* target.c (target_xfer_partial): Use host_address_to_string to
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (struct target_ops *ops, char *, int);
103
104 static void debug_to_detach (struct target_ops *ops, char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (struct target_ops *);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 void target_create_inferior (char *exec_file, char *args,
285 char **env, int from_tty)
286 {
287 struct target_ops *t;
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 {
290 if (t->to_create_inferior != NULL)
291 {
292 t->to_create_inferior (t, exec_file, args, env, from_tty);
293 return;
294 }
295 }
296
297 internal_error (__FILE__, __LINE__,
298 "could not find a target to create inferior");
299 }
300
301
302 static int
303 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
304 struct target_ops *t)
305 {
306 errno = EIO; /* Can't read/write this location */
307 return 0; /* No bytes handled */
308 }
309
310 static void
311 tcomplain (void)
312 {
313 error (_("You can't do that when your target is `%s'"),
314 current_target.to_shortname);
315 }
316
317 void
318 noprocess (void)
319 {
320 error (_("You can't do that without a process to debug."));
321 }
322
323 static int
324 nosymbol (char *name, CORE_ADDR *addrp)
325 {
326 return 1; /* Symbol does not exist in target env */
327 }
328
329 static void
330 nosupport_runtime (void)
331 {
332 if (ptid_equal (inferior_ptid, null_ptid))
333 noprocess ();
334 else
335 error (_("No run-time support for this"));
336 }
337
338
339 static void
340 default_terminal_info (char *args, int from_tty)
341 {
342 printf_unfiltered (_("No saved terminal information.\n"));
343 }
344
345 /* This is the default target_create_inferior and target_attach function.
346 If the current target is executing, it asks whether to kill it off.
347 If this function returns without calling error(), it has killed off
348 the target, and the operation should be attempted. */
349
350 static void
351 kill_or_be_killed (int from_tty)
352 {
353 if (target_has_execution)
354 {
355 printf_unfiltered (_("You are already running a program:\n"));
356 target_files_info ();
357 if (query ("Kill it? "))
358 {
359 target_kill ();
360 if (target_has_execution)
361 error (_("Killing the program did not help."));
362 return;
363 }
364 else
365 {
366 error (_("Program not killed."));
367 }
368 }
369 tcomplain ();
370 }
371
372 /* A default implementation for the to_get_ada_task_ptid target method.
373
374 This function builds the PTID by using both LWP and TID as part of
375 the PTID lwp and tid elements. The pid used is the pid of the
376 inferior_ptid. */
377
378 ptid_t
379 default_get_ada_task_ptid (long lwp, long tid)
380 {
381 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
382 }
383
384 /* Go through the target stack from top to bottom, copying over zero
385 entries in current_target, then filling in still empty entries. In
386 effect, we are doing class inheritance through the pushed target
387 vectors.
388
389 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
390 is currently implemented, is that it discards any knowledge of
391 which target an inherited method originally belonged to.
392 Consequently, new new target methods should instead explicitly and
393 locally search the target stack for the target that can handle the
394 request. */
395
396 static void
397 update_current_target (void)
398 {
399 struct target_ops *t;
400
401 /* First, reset current's contents. */
402 memset (&current_target, 0, sizeof (current_target));
403
404 #define INHERIT(FIELD, TARGET) \
405 if (!current_target.FIELD) \
406 current_target.FIELD = (TARGET)->FIELD
407
408 for (t = target_stack; t; t = t->beneath)
409 {
410 INHERIT (to_shortname, t);
411 INHERIT (to_longname, t);
412 INHERIT (to_doc, t);
413 /* Do not inherit to_open. */
414 /* Do not inherit to_close. */
415 /* Do not inherit to_attach. */
416 INHERIT (to_post_attach, t);
417 INHERIT (to_attach_no_wait, t);
418 /* Do not inherit to_detach. */
419 /* Do not inherit to_disconnect. */
420 INHERIT (to_resume, t);
421 INHERIT (to_wait, t);
422 INHERIT (to_fetch_registers, t);
423 INHERIT (to_store_registers, t);
424 INHERIT (to_prepare_to_store, t);
425 INHERIT (deprecated_xfer_memory, t);
426 INHERIT (to_files_info, t);
427 INHERIT (to_insert_breakpoint, t);
428 INHERIT (to_remove_breakpoint, t);
429 INHERIT (to_can_use_hw_breakpoint, t);
430 INHERIT (to_insert_hw_breakpoint, t);
431 INHERIT (to_remove_hw_breakpoint, t);
432 INHERIT (to_insert_watchpoint, t);
433 INHERIT (to_remove_watchpoint, t);
434 INHERIT (to_stopped_data_address, t);
435 INHERIT (to_have_steppable_watchpoint, t);
436 INHERIT (to_have_continuable_watchpoint, t);
437 INHERIT (to_stopped_by_watchpoint, t);
438 INHERIT (to_watchpoint_addr_within_range, t);
439 INHERIT (to_region_ok_for_hw_watchpoint, t);
440 INHERIT (to_terminal_init, t);
441 INHERIT (to_terminal_inferior, t);
442 INHERIT (to_terminal_ours_for_output, t);
443 INHERIT (to_terminal_ours, t);
444 INHERIT (to_terminal_save_ours, t);
445 INHERIT (to_terminal_info, t);
446 INHERIT (to_kill, t);
447 INHERIT (to_load, t);
448 INHERIT (to_lookup_symbol, t);
449 /* Do no inherit to_create_inferior. */
450 INHERIT (to_post_startup_inferior, t);
451 INHERIT (to_acknowledge_created_inferior, t);
452 INHERIT (to_insert_fork_catchpoint, t);
453 INHERIT (to_remove_fork_catchpoint, t);
454 INHERIT (to_insert_vfork_catchpoint, t);
455 INHERIT (to_remove_vfork_catchpoint, t);
456 /* Do not inherit to_follow_fork. */
457 INHERIT (to_insert_exec_catchpoint, t);
458 INHERIT (to_remove_exec_catchpoint, t);
459 INHERIT (to_has_exited, t);
460 /* Do no inherit to_mourn_inferiour. */
461 INHERIT (to_can_run, t);
462 INHERIT (to_notice_signals, t);
463 INHERIT (to_thread_alive, t);
464 INHERIT (to_find_new_threads, t);
465 INHERIT (to_pid_to_str, t);
466 INHERIT (to_extra_thread_info, t);
467 INHERIT (to_stop, t);
468 /* Do not inherit to_xfer_partial. */
469 INHERIT (to_rcmd, t);
470 INHERIT (to_pid_to_exec_file, t);
471 INHERIT (to_log_command, t);
472 INHERIT (to_stratum, t);
473 INHERIT (to_has_all_memory, t);
474 INHERIT (to_has_memory, t);
475 INHERIT (to_has_stack, t);
476 INHERIT (to_has_registers, t);
477 INHERIT (to_has_execution, t);
478 INHERIT (to_has_thread_control, t);
479 INHERIT (to_sections, t);
480 INHERIT (to_sections_end, t);
481 INHERIT (to_can_async_p, t);
482 INHERIT (to_is_async_p, t);
483 INHERIT (to_async, t);
484 INHERIT (to_async_mask, t);
485 INHERIT (to_find_memory_regions, t);
486 INHERIT (to_make_corefile_notes, t);
487 INHERIT (to_get_thread_local_address, t);
488 INHERIT (to_can_execute_reverse, t);
489 /* Do not inherit to_read_description. */
490 INHERIT (to_get_ada_task_ptid, t);
491 /* Do not inherit to_search_memory. */
492 INHERIT (to_supports_multi_process, t);
493 INHERIT (to_magic, t);
494 /* Do not inherit to_memory_map. */
495 /* Do not inherit to_flash_erase. */
496 /* Do not inherit to_flash_done. */
497 }
498 #undef INHERIT
499
500 /* Clean up a target struct so it no longer has any zero pointers in
501 it. Some entries are defaulted to a method that print an error,
502 others are hard-wired to a standard recursive default. */
503
504 #define de_fault(field, value) \
505 if (!current_target.field) \
506 current_target.field = value
507
508 de_fault (to_open,
509 (void (*) (char *, int))
510 tcomplain);
511 de_fault (to_close,
512 (void (*) (int))
513 target_ignore);
514 de_fault (to_post_attach,
515 (void (*) (int))
516 target_ignore);
517 de_fault (to_resume,
518 (void (*) (ptid_t, int, enum target_signal))
519 noprocess);
520 de_fault (to_wait,
521 (ptid_t (*) (ptid_t, struct target_waitstatus *))
522 noprocess);
523 de_fault (to_fetch_registers,
524 (void (*) (struct regcache *, int))
525 target_ignore);
526 de_fault (to_store_registers,
527 (void (*) (struct regcache *, int))
528 noprocess);
529 de_fault (to_prepare_to_store,
530 (void (*) (struct regcache *))
531 noprocess);
532 de_fault (deprecated_xfer_memory,
533 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
534 nomemory);
535 de_fault (to_files_info,
536 (void (*) (struct target_ops *))
537 target_ignore);
538 de_fault (to_insert_breakpoint,
539 memory_insert_breakpoint);
540 de_fault (to_remove_breakpoint,
541 memory_remove_breakpoint);
542 de_fault (to_can_use_hw_breakpoint,
543 (int (*) (int, int, int))
544 return_zero);
545 de_fault (to_insert_hw_breakpoint,
546 (int (*) (struct bp_target_info *))
547 return_minus_one);
548 de_fault (to_remove_hw_breakpoint,
549 (int (*) (struct bp_target_info *))
550 return_minus_one);
551 de_fault (to_insert_watchpoint,
552 (int (*) (CORE_ADDR, int, int))
553 return_minus_one);
554 de_fault (to_remove_watchpoint,
555 (int (*) (CORE_ADDR, int, int))
556 return_minus_one);
557 de_fault (to_stopped_by_watchpoint,
558 (int (*) (void))
559 return_zero);
560 de_fault (to_stopped_data_address,
561 (int (*) (struct target_ops *, CORE_ADDR *))
562 return_zero);
563 de_fault (to_watchpoint_addr_within_range,
564 default_watchpoint_addr_within_range);
565 de_fault (to_region_ok_for_hw_watchpoint,
566 default_region_ok_for_hw_watchpoint);
567 de_fault (to_terminal_init,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_inferior,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_ours_for_output,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_ours,
577 (void (*) (void))
578 target_ignore);
579 de_fault (to_terminal_save_ours,
580 (void (*) (void))
581 target_ignore);
582 de_fault (to_terminal_info,
583 default_terminal_info);
584 de_fault (to_kill,
585 (void (*) (void))
586 noprocess);
587 de_fault (to_load,
588 (void (*) (char *, int))
589 tcomplain);
590 de_fault (to_lookup_symbol,
591 (int (*) (char *, CORE_ADDR *))
592 nosymbol);
593 de_fault (to_post_startup_inferior,
594 (void (*) (ptid_t))
595 target_ignore);
596 de_fault (to_acknowledge_created_inferior,
597 (void (*) (int))
598 target_ignore);
599 de_fault (to_insert_fork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_fork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_vfork_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_vfork_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_insert_exec_catchpoint,
612 (void (*) (int))
613 tcomplain);
614 de_fault (to_remove_exec_catchpoint,
615 (int (*) (int))
616 tcomplain);
617 de_fault (to_has_exited,
618 (int (*) (int, int, int *))
619 return_zero);
620 de_fault (to_can_run,
621 return_zero);
622 de_fault (to_notice_signals,
623 (void (*) (ptid_t))
624 target_ignore);
625 de_fault (to_thread_alive,
626 (int (*) (ptid_t))
627 return_zero);
628 de_fault (to_find_new_threads,
629 (void (*) (void))
630 target_ignore);
631 de_fault (to_extra_thread_info,
632 (char *(*) (struct thread_info *))
633 return_zero);
634 de_fault (to_stop,
635 (void (*) (ptid_t))
636 target_ignore);
637 current_target.to_xfer_partial = current_xfer_partial;
638 de_fault (to_rcmd,
639 (void (*) (char *, struct ui_file *))
640 tcomplain);
641 de_fault (to_pid_to_exec_file,
642 (char *(*) (int))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 de_fault (to_async_mask,
