92a4d6ac2c98c51f335ca4d8e49e861c08470f04
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (struct regcache *, int);
110
111 static void debug_to_store_registers (struct regcache *, int);
112
113 static void debug_to_prepare_to_store (struct regcache *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset current's contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_steppable_watchpoint, t);
417 INHERIT (to_have_continuable_watchpoint, t);
418 INHERIT (to_region_ok_for_hw_watchpoint, t);
419 INHERIT (to_terminal_init, t);
420 INHERIT (to_terminal_inferior, t);
421 INHERIT (to_terminal_ours_for_output, t);
422 INHERIT (to_terminal_ours, t);
423 INHERIT (to_terminal_save_ours, t);
424 INHERIT (to_terminal_info, t);
425 INHERIT (to_kill, t);
426 INHERIT (to_load, t);
427 INHERIT (to_lookup_symbol, t);
428 INHERIT (to_create_inferior, t);
429 INHERIT (to_post_startup_inferior, t);
430 INHERIT (to_acknowledge_created_inferior, t);
431 INHERIT (to_insert_fork_catchpoint, t);
432 INHERIT (to_remove_fork_catchpoint, t);
433 INHERIT (to_insert_vfork_catchpoint, t);
434 INHERIT (to_remove_vfork_catchpoint, t);
435 /* Do not inherit to_follow_fork. */
436 INHERIT (to_insert_exec_catchpoint, t);
437 INHERIT (to_remove_exec_catchpoint, t);
438 INHERIT (to_reported_exec_events_per_exec_call, t);
439 INHERIT (to_has_exited, t);
440 INHERIT (to_mourn_inferior, t);
441 INHERIT (to_can_run, t);
442 INHERIT (to_notice_signals, t);
443 INHERIT (to_thread_alive, t);
444 INHERIT (to_find_new_threads, t);
445 INHERIT (to_pid_to_str, t);
446 INHERIT (to_extra_thread_info, t);
447 INHERIT (to_stop, t);
448 /* Do not inherit to_xfer_partial. */
449 INHERIT (to_rcmd, t);
450 INHERIT (to_enable_exception_callback, t);
451 INHERIT (to_get_current_exception_event, t);
452 INHERIT (to_pid_to_exec_file, t);
453 INHERIT (to_stratum, t);
454 INHERIT (to_has_all_memory, t);
455 INHERIT (to_has_memory, t);
456 INHERIT (to_has_stack, t);
457 INHERIT (to_has_registers, t);
458 INHERIT (to_has_execution, t);
459 INHERIT (to_has_thread_control, t);
460 INHERIT (to_sections, t);
461 INHERIT (to_sections_end, t);
462 INHERIT (to_can_async_p, t);
463 INHERIT (to_is_async_p, t);
464 INHERIT (to_async, t);
465 INHERIT (to_async_mask_value, t);
466 INHERIT (to_find_memory_regions, t);
467 INHERIT (to_make_corefile_notes, t);
468 INHERIT (to_get_thread_local_address, t);
469 /* Do not inherit to_read_description. */
470 INHERIT (to_magic, t);
471 /* Do not inherit to_memory_map. */
472 /* Do not inherit to_flash_erase. */
473 /* Do not inherit to_flash_done. */
474 }
475 #undef INHERIT
476
477 /* Clean up a target struct so it no longer has any zero pointers in
478 it. Some entries are defaulted to a method that print an error,
479 others are hard-wired to a standard recursive default. */
480
481 #define de_fault(field, value) \
482 if (!current_target.field) \
483 current_target.field = value
484
485 de_fault (to_open,
486 (void (*) (char *, int))
487 tcomplain);
488 de_fault (to_close,
489 (void (*) (int))
490 target_ignore);
491 de_fault (to_attach,
492 maybe_kill_then_attach);
493 de_fault (to_post_attach,
494 (void (*) (int))
495 target_ignore);
496 de_fault (to_detach,
497 (void (*) (char *, int))
498 target_ignore);
499 de_fault (to_resume,
500 (void (*) (ptid_t, int, enum target_signal))
501 noprocess);
502 de_fault (to_wait,
503 (ptid_t (*) (ptid_t, struct target_waitstatus *))
504 noprocess);
505 de_fault (to_fetch_registers,
506 (void (*) (struct regcache *, int))
507 target_ignore);
508 de_fault (to_store_registers,
509 (void (*) (struct regcache *, int))
510 noprocess);
511 de_fault (to_prepare_to_store,
512 (void (*) (struct regcache *))
513 noprocess);
514 de_fault (deprecated_xfer_memory,
515 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
516 nomemory);
517 de_fault (to_files_info,
518 (void (*) (struct target_ops *))
519 target_ignore);
520 de_fault (to_insert_breakpoint,
521 memory_insert_breakpoint);
522 de_fault (to_remove_breakpoint,
523 memory_remove_breakpoint);
524 de_fault (to_can_use_hw_breakpoint,
525 (int (*) (int, int, int))
526 return_zero);
527 de_fault (to_insert_hw_breakpoint,
528 (int (*) (struct bp_target_info *))
529 return_minus_one);
530 de_fault (to_remove_hw_breakpoint,
531 (int (*) (struct bp_target_info *))
532 return_minus_one);
533 de_fault (to_insert_watchpoint,
534 (int (*) (CORE_ADDR, int, int))
535 return_minus_one);
536 de_fault (to_remove_watchpoint,
537 (int (*) (CORE_ADDR, int, int))
538 return_minus_one);
539 de_fault (to_stopped_by_watchpoint,
540 (int (*) (void))
541 return_zero);
542 de_fault (to_stopped_data_address,
543 (int (*) (struct target_ops *, CORE_ADDR *))
544 return_zero);
545 de_fault (to_region_ok_for_hw_watchpoint,
546 default_region_ok_for_hw_watchpoint);
547 de_fault (to_terminal_init,
548 (void (*) (void))
549 target_ignore);
550 de_fault (to_terminal_inferior,
551 (void (*) (void))
552 target_ignore);
553 de_fault (to_terminal_ours_for_output,
554 (void (*) (void))
555 target_ignore);
556 de_fault (to_terminal_ours,
557 (void (*) (void))
558 target_ignore);
559 de_fault (to_terminal_save_ours,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_info,
563 default_terminal_info);
564 de_fault (to_kill,
565 (void (*) (void))
566 noprocess);
567 de_fault (to_load,
568 (void (*) (char *, int))
569 tcomplain);
570 de_fault (to_lookup_symbol,
571 (int (*) (char *, CORE_ADDR *))
572 nosymbol);
573 de_fault (to_create_inferior,
574 maybe_kill_then_create_inferior);
575 de_fault (to_post_startup_inferior,
576 (void (*) (ptid_t))
577 target_ignore);
578 de_fault (to_acknowledge_created_inferior,
579 (void (*) (int))
580 target_ignore);
581 de_fault (to_insert_fork_catchpoint,
582 (void (*) (int))
583 tcomplain);
584 de_fault (to_remove_fork_catchpoint,
585 (int (*) (int))
586 tcomplain);
587 de_fault (to_insert_vfork_catchpoint,
588 (void (*) (int))
589 tcomplain);
590 de_fault (to_remove_vfork_catchpoint,
591 (int (*) (int))
592 tcomplain);
593 de_fault (to_insert_exec_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_exec_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_reported_exec_events_per_exec_call,
600 (int (*) (void))
601 return_one);
602 de_fault (to_has_exited,
603 (int (*) (int, int, int *))
604 return_zero);
605 de_fault (to_mourn_inferior,
606 (void (*) (void))
607 noprocess);
608 de_fault (to_can_run,
609 return_zero);
610 de_fault (to_notice_signals,
611 (void (*) (ptid_t))
612 target_ignore);
613 de_fault (to_thread_alive,
614 (int (*) (ptid_t))
615 return_zero);
616 de_fault (to_find_new_threads,
617 (void (*) (void))
618 target_ignore);
619 de_fault (to_extra_thread_info,
620 (char *(*) (struct thread_info *))
621 return_zero);
622 de_fault (to_stop,
623 (void (*) (void))
624 target_ignore);
625 current_target.to_xfer_partial = current_xfer_partial;
626 de_fault (to_rcmd,
627 (void (*) (char *, struct ui_file *))
628 tcomplain);
629 de_fault (to_enable_exception_callback,
630 (struct symtab_and_line * (*) (enum exception_event_kind, int))
631 nosupport_runtime);
632 de_fault (to_get_current_exception_event,
633 (struct exception_event_record * (*) (void))
634 nosupport_runtime);
635 de_fault (to_pid_to_exec_file,
636 (char *(*) (int))
637 return_zero);
638 de_fault (to_can_async_p,
639 (int (*) (void))
640 return_zero);
641 de_fault (to_is_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 current_target.to_read_description = NULL;
648 #undef de_fault
649
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
654 }
655
656 /* Mark OPS as a running target. This reverses the effect
657 of target_mark_exited. */
658
659 void
660 target_mark_running (struct target_ops *ops)
661 {
662 struct target_ops *t;
663
664 for (t = target_stack; t != NULL; t = t->beneath)
665 if (t == ops)
666 break;
667 if (t == NULL)
668 internal_error (__FILE__, __LINE__,
669 "Attempted to mark unpushed target \"%s\" as running",
670 ops->to_shortname);
671
672 ops->to_has_execution = 1;
673 ops->to_has_all_memory = 1;
674 ops->to_has_memory = 1;
675 ops->to_has_stack = 1;
676 ops->to_has_registers = 1;
677
678 update_current_target ();
679 }
680
681 /* Mark OPS as a non-running target. This reverses the effect
682 of target_mark_running. */
683
684 void
685 target_mark_exited (struct target_ops *ops)
686 {
687 struct target_ops *t;
688
689 for (t = target_stack; t != NULL; t = t->beneath)
690 if (t == ops)
691 break;
692 if (t == NULL)
693 internal_error (__FILE__, __LINE__,
694 "Attempted to mark unpushed target \"%s\" as running",
695 ops->to_shortname);
696
697 ops->to_has_execution = 0;
698 ops->to_has_all_memory = 0;
699 ops->to_has_memory = 0;
700 ops->to_has_stack = 0;
701 ops->to_has_registers = 0;
702
703 update_current_target ();
704 }
705
706 /* Push a new target type into the stack of the existing target accessors,
707 possibly superseding some of the existing accessors.
