9770b9ae0ace84bb2178269dad915cb885d6b591
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include <errno.h>
27 #include "gdb_string.h"
28 #include "target.h"
29 #include "gdbcmd.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_wait.h"
36 #include "dcache.h"
37 #include <signal.h>
38 #include "regcache.h"
39 #include "gdb_assert.h"
40 #include "gdbcore.h"
41
42 static void target_info (char *, int);
43
44 static void maybe_kill_then_attach (char *, int);
45
46 static void kill_or_be_killed (int);
47
48 static void default_terminal_info (char *, int);
49
50 static int default_region_size_ok_for_hw_watchpoint (int);
51
52 static int nosymbol (char *, CORE_ADDR *);
53
54 static void tcomplain (void);
55
56 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
57
58 static int return_zero (void);
59
60 static int return_one (void);
61
62 static int return_minus_one (void);
63
64 void target_ignore (void);
65
66 static void target_command (char *, int);
67
68 static struct target_ops *find_default_run_target (char *);
69
70 static void nosupport_runtime (void);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, void *readbuf,
75 const void *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 /* Transfer LEN bytes between target address MEMADDR and GDB address
79 MYADDR. Returns 0 for success, errno code for failure (which
80 includes partial transfers -- if you want a more useful response to
81 partial transfers, try either target_read_memory_partial or
82 target_write_memory_partial). */
83
84 static int target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
85 int write);
86
87 static void init_dummy_target (void);
88
89 static void debug_to_open (char *, int);
90
91 static void debug_to_close (int);
92
93 static void debug_to_attach (char *, int);
94
95 static void debug_to_detach (char *, int);
96
97 static void debug_to_disconnect (char *, int);
98
99 static void debug_to_resume (ptid_t, int, enum target_signal);
100
101 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
102
103 static void debug_to_fetch_registers (int);
104
105 static void debug_to_store_registers (int);
106
107 static void debug_to_prepare_to_store (void);
108
109 static int debug_to_xfer_memory (CORE_ADDR, char *, int, int,
110 struct mem_attrib *, struct target_ops *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (CORE_ADDR, char *);
115
116 static int debug_to_remove_breakpoint (CORE_ADDR, char *);
117
118 static int debug_to_can_use_hw_breakpoint (int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (CORE_ADDR, char *);
121
122 static int debug_to_remove_hw_breakpoint (CORE_ADDR, char *);
123
124 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
127
128 static int debug_to_stopped_by_watchpoint (void);
129
130 static CORE_ADDR debug_to_stopped_data_address (void);
131
132 static int debug_to_region_size_ok_for_hw_watchpoint (int);
133
134 static void debug_to_terminal_init (void);
135
136 static void debug_to_terminal_inferior (void);
137
138 static void debug_to_terminal_ours_for_output (void);
139
140 static void debug_to_terminal_save_ours (void);
141
142 static void debug_to_terminal_ours (void);
143
144 static void debug_to_terminal_info (char *, int);
145
146 static void debug_to_kill (void);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
151
152 static void debug_to_mourn_inferior (void);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static int debug_to_thread_alive (ptid_t);
159
160 static void debug_to_stop (void);
161
162 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
163 wierd and mysterious ways. Putting the variable here lets those
164 wierd and mysterious ways keep building while they are being
165 converted to the inferior inheritance structure. */
166 struct target_ops child_ops;
167
168 /* Pointer to array of target architecture structures; the size of the
169 array; the current index into the array; the allocated size of the
170 array. */
171 struct target_ops **target_structs;
172 unsigned target_struct_size;
173 unsigned target_struct_index;
174 unsigned target_struct_allocsize;
175 #define DEFAULT_ALLOCSIZE 10
176
177 /* The initial current target, so that there is always a semi-valid
178 current target. */
179
180 static struct target_ops dummy_target;
181
182 /* Top of target stack. */
183
184 static struct target_ops *target_stack;
185
186 /* The target structure we are currently using to talk to a process
187 or file or whatever "inferior" we have. */
188
189 struct target_ops current_target;
190
191 /* Command list for target. */
192
193 static struct cmd_list_element *targetlist = NULL;
194
195 /* Nonzero if we are debugging an attached outside process
196 rather than an inferior. */
197
198 int attach_flag;
199
200 /* Non-zero if we want to see trace of target level stuff. */
201
202 static int targetdebug = 0;
203
204 static void setup_target_debug (void);
205
206 DCACHE *target_dcache;
207
208 /* The user just typed 'target' without the name of a target. */
209
210 static void
211 target_command (char *arg, int from_tty)
212 {
213 fputs_filtered ("Argument required (target name). Try `help target'\n",
214 gdb_stdout);
215 }
216
217 /* Add a possible target architecture to the list. */
218
219 void
220 add_target (struct target_ops *t)
221 {
222 /* Provide default values for all "must have" methods. */
223 if (t->to_xfer_partial == NULL)
224 t->to_xfer_partial = default_xfer_partial;
225
226 if (!target_structs)
227 {
228 target_struct_allocsize = DEFAULT_ALLOCSIZE;
229 target_structs = (struct target_ops **) xmalloc
230 (target_struct_allocsize * sizeof (*target_structs));
231 }
232 if (target_struct_size >= target_struct_allocsize)
233 {
234 target_struct_allocsize *= 2;
235 target_structs = (struct target_ops **)
236 xrealloc ((char *) target_structs,
237 target_struct_allocsize * sizeof (*target_structs));
238 }
239 target_structs[target_struct_size++] = t;
240
241 if (targetlist == NULL)
242 add_prefix_cmd ("target", class_run, target_command,
243 "Connect to a target machine or process.\n\
244 The first argument is the type or protocol of the target machine.\n\
245 Remaining arguments are interpreted by the target protocol. For more\n\
246 information on the arguments for a particular protocol, type\n\
247 `help target ' followed by the protocol name.",
248 &targetlist, "target ", 0, &cmdlist);
249 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
250 }
251
252 /* Stub functions */
253
254 void
255 target_ignore (void)
256 {
257 }
258
259 void
260 target_load (char *arg, int from_tty)
261 {
262 dcache_invalidate (target_dcache);
263 (*current_target.to_load) (arg, from_tty);
264 }
265
266 static int
267 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
268 struct target_ops *t)
269 {
270 errno = EIO; /* Can't read/write this location */
271 return 0; /* No bytes handled */
272 }
273
274 static void
275 tcomplain (void)
276 {
277 error ("You can't do that when your target is `%s'",
278 current_target.to_shortname);
279 }
280
281 void
282 noprocess (void)
283 {
284 error ("You can't do that without a process to debug.");
285 }
286
287 static int
288 nosymbol (char *name, CORE_ADDR *addrp)
289 {
290 return 1; /* Symbol does not exist in target env */
291 }
292
293 static void
294 nosupport_runtime (void)
295 {
296 if (ptid_equal (inferior_ptid, null_ptid))
297 noprocess ();
298 else
299 error ("No run-time support for this");
300 }
301
302
303 static void
304 default_terminal_info (char *args, int from_tty)
305 {
306 printf_unfiltered ("No saved terminal information.\n");
307 }
308
309 /* This is the default target_create_inferior and target_attach function.
310 If the current target is executing, it asks whether to kill it off.
311 If this function returns without calling error(), it has killed off
312 the target, and the operation should be attempted. */
313
314 static void
315 kill_or_be_killed (int from_tty)
316 {
317 if (target_has_execution)
318 {
319 printf_unfiltered ("You are already running a program:\n");
320 target_files_info ();
321 if (query ("Kill it? "))
322 {
323 target_kill ();
324 if (target_has_execution)
325 error ("Killing the program did not help.");
326 return;
327 }
328 else
329 {
330 error ("Program not killed.");
331 }
332 }
333 tcomplain ();
334 }
335
336 static void
337 maybe_kill_then_attach (char *args, int from_tty)
338 {
339 kill_or_be_killed (from_tty);
340 target_attach (args, from_tty);
341 }
342
343 static void
344 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
345 int from_tty)
346 {
347 kill_or_be_killed (0);
348 target_create_inferior (exec, args, env, from_tty);
349 }
350
351 /* Go through the target stack from top to bottom, copying over zero
352 entries in current_target, then filling in still empty entries. In
353 effect, we are doing class inheritance through the pushed target
354 vectors.
355
356 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
357 is currently implemented, is that it discards any knowledge of
358 which target an inherited method originally belonged to.
