*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdb_stdint.h"
43
44 static void target_info (char *, int);
45
46 static void maybe_kill_then_attach (char *, int);
47
48 static void kill_or_be_killed (int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
53
54 static int nosymbol (char *, CORE_ADDR *);
55
56 static void tcomplain (void) ATTR_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static void nosupport_runtime (void);
73
74 static LONGEST default_xfer_partial (struct target_ops *ops,
75 enum target_object object,
76 const char *annex, gdb_byte *readbuf,
77 const gdb_byte *writebuf,
78 ULONGEST offset, LONGEST len);
79
80 static LONGEST current_xfer_partial (struct target_ops *ops,
81 enum target_object object,
82 const char *annex, gdb_byte *readbuf,
83 const gdb_byte *writebuf,
84 ULONGEST offset, LONGEST len);
85
86 static LONGEST target_xfer_partial (struct target_ops *ops,
87 enum target_object object,
88 const char *annex,
89 void *readbuf, const void *writebuf,
90 ULONGEST offset, LONGEST len);
91
92 static void init_dummy_target (void);
93
94 static struct target_ops debug_target;
95
96 static void debug_to_open (char *, int);
97
98 static void debug_to_close (int);
99
100 static void debug_to_attach (char *, int);
101
102 static void debug_to_detach (char *, int);
103
104 static void debug_to_resume (ptid_t, int, enum target_signal);
105
106 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
107
108 static void debug_to_fetch_registers (struct regcache *, int);
109
110 static void debug_to_store_registers (struct regcache *, int);
111
112 static void debug_to_prepare_to_store (struct regcache *);
113
114 static void debug_to_files_info (struct target_ops *);
115
116 static int debug_to_insert_breakpoint (struct bp_target_info *);
117
118 static int debug_to_remove_breakpoint (struct bp_target_info *);
119
120 static int debug_to_can_use_hw_breakpoint (int, int, int);
121
122 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
127
128 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_stopped_by_watchpoint (void);
131
132 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
133
134 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_kill (void);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static void debug_to_mourn_inferior (void);
155
156 static int debug_to_can_run (void);
157
158 static void debug_to_notice_signals (ptid_t);
159
160 static int debug_to_thread_alive (ptid_t);
161
162 static void debug_to_stop (void);
163
164 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
165 wierd and mysterious ways. Putting the variable here lets those
166 wierd and mysterious ways keep building while they are being
167 converted to the inferior inheritance structure. */
168 struct target_ops deprecated_child_ops;
169
170 /* Pointer to array of target architecture structures; the size of the
171 array; the current index into the array; the allocated size of the
172 array. */
173 struct target_ops **target_structs;
174 unsigned target_struct_size;
175 unsigned target_struct_index;
176 unsigned target_struct_allocsize;
177 #define DEFAULT_ALLOCSIZE 10
178
179 /* The initial current target, so that there is always a semi-valid
180 current target. */
181
182 static struct target_ops dummy_target;
183
184 /* Top of target stack. */
185
186 static struct target_ops *target_stack;
187
188 /* The target structure we are currently using to talk to a process
189 or file or whatever "inferior" we have. */
190
191 struct target_ops current_target;
192
193 /* Command list for target. */
194
195 static struct cmd_list_element *targetlist = NULL;
196
197 /* Nonzero if we are debugging an attached outside process
198 rather than an inferior. */
199
200 int attach_flag;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 static int
285 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
286 struct target_ops *t)
287 {
288 errno = EIO; /* Can't read/write this location */
289 return 0; /* No bytes handled */
290 }
291
292 static void
293 tcomplain (void)
294 {
295 error (_("You can't do that when your target is `%s'"),
296 current_target.to_shortname);
297 }
298
299 void
300 noprocess (void)
301 {
302 error (_("You can't do that without a process to debug."));
303 }
304
305 static int
306 nosymbol (char *name, CORE_ADDR *addrp)
307 {
308 return 1; /* Symbol does not exist in target env */
309 }
310
311 static void
312 nosupport_runtime (void)
313 {
314 if (ptid_equal (inferior_ptid, null_ptid))
315 noprocess ();
316 else
317 error (_("No run-time support for this"));
318 }
319
320
321 static void
322 default_terminal_info (char *args, int from_tty)
323 {
324 printf_unfiltered (_("No saved terminal information.\n"));
325 }
326
327 /* This is the default target_create_inferior and target_attach function.
328 If the current target is executing, it asks whether to kill it off.
329 If this function returns without calling error(), it has killed off
330 the target, and the operation should be attempted. */
331
332 static void
333 kill_or_be_killed (int from_tty)
334 {
335 if (target_has_execution)
336 {
337 printf_unfiltered (_("You are already running a program:\n"));
338 target_files_info ();
339 if (query ("Kill it? "))
340 {
341 target_kill ();
342 if (target_has_execution)
343 error (_("Killing the program did not help."));
344 return;
345 }
346 else
347 {
348 error (_("Program not killed."));
349 }
350 }
351 tcomplain ();
352 }
353
354 static void
355 maybe_kill_then_attach (char *args, int from_tty)
356 {
357 kill_or_be_killed (from_tty);
358 target_attach (args, from_tty);
359 }
360
361 static void
362 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
363 int from_tty)
364 {
365 kill_or_be_killed (0);
366 target_create_inferior (exec, args, env, from_tty);
367 }
368
369 /* Go through the target stack from top to bottom, copying over zero
370 entries in current_target, then filling in still empty entries. In
371 effect, we are doing class inheritance through the pushed target
372 vectors.
373
374 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
375 is currently implemented, is that it discards any knowledge of
376 which target an inherited method originally belonged to.
377 Consequently, new new target methods should instead explicitly and
378 locally search the target stack for the target that can handle the
379 request. */
380
381 static void
382 update_current_target (void)
383 {
384 struct target_ops *t;
385
386 /* First, reset current's contents. */
387 memset (&current_target, 0, sizeof (current_target));
388
389 #define INHERIT(FIELD, TARGET) \
390 if (!current_target.FIELD) \
391 current_target.FIELD = (TARGET)->FIELD
392
393 for (t = target_stack; t; t = t->beneath)
394 {
395 INHERIT (to_shortname, t);
396 INHERIT (to_longname, t);
397 INHERIT (to_doc, t);
398 INHERIT (to_open, t);
399 INHERIT (to_close, t);
400 INHERIT (to_attach, t);
401 INHERIT (to_post_attach, t);
402 INHERIT (to_detach, t);
403 /* Do not inherit to_disconnect. */
404 INHERIT (to_resume, t);
405 INHERIT (to_wait, t);
406 INHERIT (to_fetch_registers, t);
407 INHERIT (to_store_registers, t);
408 INHERIT (to_prepare_to_store, t);
409 INHERIT (deprecated_xfer_memory, t);
410 INHERIT (to_files_info, t);
411 INHERIT (to_insert_breakpoint, t);
412 INHERIT (to_remove_breakpoint, t);
413 INHERIT (to_can_use_hw_breakpoint, t);
414 INHERIT (to_insert_hw_breakpoint, t);
415 INHERIT (to_remove_hw_breakpoint, t);
416 INHERIT (to_insert_watchpoint, t);
417 INHERIT (to_remove_watchpoint, t);
418 INHERIT (to_stopped_data_address, t);
419 INHERIT (to_stopped_by_watchpoint, t);
420 INHERIT (to_have_steppable_watchpoint, t);
421 INHERIT (to_have_continuable_watchpoint, t);
422 INHERIT (to_region_ok_for_hw_watchpoint, t);
423 INHERIT (to_terminal_init, t);
424 INHERIT (to_terminal_inferior, t);
425 INHERIT (to_terminal_ours_for_output, t);
426 INHERIT (to_terminal_ours, t);
427 INHERIT (to_terminal_save_ours, t);
428 INHERIT (to_terminal_info, t);
429 INHERIT (to_kill, t);
430 INHERIT (to_load, t);
431 INHERIT (to_lookup_symbol, t);
432 INHERIT (to_create_inferior, t);
433 INHERIT (to_post_startup_inferior, t);
434 INHERIT (to_acknowledge_created_inferior, t);
435 INHERIT (to_insert_fork_catchpoint, t);
436 INHERIT (to_remove_fork_catchpoint, t);
437 INHERIT (to_insert_vfork_catchpoint, t);
438 INHERIT (to_remove_vfork_catchpoint, t);
439 /* Do not inherit to_follow_fork. */
440 INHERIT (to_insert_exec_catchpoint, t);
441 INHERIT (to_remove_exec_catchpoint, t);
442 INHERIT (to_has_exited, t);
443 INHERIT (to_mourn_inferior, t);
444 INHERIT (to_can_run, t);
445 INHERIT (to_notice_signals, t);
446 INHERIT (to_thread_alive, t);
447 INHERIT (to_find_new_threads, t);
448 INHERIT (to_pid_to_str, t);
449 INHERIT (to_extra_thread_info, t);
450 INHERIT (to_stop, t);
451 /* Do not inherit to_xfer_partial. */