708
709 Result is zero if the pushed target ended up on top of the stack,
710 nonzero if at least one target is on top of it.
711
712 Rather than allow an empty stack, we always have the dummy target at
713 the bottom stratum, so we can call the function vectors without
714 checking them. */
715
716 int
717 push_target (struct target_ops *t)
718 {
719 struct target_ops **cur;
720
721 /* Check magic number. If wrong, it probably means someone changed
722 the struct definition, but not all the places that initialize one. */
723 if (t->to_magic != OPS_MAGIC)
724 {
725 fprintf_unfiltered (gdb_stderr,
726 "Magic number of %s target struct wrong\n",
727 t->to_shortname);
728 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
729 }
730
731 /* Find the proper stratum to install this target in. */
732 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
733 {
734 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
735 break;
736 }
737
738 /* If there's already targets at this stratum, remove them. */
739 /* FIXME: cagney/2003-10-15: I think this should be popping all
740 targets to CUR, and not just those at this stratum level. */
741 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
742 {
743 /* There's already something at this stratum level. Close it,
744 and un-hook it from the stack. */
745 struct target_ops *tmp = (*cur);
746 (*cur) = (*cur)->beneath;
747 tmp->beneath = NULL;
748 target_close (tmp, 0);
749 }
750
751 /* We have removed all targets in our stratum, now add the new one. */
752 t->beneath = (*cur);
753 (*cur) = t;
754
755 update_current_target ();
756
757 if (targetdebug)
758 setup_target_debug ();
759
760 /* Not on top? */
761 return (t != target_stack);
762 }
763
764 /* Remove a target_ops vector from the stack, wherever it may be.
765 Return how many times it was removed (0 or 1). */
766
767 int
768 unpush_target (struct target_ops *t)
769 {
770 struct target_ops **cur;
771 struct target_ops *tmp;
772
773 /* Look for the specified target. Note that we assume that a target
774 can only occur once in the target stack. */
775
776 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
777 {
778 if ((*cur) == t)
779 break;
780 }
781
782 if ((*cur) == NULL)
783 return 0; /* Didn't find target_ops, quit now */
784
785 /* NOTE: cagney/2003-12-06: In '94 the close call was made
786 unconditional by moving it to before the above check that the
787 target was in the target stack (something about "Change the way
788 pushing and popping of targets work to support target overlays
789 and inheritance"). This doesn't make much sense - only open
790 targets should be closed. */
791 target_close (t, 0);
792
793 /* Unchain the target */
794 tmp = (*cur);
795 (*cur) = (*cur)->beneath;
796 tmp->beneath = NULL;
797
798 update_current_target ();
799
800 return 1;
801 }
802
803 void
804 pop_target (void)
805 {
806 target_close (&current_target, 0); /* Let it clean up */
807 if (unpush_target (target_stack) == 1)
808 return;
809
810 fprintf_unfiltered (gdb_stderr,
811 "pop_target couldn't find target %s\n",
812 current_target.to_shortname);
813 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
814 }
815
816 /* Using the objfile specified in BATON, find the address for the
817 current thread's thread-local storage with offset OFFSET. */
818 CORE_ADDR
819 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
820 {
821 volatile CORE_ADDR addr = 0;
822
823 if (target_get_thread_local_address_p ()
824 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
825 {
826 ptid_t ptid = inferior_ptid;
827 volatile struct gdb_exception ex;
828
829 TRY_CATCH (ex, RETURN_MASK_ALL)
830 {
831 CORE_ADDR lm_addr;
832
833 /* Fetch the load module address for this objfile. */
834 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
835 objfile);
836 /* If it's 0, throw the appropriate exception. */
837 if (lm_addr == 0)
838 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
839 _("TLS load module not found"));
840
841 addr = target_get_thread_local_address (ptid, lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 if (ex.reason < 0)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables in this thread library."));
853 break;
854 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
855 if (objfile_is_library)
856 error (_("Cannot find shared library `%s' in dynamic"
857 " linker's load module list"), objfile->name);
858 else
859 error (_("Cannot find executable file `%s' in dynamic"
860 " linker's load module list"), objfile->name);
861 break;
862 case TLS_NOT_ALLOCATED_YET_ERROR:
863 if (objfile_is_library)
864 error (_("The inferior has not yet allocated storage for"
865 " thread-local variables in\n"
866 "the shared library `%s'\n"
867 "for %s"),
868 objfile->name, target_pid_to_str (ptid));
869 else
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the executable `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 break;
876 case TLS_GENERIC_ERROR:
877 if (objfile_is_library)
878 error (_("Cannot find thread-local storage for %s, "
879 "shared library %s:\n%s"),
880 target_pid_to_str (ptid),
881 objfile->name, ex.message);
882 else
883 error (_("Cannot find thread-local storage for %s, "
884 "executable file %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 break;
888 default:
889 throw_exception (ex);
890 break;
891 }
892 }
893 }
894 /* It wouldn't be wrong here to try a gdbarch method, too; finding
895 TLS is an ABI-specific thing. But we don't do that yet. */
896 else
897 error (_("Cannot find thread-local variables on this target"));
898
899 return addr;
900 }
901
902 #undef MIN
903 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
904
905 /* target_read_string -- read a null terminated string, up to LEN bytes,
906 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
907 Set *STRING to a pointer to malloc'd memory containing the data; the caller
908 is responsible for freeing it. Return the number of bytes successfully
909 read. */
910
911 int
912 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
913 {
914 int tlen, origlen, offset, i;
915 gdb_byte buf[4];
916 int errcode = 0;
917 char *buffer;
918 int buffer_allocated;
919 char *bufptr;
920 unsigned int nbytes_read = 0;
921
922 /* Small for testing. */
923 buffer_allocated = 4;
924 buffer = xmalloc (buffer_allocated);
925 bufptr = buffer;
926
927 origlen = len;
928
929 while (len > 0)
930 {
931 tlen = MIN (len, 4 - (memaddr & 3));
932 offset = memaddr & 3;
933
934 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
935 if (errcode != 0)
936 {
937 /* The transfer request might have crossed the boundary to an
938 unallocated region of memory. Retry the transfer, requesting
939 a single byte. */
940 tlen = 1;
941 offset = 0;
942 errcode = target_read_memory (memaddr, buf, 1);
943 if (errcode != 0)
944 goto done;
945 }
946
947 if (bufptr - buffer + tlen > buffer_allocated)
948 {
949 unsigned int bytes;
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 if (errnop != NULL)
972 *errnop = errcode;
973 if (string != NULL)
974 *string = buffer;
975 return nbytes_read;
976 }
977
978 /* Find a section containing ADDR. */
979 struct section_table *
980 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
981 {
982 struct section_table *secp;
983 for (secp = target->to_sections;
984 secp < target->to_sections_end;
985 secp++)
986 {
987 if (addr >= secp->addr && addr < secp->endaddr)
988 return secp;
989 }
990 return NULL;
991 }
992
993 /* Perform a partial memory transfer. The arguments and return
994 value are just as for target_xfer_partial. */
995
996 static LONGEST
997 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
998 ULONGEST memaddr, LONGEST len)
999 {
1000 LONGEST res;
1001 int reg_len;
1002 struct mem_region *region;
1003
1004 /* Zero length requests are ok and require no work. */
1005 if (len == 0)
1006 return 0;
1007
1008 /* Try the executable file, if "trust-readonly-sections" is set. */
1009 if (readbuf != NULL && trust_readonly)
1010 {
1011 struct section_table *secp;
1012
1013 secp = target_section_by_addr (ops, memaddr);
1014 if (secp != NULL
1015 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1016 & SEC_READONLY))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Likewise for accesses to unmapped overlay sections. */
1021 if (readbuf != NULL && overlay_debugging)
1022 {
1023 asection *section = find_pc_overlay (memaddr);
1024 if (pc_in_unmapped_range (memaddr, section))
1025 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1026 }
1027
1028 /* Try GDB's internal data cache. */
1029 region = lookup_mem_region (memaddr);
1030 /* region->hi == 0 means there's no upper bound. */
1031 if (memaddr + len < region->hi || region->hi == 0)
1032 reg_len = len;
1033 else
1034 reg_len = region->hi - memaddr;
1035
1036 switch (region->attrib.mode)
1037 {
1038 case MEM_RO:
1039 if (writebuf != NULL)
1040 return -1;
1041 break;
1042
1043 case MEM_WO:
1044 if (readbuf != NULL)
1045 return -1;
1046 break;
1047
1048 case MEM_FLASH:
1049 /* We only support writing to flash during "load" for now. */
1050 if (writebuf != NULL)
1051 error (_("Writing to flash memory forbidden in this context"));
1052 break;
1053
1054 case MEM_NONE:
1055 return -1;
1056 }
1057
1058 if (region->attrib.cache)
1059 {
1060 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1061 memory request will start back at current_target. */
1062 if (readbuf != NULL)
1063 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1064 reg_len, 0);
1065 else
1066 /* FIXME drow/2006-08-09: If we're going to preserve const
1067 correctness dcache_xfer_memory should take readbuf and
1068 writebuf. */
1069 res = dcache_xfer_memory (target_dcache, memaddr,
1070 (void *) writebuf,
1071 reg_len, 1);
1072 if (res <= 0)
1073 return -1;
1074 else
1075 return res;
1076 }
1077
1078 /* If none of those methods found the memory we wanted, fall back
1079 to a target partial transfer. Normally a single call to
1080 to_xfer_partial is enough; if it doesn't recognize an object
1081 it will call the to_xfer_partial of the next target down.
1082 But for memory this won't do. Memory is the only target
1083 object which can be read from more than one valid target.
1084 A core file, for instance, could have some of memory but
1085 delegate other bits to the target below it. So, we must
1086 manually try all targets. */
1087
1088 do
1089 {
1090 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1091 readbuf, writebuf, memaddr, reg_len);
1092 if (res > 0)
1093 return res;
1094
1095 /* We want to continue past core files to executables, but not
1096 past a running target's memory. */
1097 if (ops->to_has_all_memory)
1098 return res;
1099
1100 ops = ops->beneath;
1101 }
1102 while (ops != NULL);
1103
1104 /* If we still haven't got anything, return the last error. We
1105 give up. */
1106 return res;
1107 }
1108
1109 static LONGEST
1110 target_xfer_partial (struct target_ops *ops,
1111 enum target_object object, const char *annex,
1112 void *readbuf, const void *writebuf,
1113 ULONGEST offset, LONGEST len)
1114 {
1115 LONGEST retval;
1116
1117 gdb_assert (ops->to_xfer_partial != NULL);
1118
1119 /* If this is a memory transfer, let the memory-specific code
1120 have a look at it instead. Memory transfers are more
1121 complicated. */
1122 if (object == TARGET_OBJECT_MEMORY)
1123 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1124 else
1125 {
1126 enum target_object raw_object = object;
1127
1128 /* If this is a raw memory transfer, request the normal
1129 memory object from other layers. */
1130 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1131 raw_object = TARGET_OBJECT_MEMORY;
1132
1133 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1134 writebuf, offset, len);
1135 }
1136
1137 if (targetdebug)
1138 {
1139 const unsigned char *myaddr = NULL;
1140
1141 fprintf_unfiltered (gdb_stdlog,
1142 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1143 ops->to_shortname,
1144 (int) object,
1145 (annex ? annex : "(null)"),
1146 (long) readbuf, (long) writebuf,
1147 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1148
1149 if (readbuf)
1150 myaddr = readbuf;
1151 if (writebuf)
1152 myaddr = writebuf;
1153 if (retval > 0 && myaddr != NULL)
1154 {
1155 int i;
1156
1157 fputs_unfiltered (", bytes =", gdb_stdlog);
1158 for (i = 0; i < retval; i++)
1159 {
1160 if ((((long) &(myaddr[i])) & 0xf) == 0)
1161 {
1162 if (targetdebug < 2 && i > 0)
1163 {
1164 fprintf_unfiltered (gdb_stdlog, " ...");
1165 break;
1166 }
1167 fprintf_unfiltered (gdb_stdlog, "\n");
1168 }
1169
1170 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1171 }
1172 }
1173
1174 fputc_unfiltered ('\n', gdb_stdlog);
1175 }
1176 return retval;
1177 }
1178
1179 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1180 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1181 if any error occurs.
