gas/
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (const char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_load (char *, int);
146
147 static int debug_to_can_run (void);
148
149 static void debug_to_stop (ptid_t);
150
151 /* Pointer to array of target architecture structures; the size of the
152 array; the current index into the array; the allocated size of the
153 array. */
154 struct target_ops **target_structs;
155 unsigned target_struct_size;
156 unsigned target_struct_allocsize;
157 #define DEFAULT_ALLOCSIZE 10
158
159 /* The initial current target, so that there is always a semi-valid
160 current target. */
161
162 static struct target_ops dummy_target;
163
164 /* Top of target stack. */
165
166 static struct target_ops *target_stack;
167
168 /* The target structure we are currently using to talk to a process
169 or file or whatever "inferior" we have. */
170
171 struct target_ops current_target;
172
173 /* Command list for target. */
174
175 static struct cmd_list_element *targetlist = NULL;
176
177 /* Nonzero if we should trust readonly sections from the
178 executable when reading memory. */
179
180 static int trust_readonly = 0;
181
182 /* Nonzero if we should show true memory content including
183 memory breakpoint inserted by gdb. */
184
185 static int show_memory_breakpoints = 0;
186
187 /* These globals control whether GDB attempts to perform these
188 operations; they are useful for targets that need to prevent
189 inadvertant disruption, such as in non-stop mode. */
190
191 int may_write_registers = 1;
192
193 int may_write_memory = 1;
194
195 int may_insert_breakpoints = 1;
196
197 int may_insert_tracepoints = 1;
198
199 int may_insert_fast_tracepoints = 1;
200
201 int may_stop = 1;
202
203 /* Non-zero if we want to see trace of target level stuff. */
204
205 static unsigned int targetdebug = 0;
206 static void
207 show_targetdebug (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
211 }
212
213 static void setup_target_debug (void);
214
215 /* The option sets this. */
216 static int stack_cache_enabled_p_1 = 1;
217 /* And set_stack_cache_enabled_p updates this.
218 The reason for the separation is so that we don't flush the cache for
219 on->on transitions. */
220 static int stack_cache_enabled_p = 1;
221
222 /* This is called *after* the stack-cache has been set.
223 Flush the cache for off->on and on->off transitions.
224 There's no real need to flush the cache for on->off transitions,
225 except cleanliness. */
226
227 static void
228 set_stack_cache_enabled_p (char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
232 target_dcache_invalidate ();
233
234 stack_cache_enabled_p = stack_cache_enabled_p_1;
235 }
236
237 static void
238 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
242 }
243
244 /* Cache of memory operations, to speed up remote access. */
245 static DCACHE *target_dcache;
246
247 /* Invalidate the target dcache. */
248
249 void
250 target_dcache_invalidate (void)
251 {
252 dcache_invalidate (target_dcache);
253 }
254
255 /* The user just typed 'target' without the name of a target. */
256
257 static void
258 target_command (char *arg, int from_tty)
259 {
260 fputs_filtered ("Argument required (target name). Try `help target'\n",
261 gdb_stdout);
262 }
263
264 /* Default target_has_* methods for process_stratum targets. */
265
266 int
267 default_child_has_all_memory (struct target_ops *ops)
268 {
269 /* If no inferior selected, then we can't read memory here. */
270 if (ptid_equal (inferior_ptid, null_ptid))
271 return 0;
272
273 return 1;
274 }
275
276 int
277 default_child_has_memory (struct target_ops *ops)
278 {
279 /* If no inferior selected, then we can't read memory here. */
280 if (ptid_equal (inferior_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286 int
287 default_child_has_stack (struct target_ops *ops)
288 {
289 /* If no inferior selected, there's no stack. */
290 if (ptid_equal (inferior_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296 int
297 default_child_has_registers (struct target_ops *ops)
298 {
299 /* Can't read registers from no inferior. */
300 if (ptid_equal (inferior_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306 int
307 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
308 {
309 /* If there's no thread selected, then we can't make it run through
310 hoops. */
311 if (ptid_equal (the_ptid, null_ptid))
312 return 0;
313
314 return 1;
315 }
316
317
318 int
319 target_has_all_memory_1 (void)
320 {
321 struct target_ops *t;
322
323 for (t = current_target.beneath; t != NULL; t = t->beneath)
324 if (t->to_has_all_memory (t))
325 return 1;
326
327 return 0;
328 }
329
330 int
331 target_has_memory_1 (void)
332 {
333 struct target_ops *t;
334
335 for (t = current_target.beneath; t != NULL; t = t->beneath)
336 if (t->to_has_memory (t))
337 return 1;
338
339 return 0;
340 }
341
342 int
343 target_has_stack_1 (void)
344 {
345 struct target_ops *t;
346
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_stack (t))
349 return 1;
350
351 return 0;
352 }
353
354 int
355 target_has_registers_1 (void)
356 {
357 struct target_ops *t;
358
359 for (t = current_target.beneath; t != NULL; t = t->beneath)
360 if (t->to_has_registers (t))
361 return 1;
362
363 return 0;
364 }
365
366 int
367 target_has_execution_1 (ptid_t the_ptid)
368 {
369 struct target_ops *t;
370
371 for (t = current_target.beneath; t != NULL; t = t->beneath)
372 if (t->to_has_execution (t, the_ptid))
373 return 1;
374
375 return 0;
376 }
377
378 int
379 target_has_execution_current (void)
380 {
381 return target_has_execution_1 (inferior_ptid);
382 }
383
384 /* Add possible target architecture T to the list and add a new
385 command 'target T->to_shortname'. Set COMPLETER as the command's
386 completer if not NULL. */
387
388 void
389 add_target_with_completer (struct target_ops *t,
390 completer_ftype *completer)
391 {
392 struct cmd_list_element *c;
393
394 /* Provide default values for all "must have" methods. */
395 if (t->to_xfer_partial == NULL)
396 t->to_xfer_partial = default_xfer_partial;
397
398 if (t->to_has_all_memory == NULL)
399 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
400
401 if (t->to_has_memory == NULL)
402 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
403
404 if (t->to_has_stack == NULL)
405 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
406
407 if (t->to_has_registers == NULL)
408 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
409
410 if (t->to_has_execution == NULL)
411 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
412
413 if (!target_structs)
414 {
415 target_struct_allocsize = DEFAULT_ALLOCSIZE;
416 target_structs = (struct target_ops **) xmalloc
417 (target_struct_allocsize * sizeof (*target_structs));
418 }
419 if (target_struct_size >= target_struct_allocsize)
420 {
421 target_struct_allocsize *= 2;
422 target_structs = (struct target_ops **)
423 xrealloc ((char *) target_structs,
424 target_struct_allocsize * sizeof (*target_structs));
425 }
426 target_structs[target_struct_size++] = t;
427
428 if (targetlist == NULL)
429 add_prefix_cmd ("target", class_run, target_command, _("\
430 Connect to a target machine or process.\n\
431 The first argument is the type or protocol of the target machine.\n\
432 Remaining arguments are interpreted by the target protocol. For more\n\
433 information on the arguments for a particular protocol, type\n\
434 `help target ' followed by the protocol name."),
435 &targetlist, "target ", 0, &cmdlist);
436 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
437 &targetlist);
438 if (completer != NULL)
439 set_cmd_completer (c, completer);
440 }
441
442 /* Add a possible target architecture to the list. */
443
444 void
445 add_target (struct target_ops *t)
446 {
447 add_target_with_completer (t, NULL);
448 }
449
450 /* See target.h. */
451
452 void
453 add_deprecated_target_alias (struct target_ops *t, char *alias)
454 {
455 struct cmd_list_element *c;
456 char *alt;
457
458 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
459 see PR cli/15104. */
460 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
461 alt = xstrprintf ("target %s", t->to_shortname);
462 deprecate_cmd (c, alt);
463 }
464
465 /* Stub functions */
466
467 void
468 target_ignore (void)
469 {
470 }
471
472 void
473 target_kill (void)
474 {
475 struct target_ops *t;
476
477 for (t = current_target.beneath; t != NULL; t = t->beneath)
478 if (t->to_kill != NULL)
479 {
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
482
483 t->to_kill (t);
484 return;
485 }
486
487 noprocess ();
488 }
489
490 void
491 target_load (char *arg, int from_tty)
492 {
493 target_dcache_invalidate ();
494 (*current_target.to_load) (arg, from_tty);
495 }
496
497 void
498 target_create_inferior (char *exec_file, char *args,
499 char **env, int from_tty)
500 {
501 struct target_ops *t;
502
503 for (t = current_target.beneath; t != NULL; t = t->beneath)
504 {
505 if (t->to_create_inferior != NULL)
506 {
507 t->to_create_inferior (t, exec_file, args, env, from_tty);
508 if (targetdebug)
509 fprintf_unfiltered (gdb_stdlog,
510 "target_create_inferior (%s, %s, xxx, %d)\n",
511 exec_file, args, from_tty);
512 return;
513 }
514 }
515
516 internal_error (__FILE__, __LINE__,
517 _("could not find a target to create inferior"));
518 }
519
520 void
521 target_terminal_inferior (void)
522 {
523 /* A background resume (``run&'') should leave GDB in control of the
524 terminal. Use target_can_async_p, not target_is_async_p, since at
525 this point the target is not async yet. However, if sync_execution
526 is not set, we know it will become async prior to resume. */
527 if (target_can_async_p () && !sync_execution)
528 return;
529
530 /* If GDB is resuming the inferior in the foreground, install
531 inferior's terminal modes. */
532 (*current_target.to_terminal_inferior) ();
533 }
534
535 static int
536 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
537 struct target_ops *t)
538 {
539 errno = EIO; /* Can't read/write this location. */
540 return 0; /* No bytes handled. */
541 }
542
543 static void
544 tcomplain (void)
545 {
546 error (_("You can't do that when your target is `%s'"),
547 current_target.to_shortname);
548 }
549
550 void
551 noprocess (void)
552 {
553 error (_("You can't do that without a process to debug."));
554 }
555
556 static void
557 default_terminal_info (const char *args, int from_tty)
558 {
559 printf_unfiltered (_("No saved terminal information.\n"));
560 }
561
562 /* A default implementation for the to_get_ada_task_ptid target method.
563
564 This function builds the PTID by using both LWP and TID as part of
565 the PTID lwp and tid elements. The pid used is the pid of the
566 inferior_ptid. */
567
568 static ptid_t
569 default_get_ada_task_ptid (long lwp, long tid)
570 {
571 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
572 }
573
574 static enum exec_direction_kind
575 default_execution_direction (void)
576 {
577 if (!target_can_execute_reverse)
578 return EXEC_FORWARD;
579 else if (!target_can_async_p ())
580 return EXEC_FORWARD;
581 else
582 gdb_assert_not_reached ("\
583 to_execution_direction must be implemented for reverse async");
584 }
585
586 /* Go through the target stack from top to bottom, copying over zero
587 entries in current_target, then filling in still empty entries. In
588 effect, we are doing class inheritance through the pushed target
589 vectors.
590
591 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
592 is currently implemented, is that it discards any knowledge of
593 which target an inherited method originally belonged to.
594 Consequently, new new target methods should instead explicitly and
595 locally search the target stack for the target that can handle the
596 request. */
597
598 static void
599 update_current_target (void)
600 {
601 struct target_ops *t;
602
603 /* First, reset current's contents. */
604 memset (&current_target, 0, sizeof (current_target));
605
606 #define INHERIT(FIELD, TARGET) \
607 if (!current_target.FIELD) \
608 current_target.FIELD = (TARGET)->FIELD
609
610 for (t = target_stack; t; t = t->beneath)
611 {
612 INHERIT (to_shortname, t);
613 INHERIT (to_longname, t);
614 INHERIT (to_doc, t);
615 /* Do not inherit to_open. */
616 /* Do not inherit to_close. */
617 /* Do not inherit to_attach. */
618 INHERIT (to_post_attach, t);
619 INHERIT (to_attach_no_wait, t);
620 /* Do not inherit to_detach. */
621 /* Do not inherit to_disconnect. */
622 /* Do not inherit to_resume. */
623 /* Do not inherit to_wait. */
624 /* Do not inherit to_fetch_registers. */
625 /* Do not inherit to_store_registers. */
626 INHERIT (to_prepare_to_store, t);
627 INHERIT (deprecated_xfer_memory, t);
628 INHERIT (to_files_info, t);
629 INHERIT (to_insert_breakpoint, t);
630 INHERIT (to_remove_breakpoint, t);
631 INHERIT (to_can_use_hw_breakpoint, t);
632 INHERIT (to_insert_hw_breakpoint, t);
633 INHERIT (to_remove_hw_breakpoint, t);
634 /* Do not inherit to_ranged_break_num_registers. */
635 INHERIT (to_insert_watchpoint, t);
636 INHERIT (to_remove_watchpoint, t);
637 /* Do not inherit to_insert_mask_watchpoint. */
638 /* Do not inherit to_remove_mask_watchpoint. */
639 INHERIT (to_stopped_data_address, t);
640 INHERIT (to_have_steppable_watchpoint, t);
641 INHERIT (to_have_continuable_watchpoint, t);
642 INHERIT (to_stopped_by_watchpoint, t);
643 INHERIT (to_watchpoint_addr_within_range, t);
644 INHERIT (to_region_ok_for_hw_watchpoint, t);
645 INHERIT (to_can_accel_watchpoint_condition, t);
646 /* Do not inherit to_masked_watch_num_registers. */
647 INHERIT (to_terminal_init, t);
648 INHERIT (to_terminal_inferior, t);
649 INHERIT (to_terminal_ours_for_output, t);
650 INHERIT (to_terminal_ours, t);
651 INHERIT (to_terminal_save_ours, t);
652 INHERIT (to_terminal_info, t);
653 /* Do not inherit to_kill. */
654 INHERIT (to_load, t);
655 /* Do no inherit to_create_inferior. */
656 INHERIT (to_post_startup_inferior, t);
657 INHERIT (to_insert_fork_catchpoint, t);
658 INHERIT (to_remove_fork_catchpoint, t);
659 INHERIT (to_insert_vfork_catchpoint, t);
660 INHERIT (to_remove_vfork_catchpoint, t);
661 /* Do not inherit to_follow_fork. */
662 INHERIT (to_insert_exec_catchpoint, t);
663 INHERIT (to_remove_exec_catchpoint, t);
664 INHERIT (to_set_syscall_catchpoint, t);
665 INHERIT (to_has_exited, t);
666 /* Do not inherit to_mourn_inferior. */
667 INHERIT (to_can_run, t);
668 /* Do not inherit to_pass_signals. */
669 /* Do not inherit to_program_signals. */
670 /* Do not inherit to_thread_alive. */
671 /* Do not inherit to_find_new_threads. */
672 /* Do not inherit to_pid_to_str. */
673 INHERIT (to_extra_thread_info, t);
674 INHERIT (to_thread_name, t);
675 INHERIT (to_stop, t);
676 /* Do not inherit to_xfer_partial. */
677 INHERIT (to_rcmd, t);
678 INHERIT (to_pid_to_exec_file, t);
679 INHERIT (to_log_command, t);
680 INHERIT (to_stratum, t);
681 /* Do not inherit to_has_all_memory. */
682 /* Do not inherit to_has_memory. */
683 /* Do not inherit to_has_stack. */
684 /* Do not inherit to_has_registers. */
685 /* Do not inherit to_has_execution. */
686 INHERIT (to_has_thread_control, t);
687 INHERIT (to_can_async_p, t);
688 INHERIT (to_is_async_p, t);
689 INHERIT (to_async, t);
690 INHERIT (to_find_memory_regions, t);
691 INHERIT (to_make_corefile_notes, t);
692 INHERIT (to_get_bookmark, t);
693 INHERIT (to_goto_bookmark, t);
694 /* Do not inherit to_get_thread_local_address. */
695 INHERIT (to_can_execute_reverse, t);
696 INHERIT (to_execution_direction, t);
697 INHERIT (to_thread_architecture, t);
698 /* Do not inherit to_read_description. */
699 INHERIT (to_get_ada_task_ptid, t);
700 /* Do not inherit to_search_memory. */
701 INHERIT (to_supports_multi_process, t);
702 INHERIT (to_supports_enable_disable_tracepoint, t);
703 INHERIT (to_supports_string_tracing, t);
704 INHERIT (to_trace_init, t);
705 INHERIT (to_download_tracepoint, t);
706 INHERIT (to_can_download_tracepoint, t);
707 INHERIT (to_download_trace_state_variable, t);
708 INHERIT (to_enable_tracepoint, t);
709 INHERIT (to_disable_tracepoint, t);
710 INHERIT (to_trace_set_readonly_regions, t);
711 INHERIT (to_trace_start, t);
712 INHERIT (to_get_trace_status, t);
713 INHERIT (to_get_tracepoint_status, t);
714 INHERIT (to_trace_stop, t);
715 INHERIT (to_trace_find, t);
716 INHERIT (to_get_trace_state_variable_value, t);
717 INHERIT (to_save_trace_data, t);
718 INHERIT (to_upload_tracepoints, t);
719 INHERIT (to_upload_trace_state_variables, t);
720 INHERIT (to_get_raw_trace_data, t);
721 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
722 INHERIT (to_set_disconnected_tracing, t);
723 INHERIT (to_set_circular_trace_buffer, t);
724 INHERIT (to_set_trace_buffer_size, t);
725 INHERIT (to_set_trace_notes, t);
726 INHERIT (to_get_tib_address, t);
727 INHERIT (to_set_permissions, t);
728 INHERIT (to_static_tracepoint_marker_at, t);
729 INHERIT (to_static_tracepoint_markers_by_strid, t);
730 INHERIT (to_traceframe_info, t);
731 INHERIT (to_use_agent, t);
732 INHERIT (to_can_use_agent, t);
733 INHERIT (to_augmented_libraries_svr4_read, t);
734 INHERIT (to_magic, t);
735 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
736 INHERIT (to_can_run_breakpoint_commands, t);
737 /* Do not inherit to_memory_map. */
738 /* Do not inherit to_flash_erase. */
739 /* Do not inherit to_flash_done. */
740 }
741 #undef INHERIT
742
743 /* Clean up a target struct so it no longer has any zero pointers in
744 it. Some entries are defaulted to a method that print an error,
745 others are hard-wired to a standard recursive default. */
746
747 #define de_fault(field, value) \
748 if (!current_target.field) \
749 current_target.field = value
750
751 de_fault (to_open,
752 (void (*) (char *, int))
753 tcomplain);
754 de_fault (to_close,
755 (void (*) (void))
756 target_ignore);
