Split rank_one_type_parm_complex from rank_one_type
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* The target stack. */
114
115 static target_stack g_target_stack;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 target_ops *
122 current_top_target ()
123 {
124 return g_target_stack.top ();
125 }
126
127 /* Command list for target. */
128
129 static struct cmd_list_element *targetlist = NULL;
130
131 /* Nonzero if we should trust readonly sections from the
132 executable when reading memory. */
133
134 static int trust_readonly = 0;
135
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
138
139 static int show_memory_breakpoints = 0;
140
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertant disruption, such as in non-stop mode. */
144
145 int may_write_registers = 1;
146
147 int may_write_memory = 1;
148
149 int may_insert_breakpoints = 1;
150
151 int may_insert_tracepoints = 1;
152
153 int may_insert_fast_tracepoints = 1;
154
155 int may_stop = 1;
156
157 /* Non-zero if we want to see trace of target level stuff. */
158
159 static unsigned int targetdebug = 0;
160
161 static void
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
163 {
164 if (targetdebug)
165 push_target (the_debug_target);
166 else
167 unpush_target (the_debug_target);
168 }
169
170 static void
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 }
176
177 /* The user just typed 'target' without the name of a target. */
178
179 static void
180 target_command (const char *arg, int from_tty)
181 {
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
183 gdb_stdout);
184 }
185
186 int
187 target_has_all_memory_1 (void)
188 {
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
191 return 1;
192
193 return 0;
194 }
195
196 int
197 target_has_memory_1 (void)
198 {
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
201 return 1;
202
203 return 0;
204 }
205
206 int
207 target_has_stack_1 (void)
208 {
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
210 if (t->has_stack ())
211 return 1;
212
213 return 0;
214 }
215
216 int
217 target_has_registers_1 (void)
218 {
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
221 return 1;
222
223 return 0;
224 }
225
226 int
227 target_has_execution_1 (ptid_t the_ptid)
228 {
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
231 return 1;
232
233 return 0;
234 }
235
236 int
237 target_has_execution_current (void)
238 {
239 return target_has_execution_1 (inferior_ptid);
240 }
241
242 /* This is used to implement the various target commands. */
243
244 static void
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
246 {
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
249
250 if (targetdebug)
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
252 ti->shortname);
253
254 func (args, from_tty);
255
256 if (targetdebug)
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
259 }
260
261 /* See target.h. */
262
263 void
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
266 {
267 struct cmd_list_element *c;
268
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
273 func_slot = func;
274
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
288 }
289
290 /* See target.h. */
291
292 void
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
294 {
295 struct cmd_list_element *c;
296 char *alt;
297
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
299 see PR cli/15104. */
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
305 }
306
307 /* Stub functions */
308
309 void
310 target_kill (void)
311 {
312 current_top_target ()->kill ();
313 }
314
315 void
316 target_load (const char *arg, int from_tty)
317 {
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
320 }
321
322 /* Define it. */
323
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
326
327 /* See target/target.h. */
328
329 void
330 target_terminal::init (void)
331 {
332 current_top_target ()->terminal_init ();
333
334 m_terminal_state = target_terminal_state::is_ours;
335 }
336
337 /* See target/target.h. */
338
339 void
340 target_terminal::inferior (void)
341 {
342 struct ui *ui = current_ui;
343
344 /* A background resume (``run&'') should leave GDB in control of the
345 terminal. */
346 if (ui->prompt_state != PROMPT_BLOCKED)
347 return;
348
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
353 if (ui != main_ui)
354 return;
355
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
358
359 struct inferior *inf = current_inferior ();
360
361 if (inf->terminal_state != target_terminal_state::is_inferior)
362 {
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
365 }
366
367 m_terminal_state = target_terminal_state::is_inferior;
368
369 /* If the user hit C-c before, pretend that it was hit right
370 here. */
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
373 }
374
375 /* See target/target.h. */
376
377 void
378 target_terminal::restore_inferior (void)
379 {
380 struct ui *ui = current_ui;
381
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
384 return;
385
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
389
390 {
391 scoped_restore_current_inferior restore_inferior;
392
393 for (::inferior *inf : all_inferiors ())
394 {
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
396 {
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
400 }
401 }
402 }
403
404 m_terminal_state = target_terminal_state::is_inferior;
405
406 /* If the user hit C-c before, pretend that it was hit right
407 here. */
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
410 }
411
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
414
415 static void
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
417 {
418 scoped_restore_current_inferior restore_inferior;
419
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
424
425 for (inferior *inf : all_inferiors ())
426 {
427 if (inf->terminal_state == target_terminal_state::is_inferior)
428 {
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
431 }
432 }
433
434 for (inferior *inf : all_inferiors ())
435 {
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
439 though. */
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
442 {
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
448 else
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
451 }
452 }
453 }
454
455 /* See target/target.h. */
456
457 void
458 target_terminal::ours ()
459 {
460 struct ui *ui = current_ui;
461
462 /* See target_terminal::inferior. */
463 if (ui != main_ui)
464 return;
465
466 if (m_terminal_state == target_terminal_state::is_ours)
467 return;
468
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
471 }
472
473 /* See target/target.h. */
474
475 void
476 target_terminal::ours_for_output ()
477 {
478 struct ui *ui = current_ui;
479
480 /* See target_terminal::inferior. */
481 if (ui != main_ui)
482 return;
483
484 if (!target_terminal::is_inferior ())
485 return;
486
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
489 }
490
491 /* See target/target.h. */
492
493 void
494 target_terminal::info (const char *arg, int from_tty)
495 {
496 current_top_target ()->terminal_info (arg, from_tty);
497 }
498
499 /* See target.h. */
500
501 bool
502 target_supports_terminal_ours (void)
503 {
504 /* This can be called before there is any target, so we must check
505 for nullptr here. */
506 target_ops *top = current_top_target ();
507
508 if (top == nullptr)
509 return false;
510 return top->supports_terminal_ours ();
511 }
512
513 static void
514 tcomplain (void)
515 {
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
518 }
519
520 void
521 noprocess (void)
522 {
523 error (_("You can't do that without a process to debug."));
524 }
525
526 static void
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
528 {
529 printf_unfiltered (_("No saved terminal information.\n"));
530 }
531
532 /* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
538 static ptid_t
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
540 {
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
542 }
543
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
546 {
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
554 }
555
556 /* See target.h. */
557
558 void
559 target_stack::push (target_ops *t)
560 {
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
563
564 if (m_stack[stratum] != NULL)
565 {
566 target_ops *prev = m_stack[stratum];
567 m_stack[stratum] = NULL;
568 target_close (prev);
569 }
570
571 /* Now add the new one. */
572 m_stack[stratum] = t;
573
574 if (m_top < stratum)
575 m_top = stratum;
576 }
577
578 /* See target.h. */
579
580 void
581 push_target (struct target_ops *t)
582 {
583 g_target_stack.push (t);
584 }
585
586 /* See target.h */
587
588 void
589 push_target (target_ops_up &&t)
590 {
591 g_target_stack.push (t.get ());
592 t.release ();
593 }
594
595 /* See target.h. */
596
597 int
598 unpush_target (struct target_ops *t)
599 {
600 return g_target_stack.unpush (t);
601 }
602
603 /* See target.h. */
604
605 bool
606 target_stack::unpush (target_ops *t)
607 {
608 gdb_assert (t != NULL);
609
610 strata stratum = t->stratum ();
611
612 if (stratum == dummy_stratum)
613 internal_error (__FILE__, __LINE__,
614 _("Attempt to unpush the dummy target"));
615
616 /* Look for the specified target. Note that a target can only occur
617 once in the target stack. */
618
619 if (m_stack[stratum] != t)
620 {
621 /* If T wasn't pushed, quit. Only open targets should be
622 closed. */
623 return false;
624 }
625
626 /* Unchain the target. */
627 m_stack[stratum] = NULL;
628
629 if (m_top == stratum)
630 m_top = t->beneath ()->stratum ();
631
632 /* Finally close the target. Note we do this after unchaining, so
633 any target method calls from within the target_close
634 implementation don't end up in T anymore. */
635 target_close (t);
636
637 return true;
638 }
639
640 /* Unpush TARGET and assert that it worked. */
641
642 static void
643 unpush_target_and_assert (struct target_ops *target)
644 {
645 if (!unpush_target (target))
646 {
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
652 }
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
660 }
661
662 /* See target.h. */
663
664 void
665 pop_all_targets_at_and_above (enum strata stratum)
666 {
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
669 }
670
671 void
672 pop_all_targets (void)
673 {
674 pop_all_targets_above (dummy_stratum);
675 }
676
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679 int
680 target_is_pushed (struct target_ops *t)
681 {
682 return g_target_stack.is_pushed (t);
683 }
684
685 /* Default implementation of to_get_thread_local_address. */
686
687 static void
688 generic_tls_error (void)
689 {
690 throw_error (TLS_GENERIC_ERROR,
691 _("Cannot find thread-local variables on this target"));
692 }
693
694 /* Using the objfile specified in OBJFILE, find the address for the
695 current thread's thread-local storage with offset OFFSET. */
696 CORE_ADDR
697 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
698 {
699 volatile CORE_ADDR addr = 0;
700 struct target_ops *target = current_top_target ();
701
702 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
703 {
704 ptid_t ptid = inferior_ptid;
705
706 TRY
707 {
708 CORE_ADDR lm_addr;
709
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
712 objfile);
713
714 addr = target->get_thread_local_address (ptid, lm_addr, offset);
715 }
716 /* If an error occurred, print TLS related messages here. Otherwise,
717 throw the error to some higher catcher. */
718 CATCH (ex, RETURN_MASK_ALL)
719 {
720 int objfile_is_library = (objfile->flags & OBJF_SHARED);
721
722 switch (ex.error)
723 {
724 case TLS_NO_LIBRARY_SUPPORT_ERROR:
725 error (_("Cannot find thread-local variables "
726 "in this thread library."));
727 break;
728 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
729 if (objfile_is_library)
730 error (_("Cannot find shared library `%s' in dynamic"
731 " linker's load module list"), objfile_name (objfile));
732 else
733 error (_("Cannot find executable file `%s' in dynamic"
734 " linker's load module list"), objfile_name (objfile));
735 break;
736 case TLS_NOT_ALLOCATED_YET_ERROR:
737 if (objfile_is_library)
738 error (_("The inferior has not yet allocated storage for"
739 " thread-local variables in\n"
740 "the shared library `%s'\n"
741 "for %s"),
742 objfile_name (objfile), target_pid_to_str (ptid));
743 else
744 error (_("The inferior has not yet allocated storage for"
745 " thread-local variables in\n"
746 "the executable `%s'\n"
747 "for %s"),
748 objfile_name (objfile), target_pid_to_str (ptid));
749 break;
750 case TLS_GENERIC_ERROR:
751 if (objfile_is_library)
752 error (_("Cannot find thread-local storage for %s, "
753 "shared library %s:\n%s"),
754 target_pid_to_str (ptid),
755 objfile_name (objfile), ex.message);
756 else
757 error (_("Cannot find thread-local storage for %s, "
758 "executable file %s:\n%s"),
759 target_pid_to_str (ptid),
760 objfile_name (objfile), ex.message);
761 break;
762 default:
763 throw_exception (ex);
764 break;
765 }
766 }
767 END_CATCH
768 }
769 /* It wouldn't be wrong here to try a gdbarch method, too; finding
770 TLS is an ABI-specific thing. But we don't do that yet. */
771 else
772 error (_("Cannot find thread-local variables on this target"));
773
774 return addr;
775 }
776
777 const char *
778 target_xfer_status_to_string (enum target_xfer_status status)
779 {
780 #define CASE(X) case X: return #X
781 switch (status)
782 {
783 CASE(TARGET_XFER_E_IO);
784 CASE(TARGET_XFER_UNAVAILABLE);
785 default:
786 return "<unknown>";
787 }
788 #undef CASE
789 };
790
791
792 #undef MIN
793 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
794
795 /* target_read_string -- read a null terminated string, up to LEN bytes,
796 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
797 Set *STRING to a pointer to malloc'd memory containing the data; the caller
798 is responsible for freeing it. Return the number of bytes successfully
799 read. */
800
801 int
802 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
803 int len, int *errnop)
804 {
805 int tlen, offset, i;
806 gdb_byte buf[4];
807 int errcode = 0;
808 char *buffer;
809 int buffer_allocated;
810 char *bufptr;
811 unsigned int nbytes_read = 0;
812
813 gdb_assert (string);
814
815 /* Small for testing. */
816 buffer_allocated = 4;
817 buffer = (char *) xmalloc (buffer_allocated);
818 bufptr = buffer;
819
820 while (len > 0)
821 {
822 tlen = MIN (len, 4 - (memaddr & 3));
823 offset = memaddr & 3;
824
825 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
826 if (errcode != 0)
827 {
828 /* The transfer request might have crossed the boundary to an
829 unallocated region of memory. Retry the transfer, requesting
830 a single byte. */
831 tlen = 1;
832 offset = 0;
833 errcode = target_read_memory (memaddr, buf, 1);
834 if (errcode != 0)
835 goto done;
836 }
837
838 if (bufptr - buffer + tlen > buffer_allocated)
839 {
840 unsigned int bytes;
841
842 bytes = bufptr - buffer;
843 buffer_allocated *= 2;
844 buffer = (char *) xrealloc (buffer, buffer_allocated);
845 bufptr = buffer + bytes;
846 }
847
848 for (i = 0; i < tlen; i++)
849 {
850 *bufptr++ = buf[i + offset];
851 if (buf[i + offset] == '\000')
852 {
853 nbytes_read += i + 1;
854 goto done;
855 }
856 }
857
858 memaddr += tlen;
859 len -= tlen;
860 nbytes_read += tlen;
861 }
862 done:
863 string->reset (buffer);
864 if (errnop != NULL)
865 *errnop = errcode;
866 return nbytes_read;
867 }
868
869 struct target_section_table *
870 target_get_section_table (struct target_ops *target)
871 {
872 return target->get_section_table ();
873 }
874
875 /* Find a section containing ADDR. */
876
877 struct target_section *
878 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
879 {
880 struct target_section_table *table = target_get_section_table (target);
881 struct target_section *secp;
882
883 if (table == NULL)
884 return NULL;
885
886 for (secp = table->sections; secp < table->sections_end; secp++)
887 {
888 if (addr >= secp->addr && addr < secp->endaddr)
889 return secp;
890 }
891 return NULL;
892 }
893
894
895 /* Helper for the memory xfer routines. Checks the attributes of the
896 memory region of MEMADDR against the read or write being attempted.
