* sparc64nbsd-nat.c (sparc64nbsd_supply_pcb): Fix comment.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct bp_target_info *);
107
108 static int debug_to_can_use_hw_breakpoint (int, int, int);
109
110 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
111
112 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
113
114 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
115
116 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
117
118 static int debug_to_stopped_by_watchpoint (void);
119
120 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
121
122 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
123 CORE_ADDR, CORE_ADDR, int);
124
125 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
126
127 static void debug_to_terminal_init (void);
128
129 static void debug_to_terminal_inferior (void);
130
131 static void debug_to_terminal_ours_for_output (void);
132
133 static void debug_to_terminal_save_ours (void);
134
135 static void debug_to_terminal_ours (void);
136
137 static void debug_to_terminal_info (char *, int);
138
139 static void debug_to_load (char *, int);
140
141 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
142
143 static int debug_to_can_run (void);
144
145 static void debug_to_notice_signals (ptid_t);
146
147 static void debug_to_stop (ptid_t);
148
149 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
150 wierd and mysterious ways. Putting the variable here lets those
151 wierd and mysterious ways keep building while they are being
152 converted to the inferior inheritance structure. */
153 struct target_ops deprecated_child_ops;
154
155 /* Pointer to array of target architecture structures; the size of the
156 array; the current index into the array; the allocated size of the
157 array. */
158 struct target_ops **target_structs;
159 unsigned target_struct_size;
160 unsigned target_struct_index;
161 unsigned target_struct_allocsize;
162 #define DEFAULT_ALLOCSIZE 10
163
164 /* The initial current target, so that there is always a semi-valid
165 current target. */
166
167 static struct target_ops dummy_target;
168
169 /* Top of target stack. */
170
171 static struct target_ops *target_stack;
172
173 /* The target structure we are currently using to talk to a process
174 or file or whatever "inferior" we have. */
175
176 struct target_ops current_target;
177
178 /* Command list for target. */
179
180 static struct cmd_list_element *targetlist = NULL;
181
182 /* Nonzero if we should trust readonly sections from the
183 executable when reading memory. */
184
185 static int trust_readonly = 0;
186
187 /* Nonzero if we should show true memory content including
188 memory breakpoint inserted by gdb. */
189
190 static int show_memory_breakpoints = 0;
191
192 /* Non-zero if we want to see trace of target level stuff. */
193
194 static int targetdebug = 0;
195 static void
196 show_targetdebug (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
200 }
201
202 static void setup_target_debug (void);
203
204 DCACHE *target_dcache;
205
206 /* The user just typed 'target' without the name of a target. */
207
208 static void
209 target_command (char *arg, int from_tty)
210 {
211 fputs_filtered ("Argument required (target name). Try `help target'\n",
212 gdb_stdout);
213 }
214
215 /* Add a possible target architecture to the list. */
216
217 void
218 add_target (struct target_ops *t)
219 {
220 /* Provide default values for all "must have" methods. */
221 if (t->to_xfer_partial == NULL)
222 t->to_xfer_partial = default_xfer_partial;
223
224 if (!target_structs)
225 {
226 target_struct_allocsize = DEFAULT_ALLOCSIZE;
227 target_structs = (struct target_ops **) xmalloc
228 (target_struct_allocsize * sizeof (*target_structs));
229 }
230 if (target_struct_size >= target_struct_allocsize)
231 {
232 target_struct_allocsize *= 2;
233 target_structs = (struct target_ops **)
234 xrealloc ((char *) target_structs,
235 target_struct_allocsize * sizeof (*target_structs));
236 }
237 target_structs[target_struct_size++] = t;
238
239 if (targetlist == NULL)
240 add_prefix_cmd ("target", class_run, target_command, _("\
241 Connect to a target machine or process.\n\
242 The first argument is the type or protocol of the target machine.\n\
243 Remaining arguments are interpreted by the target protocol. For more\n\
244 information on the arguments for a particular protocol, type\n\
245 `help target ' followed by the protocol name."),
246 &targetlist, "target ", 0, &cmdlist);
247 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
248 }
249
250 /* Stub functions */
251
252 void
253 target_ignore (void)
254 {
255 }
256
257 void
258 target_kill (void)
259 {
260 struct target_ops *t;
261
262 for (t = current_target.beneath; t != NULL; t = t->beneath)
263 if (t->to_kill != NULL)
264 {
265 if (targetdebug)
266 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
267
268 t->to_kill (t);
269 return;
270 }
271
272 noprocess ();
273 }
274
275 void
276 target_load (char *arg, int from_tty)
277 {
278 dcache_invalidate (target_dcache);
279 (*current_target.to_load) (arg, from_tty);
280 }
281
282 void
283 target_create_inferior (char *exec_file, char *args,
284 char **env, int from_tty)
285 {
286 struct target_ops *t;
287 for (t = current_target.beneath; t != NULL; t = t->beneath)
288 {
289 if (t->to_create_inferior != NULL)
290 {
291 t->to_create_inferior (t, exec_file, args, env, from_tty);
292 if (targetdebug)
293 fprintf_unfiltered (gdb_stdlog,
294 "target_create_inferior (%s, %s, xxx, %d)\n",
295 exec_file, args, from_tty);
296 return;
297 }
298 }
299
300 internal_error (__FILE__, __LINE__,
301 "could not find a target to create inferior");
302 }
303
304
305 static int
306 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
307 struct target_ops *t)
308 {
309 errno = EIO; /* Can't read/write this location */
310 return 0; /* No bytes handled */
311 }
312
313 static void
314 tcomplain (void)
315 {
316 error (_("You can't do that when your target is `%s'"),
317 current_target.to_shortname);
318 }
319
320 void
321 noprocess (void)
322 {
323 error (_("You can't do that without a process to debug."));
324 }
325
326 static int
327 nosymbol (char *name, CORE_ADDR *addrp)
328 {
329 return 1; /* Symbol does not exist in target env */
330 }
331
332 static void
333 nosupport_runtime (void)
334 {
335 if (ptid_equal (inferior_ptid, null_ptid))
336 noprocess ();
337 else
338 error (_("No run-time support for this"));
339 }
340
341
342 static void
343 default_terminal_info (char *args, int from_tty)
344 {
345 printf_unfiltered (_("No saved terminal information.\n"));
346 }
347
348 /* This is the default target_create_inferior and target_attach function.
349 If the current target is executing, it asks whether to kill it off.
350 If this function returns without calling error(), it has killed off
351 the target, and the operation should be attempted. */
352
353 static void
354 kill_or_be_killed (int from_tty)
355 {
356 if (target_has_execution)
357 {
358 printf_unfiltered (_("You are already running a program:\n"));
359 target_files_info ();
360 if (query (_("Kill it? ")))
361 {
362 target_kill ();
363 if (target_has_execution)
364 error (_("Killing the program did not help."));
365 return;
366 }
367 else
368 {
369 error (_("Program not killed."));
370 }
371 }
372 tcomplain ();
373 }
374
375 /* A default implementation for the to_get_ada_task_ptid target method.
376
377 This function builds the PTID by using both LWP and TID as part of
378 the PTID lwp and tid elements. The pid used is the pid of the
379 inferior_ptid. */
380
381 static ptid_t
382 default_get_ada_task_ptid (long lwp, long tid)
383 {
384 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
385 }
386
387 /* Go through the target stack from top to bottom, copying over zero
388 entries in current_target, then filling in still empty entries. In
389 effect, we are doing class inheritance through the pushed target
390 vectors.
391
392 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
393 is currently implemented, is that it discards any knowledge of
394 which target an inherited method originally belonged to.
395 Consequently, new new target methods should instead explicitly and
396 locally search the target stack for the target that can handle the
397 request. */
398
399 static void
400 update_current_target (void)
401 {
402 struct target_ops *t;
403
404 /* First, reset current's contents. */
405 memset (&current_target, 0, sizeof (current_target));
406
407 #define INHERIT(FIELD, TARGET) \
408 if (!current_target.FIELD) \
409 current_target.FIELD = (TARGET)->FIELD
410
411 for (t = target_stack; t; t = t->beneath)
412 {
413 INHERIT (to_shortname, t);
414 INHERIT (to_longname, t);
415 INHERIT (to_doc, t);
416 /* Do not inherit to_open. */
417 /* Do not inherit to_close. */
418 /* Do not inherit to_attach. */
419 INHERIT (to_post_attach, t);
420 INHERIT (to_attach_no_wait, t);
421 /* Do not inherit to_detach. */
422 /* Do not inherit to_disconnect. */
423 /* Do not inherit to_resume. */
424 /* Do not inherit to_wait. */
425 /* Do not inherit to_fetch_registers. */
426 /* Do not inherit to_store_registers. */
427 INHERIT (to_prepare_to_store, t);
428 INHERIT (deprecated_xfer_memory, t);
429 INHERIT (to_files_info, t);
430 INHERIT (to_insert_breakpoint, t);
431 INHERIT (to_remove_breakpoint, t);
432 INHERIT (to_can_use_hw_breakpoint, t);
433 INHERIT (to_insert_hw_breakpoint, t);
434 INHERIT (to_remove_hw_breakpoint, t);
435 INHERIT (to_insert_watchpoint, t);
436 INHERIT (to_remove_watchpoint, t);