452 INHERIT (to_rcmd, t);
453 INHERIT (to_pid_to_exec_file, t);
454 INHERIT (to_log_command, t);
455 INHERIT (to_stratum, t);
456 INHERIT (to_has_all_memory, t);
457 INHERIT (to_has_memory, t);
458 INHERIT (to_has_stack, t);
459 INHERIT (to_has_registers, t);
460 INHERIT (to_has_execution, t);
461 INHERIT (to_has_thread_control, t);
462 INHERIT (to_sections, t);
463 INHERIT (to_sections_end, t);
464 INHERIT (to_can_async_p, t);
465 INHERIT (to_is_async_p, t);
466 INHERIT (to_async, t);
467 INHERIT (to_async_mask, t);
468 INHERIT (to_find_memory_regions, t);
469 INHERIT (to_make_corefile_notes, t);
470 INHERIT (to_get_thread_local_address, t);
471 /* Do not inherit to_read_description. */
472 INHERIT (to_magic, t);
473 /* Do not inherit to_memory_map. */
474 /* Do not inherit to_flash_erase. */
475 /* Do not inherit to_flash_done. */
476 }
477 #undef INHERIT
478
479 /* Clean up a target struct so it no longer has any zero pointers in
480 it. Some entries are defaulted to a method that print an error,
481 others are hard-wired to a standard recursive default. */
482
483 #define de_fault(field, value) \
484 if (!current_target.field) \
485 current_target.field = value
486
487 de_fault (to_open,
488 (void (*) (char *, int))
489 tcomplain);
490 de_fault (to_close,
491 (void (*) (int))
492 target_ignore);
493 de_fault (to_attach,
494 maybe_kill_then_attach);
495 de_fault (to_post_attach,
496 (void (*) (int))
497 target_ignore);
498 de_fault (to_detach,
499 (void (*) (char *, int))
500 target_ignore);
501 de_fault (to_resume,
502 (void (*) (ptid_t, int, enum target_signal))
503 noprocess);
504 de_fault (to_wait,
505 (ptid_t (*) (ptid_t, struct target_waitstatus *))
506 noprocess);
507 de_fault (to_fetch_registers,
508 (void (*) (struct regcache *, int))
509 target_ignore);
510 de_fault (to_store_registers,
511 (void (*) (struct regcache *, int))
512 noprocess);
513 de_fault (to_prepare_to_store,
514 (void (*) (struct regcache *))
515 noprocess);
516 de_fault (deprecated_xfer_memory,
517 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
518 nomemory);
519 de_fault (to_files_info,
520 (void (*) (struct target_ops *))
521 target_ignore);
522 de_fault (to_insert_breakpoint,
523 memory_insert_breakpoint);
524 de_fault (to_remove_breakpoint,
525 memory_remove_breakpoint);
526 de_fault (to_can_use_hw_breakpoint,
527 (int (*) (int, int, int))
528 return_zero);
529 de_fault (to_insert_hw_breakpoint,
530 (int (*) (struct bp_target_info *))
531 return_minus_one);
532 de_fault (to_remove_hw_breakpoint,
533 (int (*) (struct bp_target_info *))
534 return_minus_one);
535 de_fault (to_insert_watchpoint,
536 (int (*) (CORE_ADDR, int, int))
537 return_minus_one);
538 de_fault (to_remove_watchpoint,
539 (int (*) (CORE_ADDR, int, int))
540 return_minus_one);
541 de_fault (to_stopped_by_watchpoint,
542 (int (*) (void))
543 return_zero);
544 de_fault (to_stopped_data_address,
545 (int (*) (struct target_ops *, CORE_ADDR *))
546 return_zero);
547 de_fault (to_region_ok_for_hw_watchpoint,
548 default_region_ok_for_hw_watchpoint);
549 de_fault (to_terminal_init,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_inferior,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_ours_for_output,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_ours,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_save_ours,
562 (void (*) (void))
563 target_ignore);
564 de_fault (to_terminal_info,
565 default_terminal_info);
566 de_fault (to_kill,
567 (void (*) (void))
568 noprocess);
569 de_fault (to_load,
570 (void (*) (char *, int))
571 tcomplain);
572 de_fault (to_lookup_symbol,
573 (int (*) (char *, CORE_ADDR *))
574 nosymbol);
575 de_fault (to_create_inferior,
576 maybe_kill_then_create_inferior);
577 de_fault (to_post_startup_inferior,
578 (void (*) (ptid_t))
579 target_ignore);
580 de_fault (to_acknowledge_created_inferior,
581 (void (*) (int))
582 target_ignore);
583 de_fault (to_insert_fork_catchpoint,
584 (void (*) (int))
585 tcomplain);
586 de_fault (to_remove_fork_catchpoint,
587 (int (*) (int))
588 tcomplain);
589 de_fault (to_insert_vfork_catchpoint,
590 (void (*) (int))
591 tcomplain);
592 de_fault (to_remove_vfork_catchpoint,
593 (int (*) (int))
594 tcomplain);
595 de_fault (to_insert_exec_catchpoint,
596 (void (*) (int))
597 tcomplain);
598 de_fault (to_remove_exec_catchpoint,
599 (int (*) (int))
600 tcomplain);
601 de_fault (to_has_exited,
602 (int (*) (int, int, int *))
603 return_zero);
604 de_fault (to_mourn_inferior,
605 (void (*) (void))
606 noprocess);
607 de_fault (to_can_run,
608 return_zero);
609 de_fault (to_notice_signals,
610 (void (*) (ptid_t))
611 target_ignore);
612 de_fault (to_thread_alive,
613 (int (*) (ptid_t))
614 return_zero);
615 de_fault (to_find_new_threads,
616 (void (*) (void))
617 target_ignore);
618 de_fault (to_extra_thread_info,
619 (char *(*) (struct thread_info *))
620 return_zero);
621 de_fault (to_stop,
622 (void (*) (void))
623 target_ignore);
624 current_target.to_xfer_partial = current_xfer_partial;
625 de_fault (to_rcmd,
626 (void (*) (char *, struct ui_file *))
627 tcomplain);
628 de_fault (to_pid_to_exec_file,
629 (char *(*) (int))
630 return_zero);
631 de_fault (to_can_async_p,
632 (int (*) (void))
633 return_zero);
634 de_fault (to_is_async_p,
635 (int (*) (void))
636 return_zero);
637 de_fault (to_async,
638 (void (*) (void (*) (enum inferior_event_type, void*), void*))
639 tcomplain);
640 de_fault (to_async_mask,
641 (int (*) (int))
642 return_one);
643 current_target.to_read_description = NULL;
644 #undef de_fault
645
646 /* Finally, position the target-stack beneath the squashed
647 "current_target". That way code looking for a non-inherited
648 target method can quickly and simply find it. */
649 current_target.beneath = target_stack;
650
651 if (targetdebug)
652 setup_target_debug ();
653 }
654
655 /* Mark OPS as a running target. This reverses the effect
656 of target_mark_exited. */
657
658 void
659 target_mark_running (struct target_ops *ops)
660 {
661 struct target_ops *t;
662
663 for (t = target_stack; t != NULL; t = t->beneath)
664 if (t == ops)
665 break;
666 if (t == NULL)
667 internal_error (__FILE__, __LINE__,
668 "Attempted to mark unpushed target \"%s\" as running",
669 ops->to_shortname);
670
671 ops->to_has_execution = 1;
672 ops->to_has_all_memory = 1;
673 ops->to_has_memory = 1;
674 ops->to_has_stack = 1;
675 ops->to_has_registers = 1;
676
677 update_current_target ();
678 }
679
680 /* Mark OPS as a non-running target. This reverses the effect
681 of target_mark_running. */
682
683 void
684 target_mark_exited (struct target_ops *ops)
685 {
686 struct target_ops *t;
687
688 for (t = target_stack; t != NULL; t = t->beneath)
689 if (t == ops)
690 break;
691 if (t == NULL)
692 internal_error (__FILE__, __LINE__,
693 "Attempted to mark unpushed target \"%s\" as running",
694 ops->to_shortname);
695
696 ops->to_has_execution = 0;
697 ops->to_has_all_memory = 0;
698 ops->to_has_memory = 0;
699 ops->to_has_stack = 0;
700 ops->to_has_registers = 0;
701
702 update_current_target ();
703 }
704
705 /* Push a new target type into the stack of the existing target accessors,
706 possibly superseding some of the existing accessors.
707
708 Result is zero if the pushed target ended up on top of the stack,
709 nonzero if at least one target is on top of it.
710
711 Rather than allow an empty stack, we always have the dummy target at
712 the bottom stratum, so we can call the function vectors without
713 checking them. */
714
715 int
716 push_target (struct target_ops *t)
717 {
718 struct target_ops **cur;
719
720 /* Check magic number. If wrong, it probably means someone changed
721 the struct definition, but not all the places that initialize one. */
722 if (t->to_magic != OPS_MAGIC)
723 {
724 fprintf_unfiltered (gdb_stderr,
725 "Magic number of %s target struct wrong\n",
726 t->to_shortname);
727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
728 }
729
730 /* Find the proper stratum to install this target in. */
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
734 break;
735 }
736
737 /* If there's already targets at this stratum, remove them. */
738 /* FIXME: cagney/2003-10-15: I think this should be popping all
739 targets to CUR, and not just those at this stratum level. */
740 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
741 {
742 /* There's already something at this stratum level. Close it,
743 and un-hook it from the stack. */
744 struct target_ops *tmp = (*cur);
745 (*cur) = (*cur)->beneath;
746 tmp->beneath = NULL;
747 target_close (tmp, 0);
748 }
749
750 /* We have removed all targets in our stratum, now add the new one. */
751 t->beneath = (*cur);
752 (*cur) = t;
753
754 update_current_target ();
755
756 /* Not on top? */
757 return (t != target_stack);
758 }
759
760 /* Remove a target_ops vector from the stack, wherever it may be.
