gdb: fix formatting of serial::async_state's enumerators
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 #include "target-connection.h"
53 #include "valprint.h"
54
55 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56
57 static void default_terminal_info (struct target_ops *, const char *, int);
58
59 static int default_watchpoint_addr_within_range (struct target_ops *,
60 CORE_ADDR, CORE_ADDR, int);
61
62 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 CORE_ADDR, int);
64
65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66
67 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 long lwp, long tid);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static struct target_ops *find_default_run_target (const char *);
86
87 static int dummy_find_memory_regions (struct target_ops *self,
88 find_memory_region_ftype ignore1,
89 void *ignore2);
90
91 static char *dummy_make_corefile_notes (struct target_ops *self,
92 bfd *ignore1, int *ignore2);
93
94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
95
96 static enum exec_direction_kind default_execution_direction
97 (struct target_ops *self);
98
99 /* Mapping between target_info objects (which have address identity)
100 and corresponding open/factory function/callback. Each add_target
101 call adds one entry to this map, and registers a "target
102 TARGET_NAME" command that when invoked calls the factory registered
103 here. The target_info object is associated with the command via
104 the command's context. */
105 static std::unordered_map<const target_info *, target_open_ftype *>
106 target_factories;
107
108 /* The singleton debug target. */
109
110 static struct target_ops *the_debug_target;
111
112 /* Top of target stack. */
113 /* The target structure we are currently using to talk to a process
114 or file or whatever "inferior" we have. */
115
116 target_ops *
117 current_top_target ()
118 {
119 return current_inferior ()->top_target ();
120 }
121
122 /* Command list for target. */
123
124 static struct cmd_list_element *targetlist = NULL;
125
126 /* True if we should trust readonly sections from the
127 executable when reading memory. */
128
129 static bool trust_readonly = false;
130
131 /* Nonzero if we should show true memory content including
132 memory breakpoint inserted by gdb. */
133
134 static int show_memory_breakpoints = 0;
135
136 /* These globals control whether GDB attempts to perform these
137 operations; they are useful for targets that need to prevent
138 inadvertent disruption, such as in non-stop mode. */
139
140 bool may_write_registers = true;
141
142 bool may_write_memory = true;
143
144 bool may_insert_breakpoints = true;
145
146 bool may_insert_tracepoints = true;
147
148 bool may_insert_fast_tracepoints = true;
149
150 bool may_stop = true;
151
152 /* Non-zero if we want to see trace of target level stuff. */
153
154 static unsigned int targetdebug = 0;
155
156 static void
157 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
158 {
159 if (targetdebug)
160 push_target (the_debug_target);
161 else
162 unpush_target (the_debug_target);
163 }
164
165 static void
166 show_targetdebug (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
170 }
171
172 int
173 target_has_all_memory_1 (void)
174 {
175 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
176 if (t->has_all_memory ())
177 return 1;
178
179 return 0;
180 }
181
182 int
183 target_has_memory_1 (void)
184 {
185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
186 if (t->has_memory ())
187 return 1;
188
189 return 0;
190 }
191
192 int
193 target_has_stack_1 (void)
194 {
195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196 if (t->has_stack ())
197 return 1;
198
199 return 0;
200 }
201
202 int
203 target_has_registers_1 (void)
204 {
205 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
206 if (t->has_registers ())
207 return 1;
208
209 return 0;
210 }
211
212 bool
213 target_has_execution_1 (inferior *inf)
214 {
215 for (target_ops *t = inf->top_target ();
216 t != nullptr;
217 t = inf->find_target_beneath (t))
218 if (t->has_execution (inf))
219 return true;
220
221 return false;
222 }
223