437 INHERIT (to_stopped_data_address, t);
438 INHERIT (to_have_steppable_watchpoint, t);
439 INHERIT (to_have_continuable_watchpoint, t);
440 INHERIT (to_stopped_by_watchpoint, t);
441 INHERIT (to_watchpoint_addr_within_range, t);
442 INHERIT (to_region_ok_for_hw_watchpoint, t);
443 INHERIT (to_terminal_init, t);
444 INHERIT (to_terminal_inferior, t);
445 INHERIT (to_terminal_ours_for_output, t);
446 INHERIT (to_terminal_ours, t);
447 INHERIT (to_terminal_save_ours, t);
448 INHERIT (to_terminal_info, t);
449 /* Do not inherit to_kill. */
450 INHERIT (to_load, t);
451 INHERIT (to_lookup_symbol, t);
452 /* Do no inherit to_create_inferior. */
453 INHERIT (to_post_startup_inferior, t);
454 INHERIT (to_acknowledge_created_inferior, t);
455 INHERIT (to_insert_fork_catchpoint, t);
456 INHERIT (to_remove_fork_catchpoint, t);
457 INHERIT (to_insert_vfork_catchpoint, t);
458 INHERIT (to_remove_vfork_catchpoint, t);
459 /* Do not inherit to_follow_fork. */
460 INHERIT (to_insert_exec_catchpoint, t);
461 INHERIT (to_remove_exec_catchpoint, t);
462 INHERIT (to_has_exited, t);
463 /* Do not inherit to_mourn_inferiour. */
464 INHERIT (to_can_run, t);
465 INHERIT (to_notice_signals, t);
466 /* Do not inherit to_thread_alive. */
467 /* Do not inherit to_find_new_threads. */
468 /* Do not inherit to_pid_to_str. */
469 INHERIT (to_extra_thread_info, t);
470 INHERIT (to_stop, t);
471 /* Do not inherit to_xfer_partial. */
472 INHERIT (to_rcmd, t);
473 INHERIT (to_pid_to_exec_file, t);
474 INHERIT (to_log_command, t);
475 INHERIT (to_stratum, t);
476 INHERIT (to_has_all_memory, t);
477 INHERIT (to_has_memory, t);
478 INHERIT (to_has_stack, t);
479 INHERIT (to_has_registers, t);
480 INHERIT (to_has_execution, t);
481 INHERIT (to_has_thread_control, t);
482 INHERIT (to_sections, t);
483 INHERIT (to_sections_end, t);
484 INHERIT (to_can_async_p, t);
485 INHERIT (to_is_async_p, t);
486 INHERIT (to_async, t);
487 INHERIT (to_async_mask, t);
488 INHERIT (to_find_memory_regions, t);
489 INHERIT (to_make_corefile_notes, t);
490 /* Do not inherit to_get_thread_local_address. */
491 INHERIT (to_can_execute_reverse, t);
492 /* Do not inherit to_read_description. */
493 INHERIT (to_get_ada_task_ptid, t);
494 /* Do not inherit to_search_memory. */
495 INHERIT (to_supports_multi_process, t);
496 INHERIT (to_magic, t);
497 /* Do not inherit to_memory_map. */
498 /* Do not inherit to_flash_erase. */
499 /* Do not inherit to_flash_done. */
500 }
501 #undef INHERIT
502
503 /* Clean up a target struct so it no longer has any zero pointers in
504 it. Some entries are defaulted to a method that print an error,
505 others are hard-wired to a standard recursive default. */
506
507 #define de_fault(field, value) \
508 if (!current_target.field) \
509 current_target.field = value
510
511 de_fault (to_open,
512 (void (*) (char *, int))
513 tcomplain);
514 de_fault (to_close,
515 (void (*) (int))
516 target_ignore);
517 de_fault (to_post_attach,
518 (void (*) (int))
519 target_ignore);
520 de_fault (to_prepare_to_store,
521 (void (*) (struct regcache *))
522 noprocess);
523 de_fault (deprecated_xfer_memory,
524 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
525 nomemory);
526 de_fault (to_files_info,
527 (void (*) (struct target_ops *))
528 target_ignore);
529 de_fault (to_insert_breakpoint,
530 memory_insert_breakpoint);
531 de_fault (to_remove_breakpoint,
532 memory_remove_breakpoint);
533 de_fault (to_can_use_hw_breakpoint,
534 (int (*) (int, int, int))
535 return_zero);
536 de_fault (to_insert_hw_breakpoint,
537 (int (*) (struct bp_target_info *))
538 return_minus_one);
539 de_fault (to_remove_hw_breakpoint,
540 (int (*) (struct bp_target_info *))
541 return_minus_one);
542 de_fault (to_insert_watchpoint,
543 (int (*) (CORE_ADDR, int, int))
544 return_minus_one);
545 de_fault (to_remove_watchpoint,
546 (int (*) (CORE_ADDR, int, int))
547 return_minus_one);
548 de_fault (to_stopped_by_watchpoint,
549 (int (*) (void))
550 return_zero);
551 de_fault (to_stopped_data_address,
552 (int (*) (struct target_ops *, CORE_ADDR *))
553 return_zero);
554 de_fault (to_watchpoint_addr_within_range,
555 default_watchpoint_addr_within_range);
556 de_fault (to_region_ok_for_hw_watchpoint,
557 default_region_ok_for_hw_watchpoint);
558 de_fault (to_terminal_init,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_inferior,
562 (void (*) (void))
563 target_ignore);
564 de_fault (to_terminal_ours_for_output,
565 (void (*) (void))
566 target_ignore);
567 de_fault (to_terminal_ours,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_save_ours,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_info,
574 default_terminal_info);
575 de_fault (to_load,
576 (void (*) (char *, int))
577 tcomplain);
578 de_fault (to_lookup_symbol,
579 (int (*) (char *, CORE_ADDR *))
580 nosymbol);
581 de_fault (to_post_startup_inferior,
582 (void (*) (ptid_t))
583 target_ignore);
584 de_fault (to_acknowledge_created_inferior,
585 (void (*) (int))
586 target_ignore);
587 de_fault (to_insert_fork_catchpoint,
588 (void (*) (int))
589 tcomplain);
590 de_fault (to_remove_fork_catchpoint,
591 (int (*) (int))
592 tcomplain);
593 de_fault (to_insert_vfork_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_vfork_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_insert_exec_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_exec_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_has_exited,
606 (int (*) (int, int, int *))
607 return_zero);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_extra_thread_info,
614 (char *(*) (struct thread_info *))
615 return_zero);
616 de_fault (to_stop,
617 (void (*) (ptid_t))
618 target_ignore);
619 current_target.to_xfer_partial = current_xfer_partial;
620 de_fault (to_rcmd,
621 (void (*) (char *, struct ui_file *))
622 tcomplain);
623 de_fault (to_pid_to_exec_file,
624 (char *(*) (int))
625 return_zero);
626 de_fault (to_async,
627 (void (*) (void (*) (enum inferior_event_type, void*), void*))
628 tcomplain);
629 de_fault (to_async_mask,
630 (int (*) (int))
631 return_one);
632 current_target.to_read_description = NULL;
633 de_fault (to_get_ada_task_ptid,
634 (ptid_t (*) (long, long))
635 default_get_ada_task_ptid);
636 de_fault (to_supports_multi_process,
637 (int (*) (void))
638 return_zero);
639 #undef de_fault
640
641 /* Finally, position the target-stack beneath the squashed
642 "current_target". That way code looking for a non-inherited
643 target method can quickly and simply find it. */
644 current_target.beneath = target_stack;
645
646 if (targetdebug)
647 setup_target_debug ();
648 }
649
650 /* Mark OPS as a running target. This reverses the effect
651 of target_mark_exited. */
652
653 void
654 target_mark_running (struct target_ops *ops)
655 {
656 struct target_ops *t;
657
658 for (t = target_stack; t != NULL; t = t->beneath)
659 if (t == ops)
660 break;
661 if (t == NULL)
662 internal_error (__FILE__, __LINE__,
663 "Attempted to mark unpushed target \"%s\" as running",
664 ops->to_shortname);
665
666 ops->to_has_execution = 1;
667 ops->to_has_all_memory = 1;
668 ops->to_has_memory = 1;
669 ops->to_has_stack = 1;
670 ops->to_has_registers = 1;
671
672 update_current_target ();
673 }
674
675 /* Mark OPS as a non-running target. This reverses the effect
676 of target_mark_running. */
677
678 void
679 target_mark_exited (struct target_ops *ops)
680 {
681 struct target_ops *t;
682
683 for (t = target_stack; t != NULL; t = t->beneath)
684 if (t == ops)
685 break;
686 if (t == NULL)
687 internal_error (__FILE__, __LINE__,
688 "Attempted to mark unpushed target \"%s\" as running",
689 ops->to_shortname);
690
691 ops->to_has_execution = 0;
692 ops->to_has_all_memory = 0;
693 ops->to_has_memory = 0;
694 ops->to_has_stack = 0;
695 ops->to_has_registers = 0;
696
697 update_current_target ();
698 }
699
700 /* Push a new target type into the stack of the existing target accessors,
701 possibly superseding some of the existing accessors.
702
703 Result is zero if the pushed target ended up on top of the stack,
704 nonzero if at least one target is on top of it.
705
706 Rather than allow an empty stack, we always have the dummy target at
707 the bottom stratum, so we can call the function vectors without
708 checking them. */
709
710 int
711 push_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714
715 /* Check magic number. If wrong, it probably means someone changed
716 the struct definition, but not all the places that initialize one. */
717 if (t->to_magic != OPS_MAGIC)
718 {
719 fprintf_unfiltered (gdb_stderr,
720 "Magic number of %s target struct wrong\n",
721 t->to_shortname);
722 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
723 }
724
725 /* Find the proper stratum to install this target in. */
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 {
728 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
729 break;
730 }
731
732 /* If there's already targets at this stratum, remove them. */
733 /* FIXME: cagney/2003-10-15: I think this should be popping all
734 targets to CUR, and not just those at this stratum level. */
735 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
736 {
737 /* There's already something at this stratum level. Close it,
738 and un-hook it from the stack. */
739 struct target_ops *tmp = (*cur);
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp, 0);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750
751 /* Not on top? */
752 return (t != target_stack);
753 }
754
755 /* Remove a target_ops vector from the stack, wherever it may be.