1182
1183 If an error occurs, no guarantee is made about the contents of the data at
1184 MYADDR. In particular, the caller should not depend upon partial reads
1185 filling the buffer with good data. There is no way for the caller to know
1186 how much good data might have been transfered anyway. Callers that can
1187 deal with partial reads should call target_read (which will retry until
1188 it makes no progress, and then return how much was transferred). */
1189
1190 int
1191 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1192 {
1193 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1194 myaddr, memaddr, len) == len)
1195 return 0;
1196 else
1197 return EIO;
1198 }
1199
1200 int
1201 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1202 {
1203 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1204 myaddr, memaddr, len) == len)
1205 return 0;
1206 else
1207 return EIO;
1208 }
1209
1210 /* Fetch the target's memory map. */
1211
1212 VEC(mem_region_s) *
1213 target_memory_map (void)
1214 {
1215 VEC(mem_region_s) *result;
1216 struct mem_region *last_one, *this_one;
1217 int ix;
1218 struct target_ops *t;
1219
1220 if (targetdebug)
1221 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1222
1223 for (t = current_target.beneath; t != NULL; t = t->beneath)
1224 if (t->to_memory_map != NULL)
1225 break;
1226
1227 if (t == NULL)
1228 return NULL;
1229
1230 result = t->to_memory_map (t);
1231 if (result == NULL)
1232 return NULL;
1233
1234 qsort (VEC_address (mem_region_s, result),
1235 VEC_length (mem_region_s, result),
1236 sizeof (struct mem_region), mem_region_cmp);
1237
1238 /* Check that regions do not overlap. Simultaneously assign
1239 a numbering for the "mem" commands to use to refer to
1240 each region. */
1241 last_one = NULL;
1242 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1243 {
1244 this_one->number = ix;
1245
1246 if (last_one && last_one->hi > this_one->lo)
1247 {
1248 warning (_("Overlapping regions in memory map: ignoring"));
1249 VEC_free (mem_region_s, result);
1250 return NULL;
1251 }
1252 last_one = this_one;
1253 }
1254
1255 return result;
1256 }
1257
1258 void
1259 target_flash_erase (ULONGEST address, LONGEST length)
1260 {
1261 struct target_ops *t;
1262
1263 for (t = current_target.beneath; t != NULL; t = t->beneath)
1264 if (t->to_flash_erase != NULL)
1265 {
1266 if (targetdebug)
1267 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1268 paddr (address), phex (length, 0));
1269 t->to_flash_erase (t, address, length);
1270 return;
1271 }
1272
1273 tcomplain ();
1274 }
1275
1276 void
1277 target_flash_done (void)
1278 {
1279 struct target_ops *t;
1280
1281 for (t = current_target.beneath; t != NULL; t = t->beneath)
1282 if (t->to_flash_done != NULL)
1283 {
1284 if (targetdebug)
1285 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1286 t->to_flash_done (t);
1287 return;
1288 }
1289
1290 tcomplain ();
1291 }
1292
1293 #ifndef target_stopped_data_address_p
1294 int
1295 target_stopped_data_address_p (struct target_ops *target)
1296 {
1297 if (target->to_stopped_data_address
1298 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1299 return 0;
1300 if (target->to_stopped_data_address == debug_to_stopped_data_address
1301 && (debug_target.to_stopped_data_address
1302 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1303 return 0;
1304 return 1;
1305 }
1306 #endif
1307
1308 static void
1309 show_trust_readonly (struct ui_file *file, int from_tty,
1310 struct cmd_list_element *c, const char *value)
1311 {
1312 fprintf_filtered (file, _("\
1313 Mode for reading from readonly sections is %s.\n"),
1314 value);
1315 }
1316
1317 /* More generic transfers. */
1318
1319 static LONGEST
1320 default_xfer_partial (struct target_ops *ops, enum target_object object,
1321 const char *annex, gdb_byte *readbuf,
1322 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1323 {
1324 if (object == TARGET_OBJECT_MEMORY
1325 && ops->deprecated_xfer_memory != NULL)
1326 /* If available, fall back to the target's
1327 "deprecated_xfer_memory" method. */
1328 {
1329 int xfered = -1;
1330 errno = 0;
1331 if (writebuf != NULL)
1332 {
1333 void *buffer = xmalloc (len);
1334 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1335 memcpy (buffer, writebuf, len);
1336 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1337 1/*write*/, NULL, ops);
1338 do_cleanups (cleanup);
1339 }
1340 if (readbuf != NULL)
1341 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1342 NULL, ops);
1343 if (xfered > 0)
1344 return xfered;
1345 else if (xfered == 0 && errno == 0)
1346 /* "deprecated_xfer_memory" uses 0, cross checked against
1347 ERRNO as one indication of an error. */
1348 return 0;
1349 else
1350 return -1;
1351 }
1352 else if (ops->beneath != NULL)
1353 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1354 readbuf, writebuf, offset, len);
1355 else
1356 return -1;
1357 }
1358
1359 /* The xfer_partial handler for the topmost target. Unlike the default,
1360 it does not need to handle memory specially; it just passes all
1361 requests down the stack. */
1362
1363 static LONGEST
1364 current_xfer_partial (struct target_ops *ops, enum target_object object,
1365 const char *annex, gdb_byte *readbuf,
1366 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1367 {
1368 if (ops->beneath != NULL)
1369 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1370 readbuf, writebuf, offset, len);
1371 else
1372 return -1;
1373 }
1374
1375 /* Target vector read/write partial wrapper functions.
1376
1377 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1378 (inbuf, outbuf)", instead of separate read/write methods, make life
1379 easier. */
1380
1381 static LONGEST
1382 target_read_partial (struct target_ops *ops,
1383 enum target_object object,
1384 const char *annex, gdb_byte *buf,
1385 ULONGEST offset, LONGEST len)
1386 {
1387 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1388 }
1389
1390 static LONGEST
1391 target_write_partial (struct target_ops *ops,
1392 enum target_object object,
1393 const char *annex, const gdb_byte *buf,
