Rename "set/show remotebaud" command into "set/show serial baud"
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (const char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
85 ptid_t ptid);
86
87 static void init_dummy_target (void);
88
89 static struct target_ops debug_target;
90
91 static void debug_to_open (char *, int);
92
93 static void debug_to_prepare_to_store (struct regcache *);
94
95 static void debug_to_files_info (struct target_ops *);
96
97 static int debug_to_insert_breakpoint (struct gdbarch *,
98 struct bp_target_info *);
99
100 static int debug_to_remove_breakpoint (struct gdbarch *,
101 struct bp_target_info *);
102
103 static int debug_to_can_use_hw_breakpoint (int, int, int);
104
105 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
106 struct bp_target_info *);
107
108 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
112 struct expression *);
113
114 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
115 struct expression *);
116
117 static int debug_to_stopped_by_watchpoint (void);
118
119 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
120
121 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
122 CORE_ADDR, CORE_ADDR, int);
123
124 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
125
126 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
127 struct expression *);
128
129 static void debug_to_terminal_init (void);
130
131 static void debug_to_terminal_inferior (void);
132
133 static void debug_to_terminal_ours_for_output (void);
134
135 static void debug_to_terminal_save_ours (void);
136
137 static void debug_to_terminal_ours (void);
138
139 static void debug_to_load (char *, int);
140
141 static int debug_to_can_run (void);
142
143 static void debug_to_stop (ptid_t);
144
145 /* Pointer to array of target architecture structures; the size of the
146 array; the current index into the array; the allocated size of the
147 array. */
148 struct target_ops **target_structs;
149 unsigned target_struct_size;
150 unsigned target_struct_allocsize;
151 #define DEFAULT_ALLOCSIZE 10
152
153 /* The initial current target, so that there is always a semi-valid
154 current target. */
155
156 static struct target_ops dummy_target;
157
158 /* Top of target stack. */
159
160 static struct target_ops *target_stack;
161
162 /* The target structure we are currently using to talk to a process
163 or file or whatever "inferior" we have. */
164
165 struct target_ops current_target;
166
167 /* Command list for target. */
168
169 static struct cmd_list_element *targetlist = NULL;
170
171 /* Nonzero if we should trust readonly sections from the
172 executable when reading memory. */
173
174 static int trust_readonly = 0;
175
176 /* Nonzero if we should show true memory content including
177 memory breakpoint inserted by gdb. */
178
179 static int show_memory_breakpoints = 0;
180
181 /* These globals control whether GDB attempts to perform these
182 operations; they are useful for targets that need to prevent
183 inadvertant disruption, such as in non-stop mode. */
184
185 int may_write_registers = 1;
186
187 int may_write_memory = 1;
188
189 int may_insert_breakpoints = 1;
190
191 int may_insert_tracepoints = 1;
192
193 int may_insert_fast_tracepoints = 1;
194
195 int may_stop = 1;
196
197 /* Non-zero if we want to see trace of target level stuff. */
198
199 static unsigned int targetdebug = 0;
200 static void
201 show_targetdebug (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
205 }
206
207 static void setup_target_debug (void);
208
209 /* The option sets this. */
210 static int stack_cache_enabled_p_1 = 1;
211 /* And set_stack_cache_enabled_p updates this.
212 The reason for the separation is so that we don't flush the cache for
213 on->on transitions. */
214 static int stack_cache_enabled_p = 1;
215
216 /* This is called *after* the stack-cache has been set.
217 Flush the cache for off->on and on->off transitions.
218 There's no real need to flush the cache for on->off transitions,
219 except cleanliness. */
220
221 static void
222 set_stack_cache_enabled_p (char *args, int from_tty,
223 struct cmd_list_element *c)
224 {
225 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
226 target_dcache_invalidate ();
227
228 stack_cache_enabled_p = stack_cache_enabled_p_1;
229 }
230
231 static void
232 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
233 struct cmd_list_element *c, const char *value)
234 {
235 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
236 }
237
238 /* Cache of memory operations, to speed up remote access. */
239 static DCACHE *target_dcache;
240
241 /* Invalidate the target dcache. */
242
243 void
244 target_dcache_invalidate (void)
245 {
246 dcache_invalidate (target_dcache);
247 }
248
249 /* The user just typed 'target' without the name of a target. */
250
251 static void
252 target_command (char *arg, int from_tty)
253 {
254 fputs_filtered ("Argument required (target name). Try `help target'\n",
255 gdb_stdout);
256 }
257
258 /* Default target_has_* methods for process_stratum targets. */
259
260 int
261 default_child_has_all_memory (struct target_ops *ops)
262 {
263 /* If no inferior selected, then we can't read memory here. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_stack (struct target_ops *ops)
282 {
283 /* If no inferior selected, there's no stack. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_registers (struct target_ops *ops)
292 {
293 /* Can't read registers from no inferior. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
302 {
303 /* If there's no thread selected, then we can't make it run through
304 hoops. */
305 if (ptid_equal (the_ptid, null_ptid))
306 return 0;
307
308 return 1;
309 }
310
311
312 int
313 target_has_all_memory_1 (void)
314 {
315 struct target_ops *t;
316
317 for (t = current_target.beneath; t != NULL; t = t->beneath)
318 if (t->to_has_all_memory (t))
319 return 1;
320
321 return 0;
322 }
323
324 int
325 target_has_memory_1 (void)
326 {
327 struct target_ops *t;
328
329 for (t = current_target.beneath; t != NULL; t = t->beneath)
330 if (t->to_has_memory (t))
331 return 1;
332
333 return 0;
334 }
335
336 int
337 target_has_stack_1 (void)
338 {
339 struct target_ops *t;
340
341 for (t = current_target.beneath; t != NULL; t = t->beneath)
342 if (t->to_has_stack (t))
343 return 1;
344
345 return 0;
346 }
347
348 int
349 target_has_registers_1 (void)
350 {
351 struct target_ops *t;
352
353 for (t = current_target.beneath; t != NULL; t = t->beneath)
354 if (t->to_has_registers (t))
355 return 1;
356
357 return 0;
358 }
359
360 int
361 target_has_execution_1 (ptid_t the_ptid)
362 {
363 struct target_ops *t;
364
365 for (t = current_target.beneath; t != NULL; t = t->beneath)
366 if (t->to_has_execution (t, the_ptid))
367 return 1;
368
369 return 0;
370 }
371
372 int
373 target_has_execution_current (void)
374 {
375 return target_has_execution_1 (inferior_ptid);
376 }
377
378 /* Complete initialization of T. This ensures that various fields in
379 T are set, if needed by the target implementation. */
380
381 void
382 complete_target_initialization (struct target_ops *t)
383 {
384 /* Provide default values for all "must have" methods. */
385 if (t->to_xfer_partial == NULL)
386 t->to_xfer_partial = default_xfer_partial;
387
388 if (t->to_has_all_memory == NULL)
389 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
390
391 if (t->to_has_memory == NULL)
392 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
393
394 if (t->to_has_stack == NULL)
395 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
396
397 if (t->to_has_registers == NULL)
398 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_execution == NULL)
401 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
402 }
403
404 /* Add possible target architecture T to the list and add a new
405 command 'target T->to_shortname'. Set COMPLETER as the command's
406 completer if not NULL. */
407
408 void
409 add_target_with_completer (struct target_ops *t,
410 completer_ftype *completer)
411 {
412 struct cmd_list_element *c;
413
414 complete_target_initialization (t);
415
416 if (!target_structs)
417 {
418 target_struct_allocsize = DEFAULT_ALLOCSIZE;
419 target_structs = (struct target_ops **) xmalloc
420 (target_struct_allocsize * sizeof (*target_structs));
421 }
422 if (target_struct_size >= target_struct_allocsize)
423 {
424 target_struct_allocsize *= 2;
425 target_structs = (struct target_ops **)
426 xrealloc ((char *) target_structs,
427 target_struct_allocsize * sizeof (*target_structs));
428 }
429 target_structs[target_struct_size++] = t;
430
431 if (targetlist == NULL)
432 add_prefix_cmd ("target", class_run, target_command, _("\
433 Connect to a target machine or process.\n\
434 The first argument is the type or protocol of the target machine.\n\
435 Remaining arguments are interpreted by the target protocol. For more\n\
436 information on the arguments for a particular protocol, type\n\
437 `help target ' followed by the protocol name."),
438 &targetlist, "target ", 0, &cmdlist);
439 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
440 &targetlist);
441 if (completer != NULL)
442 set_cmd_completer (c, completer);
443 }
444
445 /* Add a possible target architecture to the list. */
446
447 void
448 add_target (struct target_ops *t)
449 {
450 add_target_with_completer (t, NULL);
451 }
452
453 /* See target.h. */
454
455 void
456 add_deprecated_target_alias (struct target_ops *t, char *alias)
457 {
458 struct cmd_list_element *c;
459 char *alt;
460
461 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
462 see PR cli/15104. */
463 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
464 alt = xstrprintf ("target %s", t->to_shortname);
465 deprecate_cmd (c, alt);
466 }
467
468 /* Stub functions */
469
470 void
471 target_ignore (void)
472 {
473 }
474
475 void
476 target_kill (void)
477 {
478 struct target_ops *t;
479
480 for (t = current_target.beneath; t != NULL; t = t->beneath)
481 if (t->to_kill != NULL)
482 {
483 if (targetdebug)
484 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
485
486 t->to_kill (t);
487 return;
488 }
489
490 noprocess ();
491 }
492
493 void
494 target_load (char *arg, int from_tty)
495 {
496 target_dcache_invalidate ();
497 (*current_target.to_load) (arg, from_tty);
498 }
499
500 void
501 target_create_inferior (char *exec_file, char *args,
502 char **env, int from_tty)
503 {
504 struct target_ops *t;
505
506 for (t = current_target.beneath; t != NULL; t = t->beneath)
507 {
508 if (t->to_create_inferior != NULL)
509 {
510 t->to_create_inferior (t, exec_file, args, env, from_tty);
511 if (targetdebug)
512 fprintf_unfiltered (gdb_stdlog,
513 "target_create_inferior (%s, %s, xxx, %d)\n",
514 exec_file, args, from_tty);
515 return;
516 }
517 }
518
519 internal_error (__FILE__, __LINE__,
520 _("could not find a target to create inferior"));
521 }
522
523 void
524 target_terminal_inferior (void)
525 {
526 /* A background resume (``run&'') should leave GDB in control of the
527 terminal. Use target_can_async_p, not target_is_async_p, since at
528 this point the target is not async yet. However, if sync_execution
529 is not set, we know it will become async prior to resume. */
530 if (target_can_async_p () && !sync_execution)
531 return;
532
533 /* If GDB is resuming the inferior in the foreground, install
534 inferior's terminal modes. */
535 (*current_target.to_terminal_inferior) ();
536 }
537
538 static int
539 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
540 struct target_ops *t)
541 {
542 errno = EIO; /* Can't read/write this location. */
543 return 0; /* No bytes handled. */
544 }
545
546 static void
547 tcomplain (void)
548 {
549 error (_("You can't do that when your target is `%s'"),
550 current_target.to_shortname);
551 }
552
553 void
554 noprocess (void)
555 {
556 error (_("You can't do that without a process to debug."));
557 }
558
559 static void
560 default_terminal_info (const char *args, int from_tty)
561 {
562 printf_unfiltered (_("No saved terminal information.\n"));
563 }
564
565 /* A default implementation for the to_get_ada_task_ptid target method.
566
567 This function builds the PTID by using both LWP and TID as part of
568 the PTID lwp and tid elements. The pid used is the pid of the
569 inferior_ptid. */
570
571 static ptid_t
572 default_get_ada_task_ptid (long lwp, long tid)
573 {
574 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
575 }
576
577 static enum exec_direction_kind
578 default_execution_direction (void)
579 {
580 if (!target_can_execute_reverse)
581 return EXEC_FORWARD;
582 else if (!target_can_async_p ())
583 return EXEC_FORWARD;
584 else
585 gdb_assert_not_reached ("\
586 to_execution_direction must be implemented for reverse async");
587 }
588
589 /* Go through the target stack from top to bottom, copying over zero
590 entries in current_target, then filling in still empty entries. In
591 effect, we are doing class inheritance through the pushed target
592 vectors.
593
594 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
595 is currently implemented, is that it discards any knowledge of
596 which target an inherited method originally belonged to.
597 Consequently, new new target methods should instead explicitly and
598 locally search the target stack for the target that can handle the
599 request. */
600
601 static void
602 update_current_target (void)
603 {
604 struct target_ops *t;
605
606 /* First, reset current's contents. */
607 memset (&current_target, 0, sizeof (current_target));
608
609 #define INHERIT(FIELD, TARGET) \
610 if (!current_target.FIELD) \
611 current_target.FIELD = (TARGET)->FIELD
612
613 for (t = target_stack; t; t = t->beneath)
614 {
615 INHERIT (to_shortname, t);
616 INHERIT (to_longname, t);
617 INHERIT (to_doc, t);
618 /* Do not inherit to_open. */
619 /* Do not inherit to_close. */
620 /* Do not inherit to_attach. */
621 INHERIT (to_post_attach, t);
622 INHERIT (to_attach_no_wait, t);
623 /* Do not inherit to_detach. */
624 /* Do not inherit to_disconnect. */
625 /* Do not inherit to_resume. */
626 /* Do not inherit to_wait. */
627 /* Do not inherit to_fetch_registers. */
628 /* Do not inherit to_store_registers. */
629 INHERIT (to_prepare_to_store, t);
630 INHERIT (deprecated_xfer_memory, t);
631 INHERIT (to_files_info, t);
632 INHERIT (to_insert_breakpoint, t);
633 INHERIT (to_remove_breakpoint, t);
634 INHERIT (to_can_use_hw_breakpoint, t);
635 INHERIT (to_insert_hw_breakpoint, t);
636 INHERIT (to_remove_hw_breakpoint, t);
637 /* Do not inherit to_ranged_break_num_registers. */
638 INHERIT (to_insert_watchpoint, t);
639 INHERIT (to_remove_watchpoint, t);
640 /* Do not inherit to_insert_mask_watchpoint. */
641 /* Do not inherit to_remove_mask_watchpoint. */
642 INHERIT (to_stopped_data_address, t);
643 INHERIT (to_have_steppable_watchpoint, t);
644 INHERIT (to_have_continuable_watchpoint, t);
645 INHERIT (to_stopped_by_watchpoint, t);
646 INHERIT (to_watchpoint_addr_within_range, t);
647 INHERIT (to_region_ok_for_hw_watchpoint, t);
648 INHERIT (to_can_accel_watchpoint_condition, t);
649 /* Do not inherit to_masked_watch_num_registers. */
650 INHERIT (to_terminal_init, t);
651 INHERIT (to_terminal_inferior, t);
652 INHERIT (to_terminal_ours_for_output, t);
653 INHERIT (to_terminal_ours, t);
654 INHERIT (to_terminal_save_ours, t);
655 INHERIT (to_terminal_info, t);
656 /* Do not inherit to_kill. */
657 INHERIT (to_load, t);
658 /* Do no inherit to_create_inferior. */
659 INHERIT (to_post_startup_inferior, t);
660 INHERIT (to_insert_fork_catchpoint, t);
661 INHERIT (to_remove_fork_catchpoint, t);
662 INHERIT (to_insert_vfork_catchpoint, t);
663 INHERIT (to_remove_vfork_catchpoint, t);
664 /* Do not inherit to_follow_fork. */
665 INHERIT (to_insert_exec_catchpoint, t);
666 INHERIT (to_remove_exec_catchpoint, t);
667 INHERIT (to_set_syscall_catchpoint, t);
668 INHERIT (to_has_exited, t);
669 /* Do not inherit to_mourn_inferior. */
670 INHERIT (to_can_run, t);
671 /* Do not inherit to_pass_signals. */
672 /* Do not inherit to_program_signals. */
673 /* Do not inherit to_thread_alive. */
674 /* Do not inherit to_find_new_threads. */
675 /* Do not inherit to_pid_to_str. */
676 INHERIT (to_extra_thread_info, t);
677 INHERIT (to_thread_name, t);
678 INHERIT (to_stop, t);
679 /* Do not inherit to_xfer_partial. */
680 INHERIT (to_rcmd, t);
681 INHERIT (to_pid_to_exec_file, t);
682 INHERIT (to_log_command, t);
683 INHERIT (to_stratum, t);
684 /* Do not inherit to_has_all_memory. */
685 /* Do not inherit to_has_memory. */
686 /* Do not inherit to_has_stack. */
687 /* Do not inherit to_has_registers. */
688 /* Do not inherit to_has_execution. */
689 INHERIT (to_has_thread_control, t);
690 INHERIT (to_can_async_p, t);
691 INHERIT (to_is_async_p, t);
692 INHERIT (to_async, t);
693 INHERIT (to_find_memory_regions, t);
694 INHERIT (to_make_corefile_notes, t);
695 INHERIT (to_get_bookmark, t);
696 INHERIT (to_goto_bookmark, t);
697 /* Do not inherit to_get_thread_local_address. */
698 INHERIT (to_can_execute_reverse, t);
699 INHERIT (to_execution_direction, t);
700 INHERIT (to_thread_architecture, t);
701 /* Do not inherit to_read_description. */
702 INHERIT (to_get_ada_task_ptid, t);
703 /* Do not inherit to_search_memory. */
704 INHERIT (to_supports_multi_process, t);
705 INHERIT (to_supports_enable_disable_tracepoint, t);
706 INHERIT (to_supports_string_tracing, t);
707 INHERIT (to_trace_init, t);
708 INHERIT (to_download_tracepoint, t);
709 INHERIT (to_can_download_tracepoint, t);
710 INHERIT (to_download_trace_state_variable, t);
711 INHERIT (to_enable_tracepoint, t);
712 INHERIT (to_disable_tracepoint, t);
713 INHERIT (to_trace_set_readonly_regions, t);
714 INHERIT (to_trace_start, t);
715 INHERIT (to_get_trace_status, t);
716 INHERIT (to_get_tracepoint_status, t);
717 INHERIT (to_trace_stop, t);
718 INHERIT (to_trace_find, t);
719 INHERIT (to_get_trace_state_variable_value, t);
720 INHERIT (to_save_trace_data, t);
721 INHERIT (to_upload_tracepoints, t);
722 INHERIT (to_upload_trace_state_variables, t);
723 INHERIT (to_get_raw_trace_data, t);
724 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
725 INHERIT (to_set_disconnected_tracing, t);
726 INHERIT (to_set_circular_trace_buffer, t);
727 INHERIT (to_set_trace_buffer_size, t);
728 INHERIT (to_set_trace_notes, t);
729 INHERIT (to_get_tib_address, t);
730 INHERIT (to_set_permissions, t);
731 INHERIT (to_static_tracepoint_marker_at, t);
732 INHERIT (to_static_tracepoint_markers_by_strid, t);
733 INHERIT (to_traceframe_info, t);
734 INHERIT (to_use_agent, t);
735 INHERIT (to_can_use_agent, t);