756 Return how many times it was removed (0 or 1). */
757
758 int
759 unpush_target (struct target_ops *t)
760 {
761 struct target_ops **cur;
762 struct target_ops *tmp;
763
764 if (t->to_stratum == dummy_stratum)
765 internal_error (__FILE__, __LINE__,
766 "Attempt to unpush the dummy target");
767
768 /* Look for the specified target. Note that we assume that a target
769 can only occur once in the target stack. */
770
771 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
772 {
773 if ((*cur) == t)
774 break;
775 }
776
777 if ((*cur) == NULL)
778 return 0; /* Didn't find target_ops, quit now */
779
780 /* NOTE: cagney/2003-12-06: In '94 the close call was made
781 unconditional by moving it to before the above check that the
782 target was in the target stack (something about "Change the way
783 pushing and popping of targets work to support target overlays
784 and inheritance"). This doesn't make much sense - only open
785 targets should be closed. */
786 target_close (t, 0);
787
788 /* Unchain the target */
789 tmp = (*cur);
790 (*cur) = (*cur)->beneath;
791 tmp->beneath = NULL;
792
793 update_current_target ();
794
795 return 1;
796 }
797
798 void
799 pop_target (void)
800 {
801 target_close (target_stack, 0); /* Let it clean up */
802 if (unpush_target (target_stack) == 1)
803 return;
804
805 fprintf_unfiltered (gdb_stderr,
806 "pop_target couldn't find target %s\n",
807 current_target.to_shortname);
808 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
809 }
810
811 void
812 pop_all_targets_above (enum strata above_stratum, int quitting)
813 {
814 while ((int) (current_target.to_stratum) > (int) above_stratum)
815 {
816 target_close (target_stack, quitting);
817 if (!unpush_target (target_stack))
818 {
819 fprintf_unfiltered (gdb_stderr,
820 "pop_all_targets couldn't find target %s\n",
821 target_stack->to_shortname);
822 internal_error (__FILE__, __LINE__,
823 _("failed internal consistency check"));
824 break;
825 }
826 }
827 }
828
829 void
830 pop_all_targets (int quitting)
831 {
832 pop_all_targets_above (dummy_stratum, quitting);
833 }
834
835 /* Using the objfile specified in OBJFILE, find the address for the
836 current thread's thread-local storage with offset OFFSET. */
837 CORE_ADDR
838 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
839 {
840 volatile CORE_ADDR addr = 0;
841 struct target_ops *target;
842
843 for (target = current_target.beneath;
844 target != NULL;
845 target = target->beneath)
846 {
847 if (target->to_get_thread_local_address != NULL)
848 break;
849 }
850
851 if (target != NULL
852 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
853 {
854 ptid_t ptid = inferior_ptid;
855 volatile struct gdb_exception ex;
856
857 TRY_CATCH (ex, RETURN_MASK_ALL)
858 {
859 CORE_ADDR lm_addr;
860
861 /* Fetch the load module address for this objfile. */
862 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
863 objfile);
864 /* If it's 0, throw the appropriate exception. */
865 if (lm_addr == 0)
866 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
867 _("TLS load module not found"));
868
869 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
870 }
871 /* If an error occurred, print TLS related messages here. Otherwise,
872 throw the error to some higher catcher. */
873 if (ex.reason < 0)
874 {
875 int objfile_is_library = (objfile->flags & OBJF_SHARED);
876
877 switch (ex.error)
878 {
879 case TLS_NO_LIBRARY_SUPPORT_ERROR:
880 error (_("Cannot find thread-local variables in this thread library."));
881 break;
882 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
883 if (objfile_is_library)
884 error (_("Cannot find shared library `%s' in dynamic"
885 " linker's load module list"), objfile->name);
886 else
887 error (_("Cannot find executable file `%s' in dynamic"
888 " linker's load module list"), objfile->name);
889 break;
890 case TLS_NOT_ALLOCATED_YET_ERROR:
891 if (objfile_is_library)
892 error (_("The inferior has not yet allocated storage for"
893 " thread-local variables in\n"
894 "the shared library `%s'\n"
895 "for %s"),
896 objfile->name, target_pid_to_str (ptid));
897 else
898 error (_("The inferior has not yet allocated storage for"
899 " thread-local variables in\n"
900 "the executable `%s'\n"
901 "for %s"),
902 objfile->name, target_pid_to_str (ptid));
903 break;
904 case TLS_GENERIC_ERROR:
905 if (objfile_is_library)
906 error (_("Cannot find thread-local storage for %s, "
907 "shared library %s:\n%s"),
908 target_pid_to_str (ptid),
909 objfile->name, ex.message);
910 else
911 error (_("Cannot find thread-local storage for %s, "
912 "executable file %s:\n%s"),
913 target_pid_to_str (ptid),
914 objfile->name, ex.message);
915 break;
916 default:
917 throw_exception (ex);
918 break;
919 }
920 }
921 }
922 /* It wouldn't be wrong here to try a gdbarch method, too; finding
923 TLS is an ABI-specific thing. But we don't do that yet. */
924 else
925 error (_("Cannot find thread-local variables on this target"));
926
927 return addr;
928 }
929
930 #undef MIN
931 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
932
933 /* target_read_string -- read a null terminated string, up to LEN bytes,
934 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
935 Set *STRING to a pointer to malloc'd memory containing the data; the caller
936 is responsible for freeing it. Return the number of bytes successfully
937 read. */
938
939 int
940 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
941 {
942 int tlen, origlen, offset, i;
943 gdb_byte buf[4];
944 int errcode = 0;
945 char *buffer;
946 int buffer_allocated;
947 char *bufptr;
948 unsigned int nbytes_read = 0;
949
950 gdb_assert (string);
951
952 /* Small for testing. */
953 buffer_allocated = 4;
954 buffer = xmalloc (buffer_allocated);
955 bufptr = buffer;
956
957 origlen = len;
958
959 while (len > 0)
960 {
961 tlen = MIN (len, 4 - (memaddr & 3));
962 offset = memaddr & 3;
963
964 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
965 if (errcode != 0)
966 {
967 /* The transfer request might have crossed the boundary to an
968 unallocated region of memory. Retry the transfer, requesting
969 a single byte. */
970 tlen = 1;
971 offset = 0;
972 errcode = target_read_memory (memaddr, buf, 1);
973 if (errcode != 0)
974 goto done;
975 }
976
977 if (bufptr - buffer + tlen > buffer_allocated)
978 {
979 unsigned int bytes;
980 bytes = bufptr - buffer;
981 buffer_allocated *= 2;
982 buffer = xrealloc (buffer, buffer_allocated);
983 bufptr = buffer + bytes;
984 }
985
986 for (i = 0; i < tlen; i++)
987 {
988 *bufptr++ = buf[i + offset];
989 if (buf[i + offset] == '\000')
990 {
991 nbytes_read += i + 1;
992 goto done;
993 }
994 }
995
996 memaddr += tlen;
997 len -= tlen;
998 nbytes_read += tlen;
999 }
1000 done:
1001 *string = buffer;
1002 if (errnop != NULL)
1003 *errnop = errcode;
1004 return nbytes_read;
1005 }
1006
1007 /* Find a section containing ADDR. */
1008 struct section_table *
1009 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1010 {
1011 struct section_table *secp;
1012 for (secp = target->to_sections;
1013 secp < target->to_sections_end;
1014 secp++)
1015 {
1016 if (addr >= secp->addr && addr < secp->endaddr)
1017 return secp;
1018 }
1019 return NULL;
1020 }
1021
1022 /* Perform a partial memory transfer. The arguments and return
1023 value are just as for target_xfer_partial. */
1024
1025 static LONGEST
1026 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1027 ULONGEST memaddr, LONGEST len)
1028 {
1029 LONGEST res;
1030 int reg_len;
1031 struct mem_region *region;
1032
1033 /* Zero length requests are ok and require no work. */
1034 if (len == 0)
1035 return 0;
1036
1037 /* Try the executable file, if "trust-readonly-sections" is set. */
1038 if (readbuf != NULL && trust_readonly)
1039 {
1040 struct section_table *secp;
1041
1042 secp = target_section_by_addr (ops, memaddr);
1043 if (secp != NULL
1044 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1045 & SEC_READONLY))
1046 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1047 }
1048
1049 /* Likewise for accesses to unmapped overlay sections. */
1050 if (readbuf != NULL && overlay_debugging)
1051 {
1052 struct obj_section *section = find_pc_overlay (memaddr);
1053 if (pc_in_unmapped_range (memaddr, section))
1054 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1055 }
1056
1057 /* Try GDB's internal data cache. */
1058 region = lookup_mem_region (memaddr);
1059 /* region->hi == 0 means there's no upper bound. */
1060 if (memaddr + len < region->hi || region->hi == 0)
1061 reg_len = len;
1062 else
1063 reg_len = region->hi - memaddr;
1064
1065 switch (region->attrib.mode)
1066 {
1067 case MEM_RO:
1068 if (writebuf != NULL)
1069 return -1;
1070 break;
1071
1072 case MEM_WO:
1073 if (readbuf != NULL)
1074 return -1;
1075 break;
1076
1077 case MEM_FLASH:
1078 /* We only support writing to flash during "load" for now. */
1079 if (writebuf != NULL)
1080 error (_("Writing to flash memory forbidden in this context"));
1081 break;
1082
1083 case MEM_NONE:
1084 return -1;
1085 }
1086
1087 if (region->attrib.cache)
1088 {
1089 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1090 memory request will start back at current_target. */
1091 if (readbuf != NULL)
1092 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1093 reg_len, 0);
1094 else
1095 /* FIXME drow/2006-08-09: If we're going to preserve const
1096 correctness dcache_xfer_memory should take readbuf and
1097 writebuf. */
1098 res = dcache_xfer_memory (target_dcache, memaddr,
1099 (void *) writebuf,
1100 reg_len, 1);
1101 if (res <= 0)
1102 return -1;
1103 else
1104 {
1105 if (readbuf && !show_memory_breakpoints)
1106 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1107 return res;
1108 }
1109 }
1110
1111 /* If none of those methods found the memory we wanted, fall back
1112 to a target partial transfer. Normally a single call to
1113 to_xfer_partial is enough; if it doesn't recognize an object
1114 it will call the to_xfer_partial of the next target down.
1115 But for memory this won't do. Memory is the only target
1116 object which can be read from more than one valid target.
1117 A core file, for instance, could have some of memory but
1118 delegate other bits to the target below it. So, we must
1119 manually try all targets. */
1120
1121 do
1122 {
1123 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1124 readbuf, writebuf, memaddr, reg_len);
1125 if (res > 0)
1126 break;
1127
1128 /* We want to continue past core files to executables, but not
1129 past a running target's memory. */
1130 if (ops->to_has_all_memory)
1131 break;
1132
1133 ops = ops->beneath;
1134 }
1135 while (ops != NULL);
1136
1137 if (readbuf && !show_memory_breakpoints)
1138 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1139
1140 /* If we still haven't got anything, return the last error. We
1141 give up. */
1142 return res;
1143 }
1144
1145 static void
1146 restore_show_memory_breakpoints (void *arg)
1147 {
1148 show_memory_breakpoints = (uintptr_t) arg;
1149 }
1150
1151 struct cleanup *
1152 make_show_memory_breakpoints_cleanup (int show)
1153 {
1154 int current = show_memory_breakpoints;
1155 show_memory_breakpoints = show;
1156
1157 return make_cleanup (restore_show_memory_breakpoints,
1158 (void *) (uintptr_t) current);
1159 }
1160
1161 static LONGEST
1162 target_xfer_partial (struct target_ops *ops,
1163 enum target_object object, const char *annex,
1164 void *readbuf, const void *writebuf,
1165 ULONGEST offset, LONGEST len)
1166 {
1167 LONGEST retval;
1168
1169 gdb_assert (ops->to_xfer_partial != NULL);
1170
1171 /* If this is a memory transfer, let the memory-specific code
1172 have a look at it instead. Memory transfers are more
1173 complicated. */
1174 if (object == TARGET_OBJECT_MEMORY)
1175 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1176 else
1177 {
1178 enum target_object raw_object = object;
1179
1180 /* If this is a raw memory transfer, request the normal
1181 memory object from other layers. */
1182 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1183 raw_object = TARGET_OBJECT_MEMORY;
1184
1185 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1186 writebuf, offset, len);
1187 }
1188
1189 if (targetdebug)
1190 {
1191 const unsigned char *myaddr = NULL;
1192
1193 fprintf_unfiltered (gdb_stdlog,
1194 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1195 ops->to_shortname,
1196 (int) object,
1197 (annex ? annex : "(null)"),
1198 host_address_to_string (readbuf),
1199 host_address_to_string (writebuf),
1200 core_addr_to_string_nz (offset),
1201 plongest (len), plongest (retval));
1202
1203 if (readbuf)
1204 myaddr = readbuf;
1205 if (writebuf)
1206 myaddr = writebuf;
1207 if (retval > 0 && myaddr != NULL)
1208 {
1209 int i;
1210
1211 fputs_unfiltered (", bytes =", gdb_stdlog);
1212 for (i = 0; i < retval; i++)
1213 {
1214 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1215 {
1216 if (targetdebug < 2 && i > 0)
1217 {
1218 fprintf_unfiltered (gdb_stdlog, " ...");
1219 break;
1220 }
1221 fprintf_unfiltered (gdb_stdlog, "\n");
1222 }
1223
1224 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1225 }
1226 }
1227
1228 fputc_unfiltered ('\n', gdb_stdlog);
1229 }
1230 return retval;
1231 }
1232
1233 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1234 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1235 if any error occurs.