648 (int (*) (int))
649 return_one);
650 current_target.to_read_description = NULL;
651 de_fault (to_get_ada_task_ptid,
652 (ptid_t (*) (long, long))
653 default_get_ada_task_ptid);
654 de_fault (to_supports_multi_process,
655 (int (*) (void))
656 return_zero);
657 #undef de_fault
658
659 /* Finally, position the target-stack beneath the squashed
660 "current_target". That way code looking for a non-inherited
661 target method can quickly and simply find it. */
662 current_target.beneath = target_stack;
663
664 if (targetdebug)
665 setup_target_debug ();
666 }
667
668 /* Mark OPS as a running target. This reverses the effect
669 of target_mark_exited. */
670
671 void
672 target_mark_running (struct target_ops *ops)
673 {
674 struct target_ops *t;
675
676 for (t = target_stack; t != NULL; t = t->beneath)
677 if (t == ops)
678 break;
679 if (t == NULL)
680 internal_error (__FILE__, __LINE__,
681 "Attempted to mark unpushed target \"%s\" as running",
682 ops->to_shortname);
683
684 ops->to_has_execution = 1;
685 ops->to_has_all_memory = 1;
686 ops->to_has_memory = 1;
687 ops->to_has_stack = 1;
688 ops->to_has_registers = 1;
689
690 update_current_target ();
691 }
692
693 /* Mark OPS as a non-running target. This reverses the effect
694 of target_mark_running. */
695
696 void
697 target_mark_exited (struct target_ops *ops)
698 {
699 struct target_ops *t;
700
701 for (t = target_stack; t != NULL; t = t->beneath)
702 if (t == ops)
703 break;
704 if (t == NULL)
705 internal_error (__FILE__, __LINE__,
706 "Attempted to mark unpushed target \"%s\" as running",
707 ops->to_shortname);
708
709 ops->to_has_execution = 0;
710 ops->to_has_all_memory = 0;
711 ops->to_has_memory = 0;
712 ops->to_has_stack = 0;
713 ops->to_has_registers = 0;
714
715 update_current_target ();
716 }
717
718 /* Push a new target type into the stack of the existing target accessors,
719 possibly superseding some of the existing accessors.
720
721 Result is zero if the pushed target ended up on top of the stack,
722 nonzero if at least one target is on top of it.
723
724 Rather than allow an empty stack, we always have the dummy target at
725 the bottom stratum, so we can call the function vectors without
726 checking them. */
727
728 int
729 push_target (struct target_ops *t)
730 {
731 struct target_ops **cur;
732
733 /* Check magic number. If wrong, it probably means someone changed
734 the struct definition, but not all the places that initialize one. */
735 if (t->to_magic != OPS_MAGIC)
736 {
737 fprintf_unfiltered (gdb_stderr,
738 "Magic number of %s target struct wrong\n",
739 t->to_shortname);
740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
741 }
742
743 /* Find the proper stratum to install this target in. */
744 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
745 {
746 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
747 break;
748 }
749
750 /* If there's already targets at this stratum, remove them. */
751 /* FIXME: cagney/2003-10-15: I think this should be popping all
752 targets to CUR, and not just those at this stratum level. */
753 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
754 {
755 /* There's already something at this stratum level. Close it,
756 and un-hook it from the stack. */
757 struct target_ops *tmp = (*cur);
758 (*cur) = (*cur)->beneath;
759 tmp->beneath = NULL;
760 target_close (tmp, 0);
761 }
762
763 /* We have removed all targets in our stratum, now add the new one. */
764 t->beneath = (*cur);
765 (*cur) = t;
766
767 update_current_target ();
768
769 /* Not on top? */
770 return (t != target_stack);
771 }
772
773 /* Remove a target_ops vector from the stack, wherever it may be.
774 Return how many times it was removed (0 or 1). */
775
776 int
777 unpush_target (struct target_ops *t)
778 {
779 struct target_ops **cur;
780 struct target_ops *tmp;
781
782 if (t->to_stratum == dummy_stratum)
783 internal_error (__FILE__, __LINE__,
784 "Attempt to unpush the dummy target");
785
786 /* Look for the specified target. Note that we assume that a target
787 can only occur once in the target stack. */
788
789 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
790 {
791 if ((*cur) == t)
792 break;
793 }
794
795 if ((*cur) == NULL)
796 return 0; /* Didn't find target_ops, quit now */
797
798 /* NOTE: cagney/2003-12-06: In '94 the close call was made
799 unconditional by moving it to before the above check that the
800 target was in the target stack (something about "Change the way
801 pushing and popping of targets work to support target overlays
802 and inheritance"). This doesn't make much sense - only open
803 targets should be closed. */
804 target_close (t, 0);
805
806 /* Unchain the target */
807 tmp = (*cur);
808 (*cur) = (*cur)->beneath;
809 tmp->beneath = NULL;
810
811 update_current_target ();
812
813 return 1;
814 }
815
816 void
817 pop_target (void)
818 {
819 target_close (target_stack, 0); /* Let it clean up */
820 if (unpush_target (target_stack) == 1)
821 return;
822
823 fprintf_unfiltered (gdb_stderr,
824 "pop_target couldn't find target %s\n",
825 current_target.to_shortname);
826 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
827 }
828
829 void
830 pop_all_targets_above (enum strata above_stratum, int quitting)
831 {
832 while ((int) (current_target.to_stratum) > (int) above_stratum)
833 {
834 target_close (target_stack, quitting);
835 if (!unpush_target (target_stack))
836 {
837 fprintf_unfiltered (gdb_stderr,
838 "pop_all_targets couldn't find target %s\n",
839 target_stack->to_shortname);
840 internal_error (__FILE__, __LINE__,
841 _("failed internal consistency check"));
842 break;
843 }
844 }
845 }
846
847 void
848 pop_all_targets (int quitting)
849 {
850 pop_all_targets_above (dummy_stratum, quitting);
851 }
852
853 /* Using the objfile specified in OBJFILE, find the address for the
854 current thread's thread-local storage with offset OFFSET. */
855 CORE_ADDR
856 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
857 {
858 volatile CORE_ADDR addr = 0;
859
860 if (target_get_thread_local_address_p ()
861 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
862 {
863 ptid_t ptid = inferior_ptid;
864 volatile struct gdb_exception ex;
865
866 TRY_CATCH (ex, RETURN_MASK_ALL)
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
872 objfile);
873 /* If it's 0, throw the appropriate exception. */
874 if (lm_addr == 0)
875 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
876 _("TLS load module not found"));
877
878 addr = target_get_thread_local_address (ptid, lm_addr, offset);
879 }
880 /* If an error occurred, print TLS related messages here. Otherwise,
881 throw the error to some higher catcher. */
882 if (ex.reason < 0)
883 {
884 int objfile_is_library = (objfile->flags & OBJF_SHARED);
885
886 switch (ex.error)
887 {
888 case TLS_NO_LIBRARY_SUPPORT_ERROR:
889 error (_("Cannot find thread-local variables in this thread library."));
890 break;
891 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find shared library `%s' in dynamic"
894 " linker's load module list"), objfile->name);
895 else
896 error (_("Cannot find executable file `%s' in dynamic"
897 " linker's load module list"), objfile->name);
898 break;
899 case TLS_NOT_ALLOCATED_YET_ERROR:
900 if (objfile_is_library)
901 error (_("The inferior has not yet allocated storage for"
902 " thread-local variables in\n"
903 "the shared library `%s'\n"
904 "for %s"),
905 objfile->name, target_pid_to_str (ptid));
906 else
907 error (_("The inferior has not yet allocated storage for"
908 " thread-local variables in\n"
909 "the executable `%s'\n"
910 "for %s"),
911 objfile->name, target_pid_to_str (ptid));
912 break;
913 case TLS_GENERIC_ERROR:
914 if (objfile_is_library)
915 error (_("Cannot find thread-local storage for %s, "
916 "shared library %s:\n%s"),
917 target_pid_to_str (ptid),
918 objfile->name, ex.message);
919 else
920 error (_("Cannot find thread-local storage for %s, "
921 "executable file %s:\n%s"),
922 target_pid_to_str (ptid),
923 objfile->name, ex.message);
924 break;
925 default:
926 throw_exception (ex);
927 break;
928 }
929 }
930 }
931 /* It wouldn't be wrong here to try a gdbarch method, too; finding
932 TLS is an ABI-specific thing. But we don't do that yet. */
933 else
934 error (_("Cannot find thread-local variables on this target"));
935
936 return addr;
937 }
938
939 #undef MIN
940 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
941
942 /* target_read_string -- read a null terminated string, up to LEN bytes,
943 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
944 Set *STRING to a pointer to malloc'd memory containing the data; the caller
945 is responsible for freeing it. Return the number of bytes successfully
946 read. */
947
948 int
949 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
950 {
951 int tlen, origlen, offset, i;
952 gdb_byte buf[4];
953 int errcode = 0;
954 char *buffer;
955 int buffer_allocated;
956 char *bufptr;
957 unsigned int nbytes_read = 0;
958
959 gdb_assert (string);
960
961 /* Small for testing. */
962 buffer_allocated = 4;
963 buffer = xmalloc (buffer_allocated);
964 bufptr = buffer;
965
966 origlen = len;
967
968 while (len > 0)
969 {
970 tlen = MIN (len, 4 - (memaddr & 3));
971 offset = memaddr & 3;
972
973 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
974 if (errcode != 0)
975 {
976 /* The transfer request might have crossed the boundary to an
977 unallocated region of memory. Retry the transfer, requesting
978 a single byte. */
979 tlen = 1;
980 offset = 0;
981 errcode = target_read_memory (memaddr, buf, 1);
982 if (errcode != 0)
983 goto done;
984 }
985
986 if (bufptr - buffer + tlen > buffer_allocated)
987 {
988 unsigned int bytes;
989 bytes = bufptr - buffer;
990 buffer_allocated *= 2;
991 buffer = xrealloc (buffer, buffer_allocated);
992 bufptr = buffer + bytes;
993 }
994
995 for (i = 0; i < tlen; i++)
996 {
997 *bufptr++ = buf[i + offset];
998 if (buf[i + offset] == '\000')
999 {
1000 nbytes_read += i + 1;
1001 goto done;
1002 }
1003 }
1004
1005 memaddr += tlen;
1006 len -= tlen;
1007 nbytes_read += tlen;
1008 }
1009 done:
1010 *string = buffer;
1011 if (errnop != NULL)
1012 *errnop = errcode;
1013 return nbytes_read;
1014 }
1015
1016 /* Find a section containing ADDR. */
1017 struct section_table *
1018 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1019 {
1020 struct section_table *secp;
1021 for (secp = target->to_sections;
1022 secp < target->to_sections_end;
1023 secp++)
1024 {
1025 if (addr >= secp->addr && addr < secp->endaddr)
1026 return secp;
1027 }
1028 return NULL;
1029 }
1030
1031 /* Perform a partial memory transfer. The arguments and return
1032 value are just as for target_xfer_partial. */
1033
1034 static LONGEST
1035 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1036 ULONGEST memaddr, LONGEST len)
1037 {
1038 LONGEST res;
1039 int reg_len;
1040 struct mem_region *region;
1041
1042 /* Zero length requests are ok and require no work. */
1043 if (len == 0)
1044 return 0;
1045
1046 /* Try the executable file, if "trust-readonly-sections" is set. */
1047 if (readbuf != NULL && trust_readonly)