736 INHERIT (to_augmented_libraries_svr4_read, t);
737 INHERIT (to_magic, t);
738 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
739 INHERIT (to_can_run_breakpoint_commands, t);
740 /* Do not inherit to_memory_map. */
741 /* Do not inherit to_flash_erase. */
742 /* Do not inherit to_flash_done. */
743 }
744 #undef INHERIT
745
746 /* Clean up a target struct so it no longer has any zero pointers in
747 it. Some entries are defaulted to a method that print an error,
748 others are hard-wired to a standard recursive default. */
749
750 #define de_fault(field, value) \
751 if (!current_target.field) \
752 current_target.field = value
753
754 de_fault (to_open,
755 (void (*) (char *, int))
756 tcomplain);
757 de_fault (to_close,
758 (void (*) (void))
759 target_ignore);
760 de_fault (to_post_attach,
761 (void (*) (int))
762 target_ignore);
763 de_fault (to_prepare_to_store,
764 (void (*) (struct regcache *))
765 noprocess);
766 de_fault (deprecated_xfer_memory,
767 (int (*) (CORE_ADDR, gdb_byte *, int, int,
768 struct mem_attrib *, struct target_ops *))
769 nomemory);
770 de_fault (to_files_info,
771 (void (*) (struct target_ops *))
772 target_ignore);
773 de_fault (to_insert_breakpoint,
774 memory_insert_breakpoint);
775 de_fault (to_remove_breakpoint,
776 memory_remove_breakpoint);
777 de_fault (to_can_use_hw_breakpoint,
778 (int (*) (int, int, int))
779 return_zero);
780 de_fault (to_insert_hw_breakpoint,
781 (int (*) (struct gdbarch *, struct bp_target_info *))
782 return_minus_one);
783 de_fault (to_remove_hw_breakpoint,
784 (int (*) (struct gdbarch *, struct bp_target_info *))
785 return_minus_one);
786 de_fault (to_insert_watchpoint,
787 (int (*) (CORE_ADDR, int, int, struct expression *))
788 return_minus_one);
789 de_fault (to_remove_watchpoint,
790 (int (*) (CORE_ADDR, int, int, struct expression *))
791 return_minus_one);
792 de_fault (to_stopped_by_watchpoint,
793 (int (*) (void))
794 return_zero);
795 de_fault (to_stopped_data_address,
796 (int (*) (struct target_ops *, CORE_ADDR *))
797 return_zero);
798 de_fault (to_watchpoint_addr_within_range,
799 default_watchpoint_addr_within_range);
800 de_fault (to_region_ok_for_hw_watchpoint,
801 default_region_ok_for_hw_watchpoint);
802 de_fault (to_can_accel_watchpoint_condition,
803 (int (*) (CORE_ADDR, int, int, struct expression *))
804 return_zero);
805 de_fault (to_terminal_init,
806 (void (*) (void))
807 target_ignore);
808 de_fault (to_terminal_inferior,
809 (void (*) (void))
810 target_ignore);
811 de_fault (to_terminal_ours_for_output,
812 (void (*) (void))
813 target_ignore);
814 de_fault (to_terminal_ours,
815 (void (*) (void))
816 target_ignore);
817 de_fault (to_terminal_save_ours,
818 (void (*) (void))
819 target_ignore);
820 de_fault (to_terminal_info,
821 default_terminal_info);
822 de_fault (to_load,
823 (void (*) (char *, int))
824 tcomplain);
825 de_fault (to_post_startup_inferior,
826 (void (*) (ptid_t))
827 target_ignore);
828 de_fault (to_insert_fork_catchpoint,
829 (int (*) (int))
830 return_one);
831 de_fault (to_remove_fork_catchpoint,
832 (int (*) (int))
833 return_one);
834 de_fault (to_insert_vfork_catchpoint,
835 (int (*) (int))
836 return_one);
837 de_fault (to_remove_vfork_catchpoint,
838 (int (*) (int))
839 return_one);
840 de_fault (to_insert_exec_catchpoint,
841 (int (*) (int))
842 return_one);
843 de_fault (to_remove_exec_catchpoint,
844 (int (*) (int))
845 return_one);
846 de_fault (to_set_syscall_catchpoint,
847 (int (*) (int, int, int, int, int *))
848 return_one);
849 de_fault (to_has_exited,
850 (int (*) (int, int, int *))
851 return_zero);
852 de_fault (to_can_run,
853 return_zero);
854 de_fault (to_extra_thread_info,
855 (char *(*) (struct thread_info *))
856 return_zero);
857 de_fault (to_thread_name,
858 (char *(*) (struct thread_info *))
859 return_zero);
860 de_fault (to_stop,
861 (void (*) (ptid_t))
862 target_ignore);
863 current_target.to_xfer_partial = current_xfer_partial;
864 de_fault (to_rcmd,
865 (void (*) (char *, struct ui_file *))
866 tcomplain);
867 de_fault (to_pid_to_exec_file,
868 (char *(*) (int))
869 return_zero);
870 de_fault (to_async,
871 (void (*) (void (*) (enum inferior_event_type, void*), void*))
872 tcomplain);
873 de_fault (to_thread_architecture,
874 default_thread_architecture);
875 current_target.to_read_description = NULL;
876 de_fault (to_get_ada_task_ptid,
877 (ptid_t (*) (long, long))
878 default_get_ada_task_ptid);
879 de_fault (to_supports_multi_process,
880 (int (*) (void))
881 return_zero);
882 de_fault (to_supports_enable_disable_tracepoint,
883 (int (*) (void))
884 return_zero);
885 de_fault (to_supports_string_tracing,
886 (int (*) (void))
887 return_zero);
888 de_fault (to_trace_init,
889 (void (*) (void))
890 tcomplain);
891 de_fault (to_download_tracepoint,
892 (void (*) (struct bp_location *))
893 tcomplain);
894 de_fault (to_can_download_tracepoint,
895 (int (*) (void))
896 return_zero);
897 de_fault (to_download_trace_state_variable,
898 (void (*) (struct trace_state_variable *))
899 tcomplain);
900 de_fault (to_enable_tracepoint,
901 (void (*) (struct bp_location *))
902 tcomplain);
903 de_fault (to_disable_tracepoint,
904 (void (*) (struct bp_location *))
905 tcomplain);
906 de_fault (to_trace_set_readonly_regions,
907 (void (*) (void))
908 tcomplain);
909 de_fault (to_trace_start,
910 (void (*) (void))
911 tcomplain);
912 de_fault (to_get_trace_status,
913 (int (*) (struct trace_status *))
914 return_minus_one);
915 de_fault (to_get_tracepoint_status,
916 (void (*) (struct breakpoint *, struct uploaded_tp *))
917 tcomplain);
918 de_fault (to_trace_stop,
919 (void (*) (void))
920 tcomplain);
921 de_fault (to_trace_find,
922 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
923 return_minus_one);
924 de_fault (to_get_trace_state_variable_value,
925 (int (*) (int, LONGEST *))
926 return_zero);
927 de_fault (to_save_trace_data,
928 (int (*) (const char *))
929 tcomplain);
930 de_fault (to_upload_tracepoints,
931 (int (*) (struct uploaded_tp **))
932 return_zero);
933 de_fault (to_upload_trace_state_variables,
934 (int (*) (struct uploaded_tsv **))
935 return_zero);
936 de_fault (to_get_raw_trace_data,
937 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
938 tcomplain);
939 de_fault (to_get_min_fast_tracepoint_insn_len,
940 (int (*) (void))
941 return_minus_one);
942 de_fault (to_set_disconnected_tracing,
943 (void (*) (int))
944 target_ignore);
945 de_fault (to_set_circular_trace_buffer,
946 (void (*) (int))
947 target_ignore);
948 de_fault (to_set_trace_buffer_size,
949 (void (*) (LONGEST))
950 target_ignore);
951 de_fault (to_set_trace_notes,
952 (int (*) (const char *, const char *, const char *))
953 return_zero);
954 de_fault (to_get_tib_address,
955 (int (*) (ptid_t, CORE_ADDR *))
956 tcomplain);
957 de_fault (to_set_permissions,
958 (void (*) (void))
959 target_ignore);
960 de_fault (to_static_tracepoint_marker_at,
961 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
962 return_zero);
963 de_fault (to_static_tracepoint_markers_by_strid,
964 (VEC(static_tracepoint_marker_p) * (*) (const char *))
965 tcomplain);
966 de_fault (to_traceframe_info,
967 (struct traceframe_info * (*) (void))
968 return_zero);
969 de_fault (to_supports_evaluation_of_breakpoint_conditions,
970 (int (*) (void))
971 return_zero);
972 de_fault (to_can_run_breakpoint_commands,
973 (int (*) (void))
974 return_zero);
975 de_fault (to_use_agent,
976 (int (*) (int))
977 tcomplain);
978 de_fault (to_can_use_agent,
979 (int (*) (void))
980 return_zero);
981 de_fault (to_augmented_libraries_svr4_read,
982 (int (*) (void))
983 return_zero);
984 de_fault (to_execution_direction, default_execution_direction);
985
986 #undef de_fault
987
988 /* Finally, position the target-stack beneath the squashed
989 "current_target". That way code looking for a non-inherited
990 target method can quickly and simply find it. */
991 current_target.beneath = target_stack;
992
993 if (targetdebug)
994 setup_target_debug ();
995 }
996
997 /* Push a new target type into the stack of the existing target accessors,
998 possibly superseding some of the existing accessors.
999
1000 Rather than allow an empty stack, we always have the dummy target at
1001 the bottom stratum, so we can call the function vectors without
1002 checking them. */
1003
1004 void
1005 push_target (struct target_ops *t)
1006 {
1007 struct target_ops **cur;
1008
1009 /* Check magic number. If wrong, it probably means someone changed
1010 the struct definition, but not all the places that initialize one. */
1011 if (t->to_magic != OPS_MAGIC)
1012 {
1013 fprintf_unfiltered (gdb_stderr,
1014 "Magic number of %s target struct wrong\n",
1015 t->to_shortname);
1016 internal_error (__FILE__, __LINE__,
1017 _("failed internal consistency check"));
1018 }
1019
1020 /* Find the proper stratum to install this target in. */
1021 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1022 {
1023 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1024 break;
1025 }
1026
1027 /* If there's already targets at this stratum, remove them. */
1028 /* FIXME: cagney/2003-10-15: I think this should be popping all
1029 targets to CUR, and not just those at this stratum level. */
1030 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1031 {
1032 /* There's already something at this stratum level. Close it,
1033 and un-hook it from the stack. */
1034 struct target_ops *tmp = (*cur);
1035
1036 (*cur) = (*cur)->beneath;
1037 tmp->beneath = NULL;
1038 target_close (tmp);
1039 }
1040
1041 /* We have removed all targets in our stratum, now add the new one. */
1042 t->beneath = (*cur);
1043 (*cur) = t;
1044
1045 update_current_target ();
1046 }
1047
1048 /* Remove a target_ops vector from the stack, wherever it may be.
1049 Return how many times it was removed (0 or 1). */
1050
1051 int
1052 unpush_target (struct target_ops *t)
1053 {
1054 struct target_ops **cur;
1055 struct target_ops *tmp;
1056
1057 if (t->to_stratum == dummy_stratum)
1058 internal_error (__FILE__, __LINE__,
1059 _("Attempt to unpush the dummy target"));
1060
1061 /* Look for the specified target. Note that we assume that a target
1062 can only occur once in the target stack. */
1063
1064 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1065 {
1066 if ((*cur) == t)
1067 break;
1068 }
1069
1070 /* If we don't find target_ops, quit. Only open targets should be
1071 closed. */
1072 if ((*cur) == NULL)
1073 return 0;
1074
1075 /* Unchain the target. */
1076 tmp = (*cur);
1077 (*cur) = (*cur)->beneath;
1078 tmp->beneath = NULL;
1079
1080 update_current_target ();
1081
1082 /* Finally close the target. Note we do this after unchaining, so
1083 any target method calls from within the target_close
1084 implementation don't end up in T anymore. */
1085 target_close (t);
1086
1087 return 1;
1088 }
1089
1090 void
1091 pop_all_targets_above (enum strata above_stratum)
1092 {
1093 while ((int) (current_target.to_stratum) > (int) above_stratum)
1094 {
1095 if (!unpush_target (target_stack))
1096 {
1097 fprintf_unfiltered (gdb_stderr,
1098 "pop_all_targets couldn't find target %s\n",
1099 target_stack->to_shortname);
1100 internal_error (__FILE__, __LINE__,
1101 _("failed internal consistency check"));
1102 break;
1103 }
1104 }
1105 }
1106
1107 void
1108 pop_all_targets (void)
1109 {
1110 pop_all_targets_above (dummy_stratum);
1111 }
1112
1113 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1114
1115 int
1116 target_is_pushed (struct target_ops *t)
1117 {
1118 struct target_ops **cur;
1119
1120 /* Check magic number. If wrong, it probably means someone changed
1121 the struct definition, but not all the places that initialize one. */
1122 if (t->to_magic != OPS_MAGIC)
1123 {
1124 fprintf_unfiltered (gdb_stderr,
1125 "Magic number of %s target struct wrong\n",
1126 t->to_shortname);
1127 internal_error (__FILE__, __LINE__,
1128 _("failed internal consistency check"));
1129 }
1130
1131 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1132 if (*cur == t)
1133 return 1;
1134
1135 return 0;
1136 }
1137
1138 /* Using the objfile specified in OBJFILE, find the address for the
1139 current thread's thread-local storage with offset OFFSET. */
1140 CORE_ADDR
1141 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1142 {
1143 volatile CORE_ADDR addr = 0;
1144 struct target_ops *target;
1145
1146 for (target = current_target.beneath;
1147 target != NULL;
1148 target = target->beneath)
1149 {
1150 if (target->to_get_thread_local_address != NULL)
1151 break;
1152 }
1153
1154 if (target != NULL
1155 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1156 {
1157 ptid_t ptid = inferior_ptid;
1158 volatile struct gdb_exception ex;
1159
1160 TRY_CATCH (ex, RETURN_MASK_ALL)
1161 {
1162 CORE_ADDR lm_addr;
1163
1164 /* Fetch the load module address for this objfile. */
1165 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1166 objfile);
1167 /* If it's 0, throw the appropriate exception. */
1168 if (lm_addr == 0)
1169 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1170 _("TLS load module not found"));
1171
1172 addr = target->to_get_thread_local_address (target, ptid,
1173 lm_addr, offset);
1174 }
1175 /* If an error occurred, print TLS related messages here. Otherwise,
1176 throw the error to some higher catcher. */
1177 if (ex.reason < 0)
1178 {
1179 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1180
1181 switch (ex.error)
1182 {
1183 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1184 error (_("Cannot find thread-local variables "
1185 "in this thread library."));
1186 break;
1187 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1188 if (objfile_is_library)
1189 error (_("Cannot find shared library `%s' in dynamic"
1190 " linker's load module list"), objfile_name (objfile));
1191 else
1192 error (_("Cannot find executable file `%s' in dynamic"
1193 " linker's load module list"), objfile_name (objfile));
1194 break;
1195 case TLS_NOT_ALLOCATED_YET_ERROR:
1196 if (objfile_is_library)
1197 error (_("The inferior has not yet allocated storage for"
1198 " thread-local variables in\n"
1199 "the shared library `%s'\n"
1200 "for %s"),
1201 objfile_name (objfile), target_pid_to_str (ptid));
1202 else
1203 error (_("The inferior has not yet allocated storage for"
1204 " thread-local variables in\n"
1205 "the executable `%s'\n"
1206 "for %s"),
1207 objfile_name (objfile), target_pid_to_str (ptid));
1208 break;
1209 case TLS_GENERIC_ERROR:
1210 if (objfile_is_library)
1211 error (_("Cannot find thread-local storage for %s, "
1212 "shared library %s:\n%s"),
1213 target_pid_to_str (ptid),
1214 objfile_name (objfile), ex.message);
1215 else
1216 error (_("Cannot find thread-local storage for %s, "
1217 "executable file %s:\n%s"),
1218 target_pid_to_str (ptid),
1219 objfile_name (objfile), ex.message);
1220 break;
1221 default:
1222 throw_exception (ex);
1223 break;
1224 }
1225 }
1226 }
1227 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1228 TLS is an ABI-specific thing. But we don't do that yet. */
1229 else
1230 error (_("Cannot find thread-local variables on this target"));
1231
1232 return addr;
1233 }
1234
1235 const char *
1236 target_xfer_error_to_string (enum target_xfer_error err)
1237 {
1238 #define CASE(X) case X: return #X
1239 switch (err)
1240 {
1241 CASE(TARGET_XFER_E_IO);
1242 CASE(TARGET_XFER_E_UNAVAILABLE);
1243 default:
1244 return "<unknown>";
1245 }
1246 #undef CASE
1247 };
1248
1249
1250 #undef MIN
1251 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1252
1253 /* target_read_string -- read a null terminated string, up to LEN bytes,
1254 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1255 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1256 is responsible for freeing it. Return the number of bytes successfully
1257 read. */
1258
1259 int
1260 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1261 {
1262 int tlen, offset, i;
1263 gdb_byte buf[4];
1264 int errcode = 0;
1265 char *buffer;
1266 int buffer_allocated;
1267 char *bufptr;
1268 unsigned int nbytes_read = 0;
1269
1270 gdb_assert (string);
1271
1272 /* Small for testing. */
1273 buffer_allocated = 4;
1274 buffer = xmalloc (buffer_allocated);
1275 bufptr = buffer;
1276
1277 while (len > 0)
1278 {
1279 tlen = MIN (len, 4 - (memaddr & 3));
1280 offset = memaddr & 3;
1281
1282 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1283 if (errcode != 0)
1284 {
1285 /* The transfer request might have crossed the boundary to an
1286 unallocated region of memory. Retry the transfer, requesting
1287 a single byte. */
1288 tlen = 1;
1289 offset = 0;
1290 errcode = target_read_memory (memaddr, buf, 1);
1291 if (errcode != 0)
1292 goto done;
1293 }
1294
1295 if (bufptr - buffer + tlen > buffer_allocated)
1296 {
1297 unsigned int bytes;
1298
1299 bytes = bufptr - buffer;
1300 buffer_allocated *= 2;
1301 buffer = xrealloc (buffer, buffer_allocated);
1302 bufptr = buffer + bytes;
1303 }
1304
1305 for (i = 0; i < tlen; i++)
1306 {
1307 *bufptr++ = buf[i + offset];
1308 if (buf[i + offset] == '\000')
1309 {
1310 nbytes_read += i + 1;
1311 goto done;
1312 }
1313 }
1314
1315 memaddr += tlen;
1316 len -= tlen;
1317 nbytes_read += tlen;
1318 }
1319 done:
1320 *string = buffer;
1321 if (errnop != NULL)
1322 *errnop = errcode;
1323 return nbytes_read;
1324 }
1325
1326 struct target_section_table *
1327 target_get_section_table (struct target_ops *target)
1328 {
1329 struct target_ops *t;
1330
1331 if (targetdebug)
1332 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1333
1334 for (t = target; t != NULL; t = t->beneath)
1335 if (t->to_get_section_table != NULL)
1336 return (*t->to_get_section_table) (t);
1337
1338 return NULL;
1339 }
1340
1341 /* Find a section containing ADDR. */
1342
1343 struct target_section *
1344 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1345 {
1346 struct target_section_table *table = target_get_section_table (target);
1347 struct target_section *secp;
1348
1349 if (table == NULL)
1350 return NULL;
1351
1352 for (secp = table->sections; secp < table->sections_end; secp++)
1353 {
1354 if (addr >= secp->addr && addr < secp->endaddr)
1355 return secp;
1356 }
1357 return NULL;
1358 }
1359
1360 /* Read memory from the live target, even if currently inspecting a
1361 traceframe. The return is the same as that of target_read. */
1362
1363 static LONGEST
1364 target_read_live_memory (enum target_object object,
1365 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1366 {
1367 LONGEST ret;
1368 struct cleanup *cleanup;
1369
1370 /* Switch momentarily out of tfind mode so to access live memory.