897 If the access is permitted returns true, otherwise returns false.
898 REGION_P is an optional output parameter. If not-NULL, it is
899 filled with a pointer to the memory region of MEMADDR. REG_LEN
900 returns LEN trimmed to the end of the region. This is how much the
901 caller can continue requesting, if the access is permitted. A
902 single xfer request must not straddle memory region boundaries. */
903
904 static int
905 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
906 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
907 struct mem_region **region_p)
908 {
909 struct mem_region *region;
910
911 region = lookup_mem_region (memaddr);
912
913 if (region_p != NULL)
914 *region_p = region;
915
916 switch (region->attrib.mode)
917 {
918 case MEM_RO:
919 if (writebuf != NULL)
920 return 0;
921 break;
922
923 case MEM_WO:
924 if (readbuf != NULL)
925 return 0;
926 break;
927
928 case MEM_FLASH:
929 /* We only support writing to flash during "load" for now. */
930 if (writebuf != NULL)
931 error (_("Writing to flash memory forbidden in this context"));
932 break;
933
934 case MEM_NONE:
935 return 0;
936 }
937
938 /* region->hi == 0 means there's no upper bound. */
939 if (memaddr + len < region->hi || region->hi == 0)
940 *reg_len = len;
941 else
942 *reg_len = region->hi - memaddr;
943
944 return 1;
945 }
946
947 /* Read memory from more than one valid target. A core file, for
948 instance, could have some of memory but delegate other bits to
949 the target below it. So, we must manually try all targets. */
950
951 enum target_xfer_status
952 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
953 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
954 ULONGEST *xfered_len)
955 {
956 enum target_xfer_status res;
957
958 do
959 {
960 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
961 readbuf, writebuf, memaddr, len,
962 xfered_len);
963 if (res == TARGET_XFER_OK)
964 break;
965
966 /* Stop if the target reports that the memory is not available. */
967 if (res == TARGET_XFER_UNAVAILABLE)
968 break;
969
970 /* We want to continue past core files to executables, but not
971 past a running target's memory. */
972 if (ops->has_all_memory ())
973 break;
974
975 ops = ops->beneath ();
976 }
977 while (ops != NULL);
978
979 /* The cache works at the raw memory level. Make sure the cache
980 gets updated with raw contents no matter what kind of memory
981 object was originally being written. Note we do write-through
982 first, so that if it fails, we don't write to the cache contents
983 that never made it to the target. */
984 if (writebuf != NULL
985 && inferior_ptid != null_ptid
986 && target_dcache_init_p ()
987 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
988 {
989 DCACHE *dcache = target_dcache_get ();
990
991 /* Note that writing to an area of memory which wasn't present
992 in the cache doesn't cause it to be loaded in. */
993 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
994 }
995
996 return res;
997 }
998
999 /* Perform a partial memory transfer.
1000 For docs see target.h, to_xfer_partial. */
1001
1002 static enum target_xfer_status
1003 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1004 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1005 ULONGEST len, ULONGEST *xfered_len)
1006 {
1007 enum target_xfer_status res;
1008 ULONGEST reg_len;
1009 struct mem_region *region;
1010 struct inferior *inf;
1011
1012 /* For accesses to unmapped overlay sections, read directly from
1013 files. Must do this first, as MEMADDR may need adjustment. */
1014 if (readbuf != NULL && overlay_debugging)
1015 {
1016 struct obj_section *section = find_pc_overlay (memaddr);
1017
1018 if (pc_in_unmapped_range (memaddr, section))
1019 {
1020 struct target_section_table *table
1021 = target_get_section_table (ops);
1022 const char *section_name = section->the_bfd_section->name;
1023
1024 memaddr = overlay_mapped_address (memaddr, section);
1025 return section_table_xfer_memory_partial (readbuf, writebuf,
1026 memaddr, len, xfered_len,
1027 table->sections,
1028 table->sections_end,
1029 section_name);
1030 }
1031 }
1032
1033 /* Try the executable files, if "trust-readonly-sections" is set. */
1034 if (readbuf != NULL && trust_readonly)
1035 {
1036 struct target_section *secp;
1037 struct target_section_table *table;
1038
1039 secp = target_section_by_addr (ops, memaddr);
1040 if (secp != NULL
1041 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1042 secp->the_bfd_section)
1043 & SEC_READONLY))
1044 {
1045 table = target_get_section_table (ops);
1046 return section_table_xfer_memory_partial (readbuf, writebuf,
1047 memaddr, len, xfered_len,
1048 table->sections,
1049 table->sections_end,
1050 NULL);
1051 }
1052 }
1053
1054 /* Try GDB's internal data cache. */
1055
1056 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1057 &region))
1058 return TARGET_XFER_E_IO;
1059
1060 if (inferior_ptid != null_ptid)
1061 inf = current_inferior ();
1062 else
1063 inf = NULL;
1064
1065 if (inf != NULL
1066 && readbuf != NULL
1067 /* The dcache reads whole cache lines; that doesn't play well
1068 with reading from a trace buffer, because reading outside of
1069 the collected memory range fails. */
1070 && get_traceframe_number () == -1
1071 && (region->attrib.cache
1072 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1073 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1074 {
1075 DCACHE *dcache = target_dcache_get_or_init ();
1076
1077 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1078 reg_len, xfered_len);
1079 }
1080
1081 /* If none of those methods found the memory we wanted, fall back
1082 to a target partial transfer. Normally a single call to
1083 to_xfer_partial is enough; if it doesn't recognize an object
1084 it will call the to_xfer_partial of the next target down.
1085 But for memory this won't do. Memory is the only target
1086 object which can be read from more than one valid target.
1087 A core file, for instance, could have some of memory but
1088 delegate other bits to the target below it. So, we must
1089 manually try all targets. */
1090
1091 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1092 xfered_len);
1093
1094 /* If we still haven't got anything, return the last error. We
1095 give up. */
1096 return res;
1097 }
1098
1099 /* Perform a partial memory transfer. For docs see target.h,
1100 to_xfer_partial. */
1101
1102 static enum target_xfer_status
1103 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1104 gdb_byte *readbuf, const gdb_byte *writebuf,
1105 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1106 {
1107 enum target_xfer_status res;
1108
1109 /* Zero length requests are ok and require no work. */
1110 if (len == 0)
1111 return TARGET_XFER_EOF;
1112
1113 memaddr = address_significant (target_gdbarch (), memaddr);
1114
1115 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1116 breakpoint insns, thus hiding out from higher layers whether
1117 there are software breakpoints inserted in the code stream. */
1118 if (readbuf != NULL)
1119 {
1120 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1121 xfered_len);
1122
1123 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1124 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1125 }
1126 else
1127 {
1128 /* A large write request is likely to be partially satisfied
1129 by memory_xfer_partial_1. We will continually malloc
1130 and free a copy of the entire write request for breakpoint
1131 shadow handling even though we only end up writing a small
1132 subset of it. Cap writes to a limit specified by the target
1133 to mitigate this. */
1134 len = std::min (ops->get_memory_xfer_limit (), len);
1135
1136 gdb::byte_vector buf (writebuf, writebuf + len);
1137 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1138 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1139 xfered_len);
1140 }
1141
1142 return res;
1143 }
1144
1145 scoped_restore_tmpl<int>
1146 make_scoped_restore_show_memory_breakpoints (int show)
1147 {
1148 return make_scoped_restore (&show_memory_breakpoints, show);
1149 }
1150
1151 /* For docs see target.h, to_xfer_partial. */
1152
1153 enum target_xfer_status
1154 target_xfer_partial (struct target_ops *ops,
1155 enum target_object object, const char *annex,
1156 gdb_byte *readbuf, const gdb_byte *writebuf,
1157 ULONGEST offset, ULONGEST len,
1158 ULONGEST *xfered_len)
1159 {
1160 enum target_xfer_status retval;
1161
1162 /* Transfer is done when LEN is zero. */
1163 if (len == 0)
1164 return TARGET_XFER_EOF;
1165
1166 if (writebuf && !may_write_memory)
1167 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1168 core_addr_to_string_nz (offset), plongest (len));
1169
1170 *xfered_len = 0;
1171
1172 /* If this is a memory transfer, let the memory-specific code
1173 have a look at it instead. Memory transfers are more
1174 complicated. */
1175 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1176 || object == TARGET_OBJECT_CODE_MEMORY)
1177 retval = memory_xfer_partial (ops, object, readbuf,
1178 writebuf, offset, len, xfered_len);
1179 else if (object == TARGET_OBJECT_RAW_MEMORY)
1180 {
1181 /* Skip/avoid accessing the target if the memory region
1182 attributes block the access. Check this here instead of in
1183 raw_memory_xfer_partial as otherwise we'd end up checking
1184 this twice in the case of the memory_xfer_partial path is
1185 taken; once before checking the dcache, and another in the
1186 tail call to raw_memory_xfer_partial. */
1187 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1188 NULL))
1189 return TARGET_XFER_E_IO;
1190
1191 /* Request the normal memory object from other layers. */
1192 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1193 xfered_len);
1194 }
1195 else
1196 retval = ops->xfer_partial (object, annex, readbuf,
1197 writebuf, offset, len, xfered_len);
1198
1199 if (targetdebug)
1200 {
1201 const unsigned char *myaddr = NULL;
1202
1203 fprintf_unfiltered (gdb_stdlog,
1204 "%s:target_xfer_partial "
1205 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1206 ops->shortname (),
1207 (int) object,
1208 (annex ? annex : "(null)"),
1209 host_address_to_string (readbuf),
1210 host_address_to_string (writebuf),
1211 core_addr_to_string_nz (offset),
1212 pulongest (len), retval,
1213 pulongest (*xfered_len));
1214
1215 if (readbuf)
1216 myaddr = readbuf;
1217 if (writebuf)
1218 myaddr = writebuf;
1219 if (retval == TARGET_XFER_OK && myaddr != NULL)
1220 {
1221 int i;
1222
1223 fputs_unfiltered (", bytes =", gdb_stdlog);
1224 for (i = 0; i < *xfered_len; i++)
1225 {
1226 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1227 {
1228 if (targetdebug < 2 && i > 0)
1229 {
1230 fprintf_unfiltered (gdb_stdlog, " ...");
1231 break;
1232 }
1233 fprintf_unfiltered (gdb_stdlog, "\n");
1234 }
1235
1236 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1237 }
1238 }
1239
1240 fputc_unfiltered ('\n', gdb_stdlog);
1241 }
1242
1243 /* Check implementations of to_xfer_partial update *XFERED_LEN
1244 properly. Do assertion after printing debug messages, so that we
1245 can find more clues on assertion failure from debugging messages. */
1246 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1247 gdb_assert (*xfered_len > 0);
1248
1249 return retval;
1250 }
1251
1252 /* Read LEN bytes of target memory at address MEMADDR, placing the
1253 results in GDB's memory at MYADDR. Returns either 0 for success or
1254 -1 if any error occurs.