1048 {
1049 struct section_table *secp;
1050
1051 secp = target_section_by_addr (ops, memaddr);
1052 if (secp != NULL
1053 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1054 & SEC_READONLY))
1055 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1056 }
1057
1058 /* Likewise for accesses to unmapped overlay sections. */
1059 if (readbuf != NULL && overlay_debugging)
1060 {
1061 struct obj_section *section = find_pc_overlay (memaddr);
1062 if (pc_in_unmapped_range (memaddr, section))
1063 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1064 }
1065
1066 /* Try GDB's internal data cache. */
1067 region = lookup_mem_region (memaddr);
1068 /* region->hi == 0 means there's no upper bound. */
1069 if (memaddr + len < region->hi || region->hi == 0)
1070 reg_len = len;
1071 else
1072 reg_len = region->hi - memaddr;
1073
1074 switch (region->attrib.mode)
1075 {
1076 case MEM_RO:
1077 if (writebuf != NULL)
1078 return -1;
1079 break;
1080
1081 case MEM_WO:
1082 if (readbuf != NULL)
1083 return -1;
1084 break;
1085
1086 case MEM_FLASH:
1087 /* We only support writing to flash during "load" for now. */
1088 if (writebuf != NULL)
1089 error (_("Writing to flash memory forbidden in this context"));
1090 break;
1091
1092 case MEM_NONE:
1093 return -1;
1094 }
1095
1096 if (region->attrib.cache)
1097 {
1098 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1099 memory request will start back at current_target. */
1100 if (readbuf != NULL)
1101 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1102 reg_len, 0);
1103 else
1104 /* FIXME drow/2006-08-09: If we're going to preserve const
1105 correctness dcache_xfer_memory should take readbuf and
1106 writebuf. */
1107 res = dcache_xfer_memory (target_dcache, memaddr,
1108 (void *) writebuf,
1109 reg_len, 1);
1110 if (res <= 0)
1111 return -1;
1112 else
1113 {
1114 if (readbuf && !show_memory_breakpoints)
1115 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1116 return res;
1117 }
1118 }
1119
1120 /* If none of those methods found the memory we wanted, fall back
1121 to a target partial transfer. Normally a single call to
1122 to_xfer_partial is enough; if it doesn't recognize an object
1123 it will call the to_xfer_partial of the next target down.
1124 But for memory this won't do. Memory is the only target
1125 object which can be read from more than one valid target.
1126 A core file, for instance, could have some of memory but
1127 delegate other bits to the target below it. So, we must
1128 manually try all targets. */
1129
1130 do
1131 {
1132 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1133 readbuf, writebuf, memaddr, reg_len);
1134 if (res > 0)
1135 break;
1136
1137 /* We want to continue past core files to executables, but not
1138 past a running target's memory. */
1139 if (ops->to_has_all_memory)
1140 break;
1141
1142 ops = ops->beneath;
1143 }
1144 while (ops != NULL);
1145
1146 if (readbuf && !show_memory_breakpoints)
1147 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1148
1149 /* If we still haven't got anything, return the last error. We
1150 give up. */
1151 return res;
1152 }
1153
1154 static void
1155 restore_show_memory_breakpoints (void *arg)
1156 {
1157 show_memory_breakpoints = (uintptr_t) arg;
1158 }
1159
1160 struct cleanup *
1161 make_show_memory_breakpoints_cleanup (int show)
1162 {
1163 int current = show_memory_breakpoints;
1164 show_memory_breakpoints = show;
1165
1166 return make_cleanup (restore_show_memory_breakpoints,
1167 (void *) (uintptr_t) current);
1168 }
1169
1170 static LONGEST
1171 target_xfer_partial (struct target_ops *ops,
1172 enum target_object object, const char *annex,
1173 void *readbuf, const void *writebuf,
1174 ULONGEST offset, LONGEST len)
1175 {
1176 LONGEST retval;
1177
1178 gdb_assert (ops->to_xfer_partial != NULL);
1179
1180 /* If this is a memory transfer, let the memory-specific code
1181 have a look at it instead. Memory transfers are more
1182 complicated. */
1183 if (object == TARGET_OBJECT_MEMORY)
1184 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1185 else
1186 {
1187 enum target_object raw_object = object;
1188
1189 /* If this is a raw memory transfer, request the normal
1190 memory object from other layers. */
1191 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1192 raw_object = TARGET_OBJECT_MEMORY;
1193
1194 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1195 writebuf, offset, len);
1196 }
1197
1198 if (targetdebug)
1199 {
1200 const unsigned char *myaddr = NULL;
1201
1202 fprintf_unfiltered (gdb_stdlog,
1203 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1204 ops->to_shortname,
1205 (int) object,
1206 (annex ? annex : "(null)"),
1207 host_address_to_string (readbuf),
1208 host_address_to_string (writebuf),
1209 core_addr_to_string_nz (offset),
1210 plongest (len), plongest (retval));
1211
1212 if (readbuf)
1213 myaddr = readbuf;
1214 if (writebuf)
1215 myaddr = writebuf;
1216 if (retval > 0 && myaddr != NULL)
1217 {
1218 int i;
1219
1220 fputs_unfiltered (", bytes =", gdb_stdlog);
1221 for (i = 0; i < retval; i++)
1222 {
1223 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1224 {
1225 if (targetdebug < 2 && i > 0)
1226 {
1227 fprintf_unfiltered (gdb_stdlog, " ...");
1228 break;
1229 }
1230 fprintf_unfiltered (gdb_stdlog, "\n");
1231 }
1232
1233 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1234 }
1235 }
1236
1237 fputc_unfiltered ('\n', gdb_stdlog);
1238 }
1239 return retval;
1240 }
1241
1242 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1243 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1244 if any error occurs.
1245
1246 If an error occurs, no guarantee is made about the contents of the data at
1247 MYADDR. In particular, the caller should not depend upon partial reads
1248 filling the buffer with good data. There is no way for the caller to know
1249 how much good data might have been transfered anyway. Callers that can
1250 deal with partial reads should call target_read (which will retry until
1251 it makes no progress, and then return how much was transferred). */
1252
1253 int
1254 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1255 {
1256 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1257 myaddr, memaddr, len) == len)
1258 return 0;
1259 else
1260 return EIO;
1261 }
1262
1263 int
1264 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1265 {
1266 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1267 myaddr, memaddr, len) == len)
1268 return 0;
1269 else
1270 return EIO;
1271 }
1272
1273 /* Fetch the target's memory map. */
1274
1275 VEC(mem_region_s) *
1276 target_memory_map (void)
1277 {
1278 VEC(mem_region_s) *result;
1279 struct mem_region *last_one, *this_one;
1280 int ix;
1281 struct target_ops *t;
1282
1283 if (targetdebug)
1284 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1285
1286 for (t = current_target.beneath; t != NULL; t = t->beneath)
1287 if (t->to_memory_map != NULL)
1288 break;
1289
1290 if (t == NULL)
1291 return NULL;
1292
1293 result = t->to_memory_map (t);
1294 if (result == NULL)
1295 return NULL;
1296
1297 qsort (VEC_address (mem_region_s, result),
1298 VEC_length (mem_region_s, result),
1299 sizeof (struct mem_region), mem_region_cmp);
1300
1301 /* Check that regions do not overlap. Simultaneously assign
1302 a numbering for the "mem" commands to use to refer to
1303 each region. */
1304 last_one = NULL;
1305 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1306 {
1307 this_one->number = ix;
1308
1309 if (last_one && last_one->hi > this_one->lo)
1310 {
1311 warning (_("Overlapping regions in memory map: ignoring"));
1312 VEC_free (mem_region_s, result);
1313 return NULL;
1314 }
1315 last_one = this_one;
1316 }
1317
1318 return result;
1319 }
1320
1321 void
1322 target_flash_erase (ULONGEST address, LONGEST length)
1323 {
1324 struct target_ops *t;
1325
1326 for (t = current_target.beneath; t != NULL; t = t->beneath)
1327 if (t->to_flash_erase != NULL)
1328 {
1329 if (targetdebug)
1330 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1331 paddr (address), phex (length, 0));
1332 t->to_flash_erase (t, address, length);
1333 return;
1334 }
1335
1336 tcomplain ();
1337 }
1338
1339 void
1340 target_flash_done (void)
1341 {
1342 struct target_ops *t;
1343
1344 for (t = current_target.beneath; t != NULL; t = t->beneath)
1345 if (t->to_flash_done != NULL)
1346 {
1347 if (targetdebug)
1348 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1349 t->to_flash_done (t);
1350 return;
1351 }
1352
1353 tcomplain ();
1354 }
1355
1356 #ifndef target_stopped_data_address_p
1357 int
1358 target_stopped_data_address_p (struct target_ops *target)
1359 {
1360 if (target->to_stopped_data_address
1361 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1362 return 0;
1363 if (target->to_stopped_data_address == debug_to_stopped_data_address
1364 && (debug_target.to_stopped_data_address
1365 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1366 return 0;
1367 return 1;
1368 }
1369 #endif
1370
1371 static void
1372 show_trust_readonly (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c, const char *value)
1374 {
1375 fprintf_filtered (file, _("\
1376 Mode for reading from readonly sections is %s.\n"),
1377 value);
1378 }
1379
1380 /* More generic transfers. */
1381
1382 static LONGEST
1383 default_xfer_partial (struct target_ops *ops, enum target_object object,
1384 const char *annex, gdb_byte *readbuf,
1385 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1386 {
1387 if (object == TARGET_OBJECT_MEMORY
1388 && ops->deprecated_xfer_memory != NULL)
1389 /* If available, fall back to the target's
1390 "deprecated_xfer_memory" method. */
1391 {
1392 int xfered = -1;
1393 errno = 0;
1394 if (writebuf != NULL)
1395 {
1396 void *buffer = xmalloc (len);
1397 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1398 memcpy (buffer, writebuf, len);
1399 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1400 1/*write*/, NULL, ops);
1401 do_cleanups (cleanup);
1402 }
1403 if (readbuf != NULL)
1404 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1405 0/*read*/, NULL, ops);
1406 if (xfered > 0)
1407 return xfered;
1408 else if (xfered == 0 && errno == 0)
1409 /* "deprecated_xfer_memory" uses 0, cross checked against
1410 ERRNO as one indication of an error. */
1411 return 0;
1412 else
1413 return -1;
1414 }
1415 else if (ops->beneath != NULL)
1416 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1417 readbuf, writebuf, offset, len);
1418 else
1419 return -1;
1420 }
1421
1422 /* The xfer_partial handler for the topmost target. Unlike the default,
1423 it does not need to handle memory specially; it just passes all
1424 requests down the stack. */
1425
1426 static LONGEST
1427 current_xfer_partial (struct target_ops *ops, enum target_object object,
1428 const char *annex, gdb_byte *readbuf,
1429 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1430 {
1431 if (ops->beneath != NULL)
1432 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1433 readbuf, writebuf, offset, len);
1434 else
1435 return -1;
1436 }
1437
1438 /* Target vector read/write partial wrapper functions.