1236
1237 If an error occurs, no guarantee is made about the contents of the data at
1238 MYADDR. In particular, the caller should not depend upon partial reads
1239 filling the buffer with good data. There is no way for the caller to know
1240 how much good data might have been transfered anyway. Callers that can
1241 deal with partial reads should call target_read (which will retry until
1242 it makes no progress, and then return how much was transferred). */
1243
1244 int
1245 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1246 {
1247 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1248 myaddr, memaddr, len) == len)
1249 return 0;
1250 else
1251 return EIO;
1252 }
1253
1254 int
1255 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1256 {
1257 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1258 myaddr, memaddr, len) == len)
1259 return 0;
1260 else
1261 return EIO;
1262 }
1263
1264 /* Fetch the target's memory map. */
1265
1266 VEC(mem_region_s) *
1267 target_memory_map (void)
1268 {
1269 VEC(mem_region_s) *result;
1270 struct mem_region *last_one, *this_one;
1271 int ix;
1272 struct target_ops *t;
1273
1274 if (targetdebug)
1275 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1276
1277 for (t = current_target.beneath; t != NULL; t = t->beneath)
1278 if (t->to_memory_map != NULL)
1279 break;
1280
1281 if (t == NULL)
1282 return NULL;
1283
1284 result = t->to_memory_map (t);
1285 if (result == NULL)
1286 return NULL;
1287
1288 qsort (VEC_address (mem_region_s, result),
1289 VEC_length (mem_region_s, result),
1290 sizeof (struct mem_region), mem_region_cmp);
1291
1292 /* Check that regions do not overlap. Simultaneously assign
1293 a numbering for the "mem" commands to use to refer to
1294 each region. */
1295 last_one = NULL;
1296 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1297 {
1298 this_one->number = ix;
1299
1300 if (last_one && last_one->hi > this_one->lo)
1301 {
1302 warning (_("Overlapping regions in memory map: ignoring"));
1303 VEC_free (mem_region_s, result);
1304 return NULL;
1305 }
1306 last_one = this_one;
1307 }
1308
1309 return result;
1310 }
1311
1312 void
1313 target_flash_erase (ULONGEST address, LONGEST length)
1314 {
1315 struct target_ops *t;
1316
1317 for (t = current_target.beneath; t != NULL; t = t->beneath)
1318 if (t->to_flash_erase != NULL)
1319 {
1320 if (targetdebug)
1321 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1322 paddr (address), phex (length, 0));
1323 t->to_flash_erase (t, address, length);
1324 return;
1325 }
1326
1327 tcomplain ();
1328 }
1329
1330 void
1331 target_flash_done (void)
1332 {
1333 struct target_ops *t;
1334
1335 for (t = current_target.beneath; t != NULL; t = t->beneath)
1336 if (t->to_flash_done != NULL)
1337 {
1338 if (targetdebug)
1339 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1340 t->to_flash_done (t);
1341 return;
1342 }
1343
1344 tcomplain ();
1345 }
1346
1347 static void
1348 show_trust_readonly (struct ui_file *file, int from_tty,
1349 struct cmd_list_element *c, const char *value)
1350 {
1351 fprintf_filtered (file, _("\
1352 Mode for reading from readonly sections is %s.\n"),
1353 value);
1354 }
1355
1356 /* More generic transfers. */
1357
1358 static LONGEST
1359 default_xfer_partial (struct target_ops *ops, enum target_object object,
1360 const char *annex, gdb_byte *readbuf,
1361 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1362 {
1363 if (object == TARGET_OBJECT_MEMORY
1364 && ops->deprecated_xfer_memory != NULL)
1365 /* If available, fall back to the target's
1366 "deprecated_xfer_memory" method. */
1367 {
1368 int xfered = -1;
1369 errno = 0;
1370 if (writebuf != NULL)
1371 {
1372 void *buffer = xmalloc (len);
1373 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1374 memcpy (buffer, writebuf, len);
1375 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1376 1/*write*/, NULL, ops);
1377 do_cleanups (cleanup);
1378 }
1379 if (readbuf != NULL)
1380 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1381 0/*read*/, NULL, ops);
1382 if (xfered > 0)
1383 return xfered;
1384 else if (xfered == 0 && errno == 0)
1385 /* "deprecated_xfer_memory" uses 0, cross checked against
1386 ERRNO as one indication of an error. */
1387 return 0;
1388 else
1389 return -1;
1390 }
1391 else if (ops->beneath != NULL)
1392 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1393 readbuf, writebuf, offset, len);
1394 else
1395 return -1;
1396 }
1397
1398 /* The xfer_partial handler for the topmost target. Unlike the default,
1399 it does not need to handle memory specially; it just passes all
1400 requests down the stack. */
1401
1402 static LONGEST
1403 current_xfer_partial (struct target_ops *ops, enum target_object object,
1404 const char *annex, gdb_byte *readbuf,
1405 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1406 {
1407 if (ops->beneath != NULL)
1408 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1409 readbuf, writebuf, offset, len);
1410 else
1411 return -1;
1412 }
1413
1414 /* Target vector read/write partial wrapper functions.
1415
1416 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1417 (inbuf, outbuf)", instead of separate read/write methods, make life
1418 easier. */
1419
1420 static LONGEST
1421 target_read_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, gdb_byte *buf,
1424 ULONGEST offset, LONGEST len)
1425 {
1426 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1427 }
1428
1429 static LONGEST
1430 target_write_partial (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, const gdb_byte *buf,
1433 ULONGEST offset, LONGEST len)
1434 {
1435 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1436 }
1437
1438 /* Wrappers to perform the full transfer. */
1439 LONGEST
1440 target_read (struct target_ops *ops,
1441 enum target_object object,
1442 const char *annex, gdb_byte *buf,
1443 ULONGEST offset, LONGEST len)
1444 {
1445 LONGEST xfered = 0;
1446 while (xfered < len)
1447 {
1448 LONGEST xfer = target_read_partial (ops, object, annex,
1449 (gdb_byte *) buf + xfered,
1450 offset + xfered, len - xfered);
1451 /* Call an observer, notifying them of the xfer progress? */
1452 if (xfer == 0)
1453 return xfered;
1454 if (xfer < 0)
1455 return -1;
1456 xfered += xfer;
1457 QUIT;
1458 }
1459 return len;
1460 }
1461
1462 LONGEST
1463 target_read_until_error (struct target_ops *ops,
1464 enum target_object object,
1465 const char *annex, gdb_byte *buf,
1466 ULONGEST offset, LONGEST len)
1467 {
1468 LONGEST xfered = 0;
1469 while (xfered < len)
1470 {
1471 LONGEST xfer = target_read_partial (ops, object, annex,
1472 (gdb_byte *) buf + xfered,
1473 offset + xfered, len - xfered);
1474 /* Call an observer, notifying them of the xfer progress? */
1475 if (xfer == 0)
1476 return xfered;
1477 if (xfer < 0)
1478 {
1479 /* We've got an error. Try to read in smaller blocks. */
1480 ULONGEST start = offset + xfered;
1481 ULONGEST remaining = len - xfered;
1482 ULONGEST half;
1483
1484 /* If an attempt was made to read a random memory address,
1485 it's likely that the very first byte is not accessible.
1486 Try reading the first byte, to avoid doing log N tries
1487 below. */
1488 xfer = target_read_partial (ops, object, annex,
1489 (gdb_byte *) buf + xfered, start, 1);
1490 if (xfer <= 0)
1491 return xfered;
1492 start += 1;
1493 remaining -= 1;
1494 half = remaining/2;
1495
1496 while (half > 0)
1497 {
1498 xfer = target_read_partial (ops, object, annex,
1499 (gdb_byte *) buf + xfered,
1500 start, half);
1501 if (xfer == 0)
1502 return xfered;
1503 if (xfer < 0)
1504 {
1505 remaining = half;
1506 }
1507 else
1508 {
1509 /* We have successfully read the first half. So, the
1510 error must be in the second half. Adjust start and
1511 remaining to point at the second half. */
1512 xfered += xfer;
1513 start += xfer;
1514 remaining -= xfer;
1515 }
1516 half = remaining/2;
1517 }
1518
1519 return xfered;
1520 }
1521 xfered += xfer;
1522 QUIT;
1523 }
1524 return len;
1525 }
1526
1527
1528 /* An alternative to target_write with progress callbacks. */
1529
1530 LONGEST
1531 target_write_with_progress (struct target_ops *ops,
1532 enum target_object object,
1533 const char *annex, const gdb_byte *buf,
1534 ULONGEST offset, LONGEST len,
1535 void (*progress) (ULONGEST, void *), void *baton)
1536 {
1537 LONGEST xfered = 0;
1538
1539 /* Give the progress callback a chance to set up. */
1540 if (progress)
1541 (*progress) (0, baton);
1542
1543 while (xfered < len)
1544 {
1545 LONGEST xfer = target_write_partial (ops, object, annex,
1546 (gdb_byte *) buf + xfered,
1547 offset + xfered, len - xfered);
1548
1549 if (xfer == 0)
1550 return xfered;
1551 if (xfer < 0)
1552 return -1;
1553
1554 if (progress)
1555 (*progress) (xfer, baton);
1556
1557 xfered += xfer;
1558 QUIT;
1559 }
1560 return len;
1561 }
1562
1563 LONGEST
1564 target_write (struct target_ops *ops,
1565 enum target_object object,
1566 const char *annex, const gdb_byte *buf,
1567 ULONGEST offset, LONGEST len)
1568 {
1569 return target_write_with_progress (ops, object, annex, buf, offset, len,
1570 NULL, NULL);
1571 }
1572
1573 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1574 the size of the transferred data. PADDING additional bytes are
1575 available in *BUF_P. This is a helper function for
1576 target_read_alloc; see the declaration of that function for more
1577 information. */
1578
1579 static LONGEST
1580 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1581 const char *annex, gdb_byte **buf_p, int padding)
1582 {
1583 size_t buf_alloc, buf_pos;
1584 gdb_byte *buf;
1585 LONGEST n;
1586
1587 /* This function does not have a length parameter; it reads the
1588 entire OBJECT). Also, it doesn't support objects fetched partly
1589 from one target and partly from another (in a different stratum,
1590 e.g. a core file and an executable). Both reasons make it
1591 unsuitable for reading memory. */
1592 gdb_assert (object != TARGET_OBJECT_MEMORY);
1593
1594 /* Start by reading up to 4K at a time. The target will throttle
1595 this number down if necessary. */
1596 buf_alloc = 4096;
1597 buf = xmalloc (buf_alloc);
1598 buf_pos = 0;
1599 while (1)
1600 {
1601 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1602 buf_pos, buf_alloc - buf_pos - padding);
1603 if (n < 0)
1604 {
1605 /* An error occurred. */
1606 xfree (buf);
1607 return -1;
1608 }
1609 else if (n == 0)
1610 {
1611 /* Read all there was. */
1612 if (buf_pos == 0)
1613 xfree (buf);
1614 else
1615 *buf_p = buf;
1616 return buf_pos;
1617 }
1618
1619 buf_pos += n;
1620
1621 /* If the buffer is filling up, expand it. */
1622 if (buf_alloc < buf_pos * 2)
1623 {
1624 buf_alloc *= 2;
1625 buf = xrealloc (buf, buf_alloc);
1626 }
1627
1628 QUIT;
1629 }
1630 }
1631
1632 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1633 the size of the transferred data. See the declaration in "target.h"
1634 function for more information about the return value. */
1635
1636 LONGEST
1637 target_read_alloc (struct target_ops *ops, enum target_object object,
1638 const char *annex, gdb_byte **buf_p)
1639 {
1640 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1641 }
1642
1643 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1644 returned as a string, allocated using xmalloc. If an error occurs
1645 or the transfer is unsupported, NULL is returned. Empty objects
1646 are returned as allocated but empty strings. A warning is issued
1647 if the result contains any embedded NUL bytes. */
1648
1649 char *
1650 target_read_stralloc (struct target_ops *ops, enum target_object object,
1651 const char *annex)
1652 {
1653 gdb_byte *buffer;
1654 LONGEST transferred;
1655
1656 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1657
1658 if (transferred < 0)
1659 return NULL;
1660
1661 if (transferred == 0)
1662 return xstrdup ("");
1663
1664 buffer[transferred] = 0;
1665 if (strlen (buffer) < transferred)
1666 warning (_("target object %d, annex %s, "
1667 "contained unexpected null characters"),
1668 (int) object, annex ? annex : "(none)");
1669
1670 return (char *) buffer;
1671 }
1672
1673 /* Memory transfer methods. */
1674
1675 void
1676 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1677 LONGEST len)
1678 {
1679 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1680 != len)
1681 memory_error (EIO, addr);
1682 }
1683
1684 ULONGEST
1685 get_target_memory_unsigned (struct target_ops *ops,
1686 CORE_ADDR addr, int len)
1687 {
1688 gdb_byte buf[sizeof (ULONGEST)];
1689
1690 gdb_assert (len <= sizeof (buf));
1691 get_target_memory (ops, addr, buf, len);
1692 return extract_unsigned_integer (buf, len);
1693 }
1694
1695 static void
1696 target_info (char *args, int from_tty)
1697 {
1698 struct target_ops *t;
1699 int has_all_mem = 0;
1700
1701 if (symfile_objfile != NULL)
1702 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1703
1704 for (t = target_stack; t != NULL; t = t->beneath)
1705 {
1706 if (!t->to_has_memory)
1707 continue;
1708
1709 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1710 continue;
1711 if (has_all_mem)
1712 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1713 printf_unfiltered ("%s:\n", t->to_longname);
1714 (t->to_files_info) (t);
1715 has_all_mem = t->to_has_all_memory;
1716 }
1717 }
1718
1719 /* This function is called before any new inferior is created, e.g.