761 Return how many times it was removed (0 or 1). */
762
763 int
764 unpush_target (struct target_ops *t)
765 {
766 struct target_ops **cur;
767 struct target_ops *tmp;
768
769 /* Look for the specified target. Note that we assume that a target
770 can only occur once in the target stack. */
771
772 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
773 {
774 if ((*cur) == t)
775 break;
776 }
777
778 if ((*cur) == NULL)
779 return 0; /* Didn't find target_ops, quit now */
780
781 /* NOTE: cagney/2003-12-06: In '94 the close call was made
782 unconditional by moving it to before the above check that the
783 target was in the target stack (something about "Change the way
784 pushing and popping of targets work to support target overlays
785 and inheritance"). This doesn't make much sense - only open
786 targets should be closed. */
787 target_close (t, 0);
788
789 /* Unchain the target */
790 tmp = (*cur);
791 (*cur) = (*cur)->beneath;
792 tmp->beneath = NULL;
793
794 update_current_target ();
795
796 return 1;
797 }
798
799 void
800 pop_target (void)
801 {
802 target_close (&current_target, 0); /* Let it clean up */
803 if (unpush_target (target_stack) == 1)
804 return;
805
806 fprintf_unfiltered (gdb_stderr,
807 "pop_target couldn't find target %s\n",
808 current_target.to_shortname);
809 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
810 }
811
812 /* Using the objfile specified in OBJFILE, find the address for the
813 current thread's thread-local storage with offset OFFSET. */
814 CORE_ADDR
815 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
816 {
817 volatile CORE_ADDR addr = 0;
818
819 if (target_get_thread_local_address_p ()
820 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
821 {
822 ptid_t ptid = inferior_ptid;
823 volatile struct gdb_exception ex;
824
825 TRY_CATCH (ex, RETURN_MASK_ALL)
826 {
827 CORE_ADDR lm_addr;
828
829 /* Fetch the load module address for this objfile. */
830 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
831 objfile);
832 /* If it's 0, throw the appropriate exception. */
833 if (lm_addr == 0)
834 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
835 _("TLS load module not found"));
836
837 addr = target_get_thread_local_address (ptid, lm_addr, offset);
838 }
839 /* If an error occurred, print TLS related messages here. Otherwise,
840 throw the error to some higher catcher. */
841 if (ex.reason < 0)
842 {
843 int objfile_is_library = (objfile->flags & OBJF_SHARED);
844
845 switch (ex.error)
846 {
847 case TLS_NO_LIBRARY_SUPPORT_ERROR:
848 error (_("Cannot find thread-local variables in this thread library."));
849 break;
850 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
851 if (objfile_is_library)
852 error (_("Cannot find shared library `%s' in dynamic"
853 " linker's load module list"), objfile->name);
854 else
855 error (_("Cannot find executable file `%s' in dynamic"
856 " linker's load module list"), objfile->name);
857 break;
858 case TLS_NOT_ALLOCATED_YET_ERROR:
859 if (objfile_is_library)
860 error (_("The inferior has not yet allocated storage for"
861 " thread-local variables in\n"
862 "the shared library `%s'\n"
863 "for %s"),
864 objfile->name, target_pid_to_str (ptid));
865 else
866 error (_("The inferior has not yet allocated storage for"
867 " thread-local variables in\n"
868 "the executable `%s'\n"
869 "for %s"),
870 objfile->name, target_pid_to_str (ptid));
871 break;
872 case TLS_GENERIC_ERROR:
873 if (objfile_is_library)
874 error (_("Cannot find thread-local storage for %s, "
875 "shared library %s:\n%s"),
876 target_pid_to_str (ptid),
877 objfile->name, ex.message);
878 else
879 error (_("Cannot find thread-local storage for %s, "
880 "executable file %s:\n%s"),
881 target_pid_to_str (ptid),
882 objfile->name, ex.message);
883 break;
884 default:
885 throw_exception (ex);
886 break;
887 }
888 }
889 }
890 /* It wouldn't be wrong here to try a gdbarch method, too; finding
891 TLS is an ABI-specific thing. But we don't do that yet. */
892 else
893 error (_("Cannot find thread-local variables on this target"));
894
895 return addr;
896 }
897
898 #undef MIN
899 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
900
901 /* target_read_string -- read a null terminated string, up to LEN bytes,
902 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
903 Set *STRING to a pointer to malloc'd memory containing the data; the caller
904 is responsible for freeing it. Return the number of bytes successfully
905 read. */
906
907 int
908 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
909 {
910 int tlen, origlen, offset, i;
911 gdb_byte buf[4];
912 int errcode = 0;
913 char *buffer;
914 int buffer_allocated;
915 char *bufptr;
916 unsigned int nbytes_read = 0;
917
918 gdb_assert (string);
919
920 /* Small for testing. */
921 buffer_allocated = 4;
922 buffer = xmalloc (buffer_allocated);
923 bufptr = buffer;
924
925 origlen = len;
926
927 while (len > 0)
928 {
929 tlen = MIN (len, 4 - (memaddr & 3));
930 offset = memaddr & 3;
931
932 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
933 if (errcode != 0)
934 {
935 /* The transfer request might have crossed the boundary to an
936 unallocated region of memory. Retry the transfer, requesting
937 a single byte. */
938 tlen = 1;
939 offset = 0;
940 errcode = target_read_memory (memaddr, buf, 1);
941 if (errcode != 0)
942 goto done;
943 }
944
945 if (bufptr - buffer + tlen > buffer_allocated)
946 {
947 unsigned int bytes;
948 bytes = bufptr - buffer;
949 buffer_allocated *= 2;
950 buffer = xrealloc (buffer, buffer_allocated);
951 bufptr = buffer + bytes;
952 }
953
954 for (i = 0; i < tlen; i++)
955 {
956 *bufptr++ = buf[i + offset];
957 if (buf[i + offset] == '\000')
958 {
959 nbytes_read += i + 1;
960 goto done;
961 }
962 }
963
964 memaddr += tlen;
965 len -= tlen;
966 nbytes_read += tlen;
967 }
968 done:
969 *string = buffer;
970 if (errnop != NULL)
971 *errnop = errcode;
972 return nbytes_read;
973 }
974
975 /* Find a section containing ADDR. */
976 struct section_table *
977 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
978 {
979 struct section_table *secp;
980 for (secp = target->to_sections;
981 secp < target->to_sections_end;
982 secp++)
983 {
984 if (addr >= secp->addr && addr < secp->endaddr)
985 return secp;
986 }
987 return NULL;
988 }
989
990 /* Perform a partial memory transfer. The arguments and return
991 value are just as for target_xfer_partial. */
992
993 static LONGEST
994 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
995 ULONGEST memaddr, LONGEST len)
996 {
997 LONGEST res;
998 int reg_len;
999 struct mem_region *region;
1000
1001 /* Zero length requests are ok and require no work. */
1002 if (len == 0)
1003 return 0;
1004
1005 /* Try the executable file, if "trust-readonly-sections" is set. */
1006 if (readbuf != NULL && trust_readonly)
1007 {
1008 struct section_table *secp;
1009
1010 secp = target_section_by_addr (ops, memaddr);
1011 if (secp != NULL
1012 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1013 & SEC_READONLY))
1014 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1015 }
1016
1017 /* Likewise for accesses to unmapped overlay sections. */
1018 if (readbuf != NULL && overlay_debugging)
1019 {
1020 asection *section = find_pc_overlay (memaddr);
1021 if (pc_in_unmapped_range (memaddr, section))
1022 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1023 }
1024
1025 /* Try GDB's internal data cache. */
1026 region = lookup_mem_region (memaddr);
1027 /* region->hi == 0 means there's no upper bound. */
1028 if (memaddr + len < region->hi || region->hi == 0)
1029 reg_len = len;
1030 else
1031 reg_len = region->hi - memaddr;
1032
1033 switch (region->attrib.mode)
1034 {
1035 case MEM_RO:
1036 if (writebuf != NULL)
1037 return -1;
1038 break;
1039
1040 case MEM_WO:
1041 if (readbuf != NULL)
1042 return -1;
1043 break;
1044
1045 case MEM_FLASH:
1046 /* We only support writing to flash during "load" for now. */
1047 if (writebuf != NULL)
1048 error (_("Writing to flash memory forbidden in this context"));
1049 break;
1050
1051 case MEM_NONE:
1052 return -1;
1053 }
1054
1055 if (region->attrib.cache)
1056 {
1057 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1058 memory request will start back at current_target. */
1059 if (readbuf != NULL)
1060 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1061 reg_len, 0);
1062 else
1063 /* FIXME drow/2006-08-09: If we're going to preserve const
1064 correctness dcache_xfer_memory should take readbuf and
1065 writebuf. */
1066 res = dcache_xfer_memory (target_dcache, memaddr,
1067 (void *) writebuf,
1068 reg_len, 1);
1069 if (res <= 0)
1070 return -1;
1071 else
1072 {
1073 if (readbuf && !show_memory_breakpoints)
1074 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1075 return res;
1076 }
1077 }
1078
1079 /* If none of those methods found the memory we wanted, fall back
1080 to a target partial transfer. Normally a single call to
1081 to_xfer_partial is enough; if it doesn't recognize an object
1082 it will call the to_xfer_partial of the next target down.
1083 But for memory this won't do. Memory is the only target
1084 object which can be read from more than one valid target.