1394 ULONGEST offset, LONGEST len)
1395 {
1396 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1397 }
1398
1399 /* Wrappers to perform the full transfer. */
1400 LONGEST
1401 target_read (struct target_ops *ops,
1402 enum target_object object,
1403 const char *annex, gdb_byte *buf,
1404 ULONGEST offset, LONGEST len)
1405 {
1406 LONGEST xfered = 0;
1407 while (xfered < len)
1408 {
1409 LONGEST xfer = target_read_partial (ops, object, annex,
1410 (gdb_byte *) buf + xfered,
1411 offset + xfered, len - xfered);
1412 /* Call an observer, notifying them of the xfer progress? */
1413 if (xfer == 0)
1414 return xfered;
1415 if (xfer < 0)
1416 return -1;
1417 xfered += xfer;
1418 QUIT;
1419 }
1420 return len;
1421 }
1422
1423 /* An alternative to target_write with progress callbacks. */
1424
1425 LONGEST
1426 target_write_with_progress (struct target_ops *ops,
1427 enum target_object object,
1428 const char *annex, const gdb_byte *buf,
1429 ULONGEST offset, LONGEST len,
1430 void (*progress) (ULONGEST, void *), void *baton)
1431 {
1432 LONGEST xfered = 0;
1433
1434 /* Give the progress callback a chance to set up. */
1435 if (progress)
1436 (*progress) (0, baton);
1437
1438 while (xfered < len)
1439 {
1440 LONGEST xfer = target_write_partial (ops, object, annex,
1441 (gdb_byte *) buf + xfered,
1442 offset + xfered, len - xfered);
1443
1444 if (xfer == 0)
1445 return xfered;
1446 if (xfer < 0)
1447 return -1;
1448
1449 if (progress)
1450 (*progress) (xfer, baton);
1451
1452 xfered += xfer;
1453 QUIT;
1454 }
1455 return len;
1456 }
1457
1458 LONGEST
1459 target_write (struct target_ops *ops,
1460 enum target_object object,
1461 const char *annex, const gdb_byte *buf,
1462 ULONGEST offset, LONGEST len)
1463 {
1464 return target_write_with_progress (ops, object, annex, buf, offset, len,
1465 NULL, NULL);
1466 }
1467
1468 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1469 the size of the transferred data. PADDING additional bytes are
1470 available in *BUF_P. This is a helper function for
1471 target_read_alloc; see the declaration of that function for more
1472 information. */
1473
1474 static LONGEST
1475 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1476 const char *annex, gdb_byte **buf_p, int padding)
1477 {
1478 size_t buf_alloc, buf_pos;
1479 gdb_byte *buf;
1480 LONGEST n;
1481
1482 /* This function does not have a length parameter; it reads the
1483 entire OBJECT). Also, it doesn't support objects fetched partly
1484 from one target and partly from another (in a different stratum,
1485 e.g. a core file and an executable). Both reasons make it
1486 unsuitable for reading memory. */
1487 gdb_assert (object != TARGET_OBJECT_MEMORY);
1488
1489 /* Start by reading up to 4K at a time. The target will throttle
1490 this number down if necessary. */
1491 buf_alloc = 4096;
1492 buf = xmalloc (buf_alloc);
1493 buf_pos = 0;
1494 while (1)
1495 {
1496 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1497 buf_pos, buf_alloc - buf_pos - padding);
1498 if (n < 0)
1499 {
1500 /* An error occurred. */
1501 xfree (buf);
1502 return -1;
1503 }
1504 else if (n == 0)
1505 {
1506 /* Read all there was. */
1507 if (buf_pos == 0)
1508 xfree (buf);
1509 else
1510 *buf_p = buf;
1511 return buf_pos;
1512 }
1513
1514 buf_pos += n;
1515
1516 /* If the buffer is filling up, expand it. */
1517 if (buf_alloc < buf_pos * 2)
1518 {
1519 buf_alloc *= 2;
1520 buf = xrealloc (buf, buf_alloc);
1521 }
1522
1523 QUIT;
1524 }
1525 }
1526
1527 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1528 the size of the transferred data. See the declaration in "target.h"
1529 function for more information about the return value. */
1530
1531 LONGEST
1532 target_read_alloc (struct target_ops *ops, enum target_object object,
1533 const char *annex, gdb_byte **buf_p)
1534 {
1535 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1536 }
1537
1538 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1539 returned as a string, allocated using xmalloc. If an error occurs
1540 or the transfer is unsupported, NULL is returned. Empty objects
1541 are returned as allocated but empty strings. A warning is issued
1542 if the result contains any embedded NUL bytes. */
1543
1544 char *
1545 target_read_stralloc (struct target_ops *ops, enum target_object object,
1546 const char *annex)
1547 {
1548 gdb_byte *buffer;
1549 LONGEST transferred;
1550
1551 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1552
1553 if (transferred < 0)
1554 return NULL;
1555
1556 if (transferred == 0)
1557 return xstrdup ("");
1558
1559 buffer[transferred] = 0;
1560 if (strlen (buffer) < transferred)
1561 warning (_("target object %d, annex %s, "
1562 "contained unexpected null characters"),
1563 (int) object, annex ? annex : "(none)");
1564
1565 return (char *) buffer;
1566 }
1567
1568 /* Memory transfer methods. */
1569
1570 void
1571 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1572 LONGEST len)
1573 {
1574 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1575 != len)
1576 memory_error (EIO, addr);
1577 }
1578
1579 ULONGEST
1580 get_target_memory_unsigned (struct target_ops *ops,
1581 CORE_ADDR addr, int len)
1582 {
1583 gdb_byte buf[sizeof (ULONGEST)];
1584
1585 gdb_assert (len <= sizeof (buf));
1586 get_target_memory (ops, addr, buf, len);
1587 return extract_unsigned_integer (buf, len);
1588 }
1589
1590 static void
1591 target_info (char *args, int from_tty)
1592 {
1593 struct target_ops *t;
1594 int has_all_mem = 0;
1595
1596 if (symfile_objfile != NULL)
1597 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1598
1599 for (t = target_stack; t != NULL; t = t->beneath)
1600 {
1601 if (!t->to_has_memory)
1602 continue;
1603
1604 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1605 continue;
1606 if (has_all_mem)
1607 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1608 printf_unfiltered ("%s:\n", t->to_longname);
1609 (t->to_files_info) (t);
1610 has_all_mem = t->to_has_all_memory;
1611 }
1612 }
1613
1614 /* This function is called before any new inferior is created, e.g.