1720 by running a program, attaching, or connecting to a target.
1721 It cleans up any state from previous invocations which might
1722 change between runs. This is a subset of what target_preopen
1723 resets (things which might change between targets). */
1724
1725 void
1726 target_pre_inferior (int from_tty)
1727 {
1728 /* Clear out solib state. Otherwise the solib state of the previous
1729 inferior might have survived and is entirely wrong for the new
1730 target. This has been observed on GNU/Linux using glibc 2.3. How
1731 to reproduce:
1732
1733 bash$ ./foo&
1734 [1] 4711
1735 bash$ ./foo&
1736 [1] 4712
1737 bash$ gdb ./foo
1738 [...]
1739 (gdb) attach 4711
1740 (gdb) detach
1741 (gdb) attach 4712
1742 Cannot access memory at address 0xdeadbeef
1743 */
1744
1745 /* In some OSs, the shared library list is the same/global/shared
1746 across inferiors. If code is shared between processes, so are
1747 memory regions and features. */
1748 if (!gdbarch_has_global_solist (target_gdbarch))
1749 {
1750 no_shared_libraries (NULL, from_tty);
1751
1752 invalidate_target_mem_regions ();
1753
1754 target_clear_description ();
1755 }
1756 }
1757
1758 /* This is to be called by the open routine before it does
1759 anything. */
1760
1761 void
1762 target_preopen (int from_tty)
1763 {
1764 dont_repeat ();
1765
1766 if (target_has_execution)
1767 {
1768 if (!from_tty
1769 || query (_("A program is being debugged already. Kill it? ")))
1770 target_kill ();
1771 else
1772 error (_("Program not killed."));
1773 }
1774
1775 /* Calling target_kill may remove the target from the stack. But if
1776 it doesn't (which seems like a win for UDI), remove it now. */
1777 /* Leave the exec target, though. The user may be switching from a
1778 live process to a core of the same program. */
1779 pop_all_targets_above (file_stratum, 0);
1780
1781 target_pre_inferior (from_tty);
1782 }
1783
1784 /* Detach a target after doing deferred register stores. */
1785
1786 void
1787 target_detach (char *args, int from_tty)
1788 {
1789 struct target_ops* t;
1790
1791 if (gdbarch_has_global_solist (target_gdbarch))
1792 /* Don't remove global breakpoints here. They're removed on
1793 disconnection from the target. */
1794 ;
1795 else
1796 /* If we're in breakpoints-always-inserted mode, have to remove
1797 them before detaching. */
1798 remove_breakpoints ();
1799
1800 for (t = current_target.beneath; t != NULL; t = t->beneath)
1801 {
1802 if (t->to_detach != NULL)
1803 {
1804 t->to_detach (t, args, from_tty);
1805 if (targetdebug)
1806 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
1807 args, from_tty);
1808 return;
1809 }
1810 }
1811
1812 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1813 }
1814
1815 void
1816 target_disconnect (char *args, int from_tty)
1817 {
1818 struct target_ops *t;
1819
1820 /* If we're in breakpoints-always-inserted mode or if breakpoints
1821 are global across processes, we have to remove them before
1822 disconnecting. */
1823 remove_breakpoints ();
1824
1825 for (t = current_target.beneath; t != NULL; t = t->beneath)
1826 if (t->to_disconnect != NULL)
1827 {
1828 if (targetdebug)
1829 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1830 args, from_tty);
1831 t->to_disconnect (t, args, from_tty);
1832 return;
1833 }
1834
1835 tcomplain ();
1836 }
1837
1838 ptid_t
1839 target_wait (ptid_t ptid, struct target_waitstatus *status)
1840 {
1841 struct target_ops *t;
1842
1843 for (t = current_target.beneath; t != NULL; t = t->beneath)
1844 {
1845 if (t->to_wait != NULL)
1846 {
1847 ptid_t retval = (*t->to_wait) (t, ptid, status);
1848
1849 if (targetdebug)
1850 {
1851 char *status_string;
1852
1853 status_string = target_waitstatus_to_string (status);
1854 fprintf_unfiltered (gdb_stdlog,
1855 "target_wait (%d, status) = %d, %s\n",
1856 PIDGET (ptid), PIDGET (retval),
1857 status_string);
1858 xfree (status_string);
1859 }
1860
1861 return retval;
1862 }
1863 }
1864
1865 noprocess ();
1866 }
1867
1868 char *
1869 target_pid_to_str (ptid_t ptid)
1870 {
1871 struct target_ops *t;
1872
1873 for (t = current_target.beneath; t != NULL; t = t->beneath)
1874 {
1875 if (t->to_pid_to_str != NULL)
1876 return (*t->to_pid_to_str) (t, ptid);
1877 }
1878
1879 return normal_pid_to_str (ptid);
1880 }
1881
1882 void
1883 target_resume (ptid_t ptid, int step, enum target_signal signal)
1884 {
1885 struct target_ops *t;
1886
1887 dcache_invalidate (target_dcache);
1888
1889 for (t = current_target.beneath; t != NULL; t = t->beneath)
1890 {
1891 if (t->to_resume != NULL)
1892 {
1893 t->to_resume (t, ptid, step, signal);
1894 if (targetdebug)
1895 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
1896 PIDGET (ptid),
1897 step ? "step" : "continue",
1898 target_signal_to_name (signal));
1899
1900 set_executing (ptid, 1);
1901 set_running (ptid, 1);
1902 return;
1903 }
1904 }
1905
1906 noprocess ();
1907 }
1908 /* Look through the list of possible targets for a target that can
1909 follow forks. */
1910
1911 int
1912 target_follow_fork (int follow_child)
1913 {
1914 struct target_ops *t;
1915
1916 for (t = current_target.beneath; t != NULL; t = t->beneath)
1917 {
1918 if (t->to_follow_fork != NULL)
1919 {
1920 int retval = t->to_follow_fork (t, follow_child);
1921 if (targetdebug)
1922 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1923 follow_child, retval);
1924 return retval;
1925 }
1926 }
1927
1928 /* Some target returned a fork event, but did not know how to follow it. */
1929 internal_error (__FILE__, __LINE__,
1930 "could not find a target to follow fork");
1931 }
1932
1933 void
1934 target_mourn_inferior (void)
1935 {
1936 struct target_ops *t;
1937 for (t = current_target.beneath; t != NULL; t = t->beneath)
1938 {
1939 if (t->to_mourn_inferior != NULL)
1940 {
1941 t->to_mourn_inferior (t);
1942 if (targetdebug)
1943 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
1944 return;
1945 }
1946 }
1947
1948 internal_error (__FILE__, __LINE__,
1949 "could not find a target to follow mourn inferiour");
1950 }
1951
1952 /* Look for a target which can describe architectural features, starting
1953 from TARGET. If we find one, return its description. */
1954
1955 const struct target_desc *
1956 target_read_description (struct target_ops *target)
1957 {
1958 struct target_ops *t;
1959
1960 for (t = target; t != NULL; t = t->beneath)
1961 if (t->to_read_description != NULL)
1962 {
1963 const struct target_desc *tdesc;
1964
1965 tdesc = t->to_read_description (t);
1966 if (tdesc)
1967 return tdesc;
1968 }
1969
1970 return NULL;
1971 }
1972
1973 /* The default implementation of to_search_memory.
1974 This implements a basic search of memory, reading target memory and
1975 performing the search here (as opposed to performing the search in on the
1976 target side with, for example, gdbserver). */
1977
1978 int
1979 simple_search_memory (struct target_ops *ops,
1980 CORE_ADDR start_addr, ULONGEST search_space_len,
1981 const gdb_byte *pattern, ULONGEST pattern_len,
1982 CORE_ADDR *found_addrp)
1983 {
1984 /* NOTE: also defined in find.c testcase. */
1985 #define SEARCH_CHUNK_SIZE 16000
1986 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1987 /* Buffer to hold memory contents for searching. */
1988 gdb_byte *search_buf;
1989 unsigned search_buf_size;
1990 struct cleanup *old_cleanups;
1991
1992 search_buf_size = chunk_size + pattern_len - 1;
1993
1994 /* No point in trying to allocate a buffer larger than the search space. */
1995 if (search_space_len < search_buf_size)
1996 search_buf_size = search_space_len;
1997
1998 search_buf = malloc (search_buf_size);
1999 if (search_buf == NULL)
2000 error (_("Unable to allocate memory to perform the search."));
2001 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2002
2003 /* Prime the search buffer. */
2004
2005 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2006 search_buf, start_addr, search_buf_size) != search_buf_size)
2007 {
2008 warning (_("Unable to access target memory at %s, halting search."),
2009 hex_string (start_addr));
2010 do_cleanups (old_cleanups);
2011 return -1;
2012 }
2013
2014 /* Perform the search.
2015
2016 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2017 When we've scanned N bytes we copy the trailing bytes to the start and
2018 read in another N bytes. */
2019
2020 while (search_space_len >= pattern_len)
2021 {
2022 gdb_byte *found_ptr;
2023 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2024
2025 found_ptr = memmem (search_buf, nr_search_bytes,
2026 pattern, pattern_len);
2027
2028 if (found_ptr != NULL)
2029 {
2030 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2031 *found_addrp = found_addr;
2032 do_cleanups (old_cleanups);
2033 return 1;
2034 }
2035
2036 /* Not found in this chunk, skip to next chunk. */
2037
2038 /* Don't let search_space_len wrap here, it's unsigned. */
2039 if (search_space_len >= chunk_size)
2040 search_space_len -= chunk_size;
2041 else
2042 search_space_len = 0;
2043
2044 if (search_space_len >= pattern_len)
2045 {
2046 unsigned keep_len = search_buf_size - chunk_size;
2047 CORE_ADDR read_addr = start_addr + keep_len;
2048 int nr_to_read;
2049
2050 /* Copy the trailing part of the previous iteration to the front
2051 of the buffer for the next iteration. */
2052 gdb_assert (keep_len == pattern_len - 1);
2053 memcpy (search_buf, search_buf + chunk_size, keep_len);
2054
2055 nr_to_read = min (search_space_len - keep_len, chunk_size);
2056
2057 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2058 search_buf + keep_len, read_addr,
2059 nr_to_read) != nr_to_read)
2060 {
2061 warning (_("Unable to access target memory at %s, halting search."),
2062 hex_string (read_addr));
2063 do_cleanups (old_cleanups);
2064 return -1;
2065 }
2066
2067 start_addr += chunk_size;
2068 }
2069 }
2070
2071 /* Not found. */
2072
2073 do_cleanups (old_cleanups);
2074 return 0;
2075 }
2076
2077 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2078 sequence of bytes in PATTERN with length PATTERN_LEN.