359 Consequently, new new target methods should instead explicitly and
360 locally search the target stack for the target that can handle the
361 request. */
362
363 static void
364 update_current_target (void)
365 {
366 struct target_ops *t;
367
368 /* First, reset curren'ts contents. */
369 memset (&current_target, 0, sizeof (current_target));
370
371 #define INHERIT(FIELD, TARGET) \
372 if (!current_target.FIELD) \
373 current_target.FIELD = (TARGET)->FIELD
374
375 for (t = target_stack; t; t = t->beneath)
376 {
377 INHERIT (to_shortname, t);
378 INHERIT (to_longname, t);
379 INHERIT (to_doc, t);
380 INHERIT (to_open, t);
381 INHERIT (to_close, t);
382 INHERIT (to_attach, t);
383 INHERIT (to_post_attach, t);
384 INHERIT (to_detach, t);
385 INHERIT (to_disconnect, t);
386 INHERIT (to_resume, t);
387 INHERIT (to_wait, t);
388 INHERIT (to_fetch_registers, t);
389 INHERIT (to_store_registers, t);
390 INHERIT (to_prepare_to_store, t);
391 INHERIT (to_xfer_memory, t);
392 INHERIT (to_files_info, t);
393 INHERIT (to_insert_breakpoint, t);
394 INHERIT (to_remove_breakpoint, t);
395 INHERIT (to_can_use_hw_breakpoint, t);
396 INHERIT (to_insert_hw_breakpoint, t);
397 INHERIT (to_remove_hw_breakpoint, t);
398 INHERIT (to_insert_watchpoint, t);
399 INHERIT (to_remove_watchpoint, t);
400 INHERIT (to_stopped_data_address, t);
401 INHERIT (to_stopped_by_watchpoint, t);
402 INHERIT (to_have_continuable_watchpoint, t);
403 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
404 INHERIT (to_terminal_init, t);
405 INHERIT (to_terminal_inferior, t);
406 INHERIT (to_terminal_ours_for_output, t);
407 INHERIT (to_terminal_ours, t);
408 INHERIT (to_terminal_save_ours, t);
409 INHERIT (to_terminal_info, t);
410 INHERIT (to_kill, t);
411 INHERIT (to_load, t);
412 INHERIT (to_lookup_symbol, t);
413 INHERIT (to_create_inferior, t);
414 INHERIT (to_post_startup_inferior, t);
415 INHERIT (to_acknowledge_created_inferior, t);
416 INHERIT (to_insert_fork_catchpoint, t);
417 INHERIT (to_remove_fork_catchpoint, t);
418 INHERIT (to_insert_vfork_catchpoint, t);
419 INHERIT (to_remove_vfork_catchpoint, t);
420 INHERIT (to_follow_fork, t);
421 INHERIT (to_insert_exec_catchpoint, t);
422 INHERIT (to_remove_exec_catchpoint, t);
423 INHERIT (to_reported_exec_events_per_exec_call, t);
424 INHERIT (to_has_exited, t);
425 INHERIT (to_mourn_inferior, t);
426 INHERIT (to_can_run, t);
427 INHERIT (to_notice_signals, t);
428 INHERIT (to_thread_alive, t);
429 INHERIT (to_find_new_threads, t);
430 INHERIT (to_pid_to_str, t);
431 INHERIT (to_extra_thread_info, t);
432 INHERIT (to_stop, t);
433 /* Do not inherit to_xfer_partial. */
434 INHERIT (to_rcmd, t);
435 INHERIT (to_enable_exception_callback, t);
436 INHERIT (to_get_current_exception_event, t);
437 INHERIT (to_pid_to_exec_file, t);
438 INHERIT (to_stratum, t);
439 INHERIT (to_has_all_memory, t);
440 INHERIT (to_has_memory, t);
441 INHERIT (to_has_stack, t);
442 INHERIT (to_has_registers, t);
443 INHERIT (to_has_execution, t);
444 INHERIT (to_has_thread_control, t);
445 INHERIT (to_sections, t);
446 INHERIT (to_sections_end, t);
447 INHERIT (to_can_async_p, t);
448 INHERIT (to_is_async_p, t);
449 INHERIT (to_async, t);
450 INHERIT (to_async_mask_value, t);
451 INHERIT (to_find_memory_regions, t);
452 INHERIT (to_make_corefile_notes, t);
453 INHERIT (to_get_thread_local_address, t);
454 INHERIT (to_magic, t);
455 }
456 #undef INHERIT
457
458 /* Clean up a target struct so it no longer has any zero pointers in
459 it. Some entries are defaulted to a method that print an error,
460 others are hard-wired to a standard recursive default. */
461
462 #define de_fault(field, value) \
463 if (!current_target.field) \
464 current_target.field = value
465
466 de_fault (to_open,
467 (void (*) (char *, int))
468 tcomplain);
469 de_fault (to_close,
470 (void (*) (int))
471 target_ignore);
472 de_fault (to_attach,
473 maybe_kill_then_attach);
474 de_fault (to_post_attach,
475 (void (*) (int))
476 target_ignore);
477 de_fault (to_detach,
478 (void (*) (char *, int))
479 target_ignore);
480 de_fault (to_disconnect,
481 (void (*) (char *, int))
482 tcomplain);
483 de_fault (to_resume,
484 (void (*) (ptid_t, int, enum target_signal))
485 noprocess);
486 de_fault (to_wait,
487 (ptid_t (*) (ptid_t, struct target_waitstatus *))
488 noprocess);
489 de_fault (to_fetch_registers,
490 (void (*) (int))
491 target_ignore);
492 de_fault (to_store_registers,
493 (void (*) (int))
494 noprocess);
495 de_fault (to_prepare_to_store,
496 (void (*) (void))
497 noprocess);
498 de_fault (to_xfer_memory,
499 (int (*) (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *))
500 nomemory);
501 de_fault (to_files_info,
502 (void (*) (struct target_ops *))
503 target_ignore);
504 de_fault (to_insert_breakpoint,
505 memory_insert_breakpoint);
506 de_fault (to_remove_breakpoint,
507 memory_remove_breakpoint);
508 de_fault (to_can_use_hw_breakpoint,
509 (int (*) (int, int, int))
510 return_zero);
511 de_fault (to_insert_hw_breakpoint,
512 (int (*) (CORE_ADDR, char *))
513 return_minus_one);
514 de_fault (to_remove_hw_breakpoint,
515 (int (*) (CORE_ADDR, char *))
516 return_minus_one);
517 de_fault (to_insert_watchpoint,
518 (int (*) (CORE_ADDR, int, int))
519 return_minus_one);
520 de_fault (to_remove_watchpoint,
521 (int (*) (CORE_ADDR, int, int))
522 return_minus_one);
523 de_fault (to_stopped_by_watchpoint,
524 (int (*) (void))
525 return_zero);
526 de_fault (to_stopped_data_address,
527 (CORE_ADDR (*) (void))
528 return_zero);
529 de_fault (to_region_size_ok_for_hw_watchpoint,
530 default_region_size_ok_for_hw_watchpoint);
531 de_fault (to_terminal_init,
532 (void (*) (void))
533 target_ignore);
534 de_fault (to_terminal_inferior,
535 (void (*) (void))
536 target_ignore);
537 de_fault (to_terminal_ours_for_output,
538 (void (*) (void))
539 target_ignore);
540 de_fault (to_terminal_ours,
541 (void (*) (void))
542 target_ignore);
543 de_fault (to_terminal_save_ours,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_info,
547 default_terminal_info);
548 de_fault (to_kill,
549 (void (*) (void))
550 noprocess);
551 de_fault (to_load,
552 (void (*) (char *, int))
553 tcomplain);
554 de_fault (to_lookup_symbol,
555 (int (*) (char *, CORE_ADDR *))
556 nosymbol);
557 de_fault (to_create_inferior,
558 maybe_kill_then_create_inferior);
559 de_fault (to_post_startup_inferior,
560 (void (*) (ptid_t))
561 target_ignore);
562 de_fault (to_acknowledge_created_inferior,
563 (void (*) (int))
564 target_ignore);
565 de_fault (to_insert_fork_catchpoint,
566 (int (*) (int))
567 tcomplain);
568 de_fault (to_remove_fork_catchpoint,
569 (int (*) (int))
570 tcomplain);
571 de_fault (to_insert_vfork_catchpoint,
572 (int (*) (int))
573 tcomplain);
574 de_fault (to_remove_vfork_catchpoint,
575 (int (*) (int))
576 tcomplain);
577 de_fault (to_follow_fork,
578 (int (*) (int))
579 target_ignore);
580 de_fault (to_insert_exec_catchpoint,
581 (int (*) (int))
582 tcomplain);
583 de_fault (to_remove_exec_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_reported_exec_events_per_exec_call,
587 (int (*) (void))
588 return_one);
589 de_fault (to_has_exited,
590 (int (*) (int, int, int *))
591 return_zero);
592 de_fault (to_mourn_inferior,
593 (void (*) (void))
594 noprocess);
595 de_fault (to_can_run,
596 return_zero);
597 de_fault (to_notice_signals,
598 (void (*) (ptid_t))
599 target_ignore);
600 de_fault (to_thread_alive,
601 (int (*) (ptid_t))
602 return_zero);
603 de_fault (to_find_new_threads,
604 (void (*) (void))
605 target_ignore);
606 de_fault (to_extra_thread_info,
607 (char *(*) (struct thread_info *))
608 return_zero);
609 de_fault (to_stop,
610 (void (*) (void))
611 target_ignore);
612 current_target.to_xfer_partial = default_xfer_partial;
613 de_fault (to_rcmd,
614 (void (*) (char *, struct ui_file *))
615 tcomplain);
616 de_fault (to_enable_exception_callback,
617 (struct symtab_and_line * (*) (enum exception_event_kind, int))
618 nosupport_runtime);
619 de_fault (to_get_current_exception_event,
620 (struct exception_event_record * (*) (void))
621 nosupport_runtime);
622 de_fault (to_pid_to_exec_file,
623 (char *(*) (int))
624 return_zero);
625 de_fault (to_can_async_p,
626 (int (*) (void))
627 return_zero);
628 de_fault (to_is_async_p,
629 (int (*) (void))
630 return_zero);
631 de_fault (to_async,
632 (void (*) (void (*) (enum inferior_event_type, void*), void*))
633 tcomplain);
634 #undef de_fault
635
636 /* Finally, position the target-stack beneath the squashed
637 "current_target". That way code looking for a non-inherited
638 target method can quickly and simply find it. */
639 current_target.beneath = target_stack;
640 }
641
642 /* Push a new target type into the stack of the existing target accessors,
643 possibly superseding some of the existing accessors.