1371 Note that this must not clear global state, such as the frame
1372 cache, which must still remain valid for the previous traceframe.
1373 We may be _building_ the frame cache at this point. */
1374 cleanup = make_cleanup_restore_traceframe_number ();
1375 set_traceframe_number (-1);
1376
1377 ret = target_read (current_target.beneath, object, NULL,
1378 myaddr, memaddr, len);
1379
1380 do_cleanups (cleanup);
1381 return ret;
1382 }
1383
1384 /* Using the set of read-only target sections of OPS, read live
1385 read-only memory. Note that the actual reads start from the
1386 top-most target again.
1387
1388 For interface/parameters/return description see target.h,
1389 to_xfer_partial. */
1390
1391 static LONGEST
1392 memory_xfer_live_readonly_partial (struct target_ops *ops,
1393 enum target_object object,
1394 gdb_byte *readbuf, ULONGEST memaddr,
1395 LONGEST len)
1396 {
1397 struct target_section *secp;
1398 struct target_section_table *table;
1399
1400 secp = target_section_by_addr (ops, memaddr);
1401 if (secp != NULL
1402 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1403 secp->the_bfd_section)
1404 & SEC_READONLY))
1405 {
1406 struct target_section *p;
1407 ULONGEST memend = memaddr + len;
1408
1409 table = target_get_section_table (ops);
1410
1411 for (p = table->sections; p < table->sections_end; p++)
1412 {
1413 if (memaddr >= p->addr)
1414 {
1415 if (memend <= p->endaddr)
1416 {
1417 /* Entire transfer is within this section. */
1418 return target_read_live_memory (object, memaddr,
1419 readbuf, len);
1420 }
1421 else if (memaddr >= p->endaddr)
1422 {
1423 /* This section ends before the transfer starts. */
1424 continue;
1425 }
1426 else
1427 {
1428 /* This section overlaps the transfer. Just do half. */
1429 len = p->endaddr - memaddr;
1430 return target_read_live_memory (object, memaddr,
1431 readbuf, len);
1432 }
1433 }
1434 }
1435 }
1436
1437 return 0;
1438 }
1439
1440 /* Perform a partial memory transfer.
1441 For docs see target.h, to_xfer_partial. */
1442
1443 static LONGEST
1444 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1445 void *readbuf, const void *writebuf, ULONGEST memaddr,
1446 LONGEST len)
1447 {
1448 LONGEST res;
1449 int reg_len;
1450 struct mem_region *region;
1451 struct inferior *inf;
1452
1453 /* For accesses to unmapped overlay sections, read directly from
1454 files. Must do this first, as MEMADDR may need adjustment. */
1455 if (readbuf != NULL && overlay_debugging)
1456 {
1457 struct obj_section *section = find_pc_overlay (memaddr);
1458
1459 if (pc_in_unmapped_range (memaddr, section))
1460 {
1461 struct target_section_table *table
1462 = target_get_section_table (ops);
1463 const char *section_name = section->the_bfd_section->name;
1464
1465 memaddr = overlay_mapped_address (memaddr, section);
1466 return section_table_xfer_memory_partial (readbuf, writebuf,
1467 memaddr, len,
1468 table->sections,
1469 table->sections_end,
1470 section_name);
1471 }
1472 }
1473
1474 /* Try the executable files, if "trust-readonly-sections" is set. */
1475 if (readbuf != NULL && trust_readonly)
1476 {
1477 struct target_section *secp;
1478 struct target_section_table *table;
1479
1480 secp = target_section_by_addr (ops, memaddr);
1481 if (secp != NULL
1482 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1483 secp->the_bfd_section)
1484 & SEC_READONLY))
1485 {
1486 table = target_get_section_table (ops);
1487 return section_table_xfer_memory_partial (readbuf, writebuf,
1488 memaddr, len,
1489 table->sections,
1490 table->sections_end,
1491 NULL);
1492 }
1493 }
1494
1495 /* If reading unavailable memory in the context of traceframes, and
1496 this address falls within a read-only section, fallback to
1497 reading from live memory. */
1498 if (readbuf != NULL && get_traceframe_number () != -1)
1499 {
1500 VEC(mem_range_s) *available;
1501
1502 /* If we fail to get the set of available memory, then the
1503 target does not support querying traceframe info, and so we
1504 attempt reading from the traceframe anyway (assuming the
1505 target implements the old QTro packet then). */
1506 if (traceframe_available_memory (&available, memaddr, len))
1507 {
1508 struct cleanup *old_chain;
1509
1510 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1511
1512 if (VEC_empty (mem_range_s, available)
1513 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1514 {
1515 /* Don't read into the traceframe's available
1516 memory. */
1517 if (!VEC_empty (mem_range_s, available))
1518 {
1519 LONGEST oldlen = len;
1520
1521 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1522 gdb_assert (len <= oldlen);
1523 }
1524
1525 do_cleanups (old_chain);
1526
1527 /* This goes through the topmost target again. */
1528 res = memory_xfer_live_readonly_partial (ops, object,
1529 readbuf, memaddr, len);
1530 if (res > 0)
1531 return res;
1532
1533 /* No use trying further, we know some memory starting
1534 at MEMADDR isn't available. */
1535 return TARGET_XFER_E_UNAVAILABLE;
1536 }
1537
1538 /* Don't try to read more than how much is available, in
1539 case the target implements the deprecated QTro packet to
1540 cater for older GDBs (the target's knowledge of read-only
1541 sections may be outdated by now). */
1542 len = VEC_index (mem_range_s, available, 0)->length;
1543
1544 do_cleanups (old_chain);
1545 }
1546 }
1547
1548 /* Try GDB's internal data cache. */
1549 region = lookup_mem_region (memaddr);
1550 /* region->hi == 0 means there's no upper bound. */
1551 if (memaddr + len < region->hi || region->hi == 0)
1552 reg_len = len;
1553 else
1554 reg_len = region->hi - memaddr;
1555
1556 switch (region->attrib.mode)
1557 {
1558 case MEM_RO:
1559 if (writebuf != NULL)
1560 return -1;
1561 break;
1562
1563 case MEM_WO:
1564 if (readbuf != NULL)
1565 return -1;
1566 break;
1567
1568 case MEM_FLASH:
1569 /* We only support writing to flash during "load" for now. */
1570 if (writebuf != NULL)
1571 error (_("Writing to flash memory forbidden in this context"));
1572 break;
1573
1574 case MEM_NONE:
1575 return -1;
1576 }
1577
1578 if (!ptid_equal (inferior_ptid, null_ptid))
1579 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1580 else
1581 inf = NULL;
1582
1583 if (inf != NULL
1584 /* The dcache reads whole cache lines; that doesn't play well
1585 with reading from a trace buffer, because reading outside of
1586 the collected memory range fails. */
1587 && get_traceframe_number () == -1
1588 && (region->attrib.cache
1589 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1590 {
1591 if (readbuf != NULL)
1592 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1593 reg_len, 0);
1594 else
1595 /* FIXME drow/2006-08-09: If we're going to preserve const
1596 correctness dcache_xfer_memory should take readbuf and
1597 writebuf. */
1598 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1599 (void *) writebuf,
1600 reg_len, 1);
1601 if (res <= 0)
1602 return -1;
1603 else
1604 return res;
1605 }
1606
1607 /* If none of those methods found the memory we wanted, fall back
1608 to a target partial transfer. Normally a single call to
1609 to_xfer_partial is enough; if it doesn't recognize an object
1610 it will call the to_xfer_partial of the next target down.
1611 But for memory this won't do. Memory is the only target
1612 object which can be read from more than one valid target.
1613 A core file, for instance, could have some of memory but
1614 delegate other bits to the target below it. So, we must
1615 manually try all targets. */
1616
1617 do
1618 {
1619 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1620 readbuf, writebuf, memaddr, reg_len);
1621 if (res > 0)
1622 break;
1623
1624 /* We want to continue past core files to executables, but not
1625 past a running target's memory. */
1626 if (ops->to_has_all_memory (ops))
1627 break;
1628
1629 ops = ops->beneath;
1630 }
1631 while (ops != NULL);
1632
1633 /* Make sure the cache gets updated no matter what - if we are writing
1634 to the stack. Even if this write is not tagged as such, we still need
1635 to update the cache. */
1636
1637 if (res > 0
1638 && inf != NULL
1639 && writebuf != NULL
1640 && !region->attrib.cache
1641 && stack_cache_enabled_p
1642 && object != TARGET_OBJECT_STACK_MEMORY)
1643 {
1644 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1645 }
1646
1647 /* If we still haven't got anything, return the last error. We
1648 give up. */
1649 return res;
1650 }
1651
1652 /* Perform a partial memory transfer. For docs see target.h,
1653 to_xfer_partial. */
1654
1655 static LONGEST
1656 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1657 void *readbuf, const void *writebuf, ULONGEST memaddr,
1658 LONGEST len)
1659 {
1660 int res;
1661
1662 /* Zero length requests are ok and require no work. */
1663 if (len == 0)
1664 return 0;
1665
1666 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1667 breakpoint insns, thus hiding out from higher layers whether
1668 there are software breakpoints inserted in the code stream. */
1669 if (readbuf != NULL)
1670 {
1671 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1672
1673 if (res > 0 && !show_memory_breakpoints)
1674 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1675 }
1676 else
1677 {
1678 void *buf;
1679 struct cleanup *old_chain;
1680
1681 buf = xmalloc (len);
1682 old_chain = make_cleanup (xfree, buf);
1683 memcpy (buf, writebuf, len);
1684
1685 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1686 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1687
1688 do_cleanups (old_chain);
1689 }
1690
1691 return res;
1692 }
1693
1694 static void
1695 restore_show_memory_breakpoints (void *arg)
1696 {
1697 show_memory_breakpoints = (uintptr_t) arg;
1698 }
1699
1700 struct cleanup *
1701 make_show_memory_breakpoints_cleanup (int show)
1702 {
1703 int current = show_memory_breakpoints;
1704
1705 show_memory_breakpoints = show;
1706 return make_cleanup (restore_show_memory_breakpoints,
1707 (void *) (uintptr_t) current);
1708 }
1709
1710 /* For docs see target.h, to_xfer_partial. */
1711
1712 LONGEST
1713 target_xfer_partial (struct target_ops *ops,
1714 enum target_object object, const char *annex,
1715 void *readbuf, const void *writebuf,
1716 ULONGEST offset, LONGEST len)
1717 {
1718 LONGEST retval;
1719
1720 gdb_assert (ops->to_xfer_partial != NULL);
1721
1722 if (writebuf && !may_write_memory)
1723 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1724 core_addr_to_string_nz (offset), plongest (len));
1725
1726 /* If this is a memory transfer, let the memory-specific code
1727 have a look at it instead. Memory transfers are more
1728 complicated. */
1729 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1730 retval = memory_xfer_partial (ops, object, readbuf,
1731 writebuf, offset, len);
1732 else
1733 {
1734 enum target_object raw_object = object;
1735
1736 /* If this is a raw memory transfer, request the normal
1737 memory object from other layers. */
1738 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1739 raw_object = TARGET_OBJECT_MEMORY;
1740
1741 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1742 writebuf, offset, len);
1743 }
1744
1745 if (targetdebug)
1746 {
1747 const unsigned char *myaddr = NULL;
1748
1749 fprintf_unfiltered (gdb_stdlog,
1750 "%s:target_xfer_partial "
1751 "(%d, %s, %s, %s, %s, %s) = %s",
1752 ops->to_shortname,
1753 (int) object,
1754 (annex ? annex : "(null)"),
1755 host_address_to_string (readbuf),
1756 host_address_to_string (writebuf),
1757 core_addr_to_string_nz (offset),
1758 plongest (len), plongest (retval));
1759
1760 if (readbuf)
1761 myaddr = readbuf;
1762 if (writebuf)
1763 myaddr = writebuf;
1764 if (retval > 0 && myaddr != NULL)
1765 {
1766 int i;
1767
1768 fputs_unfiltered (", bytes =", gdb_stdlog);
1769 for (i = 0; i < retval; i++)
1770 {
1771 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1772 {
1773 if (targetdebug < 2 && i > 0)
1774 {
1775 fprintf_unfiltered (gdb_stdlog, " ...");
1776 break;
1777 }
1778 fprintf_unfiltered (gdb_stdlog, "\n");
1779 }
1780
1781 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1782 }
1783 }
1784
1785 fputc_unfiltered ('\n', gdb_stdlog);
1786 }
1787 return retval;
1788 }
1789
1790 /* Read LEN bytes of target memory at address MEMADDR, placing the
1791 results in GDB's memory at MYADDR. Returns either 0 for success or
1792 a target_xfer_error value if any error occurs.
1793
1794 If an error occurs, no guarantee is made about the contents of the data at
1795 MYADDR. In particular, the caller should not depend upon partial reads
1796 filling the buffer with good data. There is no way for the caller to know
1797 how much good data might have been transfered anyway. Callers that can
1798 deal with partial reads should call target_read (which will retry until
1799 it makes no progress, and then return how much was transferred). */
1800
1801 int
1802 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1803 {
1804 /* Dispatch to the topmost target, not the flattened current_target.
1805 Memory accesses check target->to_has_(all_)memory, and the
1806 flattened target doesn't inherit those. */
1807 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1808 myaddr, memaddr, len) == len)
1809 return 0;
1810 else
1811 return TARGET_XFER_E_IO;
1812 }
1813
1814 /* Like target_read_memory, but specify explicitly that this is a read from
1815 the target's stack. This may trigger different cache behavior. */
1816
1817 int
1818 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1819 {
1820 /* Dispatch to the topmost target, not the flattened current_target.
1821 Memory accesses check target->to_has_(all_)memory, and the
1822 flattened target doesn't inherit those. */
1823
1824 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1825 myaddr, memaddr, len) == len)
1826 return 0;
1827 else
1828 return TARGET_XFER_E_IO;
1829 }
1830
1831 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1832 Returns either 0 for success or a target_xfer_error value if any
1833 error occurs. If an error occurs, no guarantee is made about how
1834 much data got written. Callers that can deal with partial writes
1835 should call target_write. */
1836
1837 int
1838 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1839 {
1840 /* Dispatch to the topmost target, not the flattened current_target.
1841 Memory accesses check target->to_has_(all_)memory, and the
1842 flattened target doesn't inherit those. */
1843 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1844 myaddr, memaddr, len) == len)
1845 return 0;
1846 else
1847 return TARGET_XFER_E_IO;
1848 }
1849
1850 /* Write LEN bytes from MYADDR to target raw memory at address
1851 MEMADDR. Returns either 0 for success or a target_xfer_error value
1852 if any error occurs. If an error occurs, no guarantee is made
1853 about how much data got written. Callers that can deal with
1854 partial writes should call target_write. */
1855
1856 int
1857 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1858 {
1859 /* Dispatch to the topmost target, not the flattened current_target.