757 de_fault (to_post_attach,
758 (void (*) (int))
759 target_ignore);
760 de_fault (to_prepare_to_store,
761 (void (*) (struct regcache *))
762 noprocess);
763 de_fault (deprecated_xfer_memory,
764 (int (*) (CORE_ADDR, gdb_byte *, int, int,
765 struct mem_attrib *, struct target_ops *))
766 nomemory);
767 de_fault (to_files_info,
768 (void (*) (struct target_ops *))
769 target_ignore);
770 de_fault (to_insert_breakpoint,
771 memory_insert_breakpoint);
772 de_fault (to_remove_breakpoint,
773 memory_remove_breakpoint);
774 de_fault (to_can_use_hw_breakpoint,
775 (int (*) (int, int, int))
776 return_zero);
777 de_fault (to_insert_hw_breakpoint,
778 (int (*) (struct gdbarch *, struct bp_target_info *))
779 return_minus_one);
780 de_fault (to_remove_hw_breakpoint,
781 (int (*) (struct gdbarch *, struct bp_target_info *))
782 return_minus_one);
783 de_fault (to_insert_watchpoint,
784 (int (*) (CORE_ADDR, int, int, struct expression *))
785 return_minus_one);
786 de_fault (to_remove_watchpoint,
787 (int (*) (CORE_ADDR, int, int, struct expression *))
788 return_minus_one);
789 de_fault (to_stopped_by_watchpoint,
790 (int (*) (void))
791 return_zero);
792 de_fault (to_stopped_data_address,
793 (int (*) (struct target_ops *, CORE_ADDR *))
794 return_zero);
795 de_fault (to_watchpoint_addr_within_range,
796 default_watchpoint_addr_within_range);
797 de_fault (to_region_ok_for_hw_watchpoint,
798 default_region_ok_for_hw_watchpoint);
799 de_fault (to_can_accel_watchpoint_condition,
800 (int (*) (CORE_ADDR, int, int, struct expression *))
801 return_zero);
802 de_fault (to_terminal_init,
803 (void (*) (void))
804 target_ignore);
805 de_fault (to_terminal_inferior,
806 (void (*) (void))
807 target_ignore);
808 de_fault (to_terminal_ours_for_output,
809 (void (*) (void))
810 target_ignore);
811 de_fault (to_terminal_ours,
812 (void (*) (void))
813 target_ignore);
814 de_fault (to_terminal_save_ours,
815 (void (*) (void))
816 target_ignore);
817 de_fault (to_terminal_info,
818 default_terminal_info);
819 de_fault (to_load,
820 (void (*) (char *, int))
821 tcomplain);
822 de_fault (to_post_startup_inferior,
823 (void (*) (ptid_t))
824 target_ignore);
825 de_fault (to_insert_fork_catchpoint,
826 (int (*) (int))
827 return_one);
828 de_fault (to_remove_fork_catchpoint,
829 (int (*) (int))
830 return_one);
831 de_fault (to_insert_vfork_catchpoint,
832 (int (*) (int))
833 return_one);
834 de_fault (to_remove_vfork_catchpoint,
835 (int (*) (int))
836 return_one);
837 de_fault (to_insert_exec_catchpoint,
838 (int (*) (int))
839 return_one);
840 de_fault (to_remove_exec_catchpoint,
841 (int (*) (int))
842 return_one);
843 de_fault (to_set_syscall_catchpoint,
844 (int (*) (int, int, int, int, int *))
845 return_one);
846 de_fault (to_has_exited,
847 (int (*) (int, int, int *))
848 return_zero);
849 de_fault (to_can_run,
850 return_zero);
851 de_fault (to_extra_thread_info,
852 (char *(*) (struct thread_info *))
853 return_zero);
854 de_fault (to_thread_name,
855 (char *(*) (struct thread_info *))
856 return_zero);
857 de_fault (to_stop,
858 (void (*) (ptid_t))
859 target_ignore);
860 current_target.to_xfer_partial = current_xfer_partial;
861 de_fault (to_rcmd,
862 (void (*) (char *, struct ui_file *))
863 tcomplain);
864 de_fault (to_pid_to_exec_file,
865 (char *(*) (int))
866 return_zero);
867 de_fault (to_async,
868 (void (*) (void (*) (enum inferior_event_type, void*), void*))
869 tcomplain);
870 de_fault (to_thread_architecture,
871 default_thread_architecture);
872 current_target.to_read_description = NULL;
873 de_fault (to_get_ada_task_ptid,
874 (ptid_t (*) (long, long))
875 default_get_ada_task_ptid);
876 de_fault (to_supports_multi_process,
877 (int (*) (void))
878 return_zero);
879 de_fault (to_supports_enable_disable_tracepoint,
880 (int (*) (void))
881 return_zero);
882 de_fault (to_supports_string_tracing,
883 (int (*) (void))
884 return_zero);
885 de_fault (to_trace_init,
886 (void (*) (void))
887 tcomplain);
888 de_fault (to_download_tracepoint,
889 (void (*) (struct bp_location *))
890 tcomplain);
891 de_fault (to_can_download_tracepoint,
892 (int (*) (void))
893 return_zero);
894 de_fault (to_download_trace_state_variable,
895 (void (*) (struct trace_state_variable *))
896 tcomplain);
897 de_fault (to_enable_tracepoint,
898 (void (*) (struct bp_location *))
899 tcomplain);
900 de_fault (to_disable_tracepoint,
901 (void (*) (struct bp_location *))
902 tcomplain);
903 de_fault (to_trace_set_readonly_regions,
904 (void (*) (void))
905 tcomplain);
906 de_fault (to_trace_start,
907 (void (*) (void))
908 tcomplain);
909 de_fault (to_get_trace_status,
910 (int (*) (struct trace_status *))
911 return_minus_one);
912 de_fault (to_get_tracepoint_status,
913 (void (*) (struct breakpoint *, struct uploaded_tp *))
914 tcomplain);
915 de_fault (to_trace_stop,
916 (void (*) (void))
917 tcomplain);
918 de_fault (to_trace_find,
919 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
920 return_minus_one);
921 de_fault (to_get_trace_state_variable_value,
922 (int (*) (int, LONGEST *))
923 return_zero);
924 de_fault (to_save_trace_data,
925 (int (*) (const char *))
926 tcomplain);
927 de_fault (to_upload_tracepoints,
928 (int (*) (struct uploaded_tp **))
929 return_zero);
930 de_fault (to_upload_trace_state_variables,
931 (int (*) (struct uploaded_tsv **))
932 return_zero);
933 de_fault (to_get_raw_trace_data,
934 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
935 tcomplain);
936 de_fault (to_get_min_fast_tracepoint_insn_len,
937 (int (*) (void))
938 return_minus_one);
939 de_fault (to_set_disconnected_tracing,
940 (void (*) (int))
941 target_ignore);
942 de_fault (to_set_circular_trace_buffer,
943 (void (*) (int))
944 target_ignore);
945 de_fault (to_set_trace_buffer_size,
946 (void (*) (LONGEST))
947 target_ignore);
948 de_fault (to_set_trace_notes,
949 (int (*) (const char *, const char *, const char *))
950 return_zero);
951 de_fault (to_get_tib_address,
952 (int (*) (ptid_t, CORE_ADDR *))
953 tcomplain);
954 de_fault (to_set_permissions,
955 (void (*) (void))
956 target_ignore);
957 de_fault (to_static_tracepoint_marker_at,
958 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
959 return_zero);
960 de_fault (to_static_tracepoint_markers_by_strid,
961 (VEC(static_tracepoint_marker_p) * (*) (const char *))
962 tcomplain);
963 de_fault (to_traceframe_info,
964 (struct traceframe_info * (*) (void))
965 tcomplain);
966 de_fault (to_supports_evaluation_of_breakpoint_conditions,
967 (int (*) (void))
968 return_zero);
969 de_fault (to_can_run_breakpoint_commands,
970 (int (*) (void))
971 return_zero);
972 de_fault (to_use_agent,
973 (int (*) (int))
974 tcomplain);
975 de_fault (to_can_use_agent,
976 (int (*) (void))
977 return_zero);
978 de_fault (to_augmented_libraries_svr4_read,
979 (int (*) (void))
980 return_zero);
981 de_fault (to_execution_direction, default_execution_direction);
982
983 #undef de_fault
984
985 /* Finally, position the target-stack beneath the squashed
986 "current_target". That way code looking for a non-inherited
987 target method can quickly and simply find it. */
988 current_target.beneath = target_stack;
989
990 if (targetdebug)
991 setup_target_debug ();
992 }
993
994 /* Push a new target type into the stack of the existing target accessors,
995 possibly superseding some of the existing accessors.
996
997 Rather than allow an empty stack, we always have the dummy target at
998 the bottom stratum, so we can call the function vectors without
999 checking them. */
1000
1001 void
1002 push_target (struct target_ops *t)
1003 {
1004 struct target_ops **cur;
1005
1006 /* Check magic number. If wrong, it probably means someone changed
1007 the struct definition, but not all the places that initialize one. */
1008 if (t->to_magic != OPS_MAGIC)
1009 {
1010 fprintf_unfiltered (gdb_stderr,
1011 "Magic number of %s target struct wrong\n",
1012 t->to_shortname);
1013 internal_error (__FILE__, __LINE__,
1014 _("failed internal consistency check"));
1015 }
1016
1017 /* Find the proper stratum to install this target in. */
1018 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1019 {
1020 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
1021 break;
1022 }
1023
1024 /* If there's already targets at this stratum, remove them. */
1025 /* FIXME: cagney/2003-10-15: I think this should be popping all
1026 targets to CUR, and not just those at this stratum level. */
1027 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
1028 {
1029 /* There's already something at this stratum level. Close it,
1030 and un-hook it from the stack. */
1031 struct target_ops *tmp = (*cur);
1032
1033 (*cur) = (*cur)->beneath;
1034 tmp->beneath = NULL;
1035 target_close (tmp);
1036 }
1037
1038 /* We have removed all targets in our stratum, now add the new one. */
1039 t->beneath = (*cur);
1040 (*cur) = t;
1041
1042 update_current_target ();
1043 }
1044
1045 /* Remove a target_ops vector from the stack, wherever it may be.
1046 Return how many times it was removed (0 or 1). */
1047
1048 int
1049 unpush_target (struct target_ops *t)
1050 {
1051 struct target_ops **cur;
1052 struct target_ops *tmp;
1053
1054 if (t->to_stratum == dummy_stratum)
1055 internal_error (__FILE__, __LINE__,
1056 _("Attempt to unpush the dummy target"));
1057
1058 /* Look for the specified target. Note that we assume that a target
1059 can only occur once in the target stack. */
1060
1061 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1062 {
1063 if ((*cur) == t)
1064 break;
1065 }
1066
1067 /* If we don't find target_ops, quit. Only open targets should be
1068 closed. */
1069 if ((*cur) == NULL)
1070 return 0;
1071
1072 /* Unchain the target. */
1073 tmp = (*cur);
1074 (*cur) = (*cur)->beneath;
1075 tmp->beneath = NULL;
1076
1077 update_current_target ();
1078
1079 /* Finally close the target. Note we do this after unchaining, so
1080 any target method calls from within the target_close
1081 implementation don't end up in T anymore. */
1082 target_close (t);
1083
1084 return 1;
1085 }
1086
1087 void
1088 pop_target (void)
1089 {
1090 target_close (target_stack); /* Let it clean up. */
1091 if (unpush_target (target_stack) == 1)
1092 return;
1093
1094 fprintf_unfiltered (gdb_stderr,
1095 "pop_target couldn't find target %s\n",
1096 current_target.to_shortname);
1097 internal_error (__FILE__, __LINE__,
1098 _("failed internal consistency check"));
1099 }
1100
1101 void
1102 pop_all_targets_above (enum strata above_stratum)
1103 {
1104 while ((int) (current_target.to_stratum) > (int) above_stratum)
1105 {
1106 target_close (target_stack);
1107 if (!unpush_target (target_stack))
1108 {
1109 fprintf_unfiltered (gdb_stderr,
1110 "pop_all_targets couldn't find target %s\n",
1111 target_stack->to_shortname);
1112 internal_error (__FILE__, __LINE__,
1113 _("failed internal consistency check"));
1114 break;
1115 }
1116 }
1117 }
1118
1119 void
1120 pop_all_targets (void)
1121 {
1122 pop_all_targets_above (dummy_stratum);
1123 }
1124
1125 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1126
1127 int
1128 target_is_pushed (struct target_ops *t)
1129 {
1130 struct target_ops **cur;
1131
1132 /* Check magic number. If wrong, it probably means someone changed
1133 the struct definition, but not all the places that initialize one. */
1134 if (t->to_magic != OPS_MAGIC)
1135 {
1136 fprintf_unfiltered (gdb_stderr,
1137 "Magic number of %s target struct wrong\n",
1138 t->to_shortname);
1139 internal_error (__FILE__, __LINE__,
1140 _("failed internal consistency check"));
1141 }
1142
1143 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1144 if (*cur == t)
1145 return 1;
1146
1147 return 0;
1148 }
1149
1150 /* Using the objfile specified in OBJFILE, find the address for the
1151 current thread's thread-local storage with offset OFFSET. */
1152 CORE_ADDR
1153 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1154 {
1155 volatile CORE_ADDR addr = 0;
1156 struct target_ops *target;
1157
1158 for (target = current_target.beneath;
1159 target != NULL;
1160 target = target->beneath)
1161 {
1162 if (target->to_get_thread_local_address != NULL)
1163 break;
1164 }
1165
1166 if (target != NULL
1167 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1168 {
1169 ptid_t ptid = inferior_ptid;
1170 volatile struct gdb_exception ex;
1171
1172 TRY_CATCH (ex, RETURN_MASK_ALL)
1173 {
1174 CORE_ADDR lm_addr;
1175
1176 /* Fetch the load module address for this objfile. */
1177 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1178 objfile);
1179 /* If it's 0, throw the appropriate exception. */
1180 if (lm_addr == 0)
1181 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1182 _("TLS load module not found"));
1183
1184 addr = target->to_get_thread_local_address (target, ptid,
1185 lm_addr, offset);
1186 }
1187 /* If an error occurred, print TLS related messages here. Otherwise,
1188 throw the error to some higher catcher. */
1189 if (ex.reason < 0)
1190 {
1191 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1192
1193 switch (ex.error)
1194 {
1195 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1196 error (_("Cannot find thread-local variables "
1197 "in this thread library."));
1198 break;
1199 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1200 if (objfile_is_library)
1201 error (_("Cannot find shared library `%s' in dynamic"
1202 " linker's load module list"), objfile->name);
1203 else
1204 error (_("Cannot find executable file `%s' in dynamic"
1205 " linker's load module list"), objfile->name);
1206 break;
1207 case TLS_NOT_ALLOCATED_YET_ERROR:
1208 if (objfile_is_library)
1209 error (_("The inferior has not yet allocated storage for"
1210 " thread-local variables in\n"
1211 "the shared library `%s'\n"
1212 "for %s"),
1213 objfile->name, target_pid_to_str (ptid));
1214 else
1215 error (_("The inferior has not yet allocated storage for"
1216 " thread-local variables in\n"
1217 "the executable `%s'\n"
1218 "for %s"),
1219 objfile->name, target_pid_to_str (ptid));
1220 break;
1221 case TLS_GENERIC_ERROR:
1222 if (objfile_is_library)
1223 error (_("Cannot find thread-local storage for %s, "
1224 "shared library %s:\n%s"),
1225 target_pid_to_str (ptid),
1226 objfile->name, ex.message);
1227 else
1228 error (_("Cannot find thread-local storage for %s, "
1229 "executable file %s:\n%s"),
1230 target_pid_to_str (ptid),
1231 objfile->name, ex.message);
1232 break;
1233 default:
1234 throw_exception (ex);
1235 break;
1236 }
1237 }
1238 }
1239 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1240 TLS is an ABI-specific thing. But we don't do that yet. */
1241 else
1242 error (_("Cannot find thread-local variables on this target"));
1243
1244 return addr;
1245 }
1246
1247 #undef MIN
1248 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1249
1250 /* target_read_string -- read a null terminated string, up to LEN bytes,
1251 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1252 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1253 is responsible for freeing it. Return the number of bytes successfully
1254 read. */
1255
1256 int
1257 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1258 {
1259 int tlen, offset, i;
1260 gdb_byte buf[4];
1261 int errcode = 0;
1262 char *buffer;
1263 int buffer_allocated;
1264 char *bufptr;
1265 unsigned int nbytes_read = 0;
1266
1267 gdb_assert (string);
1268
1269 /* Small for testing. */
1270 buffer_allocated = 4;
1271 buffer = xmalloc (buffer_allocated);
1272 bufptr = buffer;
1273
1274 while (len > 0)
1275 {
1276 tlen = MIN (len, 4 - (memaddr & 3));
1277 offset = memaddr & 3;
1278
1279 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1280 if (errcode != 0)
1281 {
1282 /* The transfer request might have crossed the boundary to an
1283 unallocated region of memory. Retry the transfer, requesting
1284 a single byte. */
1285 tlen = 1;
1286 offset = 0;
1287 errcode = target_read_memory (memaddr, buf, 1);
1288 if (errcode != 0)
1289 goto done;
1290 }
1291
1292 if (bufptr - buffer + tlen > buffer_allocated)
1293 {
1294 unsigned int bytes;
1295
1296 bytes = bufptr - buffer;
1297 buffer_allocated *= 2;
1298 buffer = xrealloc (buffer, buffer_allocated);
1299 bufptr = buffer + bytes;
1300 }
1301
1302 for (i = 0; i < tlen; i++)
1303 {
1304 *bufptr++ = buf[i + offset];
1305 if (buf[i + offset] == '\000')
1306 {
1307 nbytes_read += i + 1;
1308 goto done;
1309 }
1310 }
1311
1312 memaddr += tlen;
1313 len -= tlen;
1314 nbytes_read += tlen;
1315 }
1316 done:
1317 *string = buffer;
1318 if (errnop != NULL)
1319 *errnop = errcode;
1320 return nbytes_read;
1321 }
1322
1323 struct target_section_table *
1324 target_get_section_table (struct target_ops *target)
1325 {
1326 struct target_ops *t;
1327
1328 if (targetdebug)
1329 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1330
1331 for (t = target; t != NULL; t = t->beneath)
1332 if (t->to_get_section_table != NULL)
1333 return (*t->to_get_section_table) (t);
1334
1335 return NULL;
1336 }
1337
1338 /* Find a section containing ADDR. */
1339
1340 struct target_section *
1341 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1342 {
1343 struct target_section_table *table = target_get_section_table (target);
1344 struct target_section *secp;
1345
1346 if (table == NULL)
1347 return NULL;
1348
1349 for (secp = table->sections; secp < table->sections_end; secp++)
1350 {
1351 if (addr >= secp->addr && addr < secp->endaddr)
1352 return secp;
1353 }
1354 return NULL;
1355 }
1356
1357 /* Read memory from the live target, even if currently inspecting a
1358 traceframe. The return is the same as that of target_read. */
1359
1360 static LONGEST
1361 target_read_live_memory (enum target_object object,
1362 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1363 {
1364 int ret;
1365 struct cleanup *cleanup;
1366
1367 /* Switch momentarily out of tfind mode so to access live memory.
