2003-10-06 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38
39 extern int errno;
40
41 static void target_info (char *, int);
42
43 static void cleanup_target (struct target_ops *);
44
45 static void maybe_kill_then_create_inferior (char *, char *, char **);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_size_ok_for_hw_watchpoint (int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void);
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void update_current_target (void);
74
75 static void nosupport_runtime (void);
76
77 static void normal_target_post_startup_inferior (ptid_t ptid);
78
79 /* Transfer LEN bytes between target address MEMADDR and GDB address
80 MYADDR. Returns 0 for success, errno code for failure (which
81 includes partial transfers -- if you want a more useful response to
82 partial transfers, try either target_read_memory_partial or
83 target_write_memory_partial). */
84
85 static int target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
86 int write);
87
88 static void init_dummy_target (void);
89
90 static void debug_to_open (char *, int);
91
92 static void debug_to_close (int);
93
94 static void debug_to_attach (char *, int);
95
96 static void debug_to_detach (char *, int);
97
98 static void debug_to_disconnect (char *, int);
99
100 static void debug_to_resume (ptid_t, int, enum target_signal);
101
102 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
103
104 static void debug_to_fetch_registers (int);
105
106 static void debug_to_store_registers (int);
107
108 static void debug_to_prepare_to_store (void);
109
110 static int debug_to_xfer_memory (CORE_ADDR, char *, int, int,
111 struct mem_attrib *, struct target_ops *);
112
113 static void debug_to_files_info (struct target_ops *);
114
115 static int debug_to_insert_breakpoint (CORE_ADDR, char *);
116
117 static int debug_to_remove_breakpoint (CORE_ADDR, char *);
118
119 static int debug_to_can_use_hw_breakpoint (int, int, int);
120
121 static int debug_to_insert_hw_breakpoint (CORE_ADDR, char *);
122
123 static int debug_to_remove_hw_breakpoint (CORE_ADDR, char *);
124
125 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_stopped_by_watchpoint (void);
130
131 static CORE_ADDR debug_to_stopped_data_address (void);
132
133 static int debug_to_region_size_ok_for_hw_watchpoint (int);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_kill (void);
148
149 static void debug_to_load (char *, int);
150
151 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153 static void debug_to_create_inferior (char *, char *, char **);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 static int debug_to_query (int /*char */ , char *, char *, int *);
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_index;
173 unsigned target_struct_allocsize;
174 #define DEFAULT_ALLOCSIZE 10
175
176 /* The initial current target, so that there is always a semi-valid
177 current target. */
178
179 static struct target_ops dummy_target;
180
181 /* Top of target stack. */
182
183 struct target_stack_item *target_stack;
184
185 /* The target structure we are currently using to talk to a process
186 or file or whatever "inferior" we have. */
187
188 struct target_ops current_target;
189
190 /* Command list for target. */
191
192 static struct cmd_list_element *targetlist = NULL;
193
194 /* Nonzero if we are debugging an attached outside process
195 rather than an inferior. */
196
197 int attach_flag;
198
199 /* Non-zero if we want to see trace of target level stuff. */
200
201 static int targetdebug = 0;
202
203 static void setup_target_debug (void);
204
205 DCACHE *target_dcache;
206
207 /* The user just typed 'target' without the name of a target. */
208
209 static void
210 target_command (char *arg, int from_tty)
211 {
212 fputs_filtered ("Argument required (target name). Try `help target'\n",
213 gdb_stdout);
214 }
215
216 /* Add a possible target architecture to the list. */
217
218 void
219 add_target (struct target_ops *t)
220 {
221 if (!target_structs)
222 {
223 target_struct_allocsize = DEFAULT_ALLOCSIZE;
224 target_structs = (struct target_ops **) xmalloc
225 (target_struct_allocsize * sizeof (*target_structs));
226 }
227 if (target_struct_size >= target_struct_allocsize)
228 {
229 target_struct_allocsize *= 2;
230 target_structs = (struct target_ops **)
231 xrealloc ((char *) target_structs,
232 target_struct_allocsize * sizeof (*target_structs));
233 }
234 target_structs[target_struct_size++] = t;
235 /* cleanup_target (t); */
236
237 if (targetlist == NULL)
238 add_prefix_cmd ("target", class_run, target_command,
239 "Connect to a target machine or process.\n\
240 The first argument is the type or protocol of the target machine.\n\
241 Remaining arguments are interpreted by the target protocol. For more\n\
242 information on the arguments for a particular protocol, type\n\
243 `help target ' followed by the protocol name.",
244 &targetlist, "target ", 0, &cmdlist);
245 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
246 }
247
248 /* Stub functions */
249
250 void
251 target_ignore (void)
252 {
253 }
254
255 void
256 target_load (char *arg, int from_tty)
257 {
258 dcache_invalidate (target_dcache);
259 (*current_target.to_load) (arg, from_tty);
260 }
261
262 static int
263 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
264 struct target_ops *t)
265 {
266 errno = EIO; /* Can't read/write this location */
267 return 0; /* No bytes handled */
268 }
269
270 static void
271 tcomplain (void)
272 {
273 error ("You can't do that when your target is `%s'",
274 current_target.to_shortname);
275 }
276
277 void
278 noprocess (void)
279 {
280 error ("You can't do that without a process to debug.");
281 }
282
283 static int
284 nosymbol (char *name, CORE_ADDR *addrp)
285 {
286 return 1; /* Symbol does not exist in target env */
287 }
288
289 static void
290 nosupport_runtime (void)
291 {
292 if (ptid_equal (inferior_ptid, null_ptid))
293 noprocess ();
294 else
295 error ("No run-time support for this");
296 }
297
298
299 static void
300 default_terminal_info (char *args, int from_tty)
301 {
302 printf_unfiltered ("No saved terminal information.\n");
303 }
304
305 /* This is the default target_create_inferior and target_attach function.
306 If the current target is executing, it asks whether to kill it off.
307 If this function returns without calling error(), it has killed off
308 the target, and the operation should be attempted. */
309
310 static void
311 kill_or_be_killed (int from_tty)
312 {
313 if (target_has_execution)
314 {
315 printf_unfiltered ("You are already running a program:\n");
316 target_files_info ();
317 if (query ("Kill it? "))
318 {
319 target_kill ();
320 if (target_has_execution)
321 error ("Killing the program did not help.");
322 return;
323 }
324 else
325 {
326 error ("Program not killed.");
327 }
328 }
329 tcomplain ();
330 }
331
332 static void
333 maybe_kill_then_attach (char *args, int from_tty)
334 {
335 kill_or_be_killed (from_tty);
336 target_attach (args, from_tty);
337 }
338
339 static void
340 maybe_kill_then_create_inferior (char *exec, char *args, char **env)
341 {
342 kill_or_be_killed (0);
343 target_create_inferior (exec, args, env);
344 }
345
346 /* Clean up a target struct so it no longer has any zero pointers in it.
