70a3aecbe71807146668382742005b775b8dfb1b
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include <errno.h>
27 #include "gdb_string.h"
28 #include "target.h"
29 #include "gdbcmd.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_wait.h"
36 #include "dcache.h"
37 #include <signal.h>
38 #include "regcache.h"
39 #include "gdb_assert.h"
40 #include "gdbcore.h"
41
42 static void target_info (char *, int);
43
44 static void maybe_kill_then_attach (char *, int);
45
46 static void kill_or_be_killed (int);
47
48 static void default_terminal_info (char *, int);
49
50 static int default_region_size_ok_for_hw_watchpoint (int);
51
52 static int nosymbol (char *, CORE_ADDR *);
53
54 static void tcomplain (void);
55
56 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
57
58 static int return_zero (void);
59
60 static int return_one (void);
61
62 static int return_minus_one (void);
63
64 void target_ignore (void);
65
66 static void target_command (char *, int);
67
68 static struct target_ops *find_default_run_target (char *);
69
70 static void nosupport_runtime (void);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 /* Transfer LEN bytes between target address MEMADDR and GDB address
79 MYADDR. Returns 0 for success, errno code for failure (which
80 includes partial transfers -- if you want a more useful response to
81 partial transfers, try either target_read_memory_partial or
82 target_write_memory_partial). */
83
84 static int target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
85 int write);
86
87 static void init_dummy_target (void);
88
89 static struct target_ops debug_target;
90
91 static void debug_to_open (char *, int);
92
93 static void debug_to_close (int);
94
95 static void debug_to_attach (char *, int);
96
97 static void debug_to_detach (char *, int);
98
99 static void debug_to_disconnect (char *, int);
100
101 static void debug_to_resume (ptid_t, int, enum target_signal);
102
103 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
104
105 static void debug_to_fetch_registers (int);
106
107 static void debug_to_store_registers (int);
108
109 static void debug_to_prepare_to_store (void);
110
111 static void debug_to_files_info (struct target_ops *);
112
113 static int debug_to_insert_breakpoint (CORE_ADDR, gdb_byte *);
114
115 static int debug_to_remove_breakpoint (CORE_ADDR, gdb_byte *);
116
117 static int debug_to_can_use_hw_breakpoint (int, int, int);
118
119 static int debug_to_insert_hw_breakpoint (CORE_ADDR, gdb_byte *);
120
121 static int debug_to_remove_hw_breakpoint (CORE_ADDR, gdb_byte *);
122
123 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
124
125 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_stopped_by_watchpoint (void);
128
129 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
130
131 static int debug_to_region_size_ok_for_hw_watchpoint (int);
132
133 static void debug_to_terminal_init (void);
134
135 static void debug_to_terminal_inferior (void);
136
137 static void debug_to_terminal_ours_for_output (void);
138
139 static void debug_to_terminal_save_ours (void);
140
141 static void debug_to_terminal_ours (void);
142
143 static void debug_to_terminal_info (char *, int);
144
145 static void debug_to_kill (void);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
150
151 static void debug_to_mourn_inferior (void);
152
153 static int debug_to_can_run (void);
154
155 static void debug_to_notice_signals (ptid_t);
156
157 static int debug_to_thread_alive (ptid_t);
158
159 static void debug_to_stop (void);
160
161 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
162 wierd and mysterious ways. Putting the variable here lets those
163 wierd and mysterious ways keep building while they are being
164 converted to the inferior inheritance structure. */
165 struct target_ops deprecated_child_ops;
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_index;
173 unsigned target_struct_allocsize;
174 #define DEFAULT_ALLOCSIZE 10
175
176 /* The initial current target, so that there is always a semi-valid
177 current target. */
178
179 static struct target_ops dummy_target;
180
181 /* Top of target stack. */
182
183 static struct target_ops *target_stack;
184
185 /* The target structure we are currently using to talk to a process
186 or file or whatever "inferior" we have. */
187
188 struct target_ops current_target;
189
190 /* Command list for target. */
191
192 static struct cmd_list_element *targetlist = NULL;
193
194 /* Nonzero if we are debugging an attached outside process
195 rather than an inferior. */
196
197 int attach_flag;
198
199 /* Non-zero if we want to see trace of target level stuff. */
200
201 static int targetdebug = 0;
202 static void
203 show_targetdebug (struct ui_file *file, int from_tty,
204 struct cmd_list_element *c, const char *value)
205 {
206 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
207 }
208
209 static void setup_target_debug (void);
210
211 DCACHE *target_dcache;
212
213 /* The user just typed 'target' without the name of a target. */
214
215 static void
216 target_command (char *arg, int from_tty)
217 {
218 fputs_filtered ("Argument required (target name). Try `help target'\n",
219 gdb_stdout);
220 }
221
222 /* Add a possible target architecture to the list. */
223
224 void
225 add_target (struct target_ops *t)
226 {
227 /* Provide default values for all "must have" methods. */
228 if (t->to_xfer_partial == NULL)
229 t->to_xfer_partial = default_xfer_partial;
230
231 if (!target_structs)
232 {
233 target_struct_allocsize = DEFAULT_ALLOCSIZE;
234 target_structs = (struct target_ops **) xmalloc
235 (target_struct_allocsize * sizeof (*target_structs));
236 }
237 if (target_struct_size >= target_struct_allocsize)
238 {
239 target_struct_allocsize *= 2;
240 target_structs = (struct target_ops **)
241 xrealloc ((char *) target_structs,
242 target_struct_allocsize * sizeof (*target_structs));
243 }
244 target_structs[target_struct_size++] = t;
245
246 if (targetlist == NULL)
247 add_prefix_cmd ("target", class_run, target_command, _("\
248 Connect to a target machine or process.\n\
249 The first argument is the type or protocol of the target machine.\n\
250 Remaining arguments are interpreted by the target protocol. For more\n\
251 information on the arguments for a particular protocol, type\n\
252 `help target ' followed by the protocol name."),
253 &targetlist, "target ", 0, &cmdlist);
254 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
255 }
256
257 /* Stub functions */
258
259 void
260 target_ignore (void)
261 {
262 }
263
264 void
265 target_load (char *arg, int from_tty)
266 {
267 dcache_invalidate (target_dcache);
268 (*current_target.to_load) (arg, from_tty);
269 }
270
271 static int
272 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
273 struct target_ops *t)
274 {
275 errno = EIO; /* Can't read/write this location */
276 return 0; /* No bytes handled */
277 }
278
279 static void
280 tcomplain (void)
281 {
282 error (_("You can't do that when your target is `%s'"),
283 current_target.to_shortname);
284 }
285
286 void
287 noprocess (void)
288 {
289 error (_("You can't do that without a process to debug."));
290 }
291
292 static int
293 nosymbol (char *name, CORE_ADDR *addrp)
294 {
295 return 1; /* Symbol does not exist in target env */
296 }
297
298 static void
299 nosupport_runtime (void)
300 {
301 if (ptid_equal (inferior_ptid, null_ptid))
302 noprocess ();
303 else
304 error (_("No run-time support for this"));
305 }
306
307
308 static void
309 default_terminal_info (char *args, int from_tty)
310 {
311 printf_unfiltered (_("No saved terminal information.\n"));
312 }
313
314 /* This is the default target_create_inferior and target_attach function.
315 If the current target is executing, it asks whether to kill it off.
316 If this function returns without calling error(), it has killed off
317 the target, and the operation should be attempted. */
318
319 static void
320 kill_or_be_killed (int from_tty)
321 {
322 if (target_has_execution)
323 {
324 printf_unfiltered (_("You are already running a program:\n"));
325 target_files_info ();
326 if (query ("Kill it? "))
327 {
328 target_kill ();
329 if (target_has_execution)
330 error (_("Killing the program did not help."));
331 return;
332 }
333 else
334 {
335 error (_("Program not killed."));
336 }
337 }
338 tcomplain ();
339 }
340
341 static void
342 maybe_kill_then_attach (char *args, int from_tty)
343 {
344 kill_or_be_killed (from_tty);
345 target_attach (args, from_tty);
346 }
347
348 static void
349 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
350 int from_tty)
351 {
352 kill_or_be_killed (0);
353 target_create_inferior (exec, args, env, from_tty);
354 }
355
356 /* Go through the target stack from top to bottom, copying over zero
357 entries in current_target, then filling in still empty entries. In
358 effect, we are doing class inheritance through the pushed target
359 vectors.
360
361 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
362 is currently implemented, is that it discards any knowledge of
363 which target an inherited method originally belonged to.
