*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdb_stdint.h"
43 #include "gdbthread.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
57
58 static int nosymbol (char *, CORE_ADDR *);
59
60 static void tcomplain (void) ATTR_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_one (void);
67
68 static int return_minus_one (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static void nosupport_runtime (void);
77
78 static LONGEST default_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST current_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex, gdb_byte *readbuf,
87 const gdb_byte *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static LONGEST target_xfer_partial (struct target_ops *ops,
91 enum target_object object,
92 const char *annex,
93 void *readbuf, const void *writebuf,
94 ULONGEST offset, LONGEST len);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_close (int);
103
104 static void debug_to_attach (char *, int);
105
106 static void debug_to_detach (char *, int);
107
108 static void debug_to_resume (ptid_t, int, enum target_signal);
109
110 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
111
112 static void debug_to_fetch_registers (struct regcache *, int);
113
114 static void debug_to_store_registers (struct regcache *, int);
115
116 static void debug_to_prepare_to_store (struct regcache *);
117
118 static void debug_to_files_info (struct target_ops *);
119
120 static int debug_to_insert_breakpoint (struct bp_target_info *);
121
122 static int debug_to_remove_breakpoint (struct bp_target_info *);
123
124 static int debug_to_can_use_hw_breakpoint (int, int, int);
125
126 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
129
130 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
133
134 static int debug_to_stopped_by_watchpoint (void);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
142
143 static void debug_to_terminal_init (void);
144
145 static void debug_to_terminal_inferior (void);
146
147 static void debug_to_terminal_ours_for_output (void);
148
149 static void debug_to_terminal_save_ours (void);
150
151 static void debug_to_terminal_ours (void);
152
153 static void debug_to_terminal_info (char *, int);
154
155 static void debug_to_kill (void);
156
157 static void debug_to_load (char *, int);
158
159 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
160
161 static void debug_to_mourn_inferior (void);
162
163 static int debug_to_can_run (void);
164
165 static void debug_to_notice_signals (ptid_t);
166
167 static int debug_to_thread_alive (ptid_t);
168
169 static void debug_to_stop (void);
170
171 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
172 wierd and mysterious ways. Putting the variable here lets those
173 wierd and mysterious ways keep building while they are being
174 converted to the inferior inheritance structure. */
175 struct target_ops deprecated_child_ops;
176
177 /* Pointer to array of target architecture structures; the size of the
178 array; the current index into the array; the allocated size of the
179 array. */
180 struct target_ops **target_structs;
181 unsigned target_struct_size;
182 unsigned target_struct_index;
183 unsigned target_struct_allocsize;
184 #define DEFAULT_ALLOCSIZE 10
185
186 /* The initial current target, so that there is always a semi-valid
187 current target. */
188
189 static struct target_ops dummy_target;
190
191 /* Top of target stack. */
192
193 static struct target_ops *target_stack;
194
195 /* The target structure we are currently using to talk to a process
196 or file or whatever "inferior" we have. */
197
198 struct target_ops current_target;
199
200 /* Command list for target. */
201
202 static struct cmd_list_element *targetlist = NULL;
203
204 /* Nonzero if we are debugging an attached outside process
205 rather than an inferior. */
206
207 int attach_flag;
208
209 /* Nonzero if we should trust readonly sections from the
210 executable when reading memory. */
211
212 static int trust_readonly = 0;
213
214 /* Nonzero if we should show true memory content including
215 memory breakpoint inserted by gdb. */
216
217 static int show_memory_breakpoints = 0;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 DCACHE *target_dcache;
232
233 /* The user just typed 'target' without the name of a target. */
234
235 static void
236 target_command (char *arg, int from_tty)
237 {
238 fputs_filtered ("Argument required (target name). Try `help target'\n",
239 gdb_stdout);
240 }
241
242 /* Add a possible target architecture to the list. */
243
244 void
245 add_target (struct target_ops *t)
246 {
247 /* Provide default values for all "must have" methods. */
248 if (t->to_xfer_partial == NULL)
249 t->to_xfer_partial = default_xfer_partial;
250
251 if (!target_structs)
252 {
253 target_struct_allocsize = DEFAULT_ALLOCSIZE;
254 target_structs = (struct target_ops **) xmalloc
255 (target_struct_allocsize * sizeof (*target_structs));
256 }
257 if (target_struct_size >= target_struct_allocsize)
258 {
259 target_struct_allocsize *= 2;
260 target_structs = (struct target_ops **)
261 xrealloc ((char *) target_structs,
262 target_struct_allocsize * sizeof (*target_structs));
263 }
264 target_structs[target_struct_size++] = t;
265
266 if (targetlist == NULL)
267 add_prefix_cmd ("target", class_run, target_command, _("\
268 Connect to a target machine or process.\n\
269 The first argument is the type or protocol of the target machine.\n\
270 Remaining arguments are interpreted by the target protocol. For more\n\
271 information on the arguments for a particular protocol, type\n\
272 `help target ' followed by the protocol name."),
273 &targetlist, "target ", 0, &cmdlist);
274 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
275 }
276
277 /* Stub functions */
278
279 void
280 target_ignore (void)
281 {
282 }
283
284 void
285 target_load (char *arg, int from_tty)
286 {
287 dcache_invalidate (target_dcache);
288 (*current_target.to_load) (arg, from_tty);
289 }
290
291 static int
292 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
293 struct target_ops *t)
294 {
295 errno = EIO; /* Can't read/write this location */
296 return 0; /* No bytes handled */
297 }
298
299 static void
300 tcomplain (void)
301 {
302 error (_("You can't do that when your target is `%s'"),
303 current_target.to_shortname);
304 }
305
306 void
307 noprocess (void)
308 {
309 error (_("You can't do that without a process to debug."));
310 }
311
312 static int
313 nosymbol (char *name, CORE_ADDR *addrp)
314 {
315 return 1; /* Symbol does not exist in target env */
316 }
317
318 static void
319 nosupport_runtime (void)
320 {
321 if (ptid_equal (inferior_ptid, null_ptid))
322 noprocess ();
323 else
324 error (_("No run-time support for this"));
325 }
326
327
328 static void
329 default_terminal_info (char *args, int from_tty)
330 {
331 printf_unfiltered (_("No saved terminal information.\n"));
332 }
333
334 /* This is the default target_create_inferior and target_attach function.
335 If the current target is executing, it asks whether to kill it off.
336 If this function returns without calling error(), it has killed off
337 the target, and the operation should be attempted. */
338
339 static void
340 kill_or_be_killed (int from_tty)
341 {
342 if (target_has_execution)
343 {
344 printf_unfiltered (_("You are already running a program:\n"));
345 target_files_info ();
346 if (query ("Kill it? "))
347 {
348 target_kill ();
349 if (target_has_execution)
350 error (_("Killing the program did not help."));
351 return;
352 }
353 else
354 {
355 error (_("Program not killed."));
356 }
357 }
358 tcomplain ();
359 }
360
361 static void
362 maybe_kill_then_attach (char *args, int from_tty)
363 {
364 kill_or_be_killed (from_tty);
365 target_attach (args, from_tty);
366 }
367
368 static void
369 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
370 int from_tty)
371 {
372 kill_or_be_killed (0);
373 target_create_inferior (exec, args, env, from_tty);
374 }
375
376 /* Go through the target stack from top to bottom, copying over zero
377 entries in current_target, then filling in still empty entries. In
378 effect, we are doing class inheritance through the pushed target
379 vectors.
380
381 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
382 is currently implemented, is that it discards any knowledge of
383 which target an inherited method originally belonged to.