1255
1256 If an error occurs, no guarantee is made about the contents of the data at
1257 MYADDR. In particular, the caller should not depend upon partial reads
1258 filling the buffer with good data. There is no way for the caller to know
1259 how much good data might have been transfered anyway. Callers that can
1260 deal with partial reads should call target_read (which will retry until
1261 it makes no progress, and then return how much was transferred). */
1262
1263 int
1264 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1265 {
1266 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1267 myaddr, memaddr, len) == len)
1268 return 0;
1269 else
1270 return -1;
1271 }
1272
1273 /* See target/target.h. */
1274
1275 int
1276 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1277 {
1278 gdb_byte buf[4];
1279 int r;
1280
1281 r = target_read_memory (memaddr, buf, sizeof buf);
1282 if (r != 0)
1283 return r;
1284 *result = extract_unsigned_integer (buf, sizeof buf,
1285 gdbarch_byte_order (target_gdbarch ()));
1286 return 0;
1287 }
1288
1289 /* Like target_read_memory, but specify explicitly that this is a read
1290 from the target's raw memory. That is, this read bypasses the
1291 dcache, breakpoint shadowing, etc. */
1292
1293 int
1294 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1295 {
1296 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1297 myaddr, memaddr, len) == len)
1298 return 0;
1299 else
1300 return -1;
1301 }
1302
1303 /* Like target_read_memory, but specify explicitly that this is a read from
1304 the target's stack. This may trigger different cache behavior. */
1305
1306 int
1307 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1308 {
1309 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1310 myaddr, memaddr, len) == len)
1311 return 0;
1312 else
1313 return -1;
1314 }
1315
1316 /* Like target_read_memory, but specify explicitly that this is a read from
1317 the target's code. This may trigger different cache behavior. */
1318
1319 int
1320 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1321 {
1322 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1323 myaddr, memaddr, len) == len)
1324 return 0;
1325 else
1326 return -1;
1327 }
1328
1329 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1330 Returns either 0 for success or -1 if any error occurs. If an
1331 error occurs, no guarantee is made about how much data got written.
1332 Callers that can deal with partial writes should call
1333 target_write. */
1334
1335 int
1336 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1337 {
1338 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1339 myaddr, memaddr, len) == len)
1340 return 0;
1341 else
1342 return -1;
1343 }
1344
1345 /* Write LEN bytes from MYADDR to target raw memory at address
1346 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1347 If an error occurs, no guarantee is made about how much data got
1348 written. Callers that can deal with partial writes should call
1349 target_write. */
1350
1351 int
1352 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1353 {
1354 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1355 myaddr, memaddr, len) == len)
1356 return 0;
1357 else
1358 return -1;
1359 }
1360
1361 /* Fetch the target's memory map. */
1362
1363 std::vector<mem_region>
1364 target_memory_map (void)
1365 {
1366 std::vector<mem_region> result = current_top_target ()->memory_map ();
1367 if (result.empty ())
1368 return result;
1369
1370 std::sort (result.begin (), result.end ());
1371
1372 /* Check that regions do not overlap. Simultaneously assign
1373 a numbering for the "mem" commands to use to refer to
1374 each region. */
1375 mem_region *last_one = NULL;
1376 for (size_t ix = 0; ix < result.size (); ix++)
1377 {
1378 mem_region *this_one = &result[ix];
1379 this_one->number = ix;
1380
1381 if (last_one != NULL && last_one->hi > this_one->lo)
1382 {
1383 warning (_("Overlapping regions in memory map: ignoring"));
1384 return std::vector<mem_region> ();
1385 }
1386
1387 last_one = this_one;
1388 }
1389
1390 return result;
1391 }
1392
1393 void
1394 target_flash_erase (ULONGEST address, LONGEST length)
1395 {
1396 current_top_target ()->flash_erase (address, length);
1397 }
1398
1399 void
1400 target_flash_done (void)
1401 {
1402 current_top_target ()->flash_done ();
1403 }
1404
1405 static void
1406 show_trust_readonly (struct ui_file *file, int from_tty,
1407 struct cmd_list_element *c, const char *value)
1408 {
1409 fprintf_filtered (file,
1410 _("Mode for reading from readonly sections is %s.\n"),
1411 value);
1412 }
1413
1414 /* Target vector read/write partial wrapper functions. */
1415
1416 static enum target_xfer_status
1417 target_read_partial (struct target_ops *ops,
1418 enum target_object object,
1419 const char *annex, gdb_byte *buf,
1420 ULONGEST offset, ULONGEST len,
1421 ULONGEST *xfered_len)
1422 {
1423 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1424 xfered_len);
1425 }
1426
1427 static enum target_xfer_status
1428 target_write_partial (struct target_ops *ops,
1429 enum target_object object,
1430 const char *annex, const gdb_byte *buf,
1431 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1432 {
1433 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1434 xfered_len);
1435 }
1436
1437 /* Wrappers to perform the full transfer. */
1438
1439 /* For docs on target_read see target.h. */
1440
1441 LONGEST
1442 target_read (struct target_ops *ops,
1443 enum target_object object,
1444 const char *annex, gdb_byte *buf,
1445 ULONGEST offset, LONGEST len)
1446 {
1447 LONGEST xfered_total = 0;
1448 int unit_size = 1;
1449
1450 /* If we are reading from a memory object, find the length of an addressable
1451 unit for that architecture. */
1452 if (object == TARGET_OBJECT_MEMORY
1453 || object == TARGET_OBJECT_STACK_MEMORY
1454 || object == TARGET_OBJECT_CODE_MEMORY
1455 || object == TARGET_OBJECT_RAW_MEMORY)
1456 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1457
1458 while (xfered_total < len)
1459 {
1460 ULONGEST xfered_partial;
1461 enum target_xfer_status status;
1462
1463 status = target_read_partial (ops, object, annex,
1464 buf + xfered_total * unit_size,
1465 offset + xfered_total, len - xfered_total,
1466 &xfered_partial);
1467
1468 /* Call an observer, notifying them of the xfer progress? */
1469 if (status == TARGET_XFER_EOF)
1470 return xfered_total;
1471 else if (status == TARGET_XFER_OK)
1472 {
1473 xfered_total += xfered_partial;
1474 QUIT;
1475 }
1476 else
1477 return TARGET_XFER_E_IO;
1478
1479 }
1480 return len;
1481 }
1482
1483 /* Assuming that the entire [begin, end) range of memory cannot be
1484 read, try to read whatever subrange is possible to read.
1485
1486 The function returns, in RESULT, either zero or one memory block.
1487 If there's a readable subrange at the beginning, it is completely
1488 read and returned. Any further readable subrange will not be read.
1489 Otherwise, if there's a readable subrange at the end, it will be
1490 completely read and returned. Any readable subranges before it
1491 (obviously, not starting at the beginning), will be ignored. In
1492 other cases -- either no readable subrange, or readable subrange(s)
1493 that is neither at the beginning, or end, nothing is returned.
1494
1495 The purpose of this function is to handle a read across a boundary
1496 of accessible memory in a case when memory map is not available.
1497 The above restrictions are fine for this case, but will give
1498 incorrect results if the memory is 'patchy'. However, supporting
1499 'patchy' memory would require trying to read every single byte,
1500 and it seems unacceptable solution. Explicit memory map is
1501 recommended for this case -- and target_read_memory_robust will
1502 take care of reading multiple ranges then. */
1503
1504 static void
1505 read_whatever_is_readable (struct target_ops *ops,
1506 const ULONGEST begin, const ULONGEST end,
1507 int unit_size,
1508 std::vector<memory_read_result> *result)
1509 {
1510 ULONGEST current_begin = begin;
1511 ULONGEST current_end = end;
1512 int forward;
1513 ULONGEST xfered_len;
1514
1515 /* If we previously failed to read 1 byte, nothing can be done here. */
1516 if (end - begin <= 1)
1517 return;
1518
1519 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1520
1521 /* Check that either first or the last byte is readable, and give up
1522 if not. This heuristic is meant to permit reading accessible memory
1523 at the boundary of accessible region. */
1524 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1525 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1526 {
1527 forward = 1;
1528 ++current_begin;
1529 }
1530 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1531 buf.get () + (end - begin) - 1, end - 1, 1,
1532 &xfered_len) == TARGET_XFER_OK)
1533 {
1534 forward = 0;
1535 --current_end;
1536 }
1537 else
1538 return;
1539
1540 /* Loop invariant is that the [current_begin, current_end) was previously
1541 found to be not readable as a whole.
1542
1543 Note loop condition -- if the range has 1 byte, we can't divide the range
1544 so there's no point trying further. */
1545 while (current_end - current_begin > 1)
1546 {
1547 ULONGEST first_half_begin, first_half_end;
1548 ULONGEST second_half_begin, second_half_end;
1549 LONGEST xfer;
1550 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1551
1552 if (forward)
1553 {
1554 first_half_begin = current_begin;
1555 first_half_end = middle;
1556 second_half_begin = middle;
1557 second_half_end = current_end;
1558 }
1559 else
1560 {
1561 first_half_begin = middle;
1562 first_half_end = current_end;
1563 second_half_begin = current_begin;
1564 second_half_end = middle;
1565 }
1566
1567 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1568 buf.get () + (first_half_begin - begin) * unit_size,
1569 first_half_begin,
1570 first_half_end - first_half_begin);
1571
1572 if (xfer == first_half_end - first_half_begin)
1573 {
1574 /* This half reads up fine. So, the error must be in the
1575 other half. */
1576 current_begin = second_half_begin;
1577 current_end = second_half_end;
1578 }
1579 else
1580 {
1581 /* This half is not readable. Because we've tried one byte, we
1582 know some part of this half if actually readable. Go to the next
1583 iteration to divide again and try to read.
1584
1585 We don't handle the other half, because this function only tries
1586 to read a single readable subrange. */
1587 current_begin = first_half_begin;
1588 current_end = first_half_end;
1589 }
1590 }
1591
1592 if (forward)
1593 {
1594 /* The [begin, current_begin) range has been read. */
1595 result->emplace_back (begin, current_end, std::move (buf));
1596 }
1597 else
1598 {
1599 /* The [current_end, end) range has been read. */
1600 LONGEST region_len = end - current_end;
1601
1602 gdb::unique_xmalloc_ptr<gdb_byte> data
1603 ((gdb_byte *) xmalloc (region_len * unit_size));
1604 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1605 region_len * unit_size);
1606 result->emplace_back (current_end, end, std::move (data));
1607 }
1608 }
1609
1610 std::vector<memory_read_result>
1611 read_memory_robust (struct target_ops *ops,
1612 const ULONGEST offset, const LONGEST len)
1613 {
1614 std::vector<memory_read_result> result;
1615 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1616
1617 LONGEST xfered_total = 0;
1618 while (xfered_total < len)
1619 {
1620 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1621 LONGEST region_len;
1622
1623 /* If there is no explicit region, a fake one should be created. */
1624 gdb_assert (region);
1625
1626 if (region->hi == 0)
1627 region_len = len - xfered_total;
1628 else
1629 region_len = region->hi - offset;
1630
1631 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1632 {
1633 /* Cannot read this region. Note that we can end up here only
1634 if the region is explicitly marked inaccessible, or
1635 'inaccessible-by-default' is in effect. */
1636 xfered_total += region_len;
1637 }
1638 else
1639 {
1640 LONGEST to_read = std::min (len - xfered_total, region_len);
1641 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1642 ((gdb_byte *) xmalloc (to_read * unit_size));
1643
1644 LONGEST xfered_partial =
1645 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1646 offset + xfered_total, to_read);
1647 /* Call an observer, notifying them of the xfer progress? */
1648 if (xfered_partial <= 0)
1649 {
1650 /* Got an error reading full chunk. See if maybe we can read
1651 some subrange. */
1652 read_whatever_is_readable (ops, offset + xfered_total,
1653 offset + xfered_total + to_read,
1654 unit_size, &result);
1655 xfered_total += to_read;
1656 }
1657 else
1658 {
1659 result.emplace_back (offset + xfered_total,
1660 offset + xfered_total + xfered_partial,
1661 std::move (buffer));
1662 xfered_total += xfered_partial;
1663 }
1664 QUIT;
1665 }
1666 }
1667
1668 return result;
1669 }
1670
1671
1672 /* An alternative to target_write with progress callbacks. */
1673
1674 LONGEST
1675 target_write_with_progress (struct target_ops *ops,
1676 enum target_object object,
1677 const char *annex, const gdb_byte *buf,
1678 ULONGEST offset, LONGEST len,
1679 void (*progress) (ULONGEST, void *), void *baton)
1680 {
1681 LONGEST xfered_total = 0;
1682 int unit_size = 1;
1683
1684 /* If we are writing to a memory object, find the length of an addressable
1685 unit for that architecture. */
1686 if (object == TARGET_OBJECT_MEMORY
1687 || object == TARGET_OBJECT_STACK_MEMORY
1688 || object == TARGET_OBJECT_CODE_MEMORY
1689 || object == TARGET_OBJECT_RAW_MEMORY)
1690 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1691
1692 /* Give the progress callback a chance to set up. */
1693 if (progress)
1694 (*progress) (0, baton);