364 Consequently, new new target methods should instead explicitly and
365 locally search the target stack for the target that can handle the
366 request. */
367
368 static void
369 update_current_target (void)
370 {
371 struct target_ops *t;
372
373 /* First, reset curren'ts contents. */
374 memset (&current_target, 0, sizeof (current_target));
375
376 #define INHERIT(FIELD, TARGET) \
377 if (!current_target.FIELD) \
378 current_target.FIELD = (TARGET)->FIELD
379
380 for (t = target_stack; t; t = t->beneath)
381 {
382 INHERIT (to_shortname, t);
383 INHERIT (to_longname, t);
384 INHERIT (to_doc, t);
385 INHERIT (to_open, t);
386 INHERIT (to_close, t);
387 INHERIT (to_attach, t);
388 INHERIT (to_post_attach, t);
389 INHERIT (to_detach, t);
390 INHERIT (to_disconnect, t);
391 INHERIT (to_resume, t);
392 INHERIT (to_wait, t);
393 INHERIT (to_fetch_registers, t);
394 INHERIT (to_store_registers, t);
395 INHERIT (to_prepare_to_store, t);
396 INHERIT (deprecated_xfer_memory, t);
397 INHERIT (to_files_info, t);
398 INHERIT (to_insert_breakpoint, t);
399 INHERIT (to_remove_breakpoint, t);
400 INHERIT (to_can_use_hw_breakpoint, t);
401 INHERIT (to_insert_hw_breakpoint, t);
402 INHERIT (to_remove_hw_breakpoint, t);
403 INHERIT (to_insert_watchpoint, t);
404 INHERIT (to_remove_watchpoint, t);
405 INHERIT (to_stopped_data_address, t);
406 INHERIT (to_stopped_by_watchpoint, t);
407 INHERIT (to_have_continuable_watchpoint, t);
408 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
409 INHERIT (to_terminal_init, t);
410 INHERIT (to_terminal_inferior, t);
411 INHERIT (to_terminal_ours_for_output, t);
412 INHERIT (to_terminal_ours, t);
413 INHERIT (to_terminal_save_ours, t);
414 INHERIT (to_terminal_info, t);
415 INHERIT (to_kill, t);
416 INHERIT (to_load, t);
417 INHERIT (to_lookup_symbol, t);
418 INHERIT (to_create_inferior, t);
419 INHERIT (to_post_startup_inferior, t);
420 INHERIT (to_acknowledge_created_inferior, t);
421 INHERIT (to_insert_fork_catchpoint, t);
422 INHERIT (to_remove_fork_catchpoint, t);
423 INHERIT (to_insert_vfork_catchpoint, t);
424 INHERIT (to_remove_vfork_catchpoint, t);
425 /* Do not inherit to_follow_fork. */
426 INHERIT (to_insert_exec_catchpoint, t);
427 INHERIT (to_remove_exec_catchpoint, t);
428 INHERIT (to_reported_exec_events_per_exec_call, t);
429 INHERIT (to_has_exited, t);
430 INHERIT (to_mourn_inferior, t);
431 INHERIT (to_can_run, t);
432 INHERIT (to_notice_signals, t);
433 INHERIT (to_thread_alive, t);
434 INHERIT (to_find_new_threads, t);
435 INHERIT (to_pid_to_str, t);
436 INHERIT (to_extra_thread_info, t);
437 INHERIT (to_stop, t);
438 /* Do not inherit to_xfer_partial. */
439 INHERIT (to_rcmd, t);
440 INHERIT (to_enable_exception_callback, t);
441 INHERIT (to_get_current_exception_event, t);
442 INHERIT (to_pid_to_exec_file, t);
443 INHERIT (to_stratum, t);
444 INHERIT (to_has_all_memory, t);
445 INHERIT (to_has_memory, t);
446 INHERIT (to_has_stack, t);
447 INHERIT (to_has_registers, t);
448 INHERIT (to_has_execution, t);
449 INHERIT (to_has_thread_control, t);
450 INHERIT (to_sections, t);
451 INHERIT (to_sections_end, t);
452 INHERIT (to_can_async_p, t);
453 INHERIT (to_is_async_p, t);
454 INHERIT (to_async, t);
455 INHERIT (to_async_mask_value, t);
456 INHERIT (to_find_memory_regions, t);
457 INHERIT (to_make_corefile_notes, t);
458 INHERIT (to_get_thread_local_address, t);
459 INHERIT (to_magic, t);
460 }
461 #undef INHERIT
462
463 /* Clean up a target struct so it no longer has any zero pointers in
464 it. Some entries are defaulted to a method that print an error,
465 others are hard-wired to a standard recursive default. */
466
467 #define de_fault(field, value) \
468 if (!current_target.field) \
469 current_target.field = value
470
471 de_fault (to_open,
472 (void (*) (char *, int))
473 tcomplain);
474 de_fault (to_close,
475 (void (*) (int))
476 target_ignore);
477 de_fault (to_attach,
478 maybe_kill_then_attach);
479 de_fault (to_post_attach,
480 (void (*) (int))
481 target_ignore);
482 de_fault (to_detach,
483 (void (*) (char *, int))
484 target_ignore);
485 de_fault (to_disconnect,
486 (void (*) (char *, int))
487 tcomplain);
488 de_fault (to_resume,
489 (void (*) (ptid_t, int, enum target_signal))
490 noprocess);
491 de_fault (to_wait,
492 (ptid_t (*) (ptid_t, struct target_waitstatus *))
493 noprocess);
494 de_fault (to_fetch_registers,
495 (void (*) (int))
496 target_ignore);
497 de_fault (to_store_registers,
498 (void (*) (int))
499 noprocess);
500 de_fault (to_prepare_to_store,
501 (void (*) (void))
502 noprocess);
503 de_fault (deprecated_xfer_memory,
504 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
505 nomemory);
506 de_fault (to_files_info,
507 (void (*) (struct target_ops *))
508 target_ignore);
509 de_fault (to_insert_breakpoint,
510 memory_insert_breakpoint);
511 de_fault (to_remove_breakpoint,
512 memory_remove_breakpoint);
513 de_fault (to_can_use_hw_breakpoint,
514 (int (*) (int, int, int))
515 return_zero);
516 de_fault (to_insert_hw_breakpoint,
517 (int (*) (CORE_ADDR, gdb_byte *))
518 return_minus_one);
519 de_fault (to_remove_hw_breakpoint,
520 (int (*) (CORE_ADDR, gdb_byte *))
521 return_minus_one);
522 de_fault (to_insert_watchpoint,
523 (int (*) (CORE_ADDR, int, int))
524 return_minus_one);
525 de_fault (to_remove_watchpoint,
526 (int (*) (CORE_ADDR, int, int))
527 return_minus_one);
528 de_fault (to_stopped_by_watchpoint,
529 (int (*) (void))
530 return_zero);
531 de_fault (to_stopped_data_address,
532 (int (*) (struct target_ops *, CORE_ADDR *))
533 return_zero);
534 de_fault (to_region_size_ok_for_hw_watchpoint,
535 default_region_size_ok_for_hw_watchpoint);
536 de_fault (to_terminal_init,
537 (void (*) (void))
538 target_ignore);
539 de_fault (to_terminal_inferior,
540 (void (*) (void))
541 target_ignore);
542 de_fault (to_terminal_ours_for_output,
543 (void (*) (void))
544 target_ignore);
545 de_fault (to_terminal_ours,
546 (void (*) (void))
547 target_ignore);
548 de_fault (to_terminal_save_ours,
549 (void (*) (void))
550 target_ignore);
551 de_fault (to_terminal_info,
552 default_terminal_info);
553 de_fault (to_kill,
554 (void (*) (void))
555 noprocess);
556 de_fault (to_load,
557 (void (*) (char *, int))
558 tcomplain);
559 de_fault (to_lookup_symbol,
560 (int (*) (char *, CORE_ADDR *))
561 nosymbol);
562 de_fault (to_create_inferior,
563 maybe_kill_then_create_inferior);
564 de_fault (to_post_startup_inferior,
565 (void (*) (ptid_t))
566 target_ignore);
567 de_fault (to_acknowledge_created_inferior,
568 (void (*) (int))
569 target_ignore);
570 de_fault (to_insert_fork_catchpoint,
571 (void (*) (int))
572 tcomplain);
573 de_fault (to_remove_fork_catchpoint,
574 (int (*) (int))
575 tcomplain);
576 de_fault (to_insert_vfork_catchpoint,
577 (void (*) (int))
578 tcomplain);
579 de_fault (to_remove_vfork_catchpoint,
580 (int (*) (int))
581 tcomplain);
582 de_fault (to_insert_exec_catchpoint,
583 (void (*) (int))
584 tcomplain);
585 de_fault (to_remove_exec_catchpoint,
586 (int (*) (int))
587 tcomplain);
588 de_fault (to_reported_exec_events_per_exec_call,
589 (int (*) (void))
590 return_one);
591 de_fault (to_has_exited,
592 (int (*) (int, int, int *))
593 return_zero);
594 de_fault (to_mourn_inferior,
595 (void (*) (void))
596 noprocess);
597 de_fault (to_can_run,
598 return_zero);
599 de_fault (to_notice_signals,
600 (void (*) (ptid_t))
601 target_ignore);
602 de_fault (to_thread_alive,
603 (int (*) (ptid_t))
604 return_zero);
605 de_fault (to_find_new_threads,
606 (void (*) (void))
607 target_ignore);
608 de_fault (to_extra_thread_info,
609 (char *(*) (struct thread_info *))
610 return_zero);
611 de_fault (to_stop,
612 (void (*) (void))
613 target_ignore);
614 current_target.to_xfer_partial = default_xfer_partial;
615 de_fault (to_rcmd,
616 (void (*) (char *, struct ui_file *))
617 tcomplain);
618 de_fault (to_enable_exception_callback,
619 (struct symtab_and_line * (*) (enum exception_event_kind, int))
620 nosupport_runtime);
621 de_fault (to_get_current_exception_event,
622 (struct exception_event_record * (*) (void))
623 nosupport_runtime);
624 de_fault (to_pid_to_exec_file,
625 (char *(*) (int))
626 return_zero);
627 de_fault (to_can_async_p,
628 (int (*) (void))
629 return_zero);
630 de_fault (to_is_async_p,
631 (int (*) (void))
632 return_zero);
633 de_fault (to_async,
634 (void (*) (void (*) (enum inferior_event_type, void*), void*))
635 tcomplain);
636 #undef de_fault
637
638 /* Finally, position the target-stack beneath the squashed
639 "current_target". That way code looking for a non-inherited
640 target method can quickly and simply find it. */
641 current_target.beneath = target_stack;
642 }
643
644 /* Push a new target type into the stack of the existing target accessors,
645 possibly superseding some of the existing accessors.