384 Consequently, new new target methods should instead explicitly and
385 locally search the target stack for the target that can handle the
386 request. */
387
388 static void
389 update_current_target (void)
390 {
391 struct target_ops *t;
392
393 /* First, reset current's contents. */
394 memset (&current_target, 0, sizeof (current_target));
395
396 #define INHERIT(FIELD, TARGET) \
397 if (!current_target.FIELD) \
398 current_target.FIELD = (TARGET)->FIELD
399
400 for (t = target_stack; t; t = t->beneath)
401 {
402 INHERIT (to_shortname, t);
403 INHERIT (to_longname, t);
404 INHERIT (to_doc, t);
405 INHERIT (to_open, t);
406 INHERIT (to_close, t);
407 INHERIT (to_attach, t);
408 INHERIT (to_post_attach, t);
409 INHERIT (to_detach, t);
410 /* Do not inherit to_disconnect. */
411 INHERIT (to_resume, t);
412 INHERIT (to_wait, t);
413 INHERIT (to_fetch_registers, t);
414 INHERIT (to_store_registers, t);
415 INHERIT (to_prepare_to_store, t);
416 INHERIT (deprecated_xfer_memory, t);
417 INHERIT (to_files_info, t);
418 INHERIT (to_insert_breakpoint, t);
419 INHERIT (to_remove_breakpoint, t);
420 INHERIT (to_can_use_hw_breakpoint, t);
421 INHERIT (to_insert_hw_breakpoint, t);
422 INHERIT (to_remove_hw_breakpoint, t);
423 INHERIT (to_insert_watchpoint, t);
424 INHERIT (to_remove_watchpoint, t);
425 INHERIT (to_stopped_data_address, t);
426 INHERIT (to_have_steppable_watchpoint, t);
427 INHERIT (to_have_continuable_watchpoint, t);
428 INHERIT (to_stopped_by_watchpoint, t);
429 INHERIT (to_watchpoint_addr_within_range, t);
430 INHERIT (to_region_ok_for_hw_watchpoint, t);
431 INHERIT (to_terminal_init, t);
432 INHERIT (to_terminal_inferior, t);
433 INHERIT (to_terminal_ours_for_output, t);
434 INHERIT (to_terminal_ours, t);
435 INHERIT (to_terminal_save_ours, t);
436 INHERIT (to_terminal_info, t);
437 INHERIT (to_kill, t);
438 INHERIT (to_load, t);
439 INHERIT (to_lookup_symbol, t);
440 INHERIT (to_create_inferior, t);
441 INHERIT (to_post_startup_inferior, t);
442 INHERIT (to_acknowledge_created_inferior, t);
443 INHERIT (to_insert_fork_catchpoint, t);
444 INHERIT (to_remove_fork_catchpoint, t);
445 INHERIT (to_insert_vfork_catchpoint, t);
446 INHERIT (to_remove_vfork_catchpoint, t);
447 /* Do not inherit to_follow_fork. */
448 INHERIT (to_insert_exec_catchpoint, t);
449 INHERIT (to_remove_exec_catchpoint, t);
450 INHERIT (to_has_exited, t);
451 INHERIT (to_mourn_inferior, t);
452 INHERIT (to_can_run, t);
453 INHERIT (to_notice_signals, t);
454 INHERIT (to_thread_alive, t);
455 INHERIT (to_find_new_threads, t);
456 INHERIT (to_pid_to_str, t);
457 INHERIT (to_extra_thread_info, t);
458 INHERIT (to_stop, t);
459 /* Do not inherit to_xfer_partial. */
460 INHERIT (to_rcmd, t);
461 INHERIT (to_pid_to_exec_file, t);
462 INHERIT (to_log_command, t);
463 INHERIT (to_stratum, t);
464 INHERIT (to_has_all_memory, t);
465 INHERIT (to_has_memory, t);
466 INHERIT (to_has_stack, t);
467 INHERIT (to_has_registers, t);
468 INHERIT (to_has_execution, t);
469 INHERIT (to_has_thread_control, t);
470 INHERIT (to_sections, t);
471 INHERIT (to_sections_end, t);
472 INHERIT (to_can_async_p, t);
473 INHERIT (to_is_async_p, t);
474 INHERIT (to_async, t);
475 INHERIT (to_async_mask, t);
476 INHERIT (to_find_memory_regions, t);
477 INHERIT (to_make_corefile_notes, t);
478 INHERIT (to_get_thread_local_address, t);
479 /* Do not inherit to_read_description. */
480 /* Do not inherit to_search_memory. */
481 INHERIT (to_magic, t);
482 /* Do not inherit to_memory_map. */
483 /* Do not inherit to_flash_erase. */
484 /* Do not inherit to_flash_done. */
485 }
486 #undef INHERIT
487
488 /* Clean up a target struct so it no longer has any zero pointers in
489 it. Some entries are defaulted to a method that print an error,
490 others are hard-wired to a standard recursive default. */
491
492 #define de_fault(field, value) \
493 if (!current_target.field) \
494 current_target.field = value
495
496 de_fault (to_open,
497 (void (*) (char *, int))
498 tcomplain);
499 de_fault (to_close,
500 (void (*) (int))
501 target_ignore);
502 de_fault (to_attach,
503 maybe_kill_then_attach);
504 de_fault (to_post_attach,
505 (void (*) (int))
506 target_ignore);
507 de_fault (to_detach,
508 (void (*) (char *, int))
509 target_ignore);
510 de_fault (to_resume,
511 (void (*) (ptid_t, int, enum target_signal))
512 noprocess);
513 de_fault (to_wait,
514 (ptid_t (*) (ptid_t, struct target_waitstatus *))
515 noprocess);
516 de_fault (to_fetch_registers,
517 (void (*) (struct regcache *, int))
518 target_ignore);
519 de_fault (to_store_registers,
520 (void (*) (struct regcache *, int))
521 noprocess);
522 de_fault (to_prepare_to_store,
523 (void (*) (struct regcache *))
524 noprocess);
525 de_fault (deprecated_xfer_memory,
526 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
527 nomemory);
528 de_fault (to_files_info,
529 (void (*) (struct target_ops *))
530 target_ignore);
531 de_fault (to_insert_breakpoint,
532 memory_insert_breakpoint);
533 de_fault (to_remove_breakpoint,
534 memory_remove_breakpoint);
535 de_fault (to_can_use_hw_breakpoint,
536 (int (*) (int, int, int))
537 return_zero);
538 de_fault (to_insert_hw_breakpoint,
539 (int (*) (struct bp_target_info *))
540 return_minus_one);
541 de_fault (to_remove_hw_breakpoint,
542 (int (*) (struct bp_target_info *))
543 return_minus_one);
544 de_fault (to_insert_watchpoint,
545 (int (*) (CORE_ADDR, int, int))
546 return_minus_one);
547 de_fault (to_remove_watchpoint,
548 (int (*) (CORE_ADDR, int, int))
549 return_minus_one);
550 de_fault (to_stopped_by_watchpoint,
551 (int (*) (void))
552 return_zero);
553 de_fault (to_stopped_data_address,
554 (int (*) (struct target_ops *, CORE_ADDR *))
555 return_zero);
556 de_fault (to_watchpoint_addr_within_range,
557 default_watchpoint_addr_within_range);
558 de_fault (to_region_ok_for_hw_watchpoint,
559 default_region_ok_for_hw_watchpoint);
560 de_fault (to_terminal_init,
561 (void (*) (void))
562 target_ignore);
563 de_fault (to_terminal_inferior,
564 (void (*) (void))
565 target_ignore);
566 de_fault (to_terminal_ours_for_output,
567 (void (*) (void))
568 target_ignore);
569 de_fault (to_terminal_ours,
570 (void (*) (void))
571 target_ignore);
572 de_fault (to_terminal_save_ours,
573 (void (*) (void))
574 target_ignore);
575 de_fault (to_terminal_info,
576 default_terminal_info);
577 de_fault (to_kill,
578 (void (*) (void))
579 noprocess);
580 de_fault (to_load,
581 (void (*) (char *, int))
582 tcomplain);
583 de_fault (to_lookup_symbol,
584 (int (*) (char *, CORE_ADDR *))
585 nosymbol);
586 de_fault (to_create_inferior,
587 maybe_kill_then_create_inferior);
588 de_fault (to_post_startup_inferior,
589 (void (*) (ptid_t))
590 target_ignore);
591 de_fault (to_acknowledge_created_inferior,
592 (void (*) (int))
593 target_ignore);
594 de_fault (to_insert_fork_catchpoint,
595 (void (*) (int))
596 tcomplain);
597 de_fault (to_remove_fork_catchpoint,
598 (int (*) (int))
599 tcomplain);
600 de_fault (to_insert_vfork_catchpoint,
601 (void (*) (int))
602 tcomplain);
603 de_fault (to_remove_vfork_catchpoint,
604 (int (*) (int))
605 tcomplain);
606 de_fault (to_insert_exec_catchpoint,
607 (void (*) (int))
608 tcomplain);
609 de_fault (to_remove_exec_catchpoint,
610 (int (*) (int))
611 tcomplain);
612 de_fault (to_has_exited,
613 (int (*) (int, int, int *))
614 return_zero);
615 de_fault (to_mourn_inferior,
616 (void (*) (void))
617 noprocess);
618 de_fault (to_can_run,
619 return_zero);
620 de_fault (to_notice_signals,
621 (void (*) (ptid_t))
622 target_ignore);
623 de_fault (to_thread_alive,
624 (int (*) (ptid_t))
625 return_zero);
626 de_fault (to_find_new_threads,
627 (void (*) (void))
628 target_ignore);
629 de_fault (to_extra_thread_info,
630 (char *(*) (struct thread_info *))
631 return_zero);
632 de_fault (to_stop,
633 (void (*) (void))
634 target_ignore);
635 current_target.to_xfer_partial = current_xfer_partial;
636 de_fault (to_rcmd,
637 (void (*) (char *, struct ui_file *))
638 tcomplain);
639 de_fault (to_pid_to_exec_file,
640 (char *(*) (int))
641 return_zero);
642 de_fault (to_can_async_p,
643 (int (*) (void))
644 return_zero);
645 de_fault (to_is_async_p,
646 (int (*) (void))
647 return_zero);
648 de_fault (to_async,
649 (void (*) (void (*) (enum inferior_event_type, void*), void*))
650 tcomplain);
651 de_fault (to_async_mask,
652 (int (*) (int))
653 return_one);
654 current_target.to_read_description = NULL;
655 #undef de_fault
656
657 /* Finally, position the target-stack beneath the squashed
658 "current_target". That way code looking for a non-inherited
659 target method can quickly and simply find it. */
660 current_target.beneath = target_stack;
661
662 if (targetdebug)
663 setup_target_debug ();
664 }
665
666 /* Mark OPS as a running target. This reverses the effect
667 of target_mark_exited. */
668
669 void
670 target_mark_running (struct target_ops *ops)
671 {
672 struct target_ops *t;
673
674 for (t = target_stack; t != NULL; t = t->beneath)
675 if (t == ops)
676 break;
677 if (t == NULL)
678 internal_error (__FILE__, __LINE__,
679 "Attempted to mark unpushed target \"%s\" as running",
680 ops->to_shortname);
681
682 ops->to_has_execution = 1;
683 ops->to_has_all_memory = 1;
684 ops->to_has_memory = 1;
685 ops->to_has_stack = 1;
686 ops->to_has_registers = 1;
687
688 update_current_target ();
689 }
690
691 /* Mark OPS as a non-running target. This reverses the effect
692 of target_mark_running. */
693
694 void
695 target_mark_exited (struct target_ops *ops)
696 {
697 struct target_ops *t;
698
699 for (t = target_stack; t != NULL; t = t->beneath)
700 if (t == ops)
701 break;
702 if (t == NULL)
703 internal_error (__FILE__, __LINE__,
704 "Attempted to mark unpushed target \"%s\" as running",
705 ops->to_shortname);
706
707 ops->to_has_execution = 0;
708 ops->to_has_all_memory = 0;
709 ops->to_has_memory = 0;
710 ops->to_has_stack = 0;
711 ops->to_has_registers = 0;
712
713 update_current_target ();
714 }
715
716 /* Push a new target type into the stack of the existing target accessors,
717 possibly superseding some of the existing accessors.
718
719 Result is zero if the pushed target ended up on top of the stack,
720 nonzero if at least one target is on top of it.
721
722 Rather than allow an empty stack, we always have the dummy target at
723 the bottom stratum, so we can call the function vectors without
724 checking them. */
725
726 int
727 push_target (struct target_ops *t)
728 {
729 struct target_ops **cur;
730
731 /* Check magic number. If wrong, it probably means someone changed
732 the struct definition, but not all the places that initialize one. */
733 if (t->to_magic != OPS_MAGIC)
734 {
735 fprintf_unfiltered (gdb_stderr,
736 "Magic number of %s target struct wrong\n",
737 t->to_shortname);
738 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
739 }
740
741 /* Find the proper stratum to install this target in. */
742 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
743 {
744 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
745 break;
746 }
747
748 /* If there's already targets at this stratum, remove them. */
749 /* FIXME: cagney/2003-10-15: I think this should be popping all
750 targets to CUR, and not just those at this stratum level. */
751 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
752 {
753 /* There's already something at this stratum level. Close it,
754 and un-hook it from the stack. */
755 struct target_ops *tmp = (*cur);
756 (*cur) = (*cur)->beneath;
757 tmp->beneath = NULL;
758 target_close (tmp, 0);
759 }
760
761 /* We have removed all targets in our stratum, now add the new one. */
762 t->beneath = (*cur);
763 (*cur) = t;
764
765 update_current_target ();
766
767 /* Not on top? */
768 return (t != target_stack);
769 }
770
771 /* Remove a target_ops vector from the stack, wherever it may be.