1695
1696 while (xfered_total < len)
1697 {
1698 ULONGEST xfered_partial;
1699 enum target_xfer_status status;
1700
1701 status = target_write_partial (ops, object, annex,
1702 buf + xfered_total * unit_size,
1703 offset + xfered_total, len - xfered_total,
1704 &xfered_partial);
1705
1706 if (status != TARGET_XFER_OK)
1707 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1708
1709 if (progress)
1710 (*progress) (xfered_partial, baton);
1711
1712 xfered_total += xfered_partial;
1713 QUIT;
1714 }
1715 return len;
1716 }
1717
1718 /* For docs on target_write see target.h. */
1719
1720 LONGEST
1721 target_write (struct target_ops *ops,
1722 enum target_object object,
1723 const char *annex, const gdb_byte *buf,
1724 ULONGEST offset, LONGEST len)
1725 {
1726 return target_write_with_progress (ops, object, annex, buf, offset, len,
1727 NULL, NULL);
1728 }
1729
1730 /* Help for target_read_alloc and target_read_stralloc. See their comments
1731 for details. */
1732
1733 template <typename T>
1734 gdb::optional<gdb::def_vector<T>>
1735 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1736 const char *annex)
1737 {
1738 gdb::def_vector<T> buf;
1739 size_t buf_pos = 0;
1740 const int chunk = 4096;
1741
1742 /* This function does not have a length parameter; it reads the
1743 entire OBJECT). Also, it doesn't support objects fetched partly
1744 from one target and partly from another (in a different stratum,
1745 e.g. a core file and an executable). Both reasons make it
1746 unsuitable for reading memory. */
1747 gdb_assert (object != TARGET_OBJECT_MEMORY);
1748
1749 /* Start by reading up to 4K at a time. The target will throttle
1750 this number down if necessary. */
1751 while (1)
1752 {
1753 ULONGEST xfered_len;
1754 enum target_xfer_status status;
1755
1756 buf.resize (buf_pos + chunk);
1757
1758 status = target_read_partial (ops, object, annex,
1759 (gdb_byte *) &buf[buf_pos],
1760 buf_pos, chunk,
1761 &xfered_len);
1762
1763 if (status == TARGET_XFER_EOF)
1764 {
1765 /* Read all there was. */
1766 buf.resize (buf_pos);
1767 return buf;
1768 }
1769 else if (status != TARGET_XFER_OK)
1770 {
1771 /* An error occurred. */
1772 return {};
1773 }
1774
1775 buf_pos += xfered_len;
1776
1777 QUIT;
1778 }
1779 }
1780
1781 /* See target.h */
1782
1783 gdb::optional<gdb::byte_vector>
1784 target_read_alloc (struct target_ops *ops, enum target_object object,
1785 const char *annex)
1786 {
1787 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1788 }
1789
1790 /* See target.h. */
1791
1792 gdb::optional<gdb::char_vector>
1793 target_read_stralloc (struct target_ops *ops, enum target_object object,
1794 const char *annex)
1795 {
1796 gdb::optional<gdb::char_vector> buf
1797 = target_read_alloc_1<char> (ops, object, annex);
1798
1799 if (!buf)
1800 return {};
1801
1802 if (buf->empty () || buf->back () != '\0')
1803 buf->push_back ('\0');
1804
1805 /* Check for embedded NUL bytes; but allow trailing NULs. */
1806 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1807 it != buf->end (); it++)
1808 if (*it != '\0')
1809 {
1810 warning (_("target object %d, annex %s, "
1811 "contained unexpected null characters"),
1812 (int) object, annex ? annex : "(none)");
1813 break;
1814 }
1815
1816 return buf;
1817 }
1818
1819 /* Memory transfer methods. */
1820
1821 void
1822 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1823 LONGEST len)
1824 {
1825 /* This method is used to read from an alternate, non-current
1826 target. This read must bypass the overlay support (as symbols
1827 don't match this target), and GDB's internal cache (wrong cache
1828 for this target). */
1829 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1830 != len)
1831 memory_error (TARGET_XFER_E_IO, addr);
1832 }
1833
1834 ULONGEST
1835 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1836 int len, enum bfd_endian byte_order)
1837 {
1838 gdb_byte buf[sizeof (ULONGEST)];
1839
1840 gdb_assert (len <= sizeof (buf));
1841 get_target_memory (ops, addr, buf, len);
1842 return extract_unsigned_integer (buf, len, byte_order);
1843 }
1844
1845 /* See target.h. */
1846
1847 int
1848 target_insert_breakpoint (struct gdbarch *gdbarch,
1849 struct bp_target_info *bp_tgt)
1850 {
1851 if (!may_insert_breakpoints)
1852 {
1853 warning (_("May not insert breakpoints"));
1854 return 1;
1855 }
1856
1857 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1858 }
1859
1860 /* See target.h. */
1861
1862 int
1863 target_remove_breakpoint (struct gdbarch *gdbarch,
1864 struct bp_target_info *bp_tgt,
1865 enum remove_bp_reason reason)
1866 {
1867 /* This is kind of a weird case to handle, but the permission might
1868 have been changed after breakpoints were inserted - in which case
1869 we should just take the user literally and assume that any
1870 breakpoints should be left in place. */
1871 if (!may_insert_breakpoints)
1872 {
1873 warning (_("May not remove breakpoints"));
1874 return 1;
1875 }
1876
1877 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1878 }
1879
1880 static void
1881 info_target_command (const char *args, int from_tty)
1882 {
1883 int has_all_mem = 0;
1884
1885 if (symfile_objfile != NULL)
1886 printf_unfiltered (_("Symbols from \"%s\".\n"),
1887 objfile_name (symfile_objfile));
1888
1889 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1890 {
1891 if (!t->has_memory ())
1892 continue;
1893
1894 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1895 continue;
1896 if (has_all_mem)
1897 printf_unfiltered (_("\tWhile running this, "
1898 "GDB does not access memory from...\n"));
1899 printf_unfiltered ("%s:\n", t->longname ());
1900 t->files_info ();
1901 has_all_mem = t->has_all_memory ();
1902 }
1903 }
1904
1905 /* This function is called before any new inferior is created, e.g.
1906 by running a program, attaching, or connecting to a target.
1907 It cleans up any state from previous invocations which might
1908 change between runs. This is a subset of what target_preopen
1909 resets (things which might change between targets). */
1910
1911 void
1912 target_pre_inferior (int from_tty)
1913 {
1914 /* Clear out solib state. Otherwise the solib state of the previous
1915 inferior might have survived and is entirely wrong for the new
1916 target. This has been observed on GNU/Linux using glibc 2.3. How
1917 to reproduce:
1918
1919 bash$ ./foo&
1920 [1] 4711
1921 bash$ ./foo&
1922 [1] 4712
1923 bash$ gdb ./foo
1924 [...]
1925 (gdb) attach 4711
1926 (gdb) detach
1927 (gdb) attach 4712
1928 Cannot access memory at address 0xdeadbeef
1929 */
1930
1931 /* In some OSs, the shared library list is the same/global/shared
1932 across inferiors. If code is shared between processes, so are
1933 memory regions and features. */
1934 if (!gdbarch_has_global_solist (target_gdbarch ()))
1935 {
1936 no_shared_libraries (NULL, from_tty);
1937
1938 invalidate_target_mem_regions ();
1939
1940 target_clear_description ();
1941 }
1942
1943 /* attach_flag may be set if the previous process associated with
1944 the inferior was attached to. */
1945 current_inferior ()->attach_flag = 0;
1946
1947 current_inferior ()->highest_thread_num = 0;
1948
1949 agent_capability_invalidate ();
1950 }
1951
1952 /* Callback for iterate_over_inferiors. Gets rid of the given
1953 inferior. */
1954
1955 static int
1956 dispose_inferior (struct inferior *inf, void *args)
1957 {
1958 /* Not all killed inferiors can, or will ever be, removed from the
1959 inferior list. Killed inferiors clearly don't need to be killed
1960 again, so, we're done. */
1961 if (inf->pid == 0)
1962 return 0;
1963
1964 thread_info *thread = any_thread_of_inferior (inf);
1965 if (thread != NULL)
1966 {
1967 switch_to_thread (thread);
1968
1969 /* Core inferiors actually should be detached, not killed. */
1970 if (target_has_execution)
1971 target_kill ();
1972 else
1973 target_detach (inf, 0);
1974 }
1975
1976 return 0;
1977 }
1978
1979 /* This is to be called by the open routine before it does
1980 anything. */
1981
1982 void
1983 target_preopen (int from_tty)
1984 {
1985 dont_repeat ();
1986
1987 if (have_inferiors ())
1988 {
1989 if (!from_tty
1990 || !have_live_inferiors ()
1991 || query (_("A program is being debugged already. Kill it? ")))
1992 iterate_over_inferiors (dispose_inferior, NULL);
1993 else
1994 error (_("Program not killed."));
1995 }
1996
1997 /* Calling target_kill may remove the target from the stack. But if
1998 it doesn't (which seems like a win for UDI), remove it now. */
1999 /* Leave the exec target, though. The user may be switching from a
2000 live process to a core of the same program. */
2001 pop_all_targets_above (file_stratum);
2002
2003 target_pre_inferior (from_tty);
2004 }
2005
2006 /* See target.h. */
2007
2008 void
2009 target_detach (inferior *inf, int from_tty)
2010 {
2011 /* As long as some to_detach implementations rely on the current_inferior
2012 (either directly, or indirectly, like through target_gdbarch or by
2013 reading memory), INF needs to be the current inferior. When that
2014 requirement will become no longer true, then we can remove this
2015 assertion. */
2016 gdb_assert (inf == current_inferior ());
2017
2018 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2019 /* Don't remove global breakpoints here. They're removed on
2020 disconnection from the target. */
2021 ;
2022 else
2023 /* If we're in breakpoints-always-inserted mode, have to remove
2024 breakpoints before detaching. */
2025 remove_breakpoints_inf (current_inferior ());
2026
2027 prepare_for_detach ();
2028
2029 current_top_target ()->detach (inf, from_tty);
2030
2031 /* After we have detached, clear the register cache for this inferior. */
2032 ptid_t pid_ptid = ptid_t (inf->pid);
2033
2034 registers_changed_ptid (pid_ptid);
2035
2036 /* We have to ensure we have no frame cache left. Normally,
2037 registers_changed_ptid (pid_ptid) calls reinit_frame_cache when
2038 inferior_ptid matches pid_ptid, but in our case, it does not
2039 call it, as inferior_ptid has been reset. */
2040 reinit_frame_cache ();
2041 }
2042
2043 void
2044 target_disconnect (const char *args, int from_tty)
2045 {
2046 /* If we're in breakpoints-always-inserted mode or if breakpoints
2047 are global across processes, we have to remove them before
2048 disconnecting. */
2049 remove_breakpoints ();
2050
2051 current_top_target ()->disconnect (args, from_tty);
2052 }
2053
2054 /* See target/target.h. */
2055
2056 ptid_t
2057 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2058 {
2059 return current_top_target ()->wait (ptid, status, options);
2060 }
2061
2062 /* See target.h. */
2063
2064 ptid_t
2065 default_target_wait (struct target_ops *ops,
2066 ptid_t ptid, struct target_waitstatus *status,
2067 int options)
2068 {
2069 status->kind = TARGET_WAITKIND_IGNORE;
2070 return minus_one_ptid;
2071 }
2072
2073 const char *
2074 target_pid_to_str (ptid_t ptid)
2075 {
2076 return current_top_target ()->pid_to_str (ptid);
2077 }
2078
2079 const char *
2080 target_thread_name (struct thread_info *info)
2081 {
2082 return current_top_target ()->thread_name (info);
2083 }
2084
2085 struct thread_info *
2086 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2087 int handle_len,
2088 struct inferior *inf)
2089 {
2090 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2091 handle_len, inf);
2092 }
2093
2094 void
2095 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2096 {
2097 target_dcache_invalidate ();
2098
2099 current_top_target ()->resume (ptid, step, signal);
2100
2101 registers_changed_ptid (ptid);
2102 /* We only set the internal executing state here. The user/frontend
2103 running state is set at a higher level. This also clears the
2104 thread's stop_pc as side effect. */
2105 set_executing (ptid, 1);
2106 clear_inline_frame_state (ptid);
2107 }
2108
2109 /* If true, target_commit_resume is a nop. */
2110 static int defer_target_commit_resume;
2111
2112 /* See target.h. */
2113
2114 void
2115 target_commit_resume (void)
2116 {
2117 if (defer_target_commit_resume)
2118 return;
2119
2120 current_top_target ()->commit_resume ();
2121 }
2122
2123 /* See target.h. */
2124
2125 scoped_restore_tmpl<int>
2126 make_scoped_defer_target_commit_resume ()
2127 {
2128 return make_scoped_restore (&defer_target_commit_resume, 1);
2129 }
2130
2131 void
2132 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2133 {
2134 current_top_target ()->pass_signals (pass_signals);
2135 }
2136
2137 void
2138 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2139 {
2140 current_top_target ()->program_signals (program_signals);
2141 }
2142
2143 static int
2144 default_follow_fork (struct target_ops *self, int follow_child,
2145 int detach_fork)
2146 {
2147 /* Some target returned a fork event, but did not know how to follow it. */
2148 internal_error (__FILE__, __LINE__,
2149 _("could not find a target to follow fork"));
2150 }
2151
2152 /* Look through the list of possible targets for a target that can
2153 follow forks. */
2154
2155 int
2156 target_follow_fork (int follow_child, int detach_fork)
2157 {
2158 return current_top_target ()->follow_fork (follow_child, detach_fork);
2159 }
2160
2161 /* Target wrapper for follow exec hook. */
2162
2163 void
2164 target_follow_exec (struct inferior *inf, char *execd_pathname)
2165 {
2166 current_top_target ()->follow_exec (inf, execd_pathname);
2167 }
2168
2169 static void
2170 default_mourn_inferior (struct target_ops *self)
2171 {
2172 internal_error (__FILE__, __LINE__,
2173 _("could not find a target to follow mourn inferior"));
2174 }
2175
2176 void
2177 target_mourn_inferior (ptid_t ptid)
2178 {
2179 gdb_assert (ptid == inferior_ptid);
2180 current_top_target ()->mourn_inferior ();
2181
2182 /* We no longer need to keep handles on any of the object files.