1085 A core file, for instance, could have some of memory but
1086 delegate other bits to the target below it. So, we must
1087 manually try all targets. */
1088
1089 do
1090 {
1091 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1092 readbuf, writebuf, memaddr, reg_len);
1093 if (res > 0)
1094 break;
1095
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory)
1099 break;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
1105 if (readbuf && !show_memory_breakpoints)
1106 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1107
1108 /* If we still haven't got anything, return the last error. We
1109 give up. */
1110 return res;
1111 }
1112
1113 static void
1114 restore_show_memory_breakpoints (void *arg)
1115 {
1116 show_memory_breakpoints = (uintptr_t) arg;
1117 }
1118
1119 struct cleanup *
1120 make_show_memory_breakpoints_cleanup (int show)
1121 {
1122 int current = show_memory_breakpoints;
1123 show_memory_breakpoints = show;
1124
1125 return make_cleanup (restore_show_memory_breakpoints,
1126 (void *) (uintptr_t) current);
1127 }
1128
1129 static LONGEST
1130 target_xfer_partial (struct target_ops *ops,
1131 enum target_object object, const char *annex,
1132 void *readbuf, const void *writebuf,
1133 ULONGEST offset, LONGEST len)
1134 {
1135 LONGEST retval;
1136
1137 gdb_assert (ops->to_xfer_partial != NULL);
1138
1139 /* If this is a memory transfer, let the memory-specific code
1140 have a look at it instead. Memory transfers are more
1141 complicated. */
1142 if (object == TARGET_OBJECT_MEMORY)
1143 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1144 else
1145 {
1146 enum target_object raw_object = object;
1147
1148 /* If this is a raw memory transfer, request the normal
1149 memory object from other layers. */
1150 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1151 raw_object = TARGET_OBJECT_MEMORY;
1152
1153 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1154 writebuf, offset, len);
1155 }
1156
1157 if (targetdebug)
1158 {
1159 const unsigned char *myaddr = NULL;
1160
1161 fprintf_unfiltered (gdb_stdlog,
1162 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1163 ops->to_shortname,
1164 (int) object,
1165 (annex ? annex : "(null)"),
1166 (long) readbuf, (long) writebuf,
1167 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1168
1169 if (readbuf)
1170 myaddr = readbuf;
1171 if (writebuf)
1172 myaddr = writebuf;
1173 if (retval > 0 && myaddr != NULL)
1174 {
1175 int i;
1176
1177 fputs_unfiltered (", bytes =", gdb_stdlog);
1178 for (i = 0; i < retval; i++)
1179 {
1180 if ((((long) &(myaddr[i])) & 0xf) == 0)
1181 {
1182 if (targetdebug < 2 && i > 0)
1183 {
1184 fprintf_unfiltered (gdb_stdlog, " ...");
1185 break;
1186 }
1187 fprintf_unfiltered (gdb_stdlog, "\n");
1188 }
1189
1190 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1191 }
1192 }
1193
1194 fputc_unfiltered ('\n', gdb_stdlog);
1195 }
1196 return retval;
1197 }
1198
1199 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1200 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1201 if any error occurs.
1202
1203 If an error occurs, no guarantee is made about the contents of the data at
1204 MYADDR. In particular, the caller should not depend upon partial reads
1205 filling the buffer with good data. There is no way for the caller to know
1206 how much good data might have been transfered anyway. Callers that can
1207 deal with partial reads should call target_read (which will retry until
1208 it makes no progress, and then return how much was transferred). */
1209
1210 int
1211 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1212 {
1213 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1214 myaddr, memaddr, len) == len)
1215 return 0;
1216 else
1217 return EIO;
1218 }
1219
1220 int
1221 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1222 {
1223 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1224 myaddr, memaddr, len) == len)
1225 return 0;
1226 else
1227 return EIO;
1228 }
1229
1230 /* Fetch the target's memory map. */
1231
1232 VEC(mem_region_s) *
1233 target_memory_map (void)
1234 {
1235 VEC(mem_region_s) *result;
1236 struct mem_region *last_one, *this_one;
1237 int ix;
1238 struct target_ops *t;
1239
1240 if (targetdebug)
1241 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1242
1243 for (t = current_target.beneath; t != NULL; t = t->beneath)
1244 if (t->to_memory_map != NULL)
1245 break;
1246
1247 if (t == NULL)
1248 return NULL;
1249
1250 result = t->to_memory_map (t);
1251 if (result == NULL)
1252 return NULL;
1253
1254 qsort (VEC_address (mem_region_s, result),
1255 VEC_length (mem_region_s, result),
1256 sizeof (struct mem_region), mem_region_cmp);
1257
1258 /* Check that regions do not overlap. Simultaneously assign
1259 a numbering for the "mem" commands to use to refer to
1260 each region. */
1261 last_one = NULL;
1262 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1263 {
1264 this_one->number = ix;
1265
1266 if (last_one && last_one->hi > this_one->lo)
1267 {
1268 warning (_("Overlapping regions in memory map: ignoring"));
1269 VEC_free (mem_region_s, result);
1270 return NULL;
1271 }
1272 last_one = this_one;
1273 }
1274
1275 return result;
1276 }
1277
1278 void
1279 target_flash_erase (ULONGEST address, LONGEST length)
1280 {
1281 struct target_ops *t;
1282
1283 for (t = current_target.beneath; t != NULL; t = t->beneath)
1284 if (t->to_flash_erase != NULL)
1285 {
1286 if (targetdebug)
1287 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1288 paddr (address), phex (length, 0));
1289 t->to_flash_erase (t, address, length);
1290 return;
1291 }
1292
1293 tcomplain ();
1294 }
1295
1296 void
1297 target_flash_done (void)
1298 {
1299 struct target_ops *t;
1300
1301 for (t = current_target.beneath; t != NULL; t = t->beneath)
1302 if (t->to_flash_done != NULL)
1303 {
1304 if (targetdebug)
1305 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1306 t->to_flash_done (t);
1307 return;
1308 }
1309
1310 tcomplain ();
1311 }
1312
1313 #ifndef target_stopped_data_address_p
1314 int
1315 target_stopped_data_address_p (struct target_ops *target)
1316 {
1317 if (target->to_stopped_data_address
1318 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1319 return 0;
1320 if (target->to_stopped_data_address == debug_to_stopped_data_address
1321 && (debug_target.to_stopped_data_address
1322 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1323 return 0;
1324 return 1;
1325 }
1326 #endif
1327
1328 static void
1329 show_trust_readonly (struct ui_file *file, int from_tty,
1330 struct cmd_list_element *c, const char *value)
1331 {
1332 fprintf_filtered (file, _("\
1333 Mode for reading from readonly sections is %s.\n"),
1334 value);
1335 }
1336
1337 /* More generic transfers. */
1338
1339 static LONGEST
1340 default_xfer_partial (struct target_ops *ops, enum target_object object,
1341 const char *annex, gdb_byte *readbuf,
1342 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1343 {
1344 if (object == TARGET_OBJECT_MEMORY
1345 && ops->deprecated_xfer_memory != NULL)
1346 /* If available, fall back to the target's
1347 "deprecated_xfer_memory" method. */
1348 {
1349 int xfered = -1;
1350 errno = 0;
1351 if (writebuf != NULL)
1352 {
1353 void *buffer = xmalloc (len);
1354 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1355 memcpy (buffer, writebuf, len);
1356 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1357 1/*write*/, NULL, ops);
1358 do_cleanups (cleanup);
1359 }
1360 if (readbuf != NULL)
1361 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1362 0/*read*/, NULL, ops);
1363 if (xfered > 0)
1364 return xfered;
1365 else if (xfered == 0 && errno == 0)
1366 /* "deprecated_xfer_memory" uses 0, cross checked against
1367 ERRNO as one indication of an error. */
1368 return 0;
1369 else
1370 return -1;
1371 }
1372 else if (ops->beneath != NULL)
1373 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1374 readbuf, writebuf, offset, len);
1375 else
1376 return -1;
1377 }
1378
1379 /* The xfer_partial handler for the topmost target. Unlike the default,
1380 it does not need to handle memory specially; it just passes all
1381 requests down the stack. */
1382
1383 static LONGEST
1384 current_xfer_partial (struct target_ops *ops, enum target_object object,
1385 const char *annex, gdb_byte *readbuf,
1386 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1387 {
1388 if (ops->beneath != NULL)
1389 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1390 readbuf, writebuf, offset, len);
1391 else
1392 return -1;
1393 }
1394
1395 /* Target vector read/write partial wrapper functions.
