to_sections_end;
844 secp++)
845 {
846 if (addr >= secp->addr && addr < secp->endaddr)
847 return secp;
848 }
849 return NULL;
850 }
851
852 /* Perform a partial memory transfer. The arguments and return
853 value are just as for target_xfer_partial. */
854
855 static LONGEST
856 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
857 ULONGEST memaddr, LONGEST len)
858 {
859 LONGEST res;
860 int reg_len;
861 struct mem_region *region;
862
863 /* Zero length requests are ok and require no work. */
864 if (len == 0)
865 return 0;
866
867 /* Try the executable file, if "trust-readonly-sections" is set. */
868 if (readbuf != NULL && trust_readonly)
869 {
870 struct section_table *secp;
871
872 secp = target_section_by_addr (ops, memaddr);
873 if (secp != NULL
874 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
875 & SEC_READONLY))
876 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
877 }
878
879 /* Try GDB's internal data cache. */
880 region = lookup_mem_region (memaddr);
881 if (memaddr + len < region->hi)
882 reg_len = len;
883 else
884 reg_len = region->hi - memaddr;
885
886 switch (region->attrib.mode)
887 {
888 case MEM_RO:
889 if (writebuf != NULL)
890 return -1;
891 break;
892
893 case MEM_WO:
894 if (readbuf != NULL)
895 return -1;
896 break;
897
898 case MEM_FLASH:
899 /* We only support writing to flash during "load" for now. */
900 if (writebuf != NULL)
901 error (_("Writing to flash memory forbidden in this context"));
902 break;
903 }
904
905 if (region->attrib.cache)
906 {
907 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
908 memory request will start back at current_target. */
909 if (readbuf != NULL)
910 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
911 reg_len, 0);
912 else
913 /* FIXME drow/2006-08-09: If we're going to preserve const
914 correctness dcache_xfer_memory should take readbuf and
915 writebuf. */
916 res = dcache_xfer_memory (target_dcache, memaddr,
917 (void *) writebuf,
918 reg_len, 1);
919 if (res <= 0)
920 return -1;
921 else
922 return res;
923 }
924
925 /* If none of those methods found the memory we wanted, fall back
926 to a target partial transfer. Normally a single call to
927 to_xfer_partial is enough; if it doesn't recognize an object
928 it will call the to_xfer_partial of the next target down.
929 But for memory this won't do. Memory is the only target
930 object which can be read from more than one valid target.
931 A core file, for instance, could have some of memory but
932 delegate other bits to the target below it. So, we must
933 manually try all targets. */
934
935 do
936 {
937 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
938 readbuf, writebuf, memaddr, len);
939 if (res > 0)
940 return res;
941
942 ops = ops->beneath;
943 }
944 while (ops != NULL);
945
946 /* If we still haven't got anything, return the last error. We
947 give up. */
948 return res;
949 }
950
951 static LONGEST
952 target_xfer_partial (struct target_ops *ops,
953 enum target_object object, const char *annex,
954 void *readbuf, const void *writebuf,
955 ULONGEST offset, LONGEST len)
956 {
957 LONGEST retval;
958
959 gdb_assert (ops->to_xfer_partial != NULL);
960
961 /* If this is a memory transfer, let the memory-specific code
962 have a look at it instead. Memory transfers are more
963 complicated. */
964 if (object == TARGET_OBJECT_MEMORY)
965 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
966 else
967 {
968 enum target_object raw_object = object;
969
970 /* If this is a raw memory transfer, request the normal
971 memory object from other layers. */
972 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
973 raw_object = TARGET_OBJECT_MEMORY;
974
975 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
976 writebuf, offset, len);
977 }
978
979 if (targetdebug)
980 {
981 const unsigned char *myaddr = NULL;
982
983 fprintf_unfiltered (gdb_stdlog,
984 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
985 ops->to_shortname,
986 (int) object,
987 (annex ? annex : "(null)"),
988 (long) readbuf, (long) writebuf,
989 paddr_nz (offset), paddr_d (len), paddr_d (retval));
990
991 if (readbuf)
992 myaddr = readbuf;
993 if (writebuf)
994 myaddr = writebuf;
995 if (retval > 0 && myaddr != NULL)
996 {
997 int i;
998
999 fputs_unfiltered (", bytes =", gdb_stdlog);
1000 for (i = 0; i < retval; i++)
1001 {
1002 if ((((long) &(myaddr[i])) & 0xf) == 0)
1003 {
1004 if (targetdebug < 2 && i > 0)
1005 {
1006 fprintf_unfiltered (gdb_stdlog, " ...");
1007 break;
1008 }
1009 fprintf_unfiltered (gdb_stdlog, "\n");
1010 }
1011
1012 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1013 }
1014 }
1015
1016 fputc_unfiltered ('\n', gdb_stdlog);
1017 }
1018 return retval;
1019 }
1020
1021 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1022 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1023 if any error occurs.