2183 Make sure to release them to avoid unnecessarily locking any
2184 of them while we're not actually debugging. */
2185 bfd_cache_close_all ();
2186 }
2187
2188 /* Look for a target which can describe architectural features, starting
2189 from TARGET. If we find one, return its description. */
2190
2191 const struct target_desc *
2192 target_read_description (struct target_ops *target)
2193 {
2194 return target->read_description ();
2195 }
2196
2197 /* This implements a basic search of memory, reading target memory and
2198 performing the search here (as opposed to performing the search in on the
2199 target side with, for example, gdbserver). */
2200
2201 int
2202 simple_search_memory (struct target_ops *ops,
2203 CORE_ADDR start_addr, ULONGEST search_space_len,
2204 const gdb_byte *pattern, ULONGEST pattern_len,
2205 CORE_ADDR *found_addrp)
2206 {
2207 /* NOTE: also defined in find.c testcase. */
2208 #define SEARCH_CHUNK_SIZE 16000
2209 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2210 /* Buffer to hold memory contents for searching. */
2211 unsigned search_buf_size;
2212
2213 search_buf_size = chunk_size + pattern_len - 1;
2214
2215 /* No point in trying to allocate a buffer larger than the search space. */
2216 if (search_space_len < search_buf_size)
2217 search_buf_size = search_space_len;
2218
2219 gdb::byte_vector search_buf (search_buf_size);
2220
2221 /* Prime the search buffer. */
2222
2223 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2224 search_buf.data (), start_addr, search_buf_size)
2225 != search_buf_size)
2226 {
2227 warning (_("Unable to access %s bytes of target "
2228 "memory at %s, halting search."),
2229 pulongest (search_buf_size), hex_string (start_addr));
2230 return -1;
2231 }
2232
2233 /* Perform the search.
2234
2235 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2236 When we've scanned N bytes we copy the trailing bytes to the start and
2237 read in another N bytes. */
2238
2239 while (search_space_len >= pattern_len)
2240 {
2241 gdb_byte *found_ptr;
2242 unsigned nr_search_bytes
2243 = std::min (search_space_len, (ULONGEST) search_buf_size);
2244
2245 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2246 pattern, pattern_len);
2247
2248 if (found_ptr != NULL)
2249 {
2250 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2251
2252 *found_addrp = found_addr;
2253 return 1;
2254 }
2255
2256 /* Not found in this chunk, skip to next chunk. */
2257
2258 /* Don't let search_space_len wrap here, it's unsigned. */
2259 if (search_space_len >= chunk_size)
2260 search_space_len -= chunk_size;
2261 else
2262 search_space_len = 0;
2263
2264 if (search_space_len >= pattern_len)
2265 {
2266 unsigned keep_len = search_buf_size - chunk_size;
2267 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2268 int nr_to_read;
2269
2270 /* Copy the trailing part of the previous iteration to the front
2271 of the buffer for the next iteration. */
2272 gdb_assert (keep_len == pattern_len - 1);
2273 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2274
2275 nr_to_read = std::min (search_space_len - keep_len,
2276 (ULONGEST) chunk_size);
2277
2278 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2279 &search_buf[keep_len], read_addr,
2280 nr_to_read) != nr_to_read)
2281 {
2282 warning (_("Unable to access %s bytes of target "
2283 "memory at %s, halting search."),
2284 plongest (nr_to_read),
2285 hex_string (read_addr));
2286 return -1;
2287 }
2288
2289 start_addr += chunk_size;
2290 }
2291 }
2292
2293 /* Not found. */
2294
2295 return 0;
2296 }
2297
2298 /* Default implementation of memory-searching. */
2299
2300 static int
2301 default_search_memory (struct target_ops *self,
2302 CORE_ADDR start_addr, ULONGEST search_space_len,
2303 const gdb_byte *pattern, ULONGEST pattern_len,
2304 CORE_ADDR *found_addrp)
2305 {
2306 /* Start over from the top of the target stack. */
2307 return simple_search_memory (current_top_target (),
2308 start_addr, search_space_len,
2309 pattern, pattern_len, found_addrp);
2310 }
2311
2312 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2313 sequence of bytes in PATTERN with length PATTERN_LEN.
2314
2315 The result is 1 if found, 0 if not found, and -1 if there was an error
2316 requiring halting of the search (e.g. memory read error).
2317 If the pattern is found the address is recorded in FOUND_ADDRP. */
2318
2319 int
2320 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2321 const gdb_byte *pattern, ULONGEST pattern_len,
2322 CORE_ADDR *found_addrp)
2323 {
2324 return current_top_target ()->search_memory (start_addr, search_space_len,
2325 pattern, pattern_len, found_addrp);
2326 }
2327
2328 /* Look through the currently pushed targets. If none of them will
2329 be able to restart the currently running process, issue an error
2330 message. */
2331
2332 void
2333 target_require_runnable (void)
2334 {
2335 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2336 {
2337 /* If this target knows how to create a new program, then
2338 assume we will still be able to after killing the current
2339 one. Either killing and mourning will not pop T, or else
2340 find_default_run_target will find it again. */
2341 if (t->can_create_inferior ())
2342 return;
2343
2344 /* Do not worry about targets at certain strata that can not
2345 create inferiors. Assume they will be pushed again if
2346 necessary, and continue to the process_stratum. */
2347 if (t->stratum () > process_stratum)
2348 continue;
2349
2350 error (_("The \"%s\" target does not support \"run\". "
2351 "Try \"help target\" or \"continue\"."),
2352 t->shortname ());
2353 }
2354
2355 /* This function is only called if the target is running. In that
2356 case there should have been a process_stratum target and it
2357 should either know how to create inferiors, or not... */
2358 internal_error (__FILE__, __LINE__, _("No targets found"));
2359 }
2360
2361 /* Whether GDB is allowed to fall back to the default run target for
2362 "run", "attach", etc. when no target is connected yet. */
2363 static int auto_connect_native_target = 1;
2364
2365 static void
2366 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2367 struct cmd_list_element *c, const char *value)
2368 {
2369 fprintf_filtered (file,
2370 _("Whether GDB may automatically connect to the "
2371 "native target is %s.\n"),
2372 value);
2373 }
2374
2375 /* A pointer to the target that can respond to "run" or "attach".
2376 Native targets are always singletons and instantiated early at GDB
2377 startup. */
2378 static target_ops *the_native_target;
2379
2380 /* See target.h. */
2381
2382 void
2383 set_native_target (target_ops *target)
2384 {
2385 if (the_native_target != NULL)
2386 internal_error (__FILE__, __LINE__,
2387 _("native target already set (\"%s\")."),
2388 the_native_target->longname ());
2389
2390 the_native_target = target;
2391 }
2392
2393 /* See target.h. */
2394
2395 target_ops *
2396 get_native_target ()
2397 {
2398 return the_native_target;
2399 }
2400
2401 /* Look through the list of possible targets for a target that can
2402 execute a run or attach command without any other data. This is
2403 used to locate the default process stratum.
2404
2405 If DO_MESG is not NULL, the result is always valid (error() is
2406 called for errors); else, return NULL on error. */
2407
2408 static struct target_ops *
2409 find_default_run_target (const char *do_mesg)
2410 {
2411 if (auto_connect_native_target && the_native_target != NULL)
2412 return the_native_target;
2413
2414 if (do_mesg != NULL)
2415 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2416 return NULL;
2417 }
2418
2419 /* See target.h. */
2420
2421 struct target_ops *
2422 find_attach_target (void)
2423 {
2424 /* If a target on the current stack can attach, use it. */
2425 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2426 {
2427 if (t->can_attach ())
2428 return t;
2429 }
2430
2431 /* Otherwise, use the default run target for attaching. */
2432 return find_default_run_target ("attach");
2433 }
2434
2435 /* See target.h. */
2436
2437 struct target_ops *
2438 find_run_target (void)
2439 {
2440 /* If a target on the current stack can run, use it. */
2441 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2442 {
2443 if (t->can_create_inferior ())
2444 return t;
2445 }
2446
2447 /* Otherwise, use the default run target. */
2448 return find_default_run_target ("run");
2449 }
2450
2451 bool
2452 target_ops::info_proc (const char *args, enum info_proc_what what)
2453 {
2454 return false;
2455 }
2456
2457 /* Implement the "info proc" command. */
2458
2459 int
2460 target_info_proc (const char *args, enum info_proc_what what)
2461 {
2462 struct target_ops *t;
2463
2464 /* If we're already connected to something that can get us OS
2465 related data, use it. Otherwise, try using the native
2466 target. */
2467 t = find_target_at (process_stratum);
2468 if (t == NULL)
2469 t = find_default_run_target (NULL);
2470
2471 for (; t != NULL; t = t->beneath ())
2472 {
2473 if (t->info_proc (args, what))
2474 {
2475 if (targetdebug)
2476 fprintf_unfiltered (gdb_stdlog,
2477 "target_info_proc (\"%s\", %d)\n", args, what);
2478
2479 return 1;
2480 }
2481 }
2482
2483 return 0;
2484 }
2485
2486 static int
2487 find_default_supports_disable_randomization (struct target_ops *self)
2488 {
2489 struct target_ops *t;
2490
2491 t = find_default_run_target (NULL);
2492 if (t != NULL)
2493 return t->supports_disable_randomization ();
2494 return 0;
2495 }
2496
2497 int
2498 target_supports_disable_randomization (void)
2499 {
2500 return current_top_target ()->supports_disable_randomization ();
2501 }
2502
2503 /* See target/target.h. */
2504
2505 int
2506 target_supports_multi_process (void)
2507 {
2508 return current_top_target ()->supports_multi_process ();
2509 }
2510
2511 /* See target.h. */
2512
2513 gdb::optional<gdb::char_vector>
2514 target_get_osdata (const char *type)
2515 {
2516 struct target_ops *t;
2517
2518 /* If we're already connected to something that can get us OS
2519 related data, use it. Otherwise, try using the native
2520 target. */
2521 t = find_target_at (process_stratum);
2522 if (t == NULL)
2523 t = find_default_run_target ("get OS data");
2524
2525 if (!t)
2526 return {};
2527
2528 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2529 }
2530
2531
2532 /* Determine the current address space of thread PTID. */
2533
2534 struct address_space *
2535 target_thread_address_space (ptid_t ptid)
2536 {
2537 struct address_space *aspace;
2538
2539 aspace = current_top_target ()->thread_address_space (ptid);
2540 gdb_assert (aspace != NULL);
2541
2542 return aspace;
2543 }
2544
2545 /* See target.h. */
2546
2547 target_ops *
2548 target_ops::beneath () const
2549 {
2550 return g_target_stack.find_beneath (this);
2551 }
2552
2553 void
2554 target_ops::close ()
2555 {
2556 }
2557
2558 bool
2559 target_ops::can_attach ()
2560 {
2561 return 0;
2562 }
2563
2564 void
2565 target_ops::attach (const char *, int)
2566 {
2567 gdb_assert_not_reached ("target_ops::attach called");
2568 }
2569
2570 bool
2571 target_ops::can_create_inferior ()
2572 {
2573 return 0;
2574 }
2575
2576 void
2577 target_ops::create_inferior (const char *, const std::string &,
2578 char **, int)
2579 {
2580 gdb_assert_not_reached ("target_ops::create_inferior called");
2581 }
2582
2583 bool
2584 target_ops::can_run ()
2585 {
2586 return false;
2587 }
2588
2589 int
2590 target_can_run ()
2591 {
2592 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2593 {
2594 if (t->can_run ())
2595 return 1;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /* Target file operations. */
2602
2603 static struct target_ops *
2604 default_fileio_target (void)
2605 {
2606 struct target_ops *t;
2607
2608 /* If we're already connected to something that can perform
2609 file I/O, use it. Otherwise, try using the native target. */
2610 t = find_target_at (process_stratum);
2611 if (t != NULL)
2612 return t;
2613 return find_default_run_target ("file I/O");
2614 }
2615
2616 /* File handle for target file operations. */
2617
2618 struct fileio_fh_t
2619 {
2620 /* The target on which this file is open. NULL if the target is
2621 meanwhile closed while the handle is open. */
2622 target_ops *target;
2623
2624 /* The file descriptor on the target. */
2625 int target_fd;
2626
2627 /* Check whether this fileio_fh_t represents a closed file. */
2628 bool is_closed ()
2629 {
2630 return target_fd < 0;
2631 }
2632 };
2633
2634 /* Vector of currently open file handles. The value returned by
2635 target_fileio_open and passed as the FD argument to other
2636 target_fileio_* functions is an index into this vector. This
2637 vector's entries are never freed; instead, files are marked as
2638 closed, and the handle becomes available for reuse. */
2639 static std::vector<fileio_fh_t> fileio_fhandles;
2640
2641 /* Index into fileio_fhandles of the lowest handle that might be
2642 closed. This permits handle reuse without searching the whole