644
645 Result is zero if the pushed target ended up on top of the stack,
646 nonzero if at least one target is on top of it.
647
648 Rather than allow an empty stack, we always have the dummy target at
649 the bottom stratum, so we can call the function vectors without
650 checking them. */
651
652 int
653 push_target (struct target_ops *t)
654 {
655 struct target_ops **cur;
656
657 /* Check magic number. If wrong, it probably means someone changed
658 the struct definition, but not all the places that initialize one. */
659 if (t->to_magic != OPS_MAGIC)
660 {
661 fprintf_unfiltered (gdb_stderr,
662 "Magic number of %s target struct wrong\n",
663 t->to_shortname);
664 internal_error (__FILE__, __LINE__, "failed internal consistency check");
665 }
666
667 /* Find the proper stratum to install this target in. */
668 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
669 {
670 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
671 break;
672 }
673
674 /* If there's already targets at this stratum, remove them. */
675 /* FIXME: cagney/2003-10-15: I think this should be poping all
676 targets to CUR, and not just those at this stratum level. */
677 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
678 {
679 /* There's already something at this stratum level. Close it,
680 and un-hook it from the stack. */
681 struct target_ops *tmp = (*cur);
682 (*cur) = (*cur)->beneath;
683 tmp->beneath = NULL;
684 target_close (tmp, 0);
685 }
686
687 /* We have removed all targets in our stratum, now add the new one. */
688 t->beneath = (*cur);
689 (*cur) = t;
690
691 update_current_target ();
692
693 if (targetdebug)
694 setup_target_debug ();
695
696 /* Not on top? */
697 return (t != target_stack);
698 }
699
700 /* Remove a target_ops vector from the stack, wherever it may be.
701 Return how many times it was removed (0 or 1). */
702
703 int
704 unpush_target (struct target_ops *t)
705 {
706 struct target_ops **cur;
707 struct target_ops *tmp;
708
709 /* Look for the specified target. Note that we assume that a target
710 can only occur once in the target stack. */
711
712 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
713 {
714 if ((*cur) == t)
715 break;
716 }
717
718 if ((*cur) == NULL)
719 return 0; /* Didn't find target_ops, quit now */
720
721 /* NOTE: cagney/2003-12-06: In '94 the close call was made
722 unconditional by moving it to before the above check that the
723 target was in the target stack (something about "Change the way
724 pushing and popping of targets work to support target overlays
725 and inheritance"). This doesn't make much sense - only open
726 targets should be closed. */
727 target_close (t, 0);
728
729 /* Unchain the target */
730 tmp = (*cur);
731 (*cur) = (*cur)->beneath;
732 tmp->beneath = NULL;
733
734 update_current_target ();
735
736 return 1;
737 }
738
739 void
740 pop_target (void)
741 {
742 target_close (&current_target, 0); /* Let it clean up */
743 if (unpush_target (target_stack) == 1)
744 return;
745
746 fprintf_unfiltered (gdb_stderr,
747 "pop_target couldn't find target %s\n",
748 current_target.to_shortname);
749 internal_error (__FILE__, __LINE__, "failed internal consistency check");
750 }
751
752 #undef MIN
753 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
754
755 /* target_read_string -- read a null terminated string, up to LEN bytes,
756 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
757 Set *STRING to a pointer to malloc'd memory containing the data; the caller
758 is responsible for freeing it. Return the number of bytes successfully
759 read. */
760
761 int
762 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
763 {
764 int tlen, origlen, offset, i;
765 char buf[4];
766 int errcode = 0;
767 char *buffer;
768 int buffer_allocated;
769 char *bufptr;
770 unsigned int nbytes_read = 0;
771
772 /* Small for testing. */
773 buffer_allocated = 4;
774 buffer = xmalloc (buffer_allocated);
775 bufptr = buffer;
776
777 origlen = len;
778
779 while (len > 0)
780 {
781 tlen = MIN (len, 4 - (memaddr & 3));
782 offset = memaddr & 3;
783
784 errcode = target_read_memory (memaddr & ~3, buf, 4);
785 if (errcode != 0)
786 {
787 /* The transfer request might have crossed the boundary to an
788 unallocated region of memory. Retry the transfer, requesting
789 a single byte. */
790 tlen = 1;
791 offset = 0;
792 errcode = target_read_memory (memaddr, buf, 1);
793 if (errcode != 0)
794 goto done;
795 }
796
797 if (bufptr - buffer + tlen > buffer_allocated)
798 {
799 unsigned int bytes;
800 bytes = bufptr - buffer;
801 buffer_allocated *= 2;
802 buffer = xrealloc (buffer, buffer_allocated);
803 bufptr = buffer + bytes;
804 }
805
806 for (i = 0; i < tlen; i++)
807 {
808 *bufptr++ = buf[i + offset];
809 if (buf[i + offset] == '\000')
810 {
811 nbytes_read += i + 1;
812 goto done;
813 }
814 }
815
816 memaddr += tlen;
817 len -= tlen;
818 nbytes_read += tlen;
819 }
820 done:
821 if (errnop != NULL)
822 *errnop = errcode;
823 if (string != NULL)
824 *string = buffer;
825 return nbytes_read;
826 }
827
828 /* Find a section containing ADDR. */
829 struct section_table *
830 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
831 {
832 struct section_table *secp;
833 for (secp = target->to_sections;
834 secp < target->to_sections_end;
835 secp++)
836 {
837 if (addr >= secp->addr && addr < secp->endaddr)
838 return secp;
839 }
840 return NULL;
841 }
842
843 /* Return non-zero when the target vector has supplied an xfer_partial
844 method and it, rather than xfer_memory, should be used. */
845 static int
846 target_xfer_partial_p (void)
847 {
848 return (target_stack != NULL
849 && target_stack->to_xfer_partial != default_xfer_partial);
850 }
851
852 /* Attempt a transfer all LEN bytes starting at OFFSET between the
853 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
854 the transfer succeeds, return zero, otherwize the host ERRNO is
855 returned.
856
857 The inferior is formed from several layers. In the case of
858 corefiles, inf-corefile is layered above inf-exec and a request for
859 text (corefiles do not include text pages) will be first sent to
860 the core-stratum, fail, and then sent to the object-file where it
861 will succeed.
862
863 NOTE: cagney/2004-09-30:
864
865 The old code tried to use four separate mechanisms for mapping an
866 object:offset:len tuple onto an inferior and its address space: the
867 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
868 overlays.