1024
1025 If an error occurs, no guarantee is made about the contents of the data at
1026 MYADDR. In particular, the caller should not depend upon partial reads
1027 filling the buffer with good data. There is no way for the caller to know
1028 how much good data might have been transfered anyway. Callers that can
1029 deal with partial reads should call target_read (which will retry until
1030 it makes no progress, and then return how much was transferred). */
1031
1032 int
1033 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1034 {
1035 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1036 myaddr, memaddr, len) == len)
1037 return 0;
1038 else
1039 return EIO;
1040 }
1041
1042 int
1043 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1044 {
1045 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1046 myaddr, memaddr, len) == len)
1047 return 0;
1048 else
1049 return EIO;
1050 }
1051
1052 /* Fetch the target's memory map. */
1053
1054 VEC(mem_region_s) *
1055 target_memory_map (void)
1056 {
1057 VEC(mem_region_s) *result;
1058 struct mem_region *last_one, *this_one;
1059 int ix;
1060 struct target_ops *t;
1061
1062 if (targetdebug)
1063 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1064
1065 for (t = current_target.beneath; t != NULL; t = t->beneath)
1066 if (t->to_memory_map != NULL)
1067 break;
1068
1069 if (t == NULL)
1070 return NULL;
1071
1072 result = t->to_memory_map (t);
1073 if (result == NULL)
1074 return NULL;
1075
1076 qsort (VEC_address (mem_region_s, result),
1077 VEC_length (mem_region_s, result),
1078 sizeof (struct mem_region), mem_region_cmp);
1079
1080 /* Check that regions do not overlap. Simultaneously assign
1081 a numbering for the "mem" commands to use to refer to
1082 each region. */
1083 last_one = NULL;
1084 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1085 {
1086 this_one->number = ix;
1087
1088 if (last_one && last_one->hi > this_one->lo)
1089 {
1090 warning (_("Overlapping regions in memory map: ignoring"));
1091 VEC_free (mem_region_s, result);
1092 return NULL;
1093 }
1094 last_one = this_one;
1095 }
1096
1097 return result;
1098 }
1099
1100 void
1101 target_flash_erase (ULONGEST address, LONGEST length)
1102 {
1103 struct target_ops *t;
1104
1105 for (t = current_target.beneath; t != NULL; t = t->beneath)
1106 if (t->to_flash_erase != NULL)
1107 {
1108 if (targetdebug)
1109 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1110 paddr (address), phex (length, 0));
1111 return t->to_flash_erase (t, address, length);
1112 }
1113
1114 tcomplain ();
1115 }
1116
1117 void
1118 target_flash_done (void)
1119 {
1120 struct target_ops *t;
1121
1122 for (t = current_target.beneath; t != NULL; t = t->beneath)
1123 if (t->to_flash_done != NULL)
1124 {
1125 if (targetdebug)
1126 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1127 return t->to_flash_done (t);
1128 }
1129
1130 tcomplain ();
1131 }
1132
1133 #ifndef target_stopped_data_address_p
1134 int
1135 target_stopped_data_address_p (struct target_ops *target)
1136 {
1137 if (target->to_stopped_data_address
1138 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1139 return 0;
1140 if (target->to_stopped_data_address == debug_to_stopped_data_address
1141 && (debug_target.to_stopped_data_address
1142 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1143 return 0;
1144 return 1;
1145 }
1146 #endif
1147
1148 static void
1149 show_trust_readonly (struct ui_file *file, int from_tty,
1150 struct cmd_list_element *c, const char *value)
1151 {
1152 fprintf_filtered (file, _("\
1153 Mode for reading from readonly sections is %s.\n"),
1154 value);
1155 }
1156
1157 /* More generic transfers. */
1158
1159 static LONGEST
1160 default_xfer_partial (struct target_ops *ops, enum target_object object,
1161 const char *annex, gdb_byte *readbuf,
1162 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1163 {
1164 if (object == TARGET_OBJECT_MEMORY
1165 && ops->deprecated_xfer_memory != NULL)
1166 /* If available, fall back to the target's
1167 "deprecated_xfer_memory" method. */
1168 {
1169 int xfered = -1;
1170 errno = 0;
1171 if (writebuf != NULL)
1172 {
1173 void *buffer = xmalloc (len);
1174 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1175 memcpy (buffer, writebuf, len);
1176 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1177 1/*write*/, NULL, ops);
1178 do_cleanups (cleanup);
1179 }
1180 if (readbuf != NULL)
1181 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1182 NULL, ops);
1183 if (xfered > 0)
1184 return xfered;
1185 else if (xfered == 0 && errno == 0)
1186 /* "deprecated_xfer_memory" uses 0, cross checked against
1187 ERRNO as one indication of an error. */
1188 return 0;
1189 else
1190 return -1;
1191 }
1192 else if (ops->beneath != NULL)
1193 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1194 readbuf, writebuf, offset, len);
1195 else
1196 return -1;
1197 }
1198
1199 /* The xfer_partial handler for the topmost target. Unlike the default,
1200 it does not need to handle memory specially; it just passes all
1201 requests down the stack. */
1202
1203 static LONGEST
1204 current_xfer_partial (struct target_ops *ops, enum target_object object,
1205 const char *annex, gdb_byte *readbuf,
1206 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1207 {
1208 if (ops->beneath != NULL)
1209 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1210 readbuf, writebuf, offset, len);
1211 else
1212 return -1;
1213 }
1214
1215 /* Target vector read/write partial wrapper functions.