772 Return how many times it was removed (0 or 1). */
773
774 int
775 unpush_target (struct target_ops *t)
776 {
777 struct target_ops **cur;
778 struct target_ops *tmp;
779
780 /* Look for the specified target. Note that we assume that a target
781 can only occur once in the target stack. */
782
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((*cur) == t)
786 break;
787 }
788
789 if ((*cur) == NULL)
790 return 0; /* Didn't find target_ops, quit now */
791
792 /* NOTE: cagney/2003-12-06: In '94 the close call was made
793 unconditional by moving it to before the above check that the
794 target was in the target stack (something about "Change the way
795 pushing and popping of targets work to support target overlays
796 and inheritance"). This doesn't make much sense - only open
797 targets should be closed. */
798 target_close (t, 0);
799
800 /* Unchain the target */
801 tmp = (*cur);
802 (*cur) = (*cur)->beneath;
803 tmp->beneath = NULL;
804
805 update_current_target ();
806
807 return 1;
808 }
809
810 void
811 pop_target (void)
812 {
813 target_close (&current_target, 0); /* Let it clean up */
814 if (unpush_target (target_stack) == 1)
815 return;
816
817 fprintf_unfiltered (gdb_stderr,
818 "pop_target couldn't find target %s\n",
819 current_target.to_shortname);
820 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
821 }
822
823 /* Using the objfile specified in OBJFILE, find the address for the
824 current thread's thread-local storage with offset OFFSET. */
825 CORE_ADDR
826 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
827 {
828 volatile CORE_ADDR addr = 0;
829
830 if (target_get_thread_local_address_p ()
831 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
832 {
833 ptid_t ptid = inferior_ptid;
834 volatile struct gdb_exception ex;
835
836 TRY_CATCH (ex, RETURN_MASK_ALL)
837 {
838 CORE_ADDR lm_addr;
839
840 /* Fetch the load module address for this objfile. */
841 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
842 objfile);
843 /* If it's 0, throw the appropriate exception. */
844 if (lm_addr == 0)
845 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
846 _("TLS load module not found"));
847
848 addr = target_get_thread_local_address (ptid, lm_addr, offset);
849 }
850 /* If an error occurred, print TLS related messages here. Otherwise,
851 throw the error to some higher catcher. */
852 if (ex.reason < 0)
853 {
854 int objfile_is_library = (objfile->flags & OBJF_SHARED);
855
856 switch (ex.error)
857 {
858 case TLS_NO_LIBRARY_SUPPORT_ERROR:
859 error (_("Cannot find thread-local variables in this thread library."));
860 break;
861 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
862 if (objfile_is_library)
863 error (_("Cannot find shared library `%s' in dynamic"
864 " linker's load module list"), objfile->name);
865 else
866 error (_("Cannot find executable file `%s' in dynamic"
867 " linker's load module list"), objfile->name);
868 break;
869 case TLS_NOT_ALLOCATED_YET_ERROR:
870 if (objfile_is_library)
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the shared library `%s'\n"
874 "for %s"),
875 objfile->name, target_pid_to_str (ptid));
876 else
877 error (_("The inferior has not yet allocated storage for"
878 " thread-local variables in\n"
879 "the executable `%s'\n"
880 "for %s"),
881 objfile->name, target_pid_to_str (ptid));
882 break;
883 case TLS_GENERIC_ERROR:
884 if (objfile_is_library)
885 error (_("Cannot find thread-local storage for %s, "
886 "shared library %s:\n%s"),
887 target_pid_to_str (ptid),
888 objfile->name, ex.message);
889 else
890 error (_("Cannot find thread-local storage for %s, "
891 "executable file %s:\n%s"),
892 target_pid_to_str (ptid),
893 objfile->name, ex.message);
894 break;
895 default:
896 throw_exception (ex);
897 break;
898 }
899 }
900 }
901 /* It wouldn't be wrong here to try a gdbarch method, too; finding
902 TLS is an ABI-specific thing. But we don't do that yet. */
903 else
904 error (_("Cannot find thread-local variables on this target"));
905
906 return addr;
907 }
908
909 #undef MIN
910 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
911
912 /* target_read_string -- read a null terminated string, up to LEN bytes,
913 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
914 Set *STRING to a pointer to malloc'd memory containing the data; the caller
915 is responsible for freeing it. Return the number of bytes successfully
916 read. */
917
918 int
919 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
920 {
921 int tlen, origlen, offset, i;
922 gdb_byte buf[4];
923 int errcode = 0;
924 char *buffer;
925 int buffer_allocated;
926 char *bufptr;
927 unsigned int nbytes_read = 0;
928
929 gdb_assert (string);
930
931 /* Small for testing. */
932 buffer_allocated = 4;
933 buffer = xmalloc (buffer_allocated);
934 bufptr = buffer;
935
936 origlen = len;
937
938 while (len > 0)
939 {
940 tlen = MIN (len, 4 - (memaddr & 3));
941 offset = memaddr & 3;
942
943 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
944 if (errcode != 0)
945 {
946 /* The transfer request might have crossed the boundary to an
947 unallocated region of memory. Retry the transfer, requesting
948 a single byte. */
949 tlen = 1;
950 offset = 0;
951 errcode = target_read_memory (memaddr, buf, 1);
952 if (errcode != 0)
953 goto done;
954 }
955
956 if (bufptr - buffer + tlen > buffer_allocated)
957 {
958 unsigned int bytes;
959 bytes = bufptr - buffer;
960 buffer_allocated *= 2;
961 buffer = xrealloc (buffer, buffer_allocated);
962 bufptr = buffer + bytes;
963 }
964
965 for (i = 0; i < tlen; i++)
966 {
967 *bufptr++ = buf[i + offset];
968 if (buf[i + offset] == '\000')
969 {
970 nbytes_read += i + 1;
971 goto done;
972 }
973 }
974
975 memaddr += tlen;
976 len -= tlen;
977 nbytes_read += tlen;
978 }
979 done:
980 *string = buffer;
981 if (errnop != NULL)
982 *errnop = errcode;
983 return nbytes_read;
984 }
985
986 /* Find a section containing ADDR. */
987 struct section_table *
988 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
989 {
990 struct section_table *secp;
991 for (secp = target->to_sections;
992 secp < target->to_sections_end;
993 secp++)
994 {
995 if (addr >= secp->addr && addr < secp->endaddr)
996 return secp;
997 }
998 return NULL;
999 }
1000
1001 /* Perform a partial memory transfer. The arguments and return
1002 value are just as for target_xfer_partial. */
1003
1004 static LONGEST
1005 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1006 ULONGEST memaddr, LONGEST len)
1007 {
1008 LONGEST res;
1009 int reg_len;
1010 struct mem_region *region;
1011
1012 /* Zero length requests are ok and require no work. */
1013 if (len == 0)
1014 return 0;
1015
1016 /* Try the executable file, if "trust-readonly-sections" is set. */
1017 if (readbuf != NULL && trust_readonly)
1018 {
1019 struct section_table *secp;
1020
1021 secp = target_section_by_addr (ops, memaddr);
1022 if (secp != NULL
1023 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1024 & SEC_READONLY))
1025 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1026 }
1027
1028 /* Likewise for accesses to unmapped overlay sections. */
1029 if (readbuf != NULL && overlay_debugging)
1030 {
1031 asection *section = find_pc_overlay (memaddr);
1032 if (pc_in_unmapped_range (memaddr, section))
1033 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1034 }
1035
1036 /* Try GDB's internal data cache. */
1037 region = lookup_mem_region (memaddr);
1038 /* region->hi == 0 means there's no upper bound. */
1039 if (memaddr + len < region->hi || region->hi == 0)
1040 reg_len = len;
1041 else
1042 reg_len = region->hi - memaddr;
1043
1044 switch (region->attrib.mode)
1045 {
1046 case MEM_RO:
1047 if (writebuf != NULL)
1048 return -1;
1049 break;
1050
1051 case MEM_WO:
1052 if (readbuf != NULL)
1053 return -1;
1054 break;
1055
1056 case MEM_FLASH:
1057 /* We only support writing to flash during "load" for now. */
1058 if (writebuf != NULL)
1059 error (_("Writing to flash memory forbidden in this context"));
1060 break;
1061
1062 case MEM_NONE:
1063 return -1;
1064 }
1065
1066 if (region->attrib.cache)
1067 {
1068 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1069 memory request will start back at current_target. */
1070 if (readbuf != NULL)
1071 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1072 reg_len, 0);
1073 else
1074 /* FIXME drow/2006-08-09: If we're going to preserve const
1075 correctness dcache_xfer_memory should take readbuf and
1076 writebuf. */
1077 res = dcache_xfer_memory (target_dcache, memaddr,
1078 (void *) writebuf,
1079 reg_len, 1);
1080 if (res <= 0)
1081 return -1;
1082 else
1083 {
1084 if (readbuf && !show_memory_breakpoints)
1085 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1086 return res;
1087 }
1088 }
1089
1090 /* If none of those methods found the memory we wanted, fall back
1091 to a target partial transfer. Normally a single call to
1092 to_xfer_partial is enough; if it doesn't recognize an object
1093 it will call the to_xfer_partial of the next target down.
1094 But for memory this won't do. Memory is the only target
1095 object which can be read from more than one valid target.