869
870 This is stupid.
871
872 The code below is instead using a single mechanism (currently
873 strata). If that mechanism proves insufficient then re-factor it
874 implementing another singluar mechanism (for instance, a generic
875 object:annex onto inferior:object:annex say). */
876
877 static int
878 xfer_using_stratum (enum target_object object, const char *annex,
879 CORE_ADDR memaddr, int len, void *readbuf,
880 const void *writebuf)
881 {
882 LONGEST xfered;
883 struct target_ops *target;
884
885 /* Always successful. */
886 if (len == 0)
887 return 0;
888 /* Never successful. */
889 if (target_stack == NULL)
890 return EIO;
891
892 target = target_stack;
893 while (1)
894 {
895 xfered = target->to_xfer_partial (target, object, annex,
896 readbuf, writebuf, memaddr, len);
897 if (xfered > 0)
898 {
899 /* The partial xfer succeeded, update the counts, check that
900 the xfer hasn't finished and if it hasn't set things up
901 for the next round. */
902 len -= xfered;
903 if (len <= 0)
904 return 0;
905 target = target_stack;
906 }
907 else if (xfered < 0)
908 {
909 /* Something totally screwed up, abandon the attempt to
910 xfer. */
911 if (errno)
912 return errno;
913 else
914 return EIO;
915 }
916 else
917 {
918 /* This "stratum" didn't work, try the next one down. */
919 target = target->beneath;
920 if (target == NULL)
921 return EIO;
922 }
923 }
924 }
925
926 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
927 GDB's memory at MYADDR. Returns either 0 for success or an errno value
928 if any error occurs.
929
930 If an error occurs, no guarantee is made about the contents of the data at
931 MYADDR. In particular, the caller should not depend upon partial reads
932 filling the buffer with good data. There is no way for the caller to know
933 how much good data might have been transfered anyway. Callers that can
934 deal with partial reads should call target_read_memory_partial. */
935
936 int
937 target_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
938 {
939 if (target_xfer_partial_p ())
940 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
941 memaddr, len, myaddr, NULL);
942 else
943 return target_xfer_memory (memaddr, myaddr, len, 0);
944 }
945
946 int
947 target_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
948 {
949 if (target_xfer_partial_p ())
950 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
951 memaddr, len, NULL, myaddr);
952 else
953 return target_xfer_memory (memaddr, myaddr, len, 1);
954 }
955
956 static int trust_readonly = 0;
957
958 /* Move memory to or from the targets. The top target gets priority;
959 if it cannot handle it, it is offered to the next one down, etc.
960
961 Result is -1 on error, or the number of bytes transfered. */
962
963 int
964 do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
965 struct mem_attrib *attrib)
966 {
967 int res;
968 int done = 0;
969 struct target_ops *t;
970
971 /* Zero length requests are ok and require no work. */
972 if (len == 0)
973 return 0;
974
975 /* to_xfer_memory is not guaranteed to set errno, even when it returns
976 0. */
977 errno = 0;
978
979 if (!write && trust_readonly)
980 {
981 struct section_table *secp;
982 /* User-settable option, "trust-readonly-sections". If true,
983 then memory from any SEC_READONLY bfd section may be read
984 directly from the bfd file. */
985 secp = target_section_by_addr (&current_target, memaddr);
986 if (secp != NULL
987 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
988 & SEC_READONLY))
989 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
990 }
991
992 /* The quick case is that the top target can handle the transfer. */
993 res = current_target.to_xfer_memory
994 (memaddr, myaddr, len, write, attrib, &current_target);
995
996 /* If res <= 0 then we call it again in the loop. Ah well. */
997 if (res <= 0)
998 {
999 for (t = target_stack; t != NULL; t = t->beneath)
1000 {
1001 if (!t->to_has_memory)
1002 continue;
1003
1004 res = t->to_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1005 if (res > 0)
1006 break; /* Handled all or part of xfer */
1007 if (t->to_has_all_memory)
1008 break;
1009 }
1010
1011 if (res <= 0)
1012 return -1;
1013 }
1014
1015 return res;
1016 }
1017
1018
1019 /* Perform a memory transfer. Iterate until the entire region has
1020 been transfered.
1021
1022 Result is 0 or errno value. */
1023
1024 static int
1025 target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
1026 {
1027 int res;
1028 int reg_len;
1029 struct mem_region *region;
1030
1031 /* Zero length requests are ok and require no work. */
1032 if (len == 0)
1033 {
1034 return 0;
1035 }
1036
1037 while (len > 0)
1038 {
1039 region = lookup_mem_region(memaddr);
1040 if (memaddr + len < region->hi)
1041 reg_len = len;
1042 else
1043 reg_len = region->hi - memaddr;
1044
1045 switch (region->attrib.mode)
1046 {
1047 case MEM_RO:
1048 if (write)
1049 return EIO;
1050 break;
1051
1052 case MEM_WO:
1053 if (!write)
1054 return EIO;
1055 break;
1056 }
1057
1058 while (reg_len > 0)
1059 {
1060 if (region->attrib.cache)
1061 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1062 reg_len, write);
1063 else
1064 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1065 &region->attrib);
1066
1067 if (res <= 0)
1068 {
1069 /* If this address is for nonexistent memory, read zeros
1070 if reading, or do nothing if writing. Return
1071 error. */
1072 if (!write)
1073 memset (myaddr, 0, len);
1074 if (errno == 0)
1075 return EIO;
1076 else
1077 return errno;
1078 }
1079
1080 memaddr += res;
1081 myaddr += res;
1082 len -= res;
1083 reg_len -= res;
1084 }
1085 }
1086
1087 return 0; /* We managed to cover it all somehow. */
1088 }
1089
1090
1091 /* Perform a partial memory transfer.
1092
1093 Result is -1 on error, or the number of bytes transfered. */
1094
1095 static int
1096 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1097 int write_p, int *err)
1098 {
1099 int res;
1100 int reg_len;
1101 struct mem_region *region;
1102
1103 /* Zero length requests are ok and require no work. */
1104 if (len == 0)
1105 {
1106 *err = 0;
1107 return 0;
1108 }
1109
1110 region = lookup_mem_region(memaddr);
1111 if (memaddr + len < region->hi)
1112 reg_len = len;
1113 else
1114 reg_len = region->hi - memaddr;
1115
1116 switch (region->attrib.mode)
1117 {
1118 case MEM_RO:
1119 if (write_p)
1120 {
1121 *err = EIO;
1122 return -1;
1123 }
1124 break;
1125
1126 case MEM_WO:
1127 if (write_p)
1128 {
1129 *err = EIO;
1130 return -1;
1131 }
1132 break;
1133 }
1134
1135 if (region->attrib.cache)
1136 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1137 reg_len, write_p);
1138 else
1139 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1140 &region->attrib);
1141
1142 if (res <= 0)
1143 {
1144 if (errno != 0)
1145 *err = errno;
1146 else
1147 *err = EIO;
1148
1149 return -1;
1150 }
1151
1152 *err = 0;
1153 return res;
1154 }
1155
1156 int
1157 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1158 {
1159 if (target_xfer_partial_p ())
1160 return target_stack->to_xfer_partial (target_stack,
1161 TARGET_OBJECT_MEMORY, NULL,
1162 buf, NULL, memaddr, len);
1163 else
1164 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1165 }
1166
1167 int
1168 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1169 {
1170 if (target_xfer_partial_p ())
1171 return target_stack->to_xfer_partial (target_stack,
1172 TARGET_OBJECT_MEMORY, NULL,
1173 NULL, buf, memaddr, len);
1174 else
1175 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1176 }
1177
1178 /* More generic transfers. */
1179
1180 static LONGEST
1181 default_xfer_partial (struct target_ops *ops, enum target_object object,
1182 const char *annex, void *readbuf,
1183 const void *writebuf, ULONGEST offset, LONGEST len)
1184 {
1185 if (object == TARGET_OBJECT_MEMORY
1186 && ops->to_xfer_memory != NULL)
1187 /* If available, fall back to the target's "to_xfer_memory"
1188 method. */
1189 {
1190 int xfered = -1;
1191 errno = 0;
1192 if (writebuf != NULL)
1193 {
1194 void *buffer = xmalloc (len);
1195 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1196 memcpy (buffer, writebuf, len);
1197 xfered = ops->to_xfer_memory (offset, buffer, len, 1/*write*/, NULL,
1198 ops);
1199 do_cleanups (cleanup);
1200 }
1201 if (readbuf != NULL)
1202 xfered = ops->to_xfer_memory (offset, readbuf, len, 0/*read*/, NULL,
1203 ops);
1204 if (xfered > 0)
1205 return xfered;
1206 else if (xfered == 0 && errno == 0)
1207 /* "to_xfer_memory" uses 0, cross checked against ERRNO as one
1208 indication of an error. */
1209 return 0;
1210 else
1211 return -1;
1212 }
1213 else if (ops->beneath != NULL)
1214 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1215 readbuf, writebuf, offset, len);
1216 else
1217 return -1;
1218 }
1219
1220 /* Target vector read/write partial wrapper functions.