1216
1217 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1218 (inbuf, outbuf)", instead of separate read/write methods, make life
1219 easier. */
1220
1221 static LONGEST
1222 target_read_partial (struct target_ops *ops,
1223 enum target_object object,
1224 const char *annex, gdb_byte *buf,
1225 ULONGEST offset, LONGEST len)
1226 {
1227 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1228 }
1229
1230 static LONGEST
1231 target_write_partial (struct target_ops *ops,
1232 enum target_object object,
1233 const char *annex, const gdb_byte *buf,
1234 ULONGEST offset, LONGEST len)
1235 {
1236 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1237 }
1238
1239 /* Wrappers to perform the full transfer. */
1240 LONGEST
1241 target_read (struct target_ops *ops,
1242 enum target_object object,
1243 const char *annex, gdb_byte *buf,
1244 ULONGEST offset, LONGEST len)
1245 {
1246 LONGEST xfered = 0;
1247 while (xfered < len)
1248 {
1249 LONGEST xfer = target_read_partial (ops, object, annex,
1250 (gdb_byte *) buf + xfered,
1251 offset + xfered, len - xfered);
1252 /* Call an observer, notifying them of the xfer progress? */
1253 if (xfer == 0)
1254 return xfered;
1255 if (xfer < 0)
1256 return -1;
1257 xfered += xfer;
1258 QUIT;
1259 }
1260 return len;
1261 }
1262
1263 /* An alternative to target_write with progress callbacks. */
1264
1265 LONGEST
1266 target_write_with_progress (struct target_ops *ops,
1267 enum target_object object,
1268 const char *annex, const gdb_byte *buf,
1269 ULONGEST offset, LONGEST len,
1270 void (*progress) (ULONGEST, void *), void *baton)
1271 {
1272 LONGEST xfered = 0;
1273
1274 /* Give the progress callback a chance to set up. */
1275 if (progress)
1276 (*progress) (0, baton);
1277
1278 while (xfered < len)
1279 {
1280 LONGEST xfer = target_write_partial (ops, object, annex,
1281 (gdb_byte *) buf + xfered,
1282 offset + xfered, len - xfered);
1283
1284 if (xfer == 0)
1285 return xfered;
1286 if (xfer < 0)
1287 return -1;
1288
1289 if (progress)
1290 (*progress) (xfer, baton);
1291
1292 xfered += xfer;
1293 QUIT;
1294 }
1295 return len;
1296 }
1297
1298 LONGEST
1299 target_write (struct target_ops *ops,
1300 enum target_object object,
1301 const char *annex, const gdb_byte *buf,
1302 ULONGEST offset, LONGEST len)
1303 {
1304 return target_write_with_progress (ops, object, annex, buf, offset, len,
1305 NULL, NULL);
1306 }
1307
1308 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1309 the size of the transferred data. PADDING additional bytes are
1310 available in *BUF_P. This is a helper function for
1311 target_read_alloc; see the declaration of that function for more
1312 information. */
1313
1314 static LONGEST
1315 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1316 const char *annex, gdb_byte **buf_p, int padding)
1317 {
1318 size_t buf_alloc, buf_pos;
1319 gdb_byte *buf;
1320 LONGEST n;
1321
1322 /* This function does not have a length parameter; it reads the
1323 entire OBJECT). Also, it doesn't support objects fetched partly
1324 from one target and partly from another (in a different stratum,
1325 e.g. a core file and an executable). Both reasons make it
1326 unsuitable for reading memory. */
1327 gdb_assert (object != TARGET_OBJECT_MEMORY);
1328
1329 /* Start by reading up to 4K at a time. The target will throttle
1330 this number down if necessary. */
1331 buf_alloc = 4096;
1332 buf = xmalloc (buf_alloc);
1333 buf_pos = 0;
1334 while (1)
1335 {
1336 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1337 buf_pos, buf_alloc - buf_pos - padding);
1338 if (n < 0)
1339 {
1340 /* An error occurred. */
1341 xfree (buf);
1342 return -1;
1343 }
1344 else if (n == 0)
1345 {
1346 /* Read all there was. */
1347 if (buf_pos == 0)
1348 xfree (buf);
1349 else
1350 *buf_p = buf;
1351 return buf_pos;
1352 }
1353
1354 buf_pos += n;
1355
1356 /* If the buffer is filling up, expand it. */
1357 if (buf_alloc < buf_pos * 2)
1358 {
1359 buf_alloc *= 2;
1360 buf = xrealloc (buf, buf_alloc);
1361 }
1362
1363 QUIT;
1364 }
1365 }
1366
1367 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1368 the size of the transferred data. See the declaration in "target.h"
1369 function for more information about the return value. */
1370
1371 LONGEST
1372 target_read_alloc (struct target_ops *ops, enum target_object object,
1373 const char *annex, gdb_byte **buf_p)
1374 {
1375 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1376 }
1377
1378 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1379 returned as a string, allocated using xmalloc. If an error occurs
1380 or the transfer is unsupported, NULL is returned. Empty objects
1381 are returned as allocated but empty strings. A warning is issued
1382 if the result contains any embedded NUL bytes. */
1383
1384 char *
1385 target_read_stralloc (struct target_ops *ops, enum target_object object,
1386 const char *annex)
1387 {
1388 gdb_byte *buffer;
1389 LONGEST transferred;
1390
1391 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1392
1393 if (transferred < 0)
1394 return NULL;
1395
1396 if (transferred == 0)
1397 return xstrdup ("");
1398
1399 buffer[transferred] = 0;
1400 if (strlen (buffer) < transferred)
1401 warning (_("target object %d, annex %s, "
1402 "contained unexpected null characters"),
1403 (int) object, annex ? annex : "(none)");
1404
1405 return (char *) buffer;
1406 }
1407
1408 /* Memory transfer methods. */
1409
1410 void
1411 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1412 LONGEST len)
1413 {
1414 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1415 != len)
1416 memory_error (EIO, addr);
1417 }
1418
1419 ULONGEST
1420 get_target_memory_unsigned (struct target_ops *ops,
1421 CORE_ADDR addr, int len)
1422 {
1423 gdb_byte buf[sizeof (ULONGEST)];
1424
1425 gdb_assert (len <= sizeof (buf));
1426 get_target_memory (ops, addr, buf, len);
1427 return extract_unsigned_integer (buf, len);
1428 }
1429
1430 static void
1431 target_info (char *args, int from_tty)
1432 {
1433 struct target_ops *t;
1434 int has_all_mem = 0;
1435
1436 if (symfile_objfile != NULL)
1437 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1438
1439 for (t = target_stack; t != NULL; t = t->beneath)
1440 {
1441 if (!t->to_has_memory)
1442 continue;
1443
1444 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1445 continue;
1446 if (has_all_mem)
1447 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1448 printf_unfiltered ("%s:\n", t->to_longname);
1449 (t->to_files_info) (t);
1450 has_all_mem = t->to_has_all_memory;
1451 }
1452 }
1453
1454 /* This function is called before any new inferior is created, e.g.
1455 by running a program, attaching, or connecting to a target.