1860 Memory accesses check target->to_has_(all_)memory, and the
1861 flattened target doesn't inherit those. */
1862 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1863 myaddr, memaddr, len) == len)
1864 return 0;
1865 else
1866 return TARGET_XFER_E_IO;
1867 }
1868
1869 /* Fetch the target's memory map. */
1870
1871 VEC(mem_region_s) *
1872 target_memory_map (void)
1873 {
1874 VEC(mem_region_s) *result;
1875 struct mem_region *last_one, *this_one;
1876 int ix;
1877 struct target_ops *t;
1878
1879 if (targetdebug)
1880 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1881
1882 for (t = current_target.beneath; t != NULL; t = t->beneath)
1883 if (t->to_memory_map != NULL)
1884 break;
1885
1886 if (t == NULL)
1887 return NULL;
1888
1889 result = t->to_memory_map (t);
1890 if (result == NULL)
1891 return NULL;
1892
1893 qsort (VEC_address (mem_region_s, result),
1894 VEC_length (mem_region_s, result),
1895 sizeof (struct mem_region), mem_region_cmp);
1896
1897 /* Check that regions do not overlap. Simultaneously assign
1898 a numbering for the "mem" commands to use to refer to
1899 each region. */
1900 last_one = NULL;
1901 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1902 {
1903 this_one->number = ix;
1904
1905 if (last_one && last_one->hi > this_one->lo)
1906 {
1907 warning (_("Overlapping regions in memory map: ignoring"));
1908 VEC_free (mem_region_s, result);
1909 return NULL;
1910 }
1911 last_one = this_one;
1912 }
1913
1914 return result;
1915 }
1916
1917 void
1918 target_flash_erase (ULONGEST address, LONGEST length)
1919 {
1920 struct target_ops *t;
1921
1922 for (t = current_target.beneath; t != NULL; t = t->beneath)
1923 if (t->to_flash_erase != NULL)
1924 {
1925 if (targetdebug)
1926 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1927 hex_string (address), phex (length, 0));
1928 t->to_flash_erase (t, address, length);
1929 return;
1930 }
1931
1932 tcomplain ();
1933 }
1934
1935 void
1936 target_flash_done (void)
1937 {
1938 struct target_ops *t;
1939
1940 for (t = current_target.beneath; t != NULL; t = t->beneath)
1941 if (t->to_flash_done != NULL)
1942 {
1943 if (targetdebug)
1944 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1945 t->to_flash_done (t);
1946 return;
1947 }
1948
1949 tcomplain ();
1950 }
1951
1952 static void
1953 show_trust_readonly (struct ui_file *file, int from_tty,
1954 struct cmd_list_element *c, const char *value)
1955 {
1956 fprintf_filtered (file,
1957 _("Mode for reading from readonly sections is %s.\n"),
1958 value);
1959 }
1960
1961 /* More generic transfers. */
1962
1963 static LONGEST
1964 default_xfer_partial (struct target_ops *ops, enum target_object object,
1965 const char *annex, gdb_byte *readbuf,
1966 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1967 {
1968 if (object == TARGET_OBJECT_MEMORY
1969 && ops->deprecated_xfer_memory != NULL)
1970 /* If available, fall back to the target's
1971 "deprecated_xfer_memory" method. */
1972 {
1973 int xfered = -1;
1974
1975 errno = 0;
1976 if (writebuf != NULL)
1977 {
1978 void *buffer = xmalloc (len);
1979 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1980
1981 memcpy (buffer, writebuf, len);
1982 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1983 1/*write*/, NULL, ops);
1984 do_cleanups (cleanup);
1985 }
1986 if (readbuf != NULL)
1987 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1988 0/*read*/, NULL, ops);
1989 if (xfered > 0)
1990 return xfered;
1991 else if (xfered == 0 && errno == 0)
1992 /* "deprecated_xfer_memory" uses 0, cross checked against
1993 ERRNO as one indication of an error. */
1994 return 0;
1995 else
1996 return -1;
1997 }
1998 else if (ops->beneath != NULL)
1999 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2000 readbuf, writebuf, offset, len);
2001 else
2002 return -1;
2003 }
2004
2005 /* The xfer_partial handler for the topmost target. Unlike the default,
2006 it does not need to handle memory specially; it just passes all
2007 requests down the stack. */
2008
2009 static LONGEST
2010 current_xfer_partial (struct target_ops *ops, enum target_object object,
2011 const char *annex, gdb_byte *readbuf,
2012 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2013 {
2014 if (ops->beneath != NULL)
2015 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2016 readbuf, writebuf, offset, len);
2017 else
2018 return -1;
2019 }
2020
2021 /* Target vector read/write partial wrapper functions. */
2022
2023 static LONGEST
2024 target_read_partial (struct target_ops *ops,
2025 enum target_object object,
2026 const char *annex, gdb_byte *buf,
2027 ULONGEST offset, LONGEST len)
2028 {
2029 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2030 }
2031
2032 static LONGEST
2033 target_write_partial (struct target_ops *ops,
2034 enum target_object object,
2035 const char *annex, const gdb_byte *buf,
2036 ULONGEST offset, LONGEST len)
2037 {
2038 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2039 }
2040
2041 /* Wrappers to perform the full transfer. */
2042
2043 /* For docs on target_read see target.h. */
2044
2045 LONGEST
2046 target_read (struct target_ops *ops,
2047 enum target_object object,
2048 const char *annex, gdb_byte *buf,
2049 ULONGEST offset, LONGEST len)
2050 {
2051 LONGEST xfered = 0;
2052
2053 while (xfered < len)
2054 {
2055 LONGEST xfer = target_read_partial (ops, object, annex,
2056 (gdb_byte *) buf + xfered,
2057 offset + xfered, len - xfered);
2058
2059 /* Call an observer, notifying them of the xfer progress? */
2060 if (xfer == 0)
2061 return xfered;
2062 if (xfer < 0)
2063 return -1;
2064 xfered += xfer;
2065 QUIT;
2066 }
2067 return len;
2068 }
2069
2070 /* Assuming that the entire [begin, end) range of memory cannot be
2071 read, try to read whatever subrange is possible to read.
2072
2073 The function returns, in RESULT, either zero or one memory block.
2074 If there's a readable subrange at the beginning, it is completely
2075 read and returned. Any further readable subrange will not be read.
2076 Otherwise, if there's a readable subrange at the end, it will be
2077 completely read and returned. Any readable subranges before it
2078 (obviously, not starting at the beginning), will be ignored. In
2079 other cases -- either no readable subrange, or readable subrange(s)
2080 that is neither at the beginning, or end, nothing is returned.
2081
2082 The purpose of this function is to handle a read across a boundary
2083 of accessible memory in a case when memory map is not available.
2084 The above restrictions are fine for this case, but will give
2085 incorrect results if the memory is 'patchy'. However, supporting
2086 'patchy' memory would require trying to read every single byte,
2087 and it seems unacceptable solution. Explicit memory map is
2088 recommended for this case -- and target_read_memory_robust will
2089 take care of reading multiple ranges then. */
2090
2091 static void
2092 read_whatever_is_readable (struct target_ops *ops,
2093 ULONGEST begin, ULONGEST end,
2094 VEC(memory_read_result_s) **result)
2095 {
2096 gdb_byte *buf = xmalloc (end - begin);
2097 ULONGEST current_begin = begin;
2098 ULONGEST current_end = end;
2099 int forward;
2100 memory_read_result_s r;
2101
2102 /* If we previously failed to read 1 byte, nothing can be done here. */
2103 if (end - begin <= 1)
2104 {
2105 xfree (buf);
2106 return;
2107 }
2108
2109 /* Check that either first or the last byte is readable, and give up
2110 if not. This heuristic is meant to permit reading accessible memory
2111 at the boundary of accessible region. */
2112 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2113 buf, begin, 1) == 1)
2114 {
2115 forward = 1;
2116 ++current_begin;
2117 }
2118 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2119 buf + (end-begin) - 1, end - 1, 1) == 1)
2120 {
2121 forward = 0;
2122 --current_end;
2123 }
2124 else
2125 {
2126 xfree (buf);
2127 return;
2128 }
2129
2130 /* Loop invariant is that the [current_begin, current_end) was previously
2131 found to be not readable as a whole.
2132
2133 Note loop condition -- if the range has 1 byte, we can't divide the range
2134 so there's no point trying further. */
2135 while (current_end - current_begin > 1)
2136 {
2137 ULONGEST first_half_begin, first_half_end;
2138 ULONGEST second_half_begin, second_half_end;
2139 LONGEST xfer;
2140 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2141
2142 if (forward)
2143 {
2144 first_half_begin = current_begin;
2145 first_half_end = middle;
2146 second_half_begin = middle;
2147 second_half_end = current_end;
2148 }
2149 else
2150 {
2151 first_half_begin = middle;
2152 first_half_end = current_end;
2153 second_half_begin = current_begin;
2154 second_half_end = middle;
2155 }
2156
2157 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2158 buf + (first_half_begin - begin),
2159 first_half_begin,
2160 first_half_end - first_half_begin);
2161
2162 if (xfer == first_half_end - first_half_begin)
2163 {
2164 /* This half reads up fine. So, the error must be in the
2165 other half. */
2166 current_begin = second_half_begin;
2167 current_end = second_half_end;
2168 }
2169 else
2170 {
2171 /* This half is not readable. Because we've tried one byte, we
2172 know some part of this half if actually redable. Go to the next
2173 iteration to divide again and try to read.
2174
2175 We don't handle the other half, because this function only tries
2176 to read a single readable subrange. */
2177 current_begin = first_half_begin;
2178 current_end = first_half_end;
2179 }
2180 }
2181
2182 if (forward)
2183 {
2184 /* The [begin, current_begin) range has been read. */
2185 r.begin = begin;
2186 r.end = current_begin;
2187 r.data = buf;
2188 }
2189 else
2190 {
2191 /* The [current_end, end) range has been read. */
2192 LONGEST rlen = end - current_end;
2193
2194 r.data = xmalloc (rlen);
2195 memcpy (r.data, buf + current_end - begin, rlen);
2196 r.begin = current_end;
2197 r.end = end;
2198 xfree (buf);
2199 }
2200 VEC_safe_push(memory_read_result_s, (*result), &r);
2201 }
2202
2203 void
2204 free_memory_read_result_vector (void *x)
2205 {
2206 VEC(memory_read_result_s) *v = x;
2207 memory_read_result_s *current;
2208 int ix;
2209
2210 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2211 {
2212 xfree (current->data);
2213 }
2214 VEC_free (memory_read_result_s, v);
2215 }
2216
2217 VEC(memory_read_result_s) *
2218 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2219 {
2220 VEC(memory_read_result_s) *result = 0;
2221
2222 LONGEST xfered = 0;
2223 while (xfered < len)
2224 {
2225 struct mem_region *region = lookup_mem_region (offset + xfered);
2226 LONGEST rlen;
2227
2228 /* If there is no explicit region, a fake one should be created. */
2229 gdb_assert (region);
2230
2231 if (region->hi == 0)
2232 rlen = len - xfered;
2233 else
2234 rlen = region->hi - offset;
2235
2236 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2237 {
2238 /* Cannot read this region. Note that we can end up here only
2239 if the region is explicitly marked inaccessible, or
2240 'inaccessible-by-default' is in effect. */
2241 xfered += rlen;
2242 }
2243 else
2244 {
2245 LONGEST to_read = min (len - xfered, rlen);
2246 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2247
2248 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2249 (gdb_byte *) buffer,
2250 offset + xfered, to_read);
2251 /* Call an observer, notifying them of the xfer progress? */
2252 if (xfer <= 0)
2253 {
2254 /* Got an error reading full chunk. See if maybe we can read
2255 some subrange. */
2256 xfree (buffer);
2257 read_whatever_is_readable (ops, offset + xfered,
2258 offset + xfered + to_read, &result);
2259 xfered += to_read;
2260 }
2261 else
2262 {
2263 struct memory_read_result r;
2264 r.data = buffer;
2265 r.begin = offset + xfered;
2266 r.end = r.begin + xfer;
2267 VEC_safe_push (memory_read_result_s, result, &r);
2268 xfered += xfer;
2269 }
2270 QUIT;
2271 }
2272 }
2273 return result;
2274 }
2275
2276
2277 /* An alternative to target_write with progress callbacks. */
2278
2279 LONGEST
2280 target_write_with_progress (struct target_ops *ops,
2281 enum target_object object,
2282 const char *annex, const gdb_byte *buf,
2283 ULONGEST offset, LONGEST len,
2284 void (*progress) (ULONGEST, void *), void *baton)
2285 {
2286 LONGEST xfered = 0;
2287
2288 /* Give the progress callback a chance to set up. */
2289 if (progress)
2290 (*progress) (0, baton);
2291
2292 while (xfered < len)
2293 {
2294 LONGEST xfer = target_write_partial (ops, object, annex,
2295 (gdb_byte *) buf + xfered,
2296 offset + xfered, len - xfered);
2297
2298 if (xfer == 0)
2299 return xfered;
2300 if (xfer < 0)
2301 return -1;
2302
2303 if (progress)
2304 (*progress) (xfer, baton);
2305
2306 xfered += xfer;
2307 QUIT;
2308 }
2309 return len;
2310 }
2311
2312 /* For docs on target_write see target.h. */
2313
2314 LONGEST
2315 target_write (struct target_ops *ops,
2316 enum target_object object,
2317 const char *annex, const gdb_byte *buf,
2318 ULONGEST offset, LONGEST len)
2319 {
2320 return target_write_with_progress (ops, object, annex, buf, offset, len,
2321 NULL, NULL);
2322 }
2323
2324 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2325 the size of the transferred data. PADDING additional bytes are
2326 available in *BUF_P. This is a helper function for
2327 target_read_alloc; see the declaration of that function for more
2328 information. */
2329
2330 static LONGEST
2331 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2332 const char *annex, gdb_byte **buf_p, int padding)
2333 {
2334 size_t buf_alloc, buf_pos;
2335 gdb_byte *buf;
2336 LONGEST n;
2337
2338 /* This function does not have a length parameter; it reads the
2339 entire OBJECT). Also, it doesn't support objects fetched partly
2340 from one target and partly from another (in a different stratum,
2341 e.g. a core file and an executable). Both reasons make it
2342 unsuitable for reading memory. */
2343 gdb_assert (object != TARGET_OBJECT_MEMORY);
2344
2345 /* Start by reading up to 4K at a time. The target will throttle
2346 this number down if necessary. */
2347 buf_alloc = 4096;
2348 buf = xmalloc (buf_alloc);
2349 buf_pos = 0;
2350 while (1)
2351 {
2352 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2353 buf_pos, buf_alloc - buf_pos - padding);
2354 if (n < 0)
2355 {
2356 /* An error occurred. */
2357 xfree (buf);
2358 return -1;
2359 }
2360 else if (n == 0)
2361 {
2362 /* Read all there was. */
2363 if (buf_pos == 0)
2364 xfree (buf);
2365 else
2366 *buf_p = buf;
2367 return buf_pos;
2368 }
2369
2370 buf_pos += n;
2371
2372 /* If the buffer is filling up, expand it. */
2373 if (buf_alloc < buf_pos * 2)
2374 {
2375 buf_alloc *= 2;
2376 buf = xrealloc (buf, buf_alloc);
2377 }
2378
2379 QUIT;
2380 }
2381 }
2382
2383 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2384 the size of the transferred data. See the declaration in "target.h"
2385 function for more information about the return value. */
2386
2387 LONGEST
2388 target_read_alloc (struct target_ops *ops, enum target_object object,
2389 const char *annex, gdb_byte **buf_p)
2390 {
2391 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2392 }
2393
2394 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2395 returned as a string, allocated using xmalloc. If an error occurs
2396 or the transfer is unsupported, NULL is returned. Empty objects
2397 are returned as allocated but empty strings. A warning is issued
2398 if the result contains any embedded NUL bytes. */
2399
2400 char *
2401 target_read_stralloc (struct target_ops *ops, enum target_object object,
2402 const char *annex)
2403 {
2404 gdb_byte *buffer;
2405 char *bufstr;
2406 LONGEST i, transferred;
2407
2408 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2409 bufstr = (char *) buffer;
2410
2411 if (transferred < 0)
2412 return NULL;
2413
2414 if (transferred == 0)
2415 return xstrdup ("");
2416
2417 bufstr[transferred] = 0;
2418
2419 /* Check for embedded NUL bytes; but allow trailing NULs. */
2420 for (i = strlen (bufstr); i < transferred; i++)
2421 if (bufstr[i] != 0)
2422 {
2423 warning (_("target object %d, annex %s, "
2424 "contained unexpected null characters"),
2425 (int) object, annex ? annex : "(none)");
2426 break;
2427 }
2428
2429 return bufstr;
2430 }
2431
2432 /* Memory transfer methods. */
2433
2434 void
2435 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2436 LONGEST len)
2437 {
2438 /* This method is used to read from an alternate, non-current
2439 target. This read must bypass the overlay support (as symbols
2440 don't match this target), and GDB's internal cache (wrong cache
2441 for this target). */
2442 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2443 != len)
2444 memory_error (TARGET_XFER_E_IO, addr);
2445 }
2446
2447 ULONGEST
2448 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2449 int len, enum bfd_endian byte_order)
2450 {
2451 gdb_byte buf[sizeof (ULONGEST)];
2452
2453 gdb_assert (len <= sizeof (buf));
2454 get_target_memory (ops, addr, buf, len);
2455 return extract_unsigned_integer (buf, len, byte_order);
2456 }
2457
2458 int
2459 target_insert_breakpoint (struct gdbarch *gdbarch,
2460 struct bp_target_info *bp_tgt)
2461 {
2462 if (!may_insert_breakpoints)
2463 {
2464 warning (_("May not insert breakpoints"));
2465 return 1;
2466 }
2467
2468 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2469 }
2470
2471 int
2472 target_remove_breakpoint (struct gdbarch *gdbarch,
2473 struct bp_target_info *bp_tgt)
2474 {
2475 /* This is kind of a weird case to handle, but the permission might
2476 have been changed after breakpoints were inserted - in which case
2477 we should just take the user literally and assume that any
2478 breakpoints should be left in place. */
2479 if (!may_insert_breakpoints)
2480 {
2481 warning (_("May not remove breakpoints"));
2482 return 1;
2483 }
2484
2485 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2486 }
2487
2488 static void
2489 target_info (char *args, int from_tty)
2490 {
2491 struct target_ops *t;
2492 int has_all_mem = 0;
2493
2494 if (symfile_objfile != NULL)
2495 printf_unfiltered (_("Symbols from \"%s\".\n"),
2496 objfile_name (symfile_objfile));
2497
2498 for (t = target_stack; t != NULL; t = t->beneath)
2499 {
2500 if (!(*t->to_has_memory) (t))
2501 continue;
2502
2503 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2504 continue;
2505 if (has_all_mem)
2506 printf_unfiltered (_("\tWhile running this, "
2507 "GDB does not access memory from...\n"));
2508 printf_unfiltered ("%s:\n", t->to_longname);
2509 (t->to_files_info) (t);
2510 has_all_mem = (*t->to_has_all_memory) (t);
2511 }
2512 }
2513
2514 /* This function is called before any new inferior is created, e.g.