1221
1222 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1223 (inbuf, outbuf)", instead of separate read/write methods, make life
1224 easier. */
1225
1226 LONGEST
1227 target_read_partial (struct target_ops *ops,
1228 enum target_object object,
1229 const char *annex, void *buf,
1230 ULONGEST offset, LONGEST len)
1231 {
1232 gdb_assert (ops->to_xfer_partial != NULL);
1233 return ops->to_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1234 }
1235
1236 LONGEST
1237 target_write_partial (struct target_ops *ops,
1238 enum target_object object,
1239 const char *annex, const void *buf,
1240 ULONGEST offset, LONGEST len)
1241 {
1242 gdb_assert (ops->to_xfer_partial != NULL);
1243 return ops->to_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1244 }
1245
1246 /* Wrappers to perform the full transfer. */
1247 LONGEST
1248 target_read (struct target_ops *ops,
1249 enum target_object object,
1250 const char *annex, void *buf,
1251 ULONGEST offset, LONGEST len)
1252 {
1253 LONGEST xfered = 0;
1254 while (xfered < len)
1255 {
1256 LONGEST xfer = target_read_partial (ops, object, annex,
1257 (bfd_byte *) buf + xfered,
1258 offset + xfered, len - xfered);
1259 /* Call an observer, notifying them of the xfer progress? */
1260 if (xfer <= 0)
1261 /* Call memory_error? */
1262 return -1;
1263 xfered += xfer;
1264 QUIT;
1265 }
1266 return len;
1267 }
1268
1269 LONGEST
1270 target_write (struct target_ops *ops,
1271 enum target_object object,
1272 const char *annex, const void *buf,
1273 ULONGEST offset, LONGEST len)
1274 {
1275 LONGEST xfered = 0;
1276 while (xfered < len)
1277 {
1278 LONGEST xfer = target_write_partial (ops, object, annex,
1279 (bfd_byte *) buf + xfered,
1280 offset + xfered, len - xfered);
1281 /* Call an observer, notifying them of the xfer progress? */
1282 if (xfer <= 0)
1283 /* Call memory_error? */
1284 return -1;
1285 xfered += xfer;
1286 QUIT;
1287 }
1288 return len;
1289 }
1290
1291 /* Memory transfer methods. */
1292
1293 void
1294 get_target_memory (struct target_ops *ops, CORE_ADDR addr, void *buf,
1295 LONGEST len)
1296 {
1297 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1298 != len)
1299 memory_error (EIO, addr);
1300 }
1301
1302 ULONGEST
1303 get_target_memory_unsigned (struct target_ops *ops,
1304 CORE_ADDR addr, int len)
1305 {
1306 char buf[sizeof (ULONGEST)];
1307
1308 gdb_assert (len <= sizeof (buf));
1309 get_target_memory (ops, addr, buf, len);
1310 return extract_unsigned_integer (buf, len);
1311 }
1312
1313 static void
1314 target_info (char *args, int from_tty)
1315 {
1316 struct target_ops *t;
1317 int has_all_mem = 0;
1318
1319 if (symfile_objfile != NULL)
1320 printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
1321
1322 for (t = target_stack; t != NULL; t = t->beneath)
1323 {
1324 if (!t->to_has_memory)
1325 continue;
1326
1327 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1328 continue;
1329 if (has_all_mem)
1330 printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
1331 printf_unfiltered ("%s:\n", t->to_longname);
1332 (t->to_files_info) (t);
1333 has_all_mem = t->to_has_all_memory;
1334 }
1335 }
1336
1337 /* This is to be called by the open routine before it does
1338 anything. */
1339
1340 void
1341 target_preopen (int from_tty)
1342 {
1343 dont_repeat ();
1344
1345 if (target_has_execution)
1346 {
1347 if (!from_tty
1348 || query ("A program is being debugged already. Kill it? "))
1349 target_kill ();
1350 else
1351 error ("Program not killed.");
1352 }
1353
1354 /* Calling target_kill may remove the target from the stack. But if
1355 it doesn't (which seems like a win for UDI), remove it now. */
1356
1357 if (target_has_execution)
1358 pop_target ();
1359 }
1360
1361 /* Detach a target after doing deferred register stores. */
1362
1363 void
1364 target_detach (char *args, int from_tty)
1365 {
1366 (current_target.to_detach) (args, from_tty);
1367 }
1368
1369 void
1370 target_disconnect (char *args, int from_tty)
1371 {
1372 (current_target.to_disconnect) (args, from_tty);
1373 }
1374
1375 void
1376 target_link (char *modname, CORE_ADDR *t_reloc)
1377 {
1378 if (DEPRECATED_STREQ (current_target.to_shortname, "rombug"))
1379 {
1380 (current_target.to_lookup_symbol) (modname, t_reloc);
1381 if (*t_reloc == 0)
1382 error ("Unable to link to %s and get relocation in rombug", modname);
1383 }
1384 else
1385 *t_reloc = (CORE_ADDR) -1;
1386 }
1387
1388 int
1389 target_async_mask (int mask)
1390 {
1391 int saved_async_masked_status = target_async_mask_value;
1392 target_async_mask_value = mask;
1393 return saved_async_masked_status;
1394 }
1395
1396 /* Look through the list of possible targets for a target that can
1397 execute a run or attach command without any other data. This is
1398 used to locate the default process stratum.
1399
1400 Result is always valid (error() is called for errors). */
1401
1402 static struct target_ops *
1403 find_default_run_target (char *do_mesg)
1404 {
1405 struct target_ops **t;
1406 struct target_ops *runable = NULL;
1407 int count;
1408
1409 count = 0;
1410
1411 for (t = target_structs; t < target_structs + target_struct_size;
1412 ++t)
1413 {
1414 if ((*t)->to_can_run && target_can_run (*t))
1415 {
1416 runable = *t;
1417 ++count;
1418 }
1419 }
1420
1421 if (count != 1)
1422 error ("Don't know how to %s. Try \"help target\".", do_mesg);
1423
1424 return runable;
1425 }
1426
1427 void
1428 find_default_attach (char *args, int from_tty)
1429 {
1430 struct target_ops *t;
1431
1432 t = find_default_run_target ("attach");
1433 (t->to_attach) (args, from_tty);
1434 return;
1435 }
1436
1437 void
1438 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1439 int from_tty)
1440 {
1441 struct target_ops *t;
1442
1443 t = find_default_run_target ("run");
1444 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1445 return;
1446 }
1447
1448 static int
1449 default_region_size_ok_for_hw_watchpoint (int byte_count)
1450 {
1451 return (byte_count <= TYPE_LENGTH (builtin_type_void_data_ptr));
1452 }
1453
1454 static int
1455 return_zero (void)
1456 {
1457 return 0;
1458 }
1459
1460 static int
1461 return_one (void)
1462 {
1463 return 1;
1464 }
1465
1466 static int
1467 return_minus_one (void)
1468 {
1469 return -1;
1470 }
1471
1472 /*
1473 * Resize the to_sections pointer. Also make sure that anyone that
1474 * was holding on to an old value of it gets updated.
1475 * Returns the old size.
1476 */
1477
1478 int
1479 target_resize_to_sections (struct target_ops *target, int num_added)
1480 {
1481 struct target_ops **t;
1482 struct section_table *old_value;
1483 int old_count;
1484
1485 old_value = target->to_sections;
1486
1487 if (target->to_sections)
1488 {
1489 old_count = target->to_sections_end - target->to_sections;
1490 target->to_sections = (struct section_table *)
1491 xrealloc ((char *) target->to_sections,
1492 (sizeof (struct section_table)) * (num_added + old_count));
1493 }
1494 else
1495 {
1496 old_count = 0;
1497 target->to_sections = (struct section_table *)
1498 xmalloc ((sizeof (struct section_table)) * num_added);
1499 }
1500 target->to_sections_end = target->to_sections + (num_added + old_count);
1501
1502 /* Check to see if anyone else was pointing to this structure.
1503 If old_value was null, then no one was. */
1504
1505 if (old_value)
1506 {
1507 for (t = target_structs; t < target_structs + target_struct_size;
1508 ++t)
1509 {
1510 if ((*t)->to_sections == old_value)
1511 {
1512 (*t)->to_sections = target->to_sections;
1513 (*t)->to_sections_end = target->to_sections_end;
1514 }
1515 }
1516 /* There is a flattened view of the target stack in current_target,
1517 so its to_sections pointer might also need updating. */
1518 if (current_target.to_sections == old_value)
1519 {
1520 current_target.to_sections = target->to_sections;
1521 current_target.to_sections_end = target->to_sections_end;
1522 }
1523 }
1524
1525 return old_count;
1526
1527 }
1528
1529 /* Remove all target sections taken from ABFD.