1439
1440 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1441 (inbuf, outbuf)", instead of separate read/write methods, make life
1442 easier. */
1443
1444 static LONGEST
1445 target_read_partial (struct target_ops *ops,
1446 enum target_object object,
1447 const char *annex, gdb_byte *buf,
1448 ULONGEST offset, LONGEST len)
1449 {
1450 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1451 }
1452
1453 static LONGEST
1454 target_write_partial (struct target_ops *ops,
1455 enum target_object object,
1456 const char *annex, const gdb_byte *buf,
1457 ULONGEST offset, LONGEST len)
1458 {
1459 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1460 }
1461
1462 /* Wrappers to perform the full transfer. */
1463 LONGEST
1464 target_read (struct target_ops *ops,
1465 enum target_object object,
1466 const char *annex, gdb_byte *buf,
1467 ULONGEST offset, LONGEST len)
1468 {
1469 LONGEST xfered = 0;
1470 while (xfered < len)
1471 {
1472 LONGEST xfer = target_read_partial (ops, object, annex,
1473 (gdb_byte *) buf + xfered,
1474 offset + xfered, len - xfered);
1475 /* Call an observer, notifying them of the xfer progress? */
1476 if (xfer == 0)
1477 return xfered;
1478 if (xfer < 0)
1479 return -1;
1480 xfered += xfer;
1481 QUIT;
1482 }
1483 return len;
1484 }
1485
1486 LONGEST
1487 target_read_until_error (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, LONGEST len)
1491 {
1492 LONGEST xfered = 0;
1493 while (xfered < len)
1494 {
1495 LONGEST xfer = target_read_partial (ops, object, annex,
1496 (gdb_byte *) buf + xfered,
1497 offset + xfered, len - xfered);
1498 /* Call an observer, notifying them of the xfer progress? */
1499 if (xfer == 0)
1500 return xfered;
1501 if (xfer < 0)
1502 {
1503 /* We've got an error. Try to read in smaller blocks. */
1504 ULONGEST start = offset + xfered;
1505 ULONGEST remaining = len - xfered;
1506 ULONGEST half;
1507
1508 /* If an attempt was made to read a random memory address,
1509 it's likely that the very first byte is not accessible.
1510 Try reading the first byte, to avoid doing log N tries
1511 below. */
1512 xfer = target_read_partial (ops, object, annex,
1513 (gdb_byte *) buf + xfered, start, 1);
1514 if (xfer <= 0)
1515 return xfered;
1516 start += 1;
1517 remaining -= 1;
1518 half = remaining/2;
1519
1520 while (half > 0)
1521 {
1522 xfer = target_read_partial (ops, object, annex,
1523 (gdb_byte *) buf + xfered,
1524 start, half);
1525 if (xfer == 0)
1526 return xfered;
1527 if (xfer < 0)
1528 {
1529 remaining = half;
1530 }
1531 else
1532 {
1533 /* We have successfully read the first half. So, the
1534 error must be in the second half. Adjust start and
1535 remaining to point at the second half. */
1536 xfered += xfer;
1537 start += xfer;
1538 remaining -= xfer;
1539 }
1540 half = remaining/2;
1541 }
1542
1543 return xfered;
1544 }
1545 xfered += xfer;
1546 QUIT;
1547 }
1548 return len;
1549 }
1550
1551
1552 /* An alternative to target_write with progress callbacks. */
1553
1554 LONGEST
1555 target_write_with_progress (struct target_ops *ops,
1556 enum target_object object,
1557 const char *annex, const gdb_byte *buf,
1558 ULONGEST offset, LONGEST len,
1559 void (*progress) (ULONGEST, void *), void *baton)
1560 {
1561 LONGEST xfered = 0;
1562
1563 /* Give the progress callback a chance to set up. */
1564 if (progress)
1565 (*progress) (0, baton);
1566
1567 while (xfered < len)
1568 {
1569 LONGEST xfer = target_write_partial (ops, object, annex,
1570 (gdb_byte *) buf + xfered,
1571 offset + xfered, len - xfered);
1572
1573 if (xfer == 0)
1574 return xfered;
1575 if (xfer < 0)
1576 return -1;
1577
1578 if (progress)
1579 (*progress) (xfer, baton);
1580
1581 xfered += xfer;
1582 QUIT;
1583 }
1584 return len;
1585 }
1586
1587 LONGEST
1588 target_write (struct target_ops *ops,
1589 enum target_object object,
1590 const char *annex, const gdb_byte *buf,
1591 ULONGEST offset, LONGEST len)
1592 {
1593 return target_write_with_progress (ops, object, annex, buf, offset, len,
1594 NULL, NULL);
1595 }
1596
1597 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1598 the size of the transferred data. PADDING additional bytes are
1599 available in *BUF_P. This is a helper function for
1600 target_read_alloc; see the declaration of that function for more
1601 information. */
1602
1603 static LONGEST
1604 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1605 const char *annex, gdb_byte **buf_p, int padding)
1606 {
1607 size_t buf_alloc, buf_pos;
1608 gdb_byte *buf;
1609 LONGEST n;
1610
1611 /* This function does not have a length parameter; it reads the
1612 entire OBJECT). Also, it doesn't support objects fetched partly
1613 from one target and partly from another (in a different stratum,
1614 e.g. a core file and an executable). Both reasons make it
1615 unsuitable for reading memory. */
1616 gdb_assert (object != TARGET_OBJECT_MEMORY);
1617
1618 /* Start by reading up to 4K at a time. The target will throttle
1619 this number down if necessary. */
1620 buf_alloc = 4096;
1621 buf = xmalloc (buf_alloc);
1622 buf_pos = 0;
1623 while (1)
1624 {
1625 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1626 buf_pos, buf_alloc - buf_pos - padding);
1627 if (n < 0)
1628 {
1629 /* An error occurred. */
1630 xfree (buf);
1631 return -1;
1632 }
1633 else if (n == 0)
1634 {
1635 /* Read all there was. */
1636 if (buf_pos == 0)
1637 xfree (buf);
1638 else
1639 *buf_p = buf;
1640 return buf_pos;
1641 }
1642
1643 buf_pos += n;
1644
1645 /* If the buffer is filling up, expand it. */
1646 if (buf_alloc < buf_pos * 2)
1647 {
1648 buf_alloc *= 2;
1649 buf = xrealloc (buf, buf_alloc);
1650 }
1651
1652 QUIT;
1653 }
1654 }
1655
1656 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1657 the size of the transferred data. See the declaration in "target.h"
1658 function for more information about the return value. */
1659
1660 LONGEST
1661 target_read_alloc (struct target_ops *ops, enum target_object object,
1662 const char *annex, gdb_byte **buf_p)
1663 {
1664 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1665 }
1666
1667 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1668 returned as a string, allocated using xmalloc. If an error occurs
1669 or the transfer is unsupported, NULL is returned. Empty objects
1670 are returned as allocated but empty strings. A warning is issued
1671 if the result contains any embedded NUL bytes. */
1672
1673 char *
1674 target_read_stralloc (struct target_ops *ops, enum target_object object,
1675 const char *annex)
1676 {
1677 gdb_byte *buffer;
1678 LONGEST transferred;
1679
1680 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1681
1682 if (transferred < 0)
1683 return NULL;
1684
1685 if (transferred == 0)
1686 return xstrdup ("");
1687
1688 buffer[transferred] = 0;
1689 if (strlen (buffer) < transferred)
1690 warning (_("target object %d, annex %s, "
1691 "contained unexpected null characters"),
1692 (int) object, annex ? annex : "(none)");
1693
1694 return (char *) buffer;
1695 }
1696
1697 /* Memory transfer methods. */
1698
1699 void
1700 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1701 LONGEST len)
1702 {
1703 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1704 != len)
1705 memory_error (EIO, addr);
1706 }
1707
1708 ULONGEST
1709 get_target_memory_unsigned (struct target_ops *ops,
1710 CORE_ADDR addr, int len)
1711 {
1712 gdb_byte buf[sizeof (ULONGEST)];
1713
1714 gdb_assert (len <= sizeof (buf));
1715 get_target_memory (ops, addr, buf, len);
1716 return extract_unsigned_integer (buf, len);
1717 }
1718
1719 static void
1720 target_info (char *args, int from_tty)
1721 {
1722 struct target_ops *t;
1723 int has_all_mem = 0;
1724
1725 if (symfile_objfile != NULL)
1726 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1727
1728 for (t = target_stack; t != NULL; t = t->beneath)
1729 {
1730 if (!t->to_has_memory)
1731 continue;
1732
1733 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1734 continue;
1735 if (has_all_mem)
1736 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1737 printf_unfiltered ("%s:\n", t->to_longname);
1738 (t->to_files_info) (t);
1739 has_all_mem = t->to_has_all_memory;
1740 }
1741 }
1742
1743 /* This function is called before any new inferior is created, e.g.
