* solist.h (struct target_so_ops): New member clear_so.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static unsigned int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add possible target architecture T to the list and add a new
388 command 'target T->to_shortname'. Set COMPLETER as the command's
389 completer if not NULL. */
390
391 void
392 add_target_with_completer (struct target_ops *t,
393 completer_ftype *completer)
394 {
395 struct cmd_list_element *c;
396
397 /* Provide default values for all "must have" methods. */
398 if (t->to_xfer_partial == NULL)
399 t->to_xfer_partial = default_xfer_partial;
400
401 if (t->to_has_all_memory == NULL)
402 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
403
404 if (t->to_has_memory == NULL)
405 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
406
407 if (t->to_has_stack == NULL)
408 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
409
410 if (t->to_has_registers == NULL)
411 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
412
413 if (t->to_has_execution == NULL)
414 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
415
416 if (!target_structs)
417 {
418 target_struct_allocsize = DEFAULT_ALLOCSIZE;
419 target_structs = (struct target_ops **) xmalloc
420 (target_struct_allocsize * sizeof (*target_structs));
421 }
422 if (target_struct_size >= target_struct_allocsize)
423 {
424 target_struct_allocsize *= 2;
425 target_structs = (struct target_ops **)
426 xrealloc ((char *) target_structs,
427 target_struct_allocsize * sizeof (*target_structs));
428 }
429 target_structs[target_struct_size++] = t;
430
431 if (targetlist == NULL)
432 add_prefix_cmd ("target", class_run, target_command, _("\
433 Connect to a target machine or process.\n\
434 The first argument is the type or protocol of the target machine.\n\
435 Remaining arguments are interpreted by the target protocol. For more\n\
436 information on the arguments for a particular protocol, type\n\
437 `help target ' followed by the protocol name."),
438 &targetlist, "target ", 0, &cmdlist);
439 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
440 &targetlist);
441 if (completer != NULL)
442 set_cmd_completer (c, completer);
443 }
444
445 /* Add a possible target architecture to the list. */
446
447 void
448 add_target (struct target_ops *t)
449 {
450 add_target_with_completer (t, NULL);
451 }
452
453 /* See target.h. */
454
455 void
456 add_deprecated_target_alias (struct target_ops *t, char *alias)
457 {
458 struct cmd_list_element *c;
459 char *alt;
460
461 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
462 see PR cli/15104. */
463 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
464 alt = xstrprintf ("target %s", t->to_shortname);
465 deprecate_cmd (c, alt);
466 }
467
468 /* Stub functions */
469
470 void
471 target_ignore (void)
472 {
473 }
474
475 void
476 target_kill (void)
477 {
478 struct target_ops *t;
479
480 for (t = current_target.beneath; t != NULL; t = t->beneath)
481 if (t->to_kill != NULL)
482 {
483 if (targetdebug)
484 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
485
486 t->to_kill (t);
487 return;
488 }
489
490 noprocess ();
491 }
492
493 void
494 target_load (char *arg, int from_tty)
495 {
496 target_dcache_invalidate ();
497 (*current_target.to_load) (arg, from_tty);
498 }
499
500 void
501 target_create_inferior (char *exec_file, char *args,
502 char **env, int from_tty)
503 {
504 struct target_ops *t;
505
506 for (t = current_target.beneath; t != NULL; t = t->beneath)
507 {
508 if (t->to_create_inferior != NULL)
509 {
510 t->to_create_inferior (t, exec_file, args, env, from_tty);
511 if (targetdebug)
512 fprintf_unfiltered (gdb_stdlog,
513 "target_create_inferior (%s, %s, xxx, %d)\n",
514 exec_file, args, from_tty);
515 return;
516 }
517 }
518
519 internal_error (__FILE__, __LINE__,
520 _("could not find a target to create inferior"));
521 }
522
523 void
524 target_terminal_inferior (void)
525 {
526 /* A background resume (``run&'') should leave GDB in control of the
527 terminal. Use target_can_async_p, not target_is_async_p, since at
528 this point the target is not async yet. However, if sync_execution
529 is not set, we know it will become async prior to resume. */
530 if (target_can_async_p () && !sync_execution)
531 return;
532
533 /* If GDB is resuming the inferior in the foreground, install
534 inferior's terminal modes. */
535 (*current_target.to_terminal_inferior) ();
536 }
537
538 static int
539 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
540 struct target_ops *t)
541 {
542 errno = EIO; /* Can't read/write this location. */
543 return 0; /* No bytes handled. */
544 }
545
546 static void
547 tcomplain (void)
548 {
549 error (_("You can't do that when your target is `%s'"),
550 current_target.to_shortname);
551 }
552
553 void
554 noprocess (void)
555 {
556 error (_("You can't do that without a process to debug."));
557 }
558
559 static void
560 default_terminal_info (char *args, int from_tty)
561 {
562 printf_unfiltered (_("No saved terminal information.\n"));
563 }
564
565 /* A default implementation for the to_get_ada_task_ptid target method.
566
567 This function builds the PTID by using both LWP and TID as part of
568 the PTID lwp and tid elements. The pid used is the pid of the
569 inferior_ptid. */
570
571 static ptid_t
572 default_get_ada_task_ptid (long lwp, long tid)
573 {
574 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
575 }
576
577 static enum exec_direction_kind
578 default_execution_direction (void)
579 {
580 if (!target_can_execute_reverse)
581 return EXEC_FORWARD;
582 else if (!target_can_async_p ())
583 return EXEC_FORWARD;
584 else
585 gdb_assert_not_reached ("\
586 to_execution_direction must be implemented for reverse async");
587 }
588
589 /* Go through the target stack from top to bottom, copying over zero
590 entries in current_target, then filling in still empty entries. In
591 effect, we are doing class inheritance through the pushed target
592 vectors.
593
594 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
595 is currently implemented, is that it discards any knowledge of
596 which target an inherited method originally belonged to.
597 Consequently, new new target methods should instead explicitly and
598 locally search the target stack for the target that can handle the
599 request. */
600
601 static void
602 update_current_target (void)
603 {
604 struct target_ops *t;
605
606 /* First, reset current's contents. */
607 memset (&current_target, 0, sizeof (current_target));
608
609 #define INHERIT(FIELD, TARGET) \
610 if (!current_target.FIELD) \
611 current_target.FIELD = (TARGET)->FIELD
612
613 for (t = target_stack; t; t = t->beneath)
614 {
615 INHERIT (to_shortname, t);
616 INHERIT (to_longname, t);
617 INHERIT (to_doc, t);
618 /* Do not inherit to_open. */
619 /* Do not inherit to_close. */
620 /* Do not inherit to_attach. */
621 INHERIT (to_post_attach, t);
622 INHERIT (to_attach_no_wait, t);
623 /* Do not inherit to_detach. */
624 /* Do not inherit to_disconnect. */
625 /* Do not inherit to_resume. */
626 /* Do not inherit to_wait. */
627 /* Do not inherit to_fetch_registers. */
628 /* Do not inherit to_store_registers. */
629 INHERIT (to_prepare_to_store, t);
630 INHERIT (deprecated_xfer_memory, t);
631 INHERIT (to_files_info, t);
632 INHERIT (to_insert_breakpoint, t);
633 INHERIT (to_remove_breakpoint, t);
634 INHERIT (to_can_use_hw_breakpoint, t);
635 INHERIT (to_insert_hw_breakpoint, t);
636 INHERIT (to_remove_hw_breakpoint, t);
637 /* Do not inherit to_ranged_break_num_registers. */
638 INHERIT (to_insert_watchpoint, t);
639 INHERIT (to_remove_watchpoint, t);
640 /* Do not inherit to_insert_mask_watchpoint. */
641 /* Do not inherit to_remove_mask_watchpoint. */
642 INHERIT (to_stopped_data_address, t);
643 INHERIT (to_have_steppable_watchpoint, t);
644 INHERIT (to_have_continuable_watchpoint, t);
645 INHERIT (to_stopped_by_watchpoint, t);
646 INHERIT (to_watchpoint_addr_within_range, t);
647 INHERIT (to_region_ok_for_hw_watchpoint, t);
648 INHERIT (to_can_accel_watchpoint_condition, t);
649 /* Do not inherit to_masked_watch_num_registers. */
650 INHERIT (to_terminal_init, t);
651 INHERIT (to_terminal_inferior, t);
652 INHERIT (to_terminal_ours_for_output, t);
653 INHERIT (to_terminal_ours, t);
654 INHERIT (to_terminal_save_ours, t);
655 INHERIT (to_terminal_info, t);
656 /* Do not inherit to_kill. */
657 INHERIT (to_load, t);
658 /* Do no inherit to_create_inferior. */
659 INHERIT (to_post_startup_inferior, t);
660 INHERIT (to_insert_fork_catchpoint, t);
661 INHERIT (to_remove_fork_catchpoint, t);
662 INHERIT (to_insert_vfork_catchpoint, t);
663 INHERIT (to_remove_vfork_catchpoint, t);
664 /* Do not inherit to_follow_fork. */
665 INHERIT (to_insert_exec_catchpoint, t);
666 INHERIT (to_remove_exec_catchpoint, t);
667 INHERIT (to_set_syscall_catchpoint, t);
668 INHERIT (to_has_exited, t);
669 /* Do not inherit to_mourn_inferior. */
670 INHERIT (to_can_run, t);
671 /* Do not inherit to_pass_signals. */
672 /* Do not inherit to_program_signals. */
673 /* Do not inherit to_thread_alive. */
674 /* Do not inherit to_find_new_threads. */
675 /* Do not inherit to_pid_to_str. */
676 INHERIT (to_extra_thread_info, t);
677 INHERIT (to_thread_name, t);
678 INHERIT (to_stop, t);
679 /* Do not inherit to_xfer_partial. */
680 INHERIT (to_rcmd, t);
681 INHERIT (to_pid_to_exec_file, t);
682 INHERIT (to_log_command, t);
683 INHERIT (to_stratum, t);
684 /* Do not inherit to_has_all_memory. */
685 /* Do not inherit to_has_memory. */
686 /* Do not inherit to_has_stack. */
687 /* Do not inherit to_has_registers. */
688 /* Do not inherit to_has_execution. */
689 INHERIT (to_has_thread_control, t);
690 INHERIT (to_can_async_p, t);
691 INHERIT (to_is_async_p, t);
692 INHERIT (to_async, t);
693 INHERIT (to_find_memory_regions, t);
694 INHERIT (to_make_corefile_notes, t);
695 INHERIT (to_get_bookmark, t);
696 INHERIT (to_goto_bookmark, t);
697 /* Do not inherit to_get_thread_local_address. */
698 INHERIT (to_can_execute_reverse, t);
699 INHERIT (to_execution_direction, t);
700 INHERIT (to_thread_architecture, t);
701 /* Do not inherit to_read_description. */
702 INHERIT (to_get_ada_task_ptid, t);
703 /* Do not inherit to_search_memory. */
704 INHERIT (to_supports_multi_process, t);
705 INHERIT (to_supports_enable_disable_tracepoint, t);
706 INHERIT (to_supports_string_tracing, t);
707 INHERIT (to_trace_init, t);
708 INHERIT (to_download_tracepoint, t);
709 INHERIT (to_can_download_tracepoint, t);
710 INHERIT (to_download_trace_state_variable, t);
711 INHERIT (to_enable_tracepoint, t);
712 INHERIT (to_disable_tracepoint, t);
713 INHERIT (to_trace_set_readonly_regions, t);
714 INHERIT (to_trace_start, t);
715 INHERIT (to_get_trace_status, t);
716 INHERIT (to_get_tracepoint_status, t);
717 INHERIT (to_trace_stop, t);
718 INHERIT (to_trace_find, t);
719 INHERIT (to_get_trace_state_variable_value, t);
720 INHERIT (to_save_trace_data, t);
721 INHERIT (to_upload_tracepoints, t);
722 INHERIT (to_upload_trace_state_variables, t);
723 INHERIT (to_get_raw_trace_data, t);
724 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
725 INHERIT (to_set_disconnected_tracing, t);
726 INHERIT (to_set_circular_trace_buffer, t);
727 INHERIT (to_set_trace_buffer_size, t);
728 INHERIT (to_set_trace_notes, t);
729 INHERIT (to_get_tib_address, t);
730 INHERIT (to_set_permissions, t);
731 INHERIT (to_static_tracepoint_marker_at, t);
732 INHERIT (to_static_tracepoint_markers_by_strid, t);
733 INHERIT (to_traceframe_info, t);
734 INHERIT (to_use_agent, t);
735 INHERIT (to_can_use_agent, t);
736 INHERIT (to_magic, t);
737 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
738 INHERIT (to_can_run_breakpoint_commands, t);
739 /* Do not inherit to_memory_map. */
740 /* Do not inherit to_flash_erase. */
741 /* Do not inherit to_flash_done. */
742 }
743 #undef INHERIT
744
745 /* Clean up a target struct so it no longer has any zero pointers in
746 it. Some entries are defaulted to a method that print an error,
747 others are hard-wired to a standard recursive default. */
748
749 #define de_fault(field, value) \
750 if (!current_target.field) \
751 current_target.field = value
752
753 de_fault (to_open,
754 (void (*) (char *, int))
755 tcomplain);
756 de_fault (to_close,
757 (void (*) (void))
758 target_ignore);
759 de_fault (to_post_attach,
760 (void (*) (int))
761 target_ignore);
762 de_fault (to_prepare_to_store,
763 (void (*) (struct regcache *))
764 noprocess);
765 de_fault (deprecated_xfer_memory,
766 (int (*) (CORE_ADDR, gdb_byte *, int, int,
767 struct mem_attrib *, struct target_ops *))
768 nomemory);
769 de_fault (to_files_info,
770 (void (*) (struct target_ops *))
771 target_ignore);
772 de_fault (to_insert_breakpoint,
773 memory_insert_breakpoint);
774 de_fault (to_remove_breakpoint,
775 memory_remove_breakpoint);
776 de_fault (to_can_use_hw_breakpoint,
777 (int (*) (int, int, int))
778 return_zero);
779 de_fault (to_insert_hw_breakpoint,
780 (int (*) (struct gdbarch *, struct bp_target_info *))
781 return_minus_one);
782 de_fault (to_remove_hw_breakpoint,
783 (int (*) (struct gdbarch *, struct bp_target_info *))
784 return_minus_one);
785 de_fault (to_insert_watchpoint,
786 (int (*) (CORE_ADDR, int, int, struct expression *))
787 return_minus_one);
788 de_fault (to_remove_watchpoint,
789 (int (*) (CORE_ADDR, int, int, struct expression *))
790 return_minus_one);
791 de_fault (to_stopped_by_watchpoint,
792 (int (*) (void))
793 return_zero);
794 de_fault (to_stopped_data_address,
795 (int (*) (struct target_ops *, CORE_ADDR *))
796 return_zero);
797 de_fault (to_watchpoint_addr_within_range,
798 default_watchpoint_addr_within_range);
799 de_fault (to_region_ok_for_hw_watchpoint,
800 default_region_ok_for_hw_watchpoint);
801 de_fault (to_can_accel_watchpoint_condition,
802 (int (*) (CORE_ADDR, int, int, struct expression *))
803 return_zero);
804 de_fault (to_terminal_init,
805 (void (*) (void))
806 target_ignore);
807 de_fault (to_terminal_inferior,
808 (void (*) (void))
809 target_ignore);
810 de_fault (to_terminal_ours_for_output,
811 (void (*) (void))
812 target_ignore);
813 de_fault (to_terminal_ours,
814 (void (*) (void))
815 target_ignore);
816 de_fault (to_terminal_save_ours,
817 (void (*) (void))
818 target_ignore);
819 de_fault (to_terminal_info,
820 default_terminal_info);
821 de_fault (to_load,
822 (void (*) (char *, int))
823 tcomplain);
824 de_fault (to_post_startup_inferior,
825 (void (*) (ptid_t))
826 target_ignore);
827 de_fault (to_insert_fork_catchpoint,
828 (int (*) (int))
829 return_one);
830 de_fault (to_remove_fork_catchpoint,
831 (int (*) (int))
832 return_one);
833 de_fault (to_insert_vfork_catchpoint,
834 (int (*) (int))
835 return_one);
836 de_fault (to_remove_vfork_catchpoint,
837 (int (*) (int))
838 return_one);
839 de_fault (to_insert_exec_catchpoint,
840 (int (*) (int))
841 return_one);
842 de_fault (to_remove_exec_catchpoint,
843 (int (*) (int))
844 return_one);
845 de_fault (to_set_syscall_catchpoint,
846 (int (*) (int, int, int, int, int *))
847 return_one);
848 de_fault (to_has_exited,
849 (int (*) (int, int, int *))
850 return_zero);
851 de_fault (to_can_run,
852 return_zero);
853 de_fault (to_extra_thread_info,
854 (char *(*) (struct thread_info *))
855 return_zero);
856 de_fault (to_thread_name,
857 (char *(*) (struct thread_info *))
858 return_zero);
859 de_fault (to_stop,
860 (void (*) (ptid_t))
861 target_ignore);
862 current_target.to_xfer_partial = current_xfer_partial;
863 de_fault (to_rcmd,
864 (void (*) (char *, struct ui_file *))
865 tcomplain);
866 de_fault (to_pid_to_exec_file,
867 (char *(*) (int))
868 return_zero);
869 de_fault (to_async,
870 (void (*) (void (*) (enum inferior_event_type, void*), void*))
871 tcomplain);
872 de_fault (to_thread_architecture,
873 default_thread_architecture);
874 current_target.to_read_description = NULL;
875 de_fault (to_get_ada_task_ptid,
876 (ptid_t (*) (long, long))
877 default_get_ada_task_ptid);
878 de_fault (to_supports_multi_process,
879 (int (*) (void))
880 return_zero);
881 de_fault (to_supports_enable_disable_tracepoint,
882 (int (*) (void))
883 return_zero);
884 de_fault (to_supports_string_tracing,
885 (int (*) (void))
886 return_zero);
887 de_fault (to_trace_init,
888 (void (*) (void))
889 tcomplain);
890 de_fault (to_download_tracepoint,
891 (void (*) (struct bp_location *))
892 tcomplain);
893 de_fault (to_can_download_tracepoint,
894 (int (*) (void))
895 return_zero);
896 de_fault (to_download_trace_state_variable,
897 (void (*) (struct trace_state_variable *))
898 tcomplain);
899 de_fault (to_enable_tracepoint,
900 (void (*) (struct bp_location *))
901 tcomplain);
902 de_fault (to_disable_tracepoint,
903 (void (*) (struct bp_location *))
904 tcomplain);
905 de_fault (to_trace_set_readonly_regions,
906 (void (*) (void))
907 tcomplain);
908 de_fault (to_trace_start,
909 (void (*) (void))
910 tcomplain);
911 de_fault (to_get_trace_status,
912 (int (*) (struct trace_status *))
913 return_minus_one);
914 de_fault (to_get_tracepoint_status,
915 (void (*) (struct breakpoint *, struct uploaded_tp *))
916 tcomplain);
917 de_fault (to_trace_stop,
918 (void (*) (void))
919 tcomplain);
920 de_fault (to_trace_find,
921 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
922 return_minus_one);
923 de_fault (to_get_trace_state_variable_value,
924 (int (*) (int, LONGEST *))
925 return_zero);
926 de_fault (to_save_trace_data,
927 (int (*) (const char *))
928 tcomplain);
929 de_fault (to_upload_tracepoints,
930 (int (*) (struct uploaded_tp **))
931 return_zero);
932 de_fault (to_upload_trace_state_variables,
933 (int (*) (struct uploaded_tsv **))
934 return_zero);
935 de_fault (to_get_raw_trace_data,
936 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
937 tcomplain);
938 de_fault (to_get_min_fast_tracepoint_insn_len,
939 (int (*) (void))
940 return_minus_one);
941 de_fault (to_set_disconnected_tracing,
942 (void (*) (int))
943 target_ignore);
944 de_fault (to_set_circular_trace_buffer,
945 (void (*) (int))
946 target_ignore);
947 de_fault (to_set_trace_buffer_size,
948 (void (*) (LONGEST))
949 target_ignore);
950 de_fault (to_set_trace_notes,
951 (int (*) (char *, char *, char *))
952 return_zero);
953 de_fault (to_get_tib_address,
954 (int (*) (ptid_t, CORE_ADDR *))
955 tcomplain);
956 de_fault (to_set_permissions,
957 (void (*) (void))
958 target_ignore);
959 de_fault (to_static_tracepoint_marker_at,
960 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
961 return_zero);
962 de_fault (to_static_tracepoint_markers_by_strid,
963 (VEC(static_tracepoint_marker_p) * (*) (const char *))
964 tcomplain);
965 de_fault (to_traceframe_info,
966 (struct traceframe_info * (*) (void))
967 tcomplain);
968 de_fault (to_supports_evaluation_of_breakpoint_conditions,
969 (int (*) (void))
970 return_zero);
971 de_fault (to_can_run_breakpoint_commands,
972 (int (*) (void))
973 return_zero);
974 de_fault (to_use_agent,
975 (int (*) (int))
976 tcomplain);
977 de_fault (to_can_use_agent,
978 (int (*) (void))
979 return_zero);
980 de_fault (to_execution_direction, default_execution_direction);
981
982 #undef de_fault
983
984 /* Finally, position the target-stack beneath the squashed
985 "current_target". That way code looking for a non-inherited
986 target method can quickly and simply find it. */
987 current_target.beneath = target_stack;
988
989 if (targetdebug)
990 setup_target_debug ();
991 }
992
993 /* Push a new target type into the stack of the existing target accessors,
994 possibly superseding some of the existing accessors.