1096 A core file, for instance, could have some of memory but
1097 delegate other bits to the target below it. So, we must
1098 manually try all targets. */
1099
1100 do
1101 {
1102 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1103 readbuf, writebuf, memaddr, reg_len);
1104 if (res > 0)
1105 break;
1106
1107 /* We want to continue past core files to executables, but not
1108 past a running target's memory. */
1109 if (ops->to_has_all_memory)
1110 break;
1111
1112 ops = ops->beneath;
1113 }
1114 while (ops != NULL);
1115
1116 if (readbuf && !show_memory_breakpoints)
1117 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1118
1119 /* If we still haven't got anything, return the last error. We
1120 give up. */
1121 return res;
1122 }
1123
1124 static void
1125 restore_show_memory_breakpoints (void *arg)
1126 {
1127 show_memory_breakpoints = (uintptr_t) arg;
1128 }
1129
1130 struct cleanup *
1131 make_show_memory_breakpoints_cleanup (int show)
1132 {
1133 int current = show_memory_breakpoints;
1134 show_memory_breakpoints = show;
1135
1136 return make_cleanup (restore_show_memory_breakpoints,
1137 (void *) (uintptr_t) current);
1138 }
1139
1140 static LONGEST
1141 target_xfer_partial (struct target_ops *ops,
1142 enum target_object object, const char *annex,
1143 void *readbuf, const void *writebuf,
1144 ULONGEST offset, LONGEST len)
1145 {
1146 LONGEST retval;
1147
1148 gdb_assert (ops->to_xfer_partial != NULL);
1149
1150 /* If this is a memory transfer, let the memory-specific code
1151 have a look at it instead. Memory transfers are more
1152 complicated. */
1153 if (object == TARGET_OBJECT_MEMORY)
1154 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1155 else
1156 {
1157 enum target_object raw_object = object;
1158
1159 /* If this is a raw memory transfer, request the normal
1160 memory object from other layers. */
1161 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1162 raw_object = TARGET_OBJECT_MEMORY;
1163
1164 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1165 writebuf, offset, len);
1166 }
1167
1168 if (targetdebug)
1169 {
1170 const unsigned char *myaddr = NULL;
1171
1172 fprintf_unfiltered (gdb_stdlog,
1173 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1174 ops->to_shortname,
1175 (int) object,
1176 (annex ? annex : "(null)"),
1177 (long) readbuf, (long) writebuf,
1178 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1179
1180 if (readbuf)
1181 myaddr = readbuf;
1182 if (writebuf)
1183 myaddr = writebuf;
1184 if (retval > 0 && myaddr != NULL)
1185 {
1186 int i;
1187
1188 fputs_unfiltered (", bytes =", gdb_stdlog);
1189 for (i = 0; i < retval; i++)
1190 {
1191 if ((((long) &(myaddr[i])) & 0xf) == 0)
1192 {
1193 if (targetdebug < 2 && i > 0)
1194 {
1195 fprintf_unfiltered (gdb_stdlog, " ...");
1196 break;
1197 }
1198 fprintf_unfiltered (gdb_stdlog, "\n");
1199 }
1200
1201 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1202 }
1203 }
1204
1205 fputc_unfiltered ('\n', gdb_stdlog);
1206 }
1207 return retval;
1208 }
1209
1210 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1211 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1212 if any error occurs.
1213
1214 If an error occurs, no guarantee is made about the contents of the data at
1215 MYADDR. In particular, the caller should not depend upon partial reads
1216 filling the buffer with good data. There is no way for the caller to know
1217 how much good data might have been transfered anyway. Callers that can
1218 deal with partial reads should call target_read (which will retry until
1219 it makes no progress, and then return how much was transferred). */
1220
1221 int
1222 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1223 {
1224 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1225 myaddr, memaddr, len) == len)
1226 return 0;
1227 else
1228 return EIO;
1229 }
1230
1231 int
1232 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1233 {
1234 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1235 myaddr, memaddr, len) == len)
1236 return 0;
1237 else
1238 return EIO;
1239 }
1240
1241 /* Fetch the target's memory map. */
1242
1243 VEC(mem_region_s) *
1244 target_memory_map (void)
1245 {
1246 VEC(mem_region_s) *result;
1247 struct mem_region *last_one, *this_one;
1248 int ix;
1249 struct target_ops *t;
1250
1251 if (targetdebug)
1252 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1253
1254 for (t = current_target.beneath; t != NULL; t = t->beneath)
1255 if (t->to_memory_map != NULL)
1256 break;
1257
1258 if (t == NULL)
1259 return NULL;
1260
1261 result = t->to_memory_map (t);
1262 if (result == NULL)
1263 return NULL;
1264
1265 qsort (VEC_address (mem_region_s, result),
1266 VEC_length (mem_region_s, result),
1267 sizeof (struct mem_region), mem_region_cmp);
1268
1269 /* Check that regions do not overlap. Simultaneously assign
1270 a numbering for the "mem" commands to use to refer to
1271 each region. */
1272 last_one = NULL;
1273 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1274 {
1275 this_one->number = ix;
1276
1277 if (last_one && last_one->hi > this_one->lo)
1278 {
1279 warning (_("Overlapping regions in memory map: ignoring"));
1280 VEC_free (mem_region_s, result);
1281 return NULL;
1282 }
1283 last_one = this_one;
1284 }
1285
1286 return result;
1287 }
1288
1289 void
1290 target_flash_erase (ULONGEST address, LONGEST length)
1291 {
1292 struct target_ops *t;
1293
1294 for (t = current_target.beneath; t != NULL; t = t->beneath)
1295 if (t->to_flash_erase != NULL)
1296 {
1297 if (targetdebug)
1298 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1299 paddr (address), phex (length, 0));
1300 t->to_flash_erase (t, address, length);
1301 return;
1302 }
1303
1304 tcomplain ();
1305 }
1306
1307 void
1308 target_flash_done (void)
1309 {
1310 struct target_ops *t;
1311
1312 for (t = current_target.beneath; t != NULL; t = t->beneath)
1313 if (t->to_flash_done != NULL)
1314 {
1315 if (targetdebug)
1316 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1317 t->to_flash_done (t);
1318 return;
1319 }
1320
1321 tcomplain ();
1322 }
1323
1324 #ifndef target_stopped_data_address_p
1325 int
1326 target_stopped_data_address_p (struct target_ops *target)
1327 {
1328 if (target->to_stopped_data_address
1329 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1330 return 0;
1331 if (target->to_stopped_data_address == debug_to_stopped_data_address
1332 && (debug_target.to_stopped_data_address
1333 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1334 return 0;
1335 return 1;
1336 }
1337 #endif
1338
1339 static void
1340 show_trust_readonly (struct ui_file *file, int from_tty,
1341 struct cmd_list_element *c, const char *value)
1342 {
1343 fprintf_filtered (file, _("\
1344 Mode for reading from readonly sections is %s.\n"),
1345 value);
1346 }
1347
1348 /* More generic transfers. */
1349
1350 static LONGEST
1351 default_xfer_partial (struct target_ops *ops, enum target_object object,
1352 const char *annex, gdb_byte *readbuf,
1353 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1354 {
1355 if (object == TARGET_OBJECT_MEMORY
1356 && ops->deprecated_xfer_memory != NULL)
1357 /* If available, fall back to the target's
1358 "deprecated_xfer_memory" method. */
1359 {
1360 int xfered = -1;
1361 errno = 0;
1362 if (writebuf != NULL)
1363 {
1364 void *buffer = xmalloc (len);
1365 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1366 memcpy (buffer, writebuf, len);
1367 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1368 1/*write*/, NULL, ops);
1369 do_cleanups (cleanup);
1370 }
1371 if (readbuf != NULL)
1372 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1373 0/*read*/, NULL, ops);
1374 if (xfered > 0)
1375 return xfered;
1376 else if (xfered == 0 && errno == 0)
1377 /* "deprecated_xfer_memory" uses 0, cross checked against
1378 ERRNO as one indication of an error. */
1379 return 0;
1380 else
1381 return -1;
1382 }
1383 else if (ops->beneath != NULL)
1384 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1385 readbuf, writebuf, offset, len);
1386 else
1387 return -1;
1388 }
1389
1390 /* The xfer_partial handler for the topmost target. Unlike the default,
1391 it does not need to handle memory specially; it just passes all
1392 requests down the stack. */
1393
1394 static LONGEST
1395 current_xfer_partial (struct target_ops *ops, enum target_object object,
1396 const char *annex, gdb_byte *readbuf,
1397 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1398 {
1399 if (ops->beneath != NULL)
1400 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1401 readbuf, writebuf, offset, len);
1402 else
1403 return -1;
1404 }
1405
1406 /* Target vector read/write partial wrapper functions.