1744 by running a program, attaching, or connecting to a target.
1745 It cleans up any state from previous invocations which might
1746 change between runs. This is a subset of what target_preopen
1747 resets (things which might change between targets). */
1748
1749 void
1750 target_pre_inferior (int from_tty)
1751 {
1752 /* Clear out solib state. Otherwise the solib state of the previous
1753 inferior might have survived and is entirely wrong for the new
1754 target. This has been observed on GNU/Linux using glibc 2.3. How
1755 to reproduce:
1756
1757 bash$ ./foo&
1758 [1] 4711
1759 bash$ ./foo&
1760 [1] 4712
1761 bash$ gdb ./foo
1762 [...]
1763 (gdb) attach 4711
1764 (gdb) detach
1765 (gdb) attach 4712
1766 Cannot access memory at address 0xdeadbeef
1767 */
1768
1769 /* In some OSs, the shared library list is the same/global/shared
1770 across inferiors. If code is shared between processes, so are
1771 memory regions and features. */
1772 if (!gdbarch_has_global_solist (target_gdbarch))
1773 {
1774 no_shared_libraries (NULL, from_tty);
1775
1776 invalidate_target_mem_regions ();
1777
1778 target_clear_description ();
1779 }
1780 }
1781
1782 /* This is to be called by the open routine before it does
1783 anything. */
1784
1785 void
1786 target_preopen (int from_tty)
1787 {
1788 dont_repeat ();
1789
1790 if (target_has_execution)
1791 {
1792 if (!from_tty
1793 || query (_("A program is being debugged already. Kill it? ")))
1794 target_kill ();
1795 else
1796 error (_("Program not killed."));
1797 }
1798
1799 /* Calling target_kill may remove the target from the stack. But if
1800 it doesn't (which seems like a win for UDI), remove it now. */
1801 /* Leave the exec target, though. The user may be switching from a
1802 live process to a core of the same program. */
1803 pop_all_targets_above (file_stratum, 0);
1804
1805 target_pre_inferior (from_tty);
1806 }
1807
1808 /* Detach a target after doing deferred register stores. */
1809
1810 void
1811 target_detach (char *args, int from_tty)
1812 {
1813 struct target_ops* t;
1814
1815 if (gdbarch_has_global_solist (target_gdbarch))
1816 /* Don't remove global breakpoints here. They're removed on
1817 disconnection from the target. */
1818 ;
1819 else
1820 /* If we're in breakpoints-always-inserted mode, have to remove
1821 them before detaching. */
1822 remove_breakpoints ();
1823
1824 for (t = current_target.beneath; t != NULL; t = t->beneath)
1825 {
1826 if (t->to_detach != NULL)
1827 {
1828 t->to_detach (t, args, from_tty);
1829 return;
1830 }
1831 }
1832
1833 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1834 }
1835
1836 void
1837 target_disconnect (char *args, int from_tty)
1838 {
1839 struct target_ops *t;
1840
1841 /* If we're in breakpoints-always-inserted mode or if breakpoints
1842 are global across processes, we have to remove them before
1843 disconnecting. */
1844 remove_breakpoints ();
1845
1846 for (t = current_target.beneath; t != NULL; t = t->beneath)
1847 if (t->to_disconnect != NULL)
1848 {
1849 if (targetdebug)
1850 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1851 args, from_tty);
1852 t->to_disconnect (t, args, from_tty);
1853 return;
1854 }
1855
1856 tcomplain ();
1857 }
1858
1859 void
1860 target_resume (ptid_t ptid, int step, enum target_signal signal)
1861 {
1862 dcache_invalidate (target_dcache);
1863 (*current_target.to_resume) (ptid, step, signal);
1864 set_executing (ptid, 1);
1865 set_running (ptid, 1);
1866 }
1867 /* Look through the list of possible targets for a target that can
1868 follow forks. */
1869
1870 int
1871 target_follow_fork (int follow_child)
1872 {
1873 struct target_ops *t;
1874
1875 for (t = current_target.beneath; t != NULL; t = t->beneath)
1876 {
1877 if (t->to_follow_fork != NULL)
1878 {
1879 int retval = t->to_follow_fork (t, follow_child);
1880 if (targetdebug)
1881 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1882 follow_child, retval);
1883 return retval;
1884 }
1885 }
1886
1887 /* Some target returned a fork event, but did not know how to follow it. */
1888 internal_error (__FILE__, __LINE__,
1889 "could not find a target to follow fork");
1890 }
1891
1892 void
1893 target_mourn_inferior (void)
1894 {
1895 struct target_ops *t;
1896 for (t = current_target.beneath; t != NULL; t = t->beneath)
1897 {
1898 if (t->to_mourn_inferior != NULL)
1899 {
1900 t->to_mourn_inferior (t);
1901 return;
1902 }
1903 }
1904
1905 internal_error (__FILE__, __LINE__,
1906 "could not find a target to follow mourn inferiour");
1907 }
1908
1909 /* Look for a target which can describe architectural features, starting
1910 from TARGET. If we find one, return its description. */
1911
1912 const struct target_desc *
1913 target_read_description (struct target_ops *target)
1914 {
1915 struct target_ops *t;
1916
1917 for (t = target; t != NULL; t = t->beneath)
1918 if (t->to_read_description != NULL)
1919 {
1920 const struct target_desc *tdesc;
1921
1922 tdesc = t->to_read_description (t);
1923 if (tdesc)
1924 return tdesc;
1925 }
1926
1927 return NULL;
1928 }
1929
1930 /* The default implementation of to_search_memory.
1931 This implements a basic search of memory, reading target memory and
1932 performing the search here (as opposed to performing the search in on the
1933 target side with, for example, gdbserver). */
1934
1935 int
1936 simple_search_memory (struct target_ops *ops,
1937 CORE_ADDR start_addr, ULONGEST search_space_len,
1938 const gdb_byte *pattern, ULONGEST pattern_len,
1939 CORE_ADDR *found_addrp)
1940 {
1941 /* NOTE: also defined in find.c testcase. */
1942 #define SEARCH_CHUNK_SIZE 16000
1943 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1944 /* Buffer to hold memory contents for searching. */
1945 gdb_byte *search_buf;
1946 unsigned search_buf_size;
1947 struct cleanup *old_cleanups;
1948
1949 search_buf_size = chunk_size + pattern_len - 1;
1950
1951 /* No point in trying to allocate a buffer larger than the search space. */
1952 if (search_space_len < search_buf_size)
1953 search_buf_size = search_space_len;
1954
1955 search_buf = malloc (search_buf_size);
1956 if (search_buf == NULL)
1957 error (_("Unable to allocate memory to perform the search."));
1958 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1959
1960 /* Prime the search buffer. */
1961
1962 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1963 search_buf, start_addr, search_buf_size) != search_buf_size)
1964 {
1965 warning (_("Unable to access target memory at %s, halting search."),
1966 hex_string (start_addr));
1967 do_cleanups (old_cleanups);
1968 return -1;
1969 }
1970
1971 /* Perform the search.
1972
1973 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1974 When we've scanned N bytes we copy the trailing bytes to the start and
1975 read in another N bytes. */
1976
1977 while (search_space_len >= pattern_len)
1978 {
1979 gdb_byte *found_ptr;
1980 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1981
1982 found_ptr = memmem (search_buf, nr_search_bytes,
1983 pattern, pattern_len);
1984
1985 if (found_ptr != NULL)
1986 {
1987 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1988 *found_addrp = found_addr;
1989 do_cleanups (old_cleanups);
1990 return 1;
1991 }
1992
1993 /* Not found in this chunk, skip to next chunk. */
1994
1995 /* Don't let search_space_len wrap here, it's unsigned. */
1996 if (search_space_len >= chunk_size)
1997 search_space_len -= chunk_size;
1998 else
1999 search_space_len = 0;
2000
2001 if (search_space_len >= pattern_len)
2002 {
2003 unsigned keep_len = search_buf_size - chunk_size;
2004 CORE_ADDR read_addr = start_addr + keep_len;
2005 int nr_to_read;
2006
2007 /* Copy the trailing part of the previous iteration to the front
2008 of the buffer for the next iteration. */
2009 gdb_assert (keep_len == pattern_len - 1);
2010 memcpy (search_buf, search_buf + chunk_size, keep_len);
2011
2012 nr_to_read = min (search_space_len - keep_len, chunk_size);
2013
2014 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2015 search_buf + keep_len, read_addr,
2016 nr_to_read) != nr_to_read)
2017 {
2018 warning (_("Unable to access target memory at %s, halting search."),
2019 hex_string (read_addr));
2020 do_cleanups (old_cleanups);
2021 return -1;
2022 }
2023
2024 start_addr += chunk_size;
2025 }
2026 }
2027
2028 /* Not found. */
2029
2030 do_cleanups (old_cleanups);
2031 return 0;
2032 }
2033
2034 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2035 sequence of bytes in PATTERN with length PATTERN_LEN.
2036
2037 The result is 1 if found, 0 if not found, and -1 if there was an error
2038 requiring halting of the search (e.g. memory read error).
2039 If the pattern is found the address is recorded in FOUND_ADDRP. */
2040
2041 int
2042 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2043 const gdb_byte *pattern, ULONGEST pattern_len,
2044 CORE_ADDR *found_addrp)
2045 {
2046 struct target_ops *t;
2047 int found;
2048
2049 /* We don't use INHERIT to set current_target.to_search_memory,
2050 so we have to scan the target stack and handle targetdebug
2051 ourselves. */
2052
2053 if (targetdebug)
2054 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2055 hex_string (start_addr));
2056
2057 for (t = current_target.beneath; t != NULL; t = t->beneath)
2058 if (t->to_search_memory != NULL)
2059 break;
2060
2061 if (t != NULL)
2062 {
2063 found = t->to_search_memory (t, start_addr, search_space_len,
2064 pattern, pattern_len, found_addrp);
2065 }
2066 else
2067 {
2068 /* If a special version of to_search_memory isn't available, use the
2069 simple version. */
2070 found = simple_search_memory (&current_target,
2071 start_addr, search_space_len,
2072 pattern, pattern_len, found_addrp);
2073 }
2074
2075 if (targetdebug)
2076 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2077
2078 return found;
2079 }
2080
2081 /* Look through the currently pushed targets. If none of them will
2082 be able to restart the currently running process, issue an error
2083 message. */
2084
2085 void
2086 target_require_runnable (void)
2087 {
2088 struct target_ops *t;
2089
2090 for (t = target_stack; t != NULL; t = t->beneath)
2091 {
2092 /* If this target knows how to create a new program, then
2093 assume we will still be able to after killing the current
2094 one. Either killing and mourning will not pop T, or else
2095 find_default_run_target will find it again. */
2096 if (t->to_create_inferior != NULL)
2097 return;
2098
2099 /* Do not worry about thread_stratum targets that can not
2100 create inferiors. Assume they will be pushed again if
2101 necessary, and continue to the process_stratum. */
2102 if (t->to_stratum == thread_stratum)
2103 continue;
2104
2105 error (_("\
2106 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2107 t->to_shortname);
2108 }
2109
2110 /* This function is only called if the target is running. In that
2111 case there should have been a process_stratum target and it
2112 should either know how to create inferiors, or not... */
2113 internal_error (__FILE__, __LINE__, "No targets found");
2114 }
2115
2116 /* Look through the list of possible targets for a target that can
2117 execute a run or attach command without any other data. This is
2118 used to locate the default process stratum.