2515 by running a program, attaching, or connecting to a target.
2516 It cleans up any state from previous invocations which might
2517 change between runs. This is a subset of what target_preopen
2518 resets (things which might change between targets). */
2519
2520 void
2521 target_pre_inferior (int from_tty)
2522 {
2523 /* Clear out solib state. Otherwise the solib state of the previous
2524 inferior might have survived and is entirely wrong for the new
2525 target. This has been observed on GNU/Linux using glibc 2.3. How
2526 to reproduce:
2527
2528 bash$ ./foo&
2529 [1] 4711
2530 bash$ ./foo&
2531 [1] 4712
2532 bash$ gdb ./foo
2533 [...]
2534 (gdb) attach 4711
2535 (gdb) detach
2536 (gdb) attach 4712
2537 Cannot access memory at address 0xdeadbeef
2538 */
2539
2540 /* In some OSs, the shared library list is the same/global/shared
2541 across inferiors. If code is shared between processes, so are
2542 memory regions and features. */
2543 if (!gdbarch_has_global_solist (target_gdbarch ()))
2544 {
2545 no_shared_libraries (NULL, from_tty);
2546
2547 invalidate_target_mem_regions ();
2548
2549 target_clear_description ();
2550 }
2551
2552 agent_capability_invalidate ();
2553 }
2554
2555 /* Callback for iterate_over_inferiors. Gets rid of the given
2556 inferior. */
2557
2558 static int
2559 dispose_inferior (struct inferior *inf, void *args)
2560 {
2561 struct thread_info *thread;
2562
2563 thread = any_thread_of_process (inf->pid);
2564 if (thread)
2565 {
2566 switch_to_thread (thread->ptid);
2567
2568 /* Core inferiors actually should be detached, not killed. */
2569 if (target_has_execution)
2570 target_kill ();
2571 else
2572 target_detach (NULL, 0);
2573 }
2574
2575 return 0;
2576 }
2577
2578 /* This is to be called by the open routine before it does
2579 anything. */
2580
2581 void
2582 target_preopen (int from_tty)
2583 {
2584 dont_repeat ();
2585
2586 if (have_inferiors ())
2587 {
2588 if (!from_tty
2589 || !have_live_inferiors ()
2590 || query (_("A program is being debugged already. Kill it? ")))
2591 iterate_over_inferiors (dispose_inferior, NULL);
2592 else
2593 error (_("Program not killed."));
2594 }
2595
2596 /* Calling target_kill may remove the target from the stack. But if
2597 it doesn't (which seems like a win for UDI), remove it now. */
2598 /* Leave the exec target, though. The user may be switching from a
2599 live process to a core of the same program. */
2600 pop_all_targets_above (file_stratum);
2601
2602 target_pre_inferior (from_tty);
2603 }
2604
2605 /* Detach a target after doing deferred register stores. */
2606
2607 void
2608 target_detach (char *args, int from_tty)
2609 {
2610 struct target_ops* t;
2611
2612 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2613 /* Don't remove global breakpoints here. They're removed on
2614 disconnection from the target. */
2615 ;
2616 else
2617 /* If we're in breakpoints-always-inserted mode, have to remove
2618 them before detaching. */
2619 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2620
2621 prepare_for_detach ();
2622
2623 for (t = current_target.beneath; t != NULL; t = t->beneath)
2624 {
2625 if (t->to_detach != NULL)
2626 {
2627 t->to_detach (t, args, from_tty);
2628 if (targetdebug)
2629 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2630 args, from_tty);
2631 return;
2632 }
2633 }
2634
2635 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2636 }
2637
2638 void
2639 target_disconnect (char *args, int from_tty)
2640 {
2641 struct target_ops *t;
2642
2643 /* If we're in breakpoints-always-inserted mode or if breakpoints
2644 are global across processes, we have to remove them before
2645 disconnecting. */
2646 remove_breakpoints ();
2647
2648 for (t = current_target.beneath; t != NULL; t = t->beneath)
2649 if (t->to_disconnect != NULL)
2650 {
2651 if (targetdebug)
2652 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2653 args, from_tty);
2654 t->to_disconnect (t, args, from_tty);
2655 return;
2656 }
2657
2658 tcomplain ();
2659 }
2660
2661 ptid_t
2662 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2663 {
2664 struct target_ops *t;
2665
2666 for (t = current_target.beneath; t != NULL; t = t->beneath)
2667 {
2668 if (t->to_wait != NULL)
2669 {
2670 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2671
2672 if (targetdebug)
2673 {
2674 char *status_string;
2675 char *options_string;
2676
2677 status_string = target_waitstatus_to_string (status);
2678 options_string = target_options_to_string (options);
2679 fprintf_unfiltered (gdb_stdlog,
2680 "target_wait (%d, status, options={%s})"
2681 " = %d, %s\n",
2682 ptid_get_pid (ptid), options_string,
2683 ptid_get_pid (retval), status_string);
2684 xfree (status_string);
2685 xfree (options_string);
2686 }
2687
2688 return retval;
2689 }
2690 }
2691
2692 noprocess ();
2693 }
2694
2695 char *
2696 target_pid_to_str (ptid_t ptid)
2697 {
2698 struct target_ops *t;
2699
2700 for (t = current_target.beneath; t != NULL; t = t->beneath)
2701 {
2702 if (t->to_pid_to_str != NULL)
2703 return (*t->to_pid_to_str) (t, ptid);
2704 }
2705
2706 return normal_pid_to_str (ptid);
2707 }
2708
2709 char *
2710 target_thread_name (struct thread_info *info)
2711 {
2712 struct target_ops *t;
2713
2714 for (t = current_target.beneath; t != NULL; t = t->beneath)
2715 {
2716 if (t->to_thread_name != NULL)
2717 return (*t->to_thread_name) (info);
2718 }
2719
2720 return NULL;
2721 }
2722
2723 void
2724 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2725 {
2726 struct target_ops *t;
2727
2728 target_dcache_invalidate ();
2729
2730 for (t = current_target.beneath; t != NULL; t = t->beneath)
2731 {
2732 if (t->to_resume != NULL)
2733 {
2734 t->to_resume (t, ptid, step, signal);
2735 if (targetdebug)
2736 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2737 ptid_get_pid (ptid),
2738 step ? "step" : "continue",
2739 gdb_signal_to_name (signal));
2740
2741 registers_changed_ptid (ptid);
2742 set_executing (ptid, 1);
2743 set_running (ptid, 1);
2744 clear_inline_frame_state (ptid);
2745 return;
2746 }
2747 }
2748
2749 noprocess ();
2750 }
2751
2752 void
2753 target_pass_signals (int numsigs, unsigned char *pass_signals)
2754 {
2755 struct target_ops *t;
2756
2757 for (t = current_target.beneath; t != NULL; t = t->beneath)
2758 {
2759 if (t->to_pass_signals != NULL)
2760 {
2761 if (targetdebug)
2762 {
2763 int i;
2764
2765 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2766 numsigs);
2767
2768 for (i = 0; i < numsigs; i++)
2769 if (pass_signals[i])
2770 fprintf_unfiltered (gdb_stdlog, " %s",
2771 gdb_signal_to_name (i));
2772
2773 fprintf_unfiltered (gdb_stdlog, " })\n");
2774 }
2775
2776 (*t->to_pass_signals) (numsigs, pass_signals);
2777 return;
2778 }
2779 }
2780 }
2781
2782 void
2783 target_program_signals (int numsigs, unsigned char *program_signals)
2784 {
2785 struct target_ops *t;
2786
2787 for (t = current_target.beneath; t != NULL; t = t->beneath)
2788 {
2789 if (t->to_program_signals != NULL)
2790 {
2791 if (targetdebug)
2792 {
2793 int i;
2794
2795 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2796 numsigs);
2797
2798 for (i = 0; i < numsigs; i++)
2799 if (program_signals[i])
2800 fprintf_unfiltered (gdb_stdlog, " %s",
2801 gdb_signal_to_name (i));
2802
2803 fprintf_unfiltered (gdb_stdlog, " })\n");
2804 }
2805
2806 (*t->to_program_signals) (numsigs, program_signals);
2807 return;
2808 }
2809 }
2810 }
2811
2812 /* Look through the list of possible targets for a target that can
2813 follow forks. */
2814
2815 int
2816 target_follow_fork (int follow_child, int detach_fork)
2817 {
2818 struct target_ops *t;
2819
2820 for (t = current_target.beneath; t != NULL; t = t->beneath)
2821 {
2822 if (t->to_follow_fork != NULL)
2823 {
2824 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2825
2826 if (targetdebug)
2827 fprintf_unfiltered (gdb_stdlog,
2828 "target_follow_fork (%d, %d) = %d\n",
2829 follow_child, detach_fork, retval);
2830 return retval;
2831 }
2832 }
2833
2834 /* Some target returned a fork event, but did not know how to follow it. */
2835 internal_error (__FILE__, __LINE__,
2836 _("could not find a target to follow fork"));
2837 }
2838
2839 void
2840 target_mourn_inferior (void)
2841 {
2842 struct target_ops *t;
2843
2844 for (t = current_target.beneath; t != NULL; t = t->beneath)
2845 {
2846 if (t->to_mourn_inferior != NULL)
2847 {
2848 t->to_mourn_inferior (t);
2849 if (targetdebug)
2850 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2851
2852 /* We no longer need to keep handles on any of the object files.
2853 Make sure to release them to avoid unnecessarily locking any
2854 of them while we're not actually debugging. */
2855 bfd_cache_close_all ();
2856
2857 return;
2858 }
2859 }
2860
2861 internal_error (__FILE__, __LINE__,
2862 _("could not find a target to follow mourn inferior"));
2863 }
2864
2865 /* Look for a target which can describe architectural features, starting
2866 from TARGET. If we find one, return its description. */
2867
2868 const struct target_desc *
2869 target_read_description (struct target_ops *target)
2870 {
2871 struct target_ops *t;
2872
2873 for (t = target; t != NULL; t = t->beneath)
2874 if (t->to_read_description != NULL)
2875 {
2876 const struct target_desc *tdesc;
2877
2878 tdesc = t->to_read_description (t);
2879 if (tdesc)
2880 return tdesc;
2881 }
2882
2883 return NULL;
2884 }
2885
2886 /* The default implementation of to_search_memory.
2887 This implements a basic search of memory, reading target memory and
2888 performing the search here (as opposed to performing the search in on the
2889 target side with, for example, gdbserver). */
2890
2891 int
2892 simple_search_memory (struct target_ops *ops,
2893 CORE_ADDR start_addr, ULONGEST search_space_len,
2894 const gdb_byte *pattern, ULONGEST pattern_len,
2895 CORE_ADDR *found_addrp)
2896 {
2897 /* NOTE: also defined in find.c testcase. */
2898 #define SEARCH_CHUNK_SIZE 16000
2899 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2900 /* Buffer to hold memory contents for searching. */
2901 gdb_byte *search_buf;
2902 unsigned search_buf_size;
2903 struct cleanup *old_cleanups;
2904
2905 search_buf_size = chunk_size + pattern_len - 1;
2906
2907 /* No point in trying to allocate a buffer larger than the search space. */
2908 if (search_space_len < search_buf_size)
2909 search_buf_size = search_space_len;
2910
2911 search_buf = malloc (search_buf_size);
2912 if (search_buf == NULL)
2913 error (_("Unable to allocate memory to perform the search."));
2914 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2915
2916 /* Prime the search buffer. */
2917
2918 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2919 search_buf, start_addr, search_buf_size) != search_buf_size)
2920 {
2921 warning (_("Unable to access %s bytes of target "
2922 "memory at %s, halting search."),
2923 pulongest (search_buf_size), hex_string (start_addr));
2924 do_cleanups (old_cleanups);
2925 return -1;
2926 }
2927
2928 /* Perform the search.
2929
2930 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2931 When we've scanned N bytes we copy the trailing bytes to the start and
2932 read in another N bytes. */
2933
2934 while (search_space_len >= pattern_len)
2935 {
2936 gdb_byte *found_ptr;
2937 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2938
2939 found_ptr = memmem (search_buf, nr_search_bytes,
2940 pattern, pattern_len);
2941
2942 if (found_ptr != NULL)
2943 {
2944 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2945
2946 *found_addrp = found_addr;
2947 do_cleanups (old_cleanups);
2948 return 1;
2949 }
2950
2951 /* Not found in this chunk, skip to next chunk. */
2952
2953 /* Don't let search_space_len wrap here, it's unsigned. */
2954 if (search_space_len >= chunk_size)
2955 search_space_len -= chunk_size;
2956 else
2957 search_space_len = 0;
2958
2959 if (search_space_len >= pattern_len)
2960 {
2961 unsigned keep_len = search_buf_size - chunk_size;
2962 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2963 int nr_to_read;
2964
2965 /* Copy the trailing part of the previous iteration to the front
2966 of the buffer for the next iteration. */
2967 gdb_assert (keep_len == pattern_len - 1);
2968 memcpy (search_buf, search_buf + chunk_size, keep_len);
2969
2970 nr_to_read = min (search_space_len - keep_len, chunk_size);
2971
2972 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2973 search_buf + keep_len, read_addr,
2974 nr_to_read) != nr_to_read)
2975 {
2976 warning (_("Unable to access %s bytes of target "
2977 "memory at %s, halting search."),
2978 plongest (nr_to_read),
2979 hex_string (read_addr));
2980 do_cleanups (old_cleanups);
2981 return -1;
2982 }
2983
2984 start_addr += chunk_size;
2985 }
2986 }
2987
2988 /* Not found. */
2989
2990 do_cleanups (old_cleanups);
2991 return 0;
2992 }
2993
2994 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2995 sequence of bytes in PATTERN with length PATTERN_LEN.
2996
2997 The result is 1 if found, 0 if not found, and -1 if there was an error
2998 requiring halting of the search (e.g. memory read error).
2999 If the pattern is found the address is recorded in FOUND_ADDRP. */
3000
3001 int
3002 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
3003 const gdb_byte *pattern, ULONGEST pattern_len,
3004 CORE_ADDR *found_addrp)
3005 {
3006 struct target_ops *t;
3007 int found;
3008
3009 /* We don't use INHERIT to set current_target.to_search_memory,
3010 so we have to scan the target stack and handle targetdebug
3011 ourselves. */
3012
3013 if (targetdebug)
3014 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3015 hex_string (start_addr));
3016
3017 for (t = current_target.beneath; t != NULL; t = t->beneath)
3018 if (t->to_search_memory != NULL)
3019 break;
3020
3021 if (t != NULL)
3022 {
3023 found = t->to_search_memory (t, start_addr, search_space_len,
3024 pattern, pattern_len, found_addrp);
3025 }
3026 else
3027 {
3028 /* If a special version of to_search_memory isn't available, use the
3029 simple version. */
3030 found = simple_search_memory (current_target.beneath,
3031 start_addr, search_space_len,
3032 pattern, pattern_len, found_addrp);
3033 }
3034
3035 if (targetdebug)
3036 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3037
3038 return found;
3039 }
3040
3041 /* Look through the currently pushed targets. If none of them will
3042 be able to restart the currently running process, issue an error
3043 message. */
3044
3045 void
3046 target_require_runnable (void)
3047 {
3048 struct target_ops *t;
3049
3050 for (t = target_stack; t != NULL; t = t->beneath)
3051 {
3052 /* If this target knows how to create a new program, then
3053 assume we will still be able to after killing the current
3054 one. Either killing and mourning will not pop T, or else
3055 find_default_run_target will find it again. */
3056 if (t->to_create_inferior != NULL)
3057 return;
3058
3059 /* Do not worry about thread_stratum targets that can not
3060 create inferiors. Assume they will be pushed again if
3061 necessary, and continue to the process_stratum. */
3062 if (t->to_stratum == thread_stratum
3063 || t->to_stratum == arch_stratum)
3064 continue;
3065
3066 error (_("The \"%s\" target does not support \"run\". "
3067 "Try \"help target\" or \"continue\"."),
3068 t->to_shortname);
3069 }
3070
3071 /* This function is only called if the target is running. In that
3072 case there should have been a process_stratum target and it
3073 should either know how to create inferiors, or not... */
3074 internal_error (__FILE__, __LINE__, _("No targets found"));
3075 }
3076
3077 /* Look through the list of possible targets for a target that can
3078 execute a run or attach command without any other data. This is
3079 used to locate the default process stratum.