995
996 Rather than allow an empty stack, we always have the dummy target at
997 the bottom stratum, so we can call the function vectors without
998 checking them. */
999
1000 void
1001 push_target (struct target_ops *t)
1002 {
1003 struct target_ops **cur;
1004
1005 /* Check magic number. If wrong, it probably means someone changed
1006 the struct definition, but not all the places that initialize one. */
1007 if (t->to_magic != OPS_MAGIC)
1008 {
1009 fprintf_unfiltered (gdb_stderr,
1010 "Magic number of %s target struct wrong\n",
1011 t->to_shortname);
1012 internal_error (__FILE__, __LINE__,
1013 _("failed internal consistency check"));
1014 }
1015
1016 /* Find the proper stratum to install this target in. */
1017 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1018 {
1019 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1020 break;
1021 }
1022
1023 /* If there's already targets at this stratum, remove them. */
1024 /* FIXME: cagney/2003-10-15: I think this should be popping all
1025 targets to CUR, and not just those at this stratum level. */
1026 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1027 {
1028 /* There's already something at this stratum level. Close it,
1029 and un-hook it from the stack. */
1030 struct target_ops *tmp = (*cur);
1031
1032 (*cur) = (*cur)->beneath;
1033 tmp->beneath = NULL;
1034 target_close (tmp);
1035 }
1036
1037 /* We have removed all targets in our stratum, now add the new one. */
1038 t->beneath = (*cur);
1039 (*cur) = t;
1040
1041 update_current_target ();
1042 }
1043
1044 /* Remove a target_ops vector from the stack, wherever it may be.
1045 Return how many times it was removed (0 or 1). */
1046
1047 int
1048 unpush_target (struct target_ops *t)
1049 {
1050 struct target_ops **cur;
1051 struct target_ops *tmp;
1052
1053 if (t->to_stratum == dummy_stratum)
1054 internal_error (__FILE__, __LINE__,
1055 _("Attempt to unpush the dummy target"));
1056
1057 /* Look for the specified target. Note that we assume that a target
1058 can only occur once in the target stack. */
1059
1060 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1061 {
1062 if ((*cur) == t)
1063 break;
1064 }
1065
1066 /* If we don't find target_ops, quit. Only open targets should be
1067 closed. */
1068 if ((*cur) == NULL)
1069 return 0;
1070
1071 /* Unchain the target. */
1072 tmp = (*cur);
1073 (*cur) = (*cur)->beneath;
1074 tmp->beneath = NULL;
1075
1076 update_current_target ();
1077
1078 /* Finally close the target. Note we do this after unchaining, so
1079 any target method calls from within the target_close
1080 implementation don't end up in T anymore. */
1081 target_close (t);
1082
1083 return 1;
1084 }
1085
1086 void
1087 pop_target (void)
1088 {
1089 target_close (target_stack); /* Let it clean up. */
1090 if (unpush_target (target_stack) == 1)
1091 return;
1092
1093 fprintf_unfiltered (gdb_stderr,
1094 "pop_target couldn't find target %s\n",
1095 current_target.to_shortname);
1096 internal_error (__FILE__, __LINE__,
1097 _("failed internal consistency check"));
1098 }
1099
1100 void
1101 pop_all_targets_above (enum strata above_stratum)
1102 {
1103 while ((int) (current_target.to_stratum) > (int) above_stratum)
1104 {
1105 target_close (target_stack);
1106 if (!unpush_target (target_stack))
1107 {
1108 fprintf_unfiltered (gdb_stderr,
1109 "pop_all_targets couldn't find target %s\n",
1110 target_stack->to_shortname);
1111 internal_error (__FILE__, __LINE__,
1112 _("failed internal consistency check"));
1113 break;
1114 }
1115 }
1116 }
1117
1118 void
1119 pop_all_targets (void)
1120 {
1121 pop_all_targets_above (dummy_stratum);
1122 }
1123
1124 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1125
1126 int
1127 target_is_pushed (struct target_ops *t)
1128 {
1129 struct target_ops **cur;
1130
1131 /* Check magic number. If wrong, it probably means someone changed
1132 the struct definition, but not all the places that initialize one. */
1133 if (t->to_magic != OPS_MAGIC)
1134 {
1135 fprintf_unfiltered (gdb_stderr,
1136 "Magic number of %s target struct wrong\n",
1137 t->to_shortname);
1138 internal_error (__FILE__, __LINE__,
1139 _("failed internal consistency check"));
1140 }
1141
1142 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1143 if (*cur == t)
1144 return 1;
1145
1146 return 0;
1147 }
1148
1149 /* Using the objfile specified in OBJFILE, find the address for the
1150 current thread's thread-local storage with offset OFFSET. */
1151 CORE_ADDR
1152 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1153 {
1154 volatile CORE_ADDR addr = 0;
1155 struct target_ops *target;
1156
1157 for (target = current_target.beneath;
1158 target != NULL;
1159 target = target->beneath)
1160 {
1161 if (target->to_get_thread_local_address != NULL)
1162 break;
1163 }
1164
1165 if (target != NULL
1166 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1167 {
1168 ptid_t ptid = inferior_ptid;
1169 volatile struct gdb_exception ex;
1170
1171 TRY_CATCH (ex, RETURN_MASK_ALL)
1172 {
1173 CORE_ADDR lm_addr;
1174
1175 /* Fetch the load module address for this objfile. */
1176 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1177 objfile);
1178 /* If it's 0, throw the appropriate exception. */
1179 if (lm_addr == 0)
1180 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1181 _("TLS load module not found"));
1182
1183 addr = target->to_get_thread_local_address (target, ptid,
1184 lm_addr, offset);
1185 }
1186 /* If an error occurred, print TLS related messages here. Otherwise,
1187 throw the error to some higher catcher. */
1188 if (ex.reason < 0)
1189 {
1190 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1191
1192 switch (ex.error)
1193 {
1194 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1195 error (_("Cannot find thread-local variables "
1196 "in this thread library."));
1197 break;
1198 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1199 if (objfile_is_library)
1200 error (_("Cannot find shared library `%s' in dynamic"
1201 " linker's load module list"), objfile->name);
1202 else
1203 error (_("Cannot find executable file `%s' in dynamic"
1204 " linker's load module list"), objfile->name);
1205 break;
1206 case TLS_NOT_ALLOCATED_YET_ERROR:
1207 if (objfile_is_library)
1208 error (_("The inferior has not yet allocated storage for"
1209 " thread-local variables in\n"
1210 "the shared library `%s'\n"
1211 "for %s"),
1212 objfile->name, target_pid_to_str (ptid));
1213 else
1214 error (_("The inferior has not yet allocated storage for"
1215 " thread-local variables in\n"
1216 "the executable `%s'\n"
1217 "for %s"),
1218 objfile->name, target_pid_to_str (ptid));
1219 break;
1220 case TLS_GENERIC_ERROR:
1221 if (objfile_is_library)
1222 error (_("Cannot find thread-local storage for %s, "
1223 "shared library %s:\n%s"),
1224 target_pid_to_str (ptid),
1225 objfile->name, ex.message);
1226 else
1227 error (_("Cannot find thread-local storage for %s, "
1228 "executable file %s:\n%s"),
1229 target_pid_to_str (ptid),
1230 objfile->name, ex.message);
1231 break;
1232 default:
1233 throw_exception (ex);
1234 break;
1235 }
1236 }
1237 }
1238 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1239 TLS is an ABI-specific thing. But we don't do that yet. */
1240 else
1241 error (_("Cannot find thread-local variables on this target"));
1242
1243 return addr;
1244 }
1245
1246 #undef MIN
1247 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1248
1249 /* target_read_string -- read a null terminated string, up to LEN bytes,
1250 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1251 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1252 is responsible for freeing it. Return the number of bytes successfully
1253 read. */
1254
1255 int
1256 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1257 {
1258 int tlen, offset, i;
1259 gdb_byte buf[4];
1260 int errcode = 0;
1261 char *buffer;
1262 int buffer_allocated;
1263 char *bufptr;
1264 unsigned int nbytes_read = 0;
1265
1266 gdb_assert (string);
1267
1268 /* Small for testing. */
1269 buffer_allocated = 4;
1270 buffer = xmalloc (buffer_allocated);
1271 bufptr = buffer;
1272
1273 while (len > 0)
1274 {
1275 tlen = MIN (len, 4 - (memaddr & 3));
1276 offset = memaddr & 3;
1277
1278 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1279 if (errcode != 0)
1280 {
1281 /* The transfer request might have crossed the boundary to an
1282 unallocated region of memory. Retry the transfer, requesting
1283 a single byte. */
1284 tlen = 1;
1285 offset = 0;
1286 errcode = target_read_memory (memaddr, buf, 1);
1287 if (errcode != 0)
1288 goto done;
1289 }
1290
1291 if (bufptr - buffer + tlen > buffer_allocated)
1292 {
1293 unsigned int bytes;
1294
1295 bytes = bufptr - buffer;
1296 buffer_allocated *= 2;
1297 buffer = xrealloc (buffer, buffer_allocated);
1298 bufptr = buffer + bytes;
1299 }
1300
1301 for (i = 0; i < tlen; i++)
1302 {
1303 *bufptr++ = buf[i + offset];
1304 if (buf[i + offset] == '\000')
1305 {
1306 nbytes_read += i + 1;
1307 goto done;
1308 }
1309 }
1310
1311 memaddr += tlen;
1312 len -= tlen;
1313 nbytes_read += tlen;
1314 }
1315 done:
1316 *string = buffer;
1317 if (errnop != NULL)
1318 *errnop = errcode;
1319 return nbytes_read;
1320 }
1321
1322 struct target_section_table *
1323 target_get_section_table (struct target_ops *target)
1324 {
1325 struct target_ops *t;
1326
1327 if (targetdebug)
1328 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1329
1330 for (t = target; t != NULL; t = t->beneath)
1331 if (t->to_get_section_table != NULL)
1332 return (*t->to_get_section_table) (t);
1333
1334 return NULL;
1335 }
1336
1337 /* Find a section containing ADDR. */
1338
1339 struct target_section *
1340 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1341 {
1342 struct target_section_table *table = target_get_section_table (target);
1343 struct target_section *secp;
1344
1345 if (table == NULL)
1346 return NULL;
1347
1348 for (secp = table->sections; secp < table->sections_end; secp++)
1349 {
1350 if (addr >= secp->addr && addr < secp->endaddr)
1351 return secp;
1352 }
1353 return NULL;
1354 }
1355
1356 /* Read memory from the live target, even if currently inspecting a
1357 traceframe. The return is the same as that of target_read. */
1358
1359 static LONGEST
1360 target_read_live_memory (enum target_object object,
1361 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1362 {
1363 int ret;
1364 struct cleanup *cleanup;
1365
1366 /* Switch momentarily out of tfind mode so to access live memory.
1367 Note that this must not clear global state, such as the frame
1368 cache, which must still remain valid for the previous traceframe.
1369 We may be _building_ the frame cache at this point. */
1370 cleanup = make_cleanup_restore_traceframe_number ();
1371 set_traceframe_number (-1);
1372
1373 ret = target_read (current_target.beneath, object, NULL,
1374 myaddr, memaddr, len);
1375
1376 do_cleanups (cleanup);
1377 return ret;
1378 }
1379
1380 /* Using the set of read-only target sections of OPS, read live
1381 read-only memory. Note that the actual reads start from the
1382 top-most target again.
1383
1384 For interface/parameters/return description see target.h,
1385 to_xfer_partial. */
1386
1387 static LONGEST
1388 memory_xfer_live_readonly_partial (struct target_ops *ops,
1389 enum target_object object,
1390 gdb_byte *readbuf, ULONGEST memaddr,
1391 LONGEST len)
1392 {
1393 struct target_section *secp;
1394 struct target_section_table *table;
1395
1396 secp = target_section_by_addr (ops, memaddr);
1397 if (secp != NULL
1398 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1399 & SEC_READONLY))
1400 {
1401 struct target_section *p;
1402 ULONGEST memend = memaddr + len;
1403
1404 table = target_get_section_table (ops);
1405
1406 for (p = table->sections; p < table->sections_end; p++)
1407 {
1408 if (memaddr >= p->addr)
1409 {
1410 if (memend <= p->endaddr)
1411 {
1412 /* Entire transfer is within this section. */
1413 return target_read_live_memory (object, memaddr,
1414 readbuf, len);
1415 }
1416 else if (memaddr >= p->endaddr)
1417 {
1418 /* This section ends before the transfer starts. */
1419 continue;
1420 }
1421 else
1422 {
1423 /* This section overlaps the transfer. Just do half. */
1424 len = p->endaddr - memaddr;
1425 return target_read_live_memory (object, memaddr,
1426 readbuf, len);
1427 }
1428 }
1429 }
1430 }
1431
1432 return 0;
1433 }
1434
1435 /* Perform a partial memory transfer.