1368 Note that this must not clear global state, such as the frame
1369 cache, which must still remain valid for the previous traceframe.
1370 We may be _building_ the frame cache at this point. */
1371 cleanup = make_cleanup_restore_traceframe_number ();
1372 set_traceframe_number (-1);
1373
1374 ret = target_read (current_target.beneath, object, NULL,
1375 myaddr, memaddr, len);
1376
1377 do_cleanups (cleanup);
1378 return ret;
1379 }
1380
1381 /* Using the set of read-only target sections of OPS, read live
1382 read-only memory. Note that the actual reads start from the
1383 top-most target again.
1384
1385 For interface/parameters/return description see target.h,
1386 to_xfer_partial. */
1387
1388 static LONGEST
1389 memory_xfer_live_readonly_partial (struct target_ops *ops,
1390 enum target_object object,
1391 gdb_byte *readbuf, ULONGEST memaddr,
1392 LONGEST len)
1393 {
1394 struct target_section *secp;
1395 struct target_section_table *table;
1396
1397 secp = target_section_by_addr (ops, memaddr);
1398 if (secp != NULL
1399 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1400 & SEC_READONLY))
1401 {
1402 struct target_section *p;
1403 ULONGEST memend = memaddr + len;
1404
1405 table = target_get_section_table (ops);
1406
1407 for (p = table->sections; p < table->sections_end; p++)
1408 {
1409 if (memaddr >= p->addr)
1410 {
1411 if (memend <= p->endaddr)
1412 {
1413 /* Entire transfer is within this section. */
1414 return target_read_live_memory (object, memaddr,
1415 readbuf, len);
1416 }
1417 else if (memaddr >= p->endaddr)
1418 {
1419 /* This section ends before the transfer starts. */
1420 continue;
1421 }
1422 else
1423 {
1424 /* This section overlaps the transfer. Just do half. */
1425 len = p->endaddr - memaddr;
1426 return target_read_live_memory (object, memaddr,
1427 readbuf, len);
1428 }
1429 }
1430 }
1431 }
1432
1433 return 0;
1434 }
1435
1436 /* Perform a partial memory transfer.
1437 For docs see target.h, to_xfer_partial. */
1438
1439 static LONGEST
1440 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1441 void *readbuf, const void *writebuf, ULONGEST memaddr,
1442 LONGEST len)
1443 {
1444 LONGEST res;
1445 int reg_len;
1446 struct mem_region *region;
1447 struct inferior *inf;
1448
1449 /* For accesses to unmapped overlay sections, read directly from
1450 files. Must do this first, as MEMADDR may need adjustment. */
1451 if (readbuf != NULL && overlay_debugging)
1452 {
1453 struct obj_section *section = find_pc_overlay (memaddr);
1454
1455 if (pc_in_unmapped_range (memaddr, section))
1456 {
1457 struct target_section_table *table
1458 = target_get_section_table (ops);
1459 const char *section_name = section->the_bfd_section->name;
1460
1461 memaddr = overlay_mapped_address (memaddr, section);
1462 return section_table_xfer_memory_partial (readbuf, writebuf,
1463 memaddr, len,
1464 table->sections,
1465 table->sections_end,
1466 section_name);
1467 }
1468 }
1469
1470 /* Try the executable files, if "trust-readonly-sections" is set. */
1471 if (readbuf != NULL && trust_readonly)
1472 {
1473 struct target_section *secp;
1474 struct target_section_table *table;
1475
1476 secp = target_section_by_addr (ops, memaddr);
1477 if (secp != NULL
1478 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1479 & SEC_READONLY))
1480 {
1481 table = target_get_section_table (ops);
1482 return section_table_xfer_memory_partial (readbuf, writebuf,
1483 memaddr, len,
1484 table->sections,
1485 table->sections_end,
1486 NULL);
1487 }
1488 }
1489
1490 /* If reading unavailable memory in the context of traceframes, and
1491 this address falls within a read-only section, fallback to
1492 reading from live memory. */
1493 if (readbuf != NULL && get_traceframe_number () != -1)
1494 {
1495 VEC(mem_range_s) *available;
1496
1497 /* If we fail to get the set of available memory, then the
1498 target does not support querying traceframe info, and so we
1499 attempt reading from the traceframe anyway (assuming the
1500 target implements the old QTro packet then). */
1501 if (traceframe_available_memory (&available, memaddr, len))
1502 {
1503 struct cleanup *old_chain;
1504
1505 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1506
1507 if (VEC_empty (mem_range_s, available)
1508 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1509 {
1510 /* Don't read into the traceframe's available
1511 memory. */
1512 if (!VEC_empty (mem_range_s, available))
1513 {
1514 LONGEST oldlen = len;
1515
1516 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1517 gdb_assert (len <= oldlen);
1518 }
1519
1520 do_cleanups (old_chain);
1521
1522 /* This goes through the topmost target again. */
1523 res = memory_xfer_live_readonly_partial (ops, object,
1524 readbuf, memaddr, len);
1525 if (res > 0)
1526 return res;
1527
1528 /* No use trying further, we know some memory starting
1529 at MEMADDR isn't available. */
1530 return -1;
1531 }
1532
1533 /* Don't try to read more than how much is available, in
1534 case the target implements the deprecated QTro packet to
1535 cater for older GDBs (the target's knowledge of read-only
1536 sections may be outdated by now). */
1537 len = VEC_index (mem_range_s, available, 0)->length;
1538
1539 do_cleanups (old_chain);
1540 }
1541 }
1542
1543 /* Try GDB's internal data cache. */
1544 region = lookup_mem_region (memaddr);
1545 /* region->hi == 0 means there's no upper bound. */
1546 if (memaddr + len < region->hi || region->hi == 0)
1547 reg_len = len;
1548 else
1549 reg_len = region->hi - memaddr;
1550
1551 switch (region->attrib.mode)
1552 {
1553 case MEM_RO:
1554 if (writebuf != NULL)
1555 return -1;
1556 break;
1557
1558 case MEM_WO:
1559 if (readbuf != NULL)
1560 return -1;
1561 break;
1562
1563 case MEM_FLASH:
1564 /* We only support writing to flash during "load" for now. */
1565 if (writebuf != NULL)
1566 error (_("Writing to flash memory forbidden in this context"));
1567 break;
1568
1569 case MEM_NONE:
1570 return -1;
1571 }
1572
1573 if (!ptid_equal (inferior_ptid, null_ptid))
1574 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1575 else
1576 inf = NULL;
1577
1578 if (inf != NULL
1579 /* The dcache reads whole cache lines; that doesn't play well
1580 with reading from a trace buffer, because reading outside of
1581 the collected memory range fails. */
1582 && get_traceframe_number () == -1
1583 && (region->attrib.cache
1584 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1585 {
1586 if (readbuf != NULL)
1587 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1588 reg_len, 0);
1589 else
1590 /* FIXME drow/2006-08-09: If we're going to preserve const
1591 correctness dcache_xfer_memory should take readbuf and
1592 writebuf. */
1593 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1594 (void *) writebuf,
1595 reg_len, 1);
1596 if (res <= 0)
1597 return -1;
1598 else
1599 return res;
1600 }
1601
1602 /* If none of those methods found the memory we wanted, fall back
1603 to a target partial transfer. Normally a single call to
1604 to_xfer_partial is enough; if it doesn't recognize an object
1605 it will call the to_xfer_partial of the next target down.
1606 But for memory this won't do. Memory is the only target
1607 object which can be read from more than one valid target.
1608 A core file, for instance, could have some of memory but
1609 delegate other bits to the target below it. So, we must
1610 manually try all targets. */
1611
1612 do
1613 {
1614 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1615 readbuf, writebuf, memaddr, reg_len);
1616 if (res > 0)
1617 break;
1618
1619 /* We want to continue past core files to executables, but not
1620 past a running target's memory. */
1621 if (ops->to_has_all_memory (ops))
1622 break;
1623
1624 ops = ops->beneath;
1625 }
1626 while (ops != NULL);
1627
1628 /* Make sure the cache gets updated no matter what - if we are writing
1629 to the stack. Even if this write is not tagged as such, we still need
1630 to update the cache. */
1631
1632 if (res > 0
1633 && inf != NULL
1634 && writebuf != NULL
1635 && !region->attrib.cache
1636 && stack_cache_enabled_p
1637 && object != TARGET_OBJECT_STACK_MEMORY)
1638 {
1639 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1640 }
1641
1642 /* If we still haven't got anything, return the last error. We
1643 give up. */
1644 return res;
1645 }
1646
1647 /* Perform a partial memory transfer. For docs see target.h,
1648 to_xfer_partial. */
1649
1650 static LONGEST
1651 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1652 void *readbuf, const void *writebuf, ULONGEST memaddr,
1653 LONGEST len)
1654 {
1655 int res;
1656
1657 /* Zero length requests are ok and require no work. */
1658 if (len == 0)
1659 return 0;
1660
1661 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1662 breakpoint insns, thus hiding out from higher layers whether
1663 there are software breakpoints inserted in the code stream. */
1664 if (readbuf != NULL)
1665 {
1666 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1667
1668 if (res > 0 && !show_memory_breakpoints)
1669 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1670 }
1671 else
1672 {
1673 void *buf;
1674 struct cleanup *old_chain;
1675
1676 buf = xmalloc (len);
1677 old_chain = make_cleanup (xfree, buf);
1678 memcpy (buf, writebuf, len);
1679
1680 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1681 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1682
1683 do_cleanups (old_chain);
1684 }
1685
1686 return res;
1687 }
1688
1689 static void
1690 restore_show_memory_breakpoints (void *arg)
1691 {
1692 show_memory_breakpoints = (uintptr_t) arg;
1693 }
1694
1695 struct cleanup *
1696 make_show_memory_breakpoints_cleanup (int show)
1697 {
1698 int current = show_memory_breakpoints;
1699
1700 show_memory_breakpoints = show;
1701 return make_cleanup (restore_show_memory_breakpoints,
1702 (void *) (uintptr_t) current);
1703 }
1704
1705 /* For docs see target.h, to_xfer_partial. */
1706
1707 static LONGEST
1708 target_xfer_partial (struct target_ops *ops,
1709 enum target_object object, const char *annex,
1710 void *readbuf, const void *writebuf,
1711 ULONGEST offset, LONGEST len)
1712 {
1713 LONGEST retval;
1714
1715 gdb_assert (ops->to_xfer_partial != NULL);
1716
1717 if (writebuf && !may_write_memory)
1718 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1719 core_addr_to_string_nz (offset), plongest (len));
1720
1721 /* If this is a memory transfer, let the memory-specific code
1722 have a look at it instead. Memory transfers are more
1723 complicated. */
1724 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1725 retval = memory_xfer_partial (ops, object, readbuf,
1726 writebuf, offset, len);
1727 else
1728 {
1729 enum target_object raw_object = object;
1730
1731 /* If this is a raw memory transfer, request the normal
1732 memory object from other layers. */
1733 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1734 raw_object = TARGET_OBJECT_MEMORY;
1735
1736 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1737 writebuf, offset, len);
1738 }
1739
1740 if (targetdebug)
1741 {
1742 const unsigned char *myaddr = NULL;
1743
1744 fprintf_unfiltered (gdb_stdlog,
1745 "%s:target_xfer_partial "
1746 "(%d, %s, %s, %s, %s, %s) = %s",
1747 ops->to_shortname,
1748 (int) object,
1749 (annex ? annex : "(null)"),
1750 host_address_to_string (readbuf),
1751 host_address_to_string (writebuf),
1752 core_addr_to_string_nz (offset),
1753 plongest (len), plongest (retval));
1754
1755 if (readbuf)
1756 myaddr = readbuf;
1757 if (writebuf)
1758 myaddr = writebuf;
1759 if (retval > 0 && myaddr != NULL)
1760 {
1761 int i;
1762
1763 fputs_unfiltered (", bytes =", gdb_stdlog);
1764 for (i = 0; i < retval; i++)
1765 {
1766 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1767 {
1768 if (targetdebug < 2 && i > 0)
1769 {
1770 fprintf_unfiltered (gdb_stdlog, " ...");
1771 break;
1772 }
1773 fprintf_unfiltered (gdb_stdlog, "\n");
1774 }
1775
1776 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1777 }
1778 }
1779
1780 fputc_unfiltered ('\n', gdb_stdlog);
1781 }
1782 return retval;
1783 }
1784
1785 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1786 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1787 if any error occurs.
1788
1789 If an error occurs, no guarantee is made about the contents of the data at
1790 MYADDR. In particular, the caller should not depend upon partial reads
1791 filling the buffer with good data. There is no way for the caller to know
1792 how much good data might have been transfered anyway. Callers that can
1793 deal with partial reads should call target_read (which will retry until
1794 it makes no progress, and then return how much was transferred). */
1795
1796 int
1797 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1798 {
1799 /* Dispatch to the topmost target, not the flattened current_target.
1800 Memory accesses check target->to_has_(all_)memory, and the
1801 flattened target doesn't inherit those. */
1802 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1803 myaddr, memaddr, len) == len)
1804 return 0;
1805 else
1806 return EIO;
1807 }
1808
1809 /* Like target_read_memory, but specify explicitly that this is a read from
1810 the target's stack. This may trigger different cache behavior. */
1811
1812 int
1813 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1814 {
1815 /* Dispatch to the topmost target, not the flattened current_target.
1816 Memory accesses check target->to_has_(all_)memory, and the
1817 flattened target doesn't inherit those. */
1818
1819 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1820 myaddr, memaddr, len) == len)
1821 return 0;
1822 else
1823 return EIO;
1824 }
1825
1826 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1827 Returns either 0 for success or an errno value if any error occurs.
1828 If an error occurs, no guarantee is made about how much data got written.
1829 Callers that can deal with partial writes should call target_write. */
1830
1831 int
1832 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1833 {
1834 /* Dispatch to the topmost target, not the flattened current_target.
1835 Memory accesses check target->to_has_(all_)memory, and the
1836 flattened target doesn't inherit those. */
1837 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1838 myaddr, memaddr, len) == len)
1839 return 0;
1840 else
1841 return EIO;
1842 }
1843
1844 /* Write LEN bytes from MYADDR to target raw memory at address
1845 MEMADDR. Returns either 0 for success or an errno value if any
1846 error occurs. If an error occurs, no guarantee is made about how
1847 much data got written. Callers that can deal with partial writes
1848 should call target_write. */
1849
1850 int
1851 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1852 {
1853 /* Dispatch to the topmost target, not the flattened current_target.