1530
1531 Scan the current target stack for targets whose section tables
1532 refer to sections from BFD, and remove those sections. We use this
1533 when we notice that the inferior has unloaded a shared object, for
1534 example. */
1535 void
1536 remove_target_sections (bfd *abfd)
1537 {
1538 struct target_ops **t;
1539
1540 for (t = target_structs; t < target_structs + target_struct_size; t++)
1541 {
1542 struct section_table *src, *dest;
1543
1544 dest = (*t)->to_sections;
1545 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1546 if (src->bfd != abfd)
1547 {
1548 /* Keep this section. */
1549 if (dest < src) *dest = *src;
1550 dest++;
1551 }
1552
1553 /* If we've dropped any sections, resize the section table. */
1554 if (dest < src)
1555 target_resize_to_sections (*t, dest - src);
1556 }
1557 }
1558
1559
1560
1561
1562 /* Find a single runnable target in the stack and return it. If for
1563 some reason there is more than one, return NULL. */
1564
1565 struct target_ops *
1566 find_run_target (void)
1567 {
1568 struct target_ops **t;
1569 struct target_ops *runable = NULL;
1570 int count;
1571
1572 count = 0;
1573
1574 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1575 {
1576 if ((*t)->to_can_run && target_can_run (*t))
1577 {
1578 runable = *t;
1579 ++count;
1580 }
1581 }
1582
1583 return (count == 1 ? runable : NULL);
1584 }
1585
1586 /* Find a single core_stratum target in the list of targets and return it.
1587 If for some reason there is more than one, return NULL. */
1588
1589 struct target_ops *
1590 find_core_target (void)
1591 {
1592 struct target_ops **t;
1593 struct target_ops *runable = NULL;
1594 int count;
1595
1596 count = 0;
1597
1598 for (t = target_structs; t < target_structs + target_struct_size;
1599 ++t)
1600 {
1601 if ((*t)->to_stratum == core_stratum)
1602 {
1603 runable = *t;
1604 ++count;
1605 }
1606 }
1607
1608 return (count == 1 ? runable : NULL);
1609 }
1610
1611 /*
1612 * Find the next target down the stack from the specified target.
1613 */
1614
1615 struct target_ops *
1616 find_target_beneath (struct target_ops *t)
1617 {
1618 return t->beneath;
1619 }
1620
1621 \f
1622 /* The inferior process has died. Long live the inferior! */
1623
1624 void
1625 generic_mourn_inferior (void)
1626 {
1627 extern int show_breakpoint_hit_counts;
1628
1629 inferior_ptid = null_ptid;
1630 attach_flag = 0;
1631 breakpoint_init_inferior (inf_exited);
1632 registers_changed ();
1633
1634 reopen_exec_file ();
1635 reinit_frame_cache ();
1636
1637 /* It is confusing to the user for ignore counts to stick around
1638 from previous runs of the inferior. So clear them. */
1639 /* However, it is more confusing for the ignore counts to disappear when
1640 using hit counts. So don't clear them if we're counting hits. */
1641 if (!show_breakpoint_hit_counts)
1642 breakpoint_clear_ignore_counts ();
1643
1644 if (deprecated_detach_hook)
1645 deprecated_detach_hook ();
1646 }
1647 \f
1648 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1649 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1650 translation of that in OURSTATUS. */
1651 void
1652 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1653 {
1654 #ifdef CHILD_SPECIAL_WAITSTATUS
1655 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1656 if it wants to deal with hoststatus. */
1657 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1658 return;
1659 #endif
1660
1661 if (WIFEXITED (hoststatus))
1662 {
1663 ourstatus->kind = TARGET_WAITKIND_EXITED;
1664 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1665 }
1666 else if (!WIFSTOPPED (hoststatus))
1667 {
1668 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1669 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1670 }
1671 else
1672 {
1673 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1674 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1675 }
1676 }
1677 \f
1678 /* Returns zero to leave the inferior alone, one to interrupt it. */
1679 int (*target_activity_function) (void);
1680 int target_activity_fd;
1681 \f
1682 /* Convert a normal process ID to a string. Returns the string in a static
1683 buffer. */
1684
1685 char *
1686 normal_pid_to_str (ptid_t ptid)
1687 {
1688 static char buf[30];
1689
1690 sprintf (buf, "process %d", PIDGET (ptid));
1691 return buf;
1692 }
1693
1694 /* Error-catcher for target_find_memory_regions */
1695 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1696 {
1697 error ("No target.");
1698 return 0;
1699 }
1700
1701 /* Error-catcher for target_make_corefile_notes */
1702 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1703 {
1704 error ("No target.");
1705 return NULL;
1706 }
1707
1708 /* Set up the handful of non-empty slots needed by the dummy target
1709 vector. */
1710
1711 static void
1712 init_dummy_target (void)
1713 {
1714 dummy_target.to_shortname = "None";
1715 dummy_target.to_longname = "None";
1716 dummy_target.to_doc = "";
1717 dummy_target.to_attach = find_default_attach;
1718 dummy_target.to_create_inferior = find_default_create_inferior;
1719 dummy_target.to_pid_to_str = normal_pid_to_str;
1720 dummy_target.to_stratum = dummy_stratum;
1721 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1722 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1723 dummy_target.to_xfer_partial = default_xfer_partial;
1724 dummy_target.to_magic = OPS_MAGIC;
1725 }
1726 \f
1727
1728 static struct target_ops debug_target;
1729
1730 static void
1731 debug_to_open (char *args, int from_tty)
1732 {
1733 debug_target.to_open (args, from_tty);
1734
1735 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1736 }
1737
1738 static void
1739 debug_to_close (int quitting)
1740 {
1741 target_close (&debug_target, quitting);
1742 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1743 }
1744
1745 void
1746 target_close (struct target_ops *targ, int quitting)
1747 {
1748 if (targ->to_xclose != NULL)
1749 targ->to_xclose (targ, quitting);
1750 else if (targ->to_close != NULL)
1751 targ->to_close (quitting);
1752 }
1753
1754 static void
1755 debug_to_attach (char *args, int from_tty)
1756 {
1757 debug_target.to_attach (args, from_tty);
1758
1759 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1760 }
1761
1762
1763 static void
1764 debug_to_post_attach (int pid)
1765 {
1766 debug_target.to_post_attach (pid);
1767
1768 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1769 }
1770
1771 static void
1772 debug_to_detach (char *args, int from_tty)
1773 {
1774 debug_target.to_detach (args, from_tty);
1775
1776 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1777 }
1778
1779 static void
1780 debug_to_disconnect (char *args, int from_tty)
1781 {
1782 debug_target.to_disconnect (args, from_tty);
1783
1784 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1785 args, from_tty);
1786 }
1787
1788 static void
1789 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1790 {
1791 debug_target.to_resume (ptid, step, siggnal);
1792
1793 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1794 step ? "step" : "continue",
1795 target_signal_to_name (siggnal));
1796 }
1797
1798 static ptid_t
1799 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1800 {
1801 ptid_t retval;
1802
1803 retval = debug_target.to_wait (ptid, status);
1804
1805 fprintf_unfiltered (gdb_stdlog,
1806 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1807 PIDGET (retval));
1808 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1809 switch (status->kind)
1810 {
1811 case TARGET_WAITKIND_EXITED:
1812 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1813 status->value.integer);
1814 break;
1815 case TARGET_WAITKIND_STOPPED:
1816 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1817 target_signal_to_name (status->value.sig));
1818 break;
1819 case TARGET_WAITKIND_SIGNALLED:
1820 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1821 target_signal_to_name (status->value.sig));
1822 break;
1823 case TARGET_WAITKIND_LOADED:
1824 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1825 break;
1826 case TARGET_WAITKIND_FORKED:
1827 fprintf_unfiltered (gdb_stdlog, "forked\n");
1828 break;
1829 case TARGET_WAITKIND_VFORKED:
1830 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1831 break;
1832 case TARGET_WAITKIND_EXECD:
1833 fprintf_unfiltered (gdb_stdlog, "execd\n");
1834 break;
1835 case TARGET_WAITKIND_SPURIOUS:
1836 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1837 break;
1838 default:
1839 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1840 break;
1841 }
1842
1843 return retval;
1844 }
1845
1846 static void
1847 debug_print_register (const char * func, int regno)
1848 {
1849 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1850 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1851 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1852 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1853 else
1854 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1855 if (regno >= 0)
1856 {
1857 int i;
1858 unsigned char buf[MAX_REGISTER_SIZE];
1859 deprecated_read_register_gen (regno, buf);
1860 fprintf_unfiltered (gdb_stdlog, " = ");
1861 for (i = 0; i < register_size (current_gdbarch, regno); i++)
1862 {
1863 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1864 }
1865 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
1866 {
1867 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1868 paddr_nz (read_register (regno)),