2119
2120 If DO_MESG is not NULL, the result is always valid (error() is
2121 called for errors); else, return NULL on error. */
2122
2123 static struct target_ops *
2124 find_default_run_target (char *do_mesg)
2125 {
2126 struct target_ops **t;
2127 struct target_ops *runable = NULL;
2128 int count;
2129
2130 count = 0;
2131
2132 for (t = target_structs; t < target_structs + target_struct_size;
2133 ++t)
2134 {
2135 if ((*t)->to_can_run && target_can_run (*t))
2136 {
2137 runable = *t;
2138 ++count;
2139 }
2140 }
2141
2142 if (count != 1)
2143 {
2144 if (do_mesg)
2145 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2146 else
2147 return NULL;
2148 }
2149
2150 return runable;
2151 }
2152
2153 void
2154 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2155 {
2156 struct target_ops *t;
2157
2158 t = find_default_run_target ("attach");
2159 (t->to_attach) (t, args, from_tty);
2160 return;
2161 }
2162
2163 void
2164 find_default_create_inferior (struct target_ops *ops,
2165 char *exec_file, char *allargs, char **env,
2166 int from_tty)
2167 {
2168 struct target_ops *t;
2169
2170 t = find_default_run_target ("run");
2171 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2172 return;
2173 }
2174
2175 int
2176 find_default_can_async_p (void)
2177 {
2178 struct target_ops *t;
2179
2180 /* This may be called before the target is pushed on the stack;
2181 look for the default process stratum. If there's none, gdb isn't
2182 configured with a native debugger, and target remote isn't
2183 connected yet. */
2184 t = find_default_run_target (NULL);
2185 if (t && t->to_can_async_p)
2186 return (t->to_can_async_p) ();
2187 return 0;
2188 }
2189
2190 int
2191 find_default_is_async_p (void)
2192 {
2193 struct target_ops *t;
2194
2195 /* This may be called before the target is pushed on the stack;
2196 look for the default process stratum. If there's none, gdb isn't
2197 configured with a native debugger, and target remote isn't
2198 connected yet. */
2199 t = find_default_run_target (NULL);
2200 if (t && t->to_is_async_p)
2201 return (t->to_is_async_p) ();
2202 return 0;
2203 }
2204
2205 int
2206 find_default_supports_non_stop (void)
2207 {
2208 struct target_ops *t;
2209
2210 t = find_default_run_target (NULL);
2211 if (t && t->to_supports_non_stop)
2212 return (t->to_supports_non_stop) ();
2213 return 0;
2214 }
2215
2216 int
2217 target_supports_non_stop ()
2218 {
2219 struct target_ops *t;
2220 for (t = &current_target; t != NULL; t = t->beneath)
2221 if (t->to_supports_non_stop)
2222 return t->to_supports_non_stop ();
2223
2224 return 0;
2225 }
2226
2227
2228 char *
2229 target_get_osdata (const char *type)
2230 {
2231 char *document;
2232 struct target_ops *t;
2233
2234 if (target_can_run (&current_target))
2235 t = &current_target;
2236 else
2237 t = find_default_run_target ("get OS data");
2238
2239 if (!t)
2240 return NULL;
2241
2242 document = target_read_stralloc (t,
2243 TARGET_OBJECT_OSDATA,
2244 type);
2245 return document;
2246 }
2247
2248 static int
2249 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2250 {
2251 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2252 }
2253
2254 static int
2255 default_watchpoint_addr_within_range (struct target_ops *target,
2256 CORE_ADDR addr,
2257 CORE_ADDR start, int length)
2258 {
2259 return addr >= start && addr < start + length;
2260 }
2261
2262 static int
2263 return_zero (void)
2264 {
2265 return 0;
2266 }
2267
2268 static int
2269 return_one (void)
2270 {
2271 return 1;
2272 }
2273
2274 static int
2275 return_minus_one (void)
2276 {
2277 return -1;
2278 }
2279
2280 /*
2281 * Resize the to_sections pointer. Also make sure that anyone that
2282 * was holding on to an old value of it gets updated.
2283 * Returns the old size.
2284 */
2285
2286 int
2287 target_resize_to_sections (struct target_ops *target, int num_added)
2288 {
2289 struct target_ops **t;
2290 struct section_table *old_value;
2291 int old_count;
2292
2293 old_value = target->to_sections;
2294
2295 if (target->to_sections)
2296 {
2297 old_count = target->to_sections_end - target->to_sections;
2298 target->to_sections = (struct section_table *)
2299 xrealloc ((char *) target->to_sections,
2300 (sizeof (struct section_table)) * (num_added + old_count));
2301 }
2302 else
2303 {
2304 old_count = 0;
2305 target->to_sections = (struct section_table *)
2306 xmalloc ((sizeof (struct section_table)) * num_added);
2307 }
2308 target->to_sections_end = target->to_sections + (num_added + old_count);
2309
2310 /* Check to see if anyone else was pointing to this structure.
2311 If old_value was null, then no one was. */
2312
2313 if (old_value)
2314 {
2315 for (t = target_structs; t < target_structs + target_struct_size;
2316 ++t)
2317 {
2318 if ((*t)->to_sections == old_value)
2319 {
2320 (*t)->to_sections = target->to_sections;
2321 (*t)->to_sections_end = target->to_sections_end;
2322 }
2323 }
2324 /* There is a flattened view of the target stack in current_target,
2325 so its to_sections pointer might also need updating. */
2326 if (current_target.to_sections == old_value)
2327 {
2328 current_target.to_sections = target->to_sections;
2329 current_target.to_sections_end = target->to_sections_end;
2330 }
2331 }
2332
2333 return old_count;
2334
2335 }
2336
2337 /* Remove all target sections taken from ABFD.
2338
2339 Scan the current target stack for targets whose section tables
2340 refer to sections from BFD, and remove those sections. We use this
2341 when we notice that the inferior has unloaded a shared object, for
2342 example. */
2343 void
2344 remove_target_sections (bfd *abfd)
2345 {
2346 struct target_ops **t;
2347
2348 for (t = target_structs; t < target_structs + target_struct_size; t++)
2349 {
2350 struct section_table *src, *dest;
2351
2352 dest = (*t)->to_sections;
2353 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2354 if (src->bfd != abfd)
2355 {
2356 /* Keep this section. */
2357 if (dest < src) *dest = *src;
2358 dest++;
2359 }
2360
2361 /* If we've dropped any sections, resize the section table. */
2362 if (dest < src)
2363 target_resize_to_sections (*t, dest - src);
2364 }
2365 }
2366
2367
2368
2369
2370 /* Find a single runnable target in the stack and return it. If for
2371 some reason there is more than one, return NULL. */
2372
2373 struct target_ops *
2374 find_run_target (void)
2375 {
2376 struct target_ops **t;
2377 struct target_ops *runable = NULL;
2378 int count;
2379
2380 count = 0;
2381
2382 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2383 {
2384 if ((*t)->to_can_run && target_can_run (*t))
2385 {
2386 runable = *t;
2387 ++count;
2388 }
2389 }
2390
2391 return (count == 1 ? runable : NULL);
2392 }
2393
2394 /* Find a single core_stratum target in the list of targets and return it.
2395 If for some reason there is more than one, return NULL. */
2396
2397 struct target_ops *
2398 find_core_target (void)
2399 {
2400 struct target_ops **t;
2401 struct target_ops *runable = NULL;
2402 int count;
2403
2404 count = 0;
2405
2406 for (t = target_structs; t < target_structs + target_struct_size;
2407 ++t)
2408 {
2409 if ((*t)->to_stratum == core_stratum)
2410 {
2411 runable = *t;
2412 ++count;
2413 }
2414 }
2415
2416 return (count == 1 ? runable : NULL);
2417 }
2418
2419 /*
2420 * Find the next target down the stack from the specified target.
2421 */
2422
2423 struct target_ops *
2424 find_target_beneath (struct target_ops *t)
2425 {
2426 return t->beneath;
2427 }
2428
2429 \f
2430 /* The inferior process has died. Long live the inferior! */
2431
2432 void
2433 generic_mourn_inferior (void)
2434 {
2435 ptid_t ptid;
2436
2437 ptid = inferior_ptid;
2438 inferior_ptid = null_ptid;
2439
2440 if (!ptid_equal (ptid, null_ptid))
2441 {
2442 int pid = ptid_get_pid (ptid);
2443 delete_inferior (pid);
2444 }
2445
2446 breakpoint_init_inferior (inf_exited);
2447 registers_changed ();
2448
2449 reopen_exec_file ();
2450 reinit_frame_cache ();
2451
2452 if (deprecated_detach_hook)
2453 deprecated_detach_hook ();
2454 }
2455 \f
2456 /* Helper function for child_wait and the derivatives of child_wait.