646
647 Result is zero if the pushed target ended up on top of the stack,
648 nonzero if at least one target is on top of it.
649
650 Rather than allow an empty stack, we always have the dummy target at
651 the bottom stratum, so we can call the function vectors without
652 checking them. */
653
654 int
655 push_target (struct target_ops *t)
656 {
657 struct target_ops **cur;
658
659 /* Check magic number. If wrong, it probably means someone changed
660 the struct definition, but not all the places that initialize one. */
661 if (t->to_magic != OPS_MAGIC)
662 {
663 fprintf_unfiltered (gdb_stderr,
664 "Magic number of %s target struct wrong\n",
665 t->to_shortname);
666 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
667 }
668
669 /* Find the proper stratum to install this target in. */
670 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
671 {
672 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
673 break;
674 }
675
676 /* If there's already targets at this stratum, remove them. */
677 /* FIXME: cagney/2003-10-15: I think this should be poping all
678 targets to CUR, and not just those at this stratum level. */
679 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
680 {
681 /* There's already something at this stratum level. Close it,
682 and un-hook it from the stack. */
683 struct target_ops *tmp = (*cur);
684 (*cur) = (*cur)->beneath;
685 tmp->beneath = NULL;
686 target_close (tmp, 0);
687 }
688
689 /* We have removed all targets in our stratum, now add the new one. */
690 t->beneath = (*cur);
691 (*cur) = t;
692
693 update_current_target ();
694
695 if (targetdebug)
696 setup_target_debug ();
697
698 /* Not on top? */
699 return (t != target_stack);
700 }
701
702 /* Remove a target_ops vector from the stack, wherever it may be.
703 Return how many times it was removed (0 or 1). */
704
705 int
706 unpush_target (struct target_ops *t)
707 {
708 struct target_ops **cur;
709 struct target_ops *tmp;
710
711 /* Look for the specified target. Note that we assume that a target
712 can only occur once in the target stack. */
713
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
715 {
716 if ((*cur) == t)
717 break;
718 }
719
720 if ((*cur) == NULL)
721 return 0; /* Didn't find target_ops, quit now */
722
723 /* NOTE: cagney/2003-12-06: In '94 the close call was made
724 unconditional by moving it to before the above check that the
725 target was in the target stack (something about "Change the way
726 pushing and popping of targets work to support target overlays
727 and inheritance"). This doesn't make much sense - only open
728 targets should be closed. */
729 target_close (t, 0);
730
731 /* Unchain the target */
732 tmp = (*cur);
733 (*cur) = (*cur)->beneath;
734 tmp->beneath = NULL;
735
736 update_current_target ();
737
738 return 1;
739 }
740
741 void
742 pop_target (void)
743 {
744 target_close (&current_target, 0); /* Let it clean up */
745 if (unpush_target (target_stack) == 1)
746 return;
747
748 fprintf_unfiltered (gdb_stderr,
749 "pop_target couldn't find target %s\n",
750 current_target.to_shortname);
751 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
752 }
753
754 #undef MIN
755 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
756
757 /* target_read_string -- read a null terminated string, up to LEN bytes,
758 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
759 Set *STRING to a pointer to malloc'd memory containing the data; the caller
760 is responsible for freeing it. Return the number of bytes successfully
761 read. */
762
763 int
764 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
765 {
766 int tlen, origlen, offset, i;
767 gdb_byte buf[4];
768 int errcode = 0;
769 char *buffer;
770 int buffer_allocated;
771 char *bufptr;
772 unsigned int nbytes_read = 0;
773
774 /* Small for testing. */
775 buffer_allocated = 4;
776 buffer = xmalloc (buffer_allocated);
777 bufptr = buffer;
778
779 origlen = len;
780
781 while (len > 0)
782 {
783 tlen = MIN (len, 4 - (memaddr & 3));
784 offset = memaddr & 3;
785
786 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
787 if (errcode != 0)
788 {
789 /* The transfer request might have crossed the boundary to an
790 unallocated region of memory. Retry the transfer, requesting
791 a single byte. */
792 tlen = 1;
793 offset = 0;
794 errcode = target_read_memory (memaddr, buf, 1);
795 if (errcode != 0)
796 goto done;
797 }
798
799 if (bufptr - buffer + tlen > buffer_allocated)
800 {
801 unsigned int bytes;
802 bytes = bufptr - buffer;
803 buffer_allocated *= 2;
804 buffer = xrealloc (buffer, buffer_allocated);
805 bufptr = buffer + bytes;
806 }
807
808 for (i = 0; i < tlen; i++)
809 {
810 *bufptr++ = buf[i + offset];
811 if (buf[i + offset] == '\000')
812 {
813 nbytes_read += i + 1;
814 goto done;
815 }
816 }
817
818 memaddr += tlen;
819 len -= tlen;
820 nbytes_read += tlen;
821 }
822 done:
823 if (errnop != NULL)
824 *errnop = errcode;
825 if (string != NULL)
826 *string = buffer;
827 return nbytes_read;
828 }
829
830 /* Find a section containing ADDR. */
831 struct section_table *
832 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
833 {
834 struct section_table *secp;
835 for (secp = target->to_sections;
836 secp < target->to_sections_end;
837 secp++)
838 {
839 if (addr >= secp->addr && addr < secp->endaddr)
840 return secp;
841 }
842 return NULL;
843 }
844
845 /* Return non-zero when the target vector has supplied an xfer_partial
846 method and it, rather than xfer_memory, should be used. */
847 static int
848 target_xfer_partial_p (void)
849 {
850 return (target_stack != NULL
851 && target_stack->to_xfer_partial != default_xfer_partial);
852 }
853
854 static LONGEST
855 target_xfer_partial (struct target_ops *ops,
856 enum target_object object, const char *annex,
857 void *readbuf, const void *writebuf,
858 ULONGEST offset, LONGEST len)
859 {
860 LONGEST retval;
861
862 gdb_assert (ops->to_xfer_partial != NULL);
863 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
864 offset, len);
865 if (targetdebug)
866 {
867 const unsigned char *myaddr = NULL;
868
869 fprintf_unfiltered (gdb_stdlog,
870 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
871 ops->to_shortname,
872 (int) object,
873 (annex ? annex : "(null)"),
874 (long) readbuf, (long) writebuf,
875 paddr_nz (offset), paddr_d (len), paddr_d (retval));
876
877 if (readbuf)
878 myaddr = readbuf;
879 if (writebuf)
880 myaddr = writebuf;
881 if (retval > 0 && myaddr != NULL)
882 {
883 int i;
884
885 fputs_unfiltered (", bytes =", gdb_stdlog);
886 for (i = 0; i < retval; i++)
887 {
888 if ((((long) &(myaddr[i])) & 0xf) == 0)
889 {
890 if (targetdebug < 2 && i > 0)
891 {
892 fprintf_unfiltered (gdb_stdlog, " ...");
893 break;
894 }
895 fprintf_unfiltered (gdb_stdlog, "\n");
896 }
897
898 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
899 }
900 }
901
902 fputc_unfiltered ('\n', gdb_stdlog);
903 }
904 return retval;
905 }
906
907 /* Attempt a transfer all LEN bytes starting at OFFSET between the
908 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
909 the transfer succeeds, return zero, otherwize the host ERRNO is
910 returned.