1854 Memory accesses check target->to_has_(all_)memory, and the
1855 flattened target doesn't inherit those. */
1856 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1857 myaddr, memaddr, len) == len)
1858 return 0;
1859 else
1860 return EIO;
1861 }
1862
1863 /* Fetch the target's memory map. */
1864
1865 VEC(mem_region_s) *
1866 target_memory_map (void)
1867 {
1868 VEC(mem_region_s) *result;
1869 struct mem_region *last_one, *this_one;
1870 int ix;
1871 struct target_ops *t;
1872
1873 if (targetdebug)
1874 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1875
1876 for (t = current_target.beneath; t != NULL; t = t->beneath)
1877 if (t->to_memory_map != NULL)
1878 break;
1879
1880 if (t == NULL)
1881 return NULL;
1882
1883 result = t->to_memory_map (t);
1884 if (result == NULL)
1885 return NULL;
1886
1887 qsort (VEC_address (mem_region_s, result),
1888 VEC_length (mem_region_s, result),
1889 sizeof (struct mem_region), mem_region_cmp);
1890
1891 /* Check that regions do not overlap. Simultaneously assign
1892 a numbering for the "mem" commands to use to refer to
1893 each region. */
1894 last_one = NULL;
1895 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1896 {
1897 this_one->number = ix;
1898
1899 if (last_one && last_one->hi > this_one->lo)
1900 {
1901 warning (_("Overlapping regions in memory map: ignoring"));
1902 VEC_free (mem_region_s, result);
1903 return NULL;
1904 }
1905 last_one = this_one;
1906 }
1907
1908 return result;
1909 }
1910
1911 void
1912 target_flash_erase (ULONGEST address, LONGEST length)
1913 {
1914 struct target_ops *t;
1915
1916 for (t = current_target.beneath; t != NULL; t = t->beneath)
1917 if (t->to_flash_erase != NULL)
1918 {
1919 if (targetdebug)
1920 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1921 hex_string (address), phex (length, 0));
1922 t->to_flash_erase (t, address, length);
1923 return;
1924 }
1925
1926 tcomplain ();
1927 }
1928
1929 void
1930 target_flash_done (void)
1931 {
1932 struct target_ops *t;
1933
1934 for (t = current_target.beneath; t != NULL; t = t->beneath)
1935 if (t->to_flash_done != NULL)
1936 {
1937 if (targetdebug)
1938 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1939 t->to_flash_done (t);
1940 return;
1941 }
1942
1943 tcomplain ();
1944 }
1945
1946 static void
1947 show_trust_readonly (struct ui_file *file, int from_tty,
1948 struct cmd_list_element *c, const char *value)
1949 {
1950 fprintf_filtered (file,
1951 _("Mode for reading from readonly sections is %s.\n"),
1952 value);
1953 }
1954
1955 /* More generic transfers. */
1956
1957 static LONGEST
1958 default_xfer_partial (struct target_ops *ops, enum target_object object,
1959 const char *annex, gdb_byte *readbuf,
1960 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1961 {
1962 if (object == TARGET_OBJECT_MEMORY
1963 && ops->deprecated_xfer_memory != NULL)
1964 /* If available, fall back to the target's
1965 "deprecated_xfer_memory" method. */
1966 {
1967 int xfered = -1;
1968
1969 errno = 0;
1970 if (writebuf != NULL)
1971 {
1972 void *buffer = xmalloc (len);
1973 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1974
1975 memcpy (buffer, writebuf, len);
1976 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1977 1/*write*/, NULL, ops);
1978 do_cleanups (cleanup);
1979 }
1980 if (readbuf != NULL)
1981 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1982 0/*read*/, NULL, ops);
1983 if (xfered > 0)
1984 return xfered;
1985 else if (xfered == 0 && errno == 0)
1986 /* "deprecated_xfer_memory" uses 0, cross checked against
1987 ERRNO as one indication of an error. */
1988 return 0;
1989 else
1990 return -1;
1991 }
1992 else if (ops->beneath != NULL)
1993 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1994 readbuf, writebuf, offset, len);
1995 else
1996 return -1;
1997 }
1998
1999 /* The xfer_partial handler for the topmost target. Unlike the default,
2000 it does not need to handle memory specially; it just passes all
2001 requests down the stack. */
2002
2003 static LONGEST
2004 current_xfer_partial (struct target_ops *ops, enum target_object object,
2005 const char *annex, gdb_byte *readbuf,
2006 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
2007 {
2008 if (ops->beneath != NULL)
2009 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2010 readbuf, writebuf, offset, len);
2011 else
2012 return -1;
2013 }
2014
2015 /* Target vector read/write partial wrapper functions. */
2016
2017 static LONGEST
2018 target_read_partial (struct target_ops *ops,
2019 enum target_object object,
2020 const char *annex, gdb_byte *buf,
2021 ULONGEST offset, LONGEST len)
2022 {
2023 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
2024 }
2025
2026 static LONGEST
2027 target_write_partial (struct target_ops *ops,
2028 enum target_object object,
2029 const char *annex, const gdb_byte *buf,
2030 ULONGEST offset, LONGEST len)
2031 {
2032 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
2033 }
2034
2035 /* Wrappers to perform the full transfer. */
2036
2037 /* For docs on target_read see target.h. */
2038
2039 LONGEST
2040 target_read (struct target_ops *ops,
2041 enum target_object object,
2042 const char *annex, gdb_byte *buf,
2043 ULONGEST offset, LONGEST len)
2044 {
2045 LONGEST xfered = 0;
2046
2047 while (xfered < len)
2048 {
2049 LONGEST xfer = target_read_partial (ops, object, annex,
2050 (gdb_byte *) buf + xfered,
2051 offset + xfered, len - xfered);
2052
2053 /* Call an observer, notifying them of the xfer progress? */
2054 if (xfer == 0)
2055 return xfered;
2056 if (xfer < 0)
2057 return -1;
2058 xfered += xfer;
2059 QUIT;
2060 }
2061 return len;
2062 }
2063
2064 /* Assuming that the entire [begin, end) range of memory cannot be
2065 read, try to read whatever subrange is possible to read.
2066
2067 The function returns, in RESULT, either zero or one memory block.
2068 If there's a readable subrange at the beginning, it is completely
2069 read and returned. Any further readable subrange will not be read.
2070 Otherwise, if there's a readable subrange at the end, it will be
2071 completely read and returned. Any readable subranges before it
2072 (obviously, not starting at the beginning), will be ignored. In
2073 other cases -- either no readable subrange, or readable subrange(s)
2074 that is neither at the beginning, or end, nothing is returned.
2075
2076 The purpose of this function is to handle a read across a boundary
2077 of accessible memory in a case when memory map is not available.
2078 The above restrictions are fine for this case, but will give
2079 incorrect results if the memory is 'patchy'. However, supporting
2080 'patchy' memory would require trying to read every single byte,
2081 and it seems unacceptable solution. Explicit memory map is
2082 recommended for this case -- and target_read_memory_robust will
2083 take care of reading multiple ranges then. */
2084
2085 static void
2086 read_whatever_is_readable (struct target_ops *ops,
2087 ULONGEST begin, ULONGEST end,
2088 VEC(memory_read_result_s) **result)
2089 {
2090 gdb_byte *buf = xmalloc (end - begin);
2091 ULONGEST current_begin = begin;
2092 ULONGEST current_end = end;
2093 int forward;
2094 memory_read_result_s r;
2095
2096 /* If we previously failed to read 1 byte, nothing can be done here. */
2097 if (end - begin <= 1)
2098 {
2099 xfree (buf);
2100 return;
2101 }
2102
2103 /* Check that either first or the last byte is readable, and give up
2104 if not. This heuristic is meant to permit reading accessible memory
2105 at the boundary of accessible region. */
2106 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2107 buf, begin, 1) == 1)
2108 {
2109 forward = 1;
2110 ++current_begin;
2111 }
2112 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2113 buf + (end-begin) - 1, end - 1, 1) == 1)
2114 {
2115 forward = 0;
2116 --current_end;
2117 }
2118 else
2119 {
2120 xfree (buf);
2121 return;
2122 }
2123
2124 /* Loop invariant is that the [current_begin, current_end) was previously
2125 found to be not readable as a whole.
2126
2127 Note loop condition -- if the range has 1 byte, we can't divide the range
2128 so there's no point trying further. */
2129 while (current_end - current_begin > 1)
2130 {
2131 ULONGEST first_half_begin, first_half_end;
2132 ULONGEST second_half_begin, second_half_end;
2133 LONGEST xfer;
2134 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2135
2136 if (forward)
2137 {
2138 first_half_begin = current_begin;
2139 first_half_end = middle;
2140 second_half_begin = middle;
2141 second_half_end = current_end;
2142 }
2143 else
2144 {
2145 first_half_begin = middle;
2146 first_half_end = current_end;
2147 second_half_begin = current_begin;
2148 second_half_end = middle;
2149 }
2150
2151 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2152 buf + (first_half_begin - begin),
2153 first_half_begin,
2154 first_half_end - first_half_begin);
2155
2156 if (xfer == first_half_end - first_half_begin)
2157 {
2158 /* This half reads up fine. So, the error must be in the
2159 other half. */
2160 current_begin = second_half_begin;
2161 current_end = second_half_end;
2162 }
2163 else
2164 {
2165 /* This half is not readable. Because we've tried one byte, we
2166 know some part of this half if actually redable. Go to the next
2167 iteration to divide again and try to read.
2168
2169 We don't handle the other half, because this function only tries
2170 to read a single readable subrange. */
2171 current_begin = first_half_begin;
2172 current_end = first_half_end;
2173 }
2174 }
2175
2176 if (forward)
2177 {
2178 /* The [begin, current_begin) range has been read. */
2179 r.begin = begin;
2180 r.end = current_begin;
2181 r.data = buf;
2182 }
2183 else
2184 {
2185 /* The [current_end, end) range has been read. */
2186 LONGEST rlen = end - current_end;
2187
2188 r.data = xmalloc (rlen);
2189 memcpy (r.data, buf + current_end - begin, rlen);
2190 r.begin = current_end;
2191 r.end = end;
2192 xfree (buf);
2193 }
2194 VEC_safe_push(memory_read_result_s, (*result), &r);
2195 }
2196
2197 void
2198 free_memory_read_result_vector (void *x)
2199 {
2200 VEC(memory_read_result_s) *v = x;
2201 memory_read_result_s *current;
2202 int ix;
2203
2204 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2205 {
2206 xfree (current->data);
2207 }
2208 VEC_free (memory_read_result_s, v);
2209 }
2210
2211 VEC(memory_read_result_s) *
2212 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2213 {
2214 VEC(memory_read_result_s) *result = 0;
2215
2216 LONGEST xfered = 0;
2217 while (xfered < len)
2218 {
2219 struct mem_region *region = lookup_mem_region (offset + xfered);
2220 LONGEST rlen;
2221
2222 /* If there is no explicit region, a fake one should be created. */
2223 gdb_assert (region);
2224
2225 if (region->hi == 0)
2226 rlen = len - xfered;
2227 else
2228 rlen = region->hi - offset;
2229
2230 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2231 {
2232 /* Cannot read this region. Note that we can end up here only
2233 if the region is explicitly marked inaccessible, or
2234 'inaccessible-by-default' is in effect. */
2235 xfered += rlen;
2236 }
2237 else
2238 {
2239 LONGEST to_read = min (len - xfered, rlen);
2240 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2241
2242 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2243 (gdb_byte *) buffer,
2244 offset + xfered, to_read);
2245 /* Call an observer, notifying them of the xfer progress? */
2246 if (xfer <= 0)
2247 {
2248 /* Got an error reading full chunk. See if maybe we can read
2249 some subrange. */
2250 xfree (buffer);
2251 read_whatever_is_readable (ops, offset + xfered,
2252 offset + xfered + to_read, &result);
2253 xfered += to_read;
2254 }
2255 else
2256 {
2257 struct memory_read_result r;
2258 r.data = buffer;
2259 r.begin = offset + xfered;
2260 r.end = r.begin + xfer;
2261 VEC_safe_push (memory_read_result_s, result, &r);
2262 xfered += xfer;
2263 }
2264 QUIT;
2265 }
2266 }
2267 return result;
2268 }
2269
2270
2271 /* An alternative to target_write with progress callbacks. */
2272
2273 LONGEST
2274 target_write_with_progress (struct target_ops *ops,
2275 enum target_object object,
2276 const char *annex, const gdb_byte *buf,
2277 ULONGEST offset, LONGEST len,
2278 void (*progress) (ULONGEST, void *), void *baton)
2279 {
2280 LONGEST xfered = 0;
2281
2282 /* Give the progress callback a chance to set up. */
2283 if (progress)
2284 (*progress) (0, baton);
2285
2286 while (xfered < len)
2287 {
2288 LONGEST xfer = target_write_partial (ops, object, annex,
2289 (gdb_byte *) buf + xfered,
2290 offset + xfered, len - xfered);
2291
2292 if (xfer == 0)
2293 return xfered;
2294 if (xfer < 0)
2295 return -1;
2296
2297 if (progress)
2298 (*progress) (xfer, baton);
2299
2300 xfered += xfer;
2301 QUIT;
2302 }
2303 return len;
2304 }
2305
2306 /* For docs on target_write see target.h. */
2307
2308 LONGEST
2309 target_write (struct target_ops *ops,
2310 enum target_object object,
2311 const char *annex, const gdb_byte *buf,
2312 ULONGEST offset, LONGEST len)
2313 {
2314 return target_write_with_progress (ops, object, annex, buf, offset, len,
2315 NULL, NULL);
2316 }
2317
2318 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2319 the size of the transferred data. PADDING additional bytes are
2320 available in *BUF_P. This is a helper function for
2321 target_read_alloc; see the declaration of that function for more
2322 information. */
2323
2324 static LONGEST
2325 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2326 const char *annex, gdb_byte **buf_p, int padding)
2327 {
2328 size_t buf_alloc, buf_pos;
2329 gdb_byte *buf;
2330 LONGEST n;
2331
2332 /* This function does not have a length parameter; it reads the
2333 entire OBJECT). Also, it doesn't support objects fetched partly
2334 from one target and partly from another (in a different stratum,
2335 e.g. a core file and an executable). Both reasons make it
2336 unsuitable for reading memory. */
2337 gdb_assert (object != TARGET_OBJECT_MEMORY);
2338
2339 /* Start by reading up to 4K at a time. The target will throttle
2340 this number down if necessary. */
2341 buf_alloc = 4096;
2342 buf = xmalloc (buf_alloc);
2343 buf_pos = 0;
2344 while (1)
2345 {
2346 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2347 buf_pos, buf_alloc - buf_pos - padding);
2348 if (n < 0)
2349 {
2350 /* An error occurred. */
2351 xfree (buf);
2352 return -1;
2353 }
2354 else if (n == 0)
2355 {
2356 /* Read all there was. */
2357 if (buf_pos == 0)
2358 xfree (buf);
2359 else
2360 *buf_p = buf;
2361 return buf_pos;
2362 }
2363
2364 buf_pos += n;
2365
2366 /* If the buffer is filling up, expand it. */
2367 if (buf_alloc < buf_pos * 2)
2368 {
2369 buf_alloc *= 2;
2370 buf = xrealloc (buf, buf_alloc);
2371 }
2372
2373 QUIT;
2374 }
2375 }
2376
2377 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2378 the size of the transferred data. See the declaration in "target.h"
2379 function for more information about the return value. */
2380
2381 LONGEST
2382 target_read_alloc (struct target_ops *ops, enum target_object object,
2383 const char *annex, gdb_byte **buf_p)
2384 {
2385 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2386 }
2387
2388 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2389 returned as a string, allocated using xmalloc. If an error occurs
2390 or the transfer is unsupported, NULL is returned. Empty objects
2391 are returned as allocated but empty strings. A warning is issued
2392 if the result contains any embedded NUL bytes. */
2393
2394 char *
2395 target_read_stralloc (struct target_ops *ops, enum target_object object,
2396 const char *annex)
2397 {
2398 gdb_byte *buffer;
2399 char *bufstr;
2400 LONGEST i, transferred;
2401
2402 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2403 bufstr = (char *) buffer;
2404
2405 if (transferred < 0)
2406 return NULL;
2407
2408 if (transferred == 0)
2409 return xstrdup ("");
2410
2411 bufstr[transferred] = 0;
2412
2413 /* Check for embedded NUL bytes; but allow trailing NULs. */
2414 for (i = strlen (bufstr); i < transferred; i++)
2415 if (bufstr[i] != 0)
2416 {
2417 warning (_("target object %d, annex %s, "
2418 "contained unexpected null characters"),
2419 (int) object, annex ? annex : "(none)");
2420 break;
2421 }
2422
2423 return bufstr;
2424 }
2425
2426 /* Memory transfer methods. */
2427
2428 void
2429 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2430 LONGEST len)
2431 {
2432 /* This method is used to read from an alternate, non-current
2433 target. This read must bypass the overlay support (as symbols
2434 don't match this target), and GDB's internal cache (wrong cache
2435 for this target). */
2436 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2437 != len)
2438 memory_error (EIO, addr);
2439 }
2440
2441 ULONGEST
2442 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2443 int len, enum bfd_endian byte_order)
2444 {
2445 gdb_byte buf[sizeof (ULONGEST)];
2446
2447 gdb_assert (len <= sizeof (buf));
2448 get_target_memory (ops, addr, buf, len);
2449 return extract_unsigned_integer (buf, len, byte_order);
2450 }
2451
2452 int
2453 target_insert_breakpoint (struct gdbarch *gdbarch,
2454 struct bp_target_info *bp_tgt)
2455 {
2456 if (!may_insert_breakpoints)
2457 {
2458 warning (_("May not insert breakpoints"));
2459 return 1;
2460 }
2461
2462 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2463 }
2464
2465 int
2466 target_remove_breakpoint (struct gdbarch *gdbarch,
2467 struct bp_target_info *bp_tgt)
2468 {
2469 /* This is kind of a weird case to handle, but the permission might
2470 have been changed after breakpoints were inserted - in which case
2471 we should just take the user literally and assume that any
2472 breakpoints should be left in place. */
2473 if (!may_insert_breakpoints)
2474 {
2475 warning (_("May not remove breakpoints"));
2476 return 1;
2477 }
2478
2479 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2480 }
2481
2482 static void
2483 target_info (char *args, int from_tty)
2484 {
2485 struct target_ops *t;
2486 int has_all_mem = 0;
2487
2488 if (symfile_objfile != NULL)
2489 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2490
2491 for (t = target_stack; t != NULL; t = t->beneath)
2492 {
2493 if (!(*t->to_has_memory) (t))
2494 continue;
2495
2496 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2497 continue;
2498 if (has_all_mem)
2499 printf_unfiltered (_("\tWhile running this, "
2500 "GDB does not access memory from...\n"));
2501 printf_unfiltered ("%s:\n", t->to_longname);
2502 (t->to_files_info) (t);
2503 has_all_mem = (*t->to_has_all_memory) (t);
2504 }
2505 }
2506
2507 /* This function is called before any new inferior is created, e.g.
2508 by running a program, attaching, or connecting to a target.
2509 It cleans up any state from previous invocations which might
2510 change between runs. This is a subset of what target_preopen
2511 resets (things which might change between targets). */
2512
2513 void
2514 target_pre_inferior (int from_tty)
2515 {
2516 /* Clear out solib state. Otherwise the solib state of the previous
2517 inferior might have survived and is entirely wrong for the new
2518 target. This has been observed on GNU/Linux using glibc 2.3. How
2519 to reproduce:
2520
2521 bash$ ./foo&
2522 [1] 4711
2523 bash$ ./foo&
2524 [1] 4712
2525 bash$ gdb ./foo
2526 [...]