1396
1397 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1398 (inbuf, outbuf)", instead of separate read/write methods, make life
1399 easier. */
1400
1401 static LONGEST
1402 target_read_partial (struct target_ops *ops,
1403 enum target_object object,
1404 const char *annex, gdb_byte *buf,
1405 ULONGEST offset, LONGEST len)
1406 {
1407 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1408 }
1409
1410 static LONGEST
1411 target_write_partial (struct target_ops *ops,
1412 enum target_object object,
1413 const char *annex, const gdb_byte *buf,
1414 ULONGEST offset, LONGEST len)
1415 {
1416 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1417 }
1418
1419 /* Wrappers to perform the full transfer. */
1420 LONGEST
1421 target_read (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, gdb_byte *buf,
1424 ULONGEST offset, LONGEST len)
1425 {
1426 LONGEST xfered = 0;
1427 while (xfered < len)
1428 {
1429 LONGEST xfer = target_read_partial (ops, object, annex,
1430 (gdb_byte *) buf + xfered,
1431 offset + xfered, len - xfered);
1432 /* Call an observer, notifying them of the xfer progress? */
1433 if (xfer == 0)
1434 return xfered;
1435 if (xfer < 0)
1436 return -1;
1437 xfered += xfer;
1438 QUIT;
1439 }
1440 return len;
1441 }
1442
1443 /* An alternative to target_write with progress callbacks. */
1444
1445 LONGEST
1446 target_write_with_progress (struct target_ops *ops,
1447 enum target_object object,
1448 const char *annex, const gdb_byte *buf,
1449 ULONGEST offset, LONGEST len,
1450 void (*progress) (ULONGEST, void *), void *baton)
1451 {
1452 LONGEST xfered = 0;
1453
1454 /* Give the progress callback a chance to set up. */
1455 if (progress)
1456 (*progress) (0, baton);
1457
1458 while (xfered < len)
1459 {
1460 LONGEST xfer = target_write_partial (ops, object, annex,
1461 (gdb_byte *) buf + xfered,
1462 offset + xfered, len - xfered);
1463
1464 if (xfer == 0)
1465 return xfered;
1466 if (xfer < 0)
1467 return -1;
1468
1469 if (progress)
1470 (*progress) (xfer, baton);
1471
1472 xfered += xfer;
1473 QUIT;
1474 }
1475 return len;
1476 }
1477
1478 LONGEST
1479 target_write (struct target_ops *ops,
1480 enum target_object object,
1481 const char *annex, const gdb_byte *buf,
1482 ULONGEST offset, LONGEST len)
1483 {
1484 return target_write_with_progress (ops, object, annex, buf, offset, len,
1485 NULL, NULL);
1486 }
1487
1488 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1489 the size of the transferred data. PADDING additional bytes are
1490 available in *BUF_P. This is a helper function for
1491 target_read_alloc; see the declaration of that function for more
1492 information. */
1493
1494 static LONGEST
1495 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1496 const char *annex, gdb_byte **buf_p, int padding)
1497 {
1498 size_t buf_alloc, buf_pos;
1499 gdb_byte *buf;
1500 LONGEST n;
1501
1502 /* This function does not have a length parameter; it reads the
1503 entire OBJECT). Also, it doesn't support objects fetched partly
1504 from one target and partly from another (in a different stratum,
1505 e.g. a core file and an executable). Both reasons make it
1506 unsuitable for reading memory. */
1507 gdb_assert (object != TARGET_OBJECT_MEMORY);
1508
1509 /* Start by reading up to 4K at a time. The target will throttle
1510 this number down if necessary. */
1511 buf_alloc = 4096;
1512 buf = xmalloc (buf_alloc);
1513 buf_pos = 0;
1514 while (1)
1515 {
1516 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1517 buf_pos, buf_alloc - buf_pos - padding);
1518 if (n < 0)
1519 {
1520 /* An error occurred. */
1521 xfree (buf);
1522 return -1;
1523 }
1524 else if (n == 0)
1525 {
1526 /* Read all there was. */
1527 if (buf_pos == 0)
1528 xfree (buf);
1529 else
1530 *buf_p = buf;
1531 return buf_pos;
1532 }
1533
1534 buf_pos += n;
1535
1536 /* If the buffer is filling up, expand it. */
1537 if (buf_alloc < buf_pos * 2)
1538 {
1539 buf_alloc *= 2;
1540 buf = xrealloc (buf, buf_alloc);
1541 }
1542
1543 QUIT;
1544 }
1545 }
1546
1547 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1548 the size of the transferred data. See the declaration in "target.h"
1549 function for more information about the return value. */
1550
1551 LONGEST
1552 target_read_alloc (struct target_ops *ops, enum target_object object,
1553 const char *annex, gdb_byte **buf_p)
1554 {
1555 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1556 }
1557
1558 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1559 returned as a string, allocated using xmalloc. If an error occurs
1560 or the transfer is unsupported, NULL is returned. Empty objects
1561 are returned as allocated but empty strings. A warning is issued
1562 if the result contains any embedded NUL bytes. */
1563
1564 char *
1565 target_read_stralloc (struct target_ops *ops, enum target_object object,
1566 const char *annex)
1567 {
1568 gdb_byte *buffer;
1569 LONGEST transferred;
1570
1571 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1572
1573 if (transferred < 0)
1574 return NULL;
1575
1576 if (transferred == 0)
1577 return xstrdup ("");
1578
1579 buffer[transferred] = 0;
1580 if (strlen (buffer) < transferred)
1581 warning (_("target object %d, annex %s, "
1582 "contained unexpected null characters"),
1583 (int) object, annex ? annex : "(none)");
1584
1585 return (char *) buffer;
1586 }
1587
1588 /* Memory transfer methods. */
1589
1590 void
1591 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1592 LONGEST len)
1593 {
1594 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1595 != len)
1596 memory_error (EIO, addr);
1597 }
1598
1599 ULONGEST
1600 get_target_memory_unsigned (struct target_ops *ops,
1601 CORE_ADDR addr, int len)
1602 {
1603 gdb_byte buf[sizeof (ULONGEST)];
1604
1605 gdb_assert (len <= sizeof (buf));
1606 get_target_memory (ops, addr, buf, len);
1607 return extract_unsigned_integer (buf, len);
1608 }
1609
1610 static void
1611 target_info (char *args, int from_tty)
1612 {
1613 struct target_ops *t;
1614 int has_all_mem = 0;
1615
1616 if (symfile_objfile != NULL)
1617 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1618
1619 for (t = target_stack; t != NULL; t = t->beneath)
1620 {
1621 if (!t->to_has_memory)
1622 continue;
1623
1624 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1625 continue;
1626 if (has_all_mem)
1627 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1628 printf_unfiltered ("%s:\n", t->to_longname);
1629 (t->to_files_info) (t);
1630 has_all_mem = t->to_has_all_memory;
1631 }
1632 }
1633
1634 /* This function is called before any new inferior is created, e.g.
1635 by running a program, attaching, or connecting to a target.
1636 It cleans up any state from previous invocations which might
1637 change between runs. This is a subset of what target_preopen
1638 resets (things which might change between targets). */
1639
1640 void
1641 target_pre_inferior (int from_tty)
1642 {
1643 invalidate_target_mem_regions ();
1644
1645 target_clear_description ();
1646 }
1647
1648 /* This is to be called by the open routine before it does
1649 anything. */
1650
1651 void
1652 target_preopen (int from_tty)
1653 {
1654 dont_repeat ();
1655
1656 if (target_has_execution)
1657 {
1658 if (!from_tty
1659 || query (_("A program is being debugged already. Kill it? ")))
1660 target_kill ();
1661 else
1662 error (_("Program not killed."));
1663 }
1664
1665 /* Calling target_kill may remove the target from the stack. But if
1666 it doesn't (which seems like a win for UDI), remove it now. */
1667
1668 if (target_has_execution)
1669 pop_target ();
1670
1671 target_pre_inferior (from_tty);
1672 }
1673
1674 /* Detach a target after doing deferred register stores. */
1675
1676 void
1677 target_detach (char *args, int from_tty)
1678 {
1679 (current_target.to_detach) (args, from_tty);
1680 }
1681
1682 void
1683 target_disconnect (char *args, int from_tty)
1684 {
1685 struct target_ops *t;
1686
1687 for (t = current_target.beneath; t != NULL; t = t->beneath)
1688 if (t->to_disconnect != NULL)
1689 {
1690 if (targetdebug)
1691 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1692 args, from_tty);
1693 t->to_disconnect (t, args, from_tty);
1694 return;
1695 }
1696
1697 tcomplain ();
1698 }
1699
1700 /* Look through the list of possible targets for a target that can
1701 follow forks. */
1702
1703 int
1704 target_follow_fork (int follow_child)
1705 {
1706 struct target_ops *t;
1707
1708 for (t = current_target.beneath; t != NULL; t = t->beneath)
1709 {
1710 if (t->to_follow_fork != NULL)
1711 {
1712 int retval = t->to_follow_fork (t, follow_child);
1713 if (targetdebug)
1714 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1715 follow_child, retval);
1716 return retval;
1717 }
1718 }
1719
1720 /* Some target returned a fork event, but did not know how to follow it. */
1721 internal_error (__FILE__, __LINE__,
1722 "could not find a target to follow fork");
1723 }
1724
1725 /* Look for a target which can describe architectural features, starting
1726 from TARGET. If we find one, return its description. */
1727
1728 const struct target_desc *
1729 target_read_description (struct target_ops *target)
1730 {
1731 struct target_ops *t;
1732
1733 for (t = target; t != NULL; t = t->beneath)
1734 if (t->to_read_description != NULL)
1735 {
1736 const struct target_desc *tdesc;
1737
1738 tdesc = t->to_read_description (t);
1739 if (tdesc)
1740 return tdesc;
1741 }
1742
1743 return NULL;
1744 }
1745
1746 /* Look through the currently pushed targets. If none of them will
1747 be able to restart the currently running process, issue an error
1748 message. */
1749
1750 void
1751 target_require_runnable (void)
1752 {
1753 struct target_ops *t;
1754
1755 for (t = target_stack; t != NULL; t = t->beneath)
1756 {
1757 /* If this target knows how to create a new program, then
1758 assume we will still be able to after killing the current
1759 one. Either killing and mourning will not pop T, or else
1760 find_default_run_target will find it again. */
1761 if (t->to_create_inferior != NULL)
1762 return;
1763
1764 /* Do not worry about thread_stratum targets that can not
1765 create inferiors. Assume they will be pushed again if
1766 necessary, and continue to the process_stratum. */
1767 if (t->to_stratum == thread_stratum)
1768 continue;
1769
1770 error (_("\
1771 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
1772 t->to_shortname);
1773 }
1774
1775 /* This function is only called if the target is running. In that
1776 case there should have been a process_stratum target and it
1777 should either know how to create inferiors, or not... */
1778 internal_error (__FILE__, __LINE__, "No targets found");
1779 }
1780
1781 /* Look through the list of possible targets for a target that can
1782 execute a run or attach command without any other data. This is
1783 used to locate the default process stratum.