1436 For docs see target.h, to_xfer_partial. */
1437
1438 static LONGEST
1439 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1440 void *readbuf, const void *writebuf, ULONGEST memaddr,
1441 LONGEST len)
1442 {
1443 LONGEST res;
1444 int reg_len;
1445 struct mem_region *region;
1446 struct inferior *inf;
1447
1448 /* For accesses to unmapped overlay sections, read directly from
1449 files. Must do this first, as MEMADDR may need adjustment. */
1450 if (readbuf != NULL && overlay_debugging)
1451 {
1452 struct obj_section *section = find_pc_overlay (memaddr);
1453
1454 if (pc_in_unmapped_range (memaddr, section))
1455 {
1456 struct target_section_table *table
1457 = target_get_section_table (ops);
1458 const char *section_name = section->the_bfd_section->name;
1459
1460 memaddr = overlay_mapped_address (memaddr, section);
1461 return section_table_xfer_memory_partial (readbuf, writebuf,
1462 memaddr, len,
1463 table->sections,
1464 table->sections_end,
1465 section_name);
1466 }
1467 }
1468
1469 /* Try the executable files, if "trust-readonly-sections" is set. */
1470 if (readbuf != NULL && trust_readonly)
1471 {
1472 struct target_section *secp;
1473 struct target_section_table *table;
1474
1475 secp = target_section_by_addr (ops, memaddr);
1476 if (secp != NULL
1477 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1478 & SEC_READONLY))
1479 {
1480 table = target_get_section_table (ops);
1481 return section_table_xfer_memory_partial (readbuf, writebuf,
1482 memaddr, len,
1483 table->sections,
1484 table->sections_end,
1485 NULL);
1486 }
1487 }
1488
1489 /* If reading unavailable memory in the context of traceframes, and
1490 this address falls within a read-only section, fallback to
1491 reading from live memory. */
1492 if (readbuf != NULL && get_traceframe_number () != -1)
1493 {
1494 VEC(mem_range_s) *available;
1495
1496 /* If we fail to get the set of available memory, then the
1497 target does not support querying traceframe info, and so we
1498 attempt reading from the traceframe anyway (assuming the
1499 target implements the old QTro packet then). */
1500 if (traceframe_available_memory (&available, memaddr, len))
1501 {
1502 struct cleanup *old_chain;
1503
1504 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1505
1506 if (VEC_empty (mem_range_s, available)
1507 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1508 {
1509 /* Don't read into the traceframe's available
1510 memory. */
1511 if (!VEC_empty (mem_range_s, available))
1512 {
1513 LONGEST oldlen = len;
1514
1515 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1516 gdb_assert (len <= oldlen);
1517 }
1518
1519 do_cleanups (old_chain);
1520
1521 /* This goes through the topmost target again. */
1522 res = memory_xfer_live_readonly_partial (ops, object,
1523 readbuf, memaddr, len);
1524 if (res > 0)
1525 return res;
1526
1527 /* No use trying further, we know some memory starting
1528 at MEMADDR isn't available. */
1529 return -1;
1530 }
1531
1532 /* Don't try to read more than how much is available, in
1533 case the target implements the deprecated QTro packet to
1534 cater for older GDBs (the target's knowledge of read-only
1535 sections may be outdated by now). */
1536 len = VEC_index (mem_range_s, available, 0)->length;
1537
1538 do_cleanups (old_chain);
1539 }
1540 }
1541
1542 /* Try GDB's internal data cache. */
1543 region = lookup_mem_region (memaddr);
1544 /* region->hi == 0 means there's no upper bound. */
1545 if (memaddr + len < region->hi || region->hi == 0)
1546 reg_len = len;
1547 else
1548 reg_len = region->hi - memaddr;
1549
1550 switch (region->attrib.mode)
1551 {
1552 case MEM_RO:
1553 if (writebuf != NULL)
1554 return -1;
1555 break;
1556
1557 case MEM_WO:
1558 if (readbuf != NULL)
1559 return -1;
1560 break;
1561
1562 case MEM_FLASH:
1563 /* We only support writing to flash during "load" for now. */
1564 if (writebuf != NULL)
1565 error (_("Writing to flash memory forbidden in this context"));
1566 break;
1567
1568 case MEM_NONE:
1569 return -1;
1570 }
1571
1572 if (!ptid_equal (inferior_ptid, null_ptid))
1573 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1574 else
1575 inf = NULL;
1576
1577 if (inf != NULL
1578 /* The dcache reads whole cache lines; that doesn't play well
1579 with reading from a trace buffer, because reading outside of
1580 the collected memory range fails. */
1581 && get_traceframe_number () == -1
1582 && (region->attrib.cache
1583 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1584 {
1585 if (readbuf != NULL)
1586 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1587 reg_len, 0);
1588 else
1589 /* FIXME drow/2006-08-09: If we're going to preserve const
1590 correctness dcache_xfer_memory should take readbuf and
1591 writebuf. */
1592 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1593 (void *) writebuf,
1594 reg_len, 1);
1595 if (res <= 0)
1596 return -1;
1597 else
1598 return res;
1599 }
1600
1601 /* If none of those methods found the memory we wanted, fall back
1602 to a target partial transfer. Normally a single call to
1603 to_xfer_partial is enough; if it doesn't recognize an object
1604 it will call the to_xfer_partial of the next target down.
1605 But for memory this won't do. Memory is the only target
1606 object which can be read from more than one valid target.
1607 A core file, for instance, could have some of memory but
1608 delegate other bits to the target below it. So, we must
1609 manually try all targets. */
1610
1611 do
1612 {
1613 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1614 readbuf, writebuf, memaddr, reg_len);
1615 if (res > 0)
1616 break;
1617
1618 /* We want to continue past core files to executables, but not
1619 past a running target's memory. */
1620 if (ops->to_has_all_memory (ops))
1621 break;
1622
1623 ops = ops->beneath;
1624 }
1625 while (ops != NULL);
1626
1627 /* Make sure the cache gets updated no matter what - if we are writing
1628 to the stack. Even if this write is not tagged as such, we still need
1629 to update the cache. */
1630
1631 if (res > 0
1632 && inf != NULL
1633 && writebuf != NULL
1634 && !region->attrib.cache
1635 && stack_cache_enabled_p
1636 && object != TARGET_OBJECT_STACK_MEMORY)
1637 {
1638 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1639 }
1640
1641 /* If we still haven't got anything, return the last error. We
1642 give up. */
1643 return res;
1644 }
1645
1646 /* Perform a partial memory transfer. For docs see target.h,
1647 to_xfer_partial. */
1648
1649 static LONGEST
1650 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1651 void *readbuf, const void *writebuf, ULONGEST memaddr,
1652 LONGEST len)
1653 {
1654 int res;
1655
1656 /* Zero length requests are ok and require no work. */
1657 if (len == 0)
1658 return 0;
1659
1660 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1661 breakpoint insns, thus hiding out from higher layers whether
1662 there are software breakpoints inserted in the code stream. */
1663 if (readbuf != NULL)
1664 {
1665 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1666
1667 if (res > 0 && !show_memory_breakpoints)
1668 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1669 }
1670 else
1671 {
1672 void *buf;
1673 struct cleanup *old_chain;
1674
1675 buf = xmalloc (len);
1676 old_chain = make_cleanup (xfree, buf);
1677 memcpy (buf, writebuf, len);
1678
1679 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1680 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1681
1682 do_cleanups (old_chain);
1683 }
1684
1685 return res;
1686 }
1687
1688 static void
1689 restore_show_memory_breakpoints (void *arg)
1690 {
1691 show_memory_breakpoints = (uintptr_t) arg;
1692 }
1693
1694 struct cleanup *
1695 make_show_memory_breakpoints_cleanup (int show)
1696 {
1697 int current = show_memory_breakpoints;
1698
1699 show_memory_breakpoints = show;
1700 return make_cleanup (restore_show_memory_breakpoints,
1701 (void *) (uintptr_t) current);
1702 }
1703
1704 /* For docs see target.h, to_xfer_partial. */
1705
1706 static LONGEST
1707 target_xfer_partial (struct target_ops *ops,
1708 enum target_object object, const char *annex,
1709 void *readbuf, const void *writebuf,
1710 ULONGEST offset, LONGEST len)
1711 {
1712 LONGEST retval;
1713
1714 gdb_assert (ops->to_xfer_partial != NULL);
1715
1716 if (writebuf && !may_write_memory)
1717 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1718 core_addr_to_string_nz (offset), plongest (len));
1719
1720 /* If this is a memory transfer, let the memory-specific code
1721 have a look at it instead. Memory transfers are more
1722 complicated. */
1723 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1724 retval = memory_xfer_partial (ops, object, readbuf,
1725 writebuf, offset, len);
1726 else
1727 {
1728 enum target_object raw_object = object;
1729
1730 /* If this is a raw memory transfer, request the normal
1731 memory object from other layers. */
1732 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1733 raw_object = TARGET_OBJECT_MEMORY;
1734
1735 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1736 writebuf, offset, len);
1737 }
1738
1739 if (targetdebug)
1740 {
1741 const unsigned char *myaddr = NULL;
1742
1743 fprintf_unfiltered (gdb_stdlog,
1744 "%s:target_xfer_partial "
1745 "(%d, %s, %s, %s, %s, %s) = %s",
1746 ops->to_shortname,
1747 (int) object,
1748 (annex ? annex : "(null)"),
1749 host_address_to_string (readbuf),
1750 host_address_to_string (writebuf),
1751 core_addr_to_string_nz (offset),
1752 plongest (len), plongest (retval));
1753
1754 if (readbuf)
1755 myaddr = readbuf;
1756 if (writebuf)
1757 myaddr = writebuf;
1758 if (retval > 0 && myaddr != NULL)
1759 {
1760 int i;
1761
1762 fputs_unfiltered (", bytes =", gdb_stdlog);
1763 for (i = 0; i < retval; i++)
1764 {
1765 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1766 {
1767 if (targetdebug < 2 && i > 0)
1768 {
1769 fprintf_unfiltered (gdb_stdlog, " ...");
1770 break;
1771 }
1772 fprintf_unfiltered (gdb_stdlog, "\n");
1773 }
1774
1775 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1776 }
1777 }
1778
1779 fputc_unfiltered ('\n', gdb_stdlog);
1780 }
1781 return retval;
1782 }
1783
1784 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1785 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1786 if any error occurs.
1787
1788 If an error occurs, no guarantee is made about the contents of the data at
1789 MYADDR. In particular, the caller should not depend upon partial reads
1790 filling the buffer with good data. There is no way for the caller to know
1791 how much good data might have been transfered anyway. Callers that can
1792 deal with partial reads should call target_read (which will retry until
1793 it makes no progress, and then return how much was transferred). */
1794
1795 int
1796 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1797 {
1798 /* Dispatch to the topmost target, not the flattened current_target.
1799 Memory accesses check target->to_has_(all_)memory, and the
1800 flattened target doesn't inherit those. */
1801 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1802 myaddr, memaddr, len) == len)
1803 return 0;
1804 else
1805 return EIO;
1806 }
1807
1808 /* Like target_read_memory, but specify explicitly that this is a read from
1809 the target's stack. This may trigger different cache behavior. */
1810
1811 int
1812 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1813 {
1814 /* Dispatch to the topmost target, not the flattened current_target.
1815 Memory accesses check target->to_has_(all_)memory, and the
1816 flattened target doesn't inherit those. */
1817
1818 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1819 myaddr, memaddr, len) == len)
1820 return 0;
1821 else
1822 return EIO;
1823 }
1824
1825 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1826 Returns either 0 for success or an errno value if any error occurs.
1827 If an error occurs, no guarantee is made about how much data got written.
1828 Callers that can deal with partial writes should call target_write. */
1829
1830 int
1831 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1832 {
1833 /* Dispatch to the topmost target, not the flattened current_target.
1834 Memory accesses check target->to_has_(all_)memory, and the
1835 flattened target doesn't inherit those. */
1836 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1837 myaddr, memaddr, len) == len)
1838 return 0;
1839 else
1840 return EIO;
1841 }
1842
1843 /* Write LEN bytes from MYADDR to target raw memory at address
1844 MEMADDR. Returns either 0 for success or an errno value if any
1845 error occurs. If an error occurs, no guarantee is made about how
1846 much data got written. Callers that can deal with partial writes
1847 should call target_write. */
1848
1849 int
1850 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1851 {
1852 /* Dispatch to the topmost target, not the flattened current_target.
1853 Memory accesses check target->to_has_(all_)memory, and the
1854 flattened target doesn't inherit those. */
1855 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1856 myaddr, memaddr, len) == len)
1857 return 0;
1858 else
1859 return EIO;
1860 }
1861
1862 /* Fetch the target's memory map. */
1863
1864 VEC(mem_region_s) *
1865 target_memory_map (void)
1866 {
1867 VEC(mem_region_s) *result;
1868 struct mem_region *last_one, *this_one;
1869 int ix;
1870 struct target_ops *t;
1871
1872 if (targetdebug)
1873 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1874
1875 for (t = current_target.beneath; t != NULL; t = t->beneath)
1876 if (t->to_memory_map != NULL)
1877 break;
1878
1879 if (t == NULL)
1880 return NULL;
1881
1882 result = t->to_memory_map (t);
1883 if (result == NULL)
1884 return NULL;
1885
1886 qsort (VEC_address (mem_region_s, result),
1887 VEC_length (mem_region_s, result),
1888 sizeof (struct mem_region), mem_region_cmp);
1889
1890 /* Check that regions do not overlap. Simultaneously assign
1891 a numbering for the "mem" commands to use to refer to
1892 each region. */
1893 last_one = NULL;
1894 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1895 {
1896 this_one->number = ix;
1897
1898 if (last_one && last_one->hi > this_one->lo)
1899 {
1900 warning (_("Overlapping regions in memory map: ignoring"));
1901 VEC_free (mem_region_s, result);
1902 return NULL;
1903 }
1904 last_one = this_one;
1905 }
1906
1907 return result;
1908 }
1909
1910 void
1911 target_flash_erase (ULONGEST address, LONGEST length)
1912 {
1913 struct target_ops *t;
1914
1915 for (t = current_target.beneath; t != NULL; t = t->beneath)
1916 if (t->to_flash_erase != NULL)
1917 {
1918 if (targetdebug)
1919 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1920 hex_string (address), phex (length, 0));
1921 t->to_flash_erase (t, address, length);
1922 return;
1923 }
1924
1925 tcomplain ();
1926 }
1927
1928 void
1929 target_flash_done (void)
1930 {
1931 struct target_ops *t;
1932
1933 for (t = current_target.beneath; t != NULL; t = t->beneath)
1934 if (t->to_flash_done != NULL)
1935 {
1936 if (targetdebug)
1937 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1938 t->to_flash_done (t);
1939 return;
1940 }
1941
1942 tcomplain ();
1943 }
1944
1945 static void
1946 show_trust_readonly (struct ui_file *file, int from_tty,
1947 struct cmd_list_element *c, const char *value)
1948 {
1949 fprintf_filtered (file,
1950 _("Mode for reading from readonly sections is %s.\n"),
1951 value);
1952 }
1953
1954 /* More generic transfers. */
1955
1956 static LONGEST
1957 default_xfer_partial (struct target_ops *ops, enum target_object object,
1958 const char *annex, gdb_byte *readbuf,
1959 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1960 {
1961 if (object == TARGET_OBJECT_MEMORY
1962 && ops->deprecated_xfer_memory != NULL)
1963 /* If available, fall back to the target's
1964 "deprecated_xfer_memory" method. */
1965 {
1966 int xfered = -1;
1967
1968 errno = 0;
1969 if (writebuf != NULL)
1970 {
1971 void *buffer = xmalloc (len);
1972 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1973
1974 memcpy (buffer, writebuf, len);
1975 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1976 1/*write*/, NULL, ops);
1977 do_cleanups (cleanup);
1978 }
1979 if (readbuf != NULL)
1980 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1981 0/*read*/, NULL, ops);
1982 if (xfered > 0)
1983 return xfered;
1984 else if (xfered == 0 && errno == 0)
1985 /* "deprecated_xfer_memory" uses 0, cross checked against
1986 ERRNO as one indication of an error. */
1987 return 0;
1988 else
1989 return -1;
1990 }
1991 else if (ops->beneath != NULL)
1992 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1993 readbuf, writebuf, offset, len);
1994 else
1995 return -1;
1996 }
1997
1998 /* The xfer_partial handler for the topmost target. Unlike the default,
1999 it does not need to handle memory specially; it just passes all
2000 requests down the stack. */
2001
2002 static LONGEST
2003 current_xfer_partial (struct target_ops *ops, enum target_object object,
2004 const char *annex, gdb_byte *readbuf,
2005 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2006 {
2007 if (ops->beneath != NULL)
2008 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2009 readbuf, writebuf, offset, len);
2010 else
2011 return -1;
2012 }
2013
2014 /* Target vector read/write partial wrapper functions. */
2015
2016 static LONGEST
2017 target_read_partial (struct target_ops *ops,
2018 enum target_object object,
2019 const char *annex, gdb_byte *buf,
2020 ULONGEST offset, LONGEST len)
2021 {
2022 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2023 }
2024
2025 static LONGEST
2026 target_write_partial (struct target_ops *ops,
2027 enum target_object object,
2028 const char *annex, const gdb_byte *buf,
2029 ULONGEST offset, LONGEST len)
2030 {
2031 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2032 }
2033
2034 /* Wrappers to perform the full transfer. */
2035
2036 /* For docs on target_read see target.h. */
2037
2038 LONGEST
2039 target_read (struct target_ops *ops,
2040 enum target_object object,
2041 const char *annex, gdb_byte *buf,
2042 ULONGEST offset, LONGEST len)
2043 {
2044 LONGEST xfered = 0;
2045
2046 while (xfered < len)
2047 {
2048 LONGEST xfer = target_read_partial (ops, object, annex,
2049 (gdb_byte *) buf + xfered,
2050 offset + xfered, len - xfered);
2051
2052 /* Call an observer, notifying them of the xfer progress? */
2053 if (xfer == 0)
2054 return xfered;
2055 if (xfer < 0)
2056 return -1;
2057 xfered += xfer;
2058 QUIT;
2059 }
2060 return len;
2061 }
2062
2063 /* Assuming that the entire [begin, end) range of memory cannot be
2064 read, try to read whatever subrange is possible to read.
2065
2066 The function returns, in RESULT, either zero or one memory block.
2067 If there's a readable subrange at the beginning, it is completely
2068 read and returned. Any further readable subrange will not be read.