2643 list each time a new file is opened. */
2644 static int lowest_closed_fd;
2645
2646 /* Invalidate the target associated with open handles that were open
2647 on target TARG, since we're about to close (and maybe destroy) the
2648 target. The handles remain open from the client's perspective, but
2649 trying to do anything with them other than closing them will fail
2650 with EIO. */
2651
2652 static void
2653 fileio_handles_invalidate_target (target_ops *targ)
2654 {
2655 for (fileio_fh_t &fh : fileio_fhandles)
2656 if (fh.target == targ)
2657 fh.target = NULL;
2658 }
2659
2660 /* Acquire a target fileio file descriptor. */
2661
2662 static int
2663 acquire_fileio_fd (target_ops *target, int target_fd)
2664 {
2665 /* Search for closed handles to reuse. */
2666 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2667 {
2668 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2669
2670 if (fh.is_closed ())
2671 break;
2672 }
2673
2674 /* Push a new handle if no closed handles were found. */
2675 if (lowest_closed_fd == fileio_fhandles.size ())
2676 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2677 else
2678 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2679
2680 /* Should no longer be marked closed. */
2681 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2682
2683 /* Return its index, and start the next lookup at
2684 the next index. */
2685 return lowest_closed_fd++;
2686 }
2687
2688 /* Release a target fileio file descriptor. */
2689
2690 static void
2691 release_fileio_fd (int fd, fileio_fh_t *fh)
2692 {
2693 fh->target_fd = -1;
2694 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2695 }
2696
2697 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2698
2699 static fileio_fh_t *
2700 fileio_fd_to_fh (int fd)
2701 {
2702 return &fileio_fhandles[fd];
2703 }
2704
2705
2706 /* Default implementations of file i/o methods. We don't want these
2707 to delegate automatically, because we need to know which target
2708 supported the method, in order to call it directly from within
2709 pread/pwrite, etc. */
2710
2711 int
2712 target_ops::fileio_open (struct inferior *inf, const char *filename,
2713 int flags, int mode, int warn_if_slow,
2714 int *target_errno)
2715 {
2716 *target_errno = FILEIO_ENOSYS;
2717 return -1;
2718 }
2719
2720 int
2721 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2722 ULONGEST offset, int *target_errno)
2723 {
2724 *target_errno = FILEIO_ENOSYS;
2725 return -1;
2726 }
2727
2728 int
2729 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2730 ULONGEST offset, int *target_errno)
2731 {
2732 *target_errno = FILEIO_ENOSYS;
2733 return -1;
2734 }
2735
2736 int
2737 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2738 {
2739 *target_errno = FILEIO_ENOSYS;
2740 return -1;
2741 }
2742
2743 int
2744 target_ops::fileio_close (int fd, int *target_errno)
2745 {
2746 *target_errno = FILEIO_ENOSYS;
2747 return -1;
2748 }
2749
2750 int
2751 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2752 int *target_errno)
2753 {
2754 *target_errno = FILEIO_ENOSYS;
2755 return -1;
2756 }
2757
2758 gdb::optional<std::string>
2759 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2760 int *target_errno)
2761 {
2762 *target_errno = FILEIO_ENOSYS;
2763 return {};
2764 }
2765
2766 /* Helper for target_fileio_open and
2767 target_fileio_open_warn_if_slow. */
2768
2769 static int
2770 target_fileio_open_1 (struct inferior *inf, const char *filename,
2771 int flags, int mode, int warn_if_slow,
2772 int *target_errno)
2773 {
2774 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2775 {
2776 int fd = t->fileio_open (inf, filename, flags, mode,
2777 warn_if_slow, target_errno);
2778
2779 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2780 continue;
2781
2782 if (fd < 0)
2783 fd = -1;
2784 else
2785 fd = acquire_fileio_fd (t, fd);
2786
2787 if (targetdebug)
2788 fprintf_unfiltered (gdb_stdlog,
2789 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2790 " = %d (%d)\n",
2791 inf == NULL ? 0 : inf->num,
2792 filename, flags, mode,
2793 warn_if_slow, fd,
2794 fd != -1 ? 0 : *target_errno);
2795 return fd;
2796 }
2797
2798 *target_errno = FILEIO_ENOSYS;
2799 return -1;
2800 }
2801
2802 /* See target.h. */
2803
2804 int
2805 target_fileio_open (struct inferior *inf, const char *filename,
2806 int flags, int mode, int *target_errno)
2807 {
2808 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2809 target_errno);
2810 }
2811
2812 /* See target.h. */
2813
2814 int
2815 target_fileio_open_warn_if_slow (struct inferior *inf,
2816 const char *filename,
2817 int flags, int mode, int *target_errno)
2818 {
2819 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2820 target_errno);
2821 }
2822
2823 /* See target.h. */
2824
2825 int
2826 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2827 ULONGEST offset, int *target_errno)
2828 {
2829 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2830 int ret = -1;
2831
2832 if (fh->is_closed ())
2833 *target_errno = EBADF;
2834 else if (fh->target == NULL)
2835 *target_errno = EIO;
2836 else
2837 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2838 len, offset, target_errno);
2839
2840 if (targetdebug)
2841 fprintf_unfiltered (gdb_stdlog,
2842 "target_fileio_pwrite (%d,...,%d,%s) "
2843 "= %d (%d)\n",
2844 fd, len, pulongest (offset),
2845 ret, ret != -1 ? 0 : *target_errno);
2846 return ret;
2847 }
2848
2849 /* See target.h. */
2850
2851 int
2852 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2853 ULONGEST offset, int *target_errno)
2854 {
2855 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2856 int ret = -1;
2857
2858 if (fh->is_closed ())
2859 *target_errno = EBADF;
2860 else if (fh->target == NULL)
2861 *target_errno = EIO;
2862 else
2863 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2864 len, offset, target_errno);
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_fileio_pread (%d,...,%d,%s) "
2869 "= %d (%d)\n",
2870 fd, len, pulongest (offset),
2871 ret, ret != -1 ? 0 : *target_errno);
2872 return ret;
2873 }
2874
2875 /* See target.h. */
2876
2877 int
2878 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2879 {
2880 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2881 int ret = -1;
2882
2883 if (fh->is_closed ())
2884 *target_errno = EBADF;
2885 else if (fh->target == NULL)
2886 *target_errno = EIO;
2887 else
2888 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2889
2890 if (targetdebug)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "target_fileio_fstat (%d) = %d (%d)\n",
2893 fd, ret, ret != -1 ? 0 : *target_errno);
2894 return ret;
2895 }
2896
2897 /* See target.h. */
2898
2899 int
2900 target_fileio_close (int fd, int *target_errno)
2901 {
2902 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2903 int ret = -1;
2904
2905 if (fh->is_closed ())
2906 *target_errno = EBADF;
2907 else
2908 {
2909 if (fh->target != NULL)
2910 ret = fh->target->fileio_close (fh->target_fd,
2911 target_errno);
2912 else
2913 ret = 0;
2914 release_fileio_fd (fd, fh);
2915 }
2916
2917 if (targetdebug)
2918 fprintf_unfiltered (gdb_stdlog,
2919 "target_fileio_close (%d) = %d (%d)\n",
2920 fd, ret, ret != -1 ? 0 : *target_errno);
2921 return ret;
2922 }
2923
2924 /* See target.h. */
2925
2926 int
2927 target_fileio_unlink (struct inferior *inf, const char *filename,
2928 int *target_errno)
2929 {
2930 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2931 {
2932 int ret = t->fileio_unlink (inf, filename, target_errno);
2933
2934 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2935 continue;
2936
2937 if (targetdebug)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "target_fileio_unlink (%d,%s)"
2940 " = %d (%d)\n",
2941 inf == NULL ? 0 : inf->num, filename,
2942 ret, ret != -1 ? 0 : *target_errno);
2943 return ret;
2944 }
2945
2946 *target_errno = FILEIO_ENOSYS;
2947 return -1;
2948 }
2949
2950 /* See target.h. */
2951
2952 gdb::optional<std::string>
2953 target_fileio_readlink (struct inferior *inf, const char *filename,
2954 int *target_errno)
2955 {
2956 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2957 {
2958 gdb::optional<std::string> ret
2959 = t->fileio_readlink (inf, filename, target_errno);
2960
2961 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2962 continue;
2963
2964 if (targetdebug)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "target_fileio_readlink (%d,%s)"
2967 " = %s (%d)\n",
2968 inf == NULL ? 0 : inf->num,
2969 filename, ret ? ret->c_str () : "(nil)",
2970 ret ? 0 : *target_errno);
2971 return ret;
2972 }
2973
2974 *target_errno = FILEIO_ENOSYS;
2975 return {};
2976 }
2977
2978 /* Like scoped_fd, but specific to target fileio. */
2979
2980 class scoped_target_fd
2981 {
2982 public:
2983 explicit scoped_target_fd (int fd) noexcept
2984 : m_fd (fd)
2985 {
2986 }
2987
2988 ~scoped_target_fd ()
2989 {
2990 if (m_fd >= 0)
2991 {
2992 int target_errno;
2993
2994 target_fileio_close (m_fd, &target_errno);
2995 }
2996 }
2997
2998 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2999
3000 int get () const noexcept
3001 {
3002 return m_fd;
3003 }
3004
3005 private:
3006 int m_fd;
3007 };
3008
3009 /* Read target file FILENAME, in the filesystem as seen by INF. If
3010 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3011 remote targets, the remote stub). Store the result in *BUF_P and
3012 return the size of the transferred data. PADDING additional bytes
3013 are available in *BUF_P. This is a helper function for
3014 target_fileio_read_alloc; see the declaration of that function for
3015 more information. */
3016
3017 static LONGEST
3018 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3019 gdb_byte **buf_p, int padding)
3020 {
3021 size_t buf_alloc, buf_pos;
3022 gdb_byte *buf;
3023 LONGEST n;
3024 int target_errno;
3025
3026 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3027 0700, &target_errno));
3028 if (fd.get () == -1)
3029 return -1;
3030
3031 /* Start by reading up to 4K at a time. The target will throttle
3032 this number down if necessary. */
3033 buf_alloc = 4096;
3034 buf = (gdb_byte *) xmalloc (buf_alloc);
3035 buf_pos = 0;
3036 while (1)
3037 {
3038 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3039 buf_alloc - buf_pos - padding, buf_pos,
3040 &target_errno);
3041 if (n < 0)
3042 {
3043 /* An error occurred. */
3044 xfree (buf);
3045 return -1;
3046 }
3047 else if (n == 0)
3048 {
3049 /* Read all there was. */
3050 if (buf_pos == 0)
3051 xfree (buf);
3052 else
3053 *buf_p = buf;
3054 return buf_pos;
3055 }
3056
3057 buf_pos += n;
3058
3059 /* If the buffer is filling up, expand it. */
3060 if (buf_alloc < buf_pos * 2)
3061 {
3062 buf_alloc *= 2;
3063 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3064 }
3065
3066 QUIT;
3067 }
3068 }
3069
3070 /* See target.h. */
3071
3072 LONGEST
3073 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3074 gdb_byte **buf_p)
3075 {
3076 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3077 }
3078
3079 /* See target.h. */
3080
3081 gdb::unique_xmalloc_ptr<char>
3082 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3083 {
3084 gdb_byte *buffer;
3085 char *bufstr;
3086 LONGEST i, transferred;
3087
3088 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3089 bufstr = (char *) buffer;
3090
3091 if (transferred < 0)
3092 return gdb::unique_xmalloc_ptr<char> (nullptr);
3093
3094 if (transferred == 0)
3095 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3096
3097 bufstr[transferred] = 0;
3098
3099 /* Check for embedded NUL bytes; but allow trailing NULs. */
3100 for (i = strlen (bufstr); i < transferred; i++)
3101 if (bufstr[i] != 0)
3102 {
3103 warning (_("target file %s "
3104 "contained unexpected null characters"),
3105 filename);
3106 break;
3107 }
3108
3109 return gdb::unique_xmalloc_ptr<char> (bufstr);
3110 }
3111
3112
3113 static int
3114 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3115 CORE_ADDR addr, int len)
3116 {
3117 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3118 }
3119
3120 static int
3121 default_watchpoint_addr_within_range (struct target_ops *target,
3122 CORE_ADDR addr,
3123 CORE_ADDR start, int length)
3124 {
3125 return addr >= start && addr < start + length;
3126 }
3127
3128 /* See target.h. */
3129
3130 target_ops *
3131 target_stack::find_beneath (const target_ops *t) const
3132 {
3133 /* Look for a non-empty slot at stratum levels beneath T's. */
3134 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3135 if (m_stack[stratum] != NULL)
3136 return m_stack[stratum];
3137
3138 return NULL;
3139 }
3140
3141 /* See target.h. */
3142
3143 struct target_ops *
3144 find_target_at (enum strata stratum)
3145 {
3146 return g_target_stack.at (stratum);
3147 }
3148
3149 \f
3150
3151 /* See target.h */
3152
3153 void
3154 target_announce_detach (int from_tty)
3155 {
3156 pid_t pid;
3157 const char *exec_file;
3158
3159 if (!from_tty)
3160 return;
3161
3162 exec_file = get_exec_file (0);
3163 if (exec_file == NULL)
3164 exec_file = "";
3165
3166 pid = inferior_ptid.pid ();