1456 It cleans up any state from previous invocations which might
1457 change between runs. This is a subset of what target_preopen
1458 resets (things which might change between targets). */
1459
1460 void
1461 target_pre_inferior (int from_tty)
1462 {
1463 invalidate_target_mem_regions ();
1464 }
1465
1466 /* This is to be called by the open routine before it does
1467 anything. */
1468
1469 void
1470 target_preopen (int from_tty)
1471 {
1472 dont_repeat ();
1473
1474 if (target_has_execution)
1475 {
1476 if (!from_tty
1477 || query (_("A program is being debugged already. Kill it? ")))
1478 target_kill ();
1479 else
1480 error (_("Program not killed."));
1481 }
1482
1483 /* Calling target_kill may remove the target from the stack. But if
1484 it doesn't (which seems like a win for UDI), remove it now. */
1485
1486 if (target_has_execution)
1487 pop_target ();
1488
1489 target_pre_inferior (from_tty);
1490 }
1491
1492 /* Detach a target after doing deferred register stores. */
1493
1494 void
1495 target_detach (char *args, int from_tty)
1496 {
1497 (current_target.to_detach) (args, from_tty);
1498 }
1499
1500 void
1501 target_disconnect (char *args, int from_tty)
1502 {
1503 struct target_ops *t;
1504
1505 for (t = current_target.beneath; t != NULL; t = t->beneath)
1506 if (t->to_disconnect != NULL)
1507 {
1508 if (targetdebug)
1509 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1510 args, from_tty);
1511 t->to_disconnect (t, args, from_tty);
1512 return;
1513 }
1514
1515 tcomplain ();
1516 }
1517
1518 int
1519 target_async_mask (int mask)
1520 {
1521 int saved_async_masked_status = target_async_mask_value;
1522 target_async_mask_value = mask;
1523 return saved_async_masked_status;
1524 }
1525
1526 /* Look through the list of possible targets for a target that can
1527 follow forks. */
1528
1529 int
1530 target_follow_fork (int follow_child)
1531 {
1532 struct target_ops *t;
1533
1534 for (t = current_target.beneath; t != NULL; t = t->beneath)
1535 {
1536 if (t->to_follow_fork != NULL)
1537 {
1538 int retval = t->to_follow_fork (t, follow_child);
1539 if (targetdebug)
1540 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1541 follow_child, retval);
1542 return retval;
1543 }
1544 }
1545
1546 /* Some target returned a fork event, but did not know how to follow it. */
1547 internal_error (__FILE__, __LINE__,
1548 "could not find a target to follow fork");
1549 }
1550
1551 /* Look through the list of possible targets for a target that can
1552 execute a run or attach command without any other data. This is
1553 used to locate the default process stratum.
1554
1555 Result is always valid (error() is called for errors). */
1556
1557 static struct target_ops *
1558 find_default_run_target (char *do_mesg)
1559 {
1560 struct target_ops **t;
1561 struct target_ops *runable = NULL;
1562 int count;
1563
1564 count = 0;
1565
1566 for (t = target_structs; t < target_structs + target_struct_size;
1567 ++t)
1568 {
1569 if ((*t)->to_can_run && target_can_run (*t))
1570 {
1571 runable = *t;
1572 ++count;
1573 }
1574 }
1575
1576 if (count != 1)
1577 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1578
1579 return runable;
1580 }
1581
1582 void
1583 find_default_attach (char *args, int from_tty)
1584 {
1585 struct target_ops *t;
1586
1587 t = find_default_run_target ("attach");
1588 (t->to_attach) (args, from_tty);
1589 return;
1590 }
1591
1592 void
1593 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1594 int from_tty)
1595 {
1596 struct target_ops *t;
1597
1598 t = find_default_run_target ("run");
1599 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1600 return;
1601 }
1602
1603 static int
1604 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1605 {
1606 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1607 }
1608
1609 static int
1610 return_zero (void)
1611 {
1612 return 0;
1613 }
1614
1615 static int
1616 return_one (void)
1617 {
1618 return 1;
1619 }
1620
1621 static int
1622 return_minus_one (void)
1623 {
1624 return -1;
1625 }
1626
1627 /*
1628 * Resize the to_sections pointer. Also make sure that anyone that
1629 * was holding on to an old value of it gets updated.
1630 * Returns the old size.
1631 */
1632
1633 int
1634 target_resize_to_sections (struct target_ops *target, int num_added)
1635 {
1636 struct target_ops **t;
1637 struct section_table *old_value;
1638 int old_count;
1639
1640 old_value = target->to_sections;
1641
1642 if (target->to_sections)
1643 {
1644 old_count = target->to_sections_end - target->to_sections;
1645 target->to_sections = (struct section_table *)
1646 xrealloc ((char *) target->to_sections,
1647 (sizeof (struct section_table)) * (num_added + old_count));
1648 }
1649 else
1650 {
1651 old_count = 0;
1652 target->to_sections = (struct section_table *)
1653 xmalloc ((sizeof (struct section_table)) * num_added);
1654 }
1655 target->to_sections_end = target->to_sections + (num_added + old_count);
1656
1657 /* Check to see if anyone else was pointing to this structure.
1658 If old_value was null, then no one was. */
1659
1660 if (old_value)
1661 {
1662 for (t = target_structs; t < target_structs + target_struct_size;
1663 ++t)
1664 {
1665 if ((*t)->to_sections == old_value)
1666 {
1667 (*t)->to_sections = target->to_sections;
1668 (*t)->to_sections_end = target->to_sections_end;
1669 }
1670 }
1671 /* There is a flattened view of the target stack in current_target,
1672 so its to_sections pointer might also need updating. */
1673 if (current_target.to_sections == old_value)
1674 {
1675 current_target.to_sections = target->to_sections;
1676 current_target.to_sections_end = target->to_sections_end;
1677 }
1678 }
1679
1680 return old_count;
1681
1682 }
1683
1684 /* Remove all target sections taken from ABFD.