1784
1785 Result is always valid (error() is called for errors). */
1786
1787 static struct target_ops *
1788 find_default_run_target (char *do_mesg)
1789 {
1790 struct target_ops **t;
1791 struct target_ops *runable = NULL;
1792 int count;
1793
1794 count = 0;
1795
1796 for (t = target_structs; t < target_structs + target_struct_size;
1797 ++t)
1798 {
1799 if ((*t)->to_can_run && target_can_run (*t))
1800 {
1801 runable = *t;
1802 ++count;
1803 }
1804 }
1805
1806 if (count != 1)
1807 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1808
1809 return runable;
1810 }
1811
1812 void
1813 find_default_attach (char *args, int from_tty)
1814 {
1815 struct target_ops *t;
1816
1817 t = find_default_run_target ("attach");
1818 (t->to_attach) (args, from_tty);
1819 return;
1820 }
1821
1822 void
1823 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1824 int from_tty)
1825 {
1826 struct target_ops *t;
1827
1828 t = find_default_run_target ("run");
1829 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1830 return;
1831 }
1832
1833 int
1834 find_default_can_async_p (void)
1835 {
1836 struct target_ops *t;
1837
1838 t = find_default_run_target ("async");
1839 if (t->to_can_async_p)
1840 return (t->to_can_async_p) ();
1841 return 0;
1842 }
1843
1844 int
1845 find_default_is_async_p (void)
1846 {
1847 struct target_ops *t;
1848
1849 t = find_default_run_target ("async");
1850 if (t->to_is_async_p)
1851 return (t->to_is_async_p) ();
1852 return 0;
1853 }
1854
1855 static int
1856 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1857 {
1858 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1859 }
1860
1861 static int
1862 return_zero (void)
1863 {
1864 return 0;
1865 }
1866
1867 static int
1868 return_one (void)
1869 {
1870 return 1;
1871 }
1872
1873 static int
1874 return_minus_one (void)
1875 {
1876 return -1;
1877 }
1878
1879 /*
1880 * Resize the to_sections pointer. Also make sure that anyone that
1881 * was holding on to an old value of it gets updated.
1882 * Returns the old size.
1883 */
1884
1885 int
1886 target_resize_to_sections (struct target_ops *target, int num_added)
1887 {
1888 struct target_ops **t;
1889 struct section_table *old_value;
1890 int old_count;
1891
1892 old_value = target->to_sections;
1893
1894 if (target->to_sections)
1895 {
1896 old_count = target->to_sections_end - target->to_sections;
1897 target->to_sections = (struct section_table *)
1898 xrealloc ((char *) target->to_sections,
1899 (sizeof (struct section_table)) * (num_added + old_count));
1900 }
1901 else
1902 {
1903 old_count = 0;
1904 target->to_sections = (struct section_table *)
1905 xmalloc ((sizeof (struct section_table)) * num_added);
1906 }
1907 target->to_sections_end = target->to_sections + (num_added + old_count);
1908
1909 /* Check to see if anyone else was pointing to this structure.
1910 If old_value was null, then no one was. */
1911
1912 if (old_value)
1913 {
1914 for (t = target_structs; t < target_structs + target_struct_size;
1915 ++t)
1916 {
1917 if ((*t)->to_sections == old_value)
1918 {
1919 (*t)->to_sections = target->to_sections;
1920 (*t)->to_sections_end = target->to_sections_end;
1921 }
1922 }
1923 /* There is a flattened view of the target stack in current_target,
1924 so its to_sections pointer might also need updating. */
1925 if (current_target.to_sections == old_value)
1926 {
1927 current_target.to_sections = target->to_sections;
1928 current_target.to_sections_end = target->to_sections_end;
1929 }
1930 }
1931
1932 return old_count;
1933
1934 }
1935
1936 /* Remove all target sections taken from ABFD.
1937
1938 Scan the current target stack for targets whose section tables
1939 refer to sections from BFD, and remove those sections. We use this
1940 when we notice that the inferior has unloaded a shared object, for
1941 example. */
1942 void
1943 remove_target_sections (bfd *abfd)
1944 {
1945 struct target_ops **t;
1946
1947 for (t = target_structs; t < target_structs + target_struct_size; t++)
1948 {
1949 struct section_table *src, *dest;
1950
1951 dest = (*t)->to_sections;
1952 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1953 if (src->bfd != abfd)
1954 {
1955 /* Keep this section. */
1956 if (dest < src) *dest = *src;
1957 dest++;
1958 }
1959
1960 /* If we've dropped any sections, resize the section table. */
1961 if (dest < src)
1962 target_resize_to_sections (*t, dest - src);
1963 }
1964 }
1965
1966
1967
1968
1969 /* Find a single runnable target in the stack and return it. If for
1970 some reason there is more than one, return NULL. */
1971
1972 struct target_ops *
1973 find_run_target (void)
1974 {
1975 struct target_ops **t;
1976 struct target_ops *runable = NULL;
1977 int count;
1978
1979 count = 0;
1980
1981 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1982 {
1983 if ((*t)->to_can_run && target_can_run (*t))
1984 {
1985 runable = *t;
1986 ++count;
1987 }
1988 }
1989
1990 return (count == 1 ? runable : NULL);
1991 }
1992
1993 /* Find a single core_stratum target in the list of targets and return it.
1994 If for some reason there is more than one, return NULL. */
1995
1996 struct target_ops *
1997 find_core_target (void)
1998 {
1999 struct target_ops **t;
2000 struct target_ops *runable = NULL;
2001 int count;
2002
2003 count = 0;
2004
2005 for (t = target_structs; t < target_structs + target_struct_size;
2006 ++t)
2007 {
2008 if ((*t)->to_stratum == core_stratum)
2009 {
2010 runable = *t;
2011 ++count;
2012 }
2013 }
2014
2015 return (count == 1 ? runable : NULL);
2016 }
2017
2018 /*
2019 * Find the next target down the stack from the specified target.
2020 */
2021
2022 struct target_ops *
2023 find_target_beneath (struct target_ops *t)
2024 {
2025 return t->beneath;
2026 }
2027
2028 \f
2029 /* The inferior process has died. Long live the inferior! */
2030
2031 void
2032 generic_mourn_inferior (void)
2033 {
2034 extern int show_breakpoint_hit_counts;
2035
2036 inferior_ptid = null_ptid;
2037 attach_flag = 0;
2038 breakpoint_init_inferior (inf_exited);
2039 registers_changed ();
2040
2041 reopen_exec_file ();
2042 reinit_frame_cache ();
2043
2044 /* It is confusing to the user for ignore counts to stick around
2045 from previous runs of the inferior. So clear them. */
2046 /* However, it is more confusing for the ignore counts to disappear when
2047 using hit counts. So don't clear them if we're counting hits. */
2048 if (!show_breakpoint_hit_counts)
2049 breakpoint_clear_ignore_counts ();
2050
2051 if (deprecated_detach_hook)
2052 deprecated_detach_hook ();
2053 }
2054 \f
2055 /* Helper function for child_wait and the derivatives of child_wait.