2527 (gdb) attach 4711
2528 (gdb) detach
2529 (gdb) attach 4712
2530 Cannot access memory at address 0xdeadbeef
2531 */
2532
2533 /* In some OSs, the shared library list is the same/global/shared
2534 across inferiors. If code is shared between processes, so are
2535 memory regions and features. */
2536 if (!gdbarch_has_global_solist (target_gdbarch ()))
2537 {
2538 no_shared_libraries (NULL, from_tty);
2539
2540 invalidate_target_mem_regions ();
2541
2542 target_clear_description ();
2543 }
2544
2545 agent_capability_invalidate ();
2546 }
2547
2548 /* Callback for iterate_over_inferiors. Gets rid of the given
2549 inferior. */
2550
2551 static int
2552 dispose_inferior (struct inferior *inf, void *args)
2553 {
2554 struct thread_info *thread;
2555
2556 thread = any_thread_of_process (inf->pid);
2557 if (thread)
2558 {
2559 switch_to_thread (thread->ptid);
2560
2561 /* Core inferiors actually should be detached, not killed. */
2562 if (target_has_execution)
2563 target_kill ();
2564 else
2565 target_detach (NULL, 0);
2566 }
2567
2568 return 0;
2569 }
2570
2571 /* This is to be called by the open routine before it does
2572 anything. */
2573
2574 void
2575 target_preopen (int from_tty)
2576 {
2577 dont_repeat ();
2578
2579 if (have_inferiors ())
2580 {
2581 if (!from_tty
2582 || !have_live_inferiors ()
2583 || query (_("A program is being debugged already. Kill it? ")))
2584 iterate_over_inferiors (dispose_inferior, NULL);
2585 else
2586 error (_("Program not killed."));
2587 }
2588
2589 /* Calling target_kill may remove the target from the stack. But if
2590 it doesn't (which seems like a win for UDI), remove it now. */
2591 /* Leave the exec target, though. The user may be switching from a
2592 live process to a core of the same program. */
2593 pop_all_targets_above (file_stratum);
2594
2595 target_pre_inferior (from_tty);
2596 }
2597
2598 /* Detach a target after doing deferred register stores. */
2599
2600 void
2601 target_detach (char *args, int from_tty)
2602 {
2603 struct target_ops* t;
2604
2605 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2606 /* Don't remove global breakpoints here. They're removed on
2607 disconnection from the target. */
2608 ;
2609 else
2610 /* If we're in breakpoints-always-inserted mode, have to remove
2611 them before detaching. */
2612 remove_breakpoints_pid (PIDGET (inferior_ptid));
2613
2614 prepare_for_detach ();
2615
2616 for (t = current_target.beneath; t != NULL; t = t->beneath)
2617 {
2618 if (t->to_detach != NULL)
2619 {
2620 t->to_detach (t, args, from_tty);
2621 if (targetdebug)
2622 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2623 args, from_tty);
2624 return;
2625 }
2626 }
2627
2628 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2629 }
2630
2631 void
2632 target_disconnect (char *args, int from_tty)
2633 {
2634 struct target_ops *t;
2635
2636 /* If we're in breakpoints-always-inserted mode or if breakpoints
2637 are global across processes, we have to remove them before
2638 disconnecting. */
2639 remove_breakpoints ();
2640
2641 for (t = current_target.beneath; t != NULL; t = t->beneath)
2642 if (t->to_disconnect != NULL)
2643 {
2644 if (targetdebug)
2645 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2646 args, from_tty);
2647 t->to_disconnect (t, args, from_tty);
2648 return;
2649 }
2650
2651 tcomplain ();
2652 }
2653
2654 ptid_t
2655 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2656 {
2657 struct target_ops *t;
2658
2659 for (t = current_target.beneath; t != NULL; t = t->beneath)
2660 {
2661 if (t->to_wait != NULL)
2662 {
2663 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2664
2665 if (targetdebug)
2666 {
2667 char *status_string;
2668 char *options_string;
2669
2670 status_string = target_waitstatus_to_string (status);
2671 options_string = target_options_to_string (options);
2672 fprintf_unfiltered (gdb_stdlog,
2673 "target_wait (%d, status, options={%s})"
2674 " = %d, %s\n",
2675 PIDGET (ptid), options_string,
2676 PIDGET (retval), status_string);
2677 xfree (status_string);
2678 xfree (options_string);
2679 }
2680
2681 return retval;
2682 }
2683 }
2684
2685 noprocess ();
2686 }
2687
2688 char *
2689 target_pid_to_str (ptid_t ptid)
2690 {
2691 struct target_ops *t;
2692
2693 for (t = current_target.beneath; t != NULL; t = t->beneath)
2694 {
2695 if (t->to_pid_to_str != NULL)
2696 return (*t->to_pid_to_str) (t, ptid);
2697 }
2698
2699 return normal_pid_to_str (ptid);
2700 }
2701
2702 char *
2703 target_thread_name (struct thread_info *info)
2704 {
2705 struct target_ops *t;
2706
2707 for (t = current_target.beneath; t != NULL; t = t->beneath)
2708 {
2709 if (t->to_thread_name != NULL)
2710 return (*t->to_thread_name) (info);
2711 }
2712
2713 return NULL;
2714 }
2715
2716 void
2717 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2718 {
2719 struct target_ops *t;
2720
2721 target_dcache_invalidate ();
2722
2723 for (t = current_target.beneath; t != NULL; t = t->beneath)
2724 {
2725 if (t->to_resume != NULL)
2726 {
2727 t->to_resume (t, ptid, step, signal);
2728 if (targetdebug)
2729 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2730 PIDGET (ptid),
2731 step ? "step" : "continue",
2732 gdb_signal_to_name (signal));
2733
2734 registers_changed_ptid (ptid);
2735 set_executing (ptid, 1);
2736 set_running (ptid, 1);
2737 clear_inline_frame_state (ptid);
2738 return;
2739 }
2740 }
2741
2742 noprocess ();
2743 }
2744
2745 void
2746 target_pass_signals (int numsigs, unsigned char *pass_signals)
2747 {
2748 struct target_ops *t;
2749
2750 for (t = current_target.beneath; t != NULL; t = t->beneath)
2751 {
2752 if (t->to_pass_signals != NULL)
2753 {
2754 if (targetdebug)
2755 {
2756 int i;
2757
2758 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2759 numsigs);
2760
2761 for (i = 0; i < numsigs; i++)
2762 if (pass_signals[i])
2763 fprintf_unfiltered (gdb_stdlog, " %s",
2764 gdb_signal_to_name (i));
2765
2766 fprintf_unfiltered (gdb_stdlog, " })\n");
2767 }
2768
2769 (*t->to_pass_signals) (numsigs, pass_signals);
2770 return;
2771 }
2772 }
2773 }
2774
2775 void
2776 target_program_signals (int numsigs, unsigned char *program_signals)
2777 {
2778 struct target_ops *t;
2779
2780 for (t = current_target.beneath; t != NULL; t = t->beneath)
2781 {
2782 if (t->to_program_signals != NULL)
2783 {
2784 if (targetdebug)
2785 {
2786 int i;
2787
2788 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2789 numsigs);
2790
2791 for (i = 0; i < numsigs; i++)
2792 if (program_signals[i])
2793 fprintf_unfiltered (gdb_stdlog, " %s",
2794 gdb_signal_to_name (i));
2795
2796 fprintf_unfiltered (gdb_stdlog, " })\n");
2797 }
2798
2799 (*t->to_program_signals) (numsigs, program_signals);
2800 return;
2801 }
2802 }
2803 }
2804
2805 /* Look through the list of possible targets for a target that can
2806 follow forks. */
2807
2808 int
2809 target_follow_fork (int follow_child)
2810 {
2811 struct target_ops *t;
2812
2813 for (t = current_target.beneath; t != NULL; t = t->beneath)
2814 {
2815 if (t->to_follow_fork != NULL)
2816 {
2817 int retval = t->to_follow_fork (t, follow_child);
2818
2819 if (targetdebug)
2820 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2821 follow_child, retval);
2822 return retval;
2823 }
2824 }
2825
2826 /* Some target returned a fork event, but did not know how to follow it. */
2827 internal_error (__FILE__, __LINE__,
2828 _("could not find a target to follow fork"));
2829 }
2830
2831 void
2832 target_mourn_inferior (void)
2833 {
2834 struct target_ops *t;
2835
2836 for (t = current_target.beneath; t != NULL; t = t->beneath)
2837 {
2838 if (t->to_mourn_inferior != NULL)
2839 {
2840 t->to_mourn_inferior (t);
2841 if (targetdebug)
2842 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2843
2844 /* We no longer need to keep handles on any of the object files.
2845 Make sure to release them to avoid unnecessarily locking any
2846 of them while we're not actually debugging. */
2847 bfd_cache_close_all ();
2848
2849 return;
2850 }
2851 }
2852
2853 internal_error (__FILE__, __LINE__,
2854 _("could not find a target to follow mourn inferior"));
2855 }
2856
2857 /* Look for a target which can describe architectural features, starting
2858 from TARGET. If we find one, return its description. */
2859
2860 const struct target_desc *
2861 target_read_description (struct target_ops *target)
2862 {
2863 struct target_ops *t;
2864
2865 for (t = target; t != NULL; t = t->beneath)
2866 if (t->to_read_description != NULL)
2867 {
2868 const struct target_desc *tdesc;
2869
2870 tdesc = t->to_read_description (t);
2871 if (tdesc)
2872 return tdesc;
2873 }
2874
2875 return NULL;
2876 }
2877
2878 /* The default implementation of to_search_memory.
2879 This implements a basic search of memory, reading target memory and
2880 performing the search here (as opposed to performing the search in on the
2881 target side with, for example, gdbserver). */
2882
2883 int
2884 simple_search_memory (struct target_ops *ops,
2885 CORE_ADDR start_addr, ULONGEST search_space_len,
2886 const gdb_byte *pattern, ULONGEST pattern_len,
2887 CORE_ADDR *found_addrp)
2888 {
2889 /* NOTE: also defined in find.c testcase. */
2890 #define SEARCH_CHUNK_SIZE 16000
2891 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2892 /* Buffer to hold memory contents for searching. */
2893 gdb_byte *search_buf;
2894 unsigned search_buf_size;
2895 struct cleanup *old_cleanups;
2896
2897 search_buf_size = chunk_size + pattern_len - 1;
2898
2899 /* No point in trying to allocate a buffer larger than the search space. */
2900 if (search_space_len < search_buf_size)
2901 search_buf_size = search_space_len;
2902
2903 search_buf = malloc (search_buf_size);
2904 if (search_buf == NULL)
2905 error (_("Unable to allocate memory to perform the search."));
2906 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2907
2908 /* Prime the search buffer. */
2909
2910 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2911 search_buf, start_addr, search_buf_size) != search_buf_size)
2912 {
2913 warning (_("Unable to access %s bytes of target "
2914 "memory at %s, halting search."),
2915 pulongest (search_buf_size), hex_string (start_addr));
2916 do_cleanups (old_cleanups);
2917 return -1;
2918 }
2919
2920 /* Perform the search.
2921
2922 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2923 When we've scanned N bytes we copy the trailing bytes to the start and
2924 read in another N bytes. */
2925
2926 while (search_space_len >= pattern_len)
2927 {
2928 gdb_byte *found_ptr;
2929 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2930
2931 found_ptr = memmem (search_buf, nr_search_bytes,
2932 pattern, pattern_len);
2933
2934 if (found_ptr != NULL)
2935 {
2936 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2937
2938 *found_addrp = found_addr;
2939 do_cleanups (old_cleanups);
2940 return 1;
2941 }
2942
2943 /* Not found in this chunk, skip to next chunk. */
2944
2945 /* Don't let search_space_len wrap here, it's unsigned. */
2946 if (search_space_len >= chunk_size)
2947 search_space_len -= chunk_size;
2948 else
2949 search_space_len = 0;
2950
2951 if (search_space_len >= pattern_len)
2952 {
2953 unsigned keep_len = search_buf_size - chunk_size;
2954 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2955 int nr_to_read;
2956
2957 /* Copy the trailing part of the previous iteration to the front
2958 of the buffer for the next iteration. */
2959 gdb_assert (keep_len == pattern_len - 1);
2960 memcpy (search_buf, search_buf + chunk_size, keep_len);
2961
2962 nr_to_read = min (search_space_len - keep_len, chunk_size);
2963
2964 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2965 search_buf + keep_len, read_addr,
2966 nr_to_read) != nr_to_read)
2967 {
2968 warning (_("Unable to access %s bytes of target "
2969 "memory at %s, halting search."),
2970 plongest (nr_to_read),
2971 hex_string (read_addr));
2972 do_cleanups (old_cleanups);
2973 return -1;
2974 }
2975
2976 start_addr += chunk_size;
2977 }
2978 }
2979
2980 /* Not found. */
2981
2982 do_cleanups (old_cleanups);
2983 return 0;
2984 }
2985
2986 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2987 sequence of bytes in PATTERN with length PATTERN_LEN.
2988
2989 The result is 1 if found, 0 if not found, and -1 if there was an error
2990 requiring halting of the search (e.g. memory read error).
2991 If the pattern is found the address is recorded in FOUND_ADDRP. */
2992
2993 int
2994 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2995 const gdb_byte *pattern, ULONGEST pattern_len,
2996 CORE_ADDR *found_addrp)
2997 {
2998 struct target_ops *t;
2999 int found;
3000
3001 /* We don't use INHERIT to set current_target.to_search_memory,
3002 so we have to scan the target stack and handle targetdebug
3003 ourselves. */
3004
3005 if (targetdebug)
3006 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3007 hex_string (start_addr));
3008
3009 for (t = current_target.beneath; t != NULL; t = t->beneath)
3010 if (t->to_search_memory != NULL)
3011 break;
3012
3013 if (t != NULL)
3014 {
3015 found = t->to_search_memory (t, start_addr, search_space_len,
3016 pattern, pattern_len, found_addrp);
3017 }
3018 else
3019 {
3020 /* If a special version of to_search_memory isn't available, use the
3021 simple version. */
3022 found = simple_search_memory (current_target.beneath,
3023 start_addr, search_space_len,
3024 pattern, pattern_len, found_addrp);
3025 }
3026
3027 if (targetdebug)
3028 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3029
3030 return found;
3031 }
3032
3033 /* Look through the currently pushed targets. If none of them will
3034 be able to restart the currently running process, issue an error
3035 message. */
3036
3037 void
3038 target_require_runnable (void)
3039 {
3040 struct target_ops *t;
3041
3042 for (t = target_stack; t != NULL; t = t->beneath)
3043 {
3044 /* If this target knows how to create a new program, then
3045 assume we will still be able to after killing the current
3046 one. Either killing and mourning will not pop T, or else
3047 find_default_run_target will find it again. */
3048 if (t->to_create_inferior != NULL)
3049 return;
3050
3051 /* Do not worry about thread_stratum targets that can not
3052 create inferiors. Assume they will be pushed again if
3053 necessary, and continue to the process_stratum. */
3054 if (t->to_stratum == thread_stratum
3055 || t->to_stratum == arch_stratum)
3056 continue;
3057
3058 error (_("The \"%s\" target does not support \"run\". "
3059 "Try \"help target\" or \"continue\"."),
3060 t->to_shortname);
3061 }
3062
3063 /* This function is only called if the target is running. In that
3064 case there should have been a process_stratum target and it
3065 should either know how to create inferiors, or not... */
3066 internal_error (__FILE__, __LINE__, _("No targets found"));
3067 }
3068
3069 /* Look through the list of possible targets for a target that can
3070 execute a run or attach command without any other data. This is
3071 used to locate the default process stratum.