911
912 The inferior is formed from several layers. In the case of
913 corefiles, inf-corefile is layered above inf-exec and a request for
914 text (corefiles do not include text pages) will be first sent to
915 the core-stratum, fail, and then sent to the object-file where it
916 will succeed.
917
918 NOTE: cagney/2004-09-30:
919
920 The old code tried to use four separate mechanisms for mapping an
921 object:offset:len tuple onto an inferior and its address space: the
922 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
923 overlays.
924
925 This is stupid.
926
927 The code below is instead using a single mechanism (currently
928 strata). If that mechanism proves insufficient then re-factor it
929 implementing another singluar mechanism (for instance, a generic
930 object:annex onto inferior:object:annex say). */
931
932 static LONGEST
933 xfer_using_stratum (enum target_object object, const char *annex,
934 ULONGEST offset, LONGEST len, void *readbuf,
935 const void *writebuf)
936 {
937 LONGEST xfered;
938 struct target_ops *target;
939
940 /* Always successful. */
941 if (len == 0)
942 return 0;
943 /* Never successful. */
944 if (target_stack == NULL)
945 return EIO;
946
947 target = target_stack;
948 while (1)
949 {
950 xfered = target_xfer_partial (target, object, annex,
951 readbuf, writebuf, offset, len);
952 if (xfered > 0)
953 {
954 /* The partial xfer succeeded, update the counts, check that
955 the xfer hasn't finished and if it hasn't set things up
956 for the next round. */
957 len -= xfered;
958 if (len <= 0)
959 return 0;
960 offset += xfered;
961 if (readbuf != NULL)
962 readbuf = (gdb_byte *) readbuf + xfered;
963 if (writebuf != NULL)
964 writebuf = (gdb_byte *) writebuf + xfered;
965 target = target_stack;
966 }
967 else if (xfered < 0)
968 {
969 /* Something totally screwed up, abandon the attempt to
970 xfer. */
971 if (errno)
972 return errno;
973 else
974 return EIO;
975 }
976 else
977 {
978 /* This "stratum" didn't work, try the next one down. */
979 target = target->beneath;
980 if (target == NULL)
981 return EIO;
982 }
983 }
984 }
985
986 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
987 GDB's memory at MYADDR. Returns either 0 for success or an errno value
988 if any error occurs.
989
990 If an error occurs, no guarantee is made about the contents of the data at
991 MYADDR. In particular, the caller should not depend upon partial reads
992 filling the buffer with good data. There is no way for the caller to know
993 how much good data might have been transfered anyway. Callers that can
994 deal with partial reads should call target_read_memory_partial. */
995
996 int
997 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
998 {
999 if (target_xfer_partial_p ())
1000 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1001 memaddr, len, myaddr, NULL);
1002 else
1003 return target_xfer_memory (memaddr, myaddr, len, 0);
1004 }
1005
1006 int
1007 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1008 {
1009 gdb_byte *bytes = alloca (len);
1010 memcpy (bytes, myaddr, len);
1011 if (target_xfer_partial_p ())
1012 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1013 memaddr, len, NULL, bytes);
1014 else
1015 return target_xfer_memory (memaddr, bytes, len, 1);
1016 }
1017
1018 #ifndef target_stopped_data_address_p
1019 int
1020 target_stopped_data_address_p (struct target_ops *target)
1021 {
1022 if (target->to_stopped_data_address
1023 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1024 return 0;
1025 if (target->to_stopped_data_address == debug_to_stopped_data_address
1026 && (debug_target.to_stopped_data_address
1027 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1028 return 0;
1029 return 1;
1030 }
1031 #endif
1032
1033 static int trust_readonly = 0;
1034 static void
1035 show_trust_readonly (struct ui_file *file, int from_tty,
1036 struct cmd_list_element *c, const char *value)
1037 {
1038 fprintf_filtered (file, _("\
1039 Mode for reading from readonly sections is %s.\n"),
1040 value);
1041 }
1042
1043 /* Move memory to or from the targets. The top target gets priority;
1044 if it cannot handle it, it is offered to the next one down, etc.
1045
1046 Result is -1 on error, or the number of bytes transfered. */
1047
1048 int
1049 do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1050 struct mem_attrib *attrib)
1051 {
1052 int res;
1053 int done = 0;
1054 struct target_ops *t;
1055
1056 /* Zero length requests are ok and require no work. */
1057 if (len == 0)
1058 return 0;
1059
1060 /* deprecated_xfer_memory is not guaranteed to set errno, even when
1061 it returns 0. */
1062 errno = 0;
1063
1064 if (!write && trust_readonly)
1065 {
1066 struct section_table *secp;
1067 /* User-settable option, "trust-readonly-sections". If true,
1068 then memory from any SEC_READONLY bfd section may be read
1069 directly from the bfd file. */
1070 secp = target_section_by_addr (&current_target, memaddr);
1071 if (secp != NULL
1072 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1073 & SEC_READONLY))
1074 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1075 }
1076
1077 /* The quick case is that the top target can handle the transfer. */
1078 res = current_target.deprecated_xfer_memory
1079 (memaddr, myaddr, len, write, attrib, &current_target);
1080
1081 /* If res <= 0 then we call it again in the loop. Ah well. */
1082 if (res <= 0)
1083 {
1084 for (t = target_stack; t != NULL; t = t->beneath)
1085 {
1086 if (!t->to_has_memory)
1087 continue;
1088
1089 res = t->deprecated_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1090 if (res > 0)
1091 break; /* Handled all or part of xfer */
1092 if (t->to_has_all_memory)
1093 break;
1094 }
1095
1096 if (res <= 0)
1097 return -1;
1098 }
1099
1100 return res;
1101 }
1102
1103
1104 /* Perform a memory transfer. Iterate until the entire region has
1105 been transfered.
1106
1107 Result is 0 or errno value. */
1108
1109 static int
1110 target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write)
1111 {
1112 int res;
1113 int reg_len;
1114 struct mem_region *region;
1115
1116 /* Zero length requests are ok and require no work. */
1117 if (len == 0)
1118 {
1119 return 0;
1120 }
1121
1122 while (len > 0)
1123 {
1124 region = lookup_mem_region(memaddr);
1125 if (memaddr + len < region->hi)
1126 reg_len = len;
1127 else
1128 reg_len = region->hi - memaddr;
1129
1130 switch (region->attrib.mode)
1131 {
1132 case MEM_RO:
1133 if (write)
1134 return EIO;
1135 break;
1136
1137 case MEM_WO:
1138 if (!write)
1139 return EIO;
1140 break;
1141 }
1142
1143 while (reg_len > 0)
1144 {
1145 if (region->attrib.cache)
1146 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1147 reg_len, write);
1148 else
1149 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1150 &region->attrib);
1151
1152 if (res <= 0)
1153 {
1154 /* If this address is for nonexistent memory, read zeros
1155 if reading, or do nothing if writing. Return
1156 error. */
1157 if (!write)
1158 memset (myaddr, 0, len);
1159 if (errno == 0)
1160 return EIO;
1161 else
1162 return errno;
1163 }
1164
1165 memaddr += res;
1166 myaddr += res;
1167 len -= res;
1168 reg_len -= res;
1169 }
1170 }
1171
1172 return 0; /* We managed to cover it all somehow. */
1173 }
1174
1175
1176 /* Perform a partial memory transfer.