2069 Otherwise, if there's a readable subrange at the end, it will be
2070 completely read and returned. Any readable subranges before it
2071 (obviously, not starting at the beginning), will be ignored. In
2072 other cases -- either no readable subrange, or readable subrange(s)
2073 that is neither at the beginning, or end, nothing is returned.
2074
2075 The purpose of this function is to handle a read across a boundary
2076 of accessible memory in a case when memory map is not available.
2077 The above restrictions are fine for this case, but will give
2078 incorrect results if the memory is 'patchy'. However, supporting
2079 'patchy' memory would require trying to read every single byte,
2080 and it seems unacceptable solution. Explicit memory map is
2081 recommended for this case -- and target_read_memory_robust will
2082 take care of reading multiple ranges then. */
2083
2084 static void
2085 read_whatever_is_readable (struct target_ops *ops,
2086 ULONGEST begin, ULONGEST end,
2087 VEC(memory_read_result_s) **result)
2088 {
2089 gdb_byte *buf = xmalloc (end - begin);
2090 ULONGEST current_begin = begin;
2091 ULONGEST current_end = end;
2092 int forward;
2093 memory_read_result_s r;
2094
2095 /* If we previously failed to read 1 byte, nothing can be done here. */
2096 if (end - begin <= 1)
2097 {
2098 xfree (buf);
2099 return;
2100 }
2101
2102 /* Check that either first or the last byte is readable, and give up
2103 if not. This heuristic is meant to permit reading accessible memory
2104 at the boundary of accessible region. */
2105 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2106 buf, begin, 1) == 1)
2107 {
2108 forward = 1;
2109 ++current_begin;
2110 }
2111 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2112 buf + (end-begin) - 1, end - 1, 1) == 1)
2113 {
2114 forward = 0;
2115 --current_end;
2116 }
2117 else
2118 {
2119 xfree (buf);
2120 return;
2121 }
2122
2123 /* Loop invariant is that the [current_begin, current_end) was previously
2124 found to be not readable as a whole.
2125
2126 Note loop condition -- if the range has 1 byte, we can't divide the range
2127 so there's no point trying further. */
2128 while (current_end - current_begin > 1)
2129 {
2130 ULONGEST first_half_begin, first_half_end;
2131 ULONGEST second_half_begin, second_half_end;
2132 LONGEST xfer;
2133 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2134
2135 if (forward)
2136 {
2137 first_half_begin = current_begin;
2138 first_half_end = middle;
2139 second_half_begin = middle;
2140 second_half_end = current_end;
2141 }
2142 else
2143 {
2144 first_half_begin = middle;
2145 first_half_end = current_end;
2146 second_half_begin = current_begin;
2147 second_half_end = middle;
2148 }
2149
2150 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2151 buf + (first_half_begin - begin),
2152 first_half_begin,
2153 first_half_end - first_half_begin);
2154
2155 if (xfer == first_half_end - first_half_begin)
2156 {
2157 /* This half reads up fine. So, the error must be in the
2158 other half. */
2159 current_begin = second_half_begin;
2160 current_end = second_half_end;
2161 }
2162 else
2163 {
2164 /* This half is not readable. Because we've tried one byte, we
2165 know some part of this half if actually redable. Go to the next
2166 iteration to divide again and try to read.
2167
2168 We don't handle the other half, because this function only tries
2169 to read a single readable subrange. */
2170 current_begin = first_half_begin;
2171 current_end = first_half_end;
2172 }
2173 }
2174
2175 if (forward)
2176 {
2177 /* The [begin, current_begin) range has been read. */
2178 r.begin = begin;
2179 r.end = current_begin;
2180 r.data = buf;
2181 }
2182 else
2183 {
2184 /* The [current_end, end) range has been read. */
2185 LONGEST rlen = end - current_end;
2186
2187 r.data = xmalloc (rlen);
2188 memcpy (r.data, buf + current_end - begin, rlen);
2189 r.begin = current_end;
2190 r.end = end;
2191 xfree (buf);
2192 }
2193 VEC_safe_push(memory_read_result_s, (*result), &r);
2194 }
2195
2196 void
2197 free_memory_read_result_vector (void *x)
2198 {
2199 VEC(memory_read_result_s) *v = x;
2200 memory_read_result_s *current;
2201 int ix;
2202
2203 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2204 {
2205 xfree (current->data);
2206 }
2207 VEC_free (memory_read_result_s, v);
2208 }
2209
2210 VEC(memory_read_result_s) *
2211 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2212 {
2213 VEC(memory_read_result_s) *result = 0;
2214
2215 LONGEST xfered = 0;
2216 while (xfered < len)
2217 {
2218 struct mem_region *region = lookup_mem_region (offset + xfered);
2219 LONGEST rlen;
2220
2221 /* If there is no explicit region, a fake one should be created. */
2222 gdb_assert (region);
2223
2224 if (region->hi == 0)
2225 rlen = len - xfered;
2226 else
2227 rlen = region->hi - offset;
2228
2229 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2230 {
2231 /* Cannot read this region. Note that we can end up here only
2232 if the region is explicitly marked inaccessible, or
2233 'inaccessible-by-default' is in effect. */
2234 xfered += rlen;
2235 }
2236 else
2237 {
2238 LONGEST to_read = min (len - xfered, rlen);
2239 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2240
2241 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2242 (gdb_byte *) buffer,
2243 offset + xfered, to_read);
2244 /* Call an observer, notifying them of the xfer progress? */
2245 if (xfer <= 0)
2246 {
2247 /* Got an error reading full chunk. See if maybe we can read
2248 some subrange. */
2249 xfree (buffer);
2250 read_whatever_is_readable (ops, offset + xfered,
2251 offset + xfered + to_read, &result);
2252 xfered += to_read;
2253 }
2254 else
2255 {
2256 struct memory_read_result r;
2257 r.data = buffer;
2258 r.begin = offset + xfered;
2259 r.end = r.begin + xfer;
2260 VEC_safe_push (memory_read_result_s, result, &r);
2261 xfered += xfer;
2262 }
2263 QUIT;
2264 }
2265 }
2266 return result;
2267 }
2268
2269
2270 /* An alternative to target_write with progress callbacks. */
2271
2272 LONGEST
2273 target_write_with_progress (struct target_ops *ops,
2274 enum target_object object,
2275 const char *annex, const gdb_byte *buf,
2276 ULONGEST offset, LONGEST len,
2277 void (*progress) (ULONGEST, void *), void *baton)
2278 {
2279 LONGEST xfered = 0;
2280
2281 /* Give the progress callback a chance to set up. */
2282 if (progress)
2283 (*progress) (0, baton);
2284
2285 while (xfered < len)
2286 {
2287 LONGEST xfer = target_write_partial (ops, object, annex,
2288 (gdb_byte *) buf + xfered,
2289 offset + xfered, len - xfered);
2290
2291 if (xfer == 0)
2292 return xfered;
2293 if (xfer < 0)
2294 return -1;
2295
2296 if (progress)
2297 (*progress) (xfer, baton);
2298
2299 xfered += xfer;
2300 QUIT;
2301 }
2302 return len;
2303 }
2304
2305 /* For docs on target_write see target.h. */
2306
2307 LONGEST
2308 target_write (struct target_ops *ops,
2309 enum target_object object,
2310 const char *annex, const gdb_byte *buf,
2311 ULONGEST offset, LONGEST len)
2312 {
2313 return target_write_with_progress (ops, object, annex, buf, offset, len,
2314 NULL, NULL);
2315 }
2316
2317 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2318 the size of the transferred data. PADDING additional bytes are
2319 available in *BUF_P. This is a helper function for
2320 target_read_alloc; see the declaration of that function for more
2321 information. */
2322
2323 static LONGEST
2324 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2325 const char *annex, gdb_byte **buf_p, int padding)
2326 {
2327 size_t buf_alloc, buf_pos;
2328 gdb_byte *buf;
2329 LONGEST n;
2330
2331 /* This function does not have a length parameter; it reads the
2332 entire OBJECT). Also, it doesn't support objects fetched partly
2333 from one target and partly from another (in a different stratum,
2334 e.g. a core file and an executable). Both reasons make it
2335 unsuitable for reading memory. */
2336 gdb_assert (object != TARGET_OBJECT_MEMORY);
2337
2338 /* Start by reading up to 4K at a time. The target will throttle
2339 this number down if necessary. */
2340 buf_alloc = 4096;
2341 buf = xmalloc (buf_alloc);
2342 buf_pos = 0;
2343 while (1)
2344 {
2345 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2346 buf_pos, buf_alloc - buf_pos - padding);
2347 if (n < 0)
2348 {
2349 /* An error occurred. */
2350 xfree (buf);
2351 return -1;
2352 }
2353 else if (n == 0)
2354 {
2355 /* Read all there was. */
2356 if (buf_pos == 0)
2357 xfree (buf);
2358 else
2359 *buf_p = buf;
2360 return buf_pos;
2361 }
2362
2363 buf_pos += n;
2364
2365 /* If the buffer is filling up, expand it. */
2366 if (buf_alloc < buf_pos * 2)
2367 {
2368 buf_alloc *= 2;
2369 buf = xrealloc (buf, buf_alloc);
2370 }
2371
2372 QUIT;
2373 }
2374 }
2375
2376 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2377 the size of the transferred data. See the declaration in "target.h"
2378 function for more information about the return value. */
2379
2380 LONGEST
2381 target_read_alloc (struct target_ops *ops, enum target_object object,
2382 const char *annex, gdb_byte **buf_p)
2383 {
2384 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2385 }
2386
2387 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2388 returned as a string, allocated using xmalloc. If an error occurs
2389 or the transfer is unsupported, NULL is returned. Empty objects
2390 are returned as allocated but empty strings. A warning is issued
2391 if the result contains any embedded NUL bytes. */
2392
2393 char *
2394 target_read_stralloc (struct target_ops *ops, enum target_object object,
2395 const char *annex)
2396 {
2397 gdb_byte *buffer;
2398 char *bufstr;
2399 LONGEST i, transferred;
2400
2401 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2402 bufstr = (char *) buffer;
2403
2404 if (transferred < 0)
2405 return NULL;
2406
2407 if (transferred == 0)
2408 return xstrdup ("");
2409
2410 bufstr[transferred] = 0;
2411
2412 /* Check for embedded NUL bytes; but allow trailing NULs. */
2413 for (i = strlen (bufstr); i < transferred; i++)
2414 if (bufstr[i] != 0)
2415 {
2416 warning (_("target object %d, annex %s, "
2417 "contained unexpected null characters"),
2418 (int) object, annex ? annex : "(none)");
2419 break;
2420 }
2421
2422 return bufstr;
2423 }
2424
2425 /* Memory transfer methods. */
2426
2427 void
2428 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2429 LONGEST len)
2430 {
2431 /* This method is used to read from an alternate, non-current
2432 target. This read must bypass the overlay support (as symbols
2433 don't match this target), and GDB's internal cache (wrong cache
2434 for this target). */
2435 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2436 != len)
2437 memory_error (EIO, addr);
2438 }
2439
2440 ULONGEST
2441 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2442 int len, enum bfd_endian byte_order)
2443 {
2444 gdb_byte buf[sizeof (ULONGEST)];
2445
2446 gdb_assert (len <= sizeof (buf));
2447 get_target_memory (ops, addr, buf, len);
2448 return extract_unsigned_integer (buf, len, byte_order);
2449 }
2450
2451 int
2452 target_insert_breakpoint (struct gdbarch *gdbarch,
2453 struct bp_target_info *bp_tgt)
2454 {
2455 if (!may_insert_breakpoints)
2456 {
2457 warning (_("May not insert breakpoints"));
2458 return 1;
2459 }
2460
2461 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2462 }
2463
2464 int
2465 target_remove_breakpoint (struct gdbarch *gdbarch,
2466 struct bp_target_info *bp_tgt)
2467 {
2468 /* This is kind of a weird case to handle, but the permission might
2469 have been changed after breakpoints were inserted - in which case
2470 we should just take the user literally and assume that any
2471 breakpoints should be left in place. */
2472 if (!may_insert_breakpoints)
2473 {
2474 warning (_("May not remove breakpoints"));
2475 return 1;
2476 }
2477
2478 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2479 }
2480
2481 static void
2482 target_info (char *args, int from_tty)
2483 {
2484 struct target_ops *t;
2485 int has_all_mem = 0;
2486
2487 if (symfile_objfile != NULL)
2488 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2489
2490 for (t = target_stack; t != NULL; t = t->beneath)
2491 {
2492 if (!(*t->to_has_memory) (t))
2493 continue;
2494
2495 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2496 continue;
2497 if (has_all_mem)
2498 printf_unfiltered (_("\tWhile running this, "
2499 "GDB does not access memory from...\n"));
2500 printf_unfiltered ("%s:\n", t->to_longname);
2501 (t->to_files_info) (t);
2502 has_all_mem = (*t->to_has_all_memory) (t);
2503 }
2504 }
2505
2506 /* This function is called before any new inferior is created, e.g.
2507 by running a program, attaching, or connecting to a target.
2508 It cleans up any state from previous invocations which might
2509 change between runs. This is a subset of what target_preopen
2510 resets (things which might change between targets). */
2511
2512 void
2513 target_pre_inferior (int from_tty)
2514 {
2515 /* Clear out solib state. Otherwise the solib state of the previous
2516 inferior might have survived and is entirely wrong for the new
2517 target. This has been observed on GNU/Linux using glibc 2.3. How
2518 to reproduce:
2519
2520 bash$ ./foo&
2521 [1] 4711
2522 bash$ ./foo&
2523 [1] 4712
2524 bash$ gdb ./foo
2525 [...]