2056 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2057 translation of that in OURSTATUS. */
2058 void
2059 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2060 {
2061 if (WIFEXITED (hoststatus))
2062 {
2063 ourstatus->kind = TARGET_WAITKIND_EXITED;
2064 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2065 }
2066 else if (!WIFSTOPPED (hoststatus))
2067 {
2068 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2069 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2070 }
2071 else
2072 {
2073 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2074 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2075 }
2076 }
2077 \f
2078 /* Returns zero to leave the inferior alone, one to interrupt it. */
2079 int (*target_activity_function) (void);
2080 int target_activity_fd;
2081 \f
2082 /* Convert a normal process ID to a string. Returns the string in a
2083 static buffer. */
2084
2085 char *
2086 normal_pid_to_str (ptid_t ptid)
2087 {
2088 static char buf[32];
2089
2090 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2091 return buf;
2092 }
2093
2094 /* Error-catcher for target_find_memory_regions */
2095 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2096 {
2097 error (_("No target."));
2098 return 0;
2099 }
2100
2101 /* Error-catcher for target_make_corefile_notes */
2102 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2103 {
2104 error (_("No target."));
2105 return NULL;
2106 }
2107
2108 /* Set up the handful of non-empty slots needed by the dummy target
2109 vector. */
2110
2111 static void
2112 init_dummy_target (void)
2113 {
2114 dummy_target.to_shortname = "None";
2115 dummy_target.to_longname = "None";
2116 dummy_target.to_doc = "";
2117 dummy_target.to_attach = find_default_attach;
2118 dummy_target.to_create_inferior = find_default_create_inferior;
2119 dummy_target.to_can_async_p = find_default_can_async_p;
2120 dummy_target.to_is_async_p = find_default_is_async_p;
2121 dummy_target.to_pid_to_str = normal_pid_to_str;
2122 dummy_target.to_stratum = dummy_stratum;
2123 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2124 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2125 dummy_target.to_xfer_partial = default_xfer_partial;
2126 dummy_target.to_magic = OPS_MAGIC;
2127 }
2128 \f
2129 static void
2130 debug_to_open (char *args, int from_tty)
2131 {
2132 debug_target.to_open (args, from_tty);
2133
2134 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2135 }
2136
2137 static void
2138 debug_to_close (int quitting)
2139 {
2140 target_close (&debug_target, quitting);
2141 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2142 }
2143
2144 void
2145 target_close (struct target_ops *targ, int quitting)
2146 {
2147 if (targ->to_xclose != NULL)
2148 targ->to_xclose (targ, quitting);
2149 else if (targ->to_close != NULL)
2150 targ->to_close (quitting);
2151 }
2152
2153 static void
2154 debug_to_attach (char *args, int from_tty)
2155 {
2156 debug_target.to_attach (args, from_tty);
2157
2158 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2159 }
2160
2161
2162 static void
2163 debug_to_post_attach (int pid)
2164 {
2165 debug_target.to_post_attach (pid);
2166
2167 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2168 }
2169
2170 static void
2171 debug_to_detach (char *args, int from_tty)
2172 {
2173 debug_target.to_detach (args, from_tty);
2174
2175 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2176 }
2177
2178 static void
2179 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2180 {
2181 debug_target.to_resume (ptid, step, siggnal);
2182
2183 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2184 step ? "step" : "continue",
2185 target_signal_to_name (siggnal));
2186 }
2187
2188 static ptid_t
2189 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2190 {
2191 ptid_t retval;
2192
2193 retval = debug_target.to_wait (ptid, status);
2194
2195 fprintf_unfiltered (gdb_stdlog,
2196 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2197 PIDGET (retval));
2198 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2199 switch (status->kind)
2200 {
2201 case TARGET_WAITKIND_EXITED:
2202 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2203 status->value.integer);
2204 break;
2205 case TARGET_WAITKIND_STOPPED:
2206 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2207 target_signal_to_name (status->value.sig));
2208 break;
2209 case TARGET_WAITKIND_SIGNALLED:
2210 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2211 target_signal_to_name (status->value.sig));
2212 break;
2213 case TARGET_WAITKIND_LOADED:
2214 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2215 break;
2216 case TARGET_WAITKIND_FORKED:
2217 fprintf_unfiltered (gdb_stdlog, "forked\n");
2218 break;
2219 case TARGET_WAITKIND_VFORKED:
2220 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2221 break;
2222 case TARGET_WAITKIND_EXECD:
2223 fprintf_unfiltered (gdb_stdlog, "execd\n");
2224 break;
2225 case TARGET_WAITKIND_SPURIOUS:
2226 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2227 break;
2228 default:
2229 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2230 break;
2231 }
2232
2233 return retval;
2234 }
2235
2236 static void
2237 debug_print_register (const char * func,
2238 struct regcache *regcache, int regno)
2239 {
2240 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2241 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2242 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2243 + gdbarch_num_pseudo_regs (gdbarch)
2244 && gdbarch_register_name (gdbarch, regno) != NULL
2245 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2246 fprintf_unfiltered (gdb_stdlog, "(%s)",
2247 gdbarch_register_name (gdbarch, regno));
2248 else
2249 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2250 if (regno >= 0)
2251 {
2252 int i, size = register_size (gdbarch, regno);
2253 unsigned char buf[MAX_REGISTER_SIZE];
2254 regcache_cooked_read (regcache, regno, buf);
2255 fprintf_unfiltered (gdb_stdlog, " = ");
2256 for (i = 0; i < size; i++)
2257 {
2258 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2259 }
2260 if (size <= sizeof (LONGEST))
2261 {
2262 ULONGEST val = extract_unsigned_integer (buf, size);
2263 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2264 paddr_nz (val), paddr_d (val));
2265 }
2266 }
2267 fprintf_unfiltered (gdb_stdlog, "\n");
2268 }
2269
2270 static void
2271 debug_to_fetch_registers (struct regcache *regcache, int regno)
2272 {
2273 debug_target.to_fetch_registers (regcache, regno);
2274 debug_print_register ("target_fetch_registers", regcache, regno);
2275 }
2276
2277 static void
2278 debug_to_store_registers (struct regcache *regcache, int regno)
2279 {
2280 debug_target.to_store_registers (regcache, regno);
2281 debug_print_register ("target_store_registers", regcache, regno);
2282 fprintf_unfiltered (gdb_stdlog, "\n");
2283 }
2284
2285 static void
2286 debug_to_prepare_to_store (struct regcache *regcache)
2287 {
2288 debug_target.to_prepare_to_store (regcache);
2289
2290 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2291 }
2292
2293 static int
2294 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2295 int write, struct mem_attrib *attrib,
2296 struct target_ops *target)
2297 {
2298 int retval;
2299
2300 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2301 attrib, target);
2302
2303 fprintf_unfiltered (gdb_stdlog,
2304 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2305 (unsigned int) memaddr, /* possable truncate long long */
2306 len, write ? "write" : "read", retval);
2307
2308 if (retval > 0)
2309 {
2310 int i;
2311
2312 fputs_unfiltered (", bytes =", gdb_stdlog);
2313 for (i = 0; i < retval; i++)
2314 {
2315 if ((((long) &(myaddr[i])) & 0xf) == 0)
2316 {
2317 if (targetdebug < 2 && i > 0)
2318 {
2319 fprintf_unfiltered (gdb_stdlog, " ...");
2320 break;
2321 }
2322 fprintf_unfiltered (gdb_stdlog, "\n");
2323 }
2324
2325 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2326 }
2327 }
2328
2329 fputc_unfiltered ('\n', gdb_stdlog);
2330
2331 return retval;
2332 }
2333
2334 static void
2335 debug_to_files_info (struct target_ops *target)
2336 {
2337 debug_target.to_files_info (target);
2338
2339 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2340 }
2341
2342 static int
2343 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2344 {
2345 int retval;
2346
2347 retval = debug_target.to_insert_breakpoint (bp_tgt);
2348
2349 fprintf_unfiltered (gdb_stdlog,
2350 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2351 (unsigned long) bp_tgt->placed_address,
2352 (unsigned long) retval);
2353 return retval;
2354 }
2355
2356 static int
2357 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2358 {
2359 int retval;
2360
2361 retval = debug_target.to_remove_breakpoint (bp_tgt);
2362
2363 fprintf_unfiltered (gdb_stdlog,
2364 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2365 (unsigned long) bp_tgt->placed_address,
2366 (unsigned long) retval);
2367 return retval;
2368 }
2369
2370 static int
2371 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2372 {
2373 int retval;
2374
2375 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2376
2377 fprintf_unfiltered (gdb_stdlog,
2378 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2379 (unsigned long) type,
2380 (unsigned long) cnt,
2381 (unsigned long) from_tty,
2382 (unsigned long) retval);
2383 return retval;
2384 }
2385
2386 static int
2387 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2388 {
2389 CORE_ADDR retval;
2390
2391 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2392
2393 fprintf_unfiltered (gdb_stdlog,
2394 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2395 (unsigned long) addr,
2396 (unsigned long) len,
2397 (unsigned long) retval);
2398 return retval;
2399 }
2400
2401 static int
2402 debug_to_stopped_by_watchpoint (void)
2403 {
2404 int retval;
2405
2406 retval = debug_target.to_stopped_by_watchpoint ();
2407
2408 fprintf_unfiltered (gdb_stdlog,
2409 "STOPPED_BY_WATCHPOINT () = %ld\n",
2410 (unsigned long) retval);
2411 return retval;
2412 }
2413
2414 static int
2415 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2416 {
2417 int retval;
2418
2419 retval = debug_target.to_stopped_data_address (target, addr);
2420
2421 fprintf_unfiltered (gdb_stdlog,
2422 "target_stopped_data_address ([0x%lx]) = %ld\n",
2423 (unsigned long)*addr,
2424 (unsigned long)retval);
2425 return retval;
2426 }
2427
2428 static int
2429 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2430 {
2431 int retval;
2432
2433 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2434
2435 fprintf_unfiltered (gdb_stdlog,
2436 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2437 (unsigned long) bp_tgt->placed_address,
2438 (unsigned long) retval);
2439 return retval;
2440 }
2441
2442 static int
2443 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2444 {
2445 int retval;
2446
2447 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2448
2449 fprintf_unfiltered (gdb_stdlog,
2450 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2451 (unsigned long) bp_tgt->placed_address,
2452 (unsigned long) retval);
2453 return retval;
2454 }
2455
2456 static int
2457 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2458 {
2459 int retval;
2460
2461 retval = debug_target.to_insert_watchpoint (addr, len, type);
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2465 (unsigned long) addr, len, type, (unsigned long) retval);
2466 return retval;
2467 }
2468
2469 static int
2470 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2471 {
2472 int retval;
2473
2474 retval = debug_target.to_remove_watchpoint (addr, len, type);