1685
1686 Scan the current target stack for targets whose section tables
1687 refer to sections from BFD, and remove those sections. We use this
1688 when we notice that the inferior has unloaded a shared object, for
1689 example. */
1690 void
1691 remove_target_sections (bfd *abfd)
1692 {
1693 struct target_ops **t;
1694
1695 for (t = target_structs; t < target_structs + target_struct_size; t++)
1696 {
1697 struct section_table *src, *dest;
1698
1699 dest = (*t)->to_sections;
1700 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1701 if (src->bfd != abfd)
1702 {
1703 /* Keep this section. */
1704 if (dest < src) *dest = *src;
1705 dest++;
1706 }
1707
1708 /* If we've dropped any sections, resize the section table. */
1709 if (dest < src)
1710 target_resize_to_sections (*t, dest - src);
1711 }
1712 }
1713
1714
1715
1716
1717 /* Find a single runnable target in the stack and return it. If for
1718 some reason there is more than one, return NULL. */
1719
1720 struct target_ops *
1721 find_run_target (void)
1722 {
1723 struct target_ops **t;
1724 struct target_ops *runable = NULL;
1725 int count;
1726
1727 count = 0;
1728
1729 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1730 {
1731 if ((*t)->to_can_run && target_can_run (*t))
1732 {
1733 runable = *t;
1734 ++count;
1735 }
1736 }
1737
1738 return (count == 1 ? runable : NULL);
1739 }
1740
1741 /* Find a single core_stratum target in the list of targets and return it.
1742 If for some reason there is more than one, return NULL. */
1743
1744 struct target_ops *
1745 find_core_target (void)
1746 {
1747 struct target_ops **t;
1748 struct target_ops *runable = NULL;
1749 int count;
1750
1751 count = 0;
1752
1753 for (t = target_structs; t < target_structs + target_struct_size;
1754 ++t)
1755 {
1756 if ((*t)->to_stratum == core_stratum)
1757 {
1758 runable = *t;
1759 ++count;
1760 }
1761 }
1762
1763 return (count == 1 ? runable : NULL);
1764 }
1765
1766 /*
1767 * Find the next target down the stack from the specified target.
1768 */
1769
1770 struct target_ops *
1771 find_target_beneath (struct target_ops *t)
1772 {
1773 return t->beneath;
1774 }
1775
1776 \f
1777 /* The inferior process has died. Long live the inferior! */
1778
1779 void
1780 generic_mourn_inferior (void)
1781 {
1782 extern int show_breakpoint_hit_counts;
1783
1784 inferior_ptid = null_ptid;
1785 attach_flag = 0;
1786 breakpoint_init_inferior (inf_exited);
1787 registers_changed ();
1788
1789 reopen_exec_file ();
1790 reinit_frame_cache ();
1791
1792 /* It is confusing to the user for ignore counts to stick around
1793 from previous runs of the inferior. So clear them. */
1794 /* However, it is more confusing for the ignore counts to disappear when
1795 using hit counts. So don't clear them if we're counting hits. */
1796 if (!show_breakpoint_hit_counts)
1797 breakpoint_clear_ignore_counts ();
1798
1799 if (deprecated_detach_hook)
1800 deprecated_detach_hook ();
1801 }
1802 \f
1803 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1804 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1805 translation of that in OURSTATUS. */
1806 void
1807 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1808 {
1809 #ifdef CHILD_SPECIAL_WAITSTATUS
1810 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1811 if it wants to deal with hoststatus. */
1812 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1813 return;
1814 #endif
1815
1816 if (WIFEXITED (hoststatus))
1817 {
1818 ourstatus->kind = TARGET_WAITKIND_EXITED;
1819 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1820 }
1821 else if (!WIFSTOPPED (hoststatus))
1822 {
1823 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1824 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1825 }
1826 else
1827 {
1828 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1829 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1830 }
1831 }
1832 \f
1833 /* Returns zero to leave the inferior alone, one to interrupt it. */
1834 int (*target_activity_function) (void);
1835 int target_activity_fd;
1836 \f
1837 /* Convert a normal process ID to a string. Returns the string in a
1838 static buffer. */
1839
1840 char *
1841 normal_pid_to_str (ptid_t ptid)
1842 {
1843 static char buf[32];
1844
1845 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
1846 return buf;
1847 }
1848
1849 /* Error-catcher for target_find_memory_regions */
1850 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1851 {
1852 error (_("No target."));
1853 return 0;
1854 }
1855
1856 /* Error-catcher for target_make_corefile_notes */
1857 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1858 {
1859 error (_("No target."));
1860 return NULL;
1861 }
1862
1863 /* Set up the handful of non-empty slots needed by the dummy target
1864 vector. */
1865
1866 static void
1867 init_dummy_target (void)
1868 {
1869 dummy_target.to_shortname = "None";
1870 dummy_target.to_longname = "None";
1871 dummy_target.to_doc = "";
1872 dummy_target.to_attach = find_default_attach;
1873 dummy_target.to_create_inferior = find_default_create_inferior;
1874 dummy_target.to_pid_to_str = normal_pid_to_str;
1875 dummy_target.to_stratum = dummy_stratum;
1876 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1877 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1878 dummy_target.to_xfer_partial = default_xfer_partial;
1879 dummy_target.to_magic = OPS_MAGIC;
1880 }
1881 \f
1882 static void
1883 debug_to_open (char *args, int from_tty)
1884 {
1885 debug_target.to_open (args, from_tty);
1886
1887 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1888 }
1889
1890 static void
1891 debug_to_close (int quitting)
1892 {
1893 target_close (&debug_target, quitting);
1894 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1895 }
1896
1897 void
1898 target_close (struct target_ops *targ, int quitting)
1899 {
1900 if (targ->to_xclose != NULL)
1901 targ->to_xclose (targ, quitting);
1902 else if (targ->to_close != NULL)
1903 targ->to_close (quitting);
1904 }
1905
1906 static void
1907 debug_to_attach (char *args, int from_tty)
1908 {
1909 debug_target.to_attach (args, from_tty);
1910
1911 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1912 }
1913
1914
1915 static void
1916 debug_to_post_attach (int pid)
1917 {
1918 debug_target.to_post_attach (pid);
1919
1920 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1921 }
1922
1923 static void
1924 debug_to_detach (char *args, int from_tty)
1925 {
1926 debug_target.to_detach (args, from_tty);
1927
1928 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1929 }
1930
1931 static void
1932 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1933 {
1934 debug_target.to_resume (ptid, step, siggnal);