1177
1178 If we succeed, set *ERR to zero and return the number of bytes transferred.
1179 If we fail, set *ERR to a non-zero errno value, and return -1. */
1180
1181 static int
1182 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1183 int write_p, int *err)
1184 {
1185 int res;
1186 int reg_len;
1187 struct mem_region *region;
1188
1189 /* Zero length requests are ok and require no work. */
1190 if (len == 0)
1191 {
1192 *err = 0;
1193 return 0;
1194 }
1195
1196 region = lookup_mem_region(memaddr);
1197 if (memaddr + len < region->hi)
1198 reg_len = len;
1199 else
1200 reg_len = region->hi - memaddr;
1201
1202 switch (region->attrib.mode)
1203 {
1204 case MEM_RO:
1205 if (write_p)
1206 {
1207 *err = EIO;
1208 return -1;
1209 }
1210 break;
1211
1212 case MEM_WO:
1213 if (write_p)
1214 {
1215 *err = EIO;
1216 return -1;
1217 }
1218 break;
1219 }
1220
1221 if (region->attrib.cache)
1222 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1223 reg_len, write_p);
1224 else
1225 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1226 &region->attrib);
1227
1228 if (res <= 0)
1229 {
1230 if (errno != 0)
1231 *err = errno;
1232 else
1233 *err = EIO;
1234
1235 return -1;
1236 }
1237
1238 *err = 0;
1239 return res;
1240 }
1241
1242 int
1243 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1244 {
1245 if (target_xfer_partial_p ())
1246 {
1247 int retval;
1248
1249 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1250 NULL, buf, NULL, memaddr, len);
1251
1252 if (retval <= 0)
1253 {
1254 if (errno)
1255 *err = errno;
1256 else
1257 *err = EIO;
1258 return -1;
1259 }
1260 else
1261 {
1262 *err = 0;
1263 return retval;
1264 }
1265 }
1266 else
1267 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1268 }
1269
1270 int
1271 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1272 {
1273 if (target_xfer_partial_p ())
1274 {
1275 int retval;
1276
1277 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1278 NULL, NULL, buf, memaddr, len);
1279
1280 if (retval <= 0)
1281 {
1282 if (errno)
1283 *err = errno;
1284 else
1285 *err = EIO;
1286 return -1;
1287 }
1288 else
1289 {
1290 *err = 0;
1291 return retval;
1292 }
1293 }
1294 else
1295 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1296 }
1297
1298 /* More generic transfers. */
1299
1300 static LONGEST
1301 default_xfer_partial (struct target_ops *ops, enum target_object object,
1302 const char *annex, gdb_byte *readbuf,
1303 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1304 {
1305 if (object == TARGET_OBJECT_MEMORY
1306 && ops->deprecated_xfer_memory != NULL)
1307 /* If available, fall back to the target's
1308 "deprecated_xfer_memory" method. */
1309 {
1310 int xfered = -1;
1311 errno = 0;
1312 if (writebuf != NULL)
1313 {
1314 void *buffer = xmalloc (len);
1315 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1316 memcpy (buffer, writebuf, len);
1317 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1318 1/*write*/, NULL, ops);
1319 do_cleanups (cleanup);
1320 }
1321 if (readbuf != NULL)
1322 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1323 NULL, ops);
1324 if (xfered > 0)
1325 return xfered;
1326 else if (xfered == 0 && errno == 0)
1327 /* "deprecated_xfer_memory" uses 0, cross checked against
1328 ERRNO as one indication of an error. */
1329 return 0;
1330 else
1331 return -1;
1332 }
1333 else if (ops->beneath != NULL)
1334 return target_xfer_partial (ops->beneath, object, annex,
1335 readbuf, writebuf, offset, len);
1336 else
1337 return -1;
1338 }
1339
1340 /* Target vector read/write partial wrapper functions.
1341
1342 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1343 (inbuf, outbuf)", instead of separate read/write methods, make life
1344 easier. */
1345
1346 LONGEST
1347 target_read_partial (struct target_ops *ops,
1348 enum target_object object,
1349 const char *annex, gdb_byte *buf,
1350 ULONGEST offset, LONGEST len)
1351 {
1352 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1353 }
1354
1355 LONGEST
1356 target_write_partial (struct target_ops *ops,
1357 enum target_object object,
1358 const char *annex, const gdb_byte *buf,
1359 ULONGEST offset, LONGEST len)
1360 {
1361 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1362 }
1363
1364 /* Wrappers to perform the full transfer. */
1365 LONGEST
1366 target_read (struct target_ops *ops,
1367 enum target_object object,
1368 const char *annex, gdb_byte *buf,
1369 ULONGEST offset, LONGEST len)
1370 {
1371 LONGEST xfered = 0;
1372 while (xfered < len)
1373 {
1374 LONGEST xfer = target_read_partial (ops, object, annex,
1375 (gdb_byte *) buf + xfered,
1376 offset + xfered, len - xfered);
1377 /* Call an observer, notifying them of the xfer progress? */
1378 if (xfer <= 0)
1379 /* Call memory_error? */
1380 return -1;
1381 xfered += xfer;
1382 QUIT;
1383 }
1384 return len;
1385 }
1386
1387 LONGEST
1388 target_write (struct target_ops *ops,
1389 enum target_object object,
1390 const char *annex, const gdb_byte *buf,
1391 ULONGEST offset, LONGEST len)
1392 {
1393 LONGEST xfered = 0;
1394 while (xfered < len)
1395 {
1396 LONGEST xfer = target_write_partial (ops, object, annex,
1397 (gdb_byte *) buf + xfered,
1398 offset + xfered, len - xfered);
1399 /* Call an observer, notifying them of the xfer progress? */
1400 if (xfer <= 0)
1401 /* Call memory_error? */
1402 return -1;
1403 xfered += xfer;
1404 QUIT;
1405 }
1406 return len;
1407 }
1408
1409 /* Memory transfer methods. */
1410
1411 void
1412 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1413 LONGEST len)
1414 {
1415 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1416 != len)
1417 memory_error (EIO, addr);
1418 }
1419
1420 ULONGEST
1421 get_target_memory_unsigned (struct target_ops *ops,
1422 CORE_ADDR addr, int len)
1423 {
1424 char buf[sizeof (ULONGEST)];
1425
1426 gdb_assert (len <= sizeof (buf));
1427 get_target_memory (ops, addr, buf, len);
1428 return extract_unsigned_integer (buf, len);
1429 }
1430
1431 static void
1432 target_info (char *args, int from_tty)
1433 {
1434 struct target_ops *t;
1435 int has_all_mem = 0;
1436
1437 if (symfile_objfile != NULL)
1438 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1439
1440 for (t = target_stack; t != NULL; t = t->beneath)
1441 {
1442 if (!t->to_has_memory)
1443 continue;
1444
1445 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1446 continue;
1447 if (has_all_mem)
1448 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1449 printf_unfiltered ("%s:\n", t->to_longname);
1450 (t->to_files_info) (t);
1451 has_all_mem = t->to_has_all_memory;
1452 }
1453 }
1454
1455 /* This is to be called by the open routine before it does
1456 anything. */
1457
1458 void
1459 target_preopen (int from_tty)
1460 {
1461 dont_repeat ();
1462
1463 if (target_has_execution)
1464 {
1465 if (!from_tty
1466 || query (_("A program is being debugged already. Kill it? ")))
1467 target_kill ();
1468 else
1469 error (_("Program not killed."));
1470 }
1471
1472 /* Calling target_kill may remove the target from the stack. But if
1473 it doesn't (which seems like a win for UDI), remove it now. */
1474
1475 if (target_has_execution)
1476 pop_target ();
1477 }
1478
1479 /* Detach a target after doing deferred register stores. */
1480
1481 void
1482 target_detach (char *args, int from_tty)
1483 {
1484 (current_target.to_detach) (args, from_tty);
1485 }
1486
1487 void
1488 target_disconnect (char *args, int from_tty)
1489 {
1490 (current_target.to_disconnect) (args, from_tty);
1491 }
1492
1493 int
1494 target_async_mask (int mask)
1495 {
1496 int saved_async_masked_status = target_async_mask_value;
1497 target_async_mask_value = mask;
1498 return saved_async_masked_status;
1499 }
1500
1501 /* Look through the list of possible targets for a target that can
1502 follow forks. */
1503
1504 int
1505 target_follow_fork (int follow_child)
1506 {
1507 struct target_ops *t;
1508
1509 for (t = current_target.beneath; t != NULL; t = t->beneath)
1510 {
1511 if (t->to_follow_fork != NULL)
1512 {
1513 int retval = t->to_follow_fork (t, follow_child);
1514 if (targetdebug)
1515 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1516 follow_child, retval);
1517 return retval;
1518 }
1519 }
1520
1521 /* Some target returned a fork event, but did not know how to follow it. */
1522 internal_error (__FILE__, __LINE__,
1523 "could not find a target to follow fork");
1524 }
1525
1526 /* Look through the list of possible targets for a target that can
1527 execute a run or attach command without any other data. This is
1528 used to locate the default process stratum.
1529
1530 Result is always valid (error() is called for errors). */
1531
1532 static struct target_ops *
1533 find_default_run_target (char *do_mesg)
1534 {
1535 struct target_ops **t;
1536 struct target_ops *runable = NULL;
1537 int count;
1538
1539 count = 0;
1540
1541 for (t = target_structs; t < target_structs + target_struct_size;
1542 ++t)
1543 {
1544 if ((*t)->to_can_run && target_can_run (*t))
1545 {
1546 runable = *t;
1547 ++count;
1548 }
1549 }
1550
1551 if (count != 1)
1552 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1553
1554 return runable;
1555 }
1556
1557 void
1558 find_default_attach (char *args, int from_tty)
1559 {
1560 struct target_ops *t;
1561
1562 t = find_default_run_target ("attach");
1563 (t->to_attach) (args, from_tty);
1564 return;
1565 }
1566
1567 void
1568 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1569 int from_tty)
1570 {
1571 struct target_ops *t;
1572
1573 t = find_default_run_target ("run");
1574 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1575 return;
1576 }
1577
1578 static int
1579 default_region_size_ok_for_hw_watchpoint (int byte_count)
1580 {
1581 return (byte_count <= TYPE_LENGTH (builtin_type_void_data_ptr));
1582 }
1583
1584 static int
1585 return_zero (void)
1586 {
1587 return 0;
1588 }
1589
1590 static int
1591 return_one (void)
1592 {
1593 return 1;
1594 }
1595
1596 static int
1597 return_minus_one (void)
1598 {
1599 return -1;
1600 }
1601
1602 /*
1603 * Resize the to_sections pointer. Also make sure that anyone that
1604 * was holding on to an old value of it gets updated.