3072
3073 If DO_MESG is not NULL, the result is always valid (error() is
3074 called for errors); else, return NULL on error. */
3075
3076 static struct target_ops *
3077 find_default_run_target (char *do_mesg)
3078 {
3079 struct target_ops **t;
3080 struct target_ops *runable = NULL;
3081 int count;
3082
3083 count = 0;
3084
3085 for (t = target_structs; t < target_structs + target_struct_size;
3086 ++t)
3087 {
3088 if ((*t)->to_can_run && target_can_run (*t))
3089 {
3090 runable = *t;
3091 ++count;
3092 }
3093 }
3094
3095 if (count != 1)
3096 {
3097 if (do_mesg)
3098 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3099 else
3100 return NULL;
3101 }
3102
3103 return runable;
3104 }
3105
3106 void
3107 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3108 {
3109 struct target_ops *t;
3110
3111 t = find_default_run_target ("attach");
3112 (t->to_attach) (t, args, from_tty);
3113 return;
3114 }
3115
3116 void
3117 find_default_create_inferior (struct target_ops *ops,
3118 char *exec_file, char *allargs, char **env,
3119 int from_tty)
3120 {
3121 struct target_ops *t;
3122
3123 t = find_default_run_target ("run");
3124 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3125 return;
3126 }
3127
3128 static int
3129 find_default_can_async_p (void)
3130 {
3131 struct target_ops *t;
3132
3133 /* This may be called before the target is pushed on the stack;
3134 look for the default process stratum. If there's none, gdb isn't
3135 configured with a native debugger, and target remote isn't
3136 connected yet. */
3137 t = find_default_run_target (NULL);
3138 if (t && t->to_can_async_p)
3139 return (t->to_can_async_p) ();
3140 return 0;
3141 }
3142
3143 static int
3144 find_default_is_async_p (void)
3145 {
3146 struct target_ops *t;
3147
3148 /* This may be called before the target is pushed on the stack;
3149 look for the default process stratum. If there's none, gdb isn't
3150 configured with a native debugger, and target remote isn't
3151 connected yet. */
3152 t = find_default_run_target (NULL);
3153 if (t && t->to_is_async_p)
3154 return (t->to_is_async_p) ();
3155 return 0;
3156 }
3157
3158 static int
3159 find_default_supports_non_stop (void)
3160 {
3161 struct target_ops *t;
3162
3163 t = find_default_run_target (NULL);
3164 if (t && t->to_supports_non_stop)
3165 return (t->to_supports_non_stop) ();
3166 return 0;
3167 }
3168
3169 int
3170 target_supports_non_stop (void)
3171 {
3172 struct target_ops *t;
3173
3174 for (t = &current_target; t != NULL; t = t->beneath)
3175 if (t->to_supports_non_stop)
3176 return t->to_supports_non_stop ();
3177
3178 return 0;
3179 }
3180
3181 /* Implement the "info proc" command. */
3182
3183 int
3184 target_info_proc (char *args, enum info_proc_what what)
3185 {
3186 struct target_ops *t;
3187
3188 /* If we're already connected to something that can get us OS
3189 related data, use it. Otherwise, try using the native
3190 target. */
3191 if (current_target.to_stratum >= process_stratum)
3192 t = current_target.beneath;
3193 else
3194 t = find_default_run_target (NULL);
3195
3196 for (; t != NULL; t = t->beneath)
3197 {
3198 if (t->to_info_proc != NULL)
3199 {
3200 t->to_info_proc (t, args, what);
3201
3202 if (targetdebug)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "target_info_proc (\"%s\", %d)\n", args, what);
3205
3206 return 1;
3207 }
3208 }
3209
3210 return 0;
3211 }
3212
3213 static int
3214 find_default_supports_disable_randomization (void)
3215 {
3216 struct target_ops *t;
3217
3218 t = find_default_run_target (NULL);
3219 if (t && t->to_supports_disable_randomization)
3220 return (t->to_supports_disable_randomization) ();
3221 return 0;
3222 }
3223
3224 int
3225 target_supports_disable_randomization (void)
3226 {
3227 struct target_ops *t;
3228
3229 for (t = &current_target; t != NULL; t = t->beneath)
3230 if (t->to_supports_disable_randomization)
3231 return t->to_supports_disable_randomization ();
3232
3233 return 0;
3234 }
3235
3236 char *
3237 target_get_osdata (const char *type)
3238 {
3239 struct target_ops *t;
3240
3241 /* If we're already connected to something that can get us OS
3242 related data, use it. Otherwise, try using the native
3243 target. */
3244 if (current_target.to_stratum >= process_stratum)
3245 t = current_target.beneath;
3246 else
3247 t = find_default_run_target ("get OS data");
3248
3249 if (!t)
3250 return NULL;
3251
3252 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3253 }
3254
3255 /* Determine the current address space of thread PTID. */
3256
3257 struct address_space *
3258 target_thread_address_space (ptid_t ptid)
3259 {
3260 struct address_space *aspace;
3261 struct inferior *inf;
3262 struct target_ops *t;
3263
3264 for (t = current_target.beneath; t != NULL; t = t->beneath)
3265 {
3266 if (t->to_thread_address_space != NULL)
3267 {
3268 aspace = t->to_thread_address_space (t, ptid);
3269 gdb_assert (aspace);
3270
3271 if (targetdebug)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "target_thread_address_space (%s) = %d\n",
3274 target_pid_to_str (ptid),
3275 address_space_num (aspace));
3276 return aspace;
3277 }
3278 }
3279
3280 /* Fall-back to the "main" address space of the inferior. */
3281 inf = find_inferior_pid (ptid_get_pid (ptid));
3282
3283 if (inf == NULL || inf->aspace == NULL)
3284 internal_error (__FILE__, __LINE__,
3285 _("Can't determine the current "
3286 "address space of thread %s\n"),
3287 target_pid_to_str (ptid));
3288
3289 return inf->aspace;
3290 }
3291
3292
3293 /* Target file operations. */
3294
3295 static struct target_ops *
3296 default_fileio_target (void)
3297 {
3298 /* If we're already connected to something that can perform
3299 file I/O, use it. Otherwise, try using the native target. */
3300 if (current_target.to_stratum >= process_stratum)
3301 return current_target.beneath;
3302 else
3303 return find_default_run_target ("file I/O");
3304 }
3305
3306 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3307 target file descriptor, or -1 if an error occurs (and set
3308 *TARGET_ERRNO). */
3309 int
3310 target_fileio_open (const char *filename, int flags, int mode,
3311 int *target_errno)
3312 {
3313 struct target_ops *t;
3314
3315 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3316 {
3317 if (t->to_fileio_open != NULL)
3318 {
3319 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3320
3321 if (targetdebug)
3322 fprintf_unfiltered (gdb_stdlog,
3323 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3324 filename, flags, mode,
3325 fd, fd != -1 ? 0 : *target_errno);
3326 return fd;
3327 }
3328 }
3329
3330 *target_errno = FILEIO_ENOSYS;
3331 return -1;
3332 }
3333
3334 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3335 Return the number of bytes written, or -1 if an error occurs
3336 (and set *TARGET_ERRNO). */
3337 int
3338 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3339 ULONGEST offset, int *target_errno)
3340 {
3341 struct target_ops *t;
3342
3343 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3344 {
3345 if (t->to_fileio_pwrite != NULL)
3346 {
3347 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3348 target_errno);
3349
3350 if (targetdebug)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "target_fileio_pwrite (%d,...,%d,%s) "
3353 "= %d (%d)\n",
3354 fd, len, pulongest (offset),
3355 ret, ret != -1 ? 0 : *target_errno);
3356 return ret;
3357 }
3358 }
3359
3360 *target_errno = FILEIO_ENOSYS;
3361 return -1;
3362 }
3363
3364 /* Read up to LEN bytes FD on the target into READ_BUF.
3365 Return the number of bytes read, or -1 if an error occurs
3366 (and set *TARGET_ERRNO). */
3367 int
3368 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3369 ULONGEST offset, int *target_errno)
3370 {
3371 struct target_ops *t;
3372
3373 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3374 {
3375 if (t->to_fileio_pread != NULL)
3376 {
3377 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3378 target_errno);
3379
3380 if (targetdebug)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "target_fileio_pread (%d,...,%d,%s) "
3383 "= %d (%d)\n",
3384 fd, len, pulongest (offset),
3385 ret, ret != -1 ? 0 : *target_errno);
3386 return ret;
3387 }
3388 }
3389
3390 *target_errno = FILEIO_ENOSYS;
3391 return -1;
3392 }
3393
3394 /* Close FD on the target. Return 0, or -1 if an error occurs
3395 (and set *TARGET_ERRNO). */
3396 int
3397 target_fileio_close (int fd, int *target_errno)
3398 {
3399 struct target_ops *t;
3400
3401 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3402 {
3403 if (t->to_fileio_close != NULL)
3404 {
3405 int ret = t->to_fileio_close (fd, target_errno);
3406
3407 if (targetdebug)
3408 fprintf_unfiltered (gdb_stdlog,
3409 "target_fileio_close (%d) = %d (%d)\n",
3410 fd, ret, ret != -1 ? 0 : *target_errno);
3411 return ret;
3412 }
3413 }
3414
3415 *target_errno = FILEIO_ENOSYS;
3416 return -1;
3417 }
3418
3419 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3420 occurs (and set *TARGET_ERRNO). */
3421 int
3422 target_fileio_unlink (const char *filename, int *target_errno)
3423 {
3424 struct target_ops *t;
3425
3426 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3427 {
3428 if (t->to_fileio_unlink != NULL)
3429 {
3430 int ret = t->to_fileio_unlink (filename, target_errno);
3431
3432 if (targetdebug)
3433 fprintf_unfiltered (gdb_stdlog,
3434 "target_fileio_unlink (%s) = %d (%d)\n",
3435 filename, ret, ret != -1 ? 0 : *target_errno);
3436 return ret;
3437 }
3438 }
3439
3440 *target_errno = FILEIO_ENOSYS;
3441 return -1;
3442 }
3443
3444 /* Read value of symbolic link FILENAME on the target. Return a
3445 null-terminated string allocated via xmalloc, or NULL if an error
3446 occurs (and set *TARGET_ERRNO). */
3447 char *
3448 target_fileio_readlink (const char *filename, int *target_errno)
3449 {
3450 struct target_ops *t;
3451
3452 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3453 {
3454 if (t->to_fileio_readlink != NULL)
3455 {
3456 char *ret = t->to_fileio_readlink (filename, target_errno);
3457
3458 if (targetdebug)
3459 fprintf_unfiltered (gdb_stdlog,
3460 "target_fileio_readlink (%s) = %s (%d)\n",
3461 filename, ret? ret : "(nil)",
3462 ret? 0 : *target_errno);
3463 return ret;
3464 }
3465 }
3466
3467 *target_errno = FILEIO_ENOSYS;
3468 return NULL;
3469 }
3470
3471 static void
3472 target_fileio_close_cleanup (void *opaque)
3473 {
3474 int fd = *(int *) opaque;
3475 int target_errno;
3476
3477 target_fileio_close (fd, &target_errno);
3478 }
3479
3480 /* Read target file FILENAME. Store the result in *BUF_P and
3481 return the size of the transferred data. PADDING additional bytes are
3482 available in *BUF_P. This is a helper function for
3483 target_fileio_read_alloc; see the declaration of that function for more
3484 information. */
3485
3486 static LONGEST
3487 target_fileio_read_alloc_1 (const char *filename,
3488 gdb_byte **buf_p, int padding)
3489 {
3490 struct cleanup *close_cleanup;
3491 size_t buf_alloc, buf_pos;
3492 gdb_byte *buf;
3493 LONGEST n;
3494 int fd;
3495 int target_errno;
3496
3497 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3498 if (fd == -1)
3499 return -1;
3500
3501 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3502
3503 /* Start by reading up to 4K at a time. The target will throttle
3504 this number down if necessary. */
3505 buf_alloc = 4096;
3506 buf = xmalloc (buf_alloc);
3507 buf_pos = 0;
3508 while (1)
3509 {
3510 n = target_fileio_pread (fd, &buf[buf_pos],
3511 buf_alloc - buf_pos - padding, buf_pos,
3512 &target_errno);
3513 if (n < 0)
3514 {
3515 /* An error occurred. */
3516 do_cleanups (close_cleanup);
3517 xfree (buf);
3518 return -1;
3519 }
3520 else if (n == 0)
3521 {
3522 /* Read all there was. */
3523 do_cleanups (close_cleanup);
3524 if (buf_pos == 0)
3525 xfree (buf);
3526 else
3527 *buf_p = buf;
3528 return buf_pos;
3529 }
3530
3531 buf_pos += n;
3532
3533 /* If the buffer is filling up, expand it. */
3534 if (buf_alloc < buf_pos * 2)
3535 {
3536 buf_alloc *= 2;
3537 buf = xrealloc (buf, buf_alloc);
3538 }
3539
3540 QUIT;
3541 }
3542 }
3543
3544 /* Read target file FILENAME. Store the result in *BUF_P and return
3545 the size of the transferred data. See the declaration in "target.h"
3546 function for more information about the return value. */
3547
3548 LONGEST
3549 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3550 {
3551 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3552 }
3553
3554 /* Read target file FILENAME. The result is NUL-terminated and
3555 returned as a string, allocated using xmalloc. If an error occurs
3556 or the transfer is unsupported, NULL is returned. Empty objects
3557 are returned as allocated but empty strings. A warning is issued
3558 if the result contains any embedded NUL bytes. */
3559
3560 char *
3561 target_fileio_read_stralloc (const char *filename)
3562 {
3563 gdb_byte *buffer;
3564 char *bufstr;
3565 LONGEST i, transferred;
3566
3567 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3568 bufstr = (char *) buffer;
3569
3570 if (transferred < 0)
3571 return NULL;
3572
3573 if (transferred == 0)
3574 return xstrdup ("");
3575
3576 bufstr[transferred] = 0;
3577
3578 /* Check for embedded NUL bytes; but allow trailing NULs. */
3579 for (i = strlen (bufstr); i < transferred; i++)
3580 if (bufstr[i] != 0)
3581 {
3582 warning (_("target file %s "
3583 "contained unexpected null characters"),
3584 filename);
3585 break;
3586 }
3587
3588 return bufstr;
3589 }
3590
3591
3592 static int
3593 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3594 {
3595 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3596 }
3597
3598 static int
3599 default_watchpoint_addr_within_range (struct target_ops *target,
3600 CORE_ADDR addr,
3601 CORE_ADDR start, int length)
3602 {
3603 return addr >= start && addr < start + length;
3604 }
3605
3606 static struct gdbarch *
3607 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3608 {
3609 return target_gdbarch ();
3610 }
3611
3612 static int
3613 return_zero (void)
3614 {
3615 return 0;
3616 }
3617
3618 static int
3619 return_one (void)
3620 {
3621 return 1;
3622 }
3623
3624 static int
3625 return_minus_one (void)
3626 {
3627 return -1;
3628 }
3629
3630 /*
3631 * Find the next target down the stack from the specified target.
3632 */
3633
3634 struct target_ops *
3635 find_target_beneath (struct target_ops *t)
3636 {
3637 return t->beneath;
3638 }
3639
3640 \f
3641 /* The inferior process has died. Long live the inferior! */
3642
3643 void
3644 generic_mourn_inferior (void)
3645 {
3646 ptid_t ptid;
3647
3648 ptid = inferior_ptid;
3649 inferior_ptid = null_ptid;
3650
3651 /* Mark breakpoints uninserted in case something tries to delete a
3652 breakpoint while we delete the inferior's threads (which would
3653 fail, since the inferior is long gone). */
3654 mark_breakpoints_out ();
3655
3656 if (!ptid_equal (ptid, null_ptid))
3657 {
3658 int pid = ptid_get_pid (ptid);
3659 exit_inferior (pid);
3660 }
3661
3662 /* Note this wipes step-resume breakpoints, so needs to be done
3663 after exit_inferior, which ends up referencing the step-resume
3664 breakpoints through clear_thread_inferior_resources. */
3665 breakpoint_init_inferior (inf_exited);
3666
3667 registers_changed ();
3668
3669 reopen_exec_file ();
3670 reinit_frame_cache ();
3671
3672 if (deprecated_detach_hook)
3673 deprecated_detach_hook ();
3674 }
3675 \f
3676 /* Convert a normal process ID to a string. Returns the string in a
3677 static buffer. */
3678
3679 char *
3680 normal_pid_to_str (ptid_t ptid)
3681 {
3682 static char buf[32];
3683
3684 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3685 return buf;
3686 }
3687
3688 static char *
3689 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3690 {
3691 return normal_pid_to_str (ptid);
3692 }
3693
3694 /* Error-catcher for target_find_memory_regions. */
3695 static int
3696 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3697 {
3698 error (_("Command not implemented for this target."));
3699 return 0;
3700 }
3701
3702 /* Error-catcher for target_make_corefile_notes. */
3703 static char *
3704 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3705 {
3706 error (_("Command not implemented for this target."));
3707 return NULL;
3708 }
3709
3710 /* Error-catcher for target_get_bookmark. */
3711 static gdb_byte *
3712 dummy_get_bookmark (char *ignore1, int ignore2)
3713 {
3714 tcomplain ();
3715 return NULL;
3716 }
3717
3718 /* Error-catcher for target_goto_bookmark. */
3719 static void
3720 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3721 {
3722 tcomplain ();
3723 }
3724
3725 /* Set up the handful of non-empty slots needed by the dummy target
3726 vector. */
3727
3728 static void
3729 init_dummy_target (void)
3730 {
3731 dummy_target.to_shortname = "None";
3732 dummy_target.to_longname = "None";
3733 dummy_target.to_doc = "";
3734 dummy_target.to_attach = find_default_attach;
3735 dummy_target.to_detach =
3736 (void (*)(struct target_ops *, char *, int))target_ignore;
3737 dummy_target.to_create_inferior = find_default_create_inferior;
3738 dummy_target.to_can_async_p = find_default_can_async_p;
3739 dummy_target.to_is_async_p = find_default_is_async_p;
3740 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3741 dummy_target.to_supports_disable_randomization
3742 = find_default_supports_disable_randomization;
3743 dummy_target.to_pid_to_str = dummy_pid_to_str;
3744 dummy_target.to_stratum = dummy_stratum;
3745 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3746 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3747 dummy_target.to_get_bookmark = dummy_get_bookmark;
3748 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3749 dummy_target.to_xfer_partial = default_xfer_partial;
3750 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3751 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3752 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3753 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3754 dummy_target.to_has_execution
3755 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3756 dummy_target.to_stopped_by_watchpoint = return_zero;
3757 dummy_target.to_stopped_data_address =
3758 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3759 dummy_target.to_magic = OPS_MAGIC;
3760 }
3761 \f
3762 static void
3763 debug_to_open (char *args, int from_tty)
3764 {
3765 debug_target.to_open (args, from_tty);
3766
3767 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3768 }
3769
3770 void
3771 target_close (struct target_ops *targ)
3772 {
3773 if (targ->to_xclose != NULL)
3774 targ->to_xclose (targ);
3775 else if (targ->to_close != NULL)
3776 targ->to_close ();
3777
3778 if (targetdebug)
3779 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3780 }
3781
3782 void
3783 target_attach (char *args, int from_tty)
3784 {
3785 struct target_ops *t;
3786
3787 for (t = current_target.beneath; t != NULL; t = t->beneath)
3788 {
3789 if (t->to_attach != NULL)
3790 {
3791 t->to_attach (t, args, from_tty);
3792 if (targetdebug)
3793 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3794 args, from_tty);
3795 return;
3796 }
3797 }
3798
3799 internal_error (__FILE__, __LINE__,
3800 _("could not find a target to attach"));
3801 }
3802
3803 int
3804 target_thread_alive (ptid_t ptid)
3805 {
3806 struct target_ops *t;
3807
3808 for (t = current_target.beneath; t != NULL; t = t->beneath)
3809 {
3810 if (t->to_thread_alive != NULL)
3811 {
3812 int retval;
3813
3814 retval = t->to_thread_alive (t, ptid);
3815 if (targetdebug)
3816 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3817 PIDGET (ptid), retval);
3818
3819 return retval;
3820 }
3821 }
3822
3823 return 0;
3824 }
3825
3826 void
3827 target_find_new_threads (void)
3828 {
3829 struct target_ops *t;
3830
3831 for (t = current_target.beneath; t != NULL; t = t->beneath)
3832 {
3833 if (t->to_find_new_threads != NULL)
3834 {
3835 t->to_find_new_threads (t);
3836 if (targetdebug)
3837 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3838
3839 return;
3840 }
3841 }
3842 }
3843
3844 void
3845 target_stop (ptid_t ptid)
3846 {
3847 if (!may_stop)
3848 {
3849 warning (_("May not interrupt or stop the target, ignoring attempt"));
3850 return;
3851 }
3852
3853 (*current_target.to_stop) (ptid);
3854 }
3855
3856 static void
3857 debug_to_post_attach (int pid)
3858 {
3859 debug_target.to_post_attach (pid);
3860
3861 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3862 }
3863
3864 /* Return a pretty printed form of target_waitstatus.