2526 (gdb) attach 4711
2527 (gdb) detach
2528 (gdb) attach 4712
2529 Cannot access memory at address 0xdeadbeef
2530 */
2531
2532 /* In some OSs, the shared library list is the same/global/shared
2533 across inferiors. If code is shared between processes, so are
2534 memory regions and features. */
2535 if (!gdbarch_has_global_solist (target_gdbarch ()))
2536 {
2537 no_shared_libraries (NULL, from_tty);
2538
2539 invalidate_target_mem_regions ();
2540
2541 target_clear_description ();
2542 }
2543
2544 agent_capability_invalidate ();
2545 }
2546
2547 /* Callback for iterate_over_inferiors. Gets rid of the given
2548 inferior. */
2549
2550 static int
2551 dispose_inferior (struct inferior *inf, void *args)
2552 {
2553 struct thread_info *thread;
2554
2555 thread = any_thread_of_process (inf->pid);
2556 if (thread)
2557 {
2558 switch_to_thread (thread->ptid);
2559
2560 /* Core inferiors actually should be detached, not killed. */
2561 if (target_has_execution)
2562 target_kill ();
2563 else
2564 target_detach (NULL, 0);
2565 }
2566
2567 return 0;
2568 }
2569
2570 /* This is to be called by the open routine before it does
2571 anything. */
2572
2573 void
2574 target_preopen (int from_tty)
2575 {
2576 dont_repeat ();
2577
2578 if (have_inferiors ())
2579 {
2580 if (!from_tty
2581 || !have_live_inferiors ()
2582 || query (_("A program is being debugged already. Kill it? ")))
2583 iterate_over_inferiors (dispose_inferior, NULL);
2584 else
2585 error (_("Program not killed."));
2586 }
2587
2588 /* Calling target_kill may remove the target from the stack. But if
2589 it doesn't (which seems like a win for UDI), remove it now. */
2590 /* Leave the exec target, though. The user may be switching from a
2591 live process to a core of the same program. */
2592 pop_all_targets_above (file_stratum);
2593
2594 target_pre_inferior (from_tty);
2595 }
2596
2597 /* Detach a target after doing deferred register stores. */
2598
2599 void
2600 target_detach (char *args, int from_tty)
2601 {
2602 struct target_ops* t;
2603
2604 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2605 /* Don't remove global breakpoints here. They're removed on
2606 disconnection from the target. */
2607 ;
2608 else
2609 /* If we're in breakpoints-always-inserted mode, have to remove
2610 them before detaching. */
2611 remove_breakpoints_pid (PIDGET (inferior_ptid));
2612
2613 prepare_for_detach ();
2614
2615 for (t = current_target.beneath; t != NULL; t = t->beneath)
2616 {
2617 if (t->to_detach != NULL)
2618 {
2619 t->to_detach (t, args, from_tty);
2620 if (targetdebug)
2621 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2622 args, from_tty);
2623 return;
2624 }
2625 }
2626
2627 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2628 }
2629
2630 void
2631 target_disconnect (char *args, int from_tty)
2632 {
2633 struct target_ops *t;
2634
2635 /* If we're in breakpoints-always-inserted mode or if breakpoints
2636 are global across processes, we have to remove them before
2637 disconnecting. */
2638 remove_breakpoints ();
2639
2640 for (t = current_target.beneath; t != NULL; t = t->beneath)
2641 if (t->to_disconnect != NULL)
2642 {
2643 if (targetdebug)
2644 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2645 args, from_tty);
2646 t->to_disconnect (t, args, from_tty);
2647 return;
2648 }
2649
2650 tcomplain ();
2651 }
2652
2653 ptid_t
2654 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2655 {
2656 struct target_ops *t;
2657
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2659 {
2660 if (t->to_wait != NULL)
2661 {
2662 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2663
2664 if (targetdebug)
2665 {
2666 char *status_string;
2667 char *options_string;
2668
2669 status_string = target_waitstatus_to_string (status);
2670 options_string = target_options_to_string (options);
2671 fprintf_unfiltered (gdb_stdlog,
2672 "target_wait (%d, status, options={%s})"
2673 " = %d, %s\n",
2674 PIDGET (ptid), options_string,
2675 PIDGET (retval), status_string);
2676 xfree (status_string);
2677 xfree (options_string);
2678 }
2679
2680 return retval;
2681 }
2682 }
2683
2684 noprocess ();
2685 }
2686
2687 char *
2688 target_pid_to_str (ptid_t ptid)
2689 {
2690 struct target_ops *t;
2691
2692 for (t = current_target.beneath; t != NULL; t = t->beneath)
2693 {
2694 if (t->to_pid_to_str != NULL)
2695 return (*t->to_pid_to_str) (t, ptid);
2696 }
2697
2698 return normal_pid_to_str (ptid);
2699 }
2700
2701 char *
2702 target_thread_name (struct thread_info *info)
2703 {
2704 struct target_ops *t;
2705
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2707 {
2708 if (t->to_thread_name != NULL)
2709 return (*t->to_thread_name) (info);
2710 }
2711
2712 return NULL;
2713 }
2714
2715 void
2716 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2717 {
2718 struct target_ops *t;
2719
2720 target_dcache_invalidate ();
2721
2722 for (t = current_target.beneath; t != NULL; t = t->beneath)
2723 {
2724 if (t->to_resume != NULL)
2725 {
2726 t->to_resume (t, ptid, step, signal);
2727 if (targetdebug)
2728 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2729 PIDGET (ptid),
2730 step ? "step" : "continue",
2731 gdb_signal_to_name (signal));
2732
2733 registers_changed_ptid (ptid);
2734 set_executing (ptid, 1);
2735 set_running (ptid, 1);
2736 clear_inline_frame_state (ptid);
2737 return;
2738 }
2739 }
2740
2741 noprocess ();
2742 }
2743
2744 void
2745 target_pass_signals (int numsigs, unsigned char *pass_signals)
2746 {
2747 struct target_ops *t;
2748
2749 for (t = current_target.beneath; t != NULL; t = t->beneath)
2750 {
2751 if (t->to_pass_signals != NULL)
2752 {
2753 if (targetdebug)
2754 {
2755 int i;
2756
2757 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2758 numsigs);
2759
2760 for (i = 0; i < numsigs; i++)
2761 if (pass_signals[i])
2762 fprintf_unfiltered (gdb_stdlog, " %s",
2763 gdb_signal_to_name (i));
2764
2765 fprintf_unfiltered (gdb_stdlog, " })\n");
2766 }
2767
2768 (*t->to_pass_signals) (numsigs, pass_signals);
2769 return;
2770 }
2771 }
2772 }
2773
2774 void
2775 target_program_signals (int numsigs, unsigned char *program_signals)
2776 {
2777 struct target_ops *t;
2778
2779 for (t = current_target.beneath; t != NULL; t = t->beneath)
2780 {
2781 if (t->to_program_signals != NULL)
2782 {
2783 if (targetdebug)
2784 {
2785 int i;
2786
2787 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2788 numsigs);
2789
2790 for (i = 0; i < numsigs; i++)
2791 if (program_signals[i])
2792 fprintf_unfiltered (gdb_stdlog, " %s",
2793 gdb_signal_to_name (i));
2794
2795 fprintf_unfiltered (gdb_stdlog, " })\n");
2796 }
2797
2798 (*t->to_program_signals) (numsigs, program_signals);
2799 return;
2800 }
2801 }
2802 }
2803
2804 /* Look through the list of possible targets for a target that can
2805 follow forks. */
2806
2807 int
2808 target_follow_fork (int follow_child)
2809 {
2810 struct target_ops *t;
2811
2812 for (t = current_target.beneath; t != NULL; t = t->beneath)
2813 {
2814 if (t->to_follow_fork != NULL)
2815 {
2816 int retval = t->to_follow_fork (t, follow_child);
2817
2818 if (targetdebug)
2819 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2820 follow_child, retval);
2821 return retval;
2822 }
2823 }
2824
2825 /* Some target returned a fork event, but did not know how to follow it. */
2826 internal_error (__FILE__, __LINE__,
2827 _("could not find a target to follow fork"));
2828 }
2829
2830 void
2831 target_mourn_inferior (void)
2832 {
2833 struct target_ops *t;
2834
2835 for (t = current_target.beneath; t != NULL; t = t->beneath)
2836 {
2837 if (t->to_mourn_inferior != NULL)
2838 {
2839 t->to_mourn_inferior (t);
2840 if (targetdebug)
2841 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2842
2843 /* We no longer need to keep handles on any of the object files.
2844 Make sure to release them to avoid unnecessarily locking any
2845 of them while we're not actually debugging. */
2846 bfd_cache_close_all ();
2847
2848 return;
2849 }
2850 }
2851
2852 internal_error (__FILE__, __LINE__,
2853 _("could not find a target to follow mourn inferior"));
2854 }
2855
2856 /* Look for a target which can describe architectural features, starting
2857 from TARGET. If we find one, return its description. */
2858
2859 const struct target_desc *
2860 target_read_description (struct target_ops *target)
2861 {
2862 struct target_ops *t;
2863
2864 for (t = target; t != NULL; t = t->beneath)
2865 if (t->to_read_description != NULL)
2866 {
2867 const struct target_desc *tdesc;
2868
2869 tdesc = t->to_read_description (t);
2870 if (tdesc)
2871 return tdesc;
2872 }
2873
2874 return NULL;
2875 }
2876
2877 /* The default implementation of to_search_memory.
2878 This implements a basic search of memory, reading target memory and
2879 performing the search here (as opposed to performing the search in on the
2880 target side with, for example, gdbserver). */
2881
2882 int
2883 simple_search_memory (struct target_ops *ops,
2884 CORE_ADDR start_addr, ULONGEST search_space_len,
2885 const gdb_byte *pattern, ULONGEST pattern_len,
2886 CORE_ADDR *found_addrp)
2887 {
2888 /* NOTE: also defined in find.c testcase. */
2889 #define SEARCH_CHUNK_SIZE 16000
2890 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2891 /* Buffer to hold memory contents for searching. */
2892 gdb_byte *search_buf;
2893 unsigned search_buf_size;
2894 struct cleanup *old_cleanups;
2895
2896 search_buf_size = chunk_size + pattern_len - 1;
2897
2898 /* No point in trying to allocate a buffer larger than the search space. */
2899 if (search_space_len < search_buf_size)
2900 search_buf_size = search_space_len;
2901
2902 search_buf = malloc (search_buf_size);
2903 if (search_buf == NULL)
2904 error (_("Unable to allocate memory to perform the search."));
2905 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2906
2907 /* Prime the search buffer. */
2908
2909 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2910 search_buf, start_addr, search_buf_size) != search_buf_size)
2911 {
2912 warning (_("Unable to access %s bytes of target "
2913 "memory at %s, halting search."),
2914 pulongest (search_buf_size), hex_string (start_addr));
2915 do_cleanups (old_cleanups);
2916 return -1;
2917 }
2918
2919 /* Perform the search.
2920
2921 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2922 When we've scanned N bytes we copy the trailing bytes to the start and
2923 read in another N bytes. */
2924
2925 while (search_space_len >= pattern_len)
2926 {
2927 gdb_byte *found_ptr;
2928 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2929
2930 found_ptr = memmem (search_buf, nr_search_bytes,
2931 pattern, pattern_len);
2932
2933 if (found_ptr != NULL)
2934 {
2935 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2936
2937 *found_addrp = found_addr;
2938 do_cleanups (old_cleanups);
2939 return 1;
2940 }
2941
2942 /* Not found in this chunk, skip to next chunk. */
2943
2944 /* Don't let search_space_len wrap here, it's unsigned. */
2945 if (search_space_len >= chunk_size)
2946 search_space_len -= chunk_size;
2947 else
2948 search_space_len = 0;
2949
2950 if (search_space_len >= pattern_len)
2951 {
2952 unsigned keep_len = search_buf_size - chunk_size;
2953 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2954 int nr_to_read;
2955
2956 /* Copy the trailing part of the previous iteration to the front
2957 of the buffer for the next iteration. */
2958 gdb_assert (keep_len == pattern_len - 1);
2959 memcpy (search_buf, search_buf + chunk_size, keep_len);
2960
2961 nr_to_read = min (search_space_len - keep_len, chunk_size);
2962
2963 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2964 search_buf + keep_len, read_addr,
2965 nr_to_read) != nr_to_read)
2966 {
2967 warning (_("Unable to access %s bytes of target "
2968 "memory at %s, halting search."),
2969 plongest (nr_to_read),
2970 hex_string (read_addr));
2971 do_cleanups (old_cleanups);
2972 return -1;
2973 }
2974
2975 start_addr += chunk_size;
2976 }
2977 }
2978
2979 /* Not found. */
2980
2981 do_cleanups (old_cleanups);
2982 return 0;
2983 }
2984
2985 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2986 sequence of bytes in PATTERN with length PATTERN_LEN.
2987
2988 The result is 1 if found, 0 if not found, and -1 if there was an error
2989 requiring halting of the search (e.g. memory read error).
2990 If the pattern is found the address is recorded in FOUND_ADDRP. */
2991
2992 int
2993 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2994 const gdb_byte *pattern, ULONGEST pattern_len,
2995 CORE_ADDR *found_addrp)
2996 {
2997 struct target_ops *t;
2998 int found;
2999
3000 /* We don't use INHERIT to set current_target.to_search_memory,
3001 so we have to scan the target stack and handle targetdebug
3002 ourselves. */
3003
3004 if (targetdebug)
3005 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3006 hex_string (start_addr));
3007
3008 for (t = current_target.beneath; t != NULL; t = t->beneath)
3009 if (t->to_search_memory != NULL)
3010 break;
3011
3012 if (t != NULL)
3013 {
3014 found = t->to_search_memory (t, start_addr, search_space_len,
3015 pattern, pattern_len, found_addrp);
3016 }
3017 else
3018 {
3019 /* If a special version of to_search_memory isn't available, use the
3020 simple version. */
3021 found = simple_search_memory (current_target.beneath,
3022 start_addr, search_space_len,
3023 pattern, pattern_len, found_addrp);
3024 }
3025
3026 if (targetdebug)
3027 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3028
3029 return found;
3030 }
3031
3032 /* Look through the currently pushed targets. If none of them will
3033 be able to restart the currently running process, issue an error
3034 message. */
3035
3036 void
3037 target_require_runnable (void)
3038 {
3039 struct target_ops *t;
3040
3041 for (t = target_stack; t != NULL; t = t->beneath)
3042 {
3043 /* If this target knows how to create a new program, then
3044 assume we will still be able to after killing the current
3045 one. Either killing and mourning will not pop T, or else
3046 find_default_run_target will find it again. */
3047 if (t->to_create_inferior != NULL)
3048 return;
3049
3050 /* Do not worry about thread_stratum targets that can not
3051 create inferiors. Assume they will be pushed again if
3052 necessary, and continue to the process_stratum. */
3053 if (t->to_stratum == thread_stratum
3054 || t->to_stratum == arch_stratum)
3055 continue;
3056
3057 error (_("The \"%s\" target does not support \"run\". "
3058 "Try \"help target\" or \"continue\"."),
3059 t->to_shortname);
3060 }
3061
3062 /* This function is only called if the target is running. In that
3063 case there should have been a process_stratum target and it
3064 should either know how to create inferiors, or not... */
3065 internal_error (__FILE__, __LINE__, _("No targets found"));
3066 }
3067
3068 /* Look through the list of possible targets for a target that can
3069 execute a run or attach command without any other data. This is
3070 used to locate the default process stratum.
3071
3072 If DO_MESG is not NULL, the result is always valid (error() is
3073 called for errors); else, return NULL on error. */
3074
3075 static struct target_ops *
3076 find_default_run_target (char *do_mesg)
3077 {
3078 struct target_ops **t;
3079 struct target_ops *runable = NULL;
3080 int count;
3081
3082 count = 0;
3083
3084 for (t = target_structs; t < target_structs + target_struct_size;
3085 ++t)
3086 {
3087 if ((*t)->to_can_run && target_can_run (*t))
3088 {
3089 runable = *t;
3090 ++count;
3091 }
3092 }
3093
3094 if (count != 1)
3095 {
3096 if (do_mesg)
3097 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3098 else
3099 return NULL;
3100 }
3101
3102 return runable;
3103 }
3104
3105 void
3106 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3107 {
3108 struct target_ops *t;
3109
3110 t = find_default_run_target ("attach");
3111 (t->to_attach) (t, args, from_tty);
3112 return;
3113 }
3114
3115 void
3116 find_default_create_inferior (struct target_ops *ops,
3117 char *exec_file, char *allargs, char **env,
3118 int from_tty)
3119 {
3120 struct target_ops *t;
3121
3122 t = find_default_run_target ("run");
3123 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3124 return;
3125 }
3126
3127 static int
3128 find_default_can_async_p (void)
3129 {
3130 struct target_ops *t;
3131
3132 /* This may be called before the target is pushed on the stack;
3133 look for the default process stratum. If there's none, gdb isn't
3134 configured with a native debugger, and target remote isn't
3135 connected yet. */
3136 t = find_default_run_target (NULL);
3137 if (t && t->to_can_async_p)
3138 return (t->to_can_async_p) ();
3139 return 0;
3140 }
3141
3142 static int
3143 find_default_is_async_p (void)
3144 {
3145 struct target_ops *t;
3146
3147 /* This may be called before the target is pushed on the stack;
3148 look for the default process stratum. If there's none, gdb isn't
3149 configured with a native debugger, and target remote isn't
3150 connected yet. */
3151 t = find_default_run_target (NULL);
3152 if (t && t->to_is_async_p)
3153 return (t->to_is_async_p) ();
3154 return 0;
3155 }
3156
3157 static int
3158 find_default_supports_non_stop (void)
3159 {
3160 struct target_ops *t;
3161
3162 t = find_default_run_target (NULL);
3163 if (t && t->to_supports_non_stop)
3164 return (t->to_supports_non_stop) ();
3165 return 0;
3166 }
3167
3168 int
3169 target_supports_non_stop (void)
3170 {
3171 struct target_ops *t;
3172
3173 for (t = &current_target; t != NULL; t = t->beneath)
3174 if (t->to_supports_non_stop)
3175 return t->to_supports_non_stop ();
3176
3177 return 0;
3178 }
3179
3180 /* Implement the "info proc" command. */
3181
3182 int
3183 target_info_proc (char *args, enum info_proc_what what)
3184 {
3185 struct target_ops *t;
3186
3187 /* If we're already connected to something that can get us OS
3188 related data, use it. Otherwise, try using the native
3189 target. */
3190 if (current_target.to_stratum >= process_stratum)
3191 t = current_target.beneath;
3192 else
3193 t = find_default_run_target (NULL);
3194
3195 for (; t != NULL; t = t->beneath)
3196 {
3197 if (t->to_info_proc != NULL)
3198 {
3199 t->to_info_proc (t, args, what);
3200
3201 if (targetdebug)
3202 fprintf_unfiltered (gdb_stdlog,
3203 "target_info_proc (\"%s\", %d)\n", args, what);
3204
3205 return 1;
3206 }
3207 }
3208
3209 return 0;
3210 }
3211
3212 static int
3213 find_default_supports_disable_randomization (void)
3214 {
3215 struct target_ops *t;
3216
3217 t = find_default_run_target (NULL);
3218 if (t && t->to_supports_disable_randomization)
3219 return (t->to_supports_disable_randomization) ();
3220 return 0;
3221 }
3222
3223 int
3224 target_supports_disable_randomization (void)
3225 {
3226 struct target_ops *t;
3227
3228 for (t = &current_target; t != NULL; t = t->beneath)
3229 if (t->to_supports_disable_randomization)
3230 return t->to_supports_disable_randomization ();
3231
3232 return 0;
3233 }
3234
3235 char *
3236 target_get_osdata (const char *type)
3237 {
3238 struct target_ops *t;
3239
3240 /* If we're already connected to something that can get us OS
3241 related data, use it. Otherwise, try using the native
3242 target. */
3243 if (current_target.to_stratum >= process_stratum)
3244 t = current_target.beneath;
3245 else
3246 t = find_default_run_target ("get OS data");
3247
3248 if (!t)
3249 return NULL;
3250
3251 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3252 }
3253
3254 /* Determine the current address space of thread PTID. */
3255
3256 struct address_space *
3257 target_thread_address_space (ptid_t ptid)
3258 {
3259 struct address_space *aspace;
3260 struct inferior *inf;
3261 struct target_ops *t;
3262
3263 for (t = current_target.beneath; t != NULL; t = t->beneath)
3264 {
3265 if (t->to_thread_address_space != NULL)
3266 {
3267 aspace = t->to_thread_address_space (t, ptid);
3268 gdb_assert (aspace);
3269
3270 if (targetdebug)
3271 fprintf_unfiltered (gdb_stdlog,
3272 "target_thread_address_space (%s) = %d\n",
3273 target_pid_to_str (ptid),
3274 address_space_num (aspace));
3275 return aspace;
3276 }
3277 }
3278
3279 /* Fall-back to the "main" address space of the inferior. */
3280 inf = find_inferior_pid (ptid_get_pid (ptid));
3281
3282 if (inf == NULL || inf->aspace == NULL)
3283 internal_error (__FILE__, __LINE__,
3284 _("Can't determine the current "
3285 "address space of thread %s\n"),
3286 target_pid_to_str (ptid));
3287
3288 return inf->aspace;
3289 }
3290
3291
3292 /* Target file operations. */
3293
3294 static struct target_ops *
3295 default_fileio_target (void)
3296 {
3297 /* If we're already connected to something that can perform
3298 file I/O, use it. Otherwise, try using the native target. */
3299 if (current_target.to_stratum >= process_stratum)
3300 return current_target.beneath;
3301 else
3302 return find_default_run_target ("file I/O");
3303 }
3304
3305 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3306 target file descriptor, or -1 if an error occurs (and set
3307 *TARGET_ERRNO). */
3308 int
3309 target_fileio_open (const char *filename, int flags, int mode,
3310 int *target_errno)
3311 {
3312 struct target_ops *t;
3313
3314 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3315 {
3316 if (t->to_fileio_open != NULL)
3317 {
3318 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3319
3320 if (targetdebug)
3321 fprintf_unfiltered (gdb_stdlog,
3322 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3323 filename, flags, mode,
3324 fd, fd != -1 ? 0 : *target_errno);
3325 return fd;
3326 }
3327 }
3328
3329 *target_errno = FILEIO_ENOSYS;
3330 return -1;
3331 }
3332
3333 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3334 Return the number of bytes written, or -1 if an error occurs
3335 (and set *TARGET_ERRNO). */
3336 int
3337 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3338 ULONGEST offset, int *target_errno)
3339 {
3340 struct target_ops *t;
3341
3342 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3343 {
3344 if (t->to_fileio_pwrite != NULL)
3345 {
3346 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3347 target_errno);
3348
3349 if (targetdebug)
3350 fprintf_unfiltered (gdb_stdlog,
3351 "target_fileio_pwrite (%d,...,%d,%s) "
3352 "= %d (%d)\n",
3353 fd, len, pulongest (offset),
3354 ret, ret != -1 ? 0 : *target_errno);
3355 return ret;
3356 }
3357 }
3358
3359 *target_errno = FILEIO_ENOSYS;
3360 return -1;
3361 }
3362
3363 /* Read up to LEN bytes FD on the target into READ_BUF.