224 int
225 target_has_execution_current (void)
226 {
227 return target_has_execution_1 (current_inferior ());
228 }
229
230 /* This is used to implement the various target commands. */
231
232 static void
233 open_target (const char *args, int from_tty, struct cmd_list_element *command)
234 {
235 auto *ti = static_cast<target_info *> (get_cmd_context (command));
236 target_open_ftype *func = target_factories[ti];
237
238 if (targetdebug)
239 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
240 ti->shortname);
241
242 func (args, from_tty);
243
244 if (targetdebug)
245 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
246 ti->shortname, args, from_tty);
247 }
248
249 /* See target.h. */
250
251 void
252 add_target (const target_info &t, target_open_ftype *func,
253 completer_ftype *completer)
254 {
255 struct cmd_list_element *c;
256
257 auto &func_slot = target_factories[&t];
258 if (func_slot != nullptr)
259 internal_error (__FILE__, __LINE__,
260 _("target already added (\"%s\")."), t.shortname);
261 func_slot = func;
262
263 if (targetlist == NULL)
264 add_basic_prefix_cmd ("target", class_run, _("\
265 Connect to a target machine or process.\n\
266 The first argument is the type or protocol of the target machine.\n\
267 Remaining arguments are interpreted by the target protocol. For more\n\
268 information on the arguments for a particular protocol, type\n\
269 `help target ' followed by the protocol name."),
270 &targetlist, "target ", 0, &cmdlist);
271 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
272 set_cmd_context (c, (void *) &t);
273 set_cmd_sfunc (c, open_target);
274 if (completer != NULL)
275 set_cmd_completer (c, completer);
276 }
277
278 /* See target.h. */
279
280 void
281 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
282 {
283 struct cmd_list_element *c;
284 char *alt;
285
286 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
287 see PR cli/15104. */
288 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
289 set_cmd_sfunc (c, open_target);
290 set_cmd_context (c, (void *) &tinfo);
291 alt = xstrprintf ("target %s", tinfo.shortname);
292 deprecate_cmd (c, alt);
293 }
294
295 /* Stub functions */
296
297 void
298 target_kill (void)
299 {
300 current_top_target ()->kill ();
301 }
302
303 void
304 target_load (const char *arg, int from_tty)
305 {
306 target_dcache_invalidate ();
307 current_top_target ()->load (arg, from_tty);
308 }
309
310 /* Define it. */
311
312 target_terminal_state target_terminal::m_terminal_state
313 = target_terminal_state::is_ours;
314
315 /* See target/target.h. */
316
317 void
318 target_terminal::init (void)
319 {
320 current_top_target ()->terminal_init ();
321
322 m_terminal_state = target_terminal_state::is_ours;
323 }
324
325 /* See target/target.h. */
326
327 void
328 target_terminal::inferior (void)
329 {
330 struct ui *ui = current_ui;
331
332 /* A background resume (``run&'') should leave GDB in control of the
333 terminal. */
334 if (ui->prompt_state != PROMPT_BLOCKED)
335 return;
336
337 /* Since we always run the inferior in the main console (unless "set
338 inferior-tty" is in effect), when some UI other than the main one
339 calls target_terminal::inferior, then we leave the main UI's
340 terminal settings as is. */
341 if (ui != main_ui)
342 return;
343
344 /* If GDB is resuming the inferior in the foreground, install
345 inferior's terminal modes. */
346
347 struct inferior *inf = current_inferior ();
348
349 if (inf->terminal_state != target_terminal_state::is_inferior)
350 {
351 current_top_target ()->terminal_inferior ();
352 inf->terminal_state = target_terminal_state::is_inferior;
353 }
354
355 m_terminal_state = target_terminal_state::is_inferior;
356
357 /* If the user hit C-c before, pretend that it was hit right
358 here. */
359 if (check_quit_flag ())
360 target_pass_ctrlc ();
361 }
362
363 /* See target/target.h. */
364
365 void
366 target_terminal::restore_inferior (void)
367 {
368 struct ui *ui = current_ui;
369
370 /* See target_terminal::inferior(). */
371 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
372 return;
373
374 /* Restore the terminal settings of inferiors that were in the