1407
1408 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1409 (inbuf, outbuf)", instead of separate read/write methods, make life
1410 easier. */
1411
1412 static LONGEST
1413 target_read_partial (struct target_ops *ops,
1414 enum target_object object,
1415 const char *annex, gdb_byte *buf,
1416 ULONGEST offset, LONGEST len)
1417 {
1418 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1419 }
1420
1421 static LONGEST
1422 target_write_partial (struct target_ops *ops,
1423 enum target_object object,
1424 const char *annex, const gdb_byte *buf,
1425 ULONGEST offset, LONGEST len)
1426 {
1427 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1428 }
1429
1430 /* Wrappers to perform the full transfer. */
1431 LONGEST
1432 target_read (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, LONGEST len)
1436 {
1437 LONGEST xfered = 0;
1438 while (xfered < len)
1439 {
1440 LONGEST xfer = target_read_partial (ops, object, annex,
1441 (gdb_byte *) buf + xfered,
1442 offset + xfered, len - xfered);
1443 /* Call an observer, notifying them of the xfer progress? */
1444 if (xfer == 0)
1445 return xfered;
1446 if (xfer < 0)
1447 return -1;
1448 xfered += xfer;
1449 QUIT;
1450 }
1451 return len;
1452 }
1453
1454 /* An alternative to target_write with progress callbacks. */
1455
1456 LONGEST
1457 target_write_with_progress (struct target_ops *ops,
1458 enum target_object object,
1459 const char *annex, const gdb_byte *buf,
1460 ULONGEST offset, LONGEST len,
1461 void (*progress) (ULONGEST, void *), void *baton)
1462 {
1463 LONGEST xfered = 0;
1464
1465 /* Give the progress callback a chance to set up. */
1466 if (progress)
1467 (*progress) (0, baton);
1468
1469 while (xfered < len)
1470 {
1471 LONGEST xfer = target_write_partial (ops, object, annex,
1472 (gdb_byte *) buf + xfered,
1473 offset + xfered, len - xfered);
1474
1475 if (xfer == 0)
1476 return xfered;
1477 if (xfer < 0)
1478 return -1;
1479
1480 if (progress)
1481 (*progress) (xfer, baton);
1482
1483 xfered += xfer;
1484 QUIT;
1485 }
1486 return len;
1487 }
1488
1489 LONGEST
1490 target_write (struct target_ops *ops,
1491 enum target_object object,
1492 const char *annex, const gdb_byte *buf,
1493 ULONGEST offset, LONGEST len)
1494 {
1495 return target_write_with_progress (ops, object, annex, buf, offset, len,
1496 NULL, NULL);
1497 }
1498
1499 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1500 the size of the transferred data. PADDING additional bytes are
1501 available in *BUF_P. This is a helper function for
1502 target_read_alloc; see the declaration of that function for more
1503 information. */
1504
1505 static LONGEST
1506 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1507 const char *annex, gdb_byte **buf_p, int padding)
1508 {
1509 size_t buf_alloc, buf_pos;
1510 gdb_byte *buf;
1511 LONGEST n;
1512
1513 /* This function does not have a length parameter; it reads the
1514 entire OBJECT). Also, it doesn't support objects fetched partly
1515 from one target and partly from another (in a different stratum,
1516 e.g. a core file and an executable). Both reasons make it
1517 unsuitable for reading memory. */
1518 gdb_assert (object != TARGET_OBJECT_MEMORY);
1519
1520 /* Start by reading up to 4K at a time. The target will throttle
1521 this number down if necessary. */
1522 buf_alloc = 4096;
1523 buf = xmalloc (buf_alloc);
1524 buf_pos = 0;
1525 while (1)
1526 {
1527 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1528 buf_pos, buf_alloc - buf_pos - padding);
1529 if (n < 0)
1530 {
1531 /* An error occurred. */
1532 xfree (buf);
1533 return -1;
1534 }
1535 else if (n == 0)
1536 {
1537 /* Read all there was. */
1538 if (buf_pos == 0)
1539 xfree (buf);
1540 else
1541 *buf_p = buf;
1542 return buf_pos;
1543 }
1544
1545 buf_pos += n;
1546
1547 /* If the buffer is filling up, expand it. */
1548 if (buf_alloc < buf_pos * 2)
1549 {
1550 buf_alloc *= 2;
1551 buf = xrealloc (buf, buf_alloc);
1552 }
1553
1554 QUIT;
1555 }
1556 }
1557
1558 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1559 the size of the transferred data. See the declaration in "target.h"
1560 function for more information about the return value. */
1561
1562 LONGEST
1563 target_read_alloc (struct target_ops *ops, enum target_object object,
1564 const char *annex, gdb_byte **buf_p)
1565 {
1566 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1567 }
1568
1569 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1570 returned as a string, allocated using xmalloc. If an error occurs
1571 or the transfer is unsupported, NULL is returned. Empty objects
1572 are returned as allocated but empty strings. A warning is issued
1573 if the result contains any embedded NUL bytes. */
1574
1575 char *
1576 target_read_stralloc (struct target_ops *ops, enum target_object object,
1577 const char *annex)
1578 {
1579 gdb_byte *buffer;
1580 LONGEST transferred;
1581
1582 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1583
1584 if (transferred < 0)
1585 return NULL;
1586
1587 if (transferred == 0)
1588 return xstrdup ("");
1589
1590 buffer[transferred] = 0;
1591 if (strlen (buffer) < transferred)
1592 warning (_("target object %d, annex %s, "
1593 "contained unexpected null characters"),
1594 (int) object, annex ? annex : "(none)");
1595
1596 return (char *) buffer;
1597 }
1598
1599 /* Memory transfer methods. */
1600
1601 void
1602 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1603 LONGEST len)
1604 {
1605 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1606 != len)
1607 memory_error (EIO, addr);
1608 }
1609
1610 ULONGEST
1611 get_target_memory_unsigned (struct target_ops *ops,
1612 CORE_ADDR addr, int len)
1613 {
1614 gdb_byte buf[sizeof (ULONGEST)];
1615
1616 gdb_assert (len <= sizeof (buf));
1617 get_target_memory (ops, addr, buf, len);
1618 return extract_unsigned_integer (buf, len);
1619 }
1620
1621 static void
1622 target_info (char *args, int from_tty)
1623 {
1624 struct target_ops *t;
1625 int has_all_mem = 0;
1626
1627 if (symfile_objfile != NULL)
1628 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1629
1630 for (t = target_stack; t != NULL; t = t->beneath)
1631 {
1632 if (!t->to_has_memory)
1633 continue;
1634
1635 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1636 continue;
1637 if (has_all_mem)
1638 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1639 printf_unfiltered ("%s:\n", t->to_longname);
1640 (t->to_files_info) (t);
1641 has_all_mem = t->to_has_all_memory;
1642 }
1643 }
1644
1645 /* This function is called before any new inferior is created, e.g.
1646 by running a program, attaching, or connecting to a target.
1647 It cleans up any state from previous invocations which might
1648 change between runs. This is a subset of what target_preopen
1649 resets (things which might change between targets). */
1650
1651 void
1652 target_pre_inferior (int from_tty)
1653 {
1654 invalidate_target_mem_regions ();
1655
1656 target_clear_description ();
1657 }
1658
1659 /* This is to be called by the open routine before it does
1660 anything. */
1661
1662 void
1663 target_preopen (int from_tty)
1664 {
1665 dont_repeat ();
1666
1667 if (target_has_execution)
1668 {
1669 if (!from_tty
1670 || query (_("A program is being debugged already. Kill it? ")))
1671 target_kill ();
1672 else
1673 error (_("Program not killed."));
1674 }
1675
1676 /* Calling target_kill may remove the target from the stack. But if
1677 it doesn't (which seems like a win for UDI), remove it now. */
1678
1679 if (target_has_execution)
1680 pop_target ();
1681
1682 target_pre_inferior (from_tty);
1683 }
1684
1685 /* Detach a target after doing deferred register stores. */
1686
1687 void
1688 target_detach (char *args, int from_tty)
1689 {
1690 /* If we're in breakpoints-always-inserted mode, have to
1691 remove them before detaching. */
1692 remove_breakpoints ();
1693
1694 (current_target.to_detach) (args, from_tty);
1695 }
1696
1697 void
1698 target_disconnect (char *args, int from_tty)
1699 {
1700 struct target_ops *t;
1701
1702 /* If we're in breakpoints-always-inserted mode, have to
1703 remove them before disconnecting. */
1704 remove_breakpoints ();
1705
1706 for (t = current_target.beneath; t != NULL; t = t->beneath)
1707 if (t->to_disconnect != NULL)
1708 {
1709 if (targetdebug)
1710 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1711 args, from_tty);
1712 t->to_disconnect (t, args, from_tty);
1713 return;
1714 }
1715
1716 tcomplain ();
1717 }
1718
1719 void
1720 target_resume (ptid_t ptid, int step, enum target_signal signal)
1721 {
1722 dcache_invalidate (target_dcache);
1723 (*current_target.to_resume) (ptid, step, signal);
1724 set_running (ptid, 1);
1725
1726 }
1727 /* Look through the list of possible targets for a target that can
1728 follow forks. */
1729
1730 int
1731 target_follow_fork (int follow_child)
1732 {
1733 struct target_ops *t;
1734
1735 for (t = current_target.beneath; t != NULL; t = t->beneath)
1736 {
1737 if (t->to_follow_fork != NULL)
1738 {
1739 int retval = t->to_follow_fork (t, follow_child);
1740 if (targetdebug)
1741 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1742 follow_child, retval);
1743 return retval;
1744 }
1745 }
1746
1747 /* Some target returned a fork event, but did not know how to follow it. */
1748 internal_error (__FILE__, __LINE__,
1749 "could not find a target to follow fork");
1750 }
1751
1752 /* Look for a target which can describe architectural features, starting
1753 from TARGET. If we find one, return its description. */
1754
1755 const struct target_desc *
1756 target_read_description (struct target_ops *target)
1757 {
1758 struct target_ops *t;
1759
1760 for (t = target; t != NULL; t = t->beneath)
1761 if (t->to_read_description != NULL)
1762 {
1763 const struct target_desc *tdesc;
1764
1765 tdesc = t->to_read_description (t);
1766 if (tdesc)
1767 return tdesc;
1768 }
1769
1770 return NULL;
1771 }
1772
1773 /* The default implementation of to_search_memory.
1774 This implements a basic search of memory, reading target memory and
1775 performing the search here (as opposed to performing the search in on the
1776 target side with, for example, gdbserver). */
1777
1778 int
1779 simple_search_memory (struct target_ops *ops,
1780 CORE_ADDR start_addr, ULONGEST search_space_len,
1781 const gdb_byte *pattern, ULONGEST pattern_len,
1782 CORE_ADDR *found_addrp)
1783 {
1784 /* NOTE: also defined in find.c testcase. */
1785 #define SEARCH_CHUNK_SIZE 16000
1786 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1787 /* Buffer to hold memory contents for searching. */
1788 gdb_byte *search_buf;
1789 unsigned search_buf_size;
1790 struct cleanup *old_cleanups;
1791
1792 search_buf_size = chunk_size + pattern_len - 1;
1793
1794 /* No point in trying to allocate a buffer larger than the search space. */
1795 if (search_space_len < search_buf_size)
1796 search_buf_size = search_space_len;
1797
1798 search_buf = malloc (search_buf_size);
1799 if (search_buf == NULL)
1800 error (_("Unable to allocate memory to perform the search."));
1801 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1802
1803 /* Prime the search buffer. */
1804
1805 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1806 search_buf, start_addr, search_buf_size) != search_buf_size)
1807 {
1808 warning (_("Unable to access target memory at %s, halting search."),
1809 hex_string (start_addr));
1810 do_cleanups (old_cleanups);
1811 return -1;
1812 }
1813
1814 /* Perform the search.
1815
1816 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1817 When we've scanned N bytes we copy the trailing bytes to the start and
1818 read in another N bytes. */
1819
1820 while (search_space_len >= pattern_len)
1821 {
1822 gdb_byte *found_ptr;
1823 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1824
1825 found_ptr = memmem (search_buf, nr_search_bytes,
1826 pattern, pattern_len);
1827
1828 if (found_ptr != NULL)
1829 {
1830 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1831 *found_addrp = found_addr;
1832 do_cleanups (old_cleanups);
1833 return 1;
1834 }
1835
1836 /* Not found in this chunk, skip to next chunk. */
1837
1838 /* Don't let search_space_len wrap here, it's unsigned. */
1839 if (search_space_len >= chunk_size)
1840 search_space_len -= chunk_size;
1841 else
1842 search_space_len = 0;
1843
1844 if (search_space_len >= pattern_len)
1845 {
1846 unsigned keep_len = search_buf_size - chunk_size;
1847 CORE_ADDR read_addr = start_addr + keep_len;
1848 int nr_to_read;
1849
1850 /* Copy the trailing part of the previous iteration to the front
1851 of the buffer for the next iteration. */
1852 gdb_assert (keep_len == pattern_len - 1);
1853 memcpy (search_buf, search_buf + chunk_size, keep_len);
1854
1855 nr_to_read = min (search_space_len - keep_len, chunk_size);
1856
1857 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1858 search_buf + keep_len, read_addr,
1859 nr_to_read) != nr_to_read)
1860 {
1861 warning (_("Unable to access target memory at %s, halting search."),
1862 hex_string (read_addr));
1863 do_cleanups (old_cleanups);
1864 return -1;
1865 }
1866
1867 start_addr += chunk_size;
1868 }
1869 }
1870
1871 /* Not found. */
1872
1873 do_cleanups (old_cleanups);
1874 return 0;
1875 }
1876
1877 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1878 sequence of bytes in PATTERN with length PATTERN_LEN.