3364 Return the number of bytes read, or -1 if an error occurs
3365 (and set *TARGET_ERRNO). */
3366 int
3367 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3368 ULONGEST offset, int *target_errno)
3369 {
3370 struct target_ops *t;
3371
3372 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3373 {
3374 if (t->to_fileio_pread != NULL)
3375 {
3376 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3377 target_errno);
3378
3379 if (targetdebug)
3380 fprintf_unfiltered (gdb_stdlog,
3381 "target_fileio_pread (%d,...,%d,%s) "
3382 "= %d (%d)\n",
3383 fd, len, pulongest (offset),
3384 ret, ret != -1 ? 0 : *target_errno);
3385 return ret;
3386 }
3387 }
3388
3389 *target_errno = FILEIO_ENOSYS;
3390 return -1;
3391 }
3392
3393 /* Close FD on the target. Return 0, or -1 if an error occurs
3394 (and set *TARGET_ERRNO). */
3395 int
3396 target_fileio_close (int fd, int *target_errno)
3397 {
3398 struct target_ops *t;
3399
3400 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3401 {
3402 if (t->to_fileio_close != NULL)
3403 {
3404 int ret = t->to_fileio_close (fd, target_errno);
3405
3406 if (targetdebug)
3407 fprintf_unfiltered (gdb_stdlog,
3408 "target_fileio_close (%d) = %d (%d)\n",
3409 fd, ret, ret != -1 ? 0 : *target_errno);
3410 return ret;
3411 }
3412 }
3413
3414 *target_errno = FILEIO_ENOSYS;
3415 return -1;
3416 }
3417
3418 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3419 occurs (and set *TARGET_ERRNO). */
3420 int
3421 target_fileio_unlink (const char *filename, int *target_errno)
3422 {
3423 struct target_ops *t;
3424
3425 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3426 {
3427 if (t->to_fileio_unlink != NULL)
3428 {
3429 int ret = t->to_fileio_unlink (filename, target_errno);
3430
3431 if (targetdebug)
3432 fprintf_unfiltered (gdb_stdlog,
3433 "target_fileio_unlink (%s) = %d (%d)\n",
3434 filename, ret, ret != -1 ? 0 : *target_errno);
3435 return ret;
3436 }
3437 }
3438
3439 *target_errno = FILEIO_ENOSYS;
3440 return -1;
3441 }
3442
3443 /* Read value of symbolic link FILENAME on the target. Return a
3444 null-terminated string allocated via xmalloc, or NULL if an error
3445 occurs (and set *TARGET_ERRNO). */
3446 char *
3447 target_fileio_readlink (const char *filename, int *target_errno)
3448 {
3449 struct target_ops *t;
3450
3451 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3452 {
3453 if (t->to_fileio_readlink != NULL)
3454 {
3455 char *ret = t->to_fileio_readlink (filename, target_errno);
3456
3457 if (targetdebug)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "target_fileio_readlink (%s) = %s (%d)\n",
3460 filename, ret? ret : "(nil)",
3461 ret? 0 : *target_errno);
3462 return ret;
3463 }
3464 }
3465
3466 *target_errno = FILEIO_ENOSYS;
3467 return NULL;
3468 }
3469
3470 static void
3471 target_fileio_close_cleanup (void *opaque)
3472 {
3473 int fd = *(int *) opaque;
3474 int target_errno;
3475
3476 target_fileio_close (fd, &target_errno);
3477 }
3478
3479 /* Read target file FILENAME. Store the result in *BUF_P and
3480 return the size of the transferred data. PADDING additional bytes are
3481 available in *BUF_P. This is a helper function for
3482 target_fileio_read_alloc; see the declaration of that function for more
3483 information. */
3484
3485 static LONGEST
3486 target_fileio_read_alloc_1 (const char *filename,
3487 gdb_byte **buf_p, int padding)
3488 {
3489 struct cleanup *close_cleanup;
3490 size_t buf_alloc, buf_pos;
3491 gdb_byte *buf;
3492 LONGEST n;
3493 int fd;
3494 int target_errno;
3495
3496 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3497 if (fd == -1)
3498 return -1;
3499
3500 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3501
3502 /* Start by reading up to 4K at a time. The target will throttle
3503 this number down if necessary. */
3504 buf_alloc = 4096;
3505 buf = xmalloc (buf_alloc);
3506 buf_pos = 0;
3507 while (1)
3508 {
3509 n = target_fileio_pread (fd, &buf[buf_pos],
3510 buf_alloc - buf_pos - padding, buf_pos,
3511 &target_errno);
3512 if (n < 0)
3513 {
3514 /* An error occurred. */
3515 do_cleanups (close_cleanup);
3516 xfree (buf);
3517 return -1;
3518 }
3519 else if (n == 0)
3520 {
3521 /* Read all there was. */
3522 do_cleanups (close_cleanup);
3523 if (buf_pos == 0)
3524 xfree (buf);
3525 else
3526 *buf_p = buf;
3527 return buf_pos;
3528 }
3529
3530 buf_pos += n;
3531
3532 /* If the buffer is filling up, expand it. */
3533 if (buf_alloc < buf_pos * 2)
3534 {
3535 buf_alloc *= 2;
3536 buf = xrealloc (buf, buf_alloc);
3537 }
3538
3539 QUIT;
3540 }
3541 }
3542
3543 /* Read target file FILENAME. Store the result in *BUF_P and return
3544 the size of the transferred data. See the declaration in "target.h"
3545 function for more information about the return value. */
3546
3547 LONGEST
3548 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3549 {
3550 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3551 }
3552
3553 /* Read target file FILENAME. The result is NUL-terminated and
3554 returned as a string, allocated using xmalloc. If an error occurs
3555 or the transfer is unsupported, NULL is returned. Empty objects
3556 are returned as allocated but empty strings. A warning is issued
3557 if the result contains any embedded NUL bytes. */
3558
3559 char *
3560 target_fileio_read_stralloc (const char *filename)
3561 {
3562 gdb_byte *buffer;
3563 char *bufstr;
3564 LONGEST i, transferred;
3565
3566 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3567 bufstr = (char *) buffer;
3568
3569 if (transferred < 0)
3570 return NULL;
3571
3572 if (transferred == 0)
3573 return xstrdup ("");
3574
3575 bufstr[transferred] = 0;
3576
3577 /* Check for embedded NUL bytes; but allow trailing NULs. */
3578 for (i = strlen (bufstr); i < transferred; i++)
3579 if (bufstr[i] != 0)
3580 {
3581 warning (_("target file %s "
3582 "contained unexpected null characters"),
3583 filename);
3584 break;
3585 }
3586
3587 return bufstr;
3588 }
3589
3590
3591 static int
3592 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3593 {
3594 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3595 }
3596
3597 static int
3598 default_watchpoint_addr_within_range (struct target_ops *target,
3599 CORE_ADDR addr,
3600 CORE_ADDR start, int length)
3601 {
3602 return addr >= start && addr < start + length;
3603 }
3604
3605 static struct gdbarch *
3606 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3607 {
3608 return target_gdbarch ();
3609 }
3610
3611 static int
3612 return_zero (void)
3613 {
3614 return 0;
3615 }
3616
3617 static int
3618 return_one (void)
3619 {
3620 return 1;
3621 }
3622
3623 static int
3624 return_minus_one (void)
3625 {
3626 return -1;
3627 }
3628
3629 /* Find a single runnable target in the stack and return it. If for
3630 some reason there is more than one, return NULL. */
3631
3632 struct target_ops *
3633 find_run_target (void)
3634 {
3635 struct target_ops **t;
3636 struct target_ops *runable = NULL;
3637 int count;
3638
3639 count = 0;
3640
3641 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3642 {
3643 if ((*t)->to_can_run && target_can_run (*t))
3644 {
3645 runable = *t;
3646 ++count;
3647 }
3648 }
3649
3650 return (count == 1 ? runable : NULL);
3651 }
3652
3653 /*
3654 * Find the next target down the stack from the specified target.
3655 */
3656
3657 struct target_ops *
3658 find_target_beneath (struct target_ops *t)
3659 {
3660 return t->beneath;
3661 }
3662
3663 \f
3664 /* The inferior process has died. Long live the inferior! */
3665
3666 void
3667 generic_mourn_inferior (void)
3668 {
3669 ptid_t ptid;
3670
3671 ptid = inferior_ptid;
3672 inferior_ptid = null_ptid;
3673
3674 /* Mark breakpoints uninserted in case something tries to delete a
3675 breakpoint while we delete the inferior's threads (which would
3676 fail, since the inferior is long gone). */
3677 mark_breakpoints_out ();
3678
3679 if (!ptid_equal (ptid, null_ptid))
3680 {
3681 int pid = ptid_get_pid (ptid);
3682 exit_inferior (pid);
3683 }
3684
3685 /* Note this wipes step-resume breakpoints, so needs to be done
3686 after exit_inferior, which ends up referencing the step-resume
3687 breakpoints through clear_thread_inferior_resources. */
3688 breakpoint_init_inferior (inf_exited);
3689
3690 registers_changed ();
3691
3692 reopen_exec_file ();
3693 reinit_frame_cache ();
3694
3695 if (deprecated_detach_hook)
3696 deprecated_detach_hook ();
3697 }
3698 \f
3699 /* Convert a normal process ID to a string. Returns the string in a
3700 static buffer. */
3701
3702 char *
3703 normal_pid_to_str (ptid_t ptid)
3704 {
3705 static char buf[32];
3706
3707 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3708 return buf;
3709 }
3710
3711 static char *
3712 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3713 {
3714 return normal_pid_to_str (ptid);
3715 }
3716
3717 /* Error-catcher for target_find_memory_regions. */
3718 static int
3719 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3720 {
3721 error (_("Command not implemented for this target."));
3722 return 0;
3723 }
3724
3725 /* Error-catcher for target_make_corefile_notes. */
3726 static char *
3727 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3728 {
3729 error (_("Command not implemented for this target."));
3730 return NULL;
3731 }
3732
3733 /* Error-catcher for target_get_bookmark. */
3734 static gdb_byte *
3735 dummy_get_bookmark (char *ignore1, int ignore2)
3736 {
3737 tcomplain ();
3738 return NULL;
3739 }
3740
3741 /* Error-catcher for target_goto_bookmark. */
3742 static void
3743 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3744 {
3745 tcomplain ();
3746 }
3747
3748 /* Set up the handful of non-empty slots needed by the dummy target
3749 vector. */
3750
3751 static void
3752 init_dummy_target (void)
3753 {
3754 dummy_target.to_shortname = "None";
3755 dummy_target.to_longname = "None";
3756 dummy_target.to_doc = "";
3757 dummy_target.to_attach = find_default_attach;
3758 dummy_target.to_detach =
3759 (void (*)(struct target_ops *, char *, int))target_ignore;
3760 dummy_target.to_create_inferior = find_default_create_inferior;
3761 dummy_target.to_can_async_p = find_default_can_async_p;
3762 dummy_target.to_is_async_p = find_default_is_async_p;
3763 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3764 dummy_target.to_supports_disable_randomization
3765 = find_default_supports_disable_randomization;
3766 dummy_target.to_pid_to_str = dummy_pid_to_str;
3767 dummy_target.to_stratum = dummy_stratum;
3768 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3769 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3770 dummy_target.to_get_bookmark = dummy_get_bookmark;
3771 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3772 dummy_target.to_xfer_partial = default_xfer_partial;
3773 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3774 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3775 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3776 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3777 dummy_target.to_has_execution
3778 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3779 dummy_target.to_stopped_by_watchpoint = return_zero;
3780 dummy_target.to_stopped_data_address =
3781 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3782 dummy_target.to_magic = OPS_MAGIC;
3783 }
3784 \f
3785 static void
3786 debug_to_open (char *args, int from_tty)
3787 {
3788 debug_target.to_open (args, from_tty);
3789
3790 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3791 }
3792
3793 void
3794 target_close (struct target_ops *targ)
3795 {
3796 if (targ->to_xclose != NULL)
3797 targ->to_xclose (targ);
3798 else if (targ->to_close != NULL)
3799 targ->to_close ();
3800
3801 if (targetdebug)
3802 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3803 }
3804
3805 void
3806 target_attach (char *args, int from_tty)
3807 {
3808 struct target_ops *t;
3809
3810 for (t = current_target.beneath; t != NULL; t = t->beneath)
3811 {
3812 if (t->to_attach != NULL)
3813 {
3814 t->to_attach (t, args, from_tty);
3815 if (targetdebug)
3816 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3817 args, from_tty);
3818 return;
3819 }
3820 }
3821
3822 internal_error (__FILE__, __LINE__,
3823 _("could not find a target to attach"));
3824 }
3825
3826 int
3827 target_thread_alive (ptid_t ptid)
3828 {
3829 struct target_ops *t;
3830
3831 for (t = current_target.beneath; t != NULL; t = t->beneath)
3832 {
3833 if (t->to_thread_alive != NULL)
3834 {
3835 int retval;
3836
3837 retval = t->to_thread_alive (t, ptid);
3838 if (targetdebug)
3839 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3840 PIDGET (ptid), retval);
3841
3842 return retval;
3843 }
3844 }
3845
3846 return 0;
3847 }
3848
3849 void
3850 target_find_new_threads (void)
3851 {
3852 struct target_ops *t;
3853
3854 for (t = current_target.beneath; t != NULL; t = t->beneath)
3855 {
3856 if (t->to_find_new_threads != NULL)
3857 {
3858 t->to_find_new_threads (t);
3859 if (targetdebug)
3860 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3861
3862 return;
3863 }
3864 }
3865 }
3866
3867 void
3868 target_stop (ptid_t ptid)
3869 {
3870 if (!may_stop)
3871 {
3872 warning (_("May not interrupt or stop the target, ignoring attempt"));
3873 return;
3874 }
3875
3876 (*current_target.to_stop) (ptid);
3877 }
3878
3879 static void
3880 debug_to_post_attach (int pid)
3881 {
3882 debug_target.to_post_attach (pid);
3883
3884 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3885 }
3886
3887 /* Return a pretty printed form of target_waitstatus.