1935
1936 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1937 step ? "step" : "continue",
1938 target_signal_to_name (siggnal));
1939 }
1940
1941 static ptid_t
1942 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1943 {
1944 ptid_t retval;
1945
1946 retval = debug_target.to_wait (ptid, status);
1947
1948 fprintf_unfiltered (gdb_stdlog,
1949 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1950 PIDGET (retval));
1951 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1952 switch (status->kind)
1953 {
1954 case TARGET_WAITKIND_EXITED:
1955 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1956 status->value.integer);
1957 break;
1958 case TARGET_WAITKIND_STOPPED:
1959 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1960 target_signal_to_name (status->value.sig));
1961 break;
1962 case TARGET_WAITKIND_SIGNALLED:
1963 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1964 target_signal_to_name (status->value.sig));
1965 break;
1966 case TARGET_WAITKIND_LOADED:
1967 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1968 break;
1969 case TARGET_WAITKIND_FORKED:
1970 fprintf_unfiltered (gdb_stdlog, "forked\n");
1971 break;
1972 case TARGET_WAITKIND_VFORKED:
1973 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1974 break;
1975 case TARGET_WAITKIND_EXECD:
1976 fprintf_unfiltered (gdb_stdlog, "execd\n");
1977 break;
1978 case TARGET_WAITKIND_SPURIOUS:
1979 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1980 break;
1981 default:
1982 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1983 break;
1984 }
1985
1986 return retval;
1987 }
1988
1989 static void
1990 debug_print_register (const char * func, int regno)
1991 {
1992 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1993 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1994 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1995 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1996 else
1997 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1998 if (regno >= 0)
1999 {
2000 int i;
2001 unsigned char buf[MAX_REGISTER_SIZE];
2002 deprecated_read_register_gen (regno, buf);
2003 fprintf_unfiltered (gdb_stdlog, " = ");
2004 for (i = 0; i < register_size (current_gdbarch, regno); i++)
2005 {
2006 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2007 }
2008 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
2009 {
2010 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2011 paddr_nz (read_register (regno)),
2012 paddr_d (read_register (regno)));
2013 }
2014 }
2015 fprintf_unfiltered (gdb_stdlog, "\n");
2016 }
2017
2018 static void
2019 debug_to_fetch_registers (int regno)
2020 {
2021 debug_target.to_fetch_registers (regno);
2022 debug_print_register ("target_fetch_registers", regno);
2023 }
2024
2025 static void
2026 debug_to_store_registers (int regno)
2027 {
2028 debug_target.to_store_registers (regno);
2029 debug_print_register ("target_store_registers", regno);
2030 fprintf_unfiltered (gdb_stdlog, "\n");
2031 }
2032
2033 static void
2034 debug_to_prepare_to_store (void)
2035 {
2036 debug_target.to_prepare_to_store ();
2037
2038 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2039 }
2040
2041 static int
2042 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2043 int write, struct mem_attrib *attrib,
2044 struct target_ops *target)
2045 {
2046 int retval;
2047
2048 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2049 attrib, target);
2050
2051 fprintf_unfiltered (gdb_stdlog,
2052 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2053 (unsigned int) memaddr, /* possable truncate long long */
2054 len, write ? "write" : "read", retval);
2055
2056 if (retval > 0)
2057 {
2058 int i;
2059
2060 fputs_unfiltered (", bytes =", gdb_stdlog);
2061 for (i = 0; i < retval; i++)
2062 {
2063 if ((((long) &(myaddr[i])) & 0xf) == 0)
2064 {
2065 if (targetdebug < 2 && i > 0)
2066 {
2067 fprintf_unfiltered (gdb_stdlog, " ...");
2068 break;
2069 }
2070 fprintf_unfiltered (gdb_stdlog, "\n");
2071 }
2072
2073 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2074 }
2075 }
2076
2077 fputc_unfiltered ('\n', gdb_stdlog);
2078
2079 return retval;
2080 }
2081
2082 static void
2083 debug_to_files_info (struct target_ops *target)
2084 {
2085 debug_target.to_files_info (target);
2086
2087 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2088 }
2089
2090 static int
2091 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2092 {
2093 int retval;
2094
2095 retval = debug_target.to_insert_breakpoint (bp_tgt);
2096
2097 fprintf_unfiltered (gdb_stdlog,
2098 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2099 (unsigned long) bp_tgt->placed_address,
2100 (unsigned long) retval);
2101 return retval;
2102 }
2103
2104 static int
2105 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2106 {
2107 int retval;
2108
2109 retval = debug_target.to_remove_breakpoint (bp_tgt);
2110
2111 fprintf_unfiltered (gdb_stdlog,
2112 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2113 (unsigned long) bp_tgt->placed_address,
2114 (unsigned long) retval);
2115 return retval;
2116 }
2117
2118 static int
2119 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2120 {
2121 int retval;
2122
2123 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2124
2125 fprintf_unfiltered (gdb_stdlog,
2126 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2127 (unsigned long) type,
2128 (unsigned long) cnt,
2129 (unsigned long) from_tty,
2130 (unsigned long) retval);
2131 return retval;
2132 }
2133
2134 static int
2135 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2136 {
2137 CORE_ADDR retval;
2138
2139 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2140
2141 fprintf_unfiltered (gdb_stdlog,
2142 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2143 (unsigned long) addr,
2144 (unsigned long) len,
2145 (unsigned long) retval);
2146 return retval;
2147 }
2148
2149 static int
2150 debug_to_stopped_by_watchpoint (void)
2151 {
2152 int retval;
2153
2154 retval = debug_target.to_stopped_by_watchpoint ();
2155
2156 fprintf_unfiltered (gdb_stdlog,
2157 "STOPPED_BY_WATCHPOINT () = %ld\n",
2158 (unsigned long) retval);
2159 return retval;
2160 }
2161
2162 static int
2163 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2164 {
2165 int retval;
2166
2167 retval = debug_target.to_stopped_data_address (target, addr);
2168
2169 fprintf_unfiltered (gdb_stdlog,
2170 "target_stopped_data_address ([0x%lx]) = %ld\n",
2171 (unsigned long)*addr,
2172 (unsigned long)retval);
2173 return retval;
2174 }
2175
2176 static int
2177 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2178 {
2179 int retval;
2180
2181 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2182