3080
3081 If DO_MESG is not NULL, the result is always valid (error() is
3082 called for errors); else, return NULL on error. */
3083
3084 static struct target_ops *
3085 find_default_run_target (char *do_mesg)
3086 {
3087 struct target_ops **t;
3088 struct target_ops *runable = NULL;
3089 int count;
3090
3091 count = 0;
3092
3093 for (t = target_structs; t < target_structs + target_struct_size;
3094 ++t)
3095 {
3096 if ((*t)->to_can_run && target_can_run (*t))
3097 {
3098 runable = *t;
3099 ++count;
3100 }
3101 }
3102
3103 if (count != 1)
3104 {
3105 if (do_mesg)
3106 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3107 else
3108 return NULL;
3109 }
3110
3111 return runable;
3112 }
3113
3114 void
3115 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3116 {
3117 struct target_ops *t;
3118
3119 t = find_default_run_target ("attach");
3120 (t->to_attach) (t, args, from_tty);
3121 return;
3122 }
3123
3124 void
3125 find_default_create_inferior (struct target_ops *ops,
3126 char *exec_file, char *allargs, char **env,
3127 int from_tty)
3128 {
3129 struct target_ops *t;
3130
3131 t = find_default_run_target ("run");
3132 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3133 return;
3134 }
3135
3136 static int
3137 find_default_can_async_p (void)
3138 {
3139 struct target_ops *t;
3140
3141 /* This may be called before the target is pushed on the stack;
3142 look for the default process stratum. If there's none, gdb isn't
3143 configured with a native debugger, and target remote isn't
3144 connected yet. */
3145 t = find_default_run_target (NULL);
3146 if (t && t->to_can_async_p)
3147 return (t->to_can_async_p) ();
3148 return 0;
3149 }
3150
3151 static int
3152 find_default_is_async_p (void)
3153 {
3154 struct target_ops *t;
3155
3156 /* This may be called before the target is pushed on the stack;
3157 look for the default process stratum. If there's none, gdb isn't
3158 configured with a native debugger, and target remote isn't
3159 connected yet. */
3160 t = find_default_run_target (NULL);
3161 if (t && t->to_is_async_p)
3162 return (t->to_is_async_p) ();
3163 return 0;
3164 }
3165
3166 static int
3167 find_default_supports_non_stop (void)
3168 {
3169 struct target_ops *t;
3170
3171 t = find_default_run_target (NULL);
3172 if (t && t->to_supports_non_stop)
3173 return (t->to_supports_non_stop) ();
3174 return 0;
3175 }
3176
3177 int
3178 target_supports_non_stop (void)
3179 {
3180 struct target_ops *t;
3181
3182 for (t = &current_target; t != NULL; t = t->beneath)
3183 if (t->to_supports_non_stop)
3184 return t->to_supports_non_stop ();
3185
3186 return 0;
3187 }
3188
3189 /* Implement the "info proc" command. */
3190
3191 int
3192 target_info_proc (char *args, enum info_proc_what what)
3193 {
3194 struct target_ops *t;
3195
3196 /* If we're already connected to something that can get us OS
3197 related data, use it. Otherwise, try using the native
3198 target. */
3199 if (current_target.to_stratum >= process_stratum)
3200 t = current_target.beneath;
3201 else
3202 t = find_default_run_target (NULL);
3203
3204 for (; t != NULL; t = t->beneath)
3205 {
3206 if (t->to_info_proc != NULL)
3207 {
3208 t->to_info_proc (t, args, what);
3209
3210 if (targetdebug)
3211 fprintf_unfiltered (gdb_stdlog,
3212 "target_info_proc (\"%s\", %d)\n", args, what);
3213
3214 return 1;
3215 }
3216 }
3217
3218 return 0;
3219 }
3220
3221 static int
3222 find_default_supports_disable_randomization (void)
3223 {
3224 struct target_ops *t;
3225
3226 t = find_default_run_target (NULL);
3227 if (t && t->to_supports_disable_randomization)
3228 return (t->to_supports_disable_randomization) ();
3229 return 0;
3230 }
3231
3232 int
3233 target_supports_disable_randomization (void)
3234 {
3235 struct target_ops *t;
3236
3237 for (t = &current_target; t != NULL; t = t->beneath)
3238 if (t->to_supports_disable_randomization)
3239 return t->to_supports_disable_randomization ();
3240
3241 return 0;
3242 }
3243
3244 char *
3245 target_get_osdata (const char *type)
3246 {
3247 struct target_ops *t;
3248
3249 /* If we're already connected to something that can get us OS
3250 related data, use it. Otherwise, try using the native
3251 target. */
3252 if (current_target.to_stratum >= process_stratum)
3253 t = current_target.beneath;
3254 else
3255 t = find_default_run_target ("get OS data");
3256
3257 if (!t)
3258 return NULL;
3259
3260 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3261 }
3262
3263 /* Determine the current address space of thread PTID. */
3264
3265 struct address_space *
3266 target_thread_address_space (ptid_t ptid)
3267 {
3268 struct address_space *aspace;
3269 struct inferior *inf;
3270 struct target_ops *t;
3271
3272 for (t = current_target.beneath; t != NULL; t = t->beneath)
3273 {
3274 if (t->to_thread_address_space != NULL)
3275 {
3276 aspace = t->to_thread_address_space (t, ptid);
3277 gdb_assert (aspace);
3278
3279 if (targetdebug)
3280 fprintf_unfiltered (gdb_stdlog,
3281 "target_thread_address_space (%s) = %d\n",
3282 target_pid_to_str (ptid),
3283 address_space_num (aspace));
3284 return aspace;
3285 }
3286 }
3287
3288 /* Fall-back to the "main" address space of the inferior. */
3289 inf = find_inferior_pid (ptid_get_pid (ptid));
3290
3291 if (inf == NULL || inf->aspace == NULL)
3292 internal_error (__FILE__, __LINE__,
3293 _("Can't determine the current "
3294 "address space of thread %s\n"),
3295 target_pid_to_str (ptid));
3296
3297 return inf->aspace;
3298 }
3299
3300
3301 /* Target file operations. */
3302
3303 static struct target_ops *
3304 default_fileio_target (void)
3305 {
3306 /* If we're already connected to something that can perform
3307 file I/O, use it. Otherwise, try using the native target. */
3308 if (current_target.to_stratum >= process_stratum)
3309 return current_target.beneath;
3310 else
3311 return find_default_run_target ("file I/O");
3312 }
3313
3314 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3315 target file descriptor, or -1 if an error occurs (and set
3316 *TARGET_ERRNO). */
3317 int
3318 target_fileio_open (const char *filename, int flags, int mode,
3319 int *target_errno)
3320 {
3321 struct target_ops *t;
3322
3323 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3324 {
3325 if (t->to_fileio_open != NULL)
3326 {
3327 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3328
3329 if (targetdebug)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3332 filename, flags, mode,
3333 fd, fd != -1 ? 0 : *target_errno);
3334 return fd;
3335 }
3336 }
3337
3338 *target_errno = FILEIO_ENOSYS;
3339 return -1;
3340 }
3341
3342 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3343 Return the number of bytes written, or -1 if an error occurs
3344 (and set *TARGET_ERRNO). */
3345 int
3346 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3347 ULONGEST offset, int *target_errno)
3348 {
3349 struct target_ops *t;
3350
3351 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3352 {
3353 if (t->to_fileio_pwrite != NULL)
3354 {
3355 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3356 target_errno);
3357
3358 if (targetdebug)
3359 fprintf_unfiltered (gdb_stdlog,
3360 "target_fileio_pwrite (%d,...,%d,%s) "
3361 "= %d (%d)\n",
3362 fd, len, pulongest (offset),
3363 ret, ret != -1 ? 0 : *target_errno);
3364 return ret;
3365 }
3366 }
3367
3368 *target_errno = FILEIO_ENOSYS;
3369 return -1;
3370 }
3371
3372 /* Read up to LEN bytes FD on the target into READ_BUF.
3373 Return the number of bytes read, or -1 if an error occurs
3374 (and set *TARGET_ERRNO). */
3375 int
3376 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3377 ULONGEST offset, int *target_errno)
3378 {
3379 struct target_ops *t;
3380
3381 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3382 {
3383 if (t->to_fileio_pread != NULL)
3384 {
3385 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3386 target_errno);
3387
3388 if (targetdebug)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "target_fileio_pread (%d,...,%d,%s) "
3391 "= %d (%d)\n",
3392 fd, len, pulongest (offset),
3393 ret, ret != -1 ? 0 : *target_errno);
3394 return ret;
3395 }
3396 }
3397
3398 *target_errno = FILEIO_ENOSYS;
3399 return -1;
3400 }
3401
3402 /* Close FD on the target. Return 0, or -1 if an error occurs
3403 (and set *TARGET_ERRNO). */
3404 int
3405 target_fileio_close (int fd, int *target_errno)
3406 {
3407 struct target_ops *t;
3408
3409 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3410 {
3411 if (t->to_fileio_close != NULL)
3412 {
3413 int ret = t->to_fileio_close (fd, target_errno);
3414
3415 if (targetdebug)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "target_fileio_close (%d) = %d (%d)\n",
3418 fd, ret, ret != -1 ? 0 : *target_errno);
3419 return ret;
3420 }
3421 }
3422
3423 *target_errno = FILEIO_ENOSYS;
3424 return -1;
3425 }
3426
3427 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3428 occurs (and set *TARGET_ERRNO). */
3429 int
3430 target_fileio_unlink (const char *filename, int *target_errno)
3431 {
3432 struct target_ops *t;
3433
3434 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3435 {
3436 if (t->to_fileio_unlink != NULL)
3437 {
3438 int ret = t->to_fileio_unlink (filename, target_errno);
3439
3440 if (targetdebug)
3441 fprintf_unfiltered (gdb_stdlog,
3442 "target_fileio_unlink (%s) = %d (%d)\n",
3443 filename, ret, ret != -1 ? 0 : *target_errno);
3444 return ret;
3445 }
3446 }
3447
3448 *target_errno = FILEIO_ENOSYS;
3449 return -1;
3450 }
3451
3452 /* Read value of symbolic link FILENAME on the target. Return a
3453 null-terminated string allocated via xmalloc, or NULL if an error
3454 occurs (and set *TARGET_ERRNO). */
3455 char *
3456 target_fileio_readlink (const char *filename, int *target_errno)
3457 {
3458 struct target_ops *t;
3459
3460 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3461 {
3462 if (t->to_fileio_readlink != NULL)
3463 {
3464 char *ret = t->to_fileio_readlink (filename, target_errno);
3465
3466 if (targetdebug)
3467 fprintf_unfiltered (gdb_stdlog,
3468 "target_fileio_readlink (%s) = %s (%d)\n",
3469 filename, ret? ret : "(nil)",
3470 ret? 0 : *target_errno);
3471 return ret;
3472 }
3473 }
3474
3475 *target_errno = FILEIO_ENOSYS;
3476 return NULL;
3477 }
3478
3479 static void
3480 target_fileio_close_cleanup (void *opaque)
3481 {
3482 int fd = *(int *) opaque;
3483 int target_errno;
3484
3485 target_fileio_close (fd, &target_errno);
3486 }
3487
3488 /* Read target file FILENAME. Store the result in *BUF_P and
3489 return the size of the transferred data. PADDING additional bytes are
3490 available in *BUF_P. This is a helper function for
3491 target_fileio_read_alloc; see the declaration of that function for more
3492 information. */
3493
3494 static LONGEST
3495 target_fileio_read_alloc_1 (const char *filename,
3496 gdb_byte **buf_p, int padding)
3497 {
3498 struct cleanup *close_cleanup;
3499 size_t buf_alloc, buf_pos;
3500 gdb_byte *buf;
3501 LONGEST n;
3502 int fd;
3503 int target_errno;
3504
3505 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3506 if (fd == -1)
3507 return -1;
3508
3509 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3510
3511 /* Start by reading up to 4K at a time. The target will throttle
3512 this number down if necessary. */
3513 buf_alloc = 4096;
3514 buf = xmalloc (buf_alloc);
3515 buf_pos = 0;
3516 while (1)
3517 {
3518 n = target_fileio_pread (fd, &buf[buf_pos],
3519 buf_alloc - buf_pos - padding, buf_pos,
3520 &target_errno);
3521 if (n < 0)
3522 {
3523 /* An error occurred. */
3524 do_cleanups (close_cleanup);
3525 xfree (buf);
3526 return -1;
3527 }
3528 else if (n == 0)
3529 {
3530 /* Read all there was. */
3531 do_cleanups (close_cleanup);
3532 if (buf_pos == 0)
3533 xfree (buf);
3534 else
3535 *buf_p = buf;
3536 return buf_pos;
3537 }
3538
3539 buf_pos += n;
3540
3541 /* If the buffer is filling up, expand it. */
3542 if (buf_alloc < buf_pos * 2)
3543 {
3544 buf_alloc *= 2;
3545 buf = xrealloc (buf, buf_alloc);
3546 }
3547
3548 QUIT;
3549 }
3550 }
3551
3552 /* Read target file FILENAME. Store the result in *BUF_P and return
3553 the size of the transferred data. See the declaration in "target.h"
3554 function for more information about the return value. */
3555
3556 LONGEST
3557 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3558 {
3559 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3560 }
3561
3562 /* Read target file FILENAME. The result is NUL-terminated and
3563 returned as a string, allocated using xmalloc. If an error occurs
3564 or the transfer is unsupported, NULL is returned. Empty objects
3565 are returned as allocated but empty strings. A warning is issued
3566 if the result contains any embedded NUL bytes. */
3567
3568 char *
3569 target_fileio_read_stralloc (const char *filename)
3570 {
3571 gdb_byte *buffer;
3572 char *bufstr;
3573 LONGEST i, transferred;
3574
3575 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3576 bufstr = (char *) buffer;
3577
3578 if (transferred < 0)
3579 return NULL;
3580
3581 if (transferred == 0)
3582 return xstrdup ("");
3583
3584 bufstr[transferred] = 0;
3585
3586 /* Check for embedded NUL bytes; but allow trailing NULs. */
3587 for (i = strlen (bufstr); i < transferred; i++)
3588 if (bufstr[i] != 0)
3589 {
3590 warning (_("target file %s "
3591 "contained unexpected null characters"),
3592 filename);
3593 break;
3594 }
3595
3596 return bufstr;
3597 }
3598
3599
3600 static int
3601 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3602 {
3603 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3604 }
3605
3606 static int
3607 default_watchpoint_addr_within_range (struct target_ops *target,
3608 CORE_ADDR addr,
3609 CORE_ADDR start, int length)
3610 {
3611 return addr >= start && addr < start + length;
3612 }
3613
3614 static struct gdbarch *
3615 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3616 {
3617 return target_gdbarch ();
3618 }
3619
3620 static int
3621 return_zero (void)
3622 {
3623 return 0;
3624 }
3625
3626 static int
3627 return_one (void)
3628 {
3629 return 1;
3630 }
3631
3632 static int
3633 return_minus_one (void)
3634 {
3635 return -1;
3636 }
3637
3638 /*
3639 * Find the next target down the stack from the specified target.