347 We default entries, at least to stubs that print error messages. */
348
349 static void
350 cleanup_target (struct target_ops *t)
351 {
352
353 #define de_fault(field, value) \
354 if (!t->field) \
355 t->field = value
356
357 de_fault (to_open,
358 (void (*) (char *, int))
359 tcomplain);
360 de_fault (to_close,
361 (void (*) (int))
362 target_ignore);
363 de_fault (to_attach,
364 maybe_kill_then_attach);
365 de_fault (to_post_attach,
366 (void (*) (int))
367 target_ignore);
368 de_fault (to_detach,
369 (void (*) (char *, int))
370 target_ignore);
371 de_fault (to_disconnect,
372 (void (*) (char *, int))
373 tcomplain);
374 de_fault (to_resume,
375 (void (*) (ptid_t, int, enum target_signal))
376 noprocess);
377 de_fault (to_wait,
378 (ptid_t (*) (ptid_t, struct target_waitstatus *))
379 noprocess);
380 de_fault (to_post_wait,
381 (void (*) (ptid_t, int))
382 target_ignore);
383 de_fault (to_fetch_registers,
384 (void (*) (int))
385 target_ignore);
386 de_fault (to_store_registers,
387 (void (*) (int))
388 noprocess);
389 de_fault (to_prepare_to_store,
390 (void (*) (void))
391 noprocess);
392 de_fault (to_xfer_memory,
393 (int (*) (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *))
394 nomemory);
395 de_fault (to_files_info,
396 (void (*) (struct target_ops *))
397 target_ignore);
398 de_fault (to_insert_breakpoint,
399 memory_insert_breakpoint);
400 de_fault (to_remove_breakpoint,
401 memory_remove_breakpoint);
402 de_fault (to_can_use_hw_breakpoint,
403 (int (*) (int, int, int))
404 return_zero);
405 de_fault (to_insert_hw_breakpoint,
406 (int (*) (CORE_ADDR, char *))
407 return_minus_one);
408 de_fault (to_remove_hw_breakpoint,
409 (int (*) (CORE_ADDR, char *))
410 return_minus_one);
411 de_fault (to_insert_watchpoint,
412 (int (*) (CORE_ADDR, int, int))
413 return_minus_one);
414 de_fault (to_remove_watchpoint,
415 (int (*) (CORE_ADDR, int, int))
416 return_minus_one);
417 de_fault (to_stopped_by_watchpoint,
418 (int (*) (void))
419 return_zero);
420 de_fault (to_stopped_data_address,
421 (CORE_ADDR (*) (void))
422 return_zero);
423 de_fault (to_region_size_ok_for_hw_watchpoint,
424 default_region_size_ok_for_hw_watchpoint);
425 de_fault (to_terminal_init,
426 (void (*) (void))
427 target_ignore);
428 de_fault (to_terminal_inferior,
429 (void (*) (void))
430 target_ignore);
431 de_fault (to_terminal_ours_for_output,
432 (void (*) (void))
433 target_ignore);
434 de_fault (to_terminal_ours,
435 (void (*) (void))
436 target_ignore);
437 de_fault (to_terminal_save_ours,
438 (void (*) (void))
439 target_ignore);
440 de_fault (to_terminal_info,
441 default_terminal_info);
442 de_fault (to_kill,
443 (void (*) (void))
444 noprocess);
445 de_fault (to_load,
446 (void (*) (char *, int))
447 tcomplain);
448 de_fault (to_lookup_symbol,
449 (int (*) (char *, CORE_ADDR *))
450 nosymbol);
451 de_fault (to_create_inferior,
452 maybe_kill_then_create_inferior);
453 de_fault (to_post_startup_inferior,
454 (void (*) (ptid_t))
455 target_ignore);
456 de_fault (to_acknowledge_created_inferior,
457 (void (*) (int))
458 target_ignore);
459 de_fault (to_insert_fork_catchpoint,
460 (int (*) (int))
461 tcomplain);
462 de_fault (to_remove_fork_catchpoint,
463 (int (*) (int))
464 tcomplain);
465 de_fault (to_insert_vfork_catchpoint,
466 (int (*) (int))
467 tcomplain);
468 de_fault (to_remove_vfork_catchpoint,
469 (int (*) (int))
470 tcomplain);
471 de_fault (to_follow_fork,
472 (int (*) (int))
473 target_ignore);
474 de_fault (to_insert_exec_catchpoint,
475 (int (*) (int))
476 tcomplain);
477 de_fault (to_remove_exec_catchpoint,
478 (int (*) (int))
479 tcomplain);
480 de_fault (to_reported_exec_events_per_exec_call,
481 (int (*) (void))
482 return_one);
483 de_fault (to_has_exited,
484 (int (*) (int, int, int *))
485 return_zero);
486 de_fault (to_mourn_inferior,
487 (void (*) (void))
488 noprocess);
489 de_fault (to_can_run,
490 return_zero);
491 de_fault (to_notice_signals,
492 (void (*) (ptid_t))
493 target_ignore);
494 de_fault (to_thread_alive,
495 (int (*) (ptid_t))
496 return_zero);
497 de_fault (to_find_new_threads,
498 (void (*) (void))
499 target_ignore);
500 de_fault (to_extra_thread_info,
501 (char *(*) (struct thread_info *))
502 return_zero);
503 de_fault (to_stop,
504 (void (*) (void))
505 target_ignore);
506 de_fault (to_rcmd,
507 (void (*) (char *, struct ui_file *))
508 tcomplain);
509 de_fault (to_enable_exception_callback,
510 (struct symtab_and_line * (*) (enum exception_event_kind, int))
511 nosupport_runtime);
512 de_fault (to_get_current_exception_event,
513 (struct exception_event_record * (*) (void))
514 nosupport_runtime);
515 de_fault (to_pid_to_exec_file,
516 (char *(*) (int))
517 return_zero);
518 de_fault (to_can_async_p,
519 (int (*) (void))
520 return_zero);
521 de_fault (to_is_async_p,
522 (int (*) (void))
523 return_zero);
524 de_fault (to_async,
525 (void (*) (void (*) (enum inferior_event_type, void*), void*))
526 tcomplain);
527 #undef de_fault
528 }
529
530 /* Go through the target stack from top to bottom, copying over zero entries in
531 current_target. In effect, we are doing class inheritance through the
532 pushed target vectors. */
533
534 static void
535 update_current_target (void)
536 {
537 struct target_stack_item *item;
538 struct target_ops *t;
539
540 /* First, reset current_target */
541 memset (&current_target, 0, sizeof current_target);
542
543 for (item = target_stack; item; item = item->next)
544 {
545 t = item->target_ops;
546
547 #define INHERIT(FIELD, TARGET) \
548 if (!current_target.FIELD) \
549 current_target.FIELD = TARGET->FIELD
550
551 INHERIT (to_shortname, t);
552 INHERIT (to_longname, t);
553 INHERIT (to_doc, t);
554 INHERIT (to_open, t);
555 INHERIT (to_close, t);
556 INHERIT (to_attach, t);
557 INHERIT (to_post_attach, t);
558 INHERIT (to_detach, t);
559 INHERIT (to_disconnect, t);
560 INHERIT (to_resume, t);
561 INHERIT (to_wait, t);
562 INHERIT (to_post_wait, t);
563 INHERIT (to_fetch_registers, t);
564 INHERIT (to_store_registers, t);
565 INHERIT (to_prepare_to_store, t);
566 INHERIT (to_xfer_memory, t);
567 INHERIT (to_files_info, t);
568 INHERIT (to_insert_breakpoint, t);
569 INHERIT (to_remove_breakpoint, t);
570 INHERIT (to_can_use_hw_breakpoint, t);
571 INHERIT (to_insert_hw_breakpoint, t);
572 INHERIT (to_remove_hw_breakpoint, t);
573 INHERIT (to_insert_watchpoint, t);
574 INHERIT (to_remove_watchpoint, t);
575 INHERIT (to_stopped_data_address, t);
576 INHERIT (to_stopped_by_watchpoint, t);
577 INHERIT (to_have_continuable_watchpoint, t);
578 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
579 INHERIT (to_terminal_init, t);
580 INHERIT (to_terminal_inferior, t);
581 INHERIT (to_terminal_ours_for_output, t);
582 INHERIT (to_terminal_ours, t);
583 INHERIT (to_terminal_save_ours, t);
584 INHERIT (to_terminal_info, t);
585 INHERIT (to_kill, t);
586 INHERIT (to_load, t);
587 INHERIT (to_lookup_symbol, t);
588 INHERIT (to_create_inferior, t);
589 INHERIT (to_post_startup_inferior, t);
590 INHERIT (to_acknowledge_created_inferior, t);
591 INHERIT (to_insert_fork_catchpoint, t);
592 INHERIT (to_remove_fork_catchpoint, t);
593 INHERIT (to_insert_vfork_catchpoint, t);
594 INHERIT (to_remove_vfork_catchpoint, t);
595 INHERIT (to_follow_fork, t);
596 INHERIT (to_insert_exec_catchpoint, t);
597 INHERIT (to_remove_exec_catchpoint, t);
598 INHERIT (to_reported_exec_events_per_exec_call, t);
599 INHERIT (to_has_exited, t);
600 INHERIT (to_mourn_inferior, t);
601 INHERIT (to_can_run, t);
602 INHERIT (to_notice_signals, t);
603 INHERIT (to_thread_alive, t);
604 INHERIT (to_find_new_threads, t);
605 INHERIT (to_pid_to_str, t);
606 INHERIT (to_extra_thread_info, t);
607 INHERIT (to_stop, t);
608 INHERIT (to_query, t);
609 INHERIT (to_rcmd, t);
610 INHERIT (to_enable_exception_callback, t);
611 INHERIT (to_get_current_exception_event, t);
612 INHERIT (to_pid_to_exec_file, t);
613 INHERIT (to_stratum, t);
614 INHERIT (to_has_all_memory, t);
615 INHERIT (to_has_memory, t);
616 INHERIT (to_has_stack, t);
617 INHERIT (to_has_registers, t);
618 INHERIT (to_has_execution, t);
619 INHERIT (to_has_thread_control, t);
620 INHERIT (to_sections, t);
621 INHERIT (to_sections_end, t);
622 INHERIT (to_can_async_p, t);
623 INHERIT (to_is_async_p, t);
624 INHERIT (to_async, t);
625 INHERIT (to_async_mask_value, t);
626 INHERIT (to_find_memory_regions, t);
627 INHERIT (to_make_corefile_notes, t);
628 INHERIT (to_get_thread_local_address, t);
629 INHERIT (to_magic, t);
630
631 #undef INHERIT
632 }
633 }
634
635 /* Push a new target type into the stack of the existing target accessors,
636 possibly superseding some of the existing accessors.