1879
1880 The result is 1 if found, 0 if not found, and -1 if there was an error
1881 requiring halting of the search (e.g. memory read error).
1882 If the pattern is found the address is recorded in FOUND_ADDRP. */
1883
1884 int
1885 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1886 const gdb_byte *pattern, ULONGEST pattern_len,
1887 CORE_ADDR *found_addrp)
1888 {
1889 struct target_ops *t;
1890 int found;
1891
1892 /* We don't use INHERIT to set current_target.to_search_memory,
1893 so we have to scan the target stack and handle targetdebug
1894 ourselves. */
1895
1896 if (targetdebug)
1897 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1898 hex_string (start_addr));
1899
1900 for (t = current_target.beneath; t != NULL; t = t->beneath)
1901 if (t->to_search_memory != NULL)
1902 break;
1903
1904 if (t != NULL)
1905 {
1906 found = t->to_search_memory (t, start_addr, search_space_len,
1907 pattern, pattern_len, found_addrp);
1908 }
1909 else
1910 {
1911 /* If a special version of to_search_memory isn't available, use the
1912 simple version. */
1913 found = simple_search_memory (&current_target,
1914 start_addr, search_space_len,
1915 pattern, pattern_len, found_addrp);
1916 }
1917
1918 if (targetdebug)
1919 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
1920
1921 return found;
1922 }
1923
1924 /* Look through the currently pushed targets. If none of them will
1925 be able to restart the currently running process, issue an error
1926 message. */
1927
1928 void
1929 target_require_runnable (void)
1930 {
1931 struct target_ops *t;
1932
1933 for (t = target_stack; t != NULL; t = t->beneath)
1934 {
1935 /* If this target knows how to create a new program, then
1936 assume we will still be able to after killing the current
1937 one. Either killing and mourning will not pop T, or else
1938 find_default_run_target will find it again. */
1939 if (t->to_create_inferior != NULL)
1940 return;
1941
1942 /* Do not worry about thread_stratum targets that can not
1943 create inferiors. Assume they will be pushed again if
1944 necessary, and continue to the process_stratum. */
1945 if (t->to_stratum == thread_stratum)
1946 continue;
1947
1948 error (_("\
1949 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
1950 t->to_shortname);
1951 }
1952
1953 /* This function is only called if the target is running. In that
1954 case there should have been a process_stratum target and it
1955 should either know how to create inferiors, or not... */
1956 internal_error (__FILE__, __LINE__, "No targets found");
1957 }
1958
1959 /* Look through the list of possible targets for a target that can
1960 execute a run or attach command without any other data. This is
1961 used to locate the default process stratum.
1962
1963 If DO_MESG is not NULL, the result is always valid (error() is
1964 called for errors); else, return NULL on error. */
1965
1966 static struct target_ops *
1967 find_default_run_target (char *do_mesg)
1968 {
1969 struct target_ops **t;
1970 struct target_ops *runable = NULL;
1971 int count;
1972
1973 count = 0;
1974
1975 for (t = target_structs; t < target_structs + target_struct_size;
1976 ++t)
1977 {
1978 if ((*t)->to_can_run && target_can_run (*t))
1979 {
1980 runable = *t;
1981 ++count;
1982 }
1983 }
1984
1985 if (count != 1)
1986 {
1987 if (do_mesg)
1988 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1989 else
1990 return NULL;
1991 }
1992
1993 return runable;
1994 }
1995
1996 void
1997 find_default_attach (char *args, int from_tty)
1998 {
1999 struct target_ops *t;
2000
2001 t = find_default_run_target ("attach");
2002 (t->to_attach) (args, from_tty);
2003 return;
2004 }
2005
2006 void
2007 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2008 int from_tty)
2009 {
2010 struct target_ops *t;
2011
2012 t = find_default_run_target ("run");
2013 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2014 return;
2015 }
2016
2017 int
2018 find_default_can_async_p (void)
2019 {
2020 struct target_ops *t;
2021
2022 /* This may be called before the target is pushed on the stack;
2023 look for the default process stratum. If there's none, gdb isn't
2024 configured with a native debugger, and target remote isn't
2025 connected yet. */
2026 t = find_default_run_target (NULL);
2027 if (t && t->to_can_async_p)
2028 return (t->to_can_async_p) ();
2029 return 0;
2030 }
2031
2032 int
2033 find_default_is_async_p (void)
2034 {
2035 struct target_ops *t;
2036
2037 /* This may be called before the target is pushed on the stack;
2038 look for the default process stratum. If there's none, gdb isn't
2039 configured with a native debugger, and target remote isn't
2040 connected yet. */
2041 t = find_default_run_target (NULL);
2042 if (t && t->to_is_async_p)
2043 return (t->to_is_async_p) ();
2044 return 0;
2045 }
2046
2047 static int
2048 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2049 {
2050 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2051 }
2052
2053 static int
2054 default_watchpoint_addr_within_range (struct target_ops *target,
2055 CORE_ADDR addr,
2056 CORE_ADDR start, int length)
2057 {
2058 return addr >= start && addr < start + length;
2059 }
2060
2061 static int
2062 return_zero (void)
2063 {
2064 return 0;
2065 }
2066
2067 static int
2068 return_one (void)
2069 {
2070 return 1;
2071 }
2072
2073 static int
2074 return_minus_one (void)
2075 {
2076 return -1;
2077 }
2078
2079 /*
2080 * Resize the to_sections pointer. Also make sure that anyone that
2081 * was holding on to an old value of it gets updated.
2082 * Returns the old size.
2083 */
2084
2085 int
2086 target_resize_to_sections (struct target_ops *target, int num_added)
2087 {
2088 struct target_ops **t;
2089 struct section_table *old_value;
2090 int old_count;
2091
2092 old_value = target->to_sections;
2093
2094 if (target->to_sections)
2095 {
2096 old_count = target->to_sections_end - target->to_sections;
2097 target->to_sections = (struct section_table *)
2098 xrealloc ((char *) target->to_sections,
2099 (sizeof (struct section_table)) * (num_added + old_count));
2100 }
2101 else
2102 {
2103 old_count = 0;
2104 target->to_sections = (struct section_table *)
2105 xmalloc ((sizeof (struct section_table)) * num_added);
2106 }
2107 target->to_sections_end = target->to_sections + (num_added + old_count);
2108
2109 /* Check to see if anyone else was pointing to this structure.
2110 If old_value was null, then no one was. */
2111
2112 if (old_value)
2113 {
2114 for (t = target_structs; t < target_structs + target_struct_size;
2115 ++t)
2116 {
2117 if ((*t)->to_sections == old_value)
2118 {
2119 (*t)->to_sections = target->to_sections;
2120 (*t)->to_sections_end = target->to_sections_end;
2121 }
2122 }
2123 /* There is a flattened view of the target stack in current_target,
2124 so its to_sections pointer might also need updating. */
2125 if (current_target.to_sections == old_value)
2126 {
2127 current_target.to_sections = target->to_sections;
2128 current_target.to_sections_end = target->to_sections_end;
2129 }
2130 }
2131
2132 return old_count;
2133
2134 }
2135
2136 /* Remove all target sections taken from ABFD.
2137
2138 Scan the current target stack for targets whose section tables
2139 refer to sections from BFD, and remove those sections. We use this
2140 when we notice that the inferior has unloaded a shared object, for
2141 example. */
2142 void
2143 remove_target_sections (bfd *abfd)
2144 {
2145 struct target_ops **t;
2146
2147 for (t = target_structs; t < target_structs + target_struct_size; t++)
2148 {
2149 struct section_table *src, *dest;
2150
2151 dest = (*t)->to_sections;
2152 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2153 if (src->bfd != abfd)
2154 {
2155 /* Keep this section. */
2156 if (dest < src) *dest = *src;
2157 dest++;
2158 }
2159
2160 /* If we've dropped any sections, resize the section table. */
2161 if (dest < src)
2162 target_resize_to_sections (*t, dest - src);
2163 }
2164 }
2165
2166
2167
2168
2169 /* Find a single runnable target in the stack and return it. If for
2170 some reason there is more than one, return NULL. */
2171
2172 struct target_ops *
2173 find_run_target (void)
2174 {
2175 struct target_ops **t;
2176 struct target_ops *runable = NULL;
2177 int count;
2178
2179 count = 0;
2180
2181 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2182 {
2183 if ((*t)->to_can_run && target_can_run (*t))
2184 {
2185 runable = *t;
2186 ++count;
2187 }
2188 }
2189
2190 return (count == 1 ? runable : NULL);
2191 }
2192
2193 /* Find a single core_stratum target in the list of targets and return it.
2194 If for some reason there is more than one, return NULL. */
2195
2196 struct target_ops *
2197 find_core_target (void)
2198 {
2199 struct target_ops **t;
2200 struct target_ops *runable = NULL;
2201 int count;
2202
2203 count = 0;
2204
2205 for (t = target_structs; t < target_structs + target_struct_size;
2206 ++t)
2207 {
2208 if ((*t)->to_stratum == core_stratum)
2209 {
2210 runable = *t;
2211 ++count;
2212 }
2213 }
2214
2215 return (count == 1 ? runable : NULL);
2216 }
2217
2218 /*
2219 * Find the next target down the stack from the specified target.
2220 */
2221
2222 struct target_ops *
2223 find_target_beneath (struct target_ops *t)
2224 {
2225 return t->beneath;
2226 }
2227
2228 \f
2229 /* The inferior process has died. Long live the inferior! */
2230
2231 void
2232 generic_mourn_inferior (void)
2233 {
2234 extern int show_breakpoint_hit_counts;
2235
2236 inferior_ptid = null_ptid;
2237 attach_flag = 0;
2238 breakpoint_init_inferior (inf_exited);
2239 registers_changed ();
2240
2241 reopen_exec_file ();
2242 reinit_frame_cache ();
2243
2244 /* It is confusing to the user for ignore counts to stick around
2245 from previous runs of the inferior. So clear them. */
2246 /* However, it is more confusing for the ignore counts to disappear when
2247 using hit counts. So don't clear them if we're counting hits. */
2248 if (!show_breakpoint_hit_counts)
2249 breakpoint_clear_ignore_counts ();
2250
2251 if (deprecated_detach_hook)
2252 deprecated_detach_hook ();
2253 }
2254 \f
2255 /* Helper function for child_wait and the derivatives of child_wait.