1869 paddr_d (read_register (regno)));
1870 }
1871 }
1872 fprintf_unfiltered (gdb_stdlog, "\n");
1873 }
1874
1875 static void
1876 debug_to_fetch_registers (int regno)
1877 {
1878 debug_target.to_fetch_registers (regno);
1879 debug_print_register ("target_fetch_registers", regno);
1880 }
1881
1882 static void
1883 debug_to_store_registers (int regno)
1884 {
1885 debug_target.to_store_registers (regno);
1886 debug_print_register ("target_store_registers", regno);
1887 fprintf_unfiltered (gdb_stdlog, "\n");
1888 }
1889
1890 static void
1891 debug_to_prepare_to_store (void)
1892 {
1893 debug_target.to_prepare_to_store ();
1894
1895 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
1896 }
1897
1898 static int
1899 debug_to_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1900 struct mem_attrib *attrib,
1901 struct target_ops *target)
1902 {
1903 int retval;
1904
1905 retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write,
1906 attrib, target);
1907
1908 fprintf_unfiltered (gdb_stdlog,
1909 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
1910 (unsigned int) memaddr, /* possable truncate long long */
1911 len, write ? "write" : "read", retval);
1912
1913 if (retval > 0)
1914 {
1915 int i;
1916
1917 fputs_unfiltered (", bytes =", gdb_stdlog);
1918 for (i = 0; i < retval; i++)
1919 {
1920 if ((((long) &(myaddr[i])) & 0xf) == 0)
1921 {
1922 if (targetdebug < 2 && i > 0)
1923 {
1924 fprintf_unfiltered (gdb_stdlog, " ...");
1925 break;
1926 }
1927 fprintf_unfiltered (gdb_stdlog, "\n");
1928 }
1929
1930 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1931 }
1932 }
1933
1934 fputc_unfiltered ('\n', gdb_stdlog);
1935
1936 return retval;
1937 }
1938
1939 static void
1940 debug_to_files_info (struct target_ops *target)
1941 {
1942 debug_target.to_files_info (target);
1943
1944 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
1945 }
1946
1947 static int
1948 debug_to_insert_breakpoint (CORE_ADDR addr, char *save)
1949 {
1950 int retval;
1951
1952 retval = debug_target.to_insert_breakpoint (addr, save);
1953
1954 fprintf_unfiltered (gdb_stdlog,
1955 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
1956 (unsigned long) addr,
1957 (unsigned long) retval);
1958 return retval;
1959 }
1960
1961 static int
1962 debug_to_remove_breakpoint (CORE_ADDR addr, char *save)
1963 {
1964 int retval;
1965
1966 retval = debug_target.to_remove_breakpoint (addr, save);
1967
1968 fprintf_unfiltered (gdb_stdlog,
1969 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
1970 (unsigned long) addr,
1971 (unsigned long) retval);
1972 return retval;
1973 }
1974
1975 static int
1976 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
1977 {
1978 int retval;
1979
1980 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
1981
1982 fprintf_unfiltered (gdb_stdlog,
1983 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
1984 (unsigned long) type,
1985 (unsigned long) cnt,
1986 (unsigned long) from_tty,
1987 (unsigned long) retval);
1988 return retval;
1989 }
1990
1991 static int
1992 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
1993 {
1994 CORE_ADDR retval;
1995
1996 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
1997
1998 fprintf_unfiltered (gdb_stdlog,
1999 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
2000 (unsigned long) byte_count,
2001 (unsigned long) retval);
2002 return retval;
2003 }
2004
2005 static int
2006 debug_to_stopped_by_watchpoint (void)
2007 {
2008 int retval;
2009
2010 retval = debug_target.to_stopped_by_watchpoint ();
2011
2012 fprintf_unfiltered (gdb_stdlog,
2013 "STOPPED_BY_WATCHPOINT () = %ld\n",
2014 (unsigned long) retval);
2015 return retval;
2016 }
2017
2018 static CORE_ADDR
2019 debug_to_stopped_data_address (void)
2020 {
2021 CORE_ADDR retval;
2022
2023 retval = debug_target.to_stopped_data_address ();
2024
2025 fprintf_unfiltered (gdb_stdlog,
2026 "target_stopped_data_address () = 0x%lx\n",
2027 (unsigned long) retval);
2028 return retval;
2029 }
2030
2031 static int
2032 debug_to_insert_hw_breakpoint (CORE_ADDR addr, char *save)
2033 {
2034 int retval;
2035
2036 retval = debug_target.to_insert_hw_breakpoint (addr, save);
2037
2038 fprintf_unfiltered (gdb_stdlog,
2039 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2040 (unsigned long) addr,
2041 (unsigned long) retval);
2042 return retval;
2043 }
2044
2045 static int
2046 debug_to_remove_hw_breakpoint (CORE_ADDR addr, char *save)
2047 {
2048 int retval;
2049
2050 retval = debug_target.to_remove_hw_breakpoint (addr, save);
2051
2052 fprintf_unfiltered (gdb_stdlog,
2053 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2054 (unsigned long) addr,
2055 (unsigned long) retval);
2056 return retval;
2057 }
2058
2059 static int
2060 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2061 {
2062 int retval;
2063
2064 retval = debug_target.to_insert_watchpoint (addr, len, type);
2065
2066 fprintf_unfiltered (gdb_stdlog,
2067 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2068 (unsigned long) addr, len, type, (unsigned long) retval);
2069 return retval;
2070 }
2071
2072 static int
2073 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2074 {
2075 int retval;
2076
2077 retval = debug_target.to_insert_watchpoint (addr, len, type);
2078
2079 fprintf_unfiltered (gdb_stdlog,
2080 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2081 (unsigned long) addr, len, type, (unsigned long) retval);
2082 return retval;
2083 }
2084
2085 static void
2086 debug_to_terminal_init (void)
2087 {
2088 debug_target.to_terminal_init ();
2089
2090 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2091 }
2092
2093 static void
2094 debug_to_terminal_inferior (void)
2095 {
2096 debug_target.to_terminal_inferior ();
2097
2098 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2099 }
2100
2101 static void
2102 debug_to_terminal_ours_for_output (void)
2103 {
2104 debug_target.to_terminal_ours_for_output ();
2105
2106 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2107 }
2108
2109 static void
2110 debug_to_terminal_ours (void)
2111 {
2112 debug_target.to_terminal_ours ();
2113
2114 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2115 }
2116
2117 static void
2118 debug_to_terminal_save_ours (void)
2119 {
2120 debug_target.to_terminal_save_ours ();
2121
2122 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2123 }
2124
2125 static void
2126 debug_to_terminal_info (char *arg, int from_tty)
2127 {
2128 debug_target.to_terminal_info (arg, from_tty);
2129
2130 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2131 from_tty);
2132 }
2133
2134 static void
2135 debug_to_kill (void)
2136 {
2137 debug_target.to_kill ();
2138
2139 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2140 }
2141
2142 static void
2143 debug_to_load (char *args, int from_tty)
2144 {
2145 debug_target.to_load (args, from_tty);
2146
2147 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2148 }
2149
2150 static int
2151 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2152 {
2153 int retval;
2154
2155 retval = debug_target.to_lookup_symbol (name, addrp);
2156
2157 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2158
2159 return retval;
2160 }
2161
2162 static void
2163 debug_to_create_inferior (char *exec_file, char *args, char **env,
2164 int from_tty)
2165 {
2166 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2167
2168 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2169 exec_file, args, from_tty);
2170 }
2171
2172 static void
2173 debug_to_post_startup_inferior (ptid_t ptid)
2174 {
2175 debug_target.to_post_startup_inferior (ptid);
2176
2177 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2178 PIDGET (ptid));
2179 }
2180
2181 static void
2182 debug_to_acknowledge_created_inferior (int pid)
2183 {
2184 debug_target.to_acknowledge_created_inferior (pid);
2185
2186 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2187 pid);
2188 }
2189
2190 static int
2191 debug_to_insert_fork_catchpoint (int pid)
2192 {
2193 int retval;
2194
2195 retval = debug_target.to_insert_fork_catchpoint (pid);
2196
2197 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
2198 pid, retval);
2199
2200 return retval;
2201 }
2202
2203 static int
2204 debug_to_remove_fork_catchpoint (int pid)
2205 {
2206 int retval;
2207
2208 retval = debug_target.to_remove_fork_catchpoint (pid);
2209
2210 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2211 pid, retval);
2212
2213 return retval;
2214 }
2215
2216 static int
2217 debug_to_insert_vfork_catchpoint (int pid)
2218 {
2219 int retval;
2220
2221 retval = debug_target.to_insert_vfork_catchpoint (pid);
2222
2223 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
2224 pid, retval);
2225
2226 return retval;
2227 }
2228
2229 static int
2230 debug_to_remove_vfork_catchpoint (int pid)
2231 {
2232 int retval;
2233
2234 retval = debug_target.to_remove_vfork_catchpoint (pid);
2235
2236 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2237 pid, retval);
2238
2239 return retval;
2240 }
2241
2242 static int
2243 debug_to_follow_fork (int follow_child)
2244 {
2245 int retval = debug_target.to_follow_fork (follow_child);
2246
2247 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2248 follow_child, retval);
2249
2250 return retval;
2251 }
2252
2253 static int
2254 debug_to_insert_exec_catchpoint (int pid)
2255 {
2256 int retval;
2257