637
638 Result is zero if the pushed target ended up on top of the stack,
639 nonzero if at least one target is on top of it.
640
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
643 checking them. */
644
645 int
646 push_target (struct target_ops *t)
647 {
648 struct target_stack_item *cur, *prev, *tmp;
649
650 /* Check magic number. If wrong, it probably means someone changed
651 the struct definition, but not all the places that initialize one. */
652 if (t->to_magic != OPS_MAGIC)
653 {
654 fprintf_unfiltered (gdb_stderr,
655 "Magic number of %s target struct wrong\n",
656 t->to_shortname);
657 internal_error (__FILE__, __LINE__, "failed internal consistency check");
658 }
659
660 /* Find the proper stratum to install this target in. */
661
662 for (prev = NULL, cur = target_stack; cur; prev = cur, cur = cur->next)
663 {
664 if ((int) (t->to_stratum) >= (int) (cur->target_ops->to_stratum))
665 break;
666 }
667
668 /* If there's already targets at this stratum, remove them. */
669
670 if (cur)
671 while (t->to_stratum == cur->target_ops->to_stratum)
672 {
673 /* There's already something on this stratum. Close it off. */
674 if (cur->target_ops->to_close)
675 (cur->target_ops->to_close) (0);
676 if (prev)
677 prev->next = cur->next; /* Unchain old target_ops */
678 else
679 target_stack = cur->next; /* Unchain first on list */
680 tmp = cur->next;
681 xfree (cur);
682 cur = tmp;
683 }
684
685 /* We have removed all targets in our stratum, now add the new one. */
686
687 tmp = (struct target_stack_item *)
688 xmalloc (sizeof (struct target_stack_item));
689 tmp->next = cur;
690 tmp->target_ops = t;
691
692 if (prev)
693 prev->next = tmp;
694 else
695 target_stack = tmp;
696
697 update_current_target ();
698
699 cleanup_target (&current_target); /* Fill in the gaps */
700
701 if (targetdebug)
702 setup_target_debug ();
703
704 return prev != 0;
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_stack_item *cur, *prev;
714
715 if (t->to_close)
716 t->to_close (0); /* Let it clean up */
717
718 /* Look for the specified target. Note that we assume that a target
719 can only occur once in the target stack. */
720
721 for (cur = target_stack, prev = NULL; cur; prev = cur, cur = cur->next)
722 if (cur->target_ops == t)
723 break;
724
725 if (!cur)
726 return 0; /* Didn't find target_ops, quit now */
727
728 /* Unchain the target */
729
730 if (!prev)
731 target_stack = cur->next;
732 else
733 prev->next = cur->next;
734
735 xfree (cur); /* Release the target_stack_item */
736
737 update_current_target ();
738 cleanup_target (&current_target);
739
740 return 1;
741 }
742
743 void
744 pop_target (void)
745 {
746 (current_target.to_close) (0); /* Let it clean up */
747 if (unpush_target (target_stack->target_ops) == 1)
748 return;
749
750 fprintf_unfiltered (gdb_stderr,
751 "pop_target couldn't find target %s\n",
752 current_target.to_shortname);
753 internal_error (__FILE__, __LINE__, "failed internal consistency check");
754 }
755
756 #undef MIN
757 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
758
759 /* target_read_string -- read a null terminated string, up to LEN bytes,
760 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
761 Set *STRING to a pointer to malloc'd memory containing the data; the caller
762 is responsible for freeing it. Return the number of bytes successfully
763 read. */
764
765 int
766 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
767 {
768 int tlen, origlen, offset, i;
769 char buf[4];
770 int errcode = 0;
771 char *buffer;
772 int buffer_allocated;
773 char *bufptr;
774 unsigned int nbytes_read = 0;
775
776 /* Small for testing. */
777 buffer_allocated = 4;
778 buffer = xmalloc (buffer_allocated);
779 bufptr = buffer;
780
781 origlen = len;
782
783 while (len > 0)
784 {
785 tlen = MIN (len, 4 - (memaddr & 3));
786 offset = memaddr & 3;
787
788 errcode = target_xfer_memory (memaddr & ~3, buf, 4, 0);
789 if (errcode != 0)
790 {
791 /* The transfer request might have crossed the boundary to an
792 unallocated region of memory. Retry the transfer, requesting
793 a single byte. */
794 tlen = 1;
795 offset = 0;
796 errcode = target_xfer_memory (memaddr, buf, 1, 0);
797 if (errcode != 0)
798 goto done;
799 }
800
801 if (bufptr - buffer + tlen > buffer_allocated)
802 {
803 unsigned int bytes;
804 bytes = bufptr - buffer;
805 buffer_allocated *= 2;
806 buffer = xrealloc (buffer, buffer_allocated);
807 bufptr = buffer + bytes;
808 }
809
810 for (i = 0; i < tlen; i++)
811 {
812 *bufptr++ = buf[i + offset];
813 if (buf[i + offset] == '\000')
814 {
815 nbytes_read += i + 1;
816 goto done;
817 }
818 }
819
820 memaddr += tlen;
821 len -= tlen;
822 nbytes_read += tlen;
823 }
824 done:
825 if (errnop != NULL)
826 *errnop = errcode;
827 if (string != NULL)
828 *string = buffer;
829 return nbytes_read;
830 }
831
832 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
833 GDB's memory at MYADDR. Returns either 0 for success or an errno value
834 if any error occurs.