2256 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2257 translation of that in OURSTATUS. */
2258 void
2259 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2260 {
2261 if (WIFEXITED (hoststatus))
2262 {
2263 ourstatus->kind = TARGET_WAITKIND_EXITED;
2264 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2265 }
2266 else if (!WIFSTOPPED (hoststatus))
2267 {
2268 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2269 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2270 }
2271 else
2272 {
2273 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2274 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2275 }
2276 }
2277 \f
2278 /* Returns zero to leave the inferior alone, one to interrupt it. */
2279 int (*target_activity_function) (void);
2280 int target_activity_fd;
2281 \f
2282 /* Convert a normal process ID to a string. Returns the string in a
2283 static buffer. */
2284
2285 char *
2286 normal_pid_to_str (ptid_t ptid)
2287 {
2288 static char buf[32];
2289
2290 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2291 return buf;
2292 }
2293
2294 /* Error-catcher for target_find_memory_regions */
2295 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2296 {
2297 error (_("No target."));
2298 return 0;
2299 }
2300
2301 /* Error-catcher for target_make_corefile_notes */
2302 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2303 {
2304 error (_("No target."));
2305 return NULL;
2306 }
2307
2308 /* Set up the handful of non-empty slots needed by the dummy target
2309 vector. */
2310
2311 static void
2312 init_dummy_target (void)
2313 {
2314 dummy_target.to_shortname = "None";
2315 dummy_target.to_longname = "None";
2316 dummy_target.to_doc = "";
2317 dummy_target.to_attach = find_default_attach;
2318 dummy_target.to_create_inferior = find_default_create_inferior;
2319 dummy_target.to_can_async_p = find_default_can_async_p;
2320 dummy_target.to_is_async_p = find_default_is_async_p;
2321 dummy_target.to_pid_to_str = normal_pid_to_str;
2322 dummy_target.to_stratum = dummy_stratum;
2323 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2324 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2325 dummy_target.to_xfer_partial = default_xfer_partial;
2326 dummy_target.to_magic = OPS_MAGIC;
2327 }
2328 \f
2329 static void
2330 debug_to_open (char *args, int from_tty)
2331 {
2332 debug_target.to_open (args, from_tty);
2333
2334 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2335 }
2336
2337 static void
2338 debug_to_close (int quitting)
2339 {
2340 target_close (&debug_target, quitting);
2341 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2342 }
2343
2344 void
2345 target_close (struct target_ops *targ, int quitting)
2346 {
2347 if (targ->to_xclose != NULL)
2348 targ->to_xclose (targ, quitting);
2349 else if (targ->to_close != NULL)
2350 targ->to_close (quitting);
2351 }
2352
2353 static void
2354 debug_to_attach (char *args, int from_tty)
2355 {
2356 debug_target.to_attach (args, from_tty);
2357
2358 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2359 }
2360
2361
2362 static void
2363 debug_to_post_attach (int pid)
2364 {
2365 debug_target.to_post_attach (pid);
2366
2367 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2368 }
2369
2370 static void
2371 debug_to_detach (char *args, int from_tty)
2372 {
2373 debug_target.to_detach (args, from_tty);
2374
2375 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2376 }
2377
2378 static void
2379 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2380 {
2381 debug_target.to_resume (ptid, step, siggnal);
2382
2383 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2384 step ? "step" : "continue",
2385 target_signal_to_name (siggnal));
2386 }
2387
2388 static ptid_t
2389 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2390 {
2391 ptid_t retval;
2392
2393 retval = debug_target.to_wait (ptid, status);
2394
2395 fprintf_unfiltered (gdb_stdlog,
2396 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2397 PIDGET (retval));
2398 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2399 switch (status->kind)
2400 {
2401 case TARGET_WAITKIND_EXITED:
2402 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2403 status->value.integer);
2404 break;
2405 case TARGET_WAITKIND_STOPPED:
2406 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2407 target_signal_to_name (status->value.sig));
2408 break;
2409 case TARGET_WAITKIND_SIGNALLED:
2410 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2411 target_signal_to_name (status->value.sig));
2412 break;
2413 case TARGET_WAITKIND_LOADED:
2414 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2415 break;
2416 case TARGET_WAITKIND_FORKED:
2417 fprintf_unfiltered (gdb_stdlog, "forked\n");
2418 break;
2419 case TARGET_WAITKIND_VFORKED:
2420 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2421 break;
2422 case TARGET_WAITKIND_EXECD:
2423 fprintf_unfiltered (gdb_stdlog, "execd\n");
2424 break;
2425 case TARGET_WAITKIND_SPURIOUS:
2426 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2427 break;
2428 default:
2429 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2430 break;
2431 }
2432
2433 return retval;
2434 }
2435
2436 static void
2437 debug_print_register (const char * func,
2438 struct regcache *regcache, int regno)
2439 {
2440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2441 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2442 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2443 + gdbarch_num_pseudo_regs (gdbarch)
2444 && gdbarch_register_name (gdbarch, regno) != NULL
2445 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2446 fprintf_unfiltered (gdb_stdlog, "(%s)",
2447 gdbarch_register_name (gdbarch, regno));
2448 else
2449 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2450 if (regno >= 0)
2451 {
2452 int i, size = register_size (gdbarch, regno);
2453 unsigned char buf[MAX_REGISTER_SIZE];
2454 regcache_cooked_read (regcache, regno, buf);
2455 fprintf_unfiltered (gdb_stdlog, " = ");
2456 for (i = 0; i < size; i++)
2457 {
2458 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2459 }
2460 if (size <= sizeof (LONGEST))
2461 {
2462 ULONGEST val = extract_unsigned_integer (buf, size);
2463 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2464 paddr_nz (val), paddr_d (val));
2465 }
2466 }
2467 fprintf_unfiltered (gdb_stdlog, "\n");
2468 }
2469
2470 static void
2471 debug_to_fetch_registers (struct regcache *regcache, int regno)
2472 {
2473 debug_target.to_fetch_registers (regcache, regno);
2474 debug_print_register ("target_fetch_registers", regcache, regno);
2475 }
2476
2477 static void
2478 debug_to_store_registers (struct regcache *regcache, int regno)
2479 {
2480 debug_target.to_store_registers (regcache, regno);
2481 debug_print_register ("target_store_registers", regcache, regno);
2482 fprintf_unfiltered (gdb_stdlog, "\n");
2483 }
2484
2485 static void
2486 debug_to_prepare_to_store (struct regcache *regcache)
2487 {
2488 debug_target.to_prepare_to_store (regcache);
2489
2490 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2491 }
2492
2493 static int
2494 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2495 int write, struct mem_attrib *attrib,
2496 struct target_ops *target)
2497 {
2498 int retval;
2499
2500 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2501 attrib, target);
2502
2503 fprintf_unfiltered (gdb_stdlog,
2504 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2505 (unsigned int) memaddr, /* possable truncate long long */
2506 len, write ? "write" : "read", retval);
2507
2508 if (retval > 0)
2509 {
2510 int i;
2511
2512 fputs_unfiltered (", bytes =", gdb_stdlog);
2513 for (i = 0; i < retval; i++)
2514 {
2515 if ((((long) &(myaddr[i])) & 0xf) == 0)
2516 {
2517 if (targetdebug < 2 && i > 0)
2518 {
2519 fprintf_unfiltered (gdb_stdlog, " ...");
2520 break;
2521 }
2522 fprintf_unfiltered (gdb_stdlog, "\n");
2523 }
2524
2525 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2526 }
2527 }
2528
2529 fputc_unfiltered ('\n', gdb_stdlog);
2530
2531 return retval;
2532 }
2533
2534 static void
2535 debug_to_files_info (struct target_ops *target)
2536 {
2537 debug_target.to_files_info (target);
2538
2539 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2540 }
2541
2542 static int
2543 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2544 {
2545 int retval;
2546
2547 retval = debug_target.to_insert_breakpoint (bp_tgt);
2548
2549 fprintf_unfiltered (gdb_stdlog,
2550 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2551 (unsigned long) bp_tgt->placed_address,
2552 (unsigned long) retval);
2553 return retval;
2554 }
2555
2556 static int
2557 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2558 {
2559 int retval;
2560
2561 retval = debug_target.to_remove_breakpoint (bp_tgt);
2562
2563 fprintf_unfiltered (gdb_stdlog,
2564 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2565 (unsigned long) bp_tgt->placed_address,
2566 (unsigned long) retval);
2567 return retval;
2568 }
2569
2570 static int
2571 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2572 {
2573 int retval;
2574
2575 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2576
2577 fprintf_unfiltered (gdb_stdlog,
2578 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2579 (unsigned long) type,
2580 (unsigned long) cnt,
2581 (unsigned long) from_tty,
2582 (unsigned long) retval);
2583 return retval;
2584 }
2585
2586 static int
2587 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2588 {
2589 CORE_ADDR retval;
2590
2591 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2592
2593 fprintf_unfiltered (gdb_stdlog,
2594 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2595 (unsigned long) addr,
2596 (unsigned long) len,
2597 (unsigned long) retval);
2598 return retval;
2599 }
2600
2601 static int
2602 debug_to_stopped_by_watchpoint (void)
2603 {
2604 int retval;
2605
2606 retval = debug_target.to_stopped_by_watchpoint ();
2607
2608 fprintf_unfiltered (gdb_stdlog,
2609 "STOPPED_BY_WATCHPOINT () = %ld\n",
2610 (unsigned long) retval);
2611 return retval;
2612 }
2613
2614 static int
2615 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2616 {
2617 int retval;
2618
2619 retval = debug_target.to_stopped_data_address (target, addr);
2620
2621 fprintf_unfiltered (gdb_stdlog,
2622 "target_stopped_data_address ([0x%lx]) = %ld\n",
2623 (unsigned long)*addr,
2624 (unsigned long)retval);
2625 return retval;
2626 }
2627
2628 static int
2629 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2630 CORE_ADDR addr,
2631 CORE_ADDR start, int length)
2632 {
2633 int retval;
2634
2635 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2636 start, length);
2637
2638 fprintf_filtered (gdb_stdlog,
2639 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2640 (unsigned long) addr, (unsigned long) start, length,
2641 retval);
2642 return retval;
2643 }
2644
2645 static int
2646 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2647 {
2648 int retval;
2649
2650 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2651
2652 fprintf_unfiltered (gdb_stdlog,
2653 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2654 (unsigned long) bp_tgt->placed_address,
2655 (unsigned long) retval);
2656 return retval;
2657 }
2658
2659 static int
2660 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2661 {
2662 int retval;
2663
2664 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2665
2666 fprintf_unfiltered (gdb_stdlog,
2667 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2668 (unsigned long) bp_tgt->placed_address,
2669 (unsigned long) retval);
2670 return retval;
2671 }
2672
2673 static int
2674 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2675 {
2676 int retval;
2677
2678 retval = debug_target.to_insert_watchpoint (addr, len, type);
2679
2680 fprintf_unfiltered (gdb_stdlog,
2681 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2682 (unsigned long) addr, len, type, (unsigned long) retval);