3167 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3168 target_pid_to_str (ptid_t (pid)));
3169 }
3170
3171 /* The inferior process has died. Long live the inferior! */
3172
3173 void
3174 generic_mourn_inferior (void)
3175 {
3176 inferior *inf = current_inferior ();
3177
3178 inferior_ptid = null_ptid;
3179
3180 /* Mark breakpoints uninserted in case something tries to delete a
3181 breakpoint while we delete the inferior's threads (which would
3182 fail, since the inferior is long gone). */
3183 mark_breakpoints_out ();
3184
3185 if (inf->pid != 0)
3186 exit_inferior (inf);
3187
3188 /* Note this wipes step-resume breakpoints, so needs to be done
3189 after exit_inferior, which ends up referencing the step-resume
3190 breakpoints through clear_thread_inferior_resources. */
3191 breakpoint_init_inferior (inf_exited);
3192
3193 registers_changed ();
3194
3195 reopen_exec_file ();
3196 reinit_frame_cache ();
3197
3198 if (deprecated_detach_hook)
3199 deprecated_detach_hook ();
3200 }
3201 \f
3202 /* Convert a normal process ID to a string. Returns the string in a
3203 static buffer. */
3204
3205 const char *
3206 normal_pid_to_str (ptid_t ptid)
3207 {
3208 static char buf[32];
3209
3210 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3211 return buf;
3212 }
3213
3214 static const char *
3215 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3216 {
3217 return normal_pid_to_str (ptid);
3218 }
3219
3220 /* Error-catcher for target_find_memory_regions. */
3221 static int
3222 dummy_find_memory_regions (struct target_ops *self,
3223 find_memory_region_ftype ignore1, void *ignore2)
3224 {
3225 error (_("Command not implemented for this target."));
3226 return 0;
3227 }
3228
3229 /* Error-catcher for target_make_corefile_notes. */
3230 static char *
3231 dummy_make_corefile_notes (struct target_ops *self,
3232 bfd *ignore1, int *ignore2)
3233 {
3234 error (_("Command not implemented for this target."));
3235 return NULL;
3236 }
3237
3238 #include "target-delegates.c"
3239
3240 /* The initial current target, so that there is always a semi-valid
3241 current target. */
3242
3243 static dummy_target the_dummy_target;
3244
3245 static const target_info dummy_target_info = {
3246 "None",
3247 N_("None"),
3248 ""
3249 };
3250
3251 strata
3252 dummy_target::stratum () const
3253 {
3254 return dummy_stratum;
3255 }
3256
3257 strata
3258 debug_target::stratum () const
3259 {
3260 return debug_stratum;
3261 }
3262
3263 const target_info &
3264 dummy_target::info () const
3265 {
3266 return dummy_target_info;
3267 }
3268
3269 const target_info &
3270 debug_target::info () const
3271 {
3272 return beneath ()->info ();
3273 }
3274
3275 \f
3276
3277 void
3278 target_close (struct target_ops *targ)
3279 {
3280 gdb_assert (!target_is_pushed (targ));
3281
3282 fileio_handles_invalidate_target (targ);
3283
3284 targ->close ();
3285
3286 if (targetdebug)
3287 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3288 }
3289
3290 int
3291 target_thread_alive (ptid_t ptid)
3292 {
3293 return current_top_target ()->thread_alive (ptid);
3294 }
3295
3296 void
3297 target_update_thread_list (void)
3298 {
3299 current_top_target ()->update_thread_list ();
3300 }
3301
3302 void
3303 target_stop (ptid_t ptid)
3304 {
3305 if (!may_stop)
3306 {
3307 warning (_("May not interrupt or stop the target, ignoring attempt"));
3308 return;
3309 }
3310
3311 current_top_target ()->stop (ptid);
3312 }
3313
3314 void
3315 target_interrupt ()
3316 {
3317 if (!may_stop)
3318 {
3319 warning (_("May not interrupt or stop the target, ignoring attempt"));
3320 return;
3321 }
3322
3323 current_top_target ()->interrupt ();
3324 }
3325
3326 /* See target.h. */
3327
3328 void
3329 target_pass_ctrlc (void)
3330 {
3331 current_top_target ()->pass_ctrlc ();
3332 }
3333
3334 /* See target.h. */
3335
3336 void
3337 default_target_pass_ctrlc (struct target_ops *ops)
3338 {
3339 target_interrupt ();
3340 }
3341
3342 /* See target/target.h. */
3343
3344 void
3345 target_stop_and_wait (ptid_t ptid)
3346 {
3347 struct target_waitstatus status;
3348 int was_non_stop = non_stop;
3349
3350 non_stop = 1;
3351 target_stop (ptid);
3352
3353 memset (&status, 0, sizeof (status));
3354 target_wait (ptid, &status, 0);
3355
3356 non_stop = was_non_stop;
3357 }
3358
3359 /* See target/target.h. */
3360
3361 void
3362 target_continue_no_signal (ptid_t ptid)
3363 {
3364 target_resume (ptid, 0, GDB_SIGNAL_0);
3365 }
3366
3367 /* See target/target.h. */
3368
3369 void
3370 target_continue (ptid_t ptid, enum gdb_signal signal)
3371 {
3372 target_resume (ptid, 0, signal);
3373 }
3374
3375 /* Concatenate ELEM to LIST, a comma-separated list. */
3376
3377 static void
3378 str_comma_list_concat_elem (std::string *list, const char *elem)
3379 {
3380 if (!list->empty ())
3381 list->append (", ");
3382
3383 list->append (elem);
3384 }
3385
3386 /* Helper for target_options_to_string. If OPT is present in
3387 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3388 OPT is removed from TARGET_OPTIONS. */
3389
3390 static void
3391 do_option (int *target_options, std::string *ret,
3392 int opt, const char *opt_str)
3393 {
3394 if ((*target_options & opt) != 0)
3395 {
3396 str_comma_list_concat_elem (ret, opt_str);
3397 *target_options &= ~opt;
3398 }
3399 }
3400
3401 /* See target.h. */
3402
3403 std::string
3404 target_options_to_string (int target_options)
3405 {
3406 std::string ret;
3407
3408 #define DO_TARG_OPTION(OPT) \
3409 do_option (&target_options, &ret, OPT, #OPT)
3410
3411 DO_TARG_OPTION (TARGET_WNOHANG);
3412
3413 if (target_options != 0)
3414 str_comma_list_concat_elem (&ret, "unknown???");
3415
3416 return ret;
3417 }
3418
3419 void
3420 target_fetch_registers (struct regcache *regcache, int regno)
3421 {
3422 current_top_target ()->fetch_registers (regcache, regno);
3423 if (targetdebug)
3424 regcache->debug_print_register ("target_fetch_registers", regno);
3425 }
3426
3427 void
3428 target_store_registers (struct regcache *regcache, int regno)
3429 {
3430 if (!may_write_registers)
3431 error (_("Writing to registers is not allowed (regno %d)"), regno);
3432
3433 current_top_target ()->store_registers (regcache, regno);
3434 if (targetdebug)
3435 {
3436 regcache->debug_print_register ("target_store_registers", regno);
3437 }
3438 }
3439
3440 int
3441 target_core_of_thread (ptid_t ptid)
3442 {
3443 return current_top_target ()->core_of_thread (ptid);
3444 }
3445
3446 int
3447 simple_verify_memory (struct target_ops *ops,
3448 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3449 {
3450 LONGEST total_xfered = 0;
3451
3452 while (total_xfered < size)
3453 {
3454 ULONGEST xfered_len;
3455 enum target_xfer_status status;
3456 gdb_byte buf[1024];
3457 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3458
3459 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3460 buf, NULL, lma + total_xfered, howmuch,
3461 &xfered_len);
3462 if (status == TARGET_XFER_OK
3463 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3464 {
3465 total_xfered += xfered_len;
3466 QUIT;
3467 }
3468 else
3469 return 0;
3470 }
3471 return 1;
3472 }
3473
3474 /* Default implementation of memory verification. */
3475
3476 static int
3477 default_verify_memory (struct target_ops *self,
3478 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3479 {
3480 /* Start over from the top of the target stack. */
3481 return simple_verify_memory (current_top_target (),
3482 data, memaddr, size);
3483 }
3484
3485 int
3486 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3487 {
3488 return current_top_target ()->verify_memory (data, memaddr, size);
3489 }
3490
3491 /* The documentation for this function is in its prototype declaration in
3492 target.h. */
3493
3494 int
3495 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3496 enum target_hw_bp_type rw)
3497 {
3498 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3499 }
3500
3501 /* The documentation for this function is in its prototype declaration in
3502 target.h. */
3503
3504 int
3505 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3506 enum target_hw_bp_type rw)
3507 {
3508 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3509 }
3510
3511 /* The documentation for this function is in its prototype declaration
3512 in target.h. */
3513
3514 int
3515 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3516 {
3517 return current_top_target ()->masked_watch_num_registers (addr, mask);
3518 }
3519
3520 /* The documentation for this function is in its prototype declaration
3521 in target.h. */
3522
3523 int
3524 target_ranged_break_num_registers (void)
3525 {
3526 return current_top_target ()->ranged_break_num_registers ();
3527 }
3528
3529 /* See target.h. */
3530
3531 struct btrace_target_info *
3532 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3533 {
3534 return current_top_target ()->enable_btrace (ptid, conf);
3535 }
3536
3537 /* See target.h. */
3538
3539 void
3540 target_disable_btrace (struct btrace_target_info *btinfo)
3541 {
3542 current_top_target ()->disable_btrace (btinfo);
3543 }
3544
3545 /* See target.h. */
3546
3547 void
3548 target_teardown_btrace (struct btrace_target_info *btinfo)
3549 {
3550 current_top_target ()->teardown_btrace (btinfo);
3551 }
3552
3553 /* See target.h. */
3554
3555 enum btrace_error
3556 target_read_btrace (struct btrace_data *btrace,
3557 struct btrace_target_info *btinfo,
3558 enum btrace_read_type type)
3559 {
3560 return current_top_target ()->read_btrace (btrace, btinfo, type);
3561 }
3562
3563 /* See target.h. */
3564
3565 const struct btrace_config *
3566 target_btrace_conf (const struct btrace_target_info *btinfo)
3567 {
3568 return current_top_target ()->btrace_conf (btinfo);
3569 }
3570
3571 /* See target.h. */
3572
3573 void
3574 target_stop_recording (void)
3575 {
3576 current_top_target ()->stop_recording ();
3577 }
3578
3579 /* See target.h. */
3580
3581 void
3582 target_save_record (const char *filename)
3583 {
3584 current_top_target ()->save_record (filename);
3585 }
3586
3587 /* See target.h. */
3588
3589 int
3590 target_supports_delete_record ()
3591 {
3592 return current_top_target ()->supports_delete_record ();
3593 }
3594
3595 /* See target.h. */
3596
3597 void
3598 target_delete_record (void)
3599 {
3600 current_top_target ()->delete_record ();
3601 }
3602
3603 /* See target.h. */
3604
3605 enum record_method
3606 target_record_method (ptid_t ptid)
3607 {
3608 return current_top_target ()->record_method (ptid);
3609 }
3610
3611 /* See target.h. */
3612
3613 int
3614 target_record_is_replaying (ptid_t ptid)
3615 {
3616 return current_top_target ()->record_is_replaying (ptid);
3617 }
3618
3619 /* See target.h. */
3620
3621 int
3622 target_record_will_replay (ptid_t ptid, int dir)
3623 {
3624 return current_top_target ()->record_will_replay (ptid, dir);
3625 }
3626
3627 /* See target.h. */
3628
3629 void
3630 target_record_stop_replaying (void)
3631 {
3632 current_top_target ()->record_stop_replaying ();
3633 }
3634
3635 /* See target.h. */
3636
3637 void
3638 target_goto_record_begin (void)
3639 {
3640 current_top_target ()->goto_record_begin ();
3641 }
3642
3643 /* See target.h. */
3644
3645 void
3646 target_goto_record_end (void)
3647 {
3648 current_top_target ()->goto_record_end ();
3649 }
3650
3651 /* See target.h. */
3652
3653 void
3654 target_goto_record (ULONGEST insn)
3655 {
3656 current_top_target ()->goto_record (insn);
3657 }
3658
3659 /* See target.h. */
3660
3661 void
3662 target_insn_history (int size, gdb_disassembly_flags flags)
3663 {
3664 current_top_target ()->insn_history (size, flags);
3665 }
3666
3667 /* See target.h. */
3668
3669 void
3670 target_insn_history_from (ULONGEST from, int size,
3671 gdb_disassembly_flags flags)
3672 {
3673 current_top_target ()->insn_history_from (from, size, flags);
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_insn_history_range (ULONGEST begin, ULONGEST end,
3680 gdb_disassembly_flags flags)
3681 {
3682 current_top_target ()->insn_history_range (begin, end, flags);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_call_history (int size, record_print_flags flags)
3689 {
3690 current_top_target ()->call_history (size, flags);
3691 }
3692
3693 /* See target.h. */
3694
3695 void
3696 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3697 {
3698 current_top_target ()->call_history_from (begin, size, flags);
3699 }
3700
3701 /* See target.h. */
3702
3703 void
3704 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3705 {
3706 current_top_target ()->call_history_range (begin, end, flags);
3707 }
3708
3709 /* See target.h. */
3710
3711 const struct frame_unwind *
3712 target_get_unwinder (void)
3713 {
3714 return current_top_target ()->get_unwinder ();
3715 }
3716
3717 /* See target.h. */
3718
3719 const struct frame_unwind *
3720 target_get_tailcall_unwinder (void)
3721 {
3722 return current_top_target ()->get_tailcall_unwinder ();
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_prepare_to_generate_core (void)
3729 {