3865 Space for the result is malloc'd, caller must free. */
3866
3867 char *
3868 target_waitstatus_to_string (const struct target_waitstatus *ws)
3869 {
3870 const char *kind_str = "status->kind = ";
3871
3872 switch (ws->kind)
3873 {
3874 case TARGET_WAITKIND_EXITED:
3875 return xstrprintf ("%sexited, status = %d",
3876 kind_str, ws->value.integer);
3877 case TARGET_WAITKIND_STOPPED:
3878 return xstrprintf ("%sstopped, signal = %s",
3879 kind_str, gdb_signal_to_name (ws->value.sig));
3880 case TARGET_WAITKIND_SIGNALLED:
3881 return xstrprintf ("%ssignalled, signal = %s",
3882 kind_str, gdb_signal_to_name (ws->value.sig));
3883 case TARGET_WAITKIND_LOADED:
3884 return xstrprintf ("%sloaded", kind_str);
3885 case TARGET_WAITKIND_FORKED:
3886 return xstrprintf ("%sforked", kind_str);
3887 case TARGET_WAITKIND_VFORKED:
3888 return xstrprintf ("%svforked", kind_str);
3889 case TARGET_WAITKIND_EXECD:
3890 return xstrprintf ("%sexecd", kind_str);
3891 case TARGET_WAITKIND_VFORK_DONE:
3892 return xstrprintf ("%svfork-done", kind_str);
3893 case TARGET_WAITKIND_SYSCALL_ENTRY:
3894 return xstrprintf ("%sentered syscall", kind_str);
3895 case TARGET_WAITKIND_SYSCALL_RETURN:
3896 return xstrprintf ("%sexited syscall", kind_str);
3897 case TARGET_WAITKIND_SPURIOUS:
3898 return xstrprintf ("%sspurious", kind_str);
3899 case TARGET_WAITKIND_IGNORE:
3900 return xstrprintf ("%signore", kind_str);
3901 case TARGET_WAITKIND_NO_HISTORY:
3902 return xstrprintf ("%sno-history", kind_str);
3903 case TARGET_WAITKIND_NO_RESUMED:
3904 return xstrprintf ("%sno-resumed", kind_str);
3905 default:
3906 return xstrprintf ("%sunknown???", kind_str);
3907 }
3908 }
3909
3910 /* Concatenate ELEM to LIST, a comma separate list, and return the
3911 result. The LIST incoming argument is released. */
3912
3913 static char *
3914 str_comma_list_concat_elem (char *list, const char *elem)
3915 {
3916 if (list == NULL)
3917 return xstrdup (elem);
3918 else
3919 return reconcat (list, list, ", ", elem, (char *) NULL);
3920 }
3921
3922 /* Helper for target_options_to_string. If OPT is present in
3923 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3924 Returns the new resulting string. OPT is removed from
3925 TARGET_OPTIONS. */
3926
3927 static char *
3928 do_option (int *target_options, char *ret,
3929 int opt, char *opt_str)
3930 {
3931 if ((*target_options & opt) != 0)
3932 {
3933 ret = str_comma_list_concat_elem (ret, opt_str);
3934 *target_options &= ~opt;
3935 }
3936
3937 return ret;
3938 }
3939
3940 char *
3941 target_options_to_string (int target_options)
3942 {
3943 char *ret = NULL;
3944
3945 #define DO_TARG_OPTION(OPT) \
3946 ret = do_option (&target_options, ret, OPT, #OPT)
3947
3948 DO_TARG_OPTION (TARGET_WNOHANG);
3949
3950 if (target_options != 0)
3951 ret = str_comma_list_concat_elem (ret, "unknown???");
3952
3953 if (ret == NULL)
3954 ret = xstrdup ("");
3955 return ret;
3956 }
3957
3958 static void
3959 debug_print_register (const char * func,
3960 struct regcache *regcache, int regno)
3961 {
3962 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3963
3964 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3965 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3966 && gdbarch_register_name (gdbarch, regno) != NULL
3967 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3968 fprintf_unfiltered (gdb_stdlog, "(%s)",
3969 gdbarch_register_name (gdbarch, regno));
3970 else
3971 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3972 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3973 {
3974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3975 int i, size = register_size (gdbarch, regno);
3976 gdb_byte buf[MAX_REGISTER_SIZE];
3977
3978 regcache_raw_collect (regcache, regno, buf);
3979 fprintf_unfiltered (gdb_stdlog, " = ");
3980 for (i = 0; i < size; i++)
3981 {
3982 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3983 }
3984 if (size <= sizeof (LONGEST))
3985 {
3986 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3987
3988 fprintf_unfiltered (gdb_stdlog, " %s %s",
3989 core_addr_to_string_nz (val), plongest (val));
3990 }
3991 }
3992 fprintf_unfiltered (gdb_stdlog, "\n");
3993 }
3994
3995 void
3996 target_fetch_registers (struct regcache *regcache, int regno)
3997 {
3998 struct target_ops *t;
3999
4000 for (t = current_target.beneath; t != NULL; t = t->beneath)
4001 {
4002 if (t->to_fetch_registers != NULL)
4003 {
4004 t->to_fetch_registers (t, regcache, regno);
4005 if (targetdebug)
4006 debug_print_register ("target_fetch_registers", regcache, regno);
4007 return;
4008 }
4009 }
4010 }
4011
4012 void
4013 target_store_registers (struct regcache *regcache, int regno)
4014 {
4015 struct target_ops *t;
4016
4017 if (!may_write_registers)
4018 error (_("Writing to registers is not allowed (regno %d)"), regno);
4019
4020 for (t = current_target.beneath; t != NULL; t = t->beneath)
4021 {
4022 if (t->to_store_registers != NULL)
4023 {
4024 t->to_store_registers (t, regcache, regno);
4025 if (targetdebug)
4026 {
4027 debug_print_register ("target_store_registers", regcache, regno);
4028 }
4029 return;
4030 }
4031 }
4032
4033 noprocess ();
4034 }
4035
4036 int
4037 target_core_of_thread (ptid_t ptid)
4038 {
4039 struct target_ops *t;
4040
4041 for (t = current_target.beneath; t != NULL; t = t->beneath)
4042 {
4043 if (t->to_core_of_thread != NULL)
4044 {
4045 int retval = t->to_core_of_thread (t, ptid);
4046
4047 if (targetdebug)
4048 fprintf_unfiltered (gdb_stdlog,
4049 "target_core_of_thread (%d) = %d\n",
4050 PIDGET (ptid), retval);
4051 return retval;
4052 }
4053 }
4054
4055 return -1;
4056 }
4057
4058 int
4059 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4060 {
4061 struct target_ops *t;
4062
4063 for (t = current_target.beneath; t != NULL; t = t->beneath)
4064 {
4065 if (t->to_verify_memory != NULL)
4066 {
4067 int retval = t->to_verify_memory (t, data, memaddr, size);
4068
4069 if (targetdebug)
4070 fprintf_unfiltered (gdb_stdlog,
4071 "target_verify_memory (%s, %s) = %d\n",
4072 paddress (target_gdbarch (), memaddr),
4073 pulongest (size),
4074 retval);
4075 return retval;
4076 }
4077 }
4078
4079 tcomplain ();
4080 }
4081
4082 /* The documentation for this function is in its prototype declaration in
4083 target.h. */
4084
4085 int
4086 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4087 {
4088 struct target_ops *t;
4089
4090 for (t = current_target.beneath; t != NULL; t = t->beneath)
4091 if (t->to_insert_mask_watchpoint != NULL)
4092 {
4093 int ret;
4094
4095 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4096
4097 if (targetdebug)
4098 fprintf_unfiltered (gdb_stdlog, "\
4099 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4100 core_addr_to_string (addr),
4101 core_addr_to_string (mask), rw, ret);
4102
4103 return ret;
4104 }
4105
4106 return 1;
4107 }
4108
4109 /* The documentation for this function is in its prototype declaration in
4110 target.h. */
4111
4112 int
4113 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4114 {
4115 struct target_ops *t;
4116
4117 for (t = current_target.beneath; t != NULL; t = t->beneath)
4118 if (t->to_remove_mask_watchpoint != NULL)
4119 {
4120 int ret;
4121
4122 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4123
4124 if (targetdebug)
4125 fprintf_unfiltered (gdb_stdlog, "\
4126 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4127 core_addr_to_string (addr),
4128 core_addr_to_string (mask), rw, ret);
4129
4130 return ret;
4131 }
4132
4133 return 1;
4134 }
4135
4136 /* The documentation for this function is in its prototype declaration
4137 in target.h. */
4138
4139 int
4140 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4141 {
4142 struct target_ops *t;
4143
4144 for (t = current_target.beneath; t != NULL; t = t->beneath)
4145 if (t->to_masked_watch_num_registers != NULL)
4146 return t->to_masked_watch_num_registers (t, addr, mask);
4147
4148 return -1;
4149 }
4150
4151 /* The documentation for this function is in its prototype declaration
4152 in target.h. */
4153
4154 int
4155 target_ranged_break_num_registers (void)
4156 {
4157 struct target_ops *t;
4158
4159 for (t = current_target.beneath; t != NULL; t = t->beneath)
4160 if (t->to_ranged_break_num_registers != NULL)
4161 return t->to_ranged_break_num_registers (t);
4162
4163 return -1;
4164 }
4165
4166 /* See target.h. */
4167
4168 int
4169 target_supports_btrace (void)
4170 {
4171 struct target_ops *t;
4172
4173 for (t = current_target.beneath; t != NULL; t = t->beneath)
4174 if (t->to_supports_btrace != NULL)
4175 return t->to_supports_btrace ();
4176
4177 return 0;
4178 }
4179
4180 /* See target.h. */
4181
4182 struct btrace_target_info *
4183 target_enable_btrace (ptid_t ptid)
4184 {
4185 struct target_ops *t;
4186
4187 for (t = current_target.beneath; t != NULL; t = t->beneath)
4188 if (t->to_enable_btrace != NULL)
4189 return t->to_enable_btrace (ptid);
4190
4191 tcomplain ();
4192 return NULL;
4193 }
4194
4195 /* See target.h. */
4196
4197 void
4198 target_disable_btrace (struct btrace_target_info *btinfo)
4199 {
4200 struct target_ops *t;
4201
4202 for (t = current_target.beneath; t != NULL; t = t->beneath)
4203 if (t->to_disable_btrace != NULL)
4204 return t->to_disable_btrace (btinfo);
4205
4206 tcomplain ();
4207 }
4208
4209 /* See target.h. */
4210
4211 void
4212 target_teardown_btrace (struct btrace_target_info *btinfo)
4213 {
4214 struct target_ops *t;
4215
4216 for (t = current_target.beneath; t != NULL; t = t->beneath)
4217 if (t->to_teardown_btrace != NULL)
4218 return t->to_teardown_btrace (btinfo);
4219
4220 tcomplain ();
4221 }
4222
4223 /* See target.h. */
4224
4225 VEC (btrace_block_s) *
4226 target_read_btrace (struct btrace_target_info *btinfo,
4227 enum btrace_read_type type)
4228 {
4229 struct target_ops *t;
4230
4231 for (t = current_target.beneath; t != NULL; t = t->beneath)
4232 if (t->to_read_btrace != NULL)
4233 return t->to_read_btrace (btinfo, type);
4234
4235 tcomplain ();
4236 return NULL;
4237 }
4238
4239 /* See target.h. */
4240
4241 void
4242 target_stop_recording (void)
4243 {
4244 struct target_ops *t;
4245
4246 for (t = current_target.beneath; t != NULL; t = t->beneath)
4247 if (t->to_stop_recording != NULL)
4248 {
4249 t->to_stop_recording ();
4250 return;
4251 }
4252
4253 /* This is optional. */
4254 }
4255
4256 /* See target.h. */
4257
4258 void
4259 target_info_record (void)
4260 {
4261 struct target_ops *t;
4262
4263 for (t = current_target.beneath; t != NULL; t = t->beneath)
4264 if (t->to_info_record != NULL)
4265 {
4266 t->to_info_record ();
4267 return;
4268 }
4269
4270 tcomplain ();
4271 }
4272
4273 /* See target.h. */
4274
4275 void
4276 target_save_record (const char *filename)
4277 {
4278 struct target_ops *t;
4279
4280 for (t = current_target.beneath; t != NULL; t = t->beneath)
4281 if (t->to_save_record != NULL)
4282 {
4283 t->to_save_record (filename);
4284 return;
4285 }
4286
4287 tcomplain ();
4288 }
4289
4290 /* See target.h. */
4291
4292 int
4293 target_supports_delete_record (void)
4294 {
4295 struct target_ops *t;
4296
4297 for (t = current_target.beneath; t != NULL; t = t->beneath)
4298 if (t->to_delete_record != NULL)
4299 return 1;
4300
4301 return 0;
4302 }
4303
4304 /* See target.h. */
4305
4306 void
4307 target_delete_record (void)
4308 {
4309 struct target_ops *t;
4310
4311 for (t = current_target.beneath; t != NULL; t = t->beneath)
4312 if (t->to_delete_record != NULL)
4313 {
4314 t->to_delete_record ();
4315 return;
4316 }
4317
4318 tcomplain ();
4319 }
4320
4321 /* See target.h. */
4322
4323 int
4324 target_record_is_replaying (void)
4325 {
4326 struct target_ops *t;
4327
4328 for (t = current_target.beneath; t != NULL; t = t->beneath)
4329 if (t->to_record_is_replaying != NULL)
4330 return t->to_record_is_replaying ();
4331
4332 return 0;
4333 }
4334
4335 /* See target.h. */
4336
4337 void
4338 target_goto_record_begin (void)
4339 {
4340 struct target_ops *t;
4341
4342 for (t = current_target.beneath; t != NULL; t = t->beneath)
4343 if (t->to_goto_record_begin != NULL)
4344 {
4345 t->to_goto_record_begin ();
4346 return;
4347 }
4348
4349 tcomplain ();
4350 }
4351
4352 /* See target.h. */
4353
4354 void
4355 target_goto_record_end (void)
4356 {
4357 struct target_ops *t;
4358
4359 for (t = current_target.beneath; t != NULL; t = t->beneath)
4360 if (t->to_goto_record_end != NULL)
4361 {
4362 t->to_goto_record_end ();
4363 return;
4364 }
4365
4366 tcomplain ();
4367 }
4368
4369 /* See target.h. */
4370
4371 void
4372 target_goto_record (ULONGEST insn)
4373 {
4374 struct target_ops *t;
4375
4376 for (t = current_target.beneath; t != NULL; t = t->beneath)
4377 if (t->to_goto_record != NULL)
4378 {
4379 t->to_goto_record (insn);
4380 return;
4381 }
4382
4383 tcomplain ();
4384 }
4385
4386 /* See target.h. */
4387
4388 void
4389 target_insn_history (int size, int flags)
4390 {
4391 struct target_ops *t;
4392
4393 for (t = current_target.beneath; t != NULL; t = t->beneath)
4394 if (t->to_insn_history != NULL)
4395 {
4396 t->to_insn_history (size, flags);
4397 return;
4398 }
4399
4400 tcomplain ();
4401 }
4402
4403 /* See target.h. */
4404
4405 void
4406 target_insn_history_from (ULONGEST from, int size, int flags)
4407 {
4408 struct target_ops *t;
4409
4410 for (t = current_target.beneath; t != NULL; t = t->beneath)
4411 if (t->to_insn_history_from != NULL)
4412 {
4413 t->to_insn_history_from (from, size, flags);
4414 return;
4415 }
4416
4417 tcomplain ();
4418 }
4419
4420 /* See target.h. */
4421
4422 void
4423 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4424 {
4425 struct target_ops *t;
4426
4427 for (t = current_target.beneath; t != NULL; t = t->beneath)
4428 if (t->to_insn_history_range != NULL)
4429 {
4430 t->to_insn_history_range (begin, end, flags);
4431 return;
4432 }
4433
4434 tcomplain ();
4435 }
4436
4437 /* See target.h. */
4438
4439 void
4440 target_call_history (int size, int flags)
4441 {
4442 struct target_ops *t;
4443
4444 for (t = current_target.beneath; t != NULL; t = t->beneath)
4445 if (t->to_call_history != NULL)
4446 {
4447 t->to_call_history (size, flags);
4448 return;
4449 }
4450
4451 tcomplain ();
4452 }
4453
4454 /* See target.h. */
4455
4456 void
4457 target_call_history_from (ULONGEST begin, int size, int flags)
4458 {
4459 struct target_ops *t;
4460
4461 for (t = current_target.beneath; t != NULL; t = t->beneath)
4462 if (t->to_call_history_from != NULL)
4463 {
4464 t->to_call_history_from (begin, size, flags);
4465 return;
4466 }
4467
4468 tcomplain ();
4469 }
4470
4471 /* See target.h. */
4472
4473 void
4474 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4475 {
4476 struct target_ops *t;
4477
4478 for (t = current_target.beneath; t != NULL; t = t->beneath)
4479 if (t->to_call_history_range != NULL)
4480 {
4481 t->to_call_history_range (begin, end, flags);
4482 return;
4483 }
4484
4485 tcomplain ();
4486 }
4487
4488 static void
4489 debug_to_prepare_to_store (struct regcache *regcache)
4490 {
4491 debug_target.to_prepare_to_store (regcache);
4492
4493 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4494 }
4495
4496 static int
4497 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4498 int write, struct mem_attrib *attrib,
4499 struct target_ops *target)
4500 {
4501 int retval;
4502
4503 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4504 attrib, target);
4505
4506 fprintf_unfiltered (gdb_stdlog,
4507 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4508 paddress (target_gdbarch (), memaddr), len,
4509 write ? "write" : "read", retval);
4510
4511 if (retval > 0)
4512 {
4513 int i;
4514
4515 fputs_unfiltered (", bytes =", gdb_stdlog);
4516 for (i = 0; i < retval; i++)
4517 {
4518 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4519 {
4520 if (targetdebug < 2 && i > 0)
4521 {
4522 fprintf_unfiltered (gdb_stdlog, " ...");
4523 break;
4524 }
4525 fprintf_unfiltered (gdb_stdlog, "\n");
4526 }
4527
4528 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4529 }
4530 }
4531
4532 fputc_unfiltered ('\n', gdb_stdlog);
4533
4534 return retval;
4535 }
4536
4537 static void
4538 debug_to_files_info (struct target_ops *target)
4539 {
4540 debug_target.to_files_info (target);
4541
4542 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4543 }
4544
4545 static int
4546 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4547 struct bp_target_info *bp_tgt)
4548 {
4549 int retval;
4550
4551 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4552
4553 fprintf_unfiltered (gdb_stdlog,
4554 "target_insert_breakpoint (%s, xxx) = %ld\n",
4555 core_addr_to_string (bp_tgt->placed_address),
4556 (unsigned long) retval);
4557 return retval;
4558 }
4559
4560 static int
4561 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4562 struct bp_target_info *bp_tgt)
4563 {
4564 int retval;
4565
4566 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4567
4568 fprintf_unfiltered (gdb_stdlog,
4569 "target_remove_breakpoint (%s, xxx) = %ld\n",
4570 core_addr_to_string (bp_tgt->placed_address),
4571 (unsigned long) retval);
4572 return retval;
4573 }
4574
4575 static int
4576 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4577 {
4578 int retval;
4579
4580 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4581
4582 fprintf_unfiltered (gdb_stdlog,
4583 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4584 (unsigned long) type,
4585 (unsigned long) cnt,
4586 (unsigned long) from_tty,
4587 (unsigned long) retval);
4588 return retval;
4589 }
4590
4591 static int
4592 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4593 {
4594 CORE_ADDR retval;
4595
4596 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4597
4598 fprintf_unfiltered (gdb_stdlog,
4599 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4600 core_addr_to_string (addr), (unsigned long) len,
4601 core_addr_to_string (retval));
4602 return retval;
4603 }
4604
4605 static int
4606 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4607 struct expression *cond)
4608 {
4609 int retval;
4610
4611 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4612 rw, cond);
4613
4614 fprintf_unfiltered (gdb_stdlog,
4615 "target_can_accel_watchpoint_condition "
4616 "(%s, %d, %d, %s) = %ld\n",
4617 core_addr_to_string (addr), len, rw,
4618 host_address_to_string (cond), (unsigned long) retval);
4619 return retval;
4620 }
4621
4622 static int
4623 debug_to_stopped_by_watchpoint (void)
4624 {
4625 int retval;
4626
4627 retval = debug_target.to_stopped_by_watchpoint ();
4628
4629 fprintf_unfiltered (gdb_stdlog,
4630 "target_stopped_by_watchpoint () = %ld\n",
4631 (unsigned long) retval);