835
836 If an error occurs, no guarantee is made about the contents of the data at
837 MYADDR. In particular, the caller should not depend upon partial reads
838 filling the buffer with good data. There is no way for the caller to know
839 how much good data might have been transfered anyway. Callers that can
840 deal with partial reads should call target_read_memory_partial. */
841
842 int
843 target_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
844 {
845 return target_xfer_memory (memaddr, myaddr, len, 0);
846 }
847
848 int
849 target_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
850 {
851 return target_xfer_memory (memaddr, myaddr, len, 1);
852 }
853
854 static int trust_readonly = 0;
855
856 /* Move memory to or from the targets. The top target gets priority;
857 if it cannot handle it, it is offered to the next one down, etc.
858
859 Result is -1 on error, or the number of bytes transfered. */
860
861 int
862 do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
863 struct mem_attrib *attrib)
864 {
865 int res;
866 int done = 0;
867 struct target_ops *t;
868 struct target_stack_item *item;
869
870 /* Zero length requests are ok and require no work. */
871 if (len == 0)
872 return 0;
873
874 /* to_xfer_memory is not guaranteed to set errno, even when it returns
875 0. */
876 errno = 0;
877
878 if (!write && trust_readonly)
879 {
880 /* User-settable option, "trust-readonly-sections". If true,
881 then memory from any SEC_READONLY bfd section may be read
882 directly from the bfd file. */
883
884 struct section_table *secp;
885
886 for (secp = current_target.to_sections;
887 secp < current_target.to_sections_end;
888 secp++)
889 {
890 if (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
891 & SEC_READONLY)
892 if (memaddr >= secp->addr && memaddr < secp->endaddr)
893 return xfer_memory (memaddr, myaddr, len, 0,
894 attrib, &current_target);
895 }
896 }
897
898 /* The quick case is that the top target can handle the transfer. */
899 res = current_target.to_xfer_memory
900 (memaddr, myaddr, len, write, attrib, &current_target);
901
902 /* If res <= 0 then we call it again in the loop. Ah well. */
903 if (res <= 0)
904 {
905 for (item = target_stack; item; item = item->next)
906 {
907 t = item->target_ops;
908 if (!t->to_has_memory)
909 continue;
910
911 res = t->to_xfer_memory (memaddr, myaddr, len, write, attrib, t);
912 if (res > 0)
913 break; /* Handled all or part of xfer */
914 if (t->to_has_all_memory)
915 break;
916 }
917
918 if (res <= 0)
919 return -1;
920 }
921
922 return res;
923 }
924
925
926 /* Perform a memory transfer. Iterate until the entire region has
927 been transfered.
928
929 Result is 0 or errno value. */
930
931 static int
932 target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
933 {
934 int res;
935 int reg_len;
936 struct mem_region *region;
937
938 /* Zero length requests are ok and require no work. */
939 if (len == 0)
940 {
941 return 0;
942 }
943
944 while (len > 0)
945 {
946 region = lookup_mem_region(memaddr);
947 if (memaddr + len < region->hi)
948 reg_len = len;
949 else
950 reg_len = region->hi - memaddr;
951
952 switch (region->attrib.mode)
953 {
954 case MEM_RO:
955 if (write)
956 return EIO;
957 break;
958
959 case MEM_WO:
960 if (!write)
961 return EIO;
962 break;
963 }
964
965 while (reg_len > 0)
966 {
967 if (region->attrib.cache)
968 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
969 reg_len, write);
970 else
971 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
972 &region->attrib);
973
974 if (res <= 0)
975 {
976 /* If this address is for nonexistent memory, read zeros
977 if reading, or do nothing if writing. Return
978 error. */
979 if (!write)
980 memset (myaddr, 0, len);
981 if (errno == 0)
982 return EIO;
983 else
984 return errno;
985 }
986
987 memaddr += res;
988 myaddr += res;
989 len -= res;
990 reg_len -= res;
991 }
992 }
993
994 return 0; /* We managed to cover it all somehow. */
995 }
996
997
998 /* Perform a partial memory transfer.
999
1000 Result is -1 on error, or the number of bytes transfered. */
1001
1002 static int
1003 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1004 int write_p, int *err)
1005 {
1006 int res;
1007 int reg_len;
1008 struct mem_region *region;
1009
1010 /* Zero length requests are ok and require no work. */
1011 if (len == 0)
1012 {
1013 *err = 0;
1014 return 0;
1015 }
1016
1017 region = lookup_mem_region(memaddr);
1018 if (memaddr + len < region->hi)
1019 reg_len = len;
1020 else
1021 reg_len = region->hi - memaddr;
1022
1023 switch (region->attrib.mode)
1024 {
1025 case MEM_RO:
1026 if (write_p)
1027 {
1028 *err = EIO;
1029 return -1;
1030 }
1031 break;
1032
1033 case MEM_WO:
1034 if (write_p)
1035 {
1036 *err = EIO;
1037 return -1;
1038 }
1039 break;
1040 }
1041
1042 if (region->attrib.cache)
1043 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1044 reg_len, write_p);
1045 else
1046 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1047 &region->attrib);
1048
1049 if (res <= 0)
1050 {
1051 if (errno != 0)
1052 *err = errno;
1053 else
1054 *err = EIO;
1055
1056 return -1;
1057 }
1058
1059 *err = 0;
1060 return res;
1061 }
1062
1063 int
1064 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1065 {
1066 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1067 }
1068
1069 int
1070 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1071 {
1072 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1073 }
1074
1075 static void
1076 target_info (char *args, int from_tty)
1077 {
1078 struct target_ops *t;
1079 struct target_stack_item *item;
1080 int has_all_mem = 0;
1081
1082 if (symfile_objfile != NULL)
1083 printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
1084
1085 #ifdef FILES_INFO_HOOK
1086 if (FILES_INFO_HOOK ())
1087 return;
1088 #endif
1089
1090 for (item = target_stack; item; item = item->next)
1091 {
1092 t = item->target_ops;
1093
1094 if (!t->to_has_memory)
1095 continue;
1096
1097 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1098 continue;
1099 if (has_all_mem)
1100 printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
1101 printf_unfiltered ("%s:\n", t->to_longname);
1102 (t->to_files_info) (t);
1103 has_all_mem = t->to_has_all_memory;
1104 }
1105 }
1106
1107 /* This is to be called by the open routine before it does
1108 anything. */
1109
1110 void
1111 target_preopen (int from_tty)
1112 {
1113 dont_repeat ();
1114
1115 if (target_has_execution)
1116 {
1117 if (!from_tty
1118 || query ("A program is being debugged already. Kill it? "))
1119 target_kill ();
1120 else
1121 error ("Program not killed.");
1122 }
1123
1124 /* Calling target_kill may remove the target from the stack. But if
1125 it doesn't (which seems like a win for UDI), remove it now. */
1126
1127 if (target_has_execution)
1128 pop_target ();
1129 }
1130
1131 /* Detach a target after doing deferred register stores. */
1132
1133 void
1134 target_detach (char *args, int from_tty)
1135 {
1136 /* Handle any optimized stores to the inferior. */
1137 #ifdef DO_DEFERRED_STORES
1138 DO_DEFERRED_STORES;
1139 #endif
1140 (current_target.to_detach) (args, from_tty);
1141 }
1142
1143 void
1144 target_disconnect (char *args, int from_tty)
1145 {
1146 /* Handle any optimized stores to the inferior. */
1147 #ifdef DO_DEFERRED_STORES
1148 DO_DEFERRED_STORES;
1149 #endif
1150 (current_target.to_disconnect) (args, from_tty);
1151 }
1152
1153 void
1154 target_link (char *modname, CORE_ADDR *t_reloc)
1155 {
1156 if (STREQ (current_target.to_shortname, "rombug"))
1157 {
1158 (current_target.to_lookup_symbol) (modname, t_reloc);
1159 if (*t_reloc == 0)
1160 error ("Unable to link to %s and get relocation in rombug", modname);
1161 }
1162 else
1163 *t_reloc = (CORE_ADDR) -1;
1164 }
1165
1166 int
1167 target_async_mask (int mask)
1168 {
1169 int saved_async_masked_status = target_async_mask_value;
1170 target_async_mask_value = mask;
1171 return saved_async_masked_status;
1172 }
1173
1174 /* Look through the list of possible targets for a target that can
1175 execute a run or attach command without any other data. This is
1176 used to locate the default process stratum.