3730 current_top_target ()->prepare_to_generate_core ();
3731 }
3732
3733 /* See target.h. */
3734
3735 void
3736 target_done_generating_core (void)
3737 {
3738 current_top_target ()->done_generating_core ();
3739 }
3740
3741 \f
3742
3743 static char targ_desc[] =
3744 "Names of targets and files being debugged.\nShows the entire \
3745 stack of targets currently in use (including the exec-file,\n\
3746 core-file, and process, if any), as well as the symbol file name.";
3747
3748 static void
3749 default_rcmd (struct target_ops *self, const char *command,
3750 struct ui_file *output)
3751 {
3752 error (_("\"monitor\" command not supported by this target."));
3753 }
3754
3755 static void
3756 do_monitor_command (const char *cmd, int from_tty)
3757 {
3758 target_rcmd (cmd, gdb_stdtarg);
3759 }
3760
3761 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3762 ignored. */
3763
3764 void
3765 flash_erase_command (const char *cmd, int from_tty)
3766 {
3767 /* Used to communicate termination of flash operations to the target. */
3768 bool found_flash_region = false;
3769 struct gdbarch *gdbarch = target_gdbarch ();
3770
3771 std::vector<mem_region> mem_regions = target_memory_map ();
3772
3773 /* Iterate over all memory regions. */
3774 for (const mem_region &m : mem_regions)
3775 {
3776 /* Is this a flash memory region? */
3777 if (m.attrib.mode == MEM_FLASH)
3778 {
3779 found_flash_region = true;
3780 target_flash_erase (m.lo, m.hi - m.lo);
3781
3782 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3783
3784 current_uiout->message (_("Erasing flash memory region at address "));
3785 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3786 current_uiout->message (", size = ");
3787 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3788 current_uiout->message ("\n");
3789 }
3790 }
3791
3792 /* Did we do any flash operations? If so, we need to finalize them. */
3793 if (found_flash_region)
3794 target_flash_done ();
3795 else
3796 current_uiout->message (_("No flash memory regions found.\n"));
3797 }
3798
3799 /* Print the name of each layers of our target stack. */
3800
3801 static void
3802 maintenance_print_target_stack (const char *cmd, int from_tty)
3803 {
3804 printf_filtered (_("The current target stack is:\n"));
3805
3806 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3807 {
3808 if (t->stratum () == debug_stratum)
3809 continue;
3810 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3811 }
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_async (int enable)
3818 {
3819 infrun_async (enable);
3820 current_top_target ()->async (enable);
3821 }
3822
3823 /* See target.h. */
3824
3825 void
3826 target_thread_events (int enable)
3827 {
3828 current_top_target ()->thread_events (enable);
3829 }
3830
3831 /* Controls if targets can report that they can/are async. This is
3832 just for maintainers to use when debugging gdb. */
3833 int target_async_permitted = 1;
3834
3835 /* The set command writes to this variable. If the inferior is
3836 executing, target_async_permitted is *not* updated. */
3837 static int target_async_permitted_1 = 1;
3838
3839 static void
3840 maint_set_target_async_command (const char *args, int from_tty,
3841 struct cmd_list_element *c)
3842 {
3843 if (have_live_inferiors ())
3844 {
3845 target_async_permitted_1 = target_async_permitted;
3846 error (_("Cannot change this setting while the inferior is running."));
3847 }
3848
3849 target_async_permitted = target_async_permitted_1;
3850 }
3851
3852 static void
3853 maint_show_target_async_command (struct ui_file *file, int from_tty,
3854 struct cmd_list_element *c,
3855 const char *value)
3856 {
3857 fprintf_filtered (file,
3858 _("Controlling the inferior in "
3859 "asynchronous mode is %s.\n"), value);
3860 }
3861
3862 /* Return true if the target operates in non-stop mode even with "set
3863 non-stop off". */
3864
3865 static int
3866 target_always_non_stop_p (void)
3867 {
3868 return current_top_target ()->always_non_stop_p ();
3869 }
3870
3871 /* See target.h. */
3872
3873 int
3874 target_is_non_stop_p (void)
3875 {
3876 return (non_stop
3877 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3878 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3879 && target_always_non_stop_p ()));
3880 }
3881
3882 /* Controls if targets can report that they always run in non-stop
3883 mode. This is just for maintainers to use when debugging gdb. */
3884 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3885
3886 /* The set command writes to this variable. If the inferior is
3887 executing, target_non_stop_enabled is *not* updated. */
3888 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3889
3890 /* Implementation of "maint set target-non-stop". */
3891
3892 static void
3893 maint_set_target_non_stop_command (const char *args, int from_tty,
3894 struct cmd_list_element *c)
3895 {
3896 if (have_live_inferiors ())
3897 {
3898 target_non_stop_enabled_1 = target_non_stop_enabled;
3899 error (_("Cannot change this setting while the inferior is running."));
3900 }
3901
3902 target_non_stop_enabled = target_non_stop_enabled_1;
3903 }
3904
3905 /* Implementation of "maint show target-non-stop". */
3906
3907 static void
3908 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3909 struct cmd_list_element *c,
3910 const char *value)
3911 {
3912 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3913 fprintf_filtered (file,
3914 _("Whether the target is always in non-stop mode "
3915 "is %s (currently %s).\n"), value,
3916 target_always_non_stop_p () ? "on" : "off");
3917 else
3918 fprintf_filtered (file,
3919 _("Whether the target is always in non-stop mode "
3920 "is %s.\n"), value);
3921 }
3922
3923 /* Temporary copies of permission settings. */
3924
3925 static int may_write_registers_1 = 1;
3926 static int may_write_memory_1 = 1;
3927 static int may_insert_breakpoints_1 = 1;
3928 static int may_insert_tracepoints_1 = 1;
3929 static int may_insert_fast_tracepoints_1 = 1;
3930 static int may_stop_1 = 1;
3931
3932 /* Make the user-set values match the real values again. */
3933
3934 void
3935 update_target_permissions (void)
3936 {
3937 may_write_registers_1 = may_write_registers;
3938 may_write_memory_1 = may_write_memory;
3939 may_insert_breakpoints_1 = may_insert_breakpoints;
3940 may_insert_tracepoints_1 = may_insert_tracepoints;
3941 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3942 may_stop_1 = may_stop;
3943 }
3944
3945 /* The one function handles (most of) the permission flags in the same
3946 way. */
3947
3948 static void
3949 set_target_permissions (const char *args, int from_tty,
3950 struct cmd_list_element *c)
3951 {
3952 if (target_has_execution)
3953 {
3954 update_target_permissions ();
3955 error (_("Cannot change this setting while the inferior is running."));
3956 }
3957
3958 /* Make the real values match the user-changed values. */
3959 may_write_registers = may_write_registers_1;
3960 may_insert_breakpoints = may_insert_breakpoints_1;
3961 may_insert_tracepoints = may_insert_tracepoints_1;
3962 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3963 may_stop = may_stop_1;
3964 update_observer_mode ();
3965 }
3966
3967 /* Set memory write permission independently of observer mode. */
3968
3969 static void
3970 set_write_memory_permission (const char *args, int from_tty,
3971 struct cmd_list_element *c)
3972 {
3973 /* Make the real values match the user-changed values. */
3974 may_write_memory = may_write_memory_1;
3975 update_observer_mode ();
3976 }
3977
3978 void
3979 initialize_targets (void)
3980 {
3981 push_target (&the_dummy_target);
3982
3983 the_debug_target = new debug_target ();
3984
3985 add_info ("target", info_target_command, targ_desc);
3986 add_info ("files", info_target_command, targ_desc);
3987
3988 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3989 Set target debugging."), _("\
3990 Show target debugging."), _("\
3991 When non-zero, target debugging is enabled. Higher numbers are more\n\
3992 verbose."),
3993 set_targetdebug,
3994 show_targetdebug,
3995 &setdebuglist, &showdebuglist);
3996
3997 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3998 &trust_readonly, _("\
3999 Set mode for reading from readonly sections."), _("\
4000 Show mode for reading from readonly sections."), _("\
4001 When this mode is on, memory reads from readonly sections (such as .text)\n\
4002 will be read from the object file instead of from the target. This will\n\
4003 result in significant performance improvement for remote targets."),
4004 NULL,
4005 show_trust_readonly,
4006 &setlist, &showlist);
4007
4008 add_com ("monitor", class_obscure, do_monitor_command,
4009 _("Send a command to the remote monitor (remote targets only)."));
4010
4011 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4012 _("Print the name of each layer of the internal target stack."),
4013 &maintenanceprintlist);
4014
4015 add_setshow_boolean_cmd ("target-async", no_class,
4016 &target_async_permitted_1, _("\
4017 Set whether gdb controls the inferior in asynchronous mode."), _("\
4018 Show whether gdb controls the inferior in asynchronous mode."), _("\
4019 Tells gdb whether to control the inferior in asynchronous mode."),
4020 maint_set_target_async_command,
4021 maint_show_target_async_command,
4022 &maintenance_set_cmdlist,
4023 &maintenance_show_cmdlist);
4024
4025 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4026 &target_non_stop_enabled_1, _("\
4027 Set whether gdb always controls the inferior in non-stop mode."), _("\
4028 Show whether gdb always controls the inferior in non-stop mode."), _("\
4029 Tells gdb whether to control the inferior in non-stop mode."),
4030 maint_set_target_non_stop_command,
4031 maint_show_target_non_stop_command,
4032 &maintenance_set_cmdlist,
4033 &maintenance_show_cmdlist);
4034
4035 add_setshow_boolean_cmd ("may-write-registers", class_support,
4036 &may_write_registers_1, _("\
4037 Set permission to write into registers."), _("\
4038 Show permission to write into registers."), _("\
4039 When this permission is on, GDB may write into the target's registers.\n\
4040 Otherwise, any sort of write attempt will result in an error."),
4041 set_target_permissions, NULL,
4042 &setlist, &showlist);
4043
4044 add_setshow_boolean_cmd ("may-write-memory", class_support,
4045 &may_write_memory_1, _("\
4046 Set permission to write into target memory."), _("\
4047 Show permission to write into target memory."), _("\
4048 When this permission is on, GDB may write into the target's memory.\n\
4049 Otherwise, any sort of write attempt will result in an error."),
4050 set_write_memory_permission, NULL,
4051 &setlist, &showlist);
4052
4053 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4054 &may_insert_breakpoints_1, _("\
4055 Set permission to insert breakpoints in the target."), _("\
4056 Show permission to insert breakpoints in the target."), _("\
4057 When this permission is on, GDB may insert breakpoints in the program.\n\
4058 Otherwise, any sort of insertion attempt will result in an error."),
4059 set_target_permissions, NULL,
4060 &setlist, &showlist);
4061
4062 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4063 &may_insert_tracepoints_1, _("\
4064 Set permission to insert tracepoints in the target."), _("\
4065 Show permission to insert tracepoints in the target."), _("\
4066 When this permission is on, GDB may insert tracepoints in the program.\n\
4067 Otherwise, any sort of insertion attempt will result in an error."),
4068 set_target_permissions, NULL,
4069 &setlist, &showlist);
4070
4071 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4072 &may_insert_fast_tracepoints_1, _("\
4073 Set permission to insert fast tracepoints in the target."), _("\
4074 Show permission to insert fast tracepoints in the target."), _("\
4075 When this permission is on, GDB may insert fast tracepoints.\n\
4076 Otherwise, any sort of insertion attempt will result in an error."),
4077 set_target_permissions, NULL,
4078 &setlist, &showlist);
4079
4080 add_setshow_boolean_cmd ("may-interrupt", class_support,
4081 &may_stop_1, _("\
4082 Set permission to interrupt or signal the target."), _("\
4083 Show permission to interrupt or signal the target."), _("\
4084 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4085 Otherwise, any attempt to interrupt or stop will be ignored."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_com ("flash-erase", no_class, flash_erase_command,
4090 _("Erase all flash memory regions."));
4091
4092 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4093 &auto_connect_native_target, _("\
4094 Set whether GDB may automatically connect to the native target."), _("\
4095 Show whether GDB may automatically connect to the native target."), _("\
4096 When on, and GDB is not connected to a target yet, GDB\n\
4097 attempts \"run\" and other commands with the native target."),
4098 NULL, show_auto_connect_native_target,
4099 &setlist, &showlist);
4100 }
This page took 0.14971 seconds and 4 git commands to generate.