3640 */
3641
3642 struct target_ops *
3643 find_target_beneath (struct target_ops *t)
3644 {
3645 return t->beneath;
3646 }
3647
3648 \f
3649 /* The inferior process has died. Long live the inferior! */
3650
3651 void
3652 generic_mourn_inferior (void)
3653 {
3654 ptid_t ptid;
3655
3656 ptid = inferior_ptid;
3657 inferior_ptid = null_ptid;
3658
3659 /* Mark breakpoints uninserted in case something tries to delete a
3660 breakpoint while we delete the inferior's threads (which would
3661 fail, since the inferior is long gone). */
3662 mark_breakpoints_out ();
3663
3664 if (!ptid_equal (ptid, null_ptid))
3665 {
3666 int pid = ptid_get_pid (ptid);
3667 exit_inferior (pid);
3668 }
3669
3670 /* Note this wipes step-resume breakpoints, so needs to be done
3671 after exit_inferior, which ends up referencing the step-resume
3672 breakpoints through clear_thread_inferior_resources. */
3673 breakpoint_init_inferior (inf_exited);
3674
3675 registers_changed ();
3676
3677 reopen_exec_file ();
3678 reinit_frame_cache ();
3679
3680 if (deprecated_detach_hook)
3681 deprecated_detach_hook ();
3682 }
3683 \f
3684 /* Convert a normal process ID to a string. Returns the string in a
3685 static buffer. */
3686
3687 char *
3688 normal_pid_to_str (ptid_t ptid)
3689 {
3690 static char buf[32];
3691
3692 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3693 return buf;
3694 }
3695
3696 static char *
3697 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3698 {
3699 return normal_pid_to_str (ptid);
3700 }
3701
3702 /* Error-catcher for target_find_memory_regions. */
3703 static int
3704 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3705 {
3706 error (_("Command not implemented for this target."));
3707 return 0;
3708 }
3709
3710 /* Error-catcher for target_make_corefile_notes. */
3711 static char *
3712 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3713 {
3714 error (_("Command not implemented for this target."));
3715 return NULL;
3716 }
3717
3718 /* Error-catcher for target_get_bookmark. */
3719 static gdb_byte *
3720 dummy_get_bookmark (char *ignore1, int ignore2)
3721 {
3722 tcomplain ();
3723 return NULL;
3724 }
3725
3726 /* Error-catcher for target_goto_bookmark. */
3727 static void
3728 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3729 {
3730 tcomplain ();
3731 }
3732
3733 /* Set up the handful of non-empty slots needed by the dummy target
3734 vector. */
3735
3736 static void
3737 init_dummy_target (void)
3738 {
3739 dummy_target.to_shortname = "None";
3740 dummy_target.to_longname = "None";
3741 dummy_target.to_doc = "";
3742 dummy_target.to_attach = find_default_attach;
3743 dummy_target.to_detach =
3744 (void (*)(struct target_ops *, char *, int))target_ignore;
3745 dummy_target.to_create_inferior = find_default_create_inferior;
3746 dummy_target.to_can_async_p = find_default_can_async_p;
3747 dummy_target.to_is_async_p = find_default_is_async_p;
3748 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3749 dummy_target.to_supports_disable_randomization
3750 = find_default_supports_disable_randomization;
3751 dummy_target.to_pid_to_str = dummy_pid_to_str;
3752 dummy_target.to_stratum = dummy_stratum;
3753 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3754 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3755 dummy_target.to_get_bookmark = dummy_get_bookmark;
3756 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3757 dummy_target.to_xfer_partial = default_xfer_partial;
3758 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3759 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3760 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3761 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3762 dummy_target.to_has_execution
3763 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3764 dummy_target.to_stopped_by_watchpoint = return_zero;
3765 dummy_target.to_stopped_data_address =
3766 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3767 dummy_target.to_magic = OPS_MAGIC;
3768 }
3769 \f
3770 static void
3771 debug_to_open (char *args, int from_tty)
3772 {
3773 debug_target.to_open (args, from_tty);
3774
3775 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3776 }
3777
3778 void
3779 target_close (struct target_ops *targ)
3780 {
3781 gdb_assert (!target_is_pushed (targ));
3782
3783 if (targ->to_xclose != NULL)
3784 targ->to_xclose (targ);
3785 else if (targ->to_close != NULL)
3786 targ->to_close ();
3787
3788 if (targetdebug)
3789 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3790 }
3791
3792 void
3793 target_attach (char *args, int from_tty)
3794 {
3795 struct target_ops *t;
3796
3797 for (t = current_target.beneath; t != NULL; t = t->beneath)
3798 {
3799 if (t->to_attach != NULL)
3800 {
3801 t->to_attach (t, args, from_tty);
3802 if (targetdebug)
3803 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3804 args, from_tty);
3805 return;
3806 }
3807 }
3808
3809 internal_error (__FILE__, __LINE__,
3810 _("could not find a target to attach"));
3811 }
3812
3813 int
3814 target_thread_alive (ptid_t ptid)
3815 {
3816 struct target_ops *t;
3817
3818 for (t = current_target.beneath; t != NULL; t = t->beneath)
3819 {
3820 if (t->to_thread_alive != NULL)
3821 {
3822 int retval;
3823
3824 retval = t->to_thread_alive (t, ptid);
3825 if (targetdebug)
3826 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3827 ptid_get_pid (ptid), retval);
3828
3829 return retval;
3830 }
3831 }
3832
3833 return 0;
3834 }
3835
3836 void
3837 target_find_new_threads (void)
3838 {
3839 struct target_ops *t;
3840
3841 for (t = current_target.beneath; t != NULL; t = t->beneath)
3842 {
3843 if (t->to_find_new_threads != NULL)
3844 {
3845 t->to_find_new_threads (t);
3846 if (targetdebug)
3847 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3848
3849 return;
3850 }
3851 }
3852 }
3853
3854 void
3855 target_stop (ptid_t ptid)
3856 {
3857 if (!may_stop)
3858 {
3859 warning (_("May not interrupt or stop the target, ignoring attempt"));
3860 return;
3861 }
3862
3863 (*current_target.to_stop) (ptid);
3864 }
3865
3866 static void
3867 debug_to_post_attach (int pid)
3868 {
3869 debug_target.to_post_attach (pid);
3870
3871 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3872 }
3873
3874 /* Concatenate ELEM to LIST, a comma separate list, and return the
3875 result. The LIST incoming argument is released. */
3876
3877 static char *
3878 str_comma_list_concat_elem (char *list, const char *elem)
3879 {
3880 if (list == NULL)
3881 return xstrdup (elem);
3882 else
3883 return reconcat (list, list, ", ", elem, (char *) NULL);
3884 }
3885
3886 /* Helper for target_options_to_string. If OPT is present in
3887 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3888 Returns the new resulting string. OPT is removed from
3889 TARGET_OPTIONS. */
3890
3891 static char *
3892 do_option (int *target_options, char *ret,
3893 int opt, char *opt_str)
3894 {
3895 if ((*target_options & opt) != 0)
3896 {
3897 ret = str_comma_list_concat_elem (ret, opt_str);
3898 *target_options &= ~opt;
3899 }
3900
3901 return ret;
3902 }
3903
3904 char *
3905 target_options_to_string (int target_options)
3906 {
3907 char *ret = NULL;
3908
3909 #define DO_TARG_OPTION(OPT) \
3910 ret = do_option (&target_options, ret, OPT, #OPT)
3911
3912 DO_TARG_OPTION (TARGET_WNOHANG);
3913
3914 if (target_options != 0)
3915 ret = str_comma_list_concat_elem (ret, "unknown???");
3916
3917 if (ret == NULL)
3918 ret = xstrdup ("");
3919 return ret;
3920 }
3921
3922 static void
3923 debug_print_register (const char * func,
3924 struct regcache *regcache, int regno)
3925 {
3926 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3927
3928 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3929 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3930 && gdbarch_register_name (gdbarch, regno) != NULL
3931 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3932 fprintf_unfiltered (gdb_stdlog, "(%s)",
3933 gdbarch_register_name (gdbarch, regno));
3934 else
3935 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3936 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3937 {
3938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3939 int i, size = register_size (gdbarch, regno);
3940 gdb_byte buf[MAX_REGISTER_SIZE];
3941
3942 regcache_raw_collect (regcache, regno, buf);
3943 fprintf_unfiltered (gdb_stdlog, " = ");
3944 for (i = 0; i < size; i++)
3945 {
3946 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3947 }
3948 if (size <= sizeof (LONGEST))
3949 {
3950 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3951
3952 fprintf_unfiltered (gdb_stdlog, " %s %s",
3953 core_addr_to_string_nz (val), plongest (val));
3954 }
3955 }
3956 fprintf_unfiltered (gdb_stdlog, "\n");
3957 }
3958
3959 void
3960 target_fetch_registers (struct regcache *regcache, int regno)
3961 {
3962 struct target_ops *t;
3963
3964 for (t = current_target.beneath; t != NULL; t = t->beneath)
3965 {
3966 if (t->to_fetch_registers != NULL)
3967 {
3968 t->to_fetch_registers (t, regcache, regno);
3969 if (targetdebug)
3970 debug_print_register ("target_fetch_registers", regcache, regno);
3971 return;
3972 }
3973 }
3974 }
3975
3976 void
3977 target_store_registers (struct regcache *regcache, int regno)
3978 {
3979 struct target_ops *t;
3980
3981 if (!may_write_registers)
3982 error (_("Writing to registers is not allowed (regno %d)"), regno);
3983
3984 for (t = current_target.beneath; t != NULL; t = t->beneath)
3985 {
3986 if (t->to_store_registers != NULL)
3987 {
3988 t->to_store_registers (t, regcache, regno);
3989 if (targetdebug)
3990 {
3991 debug_print_register ("target_store_registers", regcache, regno);
3992 }
3993 return;
3994 }
3995 }
3996
3997 noprocess ();
3998 }
3999
4000 int
4001 target_core_of_thread (ptid_t ptid)
4002 {
4003 struct target_ops *t;
4004
4005 for (t = current_target.beneath; t != NULL; t = t->beneath)
4006 {
4007 if (t->to_core_of_thread != NULL)
4008 {
4009 int retval = t->to_core_of_thread (t, ptid);
4010
4011 if (targetdebug)
4012 fprintf_unfiltered (gdb_stdlog,
4013 "target_core_of_thread (%d) = %d\n",
4014 ptid_get_pid (ptid), retval);
4015 return retval;
4016 }
4017 }
4018
4019 return -1;
4020 }
4021
4022 int
4023 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4024 {
4025 struct target_ops *t;
4026
4027 for (t = current_target.beneath; t != NULL; t = t->beneath)
4028 {
4029 if (t->to_verify_memory != NULL)
4030 {
4031 int retval = t->to_verify_memory (t, data, memaddr, size);
4032
4033 if (targetdebug)
4034 fprintf_unfiltered (gdb_stdlog,
4035 "target_verify_memory (%s, %s) = %d\n",
4036 paddress (target_gdbarch (), memaddr),
4037 pulongest (size),
4038 retval);
4039 return retval;
4040 }
4041 }
4042
4043 tcomplain ();
4044 }
4045
4046 /* The documentation for this function is in its prototype declaration in
4047 target.h. */
4048
4049 int
4050 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4051 {
4052 struct target_ops *t;
4053
4054 for (t = current_target.beneath; t != NULL; t = t->beneath)
4055 if (t->to_insert_mask_watchpoint != NULL)
4056 {
4057 int ret;
4058
4059 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4060
4061 if (targetdebug)
4062 fprintf_unfiltered (gdb_stdlog, "\
4063 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4064 core_addr_to_string (addr),
4065 core_addr_to_string (mask), rw, ret);
4066
4067 return ret;
4068 }
4069
4070 return 1;
4071 }
4072
4073 /* The documentation for this function is in its prototype declaration in
4074 target.h. */
4075
4076 int
4077 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4078 {
4079 struct target_ops *t;
4080
4081 for (t = current_target.beneath; t != NULL; t = t->beneath)
4082 if (t->to_remove_mask_watchpoint != NULL)
4083 {
4084 int ret;
4085
4086 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4087
4088 if (targetdebug)
4089 fprintf_unfiltered (gdb_stdlog, "\
4090 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4091 core_addr_to_string (addr),
4092 core_addr_to_string (mask), rw, ret);
4093
4094 return ret;
4095 }
4096
4097 return 1;
4098 }
4099
4100 /* The documentation for this function is in its prototype declaration
4101 in target.h. */
4102
4103 int
4104 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4105 {
4106 struct target_ops *t;
4107
4108 for (t = current_target.beneath; t != NULL; t = t->beneath)
4109 if (t->to_masked_watch_num_registers != NULL)
4110 return t->to_masked_watch_num_registers (t, addr, mask);
4111
4112 return -1;
4113 }
4114
4115 /* The documentation for this function is in its prototype declaration
4116 in target.h. */
4117
4118 int
4119 target_ranged_break_num_registers (void)
4120 {
4121 struct target_ops *t;
4122
4123 for (t = current_target.beneath; t != NULL; t = t->beneath)
4124 if (t->to_ranged_break_num_registers != NULL)
4125 return t->to_ranged_break_num_registers (t);
4126
4127 return -1;
4128 }
4129
4130 /* See target.h. */
4131
4132 int
4133 target_supports_btrace (void)
4134 {
4135 struct target_ops *t;
4136
4137 for (t = current_target.beneath; t != NULL; t = t->beneath)
4138 if (t->to_supports_btrace != NULL)
4139 return t->to_supports_btrace ();
4140
4141 return 0;
4142 }
4143
4144 /* See target.h. */
4145
4146 struct btrace_target_info *
4147 target_enable_btrace (ptid_t ptid)
4148 {
4149 struct target_ops *t;
4150
4151 for (t = current_target.beneath; t != NULL; t = t->beneath)
4152 if (t->to_enable_btrace != NULL)
4153 return t->to_enable_btrace (ptid);
4154
4155 tcomplain ();
4156 return NULL;
4157 }
4158
4159 /* See target.h. */
4160
4161 void
4162 target_disable_btrace (struct btrace_target_info *btinfo)
4163 {
4164 struct target_ops *t;
4165
4166 for (t = current_target.beneath; t != NULL; t = t->beneath)
4167 if (t->to_disable_btrace != NULL)
4168 return t->to_disable_btrace (btinfo);
4169
4170 tcomplain ();
4171 }
4172
4173 /* See target.h. */
4174
4175 void
4176 target_teardown_btrace (struct btrace_target_info *btinfo)
4177 {
4178 struct target_ops *t;
4179
4180 for (t = current_target.beneath; t != NULL; t = t->beneath)
4181 if (t->to_teardown_btrace != NULL)
4182 return t->to_teardown_btrace (btinfo);
4183
4184 tcomplain ();
4185 }
4186
4187 /* See target.h. */
4188
4189 VEC (btrace_block_s) *
4190 target_read_btrace (struct btrace_target_info *btinfo,
4191 enum btrace_read_type type)
4192 {
4193 struct target_ops *t;
4194
4195 for (t = current_target.beneath; t != NULL; t = t->beneath)
4196 if (t->to_read_btrace != NULL)
4197 return t->to_read_btrace (btinfo, type);
4198
4199 tcomplain ();
4200 return NULL;
4201 }
4202
4203 /* See target.h. */
4204
4205 void
4206 target_stop_recording (void)
4207 {
4208 struct target_ops *t;
4209
4210 for (t = current_target.beneath; t != NULL; t = t->beneath)
4211 if (t->to_stop_recording != NULL)
4212 {
4213 t->to_stop_recording ();
4214 return;
4215 }
4216
4217 /* This is optional. */
4218 }
4219
4220 /* See target.h. */
4221
4222 void
4223 target_info_record (void)
4224 {
4225 struct target_ops *t;
4226
4227 for (t = current_target.beneath; t != NULL; t = t->beneath)
4228 if (t->to_info_record != NULL)
4229 {
4230 t->to_info_record ();
4231 return;
4232 }
4233
4234 tcomplain ();
4235 }
4236
4237 /* See target.h. */
4238
4239 void
4240 target_save_record (const char *filename)
4241 {
4242 struct target_ops *t;
4243
4244 for (t = current_target.beneath; t != NULL; t = t->beneath)
4245 if (t->to_save_record != NULL)
4246 {
4247 t->to_save_record (filename);
4248 return;
4249 }
4250
4251 tcomplain ();
4252 }
4253
4254 /* See target.h. */
4255
4256 int
4257 target_supports_delete_record (void)
4258 {
4259 struct target_ops *t;
4260
4261 for (t = current_target.beneath; t != NULL; t = t->beneath)
4262 if (t->to_delete_record != NULL)
4263 return 1;
4264
4265 return 0;
4266 }
4267
4268 /* See target.h. */
4269
4270 void
4271 target_delete_record (void)
4272 {
4273 struct target_ops *t;
4274
4275 for (t = current_target.beneath; t != NULL; t = t->beneath)
4276 if (t->to_delete_record != NULL)
4277 {
4278 t->to_delete_record ();
4279 return;
4280 }
4281
4282 tcomplain ();
4283 }
4284
4285 /* See target.h. */
4286
4287 int
4288 target_record_is_replaying (void)
4289 {
4290 struct target_ops *t;
4291
4292 for (t = current_target.beneath; t != NULL; t = t->beneath)
4293 if (t->to_record_is_replaying != NULL)
4294 return t->to_record_is_replaying ();
4295
4296 return 0;
4297 }
4298
4299 /* See target.h. */
4300
4301 void
4302 target_goto_record_begin (void)
4303 {
4304 struct target_ops *t;
4305
4306 for (t = current_target.beneath; t != NULL; t = t->beneath)
4307 if (t->to_goto_record_begin != NULL)
4308 {
4309 t->to_goto_record_begin ();
4310 return;
4311 }
4312
4313 tcomplain ();
4314 }
4315
4316 /* See target.h. */
4317
4318 void
4319 target_goto_record_end (void)
4320 {
4321 struct target_ops *t;
4322
4323 for (t = current_target.beneath; t != NULL; t = t->beneath)
4324 if (t->to_goto_record_end != NULL)
4325 {
4326 t->to_goto_record_end ();
4327 return;
4328 }
4329
4330 tcomplain ();
4331 }
4332
4333 /* See target.h. */
4334
4335 void
4336 target_goto_record (ULONGEST insn)
4337 {
4338 struct target_ops *t;
4339
4340 for (t = current_target.beneath; t != NULL; t = t->beneath)
4341 if (t->to_goto_record != NULL)
4342 {
4343 t->to_goto_record (insn);
4344 return;
4345 }
4346
4347 tcomplain ();
4348 }
4349
4350 /* See target.h. */
4351
4352 void
4353 target_insn_history (int size, int flags)
4354 {
4355 struct target_ops *t;
4356
4357 for (t = current_target.beneath; t != NULL; t = t->beneath)
4358 if (t->to_insn_history != NULL)
4359 {
4360 t->to_insn_history (size, flags);
4361 return;
4362 }
4363
4364 tcomplain ();
4365 }
4366
4367 /* See target.h. */
4368
4369 void
4370 target_insn_history_from (ULONGEST from, int size, int flags)
4371 {
4372 struct target_ops *t;
4373
4374 for (t = current_target.beneath; t != NULL; t = t->beneath)
4375 if (t->to_insn_history_from != NULL)
4376 {
4377 t->to_insn_history_from (from, size, flags);
4378 return;
4379 }
4380
4381 tcomplain ();
4382 }
4383
4384 /* See target.h. */
4385
4386 void
4387 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4388 {
4389 struct target_ops *t;
4390
4391 for (t = current_target.beneath; t != NULL; t = t->beneath)
4392 if (t->to_insn_history_range != NULL)
4393 {
4394 t->to_insn_history_range (begin, end, flags);
4395 return;
4396 }
4397
4398 tcomplain ();
4399 }
4400
4401 /* See target.h. */
4402
4403 void
4404 target_call_history (int size, int flags)
4405 {
4406 struct target_ops *t;
4407
4408 for (t = current_target.beneath; t != NULL; t = t->beneath)
4409 if (t->to_call_history != NULL)
4410 {
4411 t->to_call_history (size, flags);
4412 return;
4413 }
4414
4415 tcomplain ();
4416 }
4417
4418 /* See target.h. */
4419
4420 void
4421 target_call_history_from (ULONGEST begin, int size, int flags)
4422 {
4423 struct target_ops *t;
4424
4425 for (t = current_target.beneath; t != NULL; t = t->beneath)
4426 if (t->to_call_history_from != NULL)
4427 {
4428 t->to_call_history_from (begin, size, flags);
4429 return;
4430 }
4431
4432 tcomplain ();
4433 }
4434
4435 /* See target.h. */
4436
4437 void
4438 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4439 {
4440 struct target_ops *t;
4441
4442 for (t = current_target.beneath; t != NULL; t = t->beneath)
4443 if (t->to_call_history_range != NULL)
4444 {
4445 t->to_call_history_range (begin, end, flags);
4446 return;
4447 }
4448
4449 tcomplain ();
4450 }
4451
4452 static void
4453 debug_to_prepare_to_store (struct regcache *regcache)
4454 {
4455 debug_target.to_prepare_to_store (regcache);
4456
4457 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4458 }
4459
4460 static int
4461 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4462 int write, struct mem_attrib *attrib,
4463 struct target_ops *target)
4464 {
4465 int retval;
4466
4467 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4468 attrib, target);
4469
4470 fprintf_unfiltered (gdb_stdlog,
4471 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4472 paddress (target_gdbarch (), memaddr), len,
4473 write ? "write" : "read", retval);
4474
4475 if (retval > 0)
4476 {
4477 int i;
4478
4479 fputs_unfiltered (", bytes =", gdb_stdlog);
4480 for (i = 0; i < retval; i++)
4481 {
4482 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4483 {
4484 if (targetdebug < 2 && i > 0)
4485 {
4486 fprintf_unfiltered (gdb_stdlog, " ...");
4487 break;
4488 }
4489 fprintf_unfiltered (gdb_stdlog, "\n");
4490 }
4491
4492 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4493 }
4494 }
4495
4496 fputc_unfiltered ('\n', gdb_stdlog);
4497
4498 return retval;
4499 }
4500
4501 static void
4502 debug_to_files_info (struct target_ops *target)
4503 {
4504 debug_target.to_files_info (target);
4505
4506 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4507 }
4508
4509 static int