2457 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2458 translation of that in OURSTATUS. */
2459 void
2460 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2461 {
2462 if (WIFEXITED (hoststatus))
2463 {
2464 ourstatus->kind = TARGET_WAITKIND_EXITED;
2465 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2466 }
2467 else if (!WIFSTOPPED (hoststatus))
2468 {
2469 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2470 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2471 }
2472 else
2473 {
2474 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2475 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2476 }
2477 }
2478 \f
2479 /* Convert a normal process ID to a string. Returns the string in a
2480 static buffer. */
2481
2482 char *
2483 normal_pid_to_str (ptid_t ptid)
2484 {
2485 static char buf[32];
2486
2487 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2488 return buf;
2489 }
2490
2491 /* Error-catcher for target_find_memory_regions */
2492 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2493 {
2494 error (_("No target."));
2495 return 0;
2496 }
2497
2498 /* Error-catcher for target_make_corefile_notes */
2499 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2500 {
2501 error (_("No target."));
2502 return NULL;
2503 }
2504
2505 /* Set up the handful of non-empty slots needed by the dummy target
2506 vector. */
2507
2508 static void
2509 init_dummy_target (void)
2510 {
2511 dummy_target.to_shortname = "None";
2512 dummy_target.to_longname = "None";
2513 dummy_target.to_doc = "";
2514 dummy_target.to_attach = find_default_attach;
2515 dummy_target.to_detach =
2516 (void (*)(struct target_ops *, char *, int))target_ignore;
2517 dummy_target.to_create_inferior = find_default_create_inferior;
2518 dummy_target.to_can_async_p = find_default_can_async_p;
2519 dummy_target.to_is_async_p = find_default_is_async_p;
2520 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2521 dummy_target.to_pid_to_str = normal_pid_to_str;
2522 dummy_target.to_stratum = dummy_stratum;
2523 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2524 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2525 dummy_target.to_xfer_partial = default_xfer_partial;
2526 dummy_target.to_magic = OPS_MAGIC;
2527 }
2528 \f
2529 static void
2530 debug_to_open (char *args, int from_tty)
2531 {
2532 debug_target.to_open (args, from_tty);
2533
2534 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2535 }
2536
2537 static void
2538 debug_to_close (int quitting)
2539 {
2540 target_close (&debug_target, quitting);
2541 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2542 }
2543
2544 void
2545 target_close (struct target_ops *targ, int quitting)
2546 {
2547 if (targ->to_xclose != NULL)
2548 targ->to_xclose (targ, quitting);
2549 else if (targ->to_close != NULL)
2550 targ->to_close (quitting);
2551 }
2552
2553 void
2554 target_attach (char *args, int from_tty)
2555 {
2556 struct target_ops *t;
2557 for (t = current_target.beneath; t != NULL; t = t->beneath)
2558 {
2559 if (t->to_attach != NULL)
2560 {
2561 t->to_attach (t, args, from_tty);
2562 return;
2563 }
2564 }
2565
2566 internal_error (__FILE__, __LINE__,
2567 "could not find a target to attach");
2568 }
2569
2570
2571 static void
2572 debug_to_attach (struct target_ops *ops, char *args, int from_tty)
2573 {
2574 debug_target.to_attach (&debug_target, args, from_tty);
2575
2576 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2577 }
2578
2579
2580 static void
2581 debug_to_post_attach (int pid)
2582 {
2583 debug_target.to_post_attach (pid);
2584
2585 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2586 }
2587
2588 static void
2589 debug_to_detach (struct target_ops *ops, char *args, int from_tty)
2590 {
2591 debug_target.to_detach (&debug_target, args, from_tty);
2592
2593 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2594 }
2595
2596 static void
2597 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2598 {
2599 debug_target.to_resume (ptid, step, siggnal);
2600
2601 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2602 step ? "step" : "continue",
2603 target_signal_to_name (siggnal));
2604 }
2605
2606 static ptid_t
2607 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2608 {
2609 ptid_t retval;
2610
2611 retval = debug_target.to_wait (ptid, status);
2612
2613 fprintf_unfiltered (gdb_stdlog,
2614 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2615 PIDGET (retval));
2616 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2617 switch (status->kind)
2618 {
2619 case TARGET_WAITKIND_EXITED:
2620 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2621 status->value.integer);
2622 break;
2623 case TARGET_WAITKIND_STOPPED:
2624 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2625 target_signal_to_name (status->value.sig));
2626 break;
2627 case TARGET_WAITKIND_SIGNALLED:
2628 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2629 target_signal_to_name (status->value.sig));
2630 break;
2631 case TARGET_WAITKIND_LOADED:
2632 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2633 break;
2634 case TARGET_WAITKIND_FORKED:
2635 fprintf_unfiltered (gdb_stdlog, "forked\n");
2636 break;
2637 case TARGET_WAITKIND_VFORKED:
2638 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2639 break;
2640 case TARGET_WAITKIND_EXECD:
2641 fprintf_unfiltered (gdb_stdlog, "execd\n");
2642 break;
2643 case TARGET_WAITKIND_SPURIOUS:
2644 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2645 break;
2646 default:
2647 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2648 break;
2649 }
2650
2651 return retval;
2652 }
2653
2654 static void
2655 debug_print_register (const char * func,
2656 struct regcache *regcache, int regno)
2657 {
2658 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2659 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2660 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2661 && gdbarch_register_name (gdbarch, regno) != NULL
2662 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2663 fprintf_unfiltered (gdb_stdlog, "(%s)",
2664 gdbarch_register_name (gdbarch, regno));
2665 else
2666 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2667 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2668 {
2669 int i, size = register_size (gdbarch, regno);
2670 unsigned char buf[MAX_REGISTER_SIZE];
2671 regcache_raw_collect (regcache, regno, buf);
2672 fprintf_unfiltered (gdb_stdlog, " = ");
2673 for (i = 0; i < size; i++)
2674 {
2675 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2676 }
2677 if (size <= sizeof (LONGEST))
2678 {
2679 ULONGEST val = extract_unsigned_integer (buf, size);
2680 fprintf_unfiltered (gdb_stdlog, " %s %s",
2681 core_addr_to_string_nz (val), plongest (val));
2682 }
2683 }
2684 fprintf_unfiltered (gdb_stdlog, "\n");
2685 }
2686
2687 static void
2688 debug_to_fetch_registers (struct regcache *regcache, int regno)
2689 {
2690 debug_target.to_fetch_registers (regcache, regno);
2691 debug_print_register ("target_fetch_registers", regcache, regno);
2692 }
2693
2694 static void
2695 debug_to_store_registers (struct regcache *regcache, int regno)
2696 {
2697 debug_target.to_store_registers (regcache, regno);
2698 debug_print_register ("target_store_registers", regcache, regno);
2699 fprintf_unfiltered (gdb_stdlog, "\n");
2700 }
2701
2702 static void
2703 debug_to_prepare_to_store (struct regcache *regcache)
2704 {
2705 debug_target.to_prepare_to_store (regcache);
2706
2707 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2708 }
2709
2710 static int
2711 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2712 int write, struct mem_attrib *attrib,
2713 struct target_ops *target)
2714 {
2715 int retval;
2716
2717 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2718 attrib, target);
2719
2720 fprintf_unfiltered (gdb_stdlog,
2721 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2722 paddress (memaddr), len, write ? "write" : "read",
2723 retval);
2724
2725 if (retval > 0)
2726 {
2727 int i;
2728
2729 fputs_unfiltered (", bytes =", gdb_stdlog);
2730 for (i = 0; i < retval; i++)
2731 {
2732 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2733 {
2734 if (targetdebug < 2 && i > 0)
2735 {
2736 fprintf_unfiltered (gdb_stdlog, " ...");
2737 break;
2738 }
2739 fprintf_unfiltered (gdb_stdlog, "\n");
2740 }
2741
2742 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2743 }
2744 }
2745
2746 fputc_unfiltered ('\n', gdb_stdlog);
2747
2748 return retval;
2749 }
2750
2751 static void
2752 debug_to_files_info (struct target_ops *target)
2753 {
2754 debug_target.to_files_info (target);
2755
2756 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2757 }
2758
2759 static int
2760 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2761 {
2762 int retval;
2763
2764 retval = debug_target.to_insert_breakpoint (bp_tgt);
2765
2766 fprintf_unfiltered (gdb_stdlog,
2767 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2768 (unsigned long) bp_tgt->placed_address,
2769 (unsigned long) retval);
2770 return retval;
2771 }
2772
2773 static int
2774 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2775 {
2776 int retval;
2777
2778 retval = debug_target.to_remove_breakpoint (bp_tgt);
2779
2780 fprintf_unfiltered (gdb_stdlog,
2781 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2782 (unsigned long) bp_tgt->placed_address,
2783 (unsigned long) retval);
2784 return retval;
2785 }
2786
2787 static int
2788 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2789 {
2790 int retval;
2791
2792 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2793
2794 fprintf_unfiltered (gdb_stdlog,
2795 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2796 (unsigned long) type,
2797 (unsigned long) cnt,
2798 (unsigned long) from_tty,
2799 (unsigned long) retval);
2800 return retval;
2801 }
2802
2803 static int
2804 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2805 {
2806 CORE_ADDR retval;
2807
2808 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2809
2810 fprintf_unfiltered (gdb_stdlog,
2811 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2812 (unsigned long) addr,
2813 (unsigned long) len,
2814 (unsigned long) retval);
2815 return retval;
2816 }
2817
2818 static int
2819 debug_to_stopped_by_watchpoint (void)
2820 {
2821 int retval;
2822
2823 retval = debug_target.to_stopped_by_watchpoint ();
2824
2825 fprintf_unfiltered (gdb_stdlog,
2826 "STOPPED_BY_WATCHPOINT () = %ld\n",
2827 (unsigned long) retval);
2828 return retval;
2829 }
2830
2831 static int
2832 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2833 {
2834 int retval;
2835
2836 retval = debug_target.to_stopped_data_address (target, addr);
2837
2838 fprintf_unfiltered (gdb_stdlog,
2839 "target_stopped_data_address ([0x%lx]) = %ld\n",
2840 (unsigned long)*addr,
2841 (unsigned long)retval);
2842 return retval;
2843 }
2844
2845 static int
2846 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2847 CORE_ADDR addr,
2848 CORE_ADDR start, int length)
2849 {
2850 int retval;
2851
2852 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2853 start, length);
2854
2855 fprintf_filtered (gdb_stdlog,
2856 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2857 (unsigned long) addr, (unsigned long) start, length,
2858 retval);
2859 return retval;
2860 }
2861
2862 static int
2863 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2864 {
2865 int retval;
2866
2867 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2868
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2871 (unsigned long) bp_tgt->placed_address,
2872 (unsigned long) retval);
2873 return retval;
2874 }
2875
2876 static int
2877 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2878 {
2879 int retval;
2880
2881 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2882
2883 fprintf_unfiltered (gdb_stdlog,
2884 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2885 (unsigned long) bp_tgt->placed_address,
2886 (unsigned long) retval);
2887 return retval;
2888 }
2889
2890 static int
2891 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2892 {
2893 int retval;
2894
2895 retval = debug_target.to_insert_watchpoint (addr, len, type);
2896
2897 fprintf_unfiltered (gdb_stdlog,
2898 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2899 (unsigned long) addr, len, type, (unsigned long) retval);
2900 return retval;
2901 }
2902
2903 static int
2904 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2905 {
2906 int retval;
2907
2908 retval = debug_target.to_remove_watchpoint (addr, len, type);
2909
2910 fprintf_unfiltered (gdb_stdlog,
2911 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2912 (unsigned long) addr, len, type, (unsigned long) retval);
2913 return retval;
2914 }
2915
2916 static void
2917 debug_to_terminal_init (void)
2918 {
2919 debug_target.to_terminal_init ();
2920