1615 by running a program, attaching, or connecting to a target.
1616 It cleans up any state from previous invocations which might
1617 change between runs. This is a subset of what target_preopen
1618 resets (things which might change between targets). */
1619
1620 void
1621 target_pre_inferior (int from_tty)
1622 {
1623 invalidate_target_mem_regions ();
1624
1625 target_clear_description ();
1626 }
1627
1628 /* This is to be called by the open routine before it does
1629 anything. */
1630
1631 void
1632 target_preopen (int from_tty)
1633 {
1634 dont_repeat ();
1635
1636 if (target_has_execution)
1637 {
1638 if (!from_tty
1639 || query (_("A program is being debugged already. Kill it? ")))
1640 target_kill ();
1641 else
1642 error (_("Program not killed."));
1643 }
1644
1645 /* Calling target_kill may remove the target from the stack. But if
1646 it doesn't (which seems like a win for UDI), remove it now. */
1647
1648 if (target_has_execution)
1649 pop_target ();
1650
1651 target_pre_inferior (from_tty);
1652 }
1653
1654 /* Detach a target after doing deferred register stores. */
1655
1656 void
1657 target_detach (char *args, int from_tty)
1658 {
1659 (current_target.to_detach) (args, from_tty);
1660 }
1661
1662 void
1663 target_disconnect (char *args, int from_tty)
1664 {
1665 struct target_ops *t;
1666
1667 for (t = current_target.beneath; t != NULL; t = t->beneath)
1668 if (t->to_disconnect != NULL)
1669 {
1670 if (targetdebug)
1671 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1672 args, from_tty);
1673 t->to_disconnect (t, args, from_tty);
1674 return;
1675 }
1676
1677 tcomplain ();
1678 }
1679
1680 int
1681 target_async_mask (int mask)
1682 {
1683 int saved_async_masked_status = target_async_mask_value;
1684 target_async_mask_value = mask;
1685 return saved_async_masked_status;
1686 }
1687
1688 /* Look through the list of possible targets for a target that can
1689 follow forks. */
1690
1691 int
1692 target_follow_fork (int follow_child)
1693 {
1694 struct target_ops *t;
1695
1696 for (t = current_target.beneath; t != NULL; t = t->beneath)
1697 {
1698 if (t->to_follow_fork != NULL)
1699 {
1700 int retval = t->to_follow_fork (t, follow_child);
1701 if (targetdebug)
1702 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1703 follow_child, retval);
1704 return retval;
1705 }
1706 }
1707
1708 /* Some target returned a fork event, but did not know how to follow it. */
1709 internal_error (__FILE__, __LINE__,
1710 "could not find a target to follow fork");
1711 }
1712
1713 /* Look for a target which can describe architectural features, starting
1714 from TARGET. If we find one, return its description. */
1715
1716 const struct target_desc *
1717 target_read_description (struct target_ops *target)
1718 {
1719 struct target_ops *t;
1720
1721 for (t = target; t != NULL; t = t->beneath)
1722 if (t->to_read_description != NULL)
1723 {
1724 const struct target_desc *tdesc;
1725
1726 tdesc = t->to_read_description (t);
1727 if (tdesc)
1728 return tdesc;
1729 }
1730
1731 return NULL;
1732 }
1733
1734 /* Look through the list of possible targets for a target that can
1735 execute a run or attach command without any other data. This is
1736 used to locate the default process stratum.
1737
1738 Result is always valid (error() is called for errors). */
1739
1740 static struct target_ops *
1741 find_default_run_target (char *do_mesg)
1742 {
1743 struct target_ops **t;
1744 struct target_ops *runable = NULL;
1745 int count;
1746
1747 count = 0;
1748
1749 for (t = target_structs; t < target_structs + target_struct_size;
1750 ++t)
1751 {
1752 if ((*t)->to_can_run && target_can_run (*t))
1753 {
1754 runable = *t;
1755 ++count;
1756 }
1757 }
1758
1759 if (count != 1)
1760 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1761
1762 return runable;
1763 }
1764
1765 void
1766 find_default_attach (char *args, int from_tty)
1767 {
1768 struct target_ops *t;
1769
1770 t = find_default_run_target ("attach");
1771 (t->to_attach) (args, from_tty);
1772 return;
1773 }
1774
1775 void
1776 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1777 int from_tty)
1778 {
1779 struct target_ops *t;
1780
1781 t = find_default_run_target ("run");
1782 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1783 return;
1784 }
1785
1786 static int
1787 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1788 {
1789 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1790 }
1791
1792 static int
1793 return_zero (void)
1794 {
1795 return 0;
1796 }
1797
1798 static int
1799 return_one (void)
1800 {
1801 return 1;
1802 }
1803
1804 static int
1805 return_minus_one (void)
1806 {
1807 return -1;
1808 }
1809
1810 /*
1811 * Resize the to_sections pointer. Also make sure that anyone that
1812 * was holding on to an old value of it gets updated.
1813 * Returns the old size.
1814 */
1815
1816 int
1817 target_resize_to_sections (struct target_ops *target, int num_added)
1818 {
1819 struct target_ops **t;
1820 struct section_table *old_value;
1821 int old_count;
1822
1823 old_value = target->to_sections;
1824
1825 if (target->to_sections)
1826 {
1827 old_count = target->to_sections_end - target->to_sections;
1828 target->to_sections = (struct section_table *)
1829 xrealloc ((char *) target->to_sections,
1830 (sizeof (struct section_table)) * (num_added + old_count));
1831 }
1832 else
1833 {
1834 old_count = 0;
1835 target->to_sections = (struct section_table *)
1836 xmalloc ((sizeof (struct section_table)) * num_added);
1837 }
1838 target->to_sections_end = target->to_sections + (num_added + old_count);
1839
1840 /* Check to see if anyone else was pointing to this structure.
1841 If old_value was null, then no one was. */
1842
1843 if (old_value)
1844 {
1845 for (t = target_structs; t < target_structs + target_struct_size;
1846 ++t)
1847 {
1848 if ((*t)->to_sections == old_value)
1849 {
1850 (*t)->to_sections = target->to_sections;
1851 (*t)->to_sections_end = target->to_sections_end;
1852 }
1853 }
1854 /* There is a flattened view of the target stack in current_target,
1855 so its to_sections pointer might also need updating. */
1856 if (current_target.to_sections == old_value)
1857 {
1858 current_target.to_sections = target->to_sections;
1859 current_target.to_sections_end = target->to_sections_end;
1860 }
1861 }
1862
1863 return old_count;
1864
1865 }
1866
1867 /* Remove all target sections taken from ABFD.