2183 fprintf_unfiltered (gdb_stdlog,
2184 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2185 (unsigned long) bp_tgt->placed_address,
2186 (unsigned long) retval);
2187 return retval;
2188 }
2189
2190 static int
2191 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2192 {
2193 int retval;
2194
2195 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2196
2197 fprintf_unfiltered (gdb_stdlog,
2198 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2199 (unsigned long) bp_tgt->placed_address,
2200 (unsigned long) retval);
2201 return retval;
2202 }
2203
2204 static int
2205 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2206 {
2207 int retval;
2208
2209 retval = debug_target.to_insert_watchpoint (addr, len, type);
2210
2211 fprintf_unfiltered (gdb_stdlog,
2212 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2213 (unsigned long) addr, len, type, (unsigned long) retval);
2214 return retval;
2215 }
2216
2217 static int
2218 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2219 {
2220 int retval;
2221
2222 retval = debug_target.to_insert_watchpoint (addr, len, type);
2223
2224 fprintf_unfiltered (gdb_stdlog,
2225 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2226 (unsigned long) addr, len, type, (unsigned long) retval);
2227 return retval;
2228 }
2229
2230 static void
2231 debug_to_terminal_init (void)
2232 {
2233 debug_target.to_terminal_init ();
2234
2235 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2236 }
2237
2238 static void
2239 debug_to_terminal_inferior (void)
2240 {
2241 debug_target.to_terminal_inferior ();
2242
2243 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2244 }
2245
2246 static void
2247 debug_to_terminal_ours_for_output (void)
2248 {
2249 debug_target.to_terminal_ours_for_output ();
2250
2251 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2252 }
2253
2254 static void
2255 debug_to_terminal_ours (void)
2256 {
2257 debug_target.to_terminal_ours ();
2258
2259 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2260 }
2261
2262 static void
2263 debug_to_terminal_save_ours (void)
2264 {
2265 debug_target.to_terminal_save_ours ();
2266
2267 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2268 }
2269
2270 static void
2271 debug_to_terminal_info (char *arg, int from_tty)
2272 {
2273 debug_target.to_terminal_info (arg, from_tty);
2274
2275 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2276 from_tty);
2277 }
2278
2279 static void
2280 debug_to_kill (void)
2281 {
2282 debug_target.to_kill ();
2283
2284 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2285 }
2286
2287 static void
2288 debug_to_load (char *args, int from_tty)
2289 {
2290 debug_target.to_load (args, from_tty);
2291
2292 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2293 }
2294
2295 static int
2296 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2297 {
2298 int retval;
2299
2300 retval = debug_target.to_lookup_symbol (name, addrp);
2301
2302 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2303
2304 return retval;
2305 }
2306
2307 static void
2308 debug_to_create_inferior (char *exec_file, char *args, char **env,
2309 int from_tty)
2310 {
2311 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2312
2313 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2314 exec_file, args, from_tty);
2315 }
2316
2317 static void
2318 debug_to_post_startup_inferior (ptid_t ptid)
2319 {
2320 debug_target.to_post_startup_inferior (ptid);
2321
2322 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2323 PIDGET (ptid));
2324 }
2325
2326 static void
2327 debug_to_acknowledge_created_inferior (int pid)
2328 {
2329 debug_target.to_acknowledge_created_inferior (pid);
2330
2331 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2332 pid);
2333 }
2334
2335 static void
2336 debug_to_insert_fork_catchpoint (int pid)
2337 {
2338 debug_target.to_insert_fork_catchpoint (pid);
2339
2340 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2341 pid);
2342 }
2343
2344 static int
2345 debug_to_remove_fork_catchpoint (int pid)
2346 {
2347 int retval;
2348
2349 retval = debug_target.to_remove_fork_catchpoint (pid);
2350
2351 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2352 pid, retval);
2353
2354 return retval;
2355 }
2356
2357 static void
2358 debug_to_insert_vfork_catchpoint (int pid)
2359 {
2360 debug_target.to_insert_vfork_catchpoint (pid);
2361
2362 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2363 pid);
2364 }
2365
2366 static int
2367 debug_to_remove_vfork_catchpoint (int pid)
2368 {
2369 int retval;
2370
2371 retval = debug_target.to_remove_vfork_catchpoint (pid);
2372
2373 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2374 pid, retval);
2375
2376 return retval;
2377 }
2378
2379 static void
2380 debug_to_insert_exec_catchpoint (int pid)
2381 {
2382 debug_target.to_insert_exec_catchpoint (pid);
2383
2384 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2385 pid);
2386 }
2387
2388 static int
2389 debug_to_remove_exec_catchpoint (int pid)
2390 {
2391 int retval;
2392
2393 retval = debug_target.to_remove_exec_catchpoint (pid);
2394
2395 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2396 pid, retval);
2397
2398 return retval;
2399 }
2400
2401 static int
2402 debug_to_reported_exec_events_per_exec_call (void)
2403 {
2404 int reported_exec_events;
2405
2406 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2407
2408 fprintf_unfiltered (gdb_stdlog,
2409 "target_reported_exec_events_per_exec_call () = %d\n",
2410 reported_exec_events);
2411
2412 return reported_exec_events;
2413 }
2414
2415 static int
2416 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2417 {
2418 int has_exited;
2419
2420 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2421
2422 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2423 pid, wait_status, *exit_status, has_exited);
2424
2425 return has_exited;
2426 }
2427
2428 static void
2429 debug_to_mourn_inferior (void)
2430 {
2431 debug_target.to_mourn_inferior ();
2432
2433 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2434 }
2435
2436 static int
2437 debug_to_can_run (void)
2438 {
2439 int retval;
2440
2441 retval = debug_target.to_can_run ();
2442
2443 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2444
2445 return retval;
2446 }
2447
2448 static void
2449 debug_to_notice_signals (ptid_t ptid)
2450 {
2451 debug_target.to_notice_signals (ptid);
2452
2453 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2454 PIDGET (ptid));
2455 }
2456
2457 static int
2458 debug_to_thread_alive (ptid_t ptid)
2459 {
2460 int retval;
2461
2462 retval = debug_target.to_thread_alive (ptid);
2463