2079
2080 The result is 1 if found, 0 if not found, and -1 if there was an error
2081 requiring halting of the search (e.g. memory read error).
2082 If the pattern is found the address is recorded in FOUND_ADDRP. */
2083
2084 int
2085 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2086 const gdb_byte *pattern, ULONGEST pattern_len,
2087 CORE_ADDR *found_addrp)
2088 {
2089 struct target_ops *t;
2090 int found;
2091
2092 /* We don't use INHERIT to set current_target.to_search_memory,
2093 so we have to scan the target stack and handle targetdebug
2094 ourselves. */
2095
2096 if (targetdebug)
2097 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2098 hex_string (start_addr));
2099
2100 for (t = current_target.beneath; t != NULL; t = t->beneath)
2101 if (t->to_search_memory != NULL)
2102 break;
2103
2104 if (t != NULL)
2105 {
2106 found = t->to_search_memory (t, start_addr, search_space_len,
2107 pattern, pattern_len, found_addrp);
2108 }
2109 else
2110 {
2111 /* If a special version of to_search_memory isn't available, use the
2112 simple version. */
2113 found = simple_search_memory (&current_target,
2114 start_addr, search_space_len,
2115 pattern, pattern_len, found_addrp);
2116 }
2117
2118 if (targetdebug)
2119 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2120
2121 return found;
2122 }
2123
2124 /* Look through the currently pushed targets. If none of them will
2125 be able to restart the currently running process, issue an error
2126 message. */
2127
2128 void
2129 target_require_runnable (void)
2130 {
2131 struct target_ops *t;
2132
2133 for (t = target_stack; t != NULL; t = t->beneath)
2134 {
2135 /* If this target knows how to create a new program, then
2136 assume we will still be able to after killing the current
2137 one. Either killing and mourning will not pop T, or else
2138 find_default_run_target will find it again. */
2139 if (t->to_create_inferior != NULL)
2140 return;
2141
2142 /* Do not worry about thread_stratum targets that can not
2143 create inferiors. Assume they will be pushed again if
2144 necessary, and continue to the process_stratum. */
2145 if (t->to_stratum == thread_stratum)
2146 continue;
2147
2148 error (_("\
2149 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2150 t->to_shortname);
2151 }
2152
2153 /* This function is only called if the target is running. In that
2154 case there should have been a process_stratum target and it
2155 should either know how to create inferiors, or not... */
2156 internal_error (__FILE__, __LINE__, "No targets found");
2157 }
2158
2159 /* Look through the list of possible targets for a target that can
2160 execute a run or attach command without any other data. This is
2161 used to locate the default process stratum.
2162
2163 If DO_MESG is not NULL, the result is always valid (error() is
2164 called for errors); else, return NULL on error. */
2165
2166 static struct target_ops *
2167 find_default_run_target (char *do_mesg)
2168 {
2169 struct target_ops **t;
2170 struct target_ops *runable = NULL;
2171 int count;
2172
2173 count = 0;
2174
2175 for (t = target_structs; t < target_structs + target_struct_size;
2176 ++t)
2177 {
2178 if ((*t)->to_can_run && target_can_run (*t))
2179 {
2180 runable = *t;
2181 ++count;
2182 }
2183 }
2184
2185 if (count != 1)
2186 {
2187 if (do_mesg)
2188 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2189 else
2190 return NULL;
2191 }
2192
2193 return runable;
2194 }
2195
2196 void
2197 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2198 {
2199 struct target_ops *t;
2200
2201 t = find_default_run_target ("attach");
2202 (t->to_attach) (t, args, from_tty);
2203 return;
2204 }
2205
2206 void
2207 find_default_create_inferior (struct target_ops *ops,
2208 char *exec_file, char *allargs, char **env,
2209 int from_tty)
2210 {
2211 struct target_ops *t;
2212
2213 t = find_default_run_target ("run");
2214 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2215 return;
2216 }
2217
2218 static int
2219 find_default_can_async_p (void)
2220 {
2221 struct target_ops *t;
2222
2223 /* This may be called before the target is pushed on the stack;
2224 look for the default process stratum. If there's none, gdb isn't
2225 configured with a native debugger, and target remote isn't
2226 connected yet. */
2227 t = find_default_run_target (NULL);
2228 if (t && t->to_can_async_p)
2229 return (t->to_can_async_p) ();
2230 return 0;
2231 }
2232
2233 static int
2234 find_default_is_async_p (void)
2235 {
2236 struct target_ops *t;
2237
2238 /* This may be called before the target is pushed on the stack;
2239 look for the default process stratum. If there's none, gdb isn't
2240 configured with a native debugger, and target remote isn't
2241 connected yet. */
2242 t = find_default_run_target (NULL);
2243 if (t && t->to_is_async_p)
2244 return (t->to_is_async_p) ();
2245 return 0;
2246 }
2247
2248 static int
2249 find_default_supports_non_stop (void)
2250 {
2251 struct target_ops *t;
2252
2253 t = find_default_run_target (NULL);
2254 if (t && t->to_supports_non_stop)
2255 return (t->to_supports_non_stop) ();
2256 return 0;
2257 }
2258
2259 int
2260 target_supports_non_stop (void)
2261 {
2262 struct target_ops *t;
2263 for (t = &current_target; t != NULL; t = t->beneath)
2264 if (t->to_supports_non_stop)
2265 return t->to_supports_non_stop ();
2266
2267 return 0;
2268 }
2269
2270
2271 char *
2272 target_get_osdata (const char *type)
2273 {
2274 char *document;
2275 struct target_ops *t;
2276
2277 /* If we're already connected to something that can get us OS
2278 related data, use it. Otherwise, try using the native
2279 target. */
2280 if (current_target.to_stratum >= process_stratum)
2281 t = current_target.beneath;
2282 else
2283 t = find_default_run_target ("get OS data");
2284
2285 if (!t)
2286 return NULL;
2287
2288 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2289 }
2290
2291 static int
2292 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2293 {
2294 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2295 }
2296
2297 static int
2298 default_watchpoint_addr_within_range (struct target_ops *target,
2299 CORE_ADDR addr,
2300 CORE_ADDR start, int length)
2301 {
2302 return addr >= start && addr < start + length;
2303 }
2304
2305 static int
2306 return_zero (void)
2307 {
2308 return 0;
2309 }
2310
2311 static int
2312 return_one (void)
2313 {
2314 return 1;
2315 }
2316
2317 static int
2318 return_minus_one (void)
2319 {
2320 return -1;
2321 }
2322
2323 /*
2324 * Resize the to_sections pointer. Also make sure that anyone that
2325 * was holding on to an old value of it gets updated.
2326 * Returns the old size.
2327 */
2328
2329 int
2330 target_resize_to_sections (struct target_ops *target, int num_added)
2331 {
2332 struct target_ops **t;
2333 struct section_table *old_value;
2334 int old_count;
2335
2336 old_value = target->to_sections;
2337
2338 if (target->to_sections)
2339 {
2340 old_count = target->to_sections_end - target->to_sections;
2341 target->to_sections = (struct section_table *)
2342 xrealloc ((char *) target->to_sections,
2343 (sizeof (struct section_table)) * (num_added + old_count));
2344 }
2345 else
2346 {
2347 old_count = 0;
2348 target->to_sections = (struct section_table *)
2349 xmalloc ((sizeof (struct section_table)) * num_added);
2350 }
2351 target->to_sections_end = target->to_sections + (num_added + old_count);
2352
2353 /* Check to see if anyone else was pointing to this structure.
2354 If old_value was null, then no one was. */
2355
2356 if (old_value)
2357 {
2358 for (t = target_structs; t < target_structs + target_struct_size;
2359 ++t)
2360 {
2361 if ((*t)->to_sections == old_value)
2362 {
2363 (*t)->to_sections = target->to_sections;
2364 (*t)->to_sections_end = target->to_sections_end;
2365 }
2366 }
2367 /* There is a flattened view of the target stack in current_target,
2368 so its to_sections pointer might also need updating. */
2369 if (current_target.to_sections == old_value)
2370 {
2371 current_target.to_sections = target->to_sections;
2372 current_target.to_sections_end = target->to_sections_end;
2373 }
2374 }
2375
2376 return old_count;
2377
2378 }
2379
2380 /* Remove all target sections taken from ABFD.
2381
2382 Scan the current target stack for targets whose section tables
2383 refer to sections from BFD, and remove those sections. We use this
2384 when we notice that the inferior has unloaded a shared object, for
2385 example. */
2386 void
2387 remove_target_sections (bfd *abfd)
2388 {
2389 struct target_ops **t;
2390
2391 for (t = target_structs; t < target_structs + target_struct_size; t++)
2392 {
2393 struct section_table *src, *dest;
2394
2395 dest = (*t)->to_sections;
2396 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2397 if (src->bfd != abfd)
2398 {
2399 /* Keep this section. */
2400 if (dest < src) *dest = *src;
2401 dest++;
2402 }
2403
2404 /* If we've dropped any sections, resize the section table. */
2405 if (dest < src)
2406 target_resize_to_sections (*t, dest - src);
2407 }
2408 }
2409
2410
2411
2412
2413 /* Find a single runnable target in the stack and return it. If for
2414 some reason there is more than one, return NULL. */
2415
2416 struct target_ops *
2417 find_run_target (void)
2418 {
2419 struct target_ops **t;
2420 struct target_ops *runable = NULL;
2421 int count;
2422
2423 count = 0;
2424
2425 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2426 {
2427 if ((*t)->to_can_run && target_can_run (*t))
2428 {
2429 runable = *t;
2430 ++count;
2431 }
2432 }
2433
2434 return (count == 1 ? runable : NULL);
2435 }
2436
2437 /* Find a single core_stratum target in the list of targets and return it.
2438 If for some reason there is more than one, return NULL. */
2439
2440 struct target_ops *
2441 find_core_target (void)
2442 {
2443 struct target_ops **t;
2444 struct target_ops *runable = NULL;
2445 int count;
2446
2447 count = 0;
2448
2449 for (t = target_structs; t < target_structs + target_struct_size;
2450 ++t)
2451 {
2452 if ((*t)->to_stratum == core_stratum)
2453 {
2454 runable = *t;
2455 ++count;
2456 }
2457 }
2458
2459 return (count == 1 ? runable : NULL);
2460 }
2461
2462 /*
2463 * Find the next target down the stack from the specified target.
2464 */
2465
2466 struct target_ops *
2467 find_target_beneath (struct target_ops *t)
2468 {
2469 return t->beneath;
2470 }
2471
2472 \f
2473 /* The inferior process has died. Long live the inferior! */
2474
2475 void
2476 generic_mourn_inferior (void)
2477 {
2478 ptid_t ptid;
2479
2480 ptid = inferior_ptid;
2481 inferior_ptid = null_ptid;
2482
2483 if (!ptid_equal (ptid, null_ptid))
2484 {
2485 int pid = ptid_get_pid (ptid);
2486 delete_inferior (pid);
2487 }
2488
2489 breakpoint_init_inferior (inf_exited);
2490 registers_changed ();
2491
2492 reopen_exec_file ();
2493 reinit_frame_cache ();
2494
2495 if (deprecated_detach_hook)
2496 deprecated_detach_hook ();
2497 }
2498 \f
2499 /* Helper function for child_wait and the derivatives of child_wait.