2921 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2922 }
2923
2924 static void
2925 debug_to_terminal_inferior (void)
2926 {
2927 debug_target.to_terminal_inferior ();
2928
2929 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2930 }
2931
2932 static void
2933 debug_to_terminal_ours_for_output (void)
2934 {
2935 debug_target.to_terminal_ours_for_output ();
2936
2937 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2938 }
2939
2940 static void
2941 debug_to_terminal_ours (void)
2942 {
2943 debug_target.to_terminal_ours ();
2944
2945 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2946 }
2947
2948 static void
2949 debug_to_terminal_save_ours (void)
2950 {
2951 debug_target.to_terminal_save_ours ();
2952
2953 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2954 }
2955
2956 static void
2957 debug_to_terminal_info (char *arg, int from_tty)
2958 {
2959 debug_target.to_terminal_info (arg, from_tty);
2960
2961 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2962 from_tty);
2963 }
2964
2965 static void
2966 debug_to_kill (void)
2967 {
2968 debug_target.to_kill ();
2969
2970 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2971 }
2972
2973 static void
2974 debug_to_load (char *args, int from_tty)
2975 {
2976 debug_target.to_load (args, from_tty);
2977
2978 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2979 }
2980
2981 static int
2982 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2983 {
2984 int retval;
2985
2986 retval = debug_target.to_lookup_symbol (name, addrp);
2987
2988 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2989
2990 return retval;
2991 }
2992
2993 static void
2994 debug_to_create_inferior (struct target_ops *ops,
2995 char *exec_file, char *args, char **env,
2996 int from_tty)
2997 {
2998 debug_target.to_create_inferior (ops, exec_file, args, env, from_tty);
2999
3000 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
3001 exec_file, args, from_tty);
3002 }
3003
3004 static void
3005 debug_to_post_startup_inferior (ptid_t ptid)
3006 {
3007 debug_target.to_post_startup_inferior (ptid);
3008
3009 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3010 PIDGET (ptid));
3011 }
3012
3013 static void
3014 debug_to_acknowledge_created_inferior (int pid)
3015 {
3016 debug_target.to_acknowledge_created_inferior (pid);
3017
3018 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3019 pid);
3020 }
3021
3022 static void
3023 debug_to_insert_fork_catchpoint (int pid)
3024 {
3025 debug_target.to_insert_fork_catchpoint (pid);
3026
3027 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3028 pid);
3029 }
3030
3031 static int
3032 debug_to_remove_fork_catchpoint (int pid)
3033 {
3034 int retval;
3035
3036 retval = debug_target.to_remove_fork_catchpoint (pid);
3037
3038 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3039 pid, retval);
3040
3041 return retval;
3042 }
3043
3044 static void
3045 debug_to_insert_vfork_catchpoint (int pid)
3046 {
3047 debug_target.to_insert_vfork_catchpoint (pid);
3048
3049 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3050 pid);
3051 }
3052
3053 static int
3054 debug_to_remove_vfork_catchpoint (int pid)
3055 {
3056 int retval;
3057
3058 retval = debug_target.to_remove_vfork_catchpoint (pid);
3059
3060 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3061 pid, retval);
3062
3063 return retval;
3064 }
3065
3066 static void
3067 debug_to_insert_exec_catchpoint (int pid)
3068 {
3069 debug_target.to_insert_exec_catchpoint (pid);
3070
3071 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3072 pid);
3073 }
3074
3075 static int
3076 debug_to_remove_exec_catchpoint (int pid)
3077 {
3078 int retval;
3079
3080 retval = debug_target.to_remove_exec_catchpoint (pid);
3081
3082 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3083 pid, retval);
3084
3085 return retval;
3086 }
3087
3088 static int
3089 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3090 {
3091 int has_exited;
3092
3093 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3094
3095 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3096 pid, wait_status, *exit_status, has_exited);
3097
3098 return has_exited;
3099 }
3100
3101 static void
3102 debug_to_mourn_inferior (struct target_ops *ops)
3103 {
3104 debug_target.to_mourn_inferior (&debug_target);
3105
3106 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3107 }
3108
3109 static int
3110 debug_to_can_run (void)
3111 {
3112 int retval;
3113
3114 retval = debug_target.to_can_run ();
3115
3116 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3117
3118 return retval;
3119 }
3120
3121 static void
3122 debug_to_notice_signals (ptid_t ptid)
3123 {
3124 debug_target.to_notice_signals (ptid);
3125
3126 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3127 PIDGET (ptid));
3128 }
3129
3130 static int
3131 debug_to_thread_alive (ptid_t ptid)
3132 {
3133 int retval;
3134
3135 retval = debug_target.to_thread_alive (ptid);
3136
3137 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3138 PIDGET (ptid), retval);
3139
3140 return retval;
3141 }
3142
3143 static void
3144 debug_to_find_new_threads (void)
3145 {
3146 debug_target.to_find_new_threads ();
3147
3148 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3149 }
3150
3151 static void
3152 debug_to_stop (ptid_t ptid)
3153 {
3154 debug_target.to_stop (ptid);
3155
3156 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3157 target_pid_to_str (ptid));
3158 }
3159
3160 static void
3161 debug_to_rcmd (char *command,
3162 struct ui_file *outbuf)
3163 {
3164 debug_target.to_rcmd (command, outbuf);
3165 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3166 }
3167
3168 static char *
3169 debug_to_pid_to_exec_file (int pid)
3170 {
3171 char *exec_file;
3172
3173 exec_file = debug_target.to_pid_to_exec_file (pid);
3174
3175 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3176 pid, exec_file);
3177
3178 return exec_file;
3179 }
3180
3181 static void
3182 setup_target_debug (void)
3183 {
3184 memcpy (&debug_target, &current_target, sizeof debug_target);
3185
3186 current_target.to_open = debug_to_open;
3187 current_target.to_close = debug_to_close;
3188 current_target.to_attach = debug_to_attach;
3189 current_target.to_post_attach = debug_to_post_attach;
3190 current_target.to_detach = debug_to_detach;
3191 current_target.to_resume = debug_to_resume;
3192 current_target.to_wait = debug_to_wait;
3193 current_target.to_fetch_registers = debug_to_fetch_registers;
3194 current_target.to_store_registers = debug_to_store_registers;
3195 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3196 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3197 current_target.to_files_info = debug_to_files_info;
3198 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3199 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3200 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3201 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3202 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3203 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3204 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3205 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3206 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3207 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3208 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3209 current_target.to_terminal_init = debug_to_terminal_init;
3210 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3211 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3212 current_target.to_terminal_ours = debug_to_terminal_ours;
3213 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3214 current_target.to_terminal_info = debug_to_terminal_info;
3215 current_target.to_kill = debug_to_kill;
3216 current_target.to_load = debug_to_load;
3217 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3218 current_target.to_create_inferior = debug_to_create_inferior;
3219 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3220 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3221 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3222 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3223 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3224 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3225 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3226 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3227 current_target.to_has_exited = debug_to_has_exited;
3228 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3229 current_target.to_can_run = debug_to_can_run;
3230 current_target.to_notice_signals = debug_to_notice_signals;
3231 current_target.to_thread_alive = debug_to_thread_alive;
3232 current_target.to_find_new_threads = debug_to_find_new_threads;
3233 current_target.to_stop = debug_to_stop;
3234 current_target.to_rcmd = debug_to_rcmd;
3235 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3236 }
3237 \f
3238
3239 static char targ_desc[] =
3240 "Names of targets and files being debugged.\n\
3241 Shows the entire stack of targets currently in use (including the exec-file,\n\
3242 core-file, and process, if any), as well as the symbol file name.";
3243
3244 static void
3245 do_monitor_command (char *cmd,
3246 int from_tty)
3247 {
3248 if ((current_target.to_rcmd
3249 == (void (*) (char *, struct ui_file *)) tcomplain)
3250 || (current_target.to_rcmd == debug_to_rcmd
3251 && (debug_target.to_rcmd
3252 == (void (*) (char *, struct ui_file *)) tcomplain)))
3253 error (_("\"monitor\" command not supported by this target."));
3254 target_rcmd (cmd, gdb_stdtarg);
3255 }
3256
3257 /* Print the name of each layers of our target stack. */
3258
3259 static void
3260 maintenance_print_target_stack (char *cmd, int from_tty)
3261 {
3262 struct target_ops *t;
3263
3264 printf_filtered (_("The current target stack is:\n"));
3265
3266 for (t = target_stack; t != NULL; t = t->beneath)
3267 {
3268 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3269 }
3270 }
3271
3272 /* Controls if async mode is permitted. */
3273 int target_async_permitted = 0;
3274
3275 /* The set command writes to this variable. If the inferior is
3276 executing, linux_nat_async_permitted is *not* updated. */
3277 static int target_async_permitted_1 = 0;
3278
3279 static void
3280 set_maintenance_target_async_permitted (char *args, int from_tty,
3281 struct cmd_list_element *c)
3282 {
3283 if (target_has_execution)
3284 {
3285 target_async_permitted_1 = target_async_permitted;
3286 error (_("Cannot change this setting while the inferior is running."));
3287 }
3288
3289 target_async_permitted = target_async_permitted_1;
3290 }
3291
3292 static void
3293 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3294 struct cmd_list_element *c,
3295 const char *value)
3296 {
3297 fprintf_filtered (file, _("\
3298 Controlling the inferior in asynchronous mode is %s.\n"), value);
3299 }
3300
3301 void
3302 initialize_targets (void)
3303 {
3304 init_dummy_target ();
3305 push_target (&dummy_target);
3306
3307 add_info ("target", target_info, targ_desc);
3308 add_info ("files", target_info, targ_desc);
3309
3310 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3311 Set target debugging."), _("\
3312 Show target debugging."), _("\
3313 When non-zero, target debugging is enabled. Higher numbers are more\n\
3314 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3315 command."),
3316 NULL,
3317 show_targetdebug,
3318 &setdebuglist, &showdebuglist);
3319
3320 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3321 &trust_readonly, _("\
3322 Set mode for reading from readonly sections."), _("\
3323 Show mode for reading from readonly sections."), _("\
3324 When this mode is on, memory reads from readonly sections (such as .text)\n\
3325 will be read from the object file instead of from the target. This will\n\
3326 result in significant performance improvement for remote targets."),
3327 NULL,
3328 show_trust_readonly,
3329 &setlist, &showlist);
3330
3331 add_com ("monitor", class_obscure, do_monitor_command,
3332 _("Send a command to the remote monitor (remote targets only)."));
3333
3334 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3335 _("Print the name of each layer of the internal target stack."),
3336 &maintenanceprintlist);
3337
3338 add_setshow_boolean_cmd ("target-async", no_class,
3339 &target_async_permitted_1, _("\
3340 Set whether gdb controls the inferior in asynchronous mode."), _("\
3341 Show whether gdb controls the inferior in asynchronous mode."), _("\
3342 Tells gdb whether to control the inferior in asynchronous mode."),
3343 set_maintenance_target_async_permitted,
3344 show_maintenance_target_async_permitted,
3345 &setlist,
3346 &showlist);
3347
3348 target_dcache = dcache_init ();
3349 }
This page took 0.133121 seconds and 4 git commands to generate.