3888 Space for the result is malloc'd, caller must free. */
3889
3890 char *
3891 target_waitstatus_to_string (const struct target_waitstatus *ws)
3892 {
3893 const char *kind_str = "status->kind = ";
3894
3895 switch (ws->kind)
3896 {
3897 case TARGET_WAITKIND_EXITED:
3898 return xstrprintf ("%sexited, status = %d",
3899 kind_str, ws->value.integer);
3900 case TARGET_WAITKIND_STOPPED:
3901 return xstrprintf ("%sstopped, signal = %s",
3902 kind_str, gdb_signal_to_name (ws->value.sig));
3903 case TARGET_WAITKIND_SIGNALLED:
3904 return xstrprintf ("%ssignalled, signal = %s",
3905 kind_str, gdb_signal_to_name (ws->value.sig));
3906 case TARGET_WAITKIND_LOADED:
3907 return xstrprintf ("%sloaded", kind_str);
3908 case TARGET_WAITKIND_FORKED:
3909 return xstrprintf ("%sforked", kind_str);
3910 case TARGET_WAITKIND_VFORKED:
3911 return xstrprintf ("%svforked", kind_str);
3912 case TARGET_WAITKIND_EXECD:
3913 return xstrprintf ("%sexecd", kind_str);
3914 case TARGET_WAITKIND_VFORK_DONE:
3915 return xstrprintf ("%svfork-done", kind_str);
3916 case TARGET_WAITKIND_SYSCALL_ENTRY:
3917 return xstrprintf ("%sentered syscall", kind_str);
3918 case TARGET_WAITKIND_SYSCALL_RETURN:
3919 return xstrprintf ("%sexited syscall", kind_str);
3920 case TARGET_WAITKIND_SPURIOUS:
3921 return xstrprintf ("%sspurious", kind_str);
3922 case TARGET_WAITKIND_IGNORE:
3923 return xstrprintf ("%signore", kind_str);
3924 case TARGET_WAITKIND_NO_HISTORY:
3925 return xstrprintf ("%sno-history", kind_str);
3926 case TARGET_WAITKIND_NO_RESUMED:
3927 return xstrprintf ("%sno-resumed", kind_str);
3928 default:
3929 return xstrprintf ("%sunknown???", kind_str);
3930 }
3931 }
3932
3933 /* Concatenate ELEM to LIST, a comma separate list, and return the
3934 result. The LIST incoming argument is released. */
3935
3936 static char *
3937 str_comma_list_concat_elem (char *list, const char *elem)
3938 {
3939 if (list == NULL)
3940 return xstrdup (elem);
3941 else
3942 return reconcat (list, list, ", ", elem, (char *) NULL);
3943 }
3944
3945 /* Helper for target_options_to_string. If OPT is present in
3946 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3947 Returns the new resulting string. OPT is removed from
3948 TARGET_OPTIONS. */
3949
3950 static char *
3951 do_option (int *target_options, char *ret,
3952 int opt, char *opt_str)
3953 {
3954 if ((*target_options & opt) != 0)
3955 {
3956 ret = str_comma_list_concat_elem (ret, opt_str);
3957 *target_options &= ~opt;
3958 }
3959
3960 return ret;
3961 }
3962
3963 char *
3964 target_options_to_string (int target_options)
3965 {
3966 char *ret = NULL;
3967
3968 #define DO_TARG_OPTION(OPT) \
3969 ret = do_option (&target_options, ret, OPT, #OPT)
3970
3971 DO_TARG_OPTION (TARGET_WNOHANG);
3972
3973 if (target_options != 0)
3974 ret = str_comma_list_concat_elem (ret, "unknown???");
3975
3976 if (ret == NULL)
3977 ret = xstrdup ("");
3978 return ret;
3979 }
3980
3981 static void
3982 debug_print_register (const char * func,
3983 struct regcache *regcache, int regno)
3984 {
3985 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3986
3987 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3988 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3989 && gdbarch_register_name (gdbarch, regno) != NULL
3990 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3991 fprintf_unfiltered (gdb_stdlog, "(%s)",
3992 gdbarch_register_name (gdbarch, regno));
3993 else
3994 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3995 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3996 {
3997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3998 int i, size = register_size (gdbarch, regno);
3999 gdb_byte buf[MAX_REGISTER_SIZE];
4000
4001 regcache_raw_collect (regcache, regno, buf);
4002 fprintf_unfiltered (gdb_stdlog, " = ");
4003 for (i = 0; i < size; i++)
4004 {
4005 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4006 }
4007 if (size <= sizeof (LONGEST))
4008 {
4009 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
4010
4011 fprintf_unfiltered (gdb_stdlog, " %s %s",
4012 core_addr_to_string_nz (val), plongest (val));
4013 }
4014 }
4015 fprintf_unfiltered (gdb_stdlog, "\n");
4016 }
4017
4018 void
4019 target_fetch_registers (struct regcache *regcache, int regno)
4020 {
4021 struct target_ops *t;
4022
4023 for (t = current_target.beneath; t != NULL; t = t->beneath)
4024 {
4025 if (t->to_fetch_registers != NULL)
4026 {
4027 t->to_fetch_registers (t, regcache, regno);
4028 if (targetdebug)
4029 debug_print_register ("target_fetch_registers", regcache, regno);
4030 return;
4031 }
4032 }
4033 }
4034
4035 void
4036 target_store_registers (struct regcache *regcache, int regno)
4037 {
4038 struct target_ops *t;
4039
4040 if (!may_write_registers)
4041 error (_("Writing to registers is not allowed (regno %d)"), regno);
4042
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 {
4045 if (t->to_store_registers != NULL)
4046 {
4047 t->to_store_registers (t, regcache, regno);
4048 if (targetdebug)
4049 {
4050 debug_print_register ("target_store_registers", regcache, regno);
4051 }
4052 return;
4053 }
4054 }
4055
4056 noprocess ();
4057 }
4058
4059 int
4060 target_core_of_thread (ptid_t ptid)
4061 {
4062 struct target_ops *t;
4063
4064 for (t = current_target.beneath; t != NULL; t = t->beneath)
4065 {
4066 if (t->to_core_of_thread != NULL)
4067 {
4068 int retval = t->to_core_of_thread (t, ptid);
4069
4070 if (targetdebug)
4071 fprintf_unfiltered (gdb_stdlog,
4072 "target_core_of_thread (%d) = %d\n",
4073 PIDGET (ptid), retval);
4074 return retval;
4075 }
4076 }
4077
4078 return -1;
4079 }
4080
4081 int
4082 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4083 {
4084 struct target_ops *t;
4085
4086 for (t = current_target.beneath; t != NULL; t = t->beneath)
4087 {
4088 if (t->to_verify_memory != NULL)
4089 {
4090 int retval = t->to_verify_memory (t, data, memaddr, size);
4091
4092 if (targetdebug)
4093 fprintf_unfiltered (gdb_stdlog,
4094 "target_verify_memory (%s, %s) = %d\n",
4095 paddress (target_gdbarch (), memaddr),
4096 pulongest (size),
4097 retval);
4098 return retval;
4099 }
4100 }
4101
4102 tcomplain ();
4103 }
4104
4105 /* The documentation for this function is in its prototype declaration in
4106 target.h. */
4107
4108 int
4109 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4110 {
4111 struct target_ops *t;
4112
4113 for (t = current_target.beneath; t != NULL; t = t->beneath)
4114 if (t->to_insert_mask_watchpoint != NULL)
4115 {
4116 int ret;
4117
4118 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4119
4120 if (targetdebug)
4121 fprintf_unfiltered (gdb_stdlog, "\
4122 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4123 core_addr_to_string (addr),
4124 core_addr_to_string (mask), rw, ret);
4125
4126 return ret;
4127 }
4128
4129 return 1;
4130 }
4131
4132 /* The documentation for this function is in its prototype declaration in
4133 target.h. */
4134
4135 int
4136 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4137 {
4138 struct target_ops *t;
4139
4140 for (t = current_target.beneath; t != NULL; t = t->beneath)
4141 if (t->to_remove_mask_watchpoint != NULL)
4142 {
4143 int ret;
4144
4145 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4146
4147 if (targetdebug)
4148 fprintf_unfiltered (gdb_stdlog, "\
4149 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4150 core_addr_to_string (addr),
4151 core_addr_to_string (mask), rw, ret);
4152
4153 return ret;
4154 }
4155
4156 return 1;
4157 }
4158
4159 /* The documentation for this function is in its prototype declaration
4160 in target.h. */
4161
4162 int
4163 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4164 {
4165 struct target_ops *t;
4166
4167 for (t = current_target.beneath; t != NULL; t = t->beneath)
4168 if (t->to_masked_watch_num_registers != NULL)
4169 return t->to_masked_watch_num_registers (t, addr, mask);
4170
4171 return -1;
4172 }
4173
4174 /* The documentation for this function is in its prototype declaration
4175 in target.h. */
4176
4177 int
4178 target_ranged_break_num_registers (void)
4179 {
4180 struct target_ops *t;
4181
4182 for (t = current_target.beneath; t != NULL; t = t->beneath)
4183 if (t->to_ranged_break_num_registers != NULL)
4184 return t->to_ranged_break_num_registers (t);
4185
4186 return -1;
4187 }
4188
4189 /* See target.h. */
4190
4191 int
4192 target_supports_btrace (void)
4193 {
4194 struct target_ops *t;
4195
4196 for (t = current_target.beneath; t != NULL; t = t->beneath)
4197 if (t->to_supports_btrace != NULL)
4198 return t->to_supports_btrace ();
4199
4200 return 0;
4201 }
4202
4203 /* See target.h. */
4204
4205 struct btrace_target_info *
4206 target_enable_btrace (ptid_t ptid)
4207 {
4208 struct target_ops *t;
4209
4210 for (t = current_target.beneath; t != NULL; t = t->beneath)
4211 if (t->to_enable_btrace != NULL)
4212 return t->to_enable_btrace (ptid);
4213
4214 tcomplain ();
4215 return NULL;
4216 }
4217
4218 /* See target.h. */
4219
4220 void
4221 target_disable_btrace (struct btrace_target_info *btinfo)
4222 {
4223 struct target_ops *t;
4224
4225 for (t = current_target.beneath; t != NULL; t = t->beneath)
4226 if (t->to_disable_btrace != NULL)
4227 return t->to_disable_btrace (btinfo);
4228
4229 tcomplain ();
4230 }
4231
4232 /* See target.h. */
4233
4234 void
4235 target_teardown_btrace (struct btrace_target_info *btinfo)
4236 {
4237 struct target_ops *t;
4238
4239 for (t = current_target.beneath; t != NULL; t = t->beneath)
4240 if (t->to_teardown_btrace != NULL)
4241 return t->to_teardown_btrace (btinfo);
4242
4243 tcomplain ();
4244 }
4245
4246 /* See target.h. */
4247
4248 VEC (btrace_block_s) *
4249 target_read_btrace (struct btrace_target_info *btinfo,
4250 enum btrace_read_type type)
4251 {
4252 struct target_ops *t;
4253
4254 for (t = current_target.beneath; t != NULL; t = t->beneath)
4255 if (t->to_read_btrace != NULL)
4256 return t->to_read_btrace (btinfo, type);
4257
4258 tcomplain ();
4259 return NULL;
4260 }
4261
4262 /* See target.h. */
4263
4264 void
4265 target_stop_recording (void)
4266 {
4267 struct target_ops *t;
4268
4269 for (t = current_target.beneath; t != NULL; t = t->beneath)
4270 if (t->to_stop_recording != NULL)
4271 {
4272 t->to_stop_recording ();
4273 return;
4274 }
4275
4276 /* This is optional. */
4277 }
4278
4279 /* See target.h. */
4280
4281 void
4282 target_info_record (void)
4283 {
4284 struct target_ops *t;
4285
4286 for (t = current_target.beneath; t != NULL; t = t->beneath)
4287 if (t->to_info_record != NULL)
4288 {
4289 t->to_info_record ();
4290 return;
4291 }
4292
4293 tcomplain ();
4294 }
4295
4296 /* See target.h. */
4297
4298 void
4299 target_save_record (char *filename)
4300 {
4301 struct target_ops *t;
4302
4303 for (t = current_target.beneath; t != NULL; t = t->beneath)
4304 if (t->to_save_record != NULL)
4305 {
4306 t->to_save_record (filename);
4307 return;
4308 }
4309
4310 tcomplain ();
4311 }
4312
4313 /* See target.h. */
4314
4315 int
4316 target_supports_delete_record (void)
4317 {
4318 struct target_ops *t;
4319
4320 for (t = current_target.beneath; t != NULL; t = t->beneath)
4321 if (t->to_delete_record != NULL)
4322 return 1;
4323
4324 return 0;
4325 }
4326
4327 /* See target.h. */
4328
4329 void
4330 target_delete_record (void)
4331 {
4332 struct target_ops *t;
4333
4334 for (t = current_target.beneath; t != NULL; t = t->beneath)
4335 if (t->to_delete_record != NULL)
4336 {
4337 t->to_delete_record ();
4338 return;
4339 }
4340
4341 tcomplain ();
4342 }
4343
4344 /* See target.h. */
4345
4346 int
4347 target_record_is_replaying (void)
4348 {
4349 struct target_ops *t;
4350
4351 for (t = current_target.beneath; t != NULL; t = t->beneath)
4352 if (t->to_record_is_replaying != NULL)
4353 return t->to_record_is_replaying ();
4354
4355 return 0;
4356 }
4357
4358 /* See target.h. */
4359
4360 void
4361 target_goto_record_begin (void)
4362 {
4363 struct target_ops *t;
4364
4365 for (t = current_target.beneath; t != NULL; t = t->beneath)
4366 if (t->to_goto_record_begin != NULL)
4367 {
4368 t->to_goto_record_begin ();
4369 return;
4370 }
4371
4372 tcomplain ();
4373 }
4374
4375 /* See target.h. */
4376
4377 void
4378 target_goto_record_end (void)
4379 {
4380 struct target_ops *t;
4381
4382 for (t = current_target.beneath; t != NULL; t = t->beneath)
4383 if (t->to_goto_record_end != NULL)
4384 {
4385 t->to_goto_record_end ();
4386 return;
4387 }
4388
4389 tcomplain ();
4390 }
4391
4392 /* See target.h. */
4393
4394 void
4395 target_goto_record (ULONGEST insn)
4396 {
4397 struct target_ops *t;
4398
4399 for (t = current_target.beneath; t != NULL; t = t->beneath)
4400 if (t->to_goto_record != NULL)
4401 {
4402 t->to_goto_record (insn);
4403 return;
4404 }
4405
4406 tcomplain ();
4407 }
4408
4409 /* See target.h. */
4410
4411 void
4412 target_insn_history (int size, int flags)
4413 {
4414 struct target_ops *t;
4415
4416 for (t = current_target.beneath; t != NULL; t = t->beneath)
4417 if (t->to_insn_history != NULL)
4418 {
4419 t->to_insn_history (size, flags);
4420 return;
4421 }
4422
4423 tcomplain ();
4424 }
4425
4426 /* See target.h. */
4427
4428 void
4429 target_insn_history_from (ULONGEST from, int size, int flags)
4430 {
4431 struct target_ops *t;
4432
4433 for (t = current_target.beneath; t != NULL; t = t->beneath)
4434 if (t->to_insn_history_from != NULL)
4435 {
4436 t->to_insn_history_from (from, size, flags);
4437 return;
4438 }
4439
4440 tcomplain ();
4441 }
4442
4443 /* See target.h. */
4444
4445 void
4446 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4447 {
4448 struct target_ops *t;
4449
4450 for (t = current_target.beneath; t != NULL; t = t->beneath)
4451 if (t->to_insn_history_range != NULL)
4452 {
4453 t->to_insn_history_range (begin, end, flags);
4454 return;
4455 }
4456
4457 tcomplain ();
4458 }
4459
4460 /* See target.h. */
4461
4462 void
4463 target_call_history (int size, int flags)
4464 {
4465 struct target_ops *t;
4466
4467 for (t = current_target.beneath; t != NULL; t = t->beneath)
4468 if (t->to_call_history != NULL)
4469 {
4470 t->to_call_history (size, flags);
4471 return;
4472 }
4473
4474 tcomplain ();
4475 }
4476
4477 /* See target.h. */
4478
4479 void
4480 target_call_history_from (ULONGEST begin, int size, int flags)
4481 {
4482 struct target_ops *t;
4483
4484 for (t = current_target.beneath; t != NULL; t = t->beneath)
4485 if (t->to_call_history_from != NULL)
4486 {
4487 t->to_call_history_from (begin, size, flags);
4488 return;
4489 }
4490
4491 tcomplain ();
4492 }
4493
4494 /* See target.h. */
4495
4496 void
4497 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4498 {
4499 struct target_ops *t;
4500
4501 for (t = current_target.beneath; t != NULL; t = t->beneath)
4502 if (t->to_call_history_range != NULL)
4503 {
4504 t->to_call_history_range (begin, end, flags);
4505 return;
4506 }
4507
4508 tcomplain ();
4509 }
4510
4511 static void
4512 debug_to_prepare_to_store (struct regcache *regcache)
4513 {
4514 debug_target.to_prepare_to_store (regcache);
4515
4516 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4517 }
4518
4519 static int
4520 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4521 int write, struct mem_attrib *attrib,
4522 struct target_ops *target)
4523 {
4524 int retval;
4525
4526 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4527 attrib, target);
4528
4529 fprintf_unfiltered (gdb_stdlog,
4530 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4531 paddress (target_gdbarch (), memaddr), len,
4532 write ? "write" : "read", retval);
4533
4534 if (retval > 0)
4535 {
4536 int i;
4537
4538 fputs_unfiltered (", bytes =", gdb_stdlog);
4539 for (i = 0; i < retval; i++)
4540 {
4541 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4542 {
4543 if (targetdebug < 2 && i > 0)
4544 {
4545 fprintf_unfiltered (gdb_stdlog, " ...");
4546 break;
4547 }
4548 fprintf_unfiltered (gdb_stdlog, "\n");
4549 }
4550
4551 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4552 }
4553 }
4554
4555 fputc_unfiltered ('\n', gdb_stdlog);
4556
4557 return retval;
4558 }
4559
4560 static void
4561 debug_to_files_info (struct target_ops *target)
4562 {
4563 debug_target.to_files_info (target);
4564
4565 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4566 }
4567
4568 static int
4569 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4570 struct bp_target_info *bp_tgt)
4571 {
4572 int retval;
4573
4574 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4575
4576 fprintf_unfiltered (gdb_stdlog,
4577 "target_insert_breakpoint (%s, xxx) = %ld\n",
4578 core_addr_to_string (bp_tgt->placed_address),
4579 (unsigned long) retval);
4580 return retval;
4581 }
4582
4583 static int
4584 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4585 struct bp_target_info *bp_tgt)
4586 {
4587 int retval;
4588
4589 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4590
4591 fprintf_unfiltered (gdb_stdlog,
4592 "target_remove_breakpoint (%s, xxx) = %ld\n",
4593 core_addr_to_string (bp_tgt->placed_address),
4594 (unsigned long) retval);
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4600 {
4601 int retval;
4602
4603 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4604
4605 fprintf_unfiltered (gdb_stdlog,
4606 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4607 (unsigned long) type,
4608 (unsigned long) cnt,
4609 (unsigned long) from_tty,
4610 (unsigned long) retval);
4611 return retval;
4612 }
4613
4614 static int
4615 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4616 {
4617 CORE_ADDR retval;
4618
4619 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4620
4621 fprintf_unfiltered (gdb_stdlog,
4622 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4623 core_addr_to_string (addr), (unsigned long) len,
4624 core_addr_to_string (retval));
4625 return retval;
4626 }
4627
4628 static int
4629 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4630 struct expression *cond)
4631 {
4632 int retval;
4633
4634 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4635 rw, cond);
4636
4637 fprintf_unfiltered (gdb_stdlog,
4638 "target_can_accel_watchpoint_condition "
4639 "(%s, %d, %d, %s) = %ld\n",
4640 core_addr_to_string (addr), len, rw,
4641 host_address_to_string (cond), (unsigned long) retval);
4642 return retval;
4643 }
4644
4645 static int
4646 debug_to_stopped_by_watchpoint (void)
4647 {
4648 int retval;
4649
4650 retval = debug_target.to_stopped_by_watchpoint ();
4651
4652 fprintf_unfiltered (gdb_stdlog,
4653 "target_stopped_by_watchpoint () = %ld\n",
4654 (unsigned long) retval);
4655 return retval;
4656 }
4657