2500 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2501 translation of that in OURSTATUS. */
2502 void
2503 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2504 {
2505 if (WIFEXITED (hoststatus))
2506 {
2507 ourstatus->kind = TARGET_WAITKIND_EXITED;
2508 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2509 }
2510 else if (!WIFSTOPPED (hoststatus))
2511 {
2512 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2513 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2514 }
2515 else
2516 {
2517 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2518 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2519 }
2520 }
2521 \f
2522 /* Convert a normal process ID to a string. Returns the string in a
2523 static buffer. */
2524
2525 char *
2526 normal_pid_to_str (ptid_t ptid)
2527 {
2528 static char buf[32];
2529
2530 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2531 return buf;
2532 }
2533
2534 static char *
2535 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2536 {
2537 return normal_pid_to_str (ptid);
2538 }
2539
2540 /* Error-catcher for target_find_memory_regions */
2541 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2542 {
2543 error (_("No target."));
2544 return 0;
2545 }
2546
2547 /* Error-catcher for target_make_corefile_notes */
2548 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2549 {
2550 error (_("No target."));
2551 return NULL;
2552 }
2553
2554 /* Set up the handful of non-empty slots needed by the dummy target
2555 vector. */
2556
2557 static void
2558 init_dummy_target (void)
2559 {
2560 dummy_target.to_shortname = "None";
2561 dummy_target.to_longname = "None";
2562 dummy_target.to_doc = "";
2563 dummy_target.to_attach = find_default_attach;
2564 dummy_target.to_detach =
2565 (void (*)(struct target_ops *, char *, int))target_ignore;
2566 dummy_target.to_create_inferior = find_default_create_inferior;
2567 dummy_target.to_can_async_p = find_default_can_async_p;
2568 dummy_target.to_is_async_p = find_default_is_async_p;
2569 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2570 dummy_target.to_pid_to_str = dummy_pid_to_str;
2571 dummy_target.to_stratum = dummy_stratum;
2572 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2573 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2574 dummy_target.to_xfer_partial = default_xfer_partial;
2575 dummy_target.to_magic = OPS_MAGIC;
2576 }
2577 \f
2578 static void
2579 debug_to_open (char *args, int from_tty)
2580 {
2581 debug_target.to_open (args, from_tty);
2582
2583 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2584 }
2585
2586 void
2587 target_close (struct target_ops *targ, int quitting)
2588 {
2589 if (targ->to_xclose != NULL)
2590 targ->to_xclose (targ, quitting);
2591 else if (targ->to_close != NULL)
2592 targ->to_close (quitting);
2593
2594 if (targetdebug)
2595 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2596 }
2597
2598 void
2599 target_attach (char *args, int from_tty)
2600 {
2601 struct target_ops *t;
2602 for (t = current_target.beneath; t != NULL; t = t->beneath)
2603 {
2604 if (t->to_attach != NULL)
2605 {
2606 t->to_attach (t, args, from_tty);
2607 if (targetdebug)
2608 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2609 args, from_tty);
2610 return;
2611 }
2612 }
2613
2614 internal_error (__FILE__, __LINE__,
2615 "could not find a target to attach");
2616 }
2617
2618 int
2619 target_thread_alive (ptid_t ptid)
2620 {
2621 struct target_ops *t;
2622 for (t = current_target.beneath; t != NULL; t = t->beneath)
2623 {
2624 if (t->to_thread_alive != NULL)
2625 {
2626 int retval;
2627
2628 retval = t->to_thread_alive (t, ptid);
2629 if (targetdebug)
2630 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2631 PIDGET (ptid), retval);
2632
2633 return retval;
2634 }
2635 }
2636
2637 return 0;
2638 }
2639
2640 void
2641 target_find_new_threads (void)
2642 {
2643 struct target_ops *t;
2644 for (t = current_target.beneath; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_find_new_threads != NULL)
2647 {
2648 t->to_find_new_threads (t);
2649 if (targetdebug)
2650 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2651
2652 return;
2653 }
2654 }
2655 }
2656
2657 static void
2658 debug_to_post_attach (int pid)
2659 {
2660 debug_target.to_post_attach (pid);
2661
2662 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2663 }
2664
2665 /* Return a pretty printed form of target_waitstatus.
2666 Space for the result is malloc'd, caller must free. */
2667
2668 char *
2669 target_waitstatus_to_string (const struct target_waitstatus *ws)
2670 {
2671 const char *kind_str = "status->kind = ";
2672
2673 switch (ws->kind)
2674 {
2675 case TARGET_WAITKIND_EXITED:
2676 return xstrprintf ("%sexited, status = %d",
2677 kind_str, ws->value.integer);
2678 case TARGET_WAITKIND_STOPPED:
2679 return xstrprintf ("%sstopped, signal = %s",
2680 kind_str, target_signal_to_name (ws->value.sig));
2681 case TARGET_WAITKIND_SIGNALLED:
2682 return xstrprintf ("%ssignalled, signal = %s",
2683 kind_str, target_signal_to_name (ws->value.sig));
2684 case TARGET_WAITKIND_LOADED:
2685 return xstrprintf ("%sloaded", kind_str);
2686 case TARGET_WAITKIND_FORKED:
2687 return xstrprintf ("%sforked", kind_str);
2688 case TARGET_WAITKIND_VFORKED:
2689 return xstrprintf ("%svforked", kind_str);
2690 case TARGET_WAITKIND_EXECD:
2691 return xstrprintf ("%sexecd", kind_str);
2692 case TARGET_WAITKIND_SYSCALL_ENTRY:
2693 return xstrprintf ("%ssyscall-entry", kind_str);
2694 case TARGET_WAITKIND_SYSCALL_RETURN:
2695 return xstrprintf ("%ssyscall-return", kind_str);
2696 case TARGET_WAITKIND_SPURIOUS:
2697 return xstrprintf ("%sspurious", kind_str);
2698 case TARGET_WAITKIND_IGNORE:
2699 return xstrprintf ("%signore", kind_str);
2700 case TARGET_WAITKIND_NO_HISTORY:
2701 return xstrprintf ("%sno-history", kind_str);
2702 default:
2703 return xstrprintf ("%sunknown???", kind_str);
2704 }
2705 }
2706
2707 static void
2708 debug_print_register (const char * func,
2709 struct regcache *regcache, int regno)
2710 {
2711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2712 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2713 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2714 && gdbarch_register_name (gdbarch, regno) != NULL
2715 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2716 fprintf_unfiltered (gdb_stdlog, "(%s)",
2717 gdbarch_register_name (gdbarch, regno));
2718 else
2719 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2720 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2721 {
2722 int i, size = register_size (gdbarch, regno);
2723 unsigned char buf[MAX_REGISTER_SIZE];
2724 regcache_raw_collect (regcache, regno, buf);
2725 fprintf_unfiltered (gdb_stdlog, " = ");
2726 for (i = 0; i < size; i++)
2727 {
2728 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2729 }
2730 if (size <= sizeof (LONGEST))
2731 {
2732 ULONGEST val = extract_unsigned_integer (buf, size);
2733 fprintf_unfiltered (gdb_stdlog, " %s %s",
2734 core_addr_to_string_nz (val), plongest (val));
2735 }
2736 }
2737 fprintf_unfiltered (gdb_stdlog, "\n");
2738 }
2739
2740 void
2741 target_fetch_registers (struct regcache *regcache, int regno)
2742 {
2743 struct target_ops *t;
2744 for (t = current_target.beneath; t != NULL; t = t->beneath)
2745 {
2746 if (t->to_fetch_registers != NULL)
2747 {
2748 t->to_fetch_registers (t, regcache, regno);
2749 if (targetdebug)
2750 debug_print_register ("target_fetch_registers", regcache, regno);
2751 return;
2752 }
2753 }
2754 }
2755
2756 void
2757 target_store_registers (struct regcache *regcache, int regno)
2758 {
2759
2760 struct target_ops *t;
2761 for (t = current_target.beneath; t != NULL; t = t->beneath)
2762 {
2763 if (t->to_store_registers != NULL)
2764 {
2765 t->to_store_registers (t, regcache, regno);
2766 if (targetdebug)
2767 {
2768 debug_print_register ("target_store_registers", regcache, regno);
2769 }
2770 return;
2771 }
2772 }
2773
2774 noprocess ();
2775 }
2776
2777 static void
2778 debug_to_prepare_to_store (struct regcache *regcache)
2779 {
2780 debug_target.to_prepare_to_store (regcache);
2781
2782 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2783 }
2784
2785 static int
2786 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2787 int write, struct mem_attrib *attrib,
2788 struct target_ops *target)
2789 {
2790 int retval;
2791
2792 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2793 attrib, target);
2794
2795 fprintf_unfiltered (gdb_stdlog,
2796 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2797 paddress (memaddr), len, write ? "write" : "read",
2798 retval);
2799
2800 if (retval > 0)
2801 {
2802 int i;
2803
2804 fputs_unfiltered (", bytes =", gdb_stdlog);
2805 for (i = 0; i < retval; i++)
2806 {
2807 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2808 {
2809 if (targetdebug < 2 && i > 0)
2810 {
2811 fprintf_unfiltered (gdb_stdlog, " ...");
2812 break;
2813 }
2814 fprintf_unfiltered (gdb_stdlog, "\n");
2815 }
2816
2817 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2818 }
2819 }
2820
2821 fputc_unfiltered ('\n', gdb_stdlog);
2822
2823 return retval;
2824 }
2825
2826 static void
2827 debug_to_files_info (struct target_ops *target)
2828 {
2829 debug_target.to_files_info (target);
2830
2831 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2832 }
2833
2834 static int
2835 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2836 {
2837 int retval;
2838
2839 retval = debug_target.to_insert_breakpoint (bp_tgt);
2840
2841 fprintf_unfiltered (gdb_stdlog,
2842 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2843 (unsigned long) bp_tgt->placed_address,
2844 (unsigned long) retval);
2845 return retval;
2846 }
2847
2848 static int
2849 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2850 {
2851 int retval;
2852
2853 retval = debug_target.to_remove_breakpoint (bp_tgt);
2854
2855 fprintf_unfiltered (gdb_stdlog,
2856 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2857 (unsigned long) bp_tgt->placed_address,
2858 (unsigned long) retval);
2859 return retval;
2860 }
2861
2862 static int
2863 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2864 {
2865 int retval;
2866
2867 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2868
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2871 (unsigned long) type,
2872 (unsigned long) cnt,
2873 (unsigned long) from_tty,
2874 (unsigned long) retval);
2875 return retval;
2876 }
2877
2878 static int
2879 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2880 {
2881 CORE_ADDR retval;
2882
2883 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2884
2885 fprintf_unfiltered (gdb_stdlog,
2886 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2887 (unsigned long) addr,
2888 (unsigned long) len,
2889 (unsigned long) retval);
2890 return retval;
2891 }
2892
2893 static int
2894 debug_to_stopped_by_watchpoint (void)
2895 {
2896 int retval;
2897
2898 retval = debug_target.to_stopped_by_watchpoint ();
2899
2900 fprintf_unfiltered (gdb_stdlog,
2901 "STOPPED_BY_WATCHPOINT () = %ld\n",
2902 (unsigned long) retval);
2903 return retval;
2904 }
2905
2906 static int
2907 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2908 {
2909 int retval;
2910
2911 retval = debug_target.to_stopped_data_address (target, addr);
2912
2913 fprintf_unfiltered (gdb_stdlog,
2914 "target_stopped_data_address ([0x%lx]) = %ld\n",
2915 (unsigned long)*addr,
2916 (unsigned long)retval);
2917 return retval;
2918 }
2919
2920 static int
2921 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2922 CORE_ADDR addr,
2923 CORE_ADDR start, int length)
2924 {
2925 int retval;
2926
2927 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2928 start, length);
2929
2930 fprintf_filtered (gdb_stdlog,
2931 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2932 (unsigned long) addr, (unsigned long) start, length,
2933 retval);
2934 return retval;
2935 }
2936
2937 static int
2938 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2939 {
2940 int retval;
2941
2942 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2943
2944 fprintf_unfiltered (gdb_stdlog,
2945 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2946 (unsigned long) bp_tgt->placed_address,