375 foreground but are now ours_for_output due to a temporary
376 target_target::ours_for_output() call. */
377
378 {
379 scoped_restore_current_inferior restore_inferior;
380
381 for (::inferior *inf : all_inferiors ())
382 {
383 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
384 {
385 set_current_inferior (inf);
386 current_top_target ()->terminal_inferior ();
387 inf->terminal_state = target_terminal_state::is_inferior;
388 }
389 }
390 }
391
392 m_terminal_state = target_terminal_state::is_inferior;
393
394 /* If the user hit C-c before, pretend that it was hit right
395 here. */
396 if (check_quit_flag ())
397 target_pass_ctrlc ();
398 }
399
400 /* Switch terminal state to DESIRED_STATE, either is_ours, or
401 is_ours_for_output. */
402
403 static void
404 target_terminal_is_ours_kind (target_terminal_state desired_state)
405 {
406 scoped_restore_current_inferior restore_inferior;
407
408 /* Must do this in two passes. First, have all inferiors save the
409 current terminal settings. Then, after all inferiors have add a
410 chance to safely save the terminal settings, restore GDB's
411 terminal settings. */
412
413 for (inferior *inf : all_inferiors ())
414 {
415 if (inf->terminal_state == target_terminal_state::is_inferior)
416 {
417 set_current_inferior (inf);
418 current_top_target ()->terminal_save_inferior ();
419 }
420 }
421
422 for (inferior *inf : all_inferiors ())
423 {
424 /* Note we don't check is_inferior here like above because we
425 need to handle 'is_ours_for_output -> is_ours' too. Careful
426 to never transition from 'is_ours' to 'is_ours_for_output',
427 though. */
428 if (inf->terminal_state != target_terminal_state::is_ours
429 && inf->terminal_state != desired_state)
430 {
431 set_current_inferior (inf);
432 if (desired_state == target_terminal_state::is_ours)
433 current_top_target ()->terminal_ours ();
434 else if (desired_state == target_terminal_state::is_ours_for_output)
435 current_top_target ()->terminal_ours_for_output ();
436 else
437 gdb_assert_not_reached ("unhandled desired state");
438 inf->terminal_state = desired_state;
439 }
440 }
441 }
442
443 /* See target/target.h. */
444
445 void
446 target_terminal::ours ()
447 {
448 struct ui *ui = current_ui;
449
450 /* See target_terminal::inferior. */
451 if (ui != main_ui)
452 return;
453
454 if (m_terminal_state == target_terminal_state::is_ours)
455 return;
456
457 target_terminal_is_ours_kind (target_terminal_state::is_ours);
458 m_terminal_state = target_terminal_state::is_ours;
459 }
460
461 /* See target/target.h. */
462
463 void
464 target_terminal::ours_for_output ()
465 {
466 struct ui *ui = current_ui;
467
468 /* See target_terminal::inferior. */
469 if (ui != main_ui)
470 return;
471
472 if (!target_terminal::is_inferior ())
473 return;
474
475 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
476 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
477 }
478
479 /* See target/target.h. */
480
481 void
482 target_terminal::info (const char *arg, int from_tty)
483 {
484 current_top_target ()->terminal_info (arg, from_tty);
485 }
486
487 /* See target.h. */
488
489 bool
490 target_supports_terminal_ours (void)
491 {
492 /* The current top target is the target at the top of the target
493 stack of the current inferior. While normally there's always an
494 inferior, we must check for nullptr here because we can get here
495 very early during startup, before the initial inferior is first
496 created. */
497 inferior *inf = current_inferior ();
498
499 if (inf == nullptr)
500 return false;
501 return inf->top_target ()->supports_terminal_ours ();
502 }
503
504 static void
505 tcomplain (void)
506 {
507 error (_("You can't do that when your target is `%s'"),
508 current_top_target ()->shortname ());
509 }
510
511 void
512 noprocess (void)
513 {
514 error (_("You can't do that without a process to debug."));
515 }
516
517 static void
518 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
519 {
520 printf_unfiltered (_("No saved terminal information.\n"));
521 }
522
523 /* A default implementation for the to_get_ada_task_ptid target method.