2464 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2465 PIDGET (ptid), retval);
2466
2467 return retval;
2468 }
2469
2470 static void
2471 debug_to_find_new_threads (void)
2472 {
2473 debug_target.to_find_new_threads ();
2474
2475 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2476 }
2477
2478 static void
2479 debug_to_stop (void)
2480 {
2481 debug_target.to_stop ();
2482
2483 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2484 }
2485
2486 static void
2487 debug_to_rcmd (char *command,
2488 struct ui_file *outbuf)
2489 {
2490 debug_target.to_rcmd (command, outbuf);
2491 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2492 }
2493
2494 static struct symtab_and_line *
2495 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2496 {
2497 struct symtab_and_line *result;
2498 result = debug_target.to_enable_exception_callback (kind, enable);
2499 fprintf_unfiltered (gdb_stdlog,
2500 "target get_exception_callback_sal (%d, %d)\n",
2501 kind, enable);
2502 return result;
2503 }
2504
2505 static struct exception_event_record *
2506 debug_to_get_current_exception_event (void)
2507 {
2508 struct exception_event_record *result;
2509 result = debug_target.to_get_current_exception_event ();
2510 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2511 return result;
2512 }
2513
2514 static char *
2515 debug_to_pid_to_exec_file (int pid)
2516 {
2517 char *exec_file;
2518
2519 exec_file = debug_target.to_pid_to_exec_file (pid);
2520
2521 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2522 pid, exec_file);
2523
2524 return exec_file;
2525 }
2526
2527 static void
2528 setup_target_debug (void)
2529 {
2530 memcpy (&debug_target, &current_target, sizeof debug_target);
2531
2532 current_target.to_open = debug_to_open;
2533 current_target.to_close = debug_to_close;
2534 current_target.to_attach = debug_to_attach;
2535 current_target.to_post_attach = debug_to_post_attach;
2536 current_target.to_detach = debug_to_detach;
2537 current_target.to_resume = debug_to_resume;
2538 current_target.to_wait = debug_to_wait;
2539 current_target.to_fetch_registers = debug_to_fetch_registers;
2540 current_target.to_store_registers = debug_to_store_registers;
2541 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2542 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2543 current_target.to_files_info = debug_to_files_info;
2544 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2545 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2546 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2547 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2548 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2549 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2550 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2551 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2552 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2553 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2554 current_target.to_terminal_init = debug_to_terminal_init;
2555 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2556 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2557 current_target.to_terminal_ours = debug_to_terminal_ours;
2558 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2559 current_target.to_terminal_info = debug_to_terminal_info;
2560 current_target.to_kill = debug_to_kill;
2561 current_target.to_load = debug_to_load;
2562 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2563 current_target.to_create_inferior = debug_to_create_inferior;
2564 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2565 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2566 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2567 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2568 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2569 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2570 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2571 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2572 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2573 current_target.to_has_exited = debug_to_has_exited;
2574 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2575 current_target.to_can_run = debug_to_can_run;
2576 current_target.to_notice_signals = debug_to_notice_signals;
2577 current_target.to_thread_alive = debug_to_thread_alive;
2578 current_target.to_find_new_threads = debug_to_find_new_threads;
2579 current_target.to_stop = debug_to_stop;
2580 current_target.to_rcmd = debug_to_rcmd;
2581 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2582 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2583 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2584 }
2585 \f
2586
2587 static char targ_desc[] =
2588 "Names of targets and files being debugged.\n\
2589 Shows the entire stack of targets currently in use (including the exec-file,\n\
2590 core-file, and process, if any), as well as the symbol file name.";
2591
2592 static void
2593 do_monitor_command (char *cmd,
2594 int from_tty)
2595 {
2596 if ((current_target.to_rcmd
2597 == (void (*) (char *, struct ui_file *)) tcomplain)
2598 || (current_target.to_rcmd == debug_to_rcmd
2599 && (debug_target.to_rcmd
2600 == (void (*) (char *, struct ui_file *)) tcomplain)))
2601 error (_("\"monitor\" command not supported by this target."));
2602 target_rcmd (cmd, gdb_stdtarg);
2603 }
2604
2605 void
2606 initialize_targets (void)
2607 {
2608 init_dummy_target ();
2609 push_target (&dummy_target);
2610
2611 add_info ("target", target_info, targ_desc);
2612 add_info ("files", target_info, targ_desc);
2613
2614 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2615 Set target debugging."), _("\
2616 Show target debugging."), _("\
2617 When non-zero, target debugging is enabled. Higher numbers are more\n\
2618 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2619 command."),
2620 NULL,
2621 show_targetdebug,
2622 &setdebuglist, &showdebuglist);
2623
2624 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2625 &trust_readonly, _("\
2626 Set mode for reading from readonly sections."), _("\
2627 Show mode for reading from readonly sections."), _("\
2628 When this mode is on, memory reads from readonly sections (such as .text)\n\
2629 will be read from the object file instead of from the target. This will\n\
2630 result in significant performance improvement for remote targets."),
2631 NULL,
2632 show_trust_readonly,
2633 &setlist, &showlist);
2634
2635 add_com ("monitor", class_obscure, do_monitor_command,
2636 _("Send a command to the remote monitor (remote targets only)."));
2637
2638 target_dcache = dcache_init ();
2639 }
This page took 0.079184 seconds and 3 git commands to generate.