4658 static int
4659 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4660 {
4661 int retval;
4662
4663 retval = debug_target.to_stopped_data_address (target, addr);
4664
4665 fprintf_unfiltered (gdb_stdlog,
4666 "target_stopped_data_address ([%s]) = %ld\n",
4667 core_addr_to_string (*addr),
4668 (unsigned long)retval);
4669 return retval;
4670 }
4671
4672 static int
4673 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4674 CORE_ADDR addr,
4675 CORE_ADDR start, int length)
4676 {
4677 int retval;
4678
4679 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4680 start, length);
4681
4682 fprintf_filtered (gdb_stdlog,
4683 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4684 core_addr_to_string (addr), core_addr_to_string (start),
4685 length, retval);
4686 return retval;
4687 }
4688
4689 static int
4690 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4691 struct bp_target_info *bp_tgt)
4692 {
4693 int retval;
4694
4695 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4696
4697 fprintf_unfiltered (gdb_stdlog,
4698 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4699 core_addr_to_string (bp_tgt->placed_address),
4700 (unsigned long) retval);
4701 return retval;
4702 }
4703
4704 static int
4705 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4706 struct bp_target_info *bp_tgt)
4707 {
4708 int retval;
4709
4710 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4711
4712 fprintf_unfiltered (gdb_stdlog,
4713 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4714 core_addr_to_string (bp_tgt->placed_address),
4715 (unsigned long) retval);
4716 return retval;
4717 }
4718
4719 static int
4720 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4721 struct expression *cond)
4722 {
4723 int retval;
4724
4725 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4726
4727 fprintf_unfiltered (gdb_stdlog,
4728 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4729 core_addr_to_string (addr), len, type,
4730 host_address_to_string (cond), (unsigned long) retval);
4731 return retval;
4732 }
4733
4734 static int
4735 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4736 struct expression *cond)
4737 {
4738 int retval;
4739
4740 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4741
4742 fprintf_unfiltered (gdb_stdlog,
4743 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4744 core_addr_to_string (addr), len, type,
4745 host_address_to_string (cond), (unsigned long) retval);
4746 return retval;
4747 }
4748
4749 static void
4750 debug_to_terminal_init (void)
4751 {
4752 debug_target.to_terminal_init ();
4753
4754 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4755 }
4756
4757 static void
4758 debug_to_terminal_inferior (void)
4759 {
4760 debug_target.to_terminal_inferior ();
4761
4762 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4763 }
4764
4765 static void
4766 debug_to_terminal_ours_for_output (void)
4767 {
4768 debug_target.to_terminal_ours_for_output ();
4769
4770 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4771 }
4772
4773 static void
4774 debug_to_terminal_ours (void)
4775 {
4776 debug_target.to_terminal_ours ();
4777
4778 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4779 }
4780
4781 static void
4782 debug_to_terminal_save_ours (void)
4783 {
4784 debug_target.to_terminal_save_ours ();
4785
4786 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4787 }
4788
4789 static void
4790 debug_to_terminal_info (char *arg, int from_tty)
4791 {
4792 debug_target.to_terminal_info (arg, from_tty);
4793
4794 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4795 from_tty);
4796 }
4797
4798 static void
4799 debug_to_load (char *args, int from_tty)
4800 {
4801 debug_target.to_load (args, from_tty);
4802
4803 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4804 }
4805
4806 static void
4807 debug_to_post_startup_inferior (ptid_t ptid)
4808 {
4809 debug_target.to_post_startup_inferior (ptid);
4810
4811 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4812 PIDGET (ptid));
4813 }
4814
4815 static int
4816 debug_to_insert_fork_catchpoint (int pid)
4817 {
4818 int retval;
4819
4820 retval = debug_target.to_insert_fork_catchpoint (pid);
4821
4822 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4823 pid, retval);
4824
4825 return retval;
4826 }
4827
4828 static int
4829 debug_to_remove_fork_catchpoint (int pid)
4830 {
4831 int retval;
4832
4833 retval = debug_target.to_remove_fork_catchpoint (pid);
4834
4835 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4836 pid, retval);
4837
4838 return retval;
4839 }
4840
4841 static int
4842 debug_to_insert_vfork_catchpoint (int pid)
4843 {
4844 int retval;
4845
4846 retval = debug_target.to_insert_vfork_catchpoint (pid);
4847
4848 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4849 pid, retval);
4850
4851 return retval;
4852 }
4853
4854 static int
4855 debug_to_remove_vfork_catchpoint (int pid)
4856 {
4857 int retval;
4858
4859 retval = debug_target.to_remove_vfork_catchpoint (pid);
4860
4861 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4862 pid, retval);
4863
4864 return retval;
4865 }
4866
4867 static int
4868 debug_to_insert_exec_catchpoint (int pid)
4869 {
4870 int retval;
4871
4872 retval = debug_target.to_insert_exec_catchpoint (pid);
4873
4874 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4875 pid, retval);
4876
4877 return retval;
4878 }
4879
4880 static int
4881 debug_to_remove_exec_catchpoint (int pid)
4882 {
4883 int retval;
4884
4885 retval = debug_target.to_remove_exec_catchpoint (pid);
4886
4887 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4888 pid, retval);
4889
4890 return retval;
4891 }
4892
4893 static int
4894 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4895 {
4896 int has_exited;
4897
4898 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4899
4900 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4901 pid, wait_status, *exit_status, has_exited);
4902
4903 return has_exited;
4904 }
4905
4906 static int
4907 debug_to_can_run (void)
4908 {
4909 int retval;
4910
4911 retval = debug_target.to_can_run ();
4912
4913 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4914
4915 return retval;
4916 }
4917
4918 static struct gdbarch *
4919 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4920 {
4921 struct gdbarch *retval;
4922
4923 retval = debug_target.to_thread_architecture (ops, ptid);
4924
4925 fprintf_unfiltered (gdb_stdlog,
4926 "target_thread_architecture (%s) = %s [%s]\n",
4927 target_pid_to_str (ptid),
4928 host_address_to_string (retval),
4929 gdbarch_bfd_arch_info (retval)->printable_name);
4930 return retval;
4931 }
4932
4933 static void
4934 debug_to_stop (ptid_t ptid)
4935 {
4936 debug_target.to_stop (ptid);
4937
4938 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4939 target_pid_to_str (ptid));
4940 }
4941
4942 static void
4943 debug_to_rcmd (char *command,
4944 struct ui_file *outbuf)
4945 {
4946 debug_target.to_rcmd (command, outbuf);
4947 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4948 }
4949
4950 static char *
4951 debug_to_pid_to_exec_file (int pid)
4952 {
4953 char *exec_file;
4954
4955 exec_file = debug_target.to_pid_to_exec_file (pid);
4956
4957 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4958 pid, exec_file);
4959
4960 return exec_file;
4961 }
4962
4963 static void
4964 setup_target_debug (void)
4965 {
4966 memcpy (&debug_target, &current_target, sizeof debug_target);
4967
4968 current_target.to_open = debug_to_open;
4969 current_target.to_post_attach = debug_to_post_attach;
4970 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4971 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4972 current_target.to_files_info = debug_to_files_info;
4973 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4974 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4975 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4976 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4977 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4978 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4979 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4980 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4981 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4982 current_target.to_watchpoint_addr_within_range
4983 = debug_to_watchpoint_addr_within_range;
4984 current_target.to_region_ok_for_hw_watchpoint
4985 = debug_to_region_ok_for_hw_watchpoint;
4986 current_target.to_can_accel_watchpoint_condition
4987 = debug_to_can_accel_watchpoint_condition;
4988 current_target.to_terminal_init = debug_to_terminal_init;
4989 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4990 current_target.to_terminal_ours_for_output
4991 = debug_to_terminal_ours_for_output;
4992 current_target.to_terminal_ours = debug_to_terminal_ours;
4993 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4994 current_target.to_terminal_info = debug_to_terminal_info;
4995 current_target.to_load = debug_to_load;
4996 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4997 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4998 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4999 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
5000 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
5001 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
5002 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
5003 current_target.to_has_exited = debug_to_has_exited;
5004 current_target.to_can_run = debug_to_can_run;
5005 current_target.to_stop = debug_to_stop;
5006 current_target.to_rcmd = debug_to_rcmd;
5007 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
5008 current_target.to_thread_architecture = debug_to_thread_architecture;
5009 }
5010 \f
5011
5012 static char targ_desc[] =
5013 "Names of targets and files being debugged.\nShows the entire \
5014 stack of targets currently in use (including the exec-file,\n\
5015 core-file, and process, if any), as well as the symbol file name.";
5016
5017 static void
5018 do_monitor_command (char *cmd,
5019 int from_tty)
5020 {
5021 if ((current_target.to_rcmd
5022 == (void (*) (char *, struct ui_file *)) tcomplain)
5023 || (current_target.to_rcmd == debug_to_rcmd
5024 && (debug_target.to_rcmd
5025 == (void (*) (char *, struct ui_file *)) tcomplain)))
5026 error (_("\"monitor\" command not supported by this target."));
5027 target_rcmd (cmd, gdb_stdtarg);
5028 }
5029
5030 /* Print the name of each layers of our target stack. */
5031
5032 static void
5033 maintenance_print_target_stack (char *cmd, int from_tty)
5034 {
5035 struct target_ops *t;
5036
5037 printf_filtered (_("The current target stack is:\n"));
5038
5039 for (t = target_stack; t != NULL; t = t->beneath)
5040 {
5041 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5042 }
5043 }
5044
5045 /* Controls if async mode is permitted. */
5046 int target_async_permitted = 0;
5047
5048 /* The set command writes to this variable. If the inferior is
5049 executing, linux_nat_async_permitted is *not* updated. */
5050 static int target_async_permitted_1 = 0;
5051
5052 static void
5053 set_target_async_command (char *args, int from_tty,
5054 struct cmd_list_element *c)
5055 {
5056 if (have_live_inferiors ())
5057 {
5058 target_async_permitted_1 = target_async_permitted;
5059 error (_("Cannot change this setting while the inferior is running."));
5060 }
5061
5062 target_async_permitted = target_async_permitted_1;
5063 }
5064
5065 static void
5066 show_target_async_command (struct ui_file *file, int from_tty,
5067 struct cmd_list_element *c,
5068 const char *value)
5069 {
5070 fprintf_filtered (file,
5071 _("Controlling the inferior in "
5072 "asynchronous mode is %s.\n"), value);
5073 }
5074
5075 /* Temporary copies of permission settings. */
5076
5077 static int may_write_registers_1 = 1;
5078 static int may_write_memory_1 = 1;
5079 static int may_insert_breakpoints_1 = 1;
5080 static int may_insert_tracepoints_1 = 1;
5081 static int may_insert_fast_tracepoints_1 = 1;
5082 static int may_stop_1 = 1;
5083
5084 /* Make the user-set values match the real values again. */
5085
5086 void
5087 update_target_permissions (void)
5088 {
5089 may_write_registers_1 = may_write_registers;
5090 may_write_memory_1 = may_write_memory;
5091 may_insert_breakpoints_1 = may_insert_breakpoints;
5092 may_insert_tracepoints_1 = may_insert_tracepoints;
5093 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5094 may_stop_1 = may_stop;
5095 }
5096
5097 /* The one function handles (most of) the permission flags in the same
5098 way. */
5099
5100 static void
5101 set_target_permissions (char *args, int from_tty,
5102 struct cmd_list_element *c)
5103 {
5104 if (target_has_execution)
5105 {
5106 update_target_permissions ();
5107 error (_("Cannot change this setting while the inferior is running."));
5108 }
5109
5110 /* Make the real values match the user-changed values. */
5111 may_write_registers = may_write_registers_1;
5112 may_insert_breakpoints = may_insert_breakpoints_1;
5113 may_insert_tracepoints = may_insert_tracepoints_1;
5114 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5115 may_stop = may_stop_1;
5116 update_observer_mode ();
5117 }
5118
5119 /* Set memory write permission independently of observer mode. */
5120
5121 static void
5122 set_write_memory_permission (char *args, int from_tty,
5123 struct cmd_list_element *c)
5124 {
5125 /* Make the real values match the user-changed values. */
5126 may_write_memory = may_write_memory_1;
5127 update_observer_mode ();
5128 }
5129
5130
5131 void
5132 initialize_targets (void)
5133 {
5134 init_dummy_target ();
5135 push_target (&dummy_target);
5136
5137 add_info ("target", target_info, targ_desc);
5138 add_info ("files", target_info, targ_desc);
5139
5140 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5141 Set target debugging."), _("\
5142 Show target debugging."), _("\
5143 When non-zero, target debugging is enabled. Higher numbers are more\n\
5144 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5145 command."),
5146 NULL,
5147 show_targetdebug,
5148 &setdebuglist, &showdebuglist);
5149
5150 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5151 &trust_readonly, _("\
5152 Set mode for reading from readonly sections."), _("\
5153 Show mode for reading from readonly sections."), _("\
5154 When this mode is on, memory reads from readonly sections (such as .text)\n\
5155 will be read from the object file instead of from the target. This will\n\
5156 result in significant performance improvement for remote targets."),
5157 NULL,
5158 show_trust_readonly,
5159 &setlist, &showlist);
5160
5161 add_com ("monitor", class_obscure, do_monitor_command,
5162 _("Send a command to the remote monitor (remote targets only)."));
5163
5164 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5165 _("Print the name of each layer of the internal target stack."),
5166 &maintenanceprintlist);
5167
5168 add_setshow_boolean_cmd ("target-async", no_class,
5169 &target_async_permitted_1, _("\
5170 Set whether gdb controls the inferior in asynchronous mode."), _("\
5171 Show whether gdb controls the inferior in asynchronous mode."), _("\
5172 Tells gdb whether to control the inferior in asynchronous mode."),
5173 set_target_async_command,
5174 show_target_async_command,
5175 &setlist,
5176 &showlist);
5177
5178 add_setshow_boolean_cmd ("stack-cache", class_support,
5179 &stack_cache_enabled_p_1, _("\
5180 Set cache use for stack access."), _("\
5181 Show cache use for stack access."), _("\
5182 When on, use the data cache for all stack access, regardless of any\n\
5183 configured memory regions. This improves remote performance significantly.\n\
5184 By default, caching for stack access is on."),
5185 set_stack_cache_enabled_p,
5186 show_stack_cache_enabled_p,
5187 &setlist, &showlist);
5188
5189 add_setshow_boolean_cmd ("may-write-registers", class_support,
5190 &may_write_registers_1, _("\
5191 Set permission to write into registers."), _("\
5192 Show permission to write into registers."), _("\
5193 When this permission is on, GDB may write into the target's registers.\n\
5194 Otherwise, any sort of write attempt will result in an error."),
5195 set_target_permissions, NULL,
5196 &setlist, &showlist);
5197
5198 add_setshow_boolean_cmd ("may-write-memory", class_support,
5199 &may_write_memory_1, _("\
5200 Set permission to write into target memory."), _("\
5201 Show permission to write into target memory."), _("\
5202 When this permission is on, GDB may write into the target's memory.\n\
5203 Otherwise, any sort of write attempt will result in an error."),
5204 set_write_memory_permission, NULL,
5205 &setlist, &showlist);
5206
5207 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5208 &may_insert_breakpoints_1, _("\
5209 Set permission to insert breakpoints in the target."), _("\
5210 Show permission to insert breakpoints in the target."), _("\
5211 When this permission is on, GDB may insert breakpoints in the program.\n\
5212 Otherwise, any sort of insertion attempt will result in an error."),
5213 set_target_permissions, NULL,
5214 &setlist, &showlist);
5215
5216 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5217 &may_insert_tracepoints_1, _("\
5218 Set permission to insert tracepoints in the target."), _("\
5219 Show permission to insert tracepoints in the target."), _("\
5220 When this permission is on, GDB may insert tracepoints in the program.\n\
5221 Otherwise, any sort of insertion attempt will result in an error."),
5222 set_target_permissions, NULL,
5223 &setlist, &showlist);
5224
5225 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5226 &may_insert_fast_tracepoints_1, _("\
5227 Set permission to insert fast tracepoints in the target."), _("\
5228 Show permission to insert fast tracepoints in the target."), _("\
5229 When this permission is on, GDB may insert fast tracepoints.\n\
5230 Otherwise, any sort of insertion attempt will result in an error."),
5231 set_target_permissions, NULL,
5232 &setlist, &showlist);
5233
5234 add_setshow_boolean_cmd ("may-interrupt", class_support,
5235 &may_stop_1, _("\
5236 Set permission to interrupt or signal the target."), _("\
5237 Show permission to interrupt or signal the target."), _("\
5238 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5239 Otherwise, any attempt to interrupt or stop will be ignored."),
5240 set_target_permissions, NULL,
5241 &setlist, &showlist);
5242
5243
5244 target_dcache = dcache_init ();
5245 }
This page took 0.20141 seconds and 4 git commands to generate.