1177
1178 Result is always valid (error() is called for errors). */
1179
1180 static struct target_ops *
1181 find_default_run_target (char *do_mesg)
1182 {
1183 struct target_ops **t;
1184 struct target_ops *runable = NULL;
1185 int count;
1186
1187 count = 0;
1188
1189 for (t = target_structs; t < target_structs + target_struct_size;
1190 ++t)
1191 {
1192 if ((*t)->to_can_run && target_can_run (*t))
1193 {
1194 runable = *t;
1195 ++count;
1196 }
1197 }
1198
1199 if (count != 1)
1200 error ("Don't know how to %s. Try \"help target\".", do_mesg);
1201
1202 return runable;
1203 }
1204
1205 void
1206 find_default_attach (char *args, int from_tty)
1207 {
1208 struct target_ops *t;
1209
1210 t = find_default_run_target ("attach");
1211 (t->to_attach) (args, from_tty);
1212 return;
1213 }
1214
1215 void
1216 find_default_create_inferior (char *exec_file, char *allargs, char **env)
1217 {
1218 struct target_ops *t;
1219
1220 t = find_default_run_target ("run");
1221 (t->to_create_inferior) (exec_file, allargs, env);
1222 return;
1223 }
1224
1225 static int
1226 default_region_size_ok_for_hw_watchpoint (int byte_count)
1227 {
1228 return (byte_count <= DEPRECATED_REGISTER_SIZE);
1229 }
1230
1231 static int
1232 return_zero (void)
1233 {
1234 return 0;
1235 }
1236
1237 static int
1238 return_one (void)
1239 {
1240 return 1;
1241 }
1242
1243 static int
1244 return_minus_one (void)
1245 {
1246 return -1;
1247 }
1248
1249 /*
1250 * Resize the to_sections pointer. Also make sure that anyone that
1251 * was holding on to an old value of it gets updated.
1252 * Returns the old size.
1253 */
1254
1255 int
1256 target_resize_to_sections (struct target_ops *target, int num_added)
1257 {
1258 struct target_ops **t;
1259 struct section_table *old_value;
1260 int old_count;
1261
1262 old_value = target->to_sections;
1263
1264 if (target->to_sections)
1265 {
1266 old_count = target->to_sections_end - target->to_sections;
1267 target->to_sections = (struct section_table *)
1268 xrealloc ((char *) target->to_sections,
1269 (sizeof (struct section_table)) * (num_added + old_count));
1270 }
1271 else
1272 {
1273 old_count = 0;
1274 target->to_sections = (struct section_table *)
1275 xmalloc ((sizeof (struct section_table)) * num_added);
1276 }
1277 target->to_sections_end = target->to_sections + (num_added + old_count);
1278
1279 /* Check to see if anyone else was pointing to this structure.
1280 If old_value was null, then no one was. */
1281
1282 if (old_value)
1283 {
1284 for (t = target_structs; t < target_structs + target_struct_size;
1285 ++t)
1286 {
1287 if ((*t)->to_sections == old_value)
1288 {
1289 (*t)->to_sections = target->to_sections;
1290 (*t)->to_sections_end = target->to_sections_end;
1291 }
1292 }
1293 }
1294
1295 return old_count;
1296
1297 }
1298
1299 /* Remove all target sections taken from ABFD.
1300
1301 Scan the current target stack for targets whose section tables
1302 refer to sections from BFD, and remove those sections. We use this
1303 when we notice that the inferior has unloaded a shared object, for
1304 example. */
1305 void
1306 remove_target_sections (bfd *abfd)
1307 {
1308 struct target_ops **t;
1309
1310 for (t = target_structs; t < target_structs + target_struct_size; t++)
1311 {
1312 struct section_table *src, *dest;
1313
1314 dest = (*t)->to_sections;
1315 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1316 if (src->bfd != abfd)
1317 {
1318 /* Keep this section. */
1319 if (dest < src) *dest = *src;
1320 dest++;
1321 }
1322
1323 /* If we've dropped any sections, resize the section table. */
1324 if (dest < src)
1325 target_resize_to_sections (*t, dest - src);
1326 }
1327 }
1328
1329
1330
1331
1332 /* Find a single runnable target in the stack and return it. If for
1333 some reason there is more than one, return NULL. */
1334
1335 struct target_ops *
1336 find_run_target (void)
1337 {
1338 struct target_ops **t;
1339 struct target_ops *runable = NULL;
1340 int count;
1341
1342 count = 0;
1343
1344 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1345 {
1346 if ((*t)->to_can_run && target_can_run (*t))
1347 {
1348 runable = *t;
1349 ++count;
1350 }
1351 }
1352
1353 return (count == 1 ? runable : NULL);
1354 }
1355
1356 /* Find a single core_stratum target in the list of targets and return it.
1357 If for some reason there is more than one, return NULL. */
1358
1359 struct target_ops *
1360 find_core_target (void)
1361 {
1362 struct target_ops **t;
1363 struct target_ops *runable = NULL;
1364 int count;
1365
1366 count = 0;
1367
1368 for (t = target_structs; t < target_structs + target_struct_size;
1369 ++t)
1370 {
1371 if ((*t)->to_stratum == core_stratum)
1372 {
1373 runable = *t;
1374 ++count;
1375 }
1376 }
1377
1378 return (count == 1 ? runable : NULL);
1379 }
1380
1381 /*
1382 * Find the next target down the stack from the specified target.
1383 */
1384
1385 struct target_ops *
1386 find_target_beneath (struct target_ops *t)
1387 {
1388 struct target_stack_item *cur;
1389
1390 for (cur = target_stack; cur; cur = cur->next)
1391 if (cur->target_ops == t)
1392 break;
1393
1394 if (cur == NULL || cur->next == NULL)
1395 return NULL;
1396 else
1397 return cur->next->target_ops;
1398 }
1399
1400 \f
1401 /* The inferior process has died. Long live the inferior! */
1402
1403 void
1404 generic_mourn_inferior (void)
1405 {
1406 extern int show_breakpoint_hit_counts;
1407
1408 inferior_ptid = null_ptid;
1409 attach_flag = 0;
1410 breakpoint_init_inferior (inf_exited);
1411 registers_changed ();
1412
1413 #ifdef CLEAR_DEFERRED_STORES
1414 /* Delete any pending stores to the inferior... */
1415 CLEAR_DEFERRED_STORES;
1416 #endif
1417
1418 reopen_exec_file ();
1419 reinit_frame_cache ();
1420
1421 /* It is confusing to the user for ignore counts to stick around
1422 from previous runs of the inferior. So clear them. */
1423 /* However, it is more confusing for the ignore counts to disappear when
1424 using hit counts. So don't clear them if we're counting hits. */
1425 if (!show_breakpoint_hit_counts)
1426 breakpoint_clear_ignore_counts ();
1427
1428 if (detach_hook)
1429 detach_hook ();
1430 }
1431 \f
1432 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1433 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1434 translation of that in OURSTATUS. */
1435 void
1436 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1437 {
1438 #ifdef CHILD_SPECIAL_WAITSTATUS
1439 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1440 if it wants to deal with hoststatus. */
1441 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1442 return;
1443 #endif
1444
1445 if (WIFEXITED (hoststatus))
1446 {
1447 ourstatus->kind = TARGET_WAITKIND_EXITED;
1448 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1449 }
1450 else if (!WIFSTOPPED (hoststatus))
1451 {
1452 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1453 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1454 }
1455 else
1456 {
1457 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1458 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1459 }
1460 }
1461 \f
1462 /* Returns zero to leave the inferior alone, one to interrupt it. */
1463 int (*target_activity_function) (void);
1464 int target_activity_fd;
1465 \f
1466 /* Convert a normal process ID to a string. Returns the string in a static
1467 buffer. */
1468
1469 char *
1470 normal_pid_to_str (ptid_t ptid)
1471 {
1472 static char buf[30];
1473
1474 sprintf (buf, "process %d", PIDGET (ptid));
1475 return buf;
1476 }
1477
1478 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1479 notification of inferior events such as fork and vork immediately
1480 after the inferior is created. (This because of how gdb gets an
1481 inferior created via invoking a shell to do it. In such a scenario,
1482 if the shell init file has commands in it, the shell will fork and
1483 exec for each of those commands, and we will see each such fork
1484 event. Very bad.)