524
525 This function builds the PTID by using both LWP and TID as part of
526 the PTID lwp and tid elements. The pid used is the pid of the
527 inferior_ptid. */
528
529 static ptid_t
530 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
531 {
532 return ptid_t (inferior_ptid.pid (), lwp, tid);
533 }
534
535 static enum exec_direction_kind
536 default_execution_direction (struct target_ops *self)
537 {
538 if (!target_can_execute_reverse)
539 return EXEC_FORWARD;
540 else if (!target_can_async_p ())
541 return EXEC_FORWARD;
542 else
543 gdb_assert_not_reached ("\
544 to_execution_direction must be implemented for reverse async");
545 }
546
547 /* See target.h. */
548
549 void
550 decref_target (target_ops *t)
551 {
552 t->decref ();
553 if (t->refcount () == 0)
554 {
555 if (t->stratum () == process_stratum)
556 connection_list_remove (as_process_stratum_target (t));
557 target_close (t);
558 }
559 }
560
561 /* See target.h. */
562
563 void
564 target_stack::push (target_ops *t)
565 {
566 t->incref ();
567
568 strata stratum = t->stratum ();
569
570 if (stratum == process_stratum)
571 connection_list_add (as_process_stratum_target (t));
572
573 /* If there's already a target at this stratum, remove it. */
574
575 if (m_stack[stratum] != NULL)
576 unpush (m_stack[stratum]);
577
578 /* Now add the new one. */
579 m_stack[stratum] = t;
580
581 if (m_top < stratum)
582 m_top = stratum;
583 }
584
585 /* See target.h. */
586
587 void
588 push_target (struct target_ops *t)
589 {
590 current_inferior ()->push_target (t);
591 }
592
593 /* See target.h. */
594
595 void
596 push_target (target_ops_up &&t)
597 {
598 current_inferior ()->push_target (t.get ());
599 t.release ();
600 }
601
602 /* See target.h. */
603
604 int
605 unpush_target (struct target_ops *t)
606 {
607 return current_inferior ()->unpush_target (t);
608 }
609
610 /* See target.h. */
611
612 bool
613 target_stack::unpush (target_ops *t)
614 {
615 gdb_assert (t != NULL);
616
617 strata stratum = t->stratum ();
618
619 if (stratum == dummy_stratum)
620 internal_error (__FILE__, __LINE__,
621 _("Attempt to unpush the dummy target"));
622
623 /* Look for the specified target. Note that a target can only occur
624 once in the target stack. */
625
626 if (m_stack[stratum] != t)
627 {
628 /* If T wasn't pushed, quit. Only open targets should be
629 closed. */
630 return false;
631 }
632
633 /* Unchain the target. */
634 m_stack[stratum] = NULL;
635
636 if (m_top == stratum)
637 m_top = t->beneath ()->stratum ();
638
639 /* Finally close the target, if there are no inferiors
640 referencing this target still. Note we do this after unchaining,
641 so any target method calls from within the target_close
642 implementation don't end up in T anymore. Do leave the target
643 open if we have are other inferiors referencing this target
644 still. */
645 decref_target (t);
646
647 return true;
648 }
649
650 /* Unpush TARGET and assert that it worked. */
651
652 static void
653 unpush_target_and_assert (struct target_ops *target)
654 {
655 if (!unpush_target (target))
656 {
657 fprintf_unfiltered (gdb_stderr,
658 "pop_all_targets couldn't find target %s\n",
659 target->shortname ());
660 internal_error (__FILE__, __LINE__,
661 _("failed internal consistency check"));
662 }
663 }
664
665 void
666 pop_all_targets_above (enum strata above_stratum)
667 {
668 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
669 unpush_target_and_assert (current_top_target ());
670 }
671
672 /* See target.h. */
673
674 void
675 pop_all_targets_at_and_above (enum strata stratum)
676 {
677 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
678 unpush_target_and_assert (current_top_target ());
679 }
680
681 void
682 pop_all_targets (void)
683 {
684 pop_all_targets_above (dummy_stratum);
685 }
686
687 /* Return true if T is now pushed in the current inferior's target
688 stack. Return false otherwise. */
689
690 bool
691 target_is_pushed (target_ops *t)
692 {
693 return current_inferior ()->target_is_pushed (t);
694 }
695
696 /* Default implementation of to_get_thread_local_address. */
697
698 static void
699 generic_tls_error (void)
700 {
701 throw_error (TLS_GENERIC_ERROR,
702 _("Cannot find thread-local variables on this target"));