4510 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4511 struct bp_target_info *bp_tgt)
4512 {
4513 int retval;
4514
4515 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4516
4517 fprintf_unfiltered (gdb_stdlog,
4518 "target_insert_breakpoint (%s, xxx) = %ld\n",
4519 core_addr_to_string (bp_tgt->placed_address),
4520 (unsigned long) retval);
4521 return retval;
4522 }
4523
4524 static int
4525 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4526 struct bp_target_info *bp_tgt)
4527 {
4528 int retval;
4529
4530 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4531
4532 fprintf_unfiltered (gdb_stdlog,
4533 "target_remove_breakpoint (%s, xxx) = %ld\n",
4534 core_addr_to_string (bp_tgt->placed_address),
4535 (unsigned long) retval);
4536 return retval;
4537 }
4538
4539 static int
4540 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4541 {
4542 int retval;
4543
4544 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4545
4546 fprintf_unfiltered (gdb_stdlog,
4547 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4548 (unsigned long) type,
4549 (unsigned long) cnt,
4550 (unsigned long) from_tty,
4551 (unsigned long) retval);
4552 return retval;
4553 }
4554
4555 static int
4556 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4557 {
4558 CORE_ADDR retval;
4559
4560 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4561
4562 fprintf_unfiltered (gdb_stdlog,
4563 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4564 core_addr_to_string (addr), (unsigned long) len,
4565 core_addr_to_string (retval));
4566 return retval;
4567 }
4568
4569 static int
4570 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4571 struct expression *cond)
4572 {
4573 int retval;
4574
4575 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4576 rw, cond);
4577
4578 fprintf_unfiltered (gdb_stdlog,
4579 "target_can_accel_watchpoint_condition "
4580 "(%s, %d, %d, %s) = %ld\n",
4581 core_addr_to_string (addr), len, rw,
4582 host_address_to_string (cond), (unsigned long) retval);
4583 return retval;
4584 }
4585
4586 static int
4587 debug_to_stopped_by_watchpoint (void)
4588 {
4589 int retval;
4590
4591 retval = debug_target.to_stopped_by_watchpoint ();
4592
4593 fprintf_unfiltered (gdb_stdlog,
4594 "target_stopped_by_watchpoint () = %ld\n",
4595 (unsigned long) retval);
4596 return retval;
4597 }
4598
4599 static int
4600 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4601 {
4602 int retval;
4603
4604 retval = debug_target.to_stopped_data_address (target, addr);
4605
4606 fprintf_unfiltered (gdb_stdlog,
4607 "target_stopped_data_address ([%s]) = %ld\n",
4608 core_addr_to_string (*addr),
4609 (unsigned long)retval);
4610 return retval;
4611 }
4612
4613 static int
4614 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4615 CORE_ADDR addr,
4616 CORE_ADDR start, int length)
4617 {
4618 int retval;
4619
4620 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4621 start, length);
4622
4623 fprintf_filtered (gdb_stdlog,
4624 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4625 core_addr_to_string (addr), core_addr_to_string (start),
4626 length, retval);
4627 return retval;
4628 }
4629
4630 static int
4631 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4632 struct bp_target_info *bp_tgt)
4633 {
4634 int retval;
4635
4636 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4637
4638 fprintf_unfiltered (gdb_stdlog,
4639 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4640 core_addr_to_string (bp_tgt->placed_address),
4641 (unsigned long) retval);
4642 return retval;
4643 }
4644
4645 static int
4646 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4647 struct bp_target_info *bp_tgt)
4648 {
4649 int retval;
4650
4651 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4652
4653 fprintf_unfiltered (gdb_stdlog,
4654 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4655 core_addr_to_string (bp_tgt->placed_address),
4656 (unsigned long) retval);
4657 return retval;
4658 }
4659
4660 static int
4661 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4662 struct expression *cond)
4663 {
4664 int retval;
4665
4666 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4667
4668 fprintf_unfiltered (gdb_stdlog,
4669 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4670 core_addr_to_string (addr), len, type,
4671 host_address_to_string (cond), (unsigned long) retval);
4672 return retval;
4673 }
4674
4675 static int
4676 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4677 struct expression *cond)
4678 {
4679 int retval;
4680
4681 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4682
4683 fprintf_unfiltered (gdb_stdlog,
4684 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4685 core_addr_to_string (addr), len, type,
4686 host_address_to_string (cond), (unsigned long) retval);
4687 return retval;
4688 }
4689
4690 static void
4691 debug_to_terminal_init (void)
4692 {
4693 debug_target.to_terminal_init ();
4694
4695 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4696 }
4697
4698 static void
4699 debug_to_terminal_inferior (void)
4700 {
4701 debug_target.to_terminal_inferior ();
4702
4703 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4704 }
4705
4706 static void
4707 debug_to_terminal_ours_for_output (void)
4708 {
4709 debug_target.to_terminal_ours_for_output ();
4710
4711 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4712 }
4713
4714 static void
4715 debug_to_terminal_ours (void)
4716 {
4717 debug_target.to_terminal_ours ();
4718
4719 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4720 }
4721
4722 static void
4723 debug_to_terminal_save_ours (void)
4724 {
4725 debug_target.to_terminal_save_ours ();
4726
4727 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4728 }
4729
4730 static void
4731 debug_to_terminal_info (const char *arg, int from_tty)
4732 {
4733 debug_target.to_terminal_info (arg, from_tty);
4734
4735 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4736 from_tty);
4737 }
4738
4739 static void
4740 debug_to_load (char *args, int from_tty)
4741 {
4742 debug_target.to_load (args, from_tty);
4743
4744 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4745 }
4746
4747 static void
4748 debug_to_post_startup_inferior (ptid_t ptid)
4749 {
4750 debug_target.to_post_startup_inferior (ptid);
4751
4752 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4753 ptid_get_pid (ptid));
4754 }
4755
4756 static int
4757 debug_to_insert_fork_catchpoint (int pid)
4758 {
4759 int retval;
4760
4761 retval = debug_target.to_insert_fork_catchpoint (pid);
4762
4763 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4764 pid, retval);
4765
4766 return retval;
4767 }
4768
4769 static int
4770 debug_to_remove_fork_catchpoint (int pid)
4771 {
4772 int retval;
4773
4774 retval = debug_target.to_remove_fork_catchpoint (pid);
4775
4776 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4777 pid, retval);
4778
4779 return retval;
4780 }
4781
4782 static int
4783 debug_to_insert_vfork_catchpoint (int pid)
4784 {
4785 int retval;
4786
4787 retval = debug_target.to_insert_vfork_catchpoint (pid);
4788
4789 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4790 pid, retval);
4791
4792 return retval;
4793 }
4794
4795 static int
4796 debug_to_remove_vfork_catchpoint (int pid)
4797 {
4798 int retval;
4799
4800 retval = debug_target.to_remove_vfork_catchpoint (pid);
4801
4802 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4803 pid, retval);
4804
4805 return retval;
4806 }
4807
4808 static int
4809 debug_to_insert_exec_catchpoint (int pid)
4810 {
4811 int retval;
4812
4813 retval = debug_target.to_insert_exec_catchpoint (pid);
4814
4815 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4816 pid, retval);
4817
4818 return retval;
4819 }
4820
4821 static int
4822 debug_to_remove_exec_catchpoint (int pid)
4823 {
4824 int retval;
4825
4826 retval = debug_target.to_remove_exec_catchpoint (pid);
4827
4828 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4829 pid, retval);
4830
4831 return retval;
4832 }
4833
4834 static int
4835 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4836 {
4837 int has_exited;
4838
4839 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4840
4841 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4842 pid, wait_status, *exit_status, has_exited);
4843
4844 return has_exited;
4845 }
4846
4847 static int
4848 debug_to_can_run (void)
4849 {
4850 int retval;
4851
4852 retval = debug_target.to_can_run ();
4853
4854 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4855
4856 return retval;
4857 }
4858
4859 static struct gdbarch *
4860 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4861 {
4862 struct gdbarch *retval;
4863
4864 retval = debug_target.to_thread_architecture (ops, ptid);
4865
4866 fprintf_unfiltered (gdb_stdlog,
4867 "target_thread_architecture (%s) = %s [%s]\n",
4868 target_pid_to_str (ptid),
4869 host_address_to_string (retval),
4870 gdbarch_bfd_arch_info (retval)->printable_name);
4871 return retval;
4872 }
4873
4874 static void
4875 debug_to_stop (ptid_t ptid)
4876 {
4877 debug_target.to_stop (ptid);
4878
4879 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4880 target_pid_to_str (ptid));
4881 }
4882
4883 static void
4884 debug_to_rcmd (char *command,
4885 struct ui_file *outbuf)
4886 {
4887 debug_target.to_rcmd (command, outbuf);
4888 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4889 }
4890
4891 static char *
4892 debug_to_pid_to_exec_file (int pid)
4893 {
4894 char *exec_file;
4895
4896 exec_file = debug_target.to_pid_to_exec_file (pid);
4897
4898 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4899 pid, exec_file);
4900
4901 return exec_file;
4902 }
4903
4904 static void
4905 setup_target_debug (void)
4906 {
4907 memcpy (&debug_target, &current_target, sizeof debug_target);
4908
4909 current_target.to_open = debug_to_open;
4910 current_target.to_post_attach = debug_to_post_attach;
4911 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4912 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4913 current_target.to_files_info = debug_to_files_info;
4914 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4915 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4916 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4917 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4918 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4919 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4920 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4921 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4922 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4923 current_target.to_watchpoint_addr_within_range
4924 = debug_to_watchpoint_addr_within_range;
4925 current_target.to_region_ok_for_hw_watchpoint
4926 = debug_to_region_ok_for_hw_watchpoint;
4927 current_target.to_can_accel_watchpoint_condition
4928 = debug_to_can_accel_watchpoint_condition;
4929 current_target.to_terminal_init = debug_to_terminal_init;
4930 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4931 current_target.to_terminal_ours_for_output
4932 = debug_to_terminal_ours_for_output;
4933 current_target.to_terminal_ours = debug_to_terminal_ours;
4934 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4935 current_target.to_terminal_info = debug_to_terminal_info;
4936 current_target.to_load = debug_to_load;
4937 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4938 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4939 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4940 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4941 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4942 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4943 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4944 current_target.to_has_exited = debug_to_has_exited;
4945 current_target.to_can_run = debug_to_can_run;
4946 current_target.to_stop = debug_to_stop;
4947 current_target.to_rcmd = debug_to_rcmd;
4948 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4949 current_target.to_thread_architecture = debug_to_thread_architecture;
4950 }
4951 \f
4952
4953 static char targ_desc[] =
4954 "Names of targets and files being debugged.\nShows the entire \
4955 stack of targets currently in use (including the exec-file,\n\
4956 core-file, and process, if any), as well as the symbol file name.";
4957
4958 static void
4959 do_monitor_command (char *cmd,
4960 int from_tty)
4961 {
4962 if ((current_target.to_rcmd
4963 == (void (*) (char *, struct ui_file *)) tcomplain)
4964 || (current_target.to_rcmd == debug_to_rcmd
4965 && (debug_target.to_rcmd
4966 == (void (*) (char *, struct ui_file *)) tcomplain)))
4967 error (_("\"monitor\" command not supported by this target."));
4968 target_rcmd (cmd, gdb_stdtarg);
4969 }
4970
4971 /* Print the name of each layers of our target stack. */
4972
4973 static void
4974 maintenance_print_target_stack (char *cmd, int from_tty)
4975 {
4976 struct target_ops *t;
4977
4978 printf_filtered (_("The current target stack is:\n"));
4979
4980 for (t = target_stack; t != NULL; t = t->beneath)
4981 {
4982 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4983 }
4984 }
4985
4986 /* Controls if async mode is permitted. */
4987 int target_async_permitted = 0;
4988
4989 /* The set command writes to this variable. If the inferior is
4990 executing, target_async_permitted is *not* updated. */
4991 static int target_async_permitted_1 = 0;
4992
4993 static void
4994 set_target_async_command (char *args, int from_tty,
4995 struct cmd_list_element *c)
4996 {
4997 if (have_live_inferiors ())
4998 {
4999 target_async_permitted_1 = target_async_permitted;
5000 error (_("Cannot change this setting while the inferior is running."));
5001 }
5002
5003 target_async_permitted = target_async_permitted_1;
5004 }
5005
5006 static void
5007 show_target_async_command (struct ui_file *file, int from_tty,
5008 struct cmd_list_element *c,
5009 const char *value)
5010 {
5011 fprintf_filtered (file,
5012 _("Controlling the inferior in "
5013 "asynchronous mode is %s.\n"), value);
5014 }
5015
5016 /* Temporary copies of permission settings. */
5017
5018 static int may_write_registers_1 = 1;
5019 static int may_write_memory_1 = 1;
5020 static int may_insert_breakpoints_1 = 1;
5021 static int may_insert_tracepoints_1 = 1;
5022 static int may_insert_fast_tracepoints_1 = 1;
5023 static int may_stop_1 = 1;
5024
5025 /* Make the user-set values match the real values again. */
5026
5027 void
5028 update_target_permissions (void)
5029 {
5030 may_write_registers_1 = may_write_registers;
5031 may_write_memory_1 = may_write_memory;
5032 may_insert_breakpoints_1 = may_insert_breakpoints;
5033 may_insert_tracepoints_1 = may_insert_tracepoints;
5034 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5035 may_stop_1 = may_stop;
5036 }
5037
5038 /* The one function handles (most of) the permission flags in the same
5039 way. */
5040
5041 static void
5042 set_target_permissions (char *args, int from_tty,
5043 struct cmd_list_element *c)
5044 {
5045 if (target_has_execution)
5046 {
5047 update_target_permissions ();
5048 error (_("Cannot change this setting while the inferior is running."));
5049 }
5050
5051 /* Make the real values match the user-changed values. */
5052 may_write_registers = may_write_registers_1;
5053 may_insert_breakpoints = may_insert_breakpoints_1;
5054 may_insert_tracepoints = may_insert_tracepoints_1;
5055 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5056 may_stop = may_stop_1;
5057 update_observer_mode ();
5058 }
5059
5060 /* Set memory write permission independently of observer mode. */
5061
5062 static void
5063 set_write_memory_permission (char *args, int from_tty,
5064 struct cmd_list_element *c)
5065 {
5066 /* Make the real values match the user-changed values. */
5067 may_write_memory = may_write_memory_1;
5068 update_observer_mode ();
5069 }
5070
5071
5072 void
5073 initialize_targets (void)
5074 {
5075 init_dummy_target ();
5076 push_target (&dummy_target);
5077
5078 add_info ("target", target_info, targ_desc);
5079 add_info ("files", target_info, targ_desc);
5080
5081 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5082 Set target debugging."), _("\
5083 Show target debugging."), _("\
5084 When non-zero, target debugging is enabled. Higher numbers are more\n\
5085 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5086 command."),
5087 NULL,
5088 show_targetdebug,
5089 &setdebuglist, &showdebuglist);
5090
5091 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5092 &trust_readonly, _("\
5093 Set mode for reading from readonly sections."), _("\
5094 Show mode for reading from readonly sections."), _("\
5095 When this mode is on, memory reads from readonly sections (such as .text)\n\
5096 will be read from the object file instead of from the target. This will\n\
5097 result in significant performance improvement for remote targets."),
5098 NULL,
5099 show_trust_readonly,
5100 &setlist, &showlist);
5101
5102 add_com ("monitor", class_obscure, do_monitor_command,
5103 _("Send a command to the remote monitor (remote targets only)."));
5104
5105 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5106 _("Print the name of each layer of the internal target stack."),
5107 &maintenanceprintlist);
5108
5109 add_setshow_boolean_cmd ("target-async", no_class,
5110 &target_async_permitted_1, _("\
5111 Set whether gdb controls the inferior in asynchronous mode."), _("\
5112 Show whether gdb controls the inferior in asynchronous mode."), _("\
5113 Tells gdb whether to control the inferior in asynchronous mode."),
5114 set_target_async_command,
5115 show_target_async_command,
5116 &setlist,
5117 &showlist);
5118
5119 add_setshow_boolean_cmd ("stack-cache", class_support,
5120 &stack_cache_enabled_p_1, _("\
5121 Set cache use for stack access."), _("\
5122 Show cache use for stack access."), _("\
5123 When on, use the data cache for all stack access, regardless of any\n\
5124 configured memory regions. This improves remote performance significantly.\n\
5125 By default, caching for stack access is on."),
5126 set_stack_cache_enabled_p,
5127 show_stack_cache_enabled_p,
5128 &setlist, &showlist);
5129
5130 add_setshow_boolean_cmd ("may-write-registers", class_support,
5131 &may_write_registers_1, _("\
5132 Set permission to write into registers."), _("\
5133 Show permission to write into registers."), _("\
5134 When this permission is on, GDB may write into the target's registers.\n\
5135 Otherwise, any sort of write attempt will result in an error."),
5136 set_target_permissions, NULL,
5137 &setlist, &showlist);
5138
5139 add_setshow_boolean_cmd ("may-write-memory", class_support,
5140 &may_write_memory_1, _("\
5141 Set permission to write into target memory."), _("\
5142 Show permission to write into target memory."), _("\
5143 When this permission is on, GDB may write into the target's memory.\n\
5144 Otherwise, any sort of write attempt will result in an error."),
5145 set_write_memory_permission, NULL,
5146 &setlist, &showlist);
5147
5148 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5149 &may_insert_breakpoints_1, _("\
5150 Set permission to insert breakpoints in the target."), _("\
5151 Show permission to insert breakpoints in the target."), _("\
5152 When this permission is on, GDB may insert breakpoints in the program.\n\
5153 Otherwise, any sort of insertion attempt will result in an error."),
5154 set_target_permissions, NULL,
5155 &setlist, &showlist);
5156
5157 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5158 &may_insert_tracepoints_1, _("\
5159 Set permission to insert tracepoints in the target."), _("\
5160 Show permission to insert tracepoints in the target."), _("\
5161 When this permission is on, GDB may insert tracepoints in the program.\n\
5162 Otherwise, any sort of insertion attempt will result in an error."),
5163 set_target_permissions, NULL,
5164 &setlist, &showlist);
5165
5166 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5167 &may_insert_fast_tracepoints_1, _("\
5168 Set permission to insert fast tracepoints in the target."), _("\
5169 Show permission to insert fast tracepoints in the target."), _("\
5170 When this permission is on, GDB may insert fast tracepoints.\n\
5171 Otherwise, any sort of insertion attempt will result in an error."),
5172 set_target_permissions, NULL,
5173 &setlist, &showlist);
5174
5175 add_setshow_boolean_cmd ("may-interrupt", class_support,
5176 &may_stop_1, _("\
5177 Set permission to interrupt or signal the target."), _("\
5178 Show permission to interrupt or signal the target."), _("\
5179 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5180 Otherwise, any attempt to interrupt or stop will be ignored."),
5181 set_target_permissions, NULL,
5182 &setlist, &showlist);
5183
5184
5185 target_dcache = dcache_init ();
5186 }
This page took 0.13657 seconds and 4 git commands to generate.