1868
1869 Scan the current target stack for targets whose section tables
1870 refer to sections from BFD, and remove those sections. We use this
1871 when we notice that the inferior has unloaded a shared object, for
1872 example. */
1873 void
1874 remove_target_sections (bfd *abfd)
1875 {
1876 struct target_ops **t;
1877
1878 for (t = target_structs; t < target_structs + target_struct_size; t++)
1879 {
1880 struct section_table *src, *dest;
1881
1882 dest = (*t)->to_sections;
1883 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1884 if (src->bfd != abfd)
1885 {
1886 /* Keep this section. */
1887 if (dest < src) *dest = *src;
1888 dest++;
1889 }
1890
1891 /* If we've dropped any sections, resize the section table. */
1892 if (dest < src)
1893 target_resize_to_sections (*t, dest - src);
1894 }
1895 }
1896
1897
1898
1899
1900 /* Find a single runnable target in the stack and return it. If for
1901 some reason there is more than one, return NULL. */
1902
1903 struct target_ops *
1904 find_run_target (void)
1905 {
1906 struct target_ops **t;
1907 struct target_ops *runable = NULL;
1908 int count;
1909
1910 count = 0;
1911
1912 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1913 {
1914 if ((*t)->to_can_run && target_can_run (*t))
1915 {
1916 runable = *t;
1917 ++count;
1918 }
1919 }
1920
1921 return (count == 1 ? runable : NULL);
1922 }
1923
1924 /* Find a single core_stratum target in the list of targets and return it.
1925 If for some reason there is more than one, return NULL. */
1926
1927 struct target_ops *
1928 find_core_target (void)
1929 {
1930 struct target_ops **t;
1931 struct target_ops *runable = NULL;
1932 int count;
1933
1934 count = 0;
1935
1936 for (t = target_structs; t < target_structs + target_struct_size;
1937 ++t)
1938 {
1939 if ((*t)->to_stratum == core_stratum)
1940 {
1941 runable = *t;
1942 ++count;
1943 }
1944 }
1945
1946 return (count == 1 ? runable : NULL);
1947 }
1948
1949 /*
1950 * Find the next target down the stack from the specified target.
1951 */
1952
1953 struct target_ops *
1954 find_target_beneath (struct target_ops *t)
1955 {
1956 return t->beneath;
1957 }
1958
1959 \f
1960 /* The inferior process has died. Long live the inferior! */
1961
1962 void
1963 generic_mourn_inferior (void)
1964 {
1965 extern int show_breakpoint_hit_counts;
1966
1967 inferior_ptid = null_ptid;
1968 attach_flag = 0;
1969 breakpoint_init_inferior (inf_exited);
1970 registers_changed ();
1971
1972 reopen_exec_file ();
1973 reinit_frame_cache ();
1974
1975 /* It is confusing to the user for ignore counts to stick around
1976 from previous runs of the inferior. So clear them. */
1977 /* However, it is more confusing for the ignore counts to disappear when
1978 using hit counts. So don't clear them if we're counting hits. */
1979 if (!show_breakpoint_hit_counts)
1980 breakpoint_clear_ignore_counts ();
1981
1982 if (deprecated_detach_hook)
1983 deprecated_detach_hook ();
1984 }
1985 \f
1986 /* Helper function for child_wait and the derivatives of child_wait.
1987 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1988 translation of that in OURSTATUS. */
1989 void
1990 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1991 {
1992 if (WIFEXITED (hoststatus))
1993 {
1994 ourstatus->kind = TARGET_WAITKIND_EXITED;
1995 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1996 }
1997 else if (!WIFSTOPPED (hoststatus))
1998 {
1999 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2000 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2001 }
2002 else
2003 {
2004 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2005 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2006 }
2007 }
2008 \f
2009 /* Returns zero to leave the inferior alone, one to interrupt it. */
2010 int (*target_activity_function) (void);
2011 int target_activity_fd;
2012 \f
2013 /* Convert a normal process ID to a string. Returns the string in a
2014 static buffer. */
2015
2016 char *
2017 normal_pid_to_str (ptid_t ptid)
2018 {
2019 static char buf[32];
2020
2021 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2022 return buf;
2023 }
2024
2025 /* Error-catcher for target_find_memory_regions */
2026 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2027 {
2028 error (_("No target."));
2029 return 0;
2030 }
2031
2032 /* Error-catcher for target_make_corefile_notes */
2033 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2034 {
2035 error (_("No target."));
2036 return NULL;
2037 }
2038
2039 /* Set up the handful of non-empty slots needed by the dummy target
2040 vector. */
2041
2042 static void
2043 init_dummy_target (void)
2044 {
2045 dummy_target.to_shortname = "None";
2046 dummy_target.to_longname = "None";
2047 dummy_target.to_doc = "";
2048 dummy_target.to_attach = find_default_attach;
2049 dummy_target.to_create_inferior = find_default_create_inferior;
2050 dummy_target.to_pid_to_str = normal_pid_to_str;
2051 dummy_target.to_stratum = dummy_stratum;
2052 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2053 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2054 dummy_target.to_xfer_partial = default_xfer_partial;
2055 dummy_target.to_magic = OPS_MAGIC;
2056 }
2057 \f
2058 static void
2059 debug_to_open (char *args, int from_tty)
2060 {
2061 debug_target.to_open (args, from_tty);
2062
2063 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2064 }
2065
2066 static void
2067 debug_to_close (int quitting)
2068 {
2069 target_close (&debug_target, quitting);
2070 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2071 }
2072
2073 void
2074 target_close (struct target_ops *targ, int quitting)
2075 {
2076 if (targ->to_xclose != NULL)
2077 targ->to_xclose (targ, quitting);
2078 else if (targ->to_close != NULL)
2079 targ->to_close (quitting);
2080 }
2081
2082 static void
2083 debug_to_attach (char *args, int from_tty)
2084 {
2085 debug_target.to_attach (args, from_tty);
2086
2087 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2088 }
2089
2090
2091 static void
2092 debug_to_post_attach (int pid)
2093 {
2094 debug_target.to_post_attach (pid);
2095
2096 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2097 }
2098
2099 static void
2100 debug_to_detach (char *args, int from_tty)
2101 {
2102 debug_target.to_detach (args, from_tty);
2103
2104 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2105 }
2106
2107 static void
2108 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2109 {
2110 debug_target.to_resume (ptid, step, siggnal);
2111
2112 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2113 step ? "step" : "continue",
2114 target_signal_to_name (siggnal));
2115 }
2116
2117 static ptid_t
2118 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2119 {
2120 ptid_t retval;
2121
2122 retval = debug_target.to_wait (ptid, status);
2123
2124 fprintf_unfiltered (gdb_stdlog,
2125 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2126 PIDGET (retval));
2127 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2128 switch (status->kind)
2129 {
2130 case TARGET_WAITKIND_EXITED:
2131 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2132 status->value.integer);
2133 break;
2134 case TARGET_WAITKIND_STOPPED:
2135 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2136 target_signal_to_name (status->value.sig));
2137 break;
2138 case TARGET_WAITKIND_SIGNALLED:
2139 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2140 target_signal_to_name (status->value.sig));
2141 break;
2142 case TARGET_WAITKIND_LOADED:
2143 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2144 break;
2145 case TARGET_WAITKIND_FORKED:
2146 fprintf_unfiltered (gdb_stdlog, "forked\n");
2147 break;
2148 case TARGET_WAITKIND_VFORKED:
2149 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2150 break;
2151 case TARGET_WAITKIND_EXECD:
2152 fprintf_unfiltered (gdb_stdlog, "execd\n");
2153 break;
2154 case TARGET_WAITKIND_SPURIOUS:
2155 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2156 break;
2157 default:
2158 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2159 break;
2160 }
2161
2162 return retval;
2163 }
2164
2165 static void
2166 debug_print_register (const char * func,
2167 struct regcache *regcache, int regno)
2168 {
2169 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2170 if (regno >= 0 && regno < gdbarch_num_regs (current_gdbarch)
2171 + gdbarch_num_pseudo_regs (current_gdbarch)
2172 && gdbarch_register_name (current_gdbarch, regno) != NULL
2173 && gdbarch_register_name (current_gdbarch, regno)[0] != '\0')
2174 fprintf_unfiltered (gdb_stdlog, "(%s)", gdbarch_register_name
2175 (current_gdbarch, regno));
2176 else
2177 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2178 if (regno >= 0)
2179 {
2180 int i, size = register_size (current_gdbarch, regno);
2181 unsigned char buf[MAX_REGISTER_SIZE];
2182 regcache_cooked_read (regcache, regno, buf);
2183 fprintf_unfiltered (gdb_stdlog, " = ");
2184 for (i = 0; i < size; i++)
2185 {
2186 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2187 }
2188 if (size <= sizeof (LONGEST))
2189 {
2190 ULONGEST val = extract_unsigned_integer (buf, size);