2947 (unsigned long) retval);
2948 return retval;
2949 }
2950
2951 static int
2952 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2953 {
2954 int retval;
2955
2956 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2957
2958 fprintf_unfiltered (gdb_stdlog,
2959 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2960 (unsigned long) bp_tgt->placed_address,
2961 (unsigned long) retval);
2962 return retval;
2963 }
2964
2965 static int
2966 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2967 {
2968 int retval;
2969
2970 retval = debug_target.to_insert_watchpoint (addr, len, type);
2971
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2974 (unsigned long) addr, len, type, (unsigned long) retval);
2975 return retval;
2976 }
2977
2978 static int
2979 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2980 {
2981 int retval;
2982
2983 retval = debug_target.to_remove_watchpoint (addr, len, type);
2984
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2987 (unsigned long) addr, len, type, (unsigned long) retval);
2988 return retval;
2989 }
2990
2991 static void
2992 debug_to_terminal_init (void)
2993 {
2994 debug_target.to_terminal_init ();
2995
2996 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2997 }
2998
2999 static void
3000 debug_to_terminal_inferior (void)
3001 {
3002 debug_target.to_terminal_inferior ();
3003
3004 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3005 }
3006
3007 static void
3008 debug_to_terminal_ours_for_output (void)
3009 {
3010 debug_target.to_terminal_ours_for_output ();
3011
3012 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3013 }
3014
3015 static void
3016 debug_to_terminal_ours (void)
3017 {
3018 debug_target.to_terminal_ours ();
3019
3020 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3021 }
3022
3023 static void
3024 debug_to_terminal_save_ours (void)
3025 {
3026 debug_target.to_terminal_save_ours ();
3027
3028 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3029 }
3030
3031 static void
3032 debug_to_terminal_info (char *arg, int from_tty)
3033 {
3034 debug_target.to_terminal_info (arg, from_tty);
3035
3036 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3037 from_tty);
3038 }
3039
3040 static void
3041 debug_to_load (char *args, int from_tty)
3042 {
3043 debug_target.to_load (args, from_tty);
3044
3045 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3046 }
3047
3048 static int
3049 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3050 {
3051 int retval;
3052
3053 retval = debug_target.to_lookup_symbol (name, addrp);
3054
3055 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3056
3057 return retval;
3058 }
3059
3060 static void
3061 debug_to_post_startup_inferior (ptid_t ptid)
3062 {
3063 debug_target.to_post_startup_inferior (ptid);
3064
3065 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3066 PIDGET (ptid));
3067 }
3068
3069 static void
3070 debug_to_acknowledge_created_inferior (int pid)
3071 {
3072 debug_target.to_acknowledge_created_inferior (pid);
3073
3074 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3075 pid);
3076 }
3077
3078 static void
3079 debug_to_insert_fork_catchpoint (int pid)
3080 {
3081 debug_target.to_insert_fork_catchpoint (pid);
3082
3083 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3084 pid);
3085 }
3086
3087 static int
3088 debug_to_remove_fork_catchpoint (int pid)
3089 {
3090 int retval;
3091
3092 retval = debug_target.to_remove_fork_catchpoint (pid);
3093
3094 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3095 pid, retval);
3096
3097 return retval;
3098 }
3099
3100 static void
3101 debug_to_insert_vfork_catchpoint (int pid)
3102 {
3103 debug_target.to_insert_vfork_catchpoint (pid);
3104
3105 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3106 pid);
3107 }
3108
3109 static int
3110 debug_to_remove_vfork_catchpoint (int pid)
3111 {
3112 int retval;
3113
3114 retval = debug_target.to_remove_vfork_catchpoint (pid);
3115
3116 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3117 pid, retval);
3118
3119 return retval;
3120 }
3121
3122 static void
3123 debug_to_insert_exec_catchpoint (int pid)
3124 {
3125 debug_target.to_insert_exec_catchpoint (pid);
3126
3127 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3128 pid);
3129 }
3130
3131 static int
3132 debug_to_remove_exec_catchpoint (int pid)
3133 {
3134 int retval;
3135
3136 retval = debug_target.to_remove_exec_catchpoint (pid);
3137
3138 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3139 pid, retval);
3140
3141 return retval;
3142 }
3143
3144 static int
3145 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3146 {
3147 int has_exited;
3148
3149 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3150
3151 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3152 pid, wait_status, *exit_status, has_exited);
3153
3154 return has_exited;
3155 }
3156
3157 static int
3158 debug_to_can_run (void)
3159 {
3160 int retval;
3161
3162 retval = debug_target.to_can_run ();
3163
3164 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3165
3166 return retval;
3167 }
3168
3169 static void
3170 debug_to_notice_signals (ptid_t ptid)
3171 {
3172 debug_target.to_notice_signals (ptid);
3173
3174 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3175 PIDGET (ptid));
3176 }
3177
3178 static void
3179 debug_to_stop (ptid_t ptid)
3180 {
3181 debug_target.to_stop (ptid);
3182
3183 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3184 target_pid_to_str (ptid));
3185 }
3186
3187 static void
3188 debug_to_rcmd (char *command,
3189 struct ui_file *outbuf)
3190 {
3191 debug_target.to_rcmd (command, outbuf);
3192 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3193 }
3194
3195 static char *
3196 debug_to_pid_to_exec_file (int pid)
3197 {
3198 char *exec_file;
3199
3200 exec_file = debug_target.to_pid_to_exec_file (pid);
3201
3202 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3203 pid, exec_file);
3204
3205 return exec_file;
3206 }
3207
3208 static void
3209 setup_target_debug (void)
3210 {
3211 memcpy (&debug_target, &current_target, sizeof debug_target);
3212
3213 current_target.to_open = debug_to_open;
3214 current_target.to_post_attach = debug_to_post_attach;
3215 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3216 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3217 current_target.to_files_info = debug_to_files_info;
3218 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3219 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3220 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3221 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3222 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3223 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3224 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3225 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3226 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3227 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3228 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3229 current_target.to_terminal_init = debug_to_terminal_init;
3230 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3231 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3232 current_target.to_terminal_ours = debug_to_terminal_ours;
3233 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3234 current_target.to_terminal_info = debug_to_terminal_info;
3235 current_target.to_load = debug_to_load;
3236 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3237 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3238 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3239 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3240 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3241 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3242 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3243 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3244 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3245 current_target.to_has_exited = debug_to_has_exited;
3246 current_target.to_can_run = debug_to_can_run;
3247 current_target.to_notice_signals = debug_to_notice_signals;
3248 current_target.to_stop = debug_to_stop;
3249 current_target.to_rcmd = debug_to_rcmd;
3250 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3251 }
3252 \f
3253
3254 static char targ_desc[] =
3255 "Names of targets and files being debugged.\n\
3256 Shows the entire stack of targets currently in use (including the exec-file,\n\
3257 core-file, and process, if any), as well as the symbol file name.";
3258
3259 static void
3260 do_monitor_command (char *cmd,
3261 int from_tty)
3262 {
3263 if ((current_target.to_rcmd
3264 == (void (*) (char *, struct ui_file *)) tcomplain)
3265 || (current_target.to_rcmd == debug_to_rcmd
3266 && (debug_target.to_rcmd
3267 == (void (*) (char *, struct ui_file *)) tcomplain)))
3268 error (_("\"monitor\" command not supported by this target."));
3269 target_rcmd (cmd, gdb_stdtarg);
3270 }
3271
3272 /* Print the name of each layers of our target stack. */
3273
3274 static void
3275 maintenance_print_target_stack (char *cmd, int from_tty)
3276 {
3277 struct target_ops *t;
3278
3279 printf_filtered (_("The current target stack is:\n"));
3280
3281 for (t = target_stack; t != NULL; t = t->beneath)
3282 {
3283 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3284 }
3285 }
3286
3287 /* Controls if async mode is permitted. */
3288 int target_async_permitted = 0;
3289
3290 /* The set command writes to this variable. If the inferior is
3291 executing, linux_nat_async_permitted is *not* updated. */
3292 static int target_async_permitted_1 = 0;
3293
3294 static void
3295 set_maintenance_target_async_permitted (char *args, int from_tty,
3296 struct cmd_list_element *c)
3297 {
3298 if (target_has_execution)
3299 {
3300 target_async_permitted_1 = target_async_permitted;
3301 error (_("Cannot change this setting while the inferior is running."));
3302 }
3303
3304 target_async_permitted = target_async_permitted_1;
3305 }
3306
3307 static void
3308 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3309 struct cmd_list_element *c,
3310 const char *value)
3311 {
3312 fprintf_filtered (file, _("\
3313 Controlling the inferior in asynchronous mode is %s.\n"), value);
3314 }
3315
3316 void
3317 initialize_targets (void)
3318 {
3319 init_dummy_target ();
3320 push_target (&dummy_target);
3321
3322 add_info ("target", target_info, targ_desc);
3323 add_info ("files", target_info, targ_desc);
3324
3325 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3326 Set target debugging."), _("\
3327 Show target debugging."), _("\
3328 When non-zero, target debugging is enabled. Higher numbers are more\n\
3329 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3330 command."),
3331 NULL,
3332 show_targetdebug,
3333 &setdebuglist, &showdebuglist);
3334
3335 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3336 &trust_readonly, _("\
3337 Set mode for reading from readonly sections."), _("\
3338 Show mode for reading from readonly sections."), _("\
3339 When this mode is on, memory reads from readonly sections (such as .text)\n\
3340 will be read from the object file instead of from the target. This will\n\
3341 result in significant performance improvement for remote targets."),
3342 NULL,
3343 show_trust_readonly,
3344 &setlist, &showlist);
3345
3346 add_com ("monitor", class_obscure, do_monitor_command,
3347 _("Send a command to the remote monitor (remote targets only)."));
3348
3349 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3350 _("Print the name of each layer of the internal target stack."),
3351 &maintenanceprintlist);
3352
3353 add_setshow_boolean_cmd ("target-async", no_class,
3354 &target_async_permitted_1, _("\
3355 Set whether gdb controls the inferior in asynchronous mode."), _("\
3356 Show whether gdb controls the inferior in asynchronous mode."), _("\
3357 Tells gdb whether to control the inferior in asynchronous mode."),
3358 set_maintenance_target_async_permitted,
3359 show_maintenance_target_async_permitted,
3360 &setlist,
3361 &showlist);
3362
3363 target_dcache = dcache_init ();
3364 }
This page took 0.109642 seconds and 4 git commands to generate.