1485
1486 This function is used by all targets that allow us to request
1487 notification of forks, etc at inferior creation time; e.g., in
1488 target_acknowledge_forked_child.
1489 */
1490 static void
1491 normal_target_post_startup_inferior (ptid_t ptid)
1492 {
1493 /* This space intentionally left blank. */
1494 }
1495
1496 /* Error-catcher for target_find_memory_regions */
1497 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1498 {
1499 error ("No target.");
1500 return 0;
1501 }
1502
1503 /* Error-catcher for target_make_corefile_notes */
1504 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1505 {
1506 error ("No target.");
1507 return NULL;
1508 }
1509
1510 /* Set up the handful of non-empty slots needed by the dummy target
1511 vector. */
1512
1513 static void
1514 init_dummy_target (void)
1515 {
1516 dummy_target.to_shortname = "None";
1517 dummy_target.to_longname = "None";
1518 dummy_target.to_doc = "";
1519 dummy_target.to_attach = find_default_attach;
1520 dummy_target.to_create_inferior = find_default_create_inferior;
1521 dummy_target.to_pid_to_str = normal_pid_to_str;
1522 dummy_target.to_stratum = dummy_stratum;
1523 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1524 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1525 dummy_target.to_magic = OPS_MAGIC;
1526 }
1527 \f
1528
1529 static struct target_ops debug_target;
1530
1531 static void
1532 debug_to_open (char *args, int from_tty)
1533 {
1534 debug_target.to_open (args, from_tty);
1535
1536 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1537 }
1538
1539 static void
1540 debug_to_close (int quitting)
1541 {
1542 debug_target.to_close (quitting);
1543
1544 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1545 }
1546
1547 static void
1548 debug_to_attach (char *args, int from_tty)
1549 {
1550 debug_target.to_attach (args, from_tty);
1551
1552 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1553 }
1554
1555
1556 static void
1557 debug_to_post_attach (int pid)
1558 {
1559 debug_target.to_post_attach (pid);
1560
1561 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1562 }
1563
1564 static void
1565 debug_to_detach (char *args, int from_tty)
1566 {
1567 debug_target.to_detach (args, from_tty);
1568
1569 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1570 }
1571
1572 static void
1573 debug_to_disconnect (char *args, int from_tty)
1574 {
1575 debug_target.to_disconnect (args, from_tty);
1576
1577 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1578 args, from_tty);
1579 }
1580
1581 static void
1582 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1583 {
1584 debug_target.to_resume (ptid, step, siggnal);
1585
1586 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1587 step ? "step" : "continue",
1588 target_signal_to_name (siggnal));
1589 }
1590
1591 static ptid_t
1592 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1593 {
1594 ptid_t retval;
1595
1596 retval = debug_target.to_wait (ptid, status);
1597
1598 fprintf_unfiltered (gdb_stdlog,
1599 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1600 PIDGET (retval));
1601 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1602 switch (status->kind)
1603 {
1604 case TARGET_WAITKIND_EXITED:
1605 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1606 status->value.integer);
1607 break;
1608 case TARGET_WAITKIND_STOPPED:
1609 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1610 target_signal_to_name (status->value.sig));
1611 break;
1612 case TARGET_WAITKIND_SIGNALLED:
1613 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1614 target_signal_to_name (status->value.sig));
1615 break;
1616 case TARGET_WAITKIND_LOADED:
1617 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1618 break;
1619 case TARGET_WAITKIND_FORKED:
1620 fprintf_unfiltered (gdb_stdlog, "forked\n");
1621 break;
1622 case TARGET_WAITKIND_VFORKED:
1623 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1624 break;
1625 case TARGET_WAITKIND_EXECD:
1626 fprintf_unfiltered (gdb_stdlog, "execd\n");
1627 break;
1628 case TARGET_WAITKIND_SPURIOUS:
1629 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1630 break;
1631 default:
1632 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1633 break;
1634 }
1635
1636 return retval;
1637 }
1638
1639 static void
1640 debug_to_post_wait (ptid_t ptid, int status)
1641 {
1642 debug_target.to_post_wait (ptid, status);
1643
1644 fprintf_unfiltered (gdb_stdlog, "target_post_wait (%d, %d)\n",
1645 PIDGET (ptid), status);
1646 }
1647
1648 static void
1649 debug_print_register (const char * func, int regno)
1650 {
1651 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1652 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1653 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1654 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1655 else
1656 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1657 if (regno >= 0)
1658 {
1659 int i;
1660 unsigned char buf[MAX_REGISTER_SIZE];
1661 deprecated_read_register_gen (regno, buf);
1662 fprintf_unfiltered (gdb_stdlog, " = ");
1663 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno); i++)
1664 {
1665 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1666 }
1667 if (DEPRECATED_REGISTER_RAW_SIZE (regno) <= sizeof (LONGEST))
1668 {
1669 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1670 paddr_nz (read_register (regno)),
1671 paddr_d (read_register (regno)));
1672 }
1673 }
1674 fprintf_unfiltered (gdb_stdlog, "\n");
1675 }
1676
1677 static void
1678 debug_to_fetch_registers (int regno)
1679 {
1680 debug_target.to_fetch_registers (regno);
1681 debug_print_register ("target_fetch_registers", regno);
1682 }
1683
1684 static void
1685 debug_to_store_registers (int regno)
1686 {
1687 debug_target.to_store_registers (regno);
1688 debug_print_register ("target_store_registers", regno);
1689 fprintf_unfiltered (gdb_stdlog, "\n");
1690 }
1691
1692 static void
1693 debug_to_prepare_to_store (void)
1694 {
1695 debug_target.to_prepare_to_store ();
1696
1697 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
1698 }
1699
1700 static int
1701 debug_to_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1702 struct mem_attrib *attrib,
1703 struct target_ops *target)
1704 {
1705 int retval;
1706
1707 retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write,
1708 attrib, target);
1709
1710 fprintf_unfiltered (gdb_stdlog,
1711 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
1712 (unsigned int) memaddr, /* possable truncate long long */
1713 len, write ? "write" : "read", retval);
1714
1715
1716
1717 if (retval > 0)
1718 {
1719 int i;
1720
1721 fputs_unfiltered (", bytes =", gdb_stdlog);
1722 for (i = 0; i < retval; i++)
1723 {
1724 if ((((long) &(myaddr[i])) & 0xf) == 0)
1725 fprintf_unfiltered (gdb_stdlog, "\n");
1726 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1727 }
1728 }
1729
1730 fputc_unfiltered ('\n', gdb_stdlog);
1731
1732 return retval;
1733 }
1734
1735 static void
1736 debug_to_files_info (struct target_ops *target)
1737 {
1738 debug_target.to_files_info (target);
1739
1740 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
1741 }
1742
1743 static int
1744 debug_to_insert_breakpoint (CORE_ADDR addr, char *save)
1745 {
1746 int retval;
1747
1748 retval = debug_target.to_insert_breakpoint (addr, save);
1749
1750 fprintf_unfiltered (gdb_stdlog,
1751 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
1752 (unsigned long) addr,
1753 (unsigned long) retval);
1754 return retval;
1755 }
1756
1757 static int
1758 debug_to_remove_breakpoint (CORE_ADDR addr, char *save)
1759 {
1760 int retval;
1761
1762 retval = debug_target.to_remove_breakpoint (addr, save);
1763
1764 fprintf_unfiltered (gdb_stdlog,
1765 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
1766 (unsigned long) addr,
1767 (unsigned long) retval);
1768 return retval;