1605 * Returns the old size.
1606 */
1607
1608 int
1609 target_resize_to_sections (struct target_ops *target, int num_added)
1610 {
1611 struct target_ops **t;
1612 struct section_table *old_value;
1613 int old_count;
1614
1615 old_value = target->to_sections;
1616
1617 if (target->to_sections)
1618 {
1619 old_count = target->to_sections_end - target->to_sections;
1620 target->to_sections = (struct section_table *)
1621 xrealloc ((char *) target->to_sections,
1622 (sizeof (struct section_table)) * (num_added + old_count));
1623 }
1624 else
1625 {
1626 old_count = 0;
1627 target->to_sections = (struct section_table *)
1628 xmalloc ((sizeof (struct section_table)) * num_added);
1629 }
1630 target->to_sections_end = target->to_sections + (num_added + old_count);
1631
1632 /* Check to see if anyone else was pointing to this structure.
1633 If old_value was null, then no one was. */
1634
1635 if (old_value)
1636 {
1637 for (t = target_structs; t < target_structs + target_struct_size;
1638 ++t)
1639 {
1640 if ((*t)->to_sections == old_value)
1641 {
1642 (*t)->to_sections = target->to_sections;
1643 (*t)->to_sections_end = target->to_sections_end;
1644 }
1645 }
1646 /* There is a flattened view of the target stack in current_target,
1647 so its to_sections pointer might also need updating. */
1648 if (current_target.to_sections == old_value)
1649 {
1650 current_target.to_sections = target->to_sections;
1651 current_target.to_sections_end = target->to_sections_end;
1652 }
1653 }
1654
1655 return old_count;
1656
1657 }
1658
1659 /* Remove all target sections taken from ABFD.
1660
1661 Scan the current target stack for targets whose section tables
1662 refer to sections from BFD, and remove those sections. We use this
1663 when we notice that the inferior has unloaded a shared object, for
1664 example. */
1665 void
1666 remove_target_sections (bfd *abfd)
1667 {
1668 struct target_ops **t;
1669
1670 for (t = target_structs; t < target_structs + target_struct_size; t++)
1671 {
1672 struct section_table *src, *dest;
1673
1674 dest = (*t)->to_sections;
1675 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1676 if (src->bfd != abfd)
1677 {
1678 /* Keep this section. */
1679 if (dest < src) *dest = *src;
1680 dest++;
1681 }
1682
1683 /* If we've dropped any sections, resize the section table. */
1684 if (dest < src)
1685 target_resize_to_sections (*t, dest - src);
1686 }
1687 }
1688
1689
1690
1691
1692 /* Find a single runnable target in the stack and return it. If for
1693 some reason there is more than one, return NULL. */
1694
1695 struct target_ops *
1696 find_run_target (void)
1697 {
1698 struct target_ops **t;
1699 struct target_ops *runable = NULL;
1700 int count;
1701
1702 count = 0;
1703
1704 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1705 {
1706 if ((*t)->to_can_run && target_can_run (*t))
1707 {
1708 runable = *t;
1709 ++count;
1710 }
1711 }
1712
1713 return (count == 1 ? runable : NULL);
1714 }
1715
1716 /* Find a single core_stratum target in the list of targets and return it.
1717 If for some reason there is more than one, return NULL. */
1718
1719 struct target_ops *
1720 find_core_target (void)
1721 {
1722 struct target_ops **t;
1723 struct target_ops *runable = NULL;
1724 int count;
1725
1726 count = 0;
1727
1728 for (t = target_structs; t < target_structs + target_struct_size;
1729 ++t)
1730 {
1731 if ((*t)->to_stratum == core_stratum)
1732 {
1733 runable = *t;
1734 ++count;
1735 }
1736 }
1737
1738 return (count == 1 ? runable : NULL);
1739 }
1740
1741 /*
1742 * Find the next target down the stack from the specified target.
1743 */
1744
1745 struct target_ops *
1746 find_target_beneath (struct target_ops *t)
1747 {
1748 return t->beneath;
1749 }
1750
1751 \f
1752 /* The inferior process has died. Long live the inferior! */
1753
1754 void
1755 generic_mourn_inferior (void)
1756 {
1757 extern int show_breakpoint_hit_counts;
1758
1759 inferior_ptid = null_ptid;
1760 attach_flag = 0;
1761 breakpoint_init_inferior (inf_exited);
1762 registers_changed ();
1763
1764 reopen_exec_file ();
1765 reinit_frame_cache ();
1766
1767 /* It is confusing to the user for ignore counts to stick around
1768 from previous runs of the inferior. So clear them. */
1769 /* However, it is more confusing for the ignore counts to disappear when
1770 using hit counts. So don't clear them if we're counting hits. */
1771 if (!show_breakpoint_hit_counts)
1772 breakpoint_clear_ignore_counts ();
1773
1774 if (deprecated_detach_hook)
1775 deprecated_detach_hook ();
1776 }
1777 \f
1778 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1779 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1780 translation of that in OURSTATUS. */
1781 void
1782 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1783 {
1784 #ifdef CHILD_SPECIAL_WAITSTATUS
1785 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1786 if it wants to deal with hoststatus. */
1787 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1788 return;
1789 #endif
1790
1791 if (WIFEXITED (hoststatus))
1792 {
1793 ourstatus->kind = TARGET_WAITKIND_EXITED;
1794 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1795 }
1796 else if (!WIFSTOPPED (hoststatus))
1797 {
1798 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1799 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1800 }
1801 else
1802 {
1803 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1804 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1805 }
1806 }
1807 \f
1808 /* Returns zero to leave the inferior alone, one to interrupt it. */
1809 int (*target_activity_function) (void);
1810 int target_activity_fd;
1811 \f
1812 /* Convert a normal process ID to a string. Returns the string in a
1813 static buffer. */
1814
1815 char *
1816 normal_pid_to_str (ptid_t ptid)
1817 {
1818 static char buf[32];
1819
1820 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
1821 return buf;
1822 }
1823
1824 /* Error-catcher for target_find_memory_regions */
1825 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1826 {
1827 error (_("No target."));
1828 return 0;
1829 }
1830
1831 /* Error-catcher for target_make_corefile_notes */
1832 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1833 {
1834 error (_("No target."));
1835 return NULL;
1836 }
1837
1838 /* Set up the handful of non-empty slots needed by the dummy target
1839 vector. */
1840
1841 static void
1842 init_dummy_target (void)
1843 {
1844 dummy_target.to_shortname = "None";
1845 dummy_target.to_longname = "None";
1846 dummy_target.to_doc = "";
1847 dummy_target.to_attach = find_default_attach;
1848 dummy_target.to_create_inferior = find_default_create_inferior;
1849 dummy_target.to_pid_to_str = normal_pid_to_str;
1850 dummy_target.to_stratum = dummy_stratum;
1851 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1852 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1853 dummy_target.to_xfer_partial = default_xfer_partial;
1854 dummy_target.to_magic = OPS_MAGIC;
1855 }
1856 \f
1857 static void
1858 debug_to_open (char *args, int from_tty)
1859 {
1860 debug_target.to_open (args, from_tty);
1861
1862 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1863 }
1864
1865 static void
1866 debug_to_close (int quitting)
1867 {
1868 target_close (&debug_target, quitting);
1869 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1870 }
1871
1872 void
1873 target_close (struct target_ops *targ, int quitting)
1874 {
1875 if (targ->to_xclose != NULL)
1876 targ->to_xclose (targ, quitting);
1877 else if (targ->to_close != NULL)
1878 targ->to_close (quitting);
1879 }
1880
1881 static void
1882 debug_to_attach (char *args, int from_tty)
1883 {
1884 debug_target.to_attach (args, from_tty);
1885
1886 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1887 }
1888
1889
1890 static void
1891 debug_to_post_attach (int pid)
1892 {
1893 debug_target.to_post_attach (pid);
1894
1895 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1896 }
1897
1898 static void
1899 debug_to_detach (char *args, int from_tty)
1900 {
1901 debug_target.to_detach (args, from_tty);
1902
1903 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1904 }
1905
1906 static void
1907 debug_to_disconnect (char *args, int from_tty)
1908 {
1909 debug_target.to_disconnect (args, from_tty);
1910
1911 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1912 args, from_tty);
1913 }
1914
1915 static void
1916 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1917 {
1918 debug_target.to_resume (ptid, step, siggnal);
1919
1920 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1921 step ? "step" : "continue",
1922 target_signal_to_name (siggnal));
1923 }
1924
1925 static ptid_t
1926 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1927 {
1928 ptid_t retval;
1929
1930 retval = debug_target.to_wait (ptid, status);
1931
1932 fprintf_unfiltered (gdb_stdlog,
1933 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1934 PIDGET (retval));
1935 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1936 switch (status->kind)
1937 {
1938 case TARGET_WAITKIND_EXITED:
1939 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1940 status->value.integer);
1941 break;
1942 case TARGET_WAITKIND_STOPPED:
1943 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1944 target_signal_to_name (status->value.sig));
1945 break;
1946 case TARGET_WAITKIND_SIGNALLED:
1947 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1948 target_signal_to_name (status->value.sig));
1949 break;
1950 case TARGET_WAITKIND_LOADED:
1951 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1952 break;
1953 case TARGET_WAITKIND_FORKED:
1954 fprintf_unfiltered (gdb_stdlog, "forked\n");
1955 break;
1956 case TARGET_WAITKIND_VFORKED:
1957 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1958 break;
1959 case TARGET_WAITKIND_EXECD:
1960 fprintf_unfiltered (gdb_stdlog, "execd\n");
1961 break;
1962 case TARGET_WAITKIND_SPURIOUS:
1963 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1964 break;
1965 default:
1966 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1967 break;
1968 }
1969
1970 return retval;
1971 }
1972
1973 static void
1974 debug_print_register (const char * func, int regno)
1975 {
1976 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1977 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1978 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1979 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1980 else
1981 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1982 if (regno >= 0)
1983 {
1984 int i;
1985 unsigned char buf[MAX_REGISTER_SIZE];
1986 deprecated_read_register_gen (regno, buf);
1987 fprintf_unfiltered (gdb_stdlog, " = ");
1988 for (i = 0; i < register_size (current_gdbarch, regno); i++)
1989 {
1990 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1991 }
1992 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
1993 {
1994 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1995 paddr_nz (read_register (regno)),
1996 paddr_d (read_register (regno)));
1997 }
1998 }
1999 fprintf_unfiltered (gdb_stdlog, "\n");
2000 }
2001
2002 static void
2003 debug_to_fetch_registers (int regno)
2004 {
2005 debug_target.to_fetch_registers (regno);
2006 debug_print_register ("target_fetch_registers", regno);
2007 }
2008
2009 static void
2010 debug_to_store_registers (int regno)
2011 {
2012 debug_target.to_store_registers (regno);
2013 debug_print_register ("target_store_registers", regno);
2014 fprintf_unfiltered (gdb_stdlog, "\n");
2015 }
2016
2017 static void
2018 debug_to_prepare_to_store (void)
2019 {
2020 debug_target.to_prepare_to_store ();
2021
2022 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2023 }
2024
2025 static int
2026 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2027 int write, struct mem_attrib *attrib,
2028 struct target_ops *target)
2029 {
2030 int retval;
2031
2032 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2033 attrib, target);
2034
2035 fprintf_unfiltered (gdb_stdlog,
2036 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2037 (unsigned int) memaddr, /* possable truncate long long */
2038 len, write ? "write" : "read", retval);
2039
2040 if (retval > 0)
2041 {
2042 int i;
2043
2044 fputs_unfiltered (", bytes =", gdb_stdlog);
2045 for (i = 0; i < retval; i++)
2046 {
2047 if ((((long) &(myaddr[i])) & 0xf) == 0)
2048 {
2049 if (targetdebug < 2 && i > 0)
2050 {
2051 fprintf_unfiltered (gdb_stdlog, " ...");
2052 break;
2053 }
2054 fprintf_unfiltered (gdb_stdlog, "\n");
2055 }
2056
2057 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2058 }
2059 }
2060
2061 fputc_unfiltered ('\n', gdb_stdlog);
2062
2063 return retval;
2064 }
2065
2066 static void
2067 debug_to_files_info (struct target_ops *target)
2068 {
2069 debug_target.to_files_info (target);
2070
2071 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2072 }
2073
2074 static int
2075 debug_to_insert_breakpoint (CORE_ADDR addr, gdb_byte *save)
2076 {
2077 int retval;
2078
2079 retval = debug_target.to_insert_breakpoint (addr, save);
2080
2081 fprintf_unfiltered (gdb_stdlog,
2082 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2083 (unsigned long) addr,
2084 (unsigned long) retval);
2085 return retval;
2086 }
2087
2088 static int
2089 debug_to_remove_breakpoint (CORE_ADDR addr, gdb_byte *save)
2090 {
2091 int retval;
2092
2093 retval = debug_target.to_remove_breakpoint (addr, save);
2094
2095 fprintf_unfiltered (gdb_stdlog,
2096 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2097 (unsigned long) addr,
2098 (unsigned long) retval);
2099 return retval;
2100 }
2101
2102 static int
2103 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2104 {
2105 int retval;
2106
2107 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2108
2109 fprintf_unfiltered (gdb_stdlog,
2110 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2111 (unsigned long) type,
2112 (unsigned long) cnt,
2113 (unsigned long) from_tty,
2114 (unsigned long) retval);
2115 return retval;
2116 }
2117
2118 static int
2119 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
2120 {
2121 CORE_ADDR retval;
2122
2123 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
2124
2125 fprintf_unfiltered (gdb_stdlog,
2126 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
2127 (unsigned long) byte_count,
2128 (unsigned long) retval);
2129 return retval;
2130 }
2131
2132 static int
2133 debug_to_stopped_by_watchpoint (void)
2134 {
2135 int retval;
2136
2137 retval = debug_target.to_stopped_by_watchpoint ();
2138
2139 fprintf_unfiltered (gdb_stdlog,
2140 "STOPPED_BY_WATCHPOINT () = %ld\n",
2141 (unsigned long) retval);
2142 return retval;
2143 }
2144
2145 static int
2146 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2147 {
2148 int retval;
2149
2150 retval = debug_target.to_stopped_data_address (target, addr);
2151
2152 fprintf_unfiltered (gdb_stdlog,
2153 "target_stopped_data_address ([0x%lx]) = %ld\n",
2154 (unsigned long)*addr,
2155 (unsigned long)retval);
2156 return retval;
2157 }
2158
2159 static int
2160 debug_to_insert_hw_breakpoint (CORE_ADDR addr, gdb_byte *save)
2161 {
2162 int retval;
2163
2164 retval = debug_target.to_insert_hw_breakpoint (addr, save);
2165
2166 fprintf_unfiltered (gdb_stdlog,
2167 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2168 (unsigned long) addr,
2169 (unsigned long) retval);
2170 return retval;
2171 }
2172
2173 static int
2174 debug_to_remove_hw_breakpoint (CORE_ADDR addr, gdb_byte *save)
2175 {
2176 int retval;
2177
2178 retval = debug_target.to_remove_hw_breakpoint (addr, save);
2179
2180 fprintf_unfiltered (gdb_stdlog,
2181 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2182 (unsigned long) addr,
2183 (unsigned long) retval);
2184 return retval;
2185 }
2186
2187 static int
2188 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2189 {
2190 int retval;
2191
2192 retval = debug_target.to_insert_watchpoint (addr, len, type);
2193
2194 fprintf_unfiltered (gdb_stdlog,
2195 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2196 (unsigned long) addr, len, type, (unsigned long) retval);
2197 return retval;
2198 }
2199
2200 static int
2201 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2202 {
2203 int retval;
2204
2205 retval = debug_target.to_insert_watchpoint (addr, len, type);
2206
2207 fprintf_unfiltered (gdb_stdlog,
2208 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2209 (unsigned long) addr, len, type, (unsigned long) retval);
2210 return retval;
2211 }
2212
2213 static void
2214 debug_to_terminal_init (void)
2215 {
2216 debug_target.to_terminal_init ();
2217
2218 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2219 }
2220
2221 static void
2222 debug_to_terminal_inferior (void)
2223 {
2224 debug_target.to_terminal_inferior ();
2225
2226 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2227 }
2228
2229 static void
2230 debug_to_terminal_ours_for_output (void)
2231 {
2232 debug_target.to_terminal_ours_for_output ();
2233
2234 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2235 }
2236
2237 static void
2238 debug_to_terminal_ours (void)
2239 {
2240 debug_target.to_terminal_ours ();
2241
2242 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2243 }
2244
2245 static void
2246 debug_to_terminal_save_ours (void)
2247 {
2248 debug_target.to_terminal_save_ours ();
2249
2250 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2251 }
2252
2253 static void
2254 debug_to_terminal_info (char *arg, int from_tty)
2255 {
2256 debug_target.to_terminal_info (arg, from_tty);
2257
2258 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2259 from_tty);
2260 }
2261
2262 static void
2263 debug_to_kill (void)
2264 {
2265 debug_target.to_kill ();
2266
2267 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2268 }
2269
2270 static void
2271 debug_to_load (char *args, int from_tty)
2272 {
2273 debug_target.to_load (args, from_tty);
2274
2275 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2276 }
2277
2278 static int
2279 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2280 {
2281 int retval;
2282
2283 retval = debug_target.to_lookup_symbol (name, addrp);
2284
2285 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2286
2287 return retval;
2288 }
2289
2290 static void
2291 debug_to_create_inferior (char *exec_file, char *args, char **env,
2292 int from_tty)
2293 {
2294 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2295
2296 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2297 exec_file, args, from_tty);
2298 }
2299
2300 static void
2301 debug_to_post_startup_inferior (ptid_t ptid)
2302 {
2303 debug_target.to_post_startup_inferior (ptid);
2304
2305 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2306 PIDGET (ptid));
2307 }
2308
2309 static void
2310 debug_to_acknowledge_created_inferior (int pid)
2311 {
2312 debug_target.to_acknowledge_created_inferior (pid);
2313
2314 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2315 pid);
2316 }
2317
2318 static void
2319 debug_to_insert_fork_catchpoint (int pid)
2320 {
2321 debug_target.to_insert_fork_catchpoint (pid);