2475
2476 fprintf_unfiltered (gdb_stdlog,
2477 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2478 (unsigned long) addr, len, type, (unsigned long) retval);
2479 return retval;
2480 }
2481
2482 static void
2483 debug_to_terminal_init (void)
2484 {
2485 debug_target.to_terminal_init ();
2486
2487 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2488 }
2489
2490 static void
2491 debug_to_terminal_inferior (void)
2492 {
2493 debug_target.to_terminal_inferior ();
2494
2495 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2496 }
2497
2498 static void
2499 debug_to_terminal_ours_for_output (void)
2500 {
2501 debug_target.to_terminal_ours_for_output ();
2502
2503 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2504 }
2505
2506 static void
2507 debug_to_terminal_ours (void)
2508 {
2509 debug_target.to_terminal_ours ();
2510
2511 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2512 }
2513
2514 static void
2515 debug_to_terminal_save_ours (void)
2516 {
2517 debug_target.to_terminal_save_ours ();
2518
2519 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2520 }
2521
2522 static void
2523 debug_to_terminal_info (char *arg, int from_tty)
2524 {
2525 debug_target.to_terminal_info (arg, from_tty);
2526
2527 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2528 from_tty);
2529 }
2530
2531 static void
2532 debug_to_kill (void)
2533 {
2534 debug_target.to_kill ();
2535
2536 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2537 }
2538
2539 static void
2540 debug_to_load (char *args, int from_tty)
2541 {
2542 debug_target.to_load (args, from_tty);
2543
2544 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2545 }
2546
2547 static int
2548 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2549 {
2550 int retval;
2551
2552 retval = debug_target.to_lookup_symbol (name, addrp);
2553
2554 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2555
2556 return retval;
2557 }
2558
2559 static void
2560 debug_to_create_inferior (char *exec_file, char *args, char **env,
2561 int from_tty)
2562 {
2563 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2564
2565 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2566 exec_file, args, from_tty);
2567 }
2568
2569 static void
2570 debug_to_post_startup_inferior (ptid_t ptid)
2571 {
2572 debug_target.to_post_startup_inferior (ptid);
2573
2574 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2575 PIDGET (ptid));
2576 }
2577
2578 static void
2579 debug_to_acknowledge_created_inferior (int pid)
2580 {
2581 debug_target.to_acknowledge_created_inferior (pid);
2582
2583 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2584 pid);
2585 }
2586
2587 static void
2588 debug_to_insert_fork_catchpoint (int pid)
2589 {
2590 debug_target.to_insert_fork_catchpoint (pid);
2591
2592 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2593 pid);
2594 }
2595
2596 static int
2597 debug_to_remove_fork_catchpoint (int pid)
2598 {
2599 int retval;
2600
2601 retval = debug_target.to_remove_fork_catchpoint (pid);
2602
2603 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2604 pid, retval);
2605
2606 return retval;
2607 }
2608
2609 static void
2610 debug_to_insert_vfork_catchpoint (int pid)
2611 {
2612 debug_target.to_insert_vfork_catchpoint (pid);
2613
2614 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2615 pid);
2616 }
2617
2618 static int
2619 debug_to_remove_vfork_catchpoint (int pid)
2620 {
2621 int retval;
2622
2623 retval = debug_target.to_remove_vfork_catchpoint (pid);
2624
2625 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2626 pid, retval);
2627
2628 return retval;
2629 }
2630
2631 static void
2632 debug_to_insert_exec_catchpoint (int pid)
2633 {
2634 debug_target.to_insert_exec_catchpoint (pid);
2635
2636 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2637 pid);
2638 }
2639
2640 static int
2641 debug_to_remove_exec_catchpoint (int pid)
2642 {
2643 int retval;
2644
2645 retval = debug_target.to_remove_exec_catchpoint (pid);
2646
2647 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2648 pid, retval);
2649
2650 return retval;
2651 }
2652
2653 static int
2654 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2655 {
2656 int has_exited;
2657
2658 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2659
2660 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2661 pid, wait_status, *exit_status, has_exited);
2662
2663 return has_exited;
2664 }
2665
2666 static void
2667 debug_to_mourn_inferior (void)
2668 {
2669 debug_target.to_mourn_inferior ();
2670
2671 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2672 }
2673
2674 static int
2675 debug_to_can_run (void)
2676 {
2677 int retval;
2678
2679 retval = debug_target.to_can_run ();
2680
2681 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2682
2683 return retval;
2684 }
2685
2686 static void
2687 debug_to_notice_signals (ptid_t ptid)
2688 {
2689 debug_target.to_notice_signals (ptid);
2690
2691 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2692 PIDGET (ptid));
2693 }
2694
2695 static int
2696 debug_to_thread_alive (ptid_t ptid)
2697 {
2698 int retval;
2699
2700 retval = debug_target.to_thread_alive (ptid);
2701
2702 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2703 PIDGET (ptid), retval);
2704
2705 return retval;
2706 }
2707
2708 static void
2709 debug_to_find_new_threads (void)
2710 {
2711 debug_target.to_find_new_threads ();
2712
2713 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2714 }
2715
2716 static void
2717 debug_to_stop (void)
2718 {
2719 debug_target.to_stop ();
2720
2721 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2722 }
2723
2724 static void
2725 debug_to_rcmd (char *command,
2726 struct ui_file *outbuf)
2727 {
2728 debug_target.to_rcmd (command, outbuf);
2729 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2730 }
2731
2732 static char *
2733 debug_to_pid_to_exec_file (int pid)
2734 {
2735 char *exec_file;
2736
2737 exec_file = debug_target.to_pid_to_exec_file (pid);
2738
2739 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2740 pid, exec_file);
2741
2742 return exec_file;
2743 }
2744
2745 static void
2746 setup_target_debug (void)
2747 {
2748 memcpy (&debug_target, &current_target, sizeof debug_target);
2749
2750 current_target.to_open = debug_to_open;
2751 current_target.to_close = debug_to_close;
2752 current_target.to_attach = debug_to_attach;
2753 current_target.to_post_attach = debug_to_post_attach;
2754 current_target.to_detach = debug_to_detach;
2755 current_target.to_resume = debug_to_resume;
2756 current_target.to_wait = debug_to_wait;
2757 current_target.to_fetch_registers = debug_to_fetch_registers;
2758 current_target.to_store_registers = debug_to_store_registers;
2759 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2760 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2761 current_target.to_files_info = debug_to_files_info;
2762 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2763 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2764 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2765 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2766 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2767 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2768 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2769 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2770 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2771 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2772 current_target.to_terminal_init = debug_to_terminal_init;
2773 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2774 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2775 current_target.to_terminal_ours = debug_to_terminal_ours;
2776 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2777 current_target.to_terminal_info = debug_to_terminal_info;
2778 current_target.to_kill = debug_to_kill;
2779 current_target.to_load = debug_to_load;
2780 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2781 current_target.to_create_inferior = debug_to_create_inferior;
2782 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2783 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2784 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2785 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2786 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2787 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2788 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2789 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2790 current_target.to_has_exited = debug_to_has_exited;
2791 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2792 current_target.to_can_run = debug_to_can_run;
2793 current_target.to_notice_signals = debug_to_notice_signals;
2794 current_target.to_thread_alive = debug_to_thread_alive;
2795 current_target.to_find_new_threads = debug_to_find_new_threads;
2796 current_target.to_stop = debug_to_stop;
2797 current_target.to_rcmd = debug_to_rcmd;
2798 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2799 }
2800 \f
2801
2802 static char targ_desc[] =
2803 "Names of targets and files being debugged.\n\
2804 Shows the entire stack of targets currently in use (including the exec-file,\n\
2805 core-file, and process, if any), as well as the symbol file name.";
2806
2807 static void
2808 do_monitor_command (char *cmd,
2809 int from_tty)
2810 {
2811 if ((current_target.to_rcmd
2812 == (void (*) (char *, struct ui_file *)) tcomplain)
2813 || (current_target.to_rcmd == debug_to_rcmd
2814 && (debug_target.to_rcmd
2815 == (void (*) (char *, struct ui_file *)) tcomplain)))
2816 error (_("\"monitor\" command not supported by this target."));
2817 target_rcmd (cmd, gdb_stdtarg);
2818 }
2819
2820 /* Print the name of each layers of our target stack. */
2821
2822 static void
2823 maintenance_print_target_stack (char *cmd, int from_tty)
2824 {
2825 struct target_ops *t;
2826
2827 printf_filtered (_("The current target stack is:\n"));
2828
2829 for (t = target_stack; t != NULL; t = t->beneath)
2830 {
2831 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2832 }
2833 }
2834
2835 void
2836 initialize_targets (void)
2837 {
2838 init_dummy_target ();
2839 push_target (&dummy_target);
2840
2841 add_info ("target", target_info, targ_desc);
2842 add_info ("files", target_info, targ_desc);
2843
2844 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2845 Set target debugging."), _("\
2846 Show target debugging."), _("\
2847 When non-zero, target debugging is enabled. Higher numbers are more\n\
2848 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2849 command."),
2850 NULL,
2851 show_targetdebug,
2852 &setdebuglist, &showdebuglist);
2853
2854 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2855 &trust_readonly, _("\
2856 Set mode for reading from readonly sections."), _("\
2857 Show mode for reading from readonly sections."), _("\
2858 When this mode is on, memory reads from readonly sections (such as .text)\n\
2859 will be read from the object file instead of from the target. This will\n\
2860 result in significant performance improvement for remote targets."),
2861 NULL,
2862 show_trust_readonly,
2863 &setlist, &showlist);
2864
2865 add_com ("monitor", class_obscure, do_monitor_command,
2866 _("Send a command to the remote monitor (remote targets only)."));
2867
2868 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2869 _("Print the name of each layer of the internal target stack."),
2870 &maintenanceprintlist);
2871
2872 target_dcache = dcache_init ();
2873 }
This page took 0.086619 seconds and 4 git commands to generate.