2191 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2192 paddr_nz (val), paddr_d (val));
2193 }
2194 }
2195 fprintf_unfiltered (gdb_stdlog, "\n");
2196 }
2197
2198 static void
2199 debug_to_fetch_registers (struct regcache *regcache, int regno)
2200 {
2201 debug_target.to_fetch_registers (regcache, regno);
2202 debug_print_register ("target_fetch_registers", regcache, regno);
2203 }
2204
2205 static void
2206 debug_to_store_registers (struct regcache *regcache, int regno)
2207 {
2208 debug_target.to_store_registers (regcache, regno);
2209 debug_print_register ("target_store_registers", regcache, regno);
2210 fprintf_unfiltered (gdb_stdlog, "\n");
2211 }
2212
2213 static void
2214 debug_to_prepare_to_store (struct regcache *regcache)
2215 {
2216 debug_target.to_prepare_to_store (regcache);
2217
2218 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2219 }
2220
2221 static int
2222 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2223 int write, struct mem_attrib *attrib,
2224 struct target_ops *target)
2225 {
2226 int retval;
2227
2228 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2229 attrib, target);
2230
2231 fprintf_unfiltered (gdb_stdlog,
2232 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2233 (unsigned int) memaddr, /* possable truncate long long */
2234 len, write ? "write" : "read", retval);
2235
2236 if (retval > 0)
2237 {
2238 int i;
2239
2240 fputs_unfiltered (", bytes =", gdb_stdlog);
2241 for (i = 0; i < retval; i++)
2242 {
2243 if ((((long) &(myaddr[i])) & 0xf) == 0)
2244 {
2245 if (targetdebug < 2 && i > 0)
2246 {
2247 fprintf_unfiltered (gdb_stdlog, " ...");
2248 break;
2249 }
2250 fprintf_unfiltered (gdb_stdlog, "\n");
2251 }
2252
2253 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2254 }
2255 }
2256
2257 fputc_unfiltered ('\n', gdb_stdlog);
2258
2259 return retval;
2260 }
2261
2262 static void
2263 debug_to_files_info (struct target_ops *target)
2264 {
2265 debug_target.to_files_info (target);
2266
2267 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2268 }
2269
2270 static int
2271 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2272 {
2273 int retval;
2274
2275 retval = debug_target.to_insert_breakpoint (bp_tgt);
2276
2277 fprintf_unfiltered (gdb_stdlog,
2278 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2279 (unsigned long) bp_tgt->placed_address,
2280 (unsigned long) retval);
2281 return retval;
2282 }
2283
2284 static int
2285 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2286 {
2287 int retval;
2288
2289 retval = debug_target.to_remove_breakpoint (bp_tgt);
2290
2291 fprintf_unfiltered (gdb_stdlog,
2292 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2293 (unsigned long) bp_tgt->placed_address,
2294 (unsigned long) retval);
2295 return retval;
2296 }
2297
2298 static int
2299 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2300 {
2301 int retval;
2302
2303 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2304
2305 fprintf_unfiltered (gdb_stdlog,
2306 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2307 (unsigned long) type,
2308 (unsigned long) cnt,
2309 (unsigned long) from_tty,
2310 (unsigned long) retval);
2311 return retval;
2312 }
2313
2314 static int
2315 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2316 {
2317 CORE_ADDR retval;
2318
2319 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2320
2321 fprintf_unfiltered (gdb_stdlog,
2322 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2323 (unsigned long) addr,
2324 (unsigned long) len,
2325 (unsigned long) retval);
2326 return retval;
2327 }
2328
2329 static int
2330 debug_to_stopped_by_watchpoint (void)
2331 {
2332 int retval;
2333
2334 retval = debug_target.to_stopped_by_watchpoint ();
2335
2336 fprintf_unfiltered (gdb_stdlog,
2337 "STOPPED_BY_WATCHPOINT () = %ld\n",
2338 (unsigned long) retval);
2339 return retval;
2340 }
2341
2342 static int
2343 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2344 {
2345 int retval;
2346
2347 retval = debug_target.to_stopped_data_address (target, addr);
2348
2349 fprintf_unfiltered (gdb_stdlog,
2350 "target_stopped_data_address ([0x%lx]) = %ld\n",
2351 (unsigned long)*addr,
2352 (unsigned long)retval);
2353 return retval;
2354 }
2355
2356 static int
2357 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2358 {
2359 int retval;
2360
2361 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2362
2363 fprintf_unfiltered (gdb_stdlog,
2364 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2365 (unsigned long) bp_tgt->placed_address,
2366 (unsigned long) retval);
2367 return retval;
2368 }
2369
2370 static int
2371 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2372 {
2373 int retval;
2374
2375 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2376
2377 fprintf_unfiltered (gdb_stdlog,
2378 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2379 (unsigned long) bp_tgt->placed_address,
2380 (unsigned long) retval);
2381 return retval;
2382 }
2383
2384 static int
2385 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2386 {
2387 int retval;
2388
2389 retval = debug_target.to_insert_watchpoint (addr, len, type);
2390
2391 fprintf_unfiltered (gdb_stdlog,
2392 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2393 (unsigned long) addr, len, type, (unsigned long) retval);
2394 return retval;
2395 }
2396
2397 static int
2398 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2399 {
2400 int retval;
2401
2402 retval = debug_target.to_remove_watchpoint (addr, len, type);
2403
2404 fprintf_unfiltered (gdb_stdlog,
2405 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2406 (unsigned long) addr, len, type, (unsigned long) retval);
2407 return retval;
2408 }
2409
2410 static void
2411 debug_to_terminal_init (void)
2412 {
2413 debug_target.to_terminal_init ();
2414
2415 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2416 }
2417
2418 static void
2419 debug_to_terminal_inferior (void)
2420 {
2421 debug_target.to_terminal_inferior ();
2422
2423 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2424 }
2425
2426 static void
2427 debug_to_terminal_ours_for_output (void)
2428 {
2429 debug_target.to_terminal_ours_for_output ();
2430
2431 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2432 }
2433
2434 static void
2435 debug_to_terminal_ours (void)
2436 {
2437 debug_target.to_terminal_ours ();
2438
2439 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2440 }
2441
2442 static void
2443 debug_to_terminal_save_ours (void)
2444 {
2445 debug_target.to_terminal_save_ours ();
2446
2447 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2448 }
2449
2450 static void
2451 debug_to_terminal_info (char *arg, int from_tty)
2452 {
2453 debug_target.to_terminal_info (arg, from_tty);
2454
2455 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2456 from_tty);
2457 }
2458
2459 static void
2460 debug_to_kill (void)
2461 {
2462 debug_target.to_kill ();
2463
2464 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2465 }
2466
2467 static void
2468 debug_to_load (char *args, int from_tty)
2469 {
2470 debug_target.to_load (args, from_tty);
2471
2472 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2473 }
2474
2475 static int
2476 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2477 {
2478 int retval;
2479
2480 retval = debug_target.to_lookup_symbol (name, addrp);
2481
2482 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2483
2484 return retval;
2485 }
2486
2487 static void
2488 debug_to_create_inferior (char *exec_file, char *args, char **env,
2489 int from_tty)
2490 {
2491 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2492
2493 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2494 exec_file, args, from_tty);
2495 }
2496
2497 static void
2498 debug_to_post_startup_inferior (ptid_t ptid)
2499 {
2500 debug_target.to_post_startup_inferior (ptid);
2501
2502 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2503 PIDGET (ptid));
2504 }
2505
2506 static void
2507 debug_to_acknowledge_created_inferior (int pid)
2508 {
2509 debug_target.to_acknowledge_created_inferior (pid);
2510
2511 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2512 pid);
2513 }
2514
2515 static void
2516 debug_to_insert_fork_catchpoint (int pid)
2517 {
2518 debug_target.to_insert_fork_catchpoint (pid);
2519
2520 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2521 pid);
2522 }
2523
2524 static int
2525 debug_to_remove_fork_catchpoint (int pid)
2526 {
2527 int retval;
2528
2529 retval = debug_target.to_remove_fork_catchpoint (pid);
2530
2531 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2532 pid, retval);
2533
2534 return retval;
2535 }
2536
2537 static void
2538 debug_to_insert_vfork_catchpoint (int pid)
2539 {
2540 debug_target.to_insert_vfork_catchpoint (pid);
2541
2542 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2543 pid);
2544 }
2545
2546 static int
2547 debug_to_remove_vfork_catchpoint (int pid)
2548 {
2549 int retval;
2550
2551 retval = debug_target.to_remove_vfork_catchpoint (pid);
2552
2553 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2554 pid, retval);
2555
2556 return retval;
2557 }
2558
2559 static void