2683 return retval;
2684 }
2685
2686 static int
2687 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2688 {
2689 int retval;
2690
2691 retval = debug_target.to_remove_watchpoint (addr, len, type);
2692
2693 fprintf_unfiltered (gdb_stdlog,
2694 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2695 (unsigned long) addr, len, type, (unsigned long) retval);
2696 return retval;
2697 }
2698
2699 static void
2700 debug_to_terminal_init (void)
2701 {
2702 debug_target.to_terminal_init ();
2703
2704 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2705 }
2706
2707 static void
2708 debug_to_terminal_inferior (void)
2709 {
2710 debug_target.to_terminal_inferior ();
2711
2712 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2713 }
2714
2715 static void
2716 debug_to_terminal_ours_for_output (void)
2717 {
2718 debug_target.to_terminal_ours_for_output ();
2719
2720 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2721 }
2722
2723 static void
2724 debug_to_terminal_ours (void)
2725 {
2726 debug_target.to_terminal_ours ();
2727
2728 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2729 }
2730
2731 static void
2732 debug_to_terminal_save_ours (void)
2733 {
2734 debug_target.to_terminal_save_ours ();
2735
2736 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2737 }
2738
2739 static void
2740 debug_to_terminal_info (char *arg, int from_tty)
2741 {
2742 debug_target.to_terminal_info (arg, from_tty);
2743
2744 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2745 from_tty);
2746 }
2747
2748 static void
2749 debug_to_kill (void)
2750 {
2751 debug_target.to_kill ();
2752
2753 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2754 }
2755
2756 static void
2757 debug_to_load (char *args, int from_tty)
2758 {
2759 debug_target.to_load (args, from_tty);
2760
2761 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2762 }
2763
2764 static int
2765 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2766 {
2767 int retval;
2768
2769 retval = debug_target.to_lookup_symbol (name, addrp);
2770
2771 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2772
2773 return retval;
2774 }
2775
2776 static void
2777 debug_to_create_inferior (char *exec_file, char *args, char **env,
2778 int from_tty)
2779 {
2780 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2781
2782 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2783 exec_file, args, from_tty);
2784 }
2785
2786 static void
2787 debug_to_post_startup_inferior (ptid_t ptid)
2788 {
2789 debug_target.to_post_startup_inferior (ptid);
2790
2791 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2792 PIDGET (ptid));
2793 }
2794
2795 static void
2796 debug_to_acknowledge_created_inferior (int pid)
2797 {
2798 debug_target.to_acknowledge_created_inferior (pid);
2799
2800 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2801 pid);
2802 }
2803
2804 static void
2805 debug_to_insert_fork_catchpoint (int pid)
2806 {
2807 debug_target.to_insert_fork_catchpoint (pid);
2808
2809 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2810 pid);
2811 }
2812
2813 static int
2814 debug_to_remove_fork_catchpoint (int pid)
2815 {
2816 int retval;
2817
2818 retval = debug_target.to_remove_fork_catchpoint (pid);
2819
2820 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2821 pid, retval);
2822
2823 return retval;
2824 }
2825
2826 static void
2827 debug_to_insert_vfork_catchpoint (int pid)
2828 {
2829 debug_target.to_insert_vfork_catchpoint (pid);
2830
2831 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2832 pid);
2833 }
2834
2835 static int
2836 debug_to_remove_vfork_catchpoint (int pid)
2837 {
2838 int retval;
2839
2840 retval = debug_target.to_remove_vfork_catchpoint (pid);
2841
2842 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2843 pid, retval);
2844
2845 return retval;
2846 }
2847
2848 static void
2849 debug_to_insert_exec_catchpoint (int pid)
2850 {
2851 debug_target.to_insert_exec_catchpoint (pid);
2852
2853 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2854 pid);
2855 }
2856
2857 static int
2858 debug_to_remove_exec_catchpoint (int pid)
2859 {
2860 int retval;
2861
2862 retval = debug_target.to_remove_exec_catchpoint (pid);
2863
2864 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2865 pid, retval);
2866
2867 return retval;
2868 }
2869
2870 static int
2871 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2872 {
2873 int has_exited;
2874
2875 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2876
2877 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2878 pid, wait_status, *exit_status, has_exited);
2879
2880 return has_exited;
2881 }
2882
2883 static void
2884 debug_to_mourn_inferior (void)
2885 {
2886 debug_target.to_mourn_inferior ();
2887
2888 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2889 }
2890
2891 static int
2892 debug_to_can_run (void)
2893 {
2894 int retval;
2895
2896 retval = debug_target.to_can_run ();
2897
2898 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2899
2900 return retval;
2901 }
2902
2903 static void
2904 debug_to_notice_signals (ptid_t ptid)
2905 {
2906 debug_target.to_notice_signals (ptid);
2907
2908 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2909 PIDGET (ptid));
2910 }
2911
2912 static int
2913 debug_to_thread_alive (ptid_t ptid)
2914 {
2915 int retval;
2916
2917 retval = debug_target.to_thread_alive (ptid);
2918
2919 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2920 PIDGET (ptid), retval);
2921
2922 return retval;
2923 }
2924
2925 static void
2926 debug_to_find_new_threads (void)
2927 {
2928 debug_target.to_find_new_threads ();
2929
2930 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2931 }
2932
2933 static void
2934 debug_to_stop (void)
2935 {
2936 debug_target.to_stop ();
2937
2938 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2939 }
2940
2941 static void
2942 debug_to_rcmd (char *command,
2943 struct ui_file *outbuf)
2944 {
2945 debug_target.to_rcmd (command, outbuf);
2946 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2947 }
2948
2949 static char *
2950 debug_to_pid_to_exec_file (int pid)
2951 {
2952 char *exec_file;
2953
2954 exec_file = debug_target.to_pid_to_exec_file (pid);
2955
2956 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2957 pid, exec_file);
2958
2959 return exec_file;
2960 }
2961
2962 static void
2963 setup_target_debug (void)
2964 {
2965 memcpy (&debug_target, &current_target, sizeof debug_target);
2966
2967 current_target.to_open = debug_to_open;
2968 current_target.to_close = debug_to_close;
2969 current_target.to_attach = debug_to_attach;
2970 current_target.to_post_attach = debug_to_post_attach;
2971 current_target.to_detach = debug_to_detach;
2972 current_target.to_resume = debug_to_resume;
2973 current_target.to_wait = debug_to_wait;
2974 current_target.to_fetch_registers = debug_to_fetch_registers;
2975 current_target.to_store_registers = debug_to_store_registers;
2976 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2977 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2978 current_target.to_files_info = debug_to_files_info;
2979 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2980 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2981 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2982 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2983 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2984 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2985 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2986 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2987 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2988 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
2989 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2990 current_target.to_terminal_init = debug_to_terminal_init;
2991 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2992 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2993 current_target.to_terminal_ours = debug_to_terminal_ours;
2994 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2995 current_target.to_terminal_info = debug_to_terminal_info;
2996 current_target.to_kill = debug_to_kill;
2997 current_target.to_load = debug_to_load;
2998 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2999 current_target.to_create_inferior = debug_to_create_inferior;
3000 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3001 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3002 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3003 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3004 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3005 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3006 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3007 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3008 current_target.to_has_exited = debug_to_has_exited;
3009 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3010 current_target.to_can_run = debug_to_can_run;
3011 current_target.to_notice_signals = debug_to_notice_signals;
3012 current_target.to_thread_alive = debug_to_thread_alive;
3013 current_target.to_find_new_threads = debug_to_find_new_threads;
3014 current_target.to_stop = debug_to_stop;
3015 current_target.to_rcmd = debug_to_rcmd;
3016 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3017 }
3018 \f
3019
3020 static char targ_desc[] =
3021 "Names of targets and files being debugged.\n\
3022 Shows the entire stack of targets currently in use (including the exec-file,\n\
3023 core-file, and process, if any), as well as the symbol file name.";
3024
3025 static void
3026 do_monitor_command (char *cmd,
3027 int from_tty)
3028 {
3029 if ((current_target.to_rcmd
3030 == (void (*) (char *, struct ui_file *)) tcomplain)
3031 || (current_target.to_rcmd == debug_to_rcmd
3032 && (debug_target.to_rcmd
3033 == (void (*) (char *, struct ui_file *)) tcomplain)))
3034 error (_("\"monitor\" command not supported by this target."));
3035 target_rcmd (cmd, gdb_stdtarg);
3036 }
3037
3038 /* Print the name of each layers of our target stack. */
3039
3040 static void
3041 maintenance_print_target_stack (char *cmd, int from_tty)
3042 {
3043 struct target_ops *t;
3044
3045 printf_filtered (_("The current target stack is:\n"));
3046
3047 for (t = target_stack; t != NULL; t = t->beneath)
3048 {
3049 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3050 }
3051 }
3052
3053 void
3054 initialize_targets (void)
3055 {
3056 init_dummy_target ();
3057 push_target (&dummy_target);
3058
3059 add_info ("target", target_info, targ_desc);
3060 add_info ("files", target_info, targ_desc);
3061
3062 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3063 Set target debugging."), _("\
3064 Show target debugging."), _("\
3065 When non-zero, target debugging is enabled. Higher numbers are more\n\
3066 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3067 command."),
3068 NULL,
3069 show_targetdebug,
3070 &setdebuglist, &showdebuglist);
3071
3072 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3073 &trust_readonly, _("\
3074 Set mode for reading from readonly sections."), _("\
3075 Show mode for reading from readonly sections."), _("\
3076 When this mode is on, memory reads from readonly sections (such as .text)\n\
3077 will be read from the object file instead of from the target. This will\n\
3078 result in significant performance improvement for remote targets."),
3079 NULL,
3080 show_trust_readonly,
3081 &setlist, &showlist);
3082
3083 add_com ("monitor", class_obscure, do_monitor_command,
3084 _("Send a command to the remote monitor (remote targets only)."));
3085
3086 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3087 _("Print the name of each layer of the internal target stack."),
3088 &maintenanceprintlist);
3089
3090 target_dcache = dcache_init ();
3091 }
This page took 0.092646 seconds and 4 git commands to generate.