2322
2323 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2324 pid);
2325 }
2326
2327 static int
2328 debug_to_remove_fork_catchpoint (int pid)
2329 {
2330 int retval;
2331
2332 retval = debug_target.to_remove_fork_catchpoint (pid);
2333
2334 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2335 pid, retval);
2336
2337 return retval;
2338 }
2339
2340 static void
2341 debug_to_insert_vfork_catchpoint (int pid)
2342 {
2343 debug_target.to_insert_vfork_catchpoint (pid);
2344
2345 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2346 pid);
2347 }
2348
2349 static int
2350 debug_to_remove_vfork_catchpoint (int pid)
2351 {
2352 int retval;
2353
2354 retval = debug_target.to_remove_vfork_catchpoint (pid);
2355
2356 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2357 pid, retval);
2358
2359 return retval;
2360 }
2361
2362 static void
2363 debug_to_insert_exec_catchpoint (int pid)
2364 {
2365 debug_target.to_insert_exec_catchpoint (pid);
2366
2367 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2368 pid);
2369 }
2370
2371 static int
2372 debug_to_remove_exec_catchpoint (int pid)
2373 {
2374 int retval;
2375
2376 retval = debug_target.to_remove_exec_catchpoint (pid);
2377
2378 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2379 pid, retval);
2380
2381 return retval;
2382 }
2383
2384 static int
2385 debug_to_reported_exec_events_per_exec_call (void)
2386 {
2387 int reported_exec_events;
2388
2389 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2390
2391 fprintf_unfiltered (gdb_stdlog,
2392 "target_reported_exec_events_per_exec_call () = %d\n",
2393 reported_exec_events);
2394
2395 return reported_exec_events;
2396 }
2397
2398 static int
2399 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2400 {
2401 int has_exited;
2402
2403 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2404
2405 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2406 pid, wait_status, *exit_status, has_exited);
2407
2408 return has_exited;
2409 }
2410
2411 static void
2412 debug_to_mourn_inferior (void)
2413 {
2414 debug_target.to_mourn_inferior ();
2415
2416 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2417 }
2418
2419 static int
2420 debug_to_can_run (void)
2421 {
2422 int retval;
2423
2424 retval = debug_target.to_can_run ();
2425
2426 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2427
2428 return retval;
2429 }
2430
2431 static void
2432 debug_to_notice_signals (ptid_t ptid)
2433 {
2434 debug_target.to_notice_signals (ptid);
2435
2436 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2437 PIDGET (ptid));
2438 }
2439
2440 static int
2441 debug_to_thread_alive (ptid_t ptid)
2442 {
2443 int retval;
2444
2445 retval = debug_target.to_thread_alive (ptid);
2446
2447 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2448 PIDGET (ptid), retval);
2449
2450 return retval;
2451 }
2452
2453 static void
2454 debug_to_find_new_threads (void)
2455 {
2456 debug_target.to_find_new_threads ();
2457
2458 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2459 }
2460
2461 static void
2462 debug_to_stop (void)
2463 {
2464 debug_target.to_stop ();
2465
2466 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2467 }
2468
2469 static void
2470 debug_to_rcmd (char *command,
2471 struct ui_file *outbuf)
2472 {
2473 debug_target.to_rcmd (command, outbuf);
2474 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2475 }
2476
2477 static struct symtab_and_line *
2478 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2479 {
2480 struct symtab_and_line *result;
2481 result = debug_target.to_enable_exception_callback (kind, enable);
2482 fprintf_unfiltered (gdb_stdlog,
2483 "target get_exception_callback_sal (%d, %d)\n",
2484 kind, enable);
2485 return result;
2486 }
2487
2488 static struct exception_event_record *
2489 debug_to_get_current_exception_event (void)
2490 {
2491 struct exception_event_record *result;
2492 result = debug_target.to_get_current_exception_event ();
2493 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2494 return result;
2495 }
2496
2497 static char *
2498 debug_to_pid_to_exec_file (int pid)
2499 {
2500 char *exec_file;
2501
2502 exec_file = debug_target.to_pid_to_exec_file (pid);
2503
2504 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2505 pid, exec_file);
2506
2507 return exec_file;
2508 }
2509
2510 static void
2511 setup_target_debug (void)
2512 {
2513 memcpy (&debug_target, &current_target, sizeof debug_target);
2514
2515 current_target.to_open = debug_to_open;
2516 current_target.to_close = debug_to_close;
2517 current_target.to_attach = debug_to_attach;
2518 current_target.to_post_attach = debug_to_post_attach;
2519 current_target.to_detach = debug_to_detach;
2520 current_target.to_disconnect = debug_to_disconnect;
2521 current_target.to_resume = debug_to_resume;
2522 current_target.to_wait = debug_to_wait;
2523 current_target.to_fetch_registers = debug_to_fetch_registers;
2524 current_target.to_store_registers = debug_to_store_registers;
2525 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2526 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2527 current_target.to_files_info = debug_to_files_info;
2528 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2529 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2530 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2531 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2532 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2533 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2534 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2535 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2536 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2537 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2538 current_target.to_terminal_init = debug_to_terminal_init;
2539 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2540 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2541 current_target.to_terminal_ours = debug_to_terminal_ours;
2542 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2543 current_target.to_terminal_info = debug_to_terminal_info;
2544 current_target.to_kill = debug_to_kill;
2545 current_target.to_load = debug_to_load;
2546 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2547 current_target.to_create_inferior = debug_to_create_inferior;
2548 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2549 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2550 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2551 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2552 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2553 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2554 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2555 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2556 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2557 current_target.to_has_exited = debug_to_has_exited;
2558 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2559 current_target.to_can_run = debug_to_can_run;
2560 current_target.to_notice_signals = debug_to_notice_signals;
2561 current_target.to_thread_alive = debug_to_thread_alive;
2562 current_target.to_find_new_threads = debug_to_find_new_threads;
2563 current_target.to_stop = debug_to_stop;
2564 current_target.to_rcmd = debug_to_rcmd;
2565 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2566 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2567 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2568
2569 }
2570 \f
2571
2572 static char targ_desc[] =
2573 "Names of targets and files being debugged.\n\
2574 Shows the entire stack of targets currently in use (including the exec-file,\n\
2575 core-file, and process, if any), as well as the symbol file name.";
2576
2577 static void
2578 do_monitor_command (char *cmd,
2579 int from_tty)
2580 {
2581 if ((current_target.to_rcmd
2582 == (void (*) (char *, struct ui_file *)) tcomplain)
2583 || (current_target.to_rcmd == debug_to_rcmd
2584 && (debug_target.to_rcmd
2585 == (void (*) (char *, struct ui_file *)) tcomplain)))
2586 error (_("\"monitor\" command not supported by this target."));
2587 target_rcmd (cmd, gdb_stdtarg);
2588 }
2589
2590 void
2591 initialize_targets (void)
2592 {
2593 init_dummy_target ();
2594 push_target (&dummy_target);
2595
2596 add_info ("target", target_info, targ_desc);
2597 add_info ("files", target_info, targ_desc);
2598
2599 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2600 Set target debugging."), _("\
2601 Show target debugging."), _("\
2602 When non-zero, target debugging is enabled. Higher numbers are more\n\
2603 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2604 command."),
2605 NULL,
2606 show_targetdebug,
2607 &setdebuglist, &showdebuglist);
2608
2609 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2610 &trust_readonly, _("\
2611 Set mode for reading from readonly sections."), _("\
2612 Show mode for reading from readonly sections."), _("\
2613 When this mode is on, memory reads from readonly sections (such as .text)\n\
2614 will be read from the object file instead of from the target. This will\n\
2615 result in significant performance improvement for remote targets."),
2616 NULL,
2617 show_trust_readonly,
2618 &setlist, &showlist);
2619
2620 add_com ("monitor", class_obscure, do_monitor_command,
2621 _("Send a command to the remote monitor (remote targets only)."));
2622
2623 target_dcache = dcache_init ();
2624 }
This page took 0.084531 seconds and 4 git commands to generate.