703 }
704
705 /* Using the objfile specified in OBJFILE, find the address for the
706 current thread's thread-local storage with offset OFFSET. */
707 CORE_ADDR
708 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
709 {
710 volatile CORE_ADDR addr = 0;
711 struct target_ops *target = current_top_target ();
712 struct gdbarch *gdbarch = target_gdbarch ();
713
714 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
715 {
716 ptid_t ptid = inferior_ptid;
717
718 try
719 {
720 CORE_ADDR lm_addr;
721
722 /* Fetch the load module address for this objfile. */
723 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
724 objfile);
725
726 if (gdbarch_get_thread_local_address_p (gdbarch))
727 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
728 offset);
729 else
730 addr = target->get_thread_local_address (ptid, lm_addr, offset);
731 }
732 /* If an error occurred, print TLS related messages here. Otherwise,
733 throw the error to some higher catcher. */
734 catch (const gdb_exception &ex)
735 {
736 int objfile_is_library = (objfile->flags & OBJF_SHARED);
737
738 switch (ex.error)
739 {
740 case TLS_NO_LIBRARY_SUPPORT_ERROR:
741 error (_("Cannot find thread-local variables "
742 "in this thread library."));
743 break;
744 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
745 if (objfile_is_library)
746 error (_("Cannot find shared library `%s' in dynamic"
747 " linker's load module list"), objfile_name (objfile));
748 else
749 error (_("Cannot find executable file `%s' in dynamic"
750 " linker's load module list"), objfile_name (objfile));
751 break;
752 case TLS_NOT_ALLOCATED_YET_ERROR:
753 if (objfile_is_library)
754 error (_("The inferior has not yet allocated storage for"
755 " thread-local variables in\n"
756 "the shared library `%s'\n"
757 "for %s"),
758 objfile_name (objfile),
759 target_pid_to_str (ptid).c_str ());
760 else
761 error (_("The inferior has not yet allocated storage for"
762 " thread-local variables in\n"
763 "the executable `%s'\n"
764 "for %s"),
765 objfile_name (objfile),
766 target_pid_to_str (ptid).c_str ());
767 break;
768 case TLS_GENERIC_ERROR:
769 if (objfile_is_library)
770 error (_("Cannot find thread-local storage for %s, "
771 "shared library %s:\n%s"),
772 target_pid_to_str (ptid).c_str (),
773 objfile_name (objfile), ex.what ());
774 else
775 error (_("Cannot find thread-local storage for %s, "
776 "executable file %s:\n%s"),
777 target_pid_to_str (ptid).c_str (),
778 objfile_name (objfile), ex.what ());
779 break;
780 default:
781 throw;
782 break;
783 }
784 }
785 }
786 else
787 error (_("Cannot find thread-local variables on this target"));
788
789 return addr;
790 }
791
792 const char *
793 target_xfer_status_to_string (enum target_xfer_status status)
794 {
795 #define CASE(X) case X: return #X
796 switch (status)
797 {
798 CASE(TARGET_XFER_E_IO);
799 CASE(TARGET_XFER_UNAVAILABLE);
800 default:
801 return "<unknown>";
802 }
803 #undef CASE
804 };
805
806
807 /* See target.h. */
808
809 gdb::unique_xmalloc_ptr<char>
810 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
811 {
812 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
813
814 int ignore;
815 if (bytes_read == nullptr)
816 bytes_read = &ignore;
817
818 /* Note that the endian-ness does not matter here. */
819 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
820 &buffer, bytes_read);
821 if (errcode != 0)
822 return {};
823
824 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
825 }
826
827 struct target_section_table *
828 target_get_section_table (struct target_ops *target)
829 {
830 return target->get_section_table ();
831 }
832
833 /* Find a section containing ADDR. */
834
835 struct target_section *
836 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
837 {
838 struct target_section_table *table = target_get_section_table (target);
839 struct target_section *secp;
840
841 if (table == NULL)
842 return NULL;
843
844 for (secp = table->sections; secp < table->sections_end; secp++)
845 {
846 if (addr >= secp->addr && addr < secp->endaddr)
847 return secp;
848 }
849 return NULL;
850 }
851
852
853 /* Helper for the memory xfer routines. Checks the attributes of the
854 memory region of MEMADDR against the read or write being attempted.