1769 }
1770
1771 static int
1772 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
1773 {
1774 int retval;
1775
1776 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
1777
1778 fprintf_unfiltered (gdb_stdlog,
1779 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
1780 (unsigned long) type,
1781 (unsigned long) cnt,
1782 (unsigned long) from_tty,
1783 (unsigned long) retval);
1784 return retval;
1785 }
1786
1787 static int
1788 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
1789 {
1790 CORE_ADDR retval;
1791
1792 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
1793
1794 fprintf_unfiltered (gdb_stdlog,
1795 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
1796 (unsigned long) byte_count,
1797 (unsigned long) retval);
1798 return retval;
1799 }
1800
1801 static int
1802 debug_to_stopped_by_watchpoint (void)
1803 {
1804 int retval;
1805
1806 retval = debug_target.to_stopped_by_watchpoint ();
1807
1808 fprintf_unfiltered (gdb_stdlog,
1809 "STOPPED_BY_WATCHPOINT () = %ld\n",
1810 (unsigned long) retval);
1811 return retval;
1812 }
1813
1814 static CORE_ADDR
1815 debug_to_stopped_data_address (void)
1816 {
1817 CORE_ADDR retval;
1818
1819 retval = debug_target.to_stopped_data_address ();
1820
1821 fprintf_unfiltered (gdb_stdlog,
1822 "target_stopped_data_address () = 0x%lx\n",
1823 (unsigned long) retval);
1824 return retval;
1825 }
1826
1827 static int
1828 debug_to_insert_hw_breakpoint (CORE_ADDR addr, char *save)
1829 {
1830 int retval;
1831
1832 retval = debug_target.to_insert_hw_breakpoint (addr, save);
1833
1834 fprintf_unfiltered (gdb_stdlog,
1835 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
1836 (unsigned long) addr,
1837 (unsigned long) retval);
1838 return retval;
1839 }
1840
1841 static int
1842 debug_to_remove_hw_breakpoint (CORE_ADDR addr, char *save)
1843 {
1844 int retval;
1845
1846 retval = debug_target.to_remove_hw_breakpoint (addr, save);
1847
1848 fprintf_unfiltered (gdb_stdlog,
1849 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
1850 (unsigned long) addr,
1851 (unsigned long) retval);
1852 return retval;
1853 }
1854
1855 static int
1856 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
1857 {
1858 int retval;
1859
1860 retval = debug_target.to_insert_watchpoint (addr, len, type);
1861
1862 fprintf_unfiltered (gdb_stdlog,
1863 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
1864 (unsigned long) addr, len, type, (unsigned long) retval);
1865 return retval;
1866 }
1867
1868 static int
1869 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
1870 {
1871 int retval;
1872
1873 retval = debug_target.to_insert_watchpoint (addr, len, type);
1874
1875 fprintf_unfiltered (gdb_stdlog,
1876 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
1877 (unsigned long) addr, len, type, (unsigned long) retval);
1878 return retval;
1879 }
1880
1881 static void
1882 debug_to_terminal_init (void)
1883 {
1884 debug_target.to_terminal_init ();
1885
1886 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
1887 }
1888
1889 static void
1890 debug_to_terminal_inferior (void)
1891 {
1892 debug_target.to_terminal_inferior ();
1893
1894 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
1895 }
1896
1897 static void
1898 debug_to_terminal_ours_for_output (void)
1899 {
1900 debug_target.to_terminal_ours_for_output ();
1901
1902 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
1903 }
1904
1905 static void
1906 debug_to_terminal_ours (void)
1907 {
1908 debug_target.to_terminal_ours ();
1909
1910 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
1911 }
1912
1913 static void
1914 debug_to_terminal_save_ours (void)
1915 {
1916 debug_target.to_terminal_save_ours ();
1917
1918 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
1919 }
1920
1921 static void
1922 debug_to_terminal_info (char *arg, int from_tty)
1923 {
1924 debug_target.to_terminal_info (arg, from_tty);
1925
1926 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
1927 from_tty);
1928 }
1929
1930 static void
1931 debug_to_kill (void)
1932 {
1933 debug_target.to_kill ();
1934
1935 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
1936 }
1937
1938 static void
1939 debug_to_load (char *args, int from_tty)
1940 {
1941 debug_target.to_load (args, from_tty);
1942
1943 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
1944 }
1945
1946 static int
1947 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
1948 {
1949 int retval;
1950
1951 retval = debug_target.to_lookup_symbol (name, addrp);
1952
1953 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
1954
1955 return retval;
1956 }
1957
1958 static void
1959 debug_to_create_inferior (char *exec_file, char *args, char **env)
1960 {
1961 debug_target.to_create_inferior (exec_file, args, env);
1962
1963 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx)\n",
1964 exec_file, args);
1965 }
1966
1967 static void
1968 debug_to_post_startup_inferior (ptid_t ptid)
1969 {
1970 debug_target.to_post_startup_inferior (ptid);
1971
1972 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
1973 PIDGET (ptid));
1974 }
1975
1976 static void
1977 debug_to_acknowledge_created_inferior (int pid)
1978 {
1979 debug_target.to_acknowledge_created_inferior (pid);
1980
1981 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
1982 pid);
1983 }
1984
1985 static int
1986 debug_to_insert_fork_catchpoint (int pid)
1987 {
1988 int retval;
1989
1990 retval = debug_target.to_insert_fork_catchpoint (pid);
1991
1992 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
1993 pid, retval);
1994
1995 return retval;
1996 }
1997
1998 static int
1999 debug_to_remove_fork_catchpoint (int pid)
2000 {
2001 int retval;
2002
2003 retval = debug_target.to_remove_fork_catchpoint (pid);
2004
2005 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2006 pid, retval);
2007
2008 return retval;
2009 }
2010
2011 static int
2012 debug_to_insert_vfork_catchpoint (int pid)
2013 {
2014 int retval;
2015
2016 retval = debug_target.to_insert_vfork_catchpoint (pid);
2017
2018 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
2019 pid, retval);
2020
2021 return retval;
2022 }
2023
2024 static int
2025 debug_to_remove_vfork_catchpoint (int pid)
2026 {
2027 int retval;
2028
2029 retval = debug_target.to_remove_vfork_catchpoint (pid);
2030
2031 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2032 pid, retval);
2033
2034 return retval;
2035 }
2036
2037 static int
2038 debug_to_follow_fork (int follow_child)
2039 {
2040 int retval = debug_target.to_follow_fork (follow_child);
2041
2042 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2043 follow_child, retval);
2044
2045 return retval;
2046 }
2047
2048 static int
2049 debug_to_insert_exec_catchpoint (int pid)
2050 {
2051 int retval;
2052
2053 retval = debug_target.to_insert_exec_catchpoint (pid);
2054
2055 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
2056 pid, retval);
2057
2058 return retval;
2059 }
2060
2061 static int
2062 debug_to_remove_exec_catchpoint (int pid)
2063 {
2064 int retval;
2065
2066 retval = debug_target.to_remove_exec_catchpoint (pid);
2067
2068 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2069 pid, retval);
2070
2071 return retval;
2072 }
2073
2074 static int
2075 debug_to_reported_exec_events_per_exec_call (void)
2076 {
2077 int reported_exec_events;
2078
2079 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2080
2081 fprintf_unfiltered (gdb_stdlog,
2082 "target_reported_exec_events_per_exec_call () = %d\n",
2083 reported_exec_events);
2084
2085 return reported_exec_events;
2086 }
2087
2088 static int
2089 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2090 {
2091 int has_exited;
2092
2093 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2094
2095 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2096 pid, wait_status, *exit_status, has_exited);
2097
2098 return has_exited;