2258 retval = debug_target.to_insert_exec_catchpoint (pid);
2259
2260 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
2261 pid, retval);
2262
2263 return retval;
2264 }
2265
2266 static int
2267 debug_to_remove_exec_catchpoint (int pid)
2268 {
2269 int retval;
2270
2271 retval = debug_target.to_remove_exec_catchpoint (pid);
2272
2273 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2274 pid, retval);
2275
2276 return retval;
2277 }
2278
2279 static int
2280 debug_to_reported_exec_events_per_exec_call (void)
2281 {
2282 int reported_exec_events;
2283
2284 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2285
2286 fprintf_unfiltered (gdb_stdlog,
2287 "target_reported_exec_events_per_exec_call () = %d\n",
2288 reported_exec_events);
2289
2290 return reported_exec_events;
2291 }
2292
2293 static int
2294 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2295 {
2296 int has_exited;
2297
2298 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2299
2300 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2301 pid, wait_status, *exit_status, has_exited);
2302
2303 return has_exited;
2304 }
2305
2306 static void
2307 debug_to_mourn_inferior (void)
2308 {
2309 debug_target.to_mourn_inferior ();
2310
2311 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2312 }
2313
2314 static int
2315 debug_to_can_run (void)
2316 {
2317 int retval;
2318
2319 retval = debug_target.to_can_run ();
2320
2321 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2322
2323 return retval;
2324 }
2325
2326 static void
2327 debug_to_notice_signals (ptid_t ptid)
2328 {
2329 debug_target.to_notice_signals (ptid);
2330
2331 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2332 PIDGET (ptid));
2333 }
2334
2335 static int
2336 debug_to_thread_alive (ptid_t ptid)
2337 {
2338 int retval;
2339
2340 retval = debug_target.to_thread_alive (ptid);
2341
2342 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2343 PIDGET (ptid), retval);
2344
2345 return retval;
2346 }
2347
2348 static void
2349 debug_to_find_new_threads (void)
2350 {
2351 debug_target.to_find_new_threads ();
2352
2353 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2354 }
2355
2356 static void
2357 debug_to_stop (void)
2358 {
2359 debug_target.to_stop ();
2360
2361 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2362 }
2363
2364 static LONGEST
2365 debug_to_xfer_partial (struct target_ops *ops, enum target_object object,
2366 const char *annex, void *readbuf, const void *writebuf,
2367 ULONGEST offset, LONGEST len)
2368 {
2369 LONGEST retval;
2370
2371 retval = debug_target.to_xfer_partial (&debug_target, object, annex,
2372 readbuf, writebuf, offset, len);
2373
2374 fprintf_unfiltered (gdb_stdlog,
2375 "target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s\n",
2376 (int) object, (annex ? annex : "(null)"),
2377 (long) readbuf, (long) writebuf, paddr_nz (offset),
2378 paddr_d (len), paddr_d (retval));
2379
2380 return retval;
2381 }
2382
2383 static void
2384 debug_to_rcmd (char *command,
2385 struct ui_file *outbuf)
2386 {
2387 debug_target.to_rcmd (command, outbuf);
2388 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2389 }
2390
2391 static struct symtab_and_line *
2392 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2393 {
2394 struct symtab_and_line *result;
2395 result = debug_target.to_enable_exception_callback (kind, enable);
2396 fprintf_unfiltered (gdb_stdlog,
2397 "target get_exception_callback_sal (%d, %d)\n",
2398 kind, enable);
2399 return result;
2400 }
2401
2402 static struct exception_event_record *
2403 debug_to_get_current_exception_event (void)
2404 {
2405 struct exception_event_record *result;
2406 result = debug_target.to_get_current_exception_event ();
2407 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2408 return result;
2409 }
2410
2411 static char *
2412 debug_to_pid_to_exec_file (int pid)
2413 {
2414 char *exec_file;
2415
2416 exec_file = debug_target.to_pid_to_exec_file (pid);
2417
2418 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2419 pid, exec_file);
2420
2421 return exec_file;
2422 }
2423
2424 static void
2425 setup_target_debug (void)
2426 {
2427 memcpy (&debug_target, &current_target, sizeof debug_target);
2428
2429 current_target.to_open = debug_to_open;
2430 current_target.to_close = debug_to_close;
2431 current_target.to_attach = debug_to_attach;
2432 current_target.to_post_attach = debug_to_post_attach;
2433 current_target.to_detach = debug_to_detach;
2434 current_target.to_disconnect = debug_to_disconnect;
2435 current_target.to_resume = debug_to_resume;
2436 current_target.to_wait = debug_to_wait;
2437 current_target.to_fetch_registers = debug_to_fetch_registers;
2438 current_target.to_store_registers = debug_to_store_registers;
2439 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2440 current_target.to_xfer_memory = debug_to_xfer_memory;
2441 current_target.to_files_info = debug_to_files_info;
2442 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2443 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2444 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2445 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2446 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2447 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2448 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2449 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2450 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2451 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2452 current_target.to_terminal_init = debug_to_terminal_init;
2453 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2454 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2455 current_target.to_terminal_ours = debug_to_terminal_ours;
2456 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2457 current_target.to_terminal_info = debug_to_terminal_info;
2458 current_target.to_kill = debug_to_kill;
2459 current_target.to_load = debug_to_load;
2460 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2461 current_target.to_create_inferior = debug_to_create_inferior;
2462 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2463 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2464 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2465 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2466 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2467 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2468 current_target.to_follow_fork = debug_to_follow_fork;
2469 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2470 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2471 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2472 current_target.to_has_exited = debug_to_has_exited;
2473 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2474 current_target.to_can_run = debug_to_can_run;
2475 current_target.to_notice_signals = debug_to_notice_signals;
2476 current_target.to_thread_alive = debug_to_thread_alive;
2477 current_target.to_find_new_threads = debug_to_find_new_threads;
2478 current_target.to_stop = debug_to_stop;
2479 current_target.to_xfer_partial = debug_to_xfer_partial;
2480 current_target.to_rcmd = debug_to_rcmd;
2481 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2482 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2483 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2484
2485 }
2486 \f
2487
2488 static char targ_desc[] =
2489 "Names of targets and files being debugged.\n\
2490 Shows the entire stack of targets currently in use (including the exec-file,\n\
2491 core-file, and process, if any), as well as the symbol file name.";
2492
2493 static void
2494 do_monitor_command (char *cmd,
2495 int from_tty)
2496 {
2497 if ((current_target.to_rcmd
2498 == (void (*) (char *, struct ui_file *)) tcomplain)
2499 || (current_target.to_rcmd == debug_to_rcmd
2500 && (debug_target.to_rcmd
2501 == (void (*) (char *, struct ui_file *)) tcomplain)))
2502 {
2503 error ("\"monitor\" command not supported by this target.\n");
2504 }
2505 target_rcmd (cmd, gdb_stdtarg);
2506 }
2507
2508 void
2509 initialize_targets (void)
2510 {
2511 init_dummy_target ();
2512 push_target (&dummy_target);
2513
2514 add_info ("target", target_info, targ_desc);
2515 add_info ("files", target_info, targ_desc);
2516
2517 deprecated_add_show_from_set
2518 (add_set_cmd ("target", class_maintenance, var_zinteger,
2519 (char *) &targetdebug,
2520 "Set target debugging.\n\
2521 When non-zero, target debugging is enabled. Higher numbers are more\n\
2522 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2523 command.", &setdebuglist),
2524 &showdebuglist);
2525
2526 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2527 &trust_readonly, "\
2528 Set mode for reading from readonly sections.", "\
2529 Show mode for reading from readonly sections.", "\
2530 When this mode is on, memory reads from readonly sections (such as .text)\n\
2531 will be read from the object file instead of from the target. This will\n\
2532 result in significant performance improvement for remote targets.", "\
2533 Mode for reading from readonly sections is %s.",
2534 NULL, NULL,
2535 &setlist, &showlist);
2536
2537 add_com ("monitor", class_obscure, do_monitor_command,
2538 "Send a command to the remote monitor (remote targets only).");
2539
2540 target_dcache = dcache_init ();
2541 }
This page took 0.145338 seconds and 4 git commands to generate.