4632 return retval;
4633 }
4634
4635 static int
4636 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4637 {
4638 int retval;
4639
4640 retval = debug_target.to_stopped_data_address (target, addr);
4641
4642 fprintf_unfiltered (gdb_stdlog,
4643 "target_stopped_data_address ([%s]) = %ld\n",
4644 core_addr_to_string (*addr),
4645 (unsigned long)retval);
4646 return retval;
4647 }
4648
4649 static int
4650 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4651 CORE_ADDR addr,
4652 CORE_ADDR start, int length)
4653 {
4654 int retval;
4655
4656 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4657 start, length);
4658
4659 fprintf_filtered (gdb_stdlog,
4660 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4661 core_addr_to_string (addr), core_addr_to_string (start),
4662 length, retval);
4663 return retval;
4664 }
4665
4666 static int
4667 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4668 struct bp_target_info *bp_tgt)
4669 {
4670 int retval;
4671
4672 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4673
4674 fprintf_unfiltered (gdb_stdlog,
4675 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4676 core_addr_to_string (bp_tgt->placed_address),
4677 (unsigned long) retval);
4678 return retval;
4679 }
4680
4681 static int
4682 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4683 struct bp_target_info *bp_tgt)
4684 {
4685 int retval;
4686
4687 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4688
4689 fprintf_unfiltered (gdb_stdlog,
4690 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4691 core_addr_to_string (bp_tgt->placed_address),
4692 (unsigned long) retval);
4693 return retval;
4694 }
4695
4696 static int
4697 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4698 struct expression *cond)
4699 {
4700 int retval;
4701
4702 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4703
4704 fprintf_unfiltered (gdb_stdlog,
4705 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4706 core_addr_to_string (addr), len, type,
4707 host_address_to_string (cond), (unsigned long) retval);
4708 return retval;
4709 }
4710
4711 static int
4712 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4713 struct expression *cond)
4714 {
4715 int retval;
4716
4717 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4718
4719 fprintf_unfiltered (gdb_stdlog,
4720 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4721 core_addr_to_string (addr), len, type,
4722 host_address_to_string (cond), (unsigned long) retval);
4723 return retval;
4724 }
4725
4726 static void
4727 debug_to_terminal_init (void)
4728 {
4729 debug_target.to_terminal_init ();
4730
4731 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4732 }
4733
4734 static void
4735 debug_to_terminal_inferior (void)
4736 {
4737 debug_target.to_terminal_inferior ();
4738
4739 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4740 }
4741
4742 static void
4743 debug_to_terminal_ours_for_output (void)
4744 {
4745 debug_target.to_terminal_ours_for_output ();
4746
4747 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4748 }
4749
4750 static void
4751 debug_to_terminal_ours (void)
4752 {
4753 debug_target.to_terminal_ours ();
4754
4755 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4756 }
4757
4758 static void
4759 debug_to_terminal_save_ours (void)
4760 {
4761 debug_target.to_terminal_save_ours ();
4762
4763 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4764 }
4765
4766 static void
4767 debug_to_terminal_info (const char *arg, int from_tty)
4768 {
4769 debug_target.to_terminal_info (arg, from_tty);
4770
4771 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4772 from_tty);
4773 }
4774
4775 static void
4776 debug_to_load (char *args, int from_tty)
4777 {
4778 debug_target.to_load (args, from_tty);
4779
4780 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4781 }
4782
4783 static void
4784 debug_to_post_startup_inferior (ptid_t ptid)
4785 {
4786 debug_target.to_post_startup_inferior (ptid);
4787
4788 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4789 PIDGET (ptid));
4790 }
4791
4792 static int
4793 debug_to_insert_fork_catchpoint (int pid)
4794 {
4795 int retval;
4796
4797 retval = debug_target.to_insert_fork_catchpoint (pid);
4798
4799 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4800 pid, retval);
4801
4802 return retval;
4803 }
4804
4805 static int
4806 debug_to_remove_fork_catchpoint (int pid)
4807 {
4808 int retval;
4809
4810 retval = debug_target.to_remove_fork_catchpoint (pid);
4811
4812 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4813 pid, retval);
4814
4815 return retval;
4816 }
4817
4818 static int
4819 debug_to_insert_vfork_catchpoint (int pid)
4820 {
4821 int retval;
4822
4823 retval = debug_target.to_insert_vfork_catchpoint (pid);
4824
4825 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4826 pid, retval);
4827
4828 return retval;
4829 }
4830
4831 static int
4832 debug_to_remove_vfork_catchpoint (int pid)
4833 {
4834 int retval;
4835
4836 retval = debug_target.to_remove_vfork_catchpoint (pid);
4837
4838 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4839 pid, retval);
4840
4841 return retval;
4842 }
4843
4844 static int
4845 debug_to_insert_exec_catchpoint (int pid)
4846 {
4847 int retval;
4848
4849 retval = debug_target.to_insert_exec_catchpoint (pid);
4850
4851 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4852 pid, retval);
4853
4854 return retval;
4855 }
4856
4857 static int
4858 debug_to_remove_exec_catchpoint (int pid)
4859 {
4860 int retval;
4861
4862 retval = debug_target.to_remove_exec_catchpoint (pid);
4863
4864 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4865 pid, retval);
4866
4867 return retval;
4868 }
4869
4870 static int
4871 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4872 {
4873 int has_exited;
4874
4875 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4876
4877 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4878 pid, wait_status, *exit_status, has_exited);
4879
4880 return has_exited;
4881 }
4882
4883 static int
4884 debug_to_can_run (void)
4885 {
4886 int retval;
4887
4888 retval = debug_target.to_can_run ();
4889
4890 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4891
4892 return retval;
4893 }
4894
4895 static struct gdbarch *
4896 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4897 {
4898 struct gdbarch *retval;
4899
4900 retval = debug_target.to_thread_architecture (ops, ptid);
4901
4902 fprintf_unfiltered (gdb_stdlog,
4903 "target_thread_architecture (%s) = %s [%s]\n",
4904 target_pid_to_str (ptid),
4905 host_address_to_string (retval),
4906 gdbarch_bfd_arch_info (retval)->printable_name);
4907 return retval;
4908 }
4909
4910 static void
4911 debug_to_stop (ptid_t ptid)
4912 {
4913 debug_target.to_stop (ptid);
4914
4915 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4916 target_pid_to_str (ptid));
4917 }
4918
4919 static void
4920 debug_to_rcmd (char *command,
4921 struct ui_file *outbuf)
4922 {
4923 debug_target.to_rcmd (command, outbuf);
4924 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4925 }
4926
4927 static char *
4928 debug_to_pid_to_exec_file (int pid)
4929 {
4930 char *exec_file;
4931
4932 exec_file = debug_target.to_pid_to_exec_file (pid);
4933
4934 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4935 pid, exec_file);
4936
4937 return exec_file;
4938 }
4939
4940 static void
4941 setup_target_debug (void)
4942 {
4943 memcpy (&debug_target, &current_target, sizeof debug_target);
4944
4945 current_target.to_open = debug_to_open;
4946 current_target.to_post_attach = debug_to_post_attach;
4947 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4948 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4949 current_target.to_files_info = debug_to_files_info;
4950 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4951 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4952 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4953 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4954 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4955 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4956 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4957 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4958 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4959 current_target.to_watchpoint_addr_within_range
4960 = debug_to_watchpoint_addr_within_range;
4961 current_target.to_region_ok_for_hw_watchpoint
4962 = debug_to_region_ok_for_hw_watchpoint;
4963 current_target.to_can_accel_watchpoint_condition
4964 = debug_to_can_accel_watchpoint_condition;
4965 current_target.to_terminal_init = debug_to_terminal_init;
4966 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4967 current_target.to_terminal_ours_for_output
4968 = debug_to_terminal_ours_for_output;
4969 current_target.to_terminal_ours = debug_to_terminal_ours;
4970 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4971 current_target.to_terminal_info = debug_to_terminal_info;
4972 current_target.to_load = debug_to_load;
4973 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4974 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4975 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4976 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4977 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4978 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4979 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4980 current_target.to_has_exited = debug_to_has_exited;
4981 current_target.to_can_run = debug_to_can_run;
4982 current_target.to_stop = debug_to_stop;
4983 current_target.to_rcmd = debug_to_rcmd;
4984 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4985 current_target.to_thread_architecture = debug_to_thread_architecture;
4986 }
4987 \f
4988
4989 static char targ_desc[] =
4990 "Names of targets and files being debugged.\nShows the entire \
4991 stack of targets currently in use (including the exec-file,\n\
4992 core-file, and process, if any), as well as the symbol file name.";
4993
4994 static void
4995 do_monitor_command (char *cmd,
4996 int from_tty)
4997 {
4998 if ((current_target.to_rcmd
4999 == (void (*) (char *, struct ui_file *)) tcomplain)
5000 || (current_target.to_rcmd == debug_to_rcmd
5001 && (debug_target.to_rcmd
5002 == (void (*) (char *, struct ui_file *)) tcomplain)))
5003 error (_("\"monitor\" command not supported by this target."));
5004 target_rcmd (cmd, gdb_stdtarg);
5005 }
5006
5007 /* Print the name of each layers of our target stack. */
5008
5009 static void
5010 maintenance_print_target_stack (char *cmd, int from_tty)
5011 {
5012 struct target_ops *t;
5013
5014 printf_filtered (_("The current target stack is:\n"));
5015
5016 for (t = target_stack; t != NULL; t = t->beneath)
5017 {
5018 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5019 }
5020 }
5021
5022 /* Controls if async mode is permitted. */
5023 int target_async_permitted = 0;
5024
5025 /* The set command writes to this variable. If the inferior is
5026 executing, linux_nat_async_permitted is *not* updated. */
5027 static int target_async_permitted_1 = 0;
5028
5029 static void
5030 set_target_async_command (char *args, int from_tty,
5031 struct cmd_list_element *c)
5032 {
5033 if (have_live_inferiors ())
5034 {
5035 target_async_permitted_1 = target_async_permitted;
5036 error (_("Cannot change this setting while the inferior is running."));
5037 }
5038
5039 target_async_permitted = target_async_permitted_1;
5040 }
5041
5042 static void
5043 show_target_async_command (struct ui_file *file, int from_tty,
5044 struct cmd_list_element *c,
5045 const char *value)
5046 {
5047 fprintf_filtered (file,
5048 _("Controlling the inferior in "
5049 "asynchronous mode is %s.\n"), value);
5050 }
5051
5052 /* Temporary copies of permission settings. */
5053
5054 static int may_write_registers_1 = 1;
5055 static int may_write_memory_1 = 1;
5056 static int may_insert_breakpoints_1 = 1;
5057 static int may_insert_tracepoints_1 = 1;
5058 static int may_insert_fast_tracepoints_1 = 1;
5059 static int may_stop_1 = 1;
5060
5061 /* Make the user-set values match the real values again. */
5062
5063 void
5064 update_target_permissions (void)
5065 {
5066 may_write_registers_1 = may_write_registers;
5067 may_write_memory_1 = may_write_memory;
5068 may_insert_breakpoints_1 = may_insert_breakpoints;
5069 may_insert_tracepoints_1 = may_insert_tracepoints;
5070 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5071 may_stop_1 = may_stop;
5072 }
5073
5074 /* The one function handles (most of) the permission flags in the same
5075 way. */
5076
5077 static void
5078 set_target_permissions (char *args, int from_tty,
5079 struct cmd_list_element *c)
5080 {
5081 if (target_has_execution)
5082 {
5083 update_target_permissions ();
5084 error (_("Cannot change this setting while the inferior is running."));
5085 }
5086
5087 /* Make the real values match the user-changed values. */
5088 may_write_registers = may_write_registers_1;
5089 may_insert_breakpoints = may_insert_breakpoints_1;
5090 may_insert_tracepoints = may_insert_tracepoints_1;
5091 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5092 may_stop = may_stop_1;
5093 update_observer_mode ();
5094 }
5095
5096 /* Set memory write permission independently of observer mode. */
5097
5098 static void
5099 set_write_memory_permission (char *args, int from_tty,
5100 struct cmd_list_element *c)
5101 {
5102 /* Make the real values match the user-changed values. */
5103 may_write_memory = may_write_memory_1;
5104 update_observer_mode ();
5105 }
5106
5107
5108 void
5109 initialize_targets (void)
5110 {
5111 init_dummy_target ();
5112 push_target (&dummy_target);
5113
5114 add_info ("target", target_info, targ_desc);
5115 add_info ("files", target_info, targ_desc);
5116
5117 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5118 Set target debugging."), _("\
5119 Show target debugging."), _("\
5120 When non-zero, target debugging is enabled. Higher numbers are more\n\
5121 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5122 command."),
5123 NULL,
5124 show_targetdebug,
5125 &setdebuglist, &showdebuglist);
5126
5127 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5128 &trust_readonly, _("\
5129 Set mode for reading from readonly sections."), _("\
5130 Show mode for reading from readonly sections."), _("\
5131 When this mode is on, memory reads from readonly sections (such as .text)\n\
5132 will be read from the object file instead of from the target. This will\n\
5133 result in significant performance improvement for remote targets."),
5134 NULL,
5135 show_trust_readonly,
5136 &setlist, &showlist);
5137
5138 add_com ("monitor", class_obscure, do_monitor_command,
5139 _("Send a command to the remote monitor (remote targets only)."));
5140
5141 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5142 _("Print the name of each layer of the internal target stack."),
5143 &maintenanceprintlist);
5144
5145 add_setshow_boolean_cmd ("target-async", no_class,
5146 &target_async_permitted_1, _("\
5147 Set whether gdb controls the inferior in asynchronous mode."), _("\
5148 Show whether gdb controls the inferior in asynchronous mode."), _("\
5149 Tells gdb whether to control the inferior in asynchronous mode."),
5150 set_target_async_command,
5151 show_target_async_command,
5152 &setlist,
5153 &showlist);
5154
5155 add_setshow_boolean_cmd ("stack-cache", class_support,
5156 &stack_cache_enabled_p_1, _("\
5157 Set cache use for stack access."), _("\
5158 Show cache use for stack access."), _("\
5159 When on, use the data cache for all stack access, regardless of any\n\
5160 configured memory regions. This improves remote performance significantly.\n\
5161 By default, caching for stack access is on."),
5162 set_stack_cache_enabled_p,
5163 show_stack_cache_enabled_p,
5164 &setlist, &showlist);
5165
5166 add_setshow_boolean_cmd ("may-write-registers", class_support,
5167 &may_write_registers_1, _("\
5168 Set permission to write into registers."), _("\
5169 Show permission to write into registers."), _("\
5170 When this permission is on, GDB may write into the target's registers.\n\
5171 Otherwise, any sort of write attempt will result in an error."),
5172 set_target_permissions, NULL,
5173 &setlist, &showlist);
5174
5175 add_setshow_boolean_cmd ("may-write-memory", class_support,
5176 &may_write_memory_1, _("\
5177 Set permission to write into target memory."), _("\
5178 Show permission to write into target memory."), _("\
5179 When this permission is on, GDB may write into the target's memory.\n\
5180 Otherwise, any sort of write attempt will result in an error."),
5181 set_write_memory_permission, NULL,
5182 &setlist, &showlist);
5183
5184 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5185 &may_insert_breakpoints_1, _("\
5186 Set permission to insert breakpoints in the target."), _("\
5187 Show permission to insert breakpoints in the target."), _("\
5188 When this permission is on, GDB may insert breakpoints in the program.\n\
5189 Otherwise, any sort of insertion attempt will result in an error."),
5190 set_target_permissions, NULL,
5191 &setlist, &showlist);
5192
5193 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5194 &may_insert_tracepoints_1, _("\
5195 Set permission to insert tracepoints in the target."), _("\
5196 Show permission to insert tracepoints in the target."), _("\
5197 When this permission is on, GDB may insert tracepoints in the program.\n\
5198 Otherwise, any sort of insertion attempt will result in an error."),
5199 set_target_permissions, NULL,
5200 &setlist, &showlist);
5201
5202 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5203 &may_insert_fast_tracepoints_1, _("\
5204 Set permission to insert fast tracepoints in the target."), _("\
5205 Show permission to insert fast tracepoints in the target."), _("\
5206 When this permission is on, GDB may insert fast tracepoints.\n\
5207 Otherwise, any sort of insertion attempt will result in an error."),
5208 set_target_permissions, NULL,
5209 &setlist, &showlist);
5210
5211 add_setshow_boolean_cmd ("may-interrupt", class_support,
5212 &may_stop_1, _("\
5213 Set permission to interrupt or signal the target."), _("\
5214 Show permission to interrupt or signal the target."), _("\
5215 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5216 Otherwise, any attempt to interrupt or stop will be ignored."),
5217 set_target_permissions, NULL,
5218 &setlist, &showlist);
5219
5220
5221 target_dcache = dcache_init ();
5222 }
This page took 0.188996 seconds and 4 git commands to generate.