2560 debug_to_insert_exec_catchpoint (int pid)
2561 {
2562 debug_target.to_insert_exec_catchpoint (pid);
2563
2564 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2565 pid);
2566 }
2567
2568 static int
2569 debug_to_remove_exec_catchpoint (int pid)
2570 {
2571 int retval;
2572
2573 retval = debug_target.to_remove_exec_catchpoint (pid);
2574
2575 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2576 pid, retval);
2577
2578 return retval;
2579 }
2580
2581 static int
2582 debug_to_reported_exec_events_per_exec_call (void)
2583 {
2584 int reported_exec_events;
2585
2586 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2587
2588 fprintf_unfiltered (gdb_stdlog,
2589 "target_reported_exec_events_per_exec_call () = %d\n",
2590 reported_exec_events);
2591
2592 return reported_exec_events;
2593 }
2594
2595 static int
2596 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2597 {
2598 int has_exited;
2599
2600 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2601
2602 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2603 pid, wait_status, *exit_status, has_exited);
2604
2605 return has_exited;
2606 }
2607
2608 static void
2609 debug_to_mourn_inferior (void)
2610 {
2611 debug_target.to_mourn_inferior ();
2612
2613 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2614 }
2615
2616 static int
2617 debug_to_can_run (void)
2618 {
2619 int retval;
2620
2621 retval = debug_target.to_can_run ();
2622
2623 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2624
2625 return retval;
2626 }
2627
2628 static void
2629 debug_to_notice_signals (ptid_t ptid)
2630 {
2631 debug_target.to_notice_signals (ptid);
2632
2633 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2634 PIDGET (ptid));
2635 }
2636
2637 static int
2638 debug_to_thread_alive (ptid_t ptid)
2639 {
2640 int retval;
2641
2642 retval = debug_target.to_thread_alive (ptid);
2643
2644 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2645 PIDGET (ptid), retval);
2646
2647 return retval;
2648 }
2649
2650 static void
2651 debug_to_find_new_threads (void)
2652 {
2653 debug_target.to_find_new_threads ();
2654
2655 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2656 }
2657
2658 static void
2659 debug_to_stop (void)
2660 {
2661 debug_target.to_stop ();
2662
2663 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2664 }
2665
2666 static void
2667 debug_to_rcmd (char *command,
2668 struct ui_file *outbuf)
2669 {
2670 debug_target.to_rcmd (command, outbuf);
2671 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2672 }
2673
2674 static struct symtab_and_line *
2675 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2676 {
2677 struct symtab_and_line *result;
2678 result = debug_target.to_enable_exception_callback (kind, enable);
2679 fprintf_unfiltered (gdb_stdlog,
2680 "target get_exception_callback_sal (%d, %d)\n",
2681 kind, enable);
2682 return result;
2683 }
2684
2685 static struct exception_event_record *
2686 debug_to_get_current_exception_event (void)
2687 {
2688 struct exception_event_record *result;
2689 result = debug_target.to_get_current_exception_event ();
2690 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2691 return result;
2692 }
2693
2694 static char *
2695 debug_to_pid_to_exec_file (int pid)
2696 {
2697 char *exec_file;
2698
2699 exec_file = debug_target.to_pid_to_exec_file (pid);
2700
2701 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2702 pid, exec_file);
2703
2704 return exec_file;
2705 }
2706
2707 static void
2708 setup_target_debug (void)
2709 {
2710 memcpy (&debug_target, &current_target, sizeof debug_target);
2711
2712 current_target.to_open = debug_to_open;
2713 current_target.to_close = debug_to_close;
2714 current_target.to_attach = debug_to_attach;
2715 current_target.to_post_attach = debug_to_post_attach;
2716 current_target.to_detach = debug_to_detach;
2717 current_target.to_resume = debug_to_resume;
2718 current_target.to_wait = debug_to_wait;
2719 current_target.to_fetch_registers = debug_to_fetch_registers;
2720 current_target.to_store_registers = debug_to_store_registers;
2721 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2722 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2723 current_target.to_files_info = debug_to_files_info;
2724 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2725 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2726 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2727 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2728 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2729 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2730 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2731 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2732 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2733 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2734 current_target.to_terminal_init = debug_to_terminal_init;
2735 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2736 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2737 current_target.to_terminal_ours = debug_to_terminal_ours;
2738 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2739 current_target.to_terminal_info = debug_to_terminal_info;
2740 current_target.to_kill = debug_to_kill;
2741 current_target.to_load = debug_to_load;
2742 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2743 current_target.to_create_inferior = debug_to_create_inferior;
2744 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2745 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2746 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2747 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2748 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2749 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2750 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2751 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2752 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2753 current_target.to_has_exited = debug_to_has_exited;
2754 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2755 current_target.to_can_run = debug_to_can_run;
2756 current_target.to_notice_signals = debug_to_notice_signals;
2757 current_target.to_thread_alive = debug_to_thread_alive;
2758 current_target.to_find_new_threads = debug_to_find_new_threads;
2759 current_target.to_stop = debug_to_stop;
2760 current_target.to_rcmd = debug_to_rcmd;
2761 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2762 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2763 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2764 }
2765 \f
2766
2767 static char targ_desc[] =
2768 "Names of targets and files being debugged.\n\
2769 Shows the entire stack of targets currently in use (including the exec-file,\n\
2770 core-file, and process, if any), as well as the symbol file name.";
2771
2772 static void
2773 do_monitor_command (char *cmd,
2774 int from_tty)
2775 {
2776 if ((current_target.to_rcmd
2777 == (void (*) (char *, struct ui_file *)) tcomplain)
2778 || (current_target.to_rcmd == debug_to_rcmd
2779 && (debug_target.to_rcmd
2780 == (void (*) (char *, struct ui_file *)) tcomplain)))
2781 error (_("\"monitor\" command not supported by this target."));
2782 target_rcmd (cmd, gdb_stdtarg);
2783 }
2784
2785 /* Print the name of each layers of our target stack. */
2786
2787 static void
2788 maintenance_print_target_stack (char *cmd, int from_tty)
2789 {
2790 struct target_ops *t;
2791
2792 printf_filtered (_("The current target stack is:\n"));
2793
2794 for (t = target_stack; t != NULL; t = t->beneath)
2795 {
2796 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2797 }
2798 }
2799
2800 void
2801 initialize_targets (void)
2802 {
2803 init_dummy_target ();
2804 push_target (&dummy_target);
2805
2806 add_info ("target", target_info, targ_desc);
2807 add_info ("files", target_info, targ_desc);
2808
2809 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2810 Set target debugging."), _("\
2811 Show target debugging."), _("\
2812 When non-zero, target debugging is enabled. Higher numbers are more\n\
2813 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2814 command."),
2815 NULL,
2816 show_targetdebug,
2817 &setdebuglist, &showdebuglist);
2818
2819 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2820 &trust_readonly, _("\
2821 Set mode for reading from readonly sections."), _("\
2822 Show mode for reading from readonly sections."), _("\
2823 When this mode is on, memory reads from readonly sections (such as .text)\n\
2824 will be read from the object file instead of from the target. This will\n\
2825 result in significant performance improvement for remote targets."),
2826 NULL,
2827 show_trust_readonly,
2828 &setlist, &showlist);
2829
2830 add_com ("monitor", class_obscure, do_monitor_command,
2831 _("Send a command to the remote monitor (remote targets only)."));
2832
2833 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2834 _("Print the name of each layer of the internal target stack."),
2835 &maintenanceprintlist);
2836
2837 target_dcache = dcache_init ();
2838 }
This page took 0.085752 seconds and 4 git commands to generate.