2099 }
2100
2101 static void
2102 debug_to_mourn_inferior (void)
2103 {
2104 debug_target.to_mourn_inferior ();
2105
2106 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2107 }
2108
2109 static int
2110 debug_to_can_run (void)
2111 {
2112 int retval;
2113
2114 retval = debug_target.to_can_run ();
2115
2116 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2117
2118 return retval;
2119 }
2120
2121 static void
2122 debug_to_notice_signals (ptid_t ptid)
2123 {
2124 debug_target.to_notice_signals (ptid);
2125
2126 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2127 PIDGET (ptid));
2128 }
2129
2130 static int
2131 debug_to_thread_alive (ptid_t ptid)
2132 {
2133 int retval;
2134
2135 retval = debug_target.to_thread_alive (ptid);
2136
2137 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2138 PIDGET (ptid), retval);
2139
2140 return retval;
2141 }
2142
2143 static void
2144 debug_to_find_new_threads (void)
2145 {
2146 debug_target.to_find_new_threads ();
2147
2148 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2149 }
2150
2151 static void
2152 debug_to_stop (void)
2153 {
2154 debug_target.to_stop ();
2155
2156 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2157 }
2158
2159 static int
2160 debug_to_query (int type, char *req, char *resp, int *siz)
2161 {
2162 int retval;
2163
2164 retval = debug_target.to_query (type, req, resp, siz);
2165
2166 fprintf_unfiltered (gdb_stdlog, "target_query (%c, %s, %s, %d) = %d\n", type, req, resp, *siz, retval);
2167
2168 return retval;
2169 }
2170
2171 static void
2172 debug_to_rcmd (char *command,
2173 struct ui_file *outbuf)
2174 {
2175 debug_target.to_rcmd (command, outbuf);
2176 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2177 }
2178
2179 static struct symtab_and_line *
2180 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2181 {
2182 struct symtab_and_line *result;
2183 result = debug_target.to_enable_exception_callback (kind, enable);
2184 fprintf_unfiltered (gdb_stdlog,
2185 "target get_exception_callback_sal (%d, %d)\n",
2186 kind, enable);
2187 return result;
2188 }
2189
2190 static struct exception_event_record *
2191 debug_to_get_current_exception_event (void)
2192 {
2193 struct exception_event_record *result;
2194 result = debug_target.to_get_current_exception_event ();
2195 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2196 return result;
2197 }
2198
2199 static char *
2200 debug_to_pid_to_exec_file (int pid)
2201 {
2202 char *exec_file;
2203
2204 exec_file = debug_target.to_pid_to_exec_file (pid);
2205
2206 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2207 pid, exec_file);
2208
2209 return exec_file;
2210 }
2211
2212 static void
2213 setup_target_debug (void)
2214 {
2215 memcpy (&debug_target, &current_target, sizeof debug_target);
2216
2217 current_target.to_open = debug_to_open;
2218 current_target.to_close = debug_to_close;
2219 current_target.to_attach = debug_to_attach;
2220 current_target.to_post_attach = debug_to_post_attach;
2221 current_target.to_detach = debug_to_detach;
2222 current_target.to_disconnect = debug_to_disconnect;
2223 current_target.to_resume = debug_to_resume;
2224 current_target.to_wait = debug_to_wait;
2225 current_target.to_post_wait = debug_to_post_wait;
2226 current_target.to_fetch_registers = debug_to_fetch_registers;
2227 current_target.to_store_registers = debug_to_store_registers;
2228 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2229 current_target.to_xfer_memory = debug_to_xfer_memory;
2230 current_target.to_files_info = debug_to_files_info;
2231 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2232 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2233 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2234 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2235 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2236 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2237 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2238 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2239 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2240 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2241 current_target.to_terminal_init = debug_to_terminal_init;
2242 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2243 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2244 current_target.to_terminal_ours = debug_to_terminal_ours;
2245 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2246 current_target.to_terminal_info = debug_to_terminal_info;
2247 current_target.to_kill = debug_to_kill;
2248 current_target.to_load = debug_to_load;
2249 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2250 current_target.to_create_inferior = debug_to_create_inferior;
2251 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2252 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2253 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2254 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2255 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2256 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2257 current_target.to_follow_fork = debug_to_follow_fork;
2258 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2259 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2260 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2261 current_target.to_has_exited = debug_to_has_exited;
2262 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2263 current_target.to_can_run = debug_to_can_run;
2264 current_target.to_notice_signals = debug_to_notice_signals;
2265 current_target.to_thread_alive = debug_to_thread_alive;
2266 current_target.to_find_new_threads = debug_to_find_new_threads;
2267 current_target.to_stop = debug_to_stop;
2268 current_target.to_query = debug_to_query;
2269 current_target.to_rcmd = debug_to_rcmd;
2270 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2271 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2272 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2273
2274 }
2275 \f
2276
2277 static char targ_desc[] =
2278 "Names of targets and files being debugged.\n\
2279 Shows the entire stack of targets currently in use (including the exec-file,\n\
2280 core-file, and process, if any), as well as the symbol file name.";
2281
2282 static void
2283 do_monitor_command (char *cmd,
2284 int from_tty)
2285 {
2286 if ((current_target.to_rcmd
2287 == (void (*) (char *, struct ui_file *)) tcomplain)
2288 || (current_target.to_rcmd == debug_to_rcmd
2289 && (debug_target.to_rcmd
2290 == (void (*) (char *, struct ui_file *)) tcomplain)))
2291 {
2292 error ("\"monitor\" command not supported by this target.\n");
2293 }
2294 target_rcmd (cmd, gdb_stdtarg);
2295 }
2296
2297 void
2298 initialize_targets (void)
2299 {
2300 init_dummy_target ();
2301 push_target (&dummy_target);
2302
2303 add_info ("target", target_info, targ_desc);
2304 add_info ("files", target_info, targ_desc);
2305
2306 add_show_from_set
2307 (add_set_cmd ("target", class_maintenance, var_zinteger,
2308 (char *) &targetdebug,
2309 "Set target debugging.\n\
2310 When non-zero, target debugging is enabled.", &setdebuglist),
2311 &showdebuglist);
2312
2313 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2314 &trust_readonly, "\
2315 Set mode for reading from readonly sections.\n\
2316 When this mode is on, memory reads from readonly sections (such as .text)\n\
2317 will be read from the object file instead of from the target. This will\n\
2318 result in significant performance improvement for remote targets.", "\
2319 Show mode for reading from readonly sections.\n",
2320 NULL, NULL,
2321 &setlist, &showlist);
2322
2323 add_com ("monitor", class_obscure, do_monitor_command,
2324 "Send a command to the remote monitor (remote targets only).");
2325
2326 target_dcache = dcache_init ();
2327 }
This page took 0.075628 seconds and 4 git commands to generate.