855 If the access is permitted returns true, otherwise returns false.
856 REGION_P is an optional output parameter. If not-NULL, it is
857 filled with a pointer to the memory region of MEMADDR. REG_LEN
858 returns LEN trimmed to the end of the region. This is how much the
859 caller can continue requesting, if the access is permitted. A
860 single xfer request must not straddle memory region boundaries. */
861
862 static int
863 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
864 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
865 struct mem_region **region_p)
866 {
867 struct mem_region *region;
868
869 region = lookup_mem_region (memaddr);
870
871 if (region_p != NULL)
872 *region_p = region;
873
874 switch (region->attrib.mode)
875 {
876 case MEM_RO:
877 if (writebuf != NULL)
878 return 0;
879 break;
880
881 case MEM_WO:
882 if (readbuf != NULL)
883 return 0;
884 break;
885
886 case MEM_FLASH:
887 /* We only support writing to flash during "load" for now. */
888 if (writebuf != NULL)
889 error (_("Writing to flash memory forbidden in this context"));
890 break;
891
892 case MEM_NONE:
893 return 0;
894 }
895
896 /* region->hi == 0 means there's no upper bound. */
897 if (memaddr + len < region->hi || region->hi == 0)
898 *reg_len = len;
899 else
900 *reg_len = region->hi - memaddr;
901
902 return 1;
903 }
904
905 /* Read memory from more than one valid target. A core file, for
906 instance, could have some of memory but delegate other bits to
907 the target below it. So, we must manually try all targets. */
908
909 enum target_xfer_status
910 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
911 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
912 ULONGEST *xfered_len)
913 {
914 enum target_xfer_status res;
915
916 do
917 {
918 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
919 readbuf, writebuf, memaddr, len,
920 xfered_len);
921 if (res == TARGET_XFER_OK)
922 break;
923
924 /* Stop if the target reports that the memory is not available. */
925 if (res == TARGET_XFER_UNAVAILABLE)
926 break;
927
928 /* Don't continue past targets which have all the memory.
929 At one time, this code was necessary to read data from
930 executables / shared libraries when data for the requested
931 addresses weren't available in the core file. But now the
932 core target handles this case itself. */
933 if (ops->has_all_memory ())
934 break;
935
936 ops = ops->beneath ();
937 }
938 while (ops != NULL);
939
940 /* The cache works at the raw memory level. Make sure the cache
941 gets updated with raw contents no matter what kind of memory
942 object was originally being written. Note we do write-through
943 first, so that if it fails, we don't write to the cache contents
944 that never made it to the target. */
945 if (writebuf != NULL
946 && inferior_ptid != null_ptid
947 && target_dcache_init_p ()
948 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
949 {
950 DCACHE *dcache = target_dcache_get ();
951
952 /* Note that writing to an area of memory which wasn't present
953 in the cache doesn't cause it to be loaded in. */
954 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
955 }
956
957 return res;
958 }
959
960 /* Perform a partial memory transfer.
961 For docs see target.h, to_xfer_partial. */
962
963 static enum target_xfer_status
964 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
965 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
966 ULONGEST len, ULONGEST *xfered_len)
967 {
968 enum target_xfer_status res;
969 ULONGEST reg_len;
970 struct mem_region *region;
971 struct inferior *inf;
972
973 /* For accesses to unmapped overlay sections, read directly from
974 files. Must do this first, as MEMADDR may need adjustment. */
975 if (readbuf != NULL && overlay_debugging)
976 {
977 struct obj_section *section = find_pc_overlay (memaddr);
978
979 if (pc_in_unmapped_range (memaddr, section))
980 {
981 struct target_section_table *table
982 = target_get_section_table (ops);
983 const char *section_name = section->the_bfd_section->name;
984
985 memaddr = overlay_mapped_address (memaddr, section);
986
987 auto match_cb = [=] (const struct target_section *s)
988 {
989 return (strcmp (section_name, s->the_bfd_section->name) == 0);
990 };
991
992 return section_table_xfer_memory_partial (readbuf, writebuf,
993 memaddr, len, xfered_len,
994 table->sections,
995 table->sections_end,
996 match_cb);
997 }
998 }
999
1000 /* Try the executable files, if "trust-readonly-sections" is set. */
1001 if (readbuf != NULL && trust_readonly)
1002 {
1003 struct target_section *secp;
1004 struct target_section_table *table;
1005
1006 secp = target_section_by_addr (ops, memaddr);
1007 if (secp != NULL
1008 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1009 {
1010 table = target_get_section_table (ops);
1011 return section_table_xfer_memory_partial (readbuf, writebuf,
1012 memaddr, len, xfered_len,
1013 table->sections,
1014 table->sections_end);
1015 }
1016 }
1017
1018 /* Try GDB's internal data cache. */
1019
1020 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1021 &region))
1022 return TARGET_XFER_E_IO;
1023
1024 if (inferior_ptid != null_ptid)
1025 inf = current_inferior ();
1026 else
1027 inf = NULL;
1028
1029 if (inf != NULL
1030 && readbuf != NULL
1031 /* The dcache reads whole cache lines; that doesn't play well
1032 with reading from a trace buffer, because reading outside of
1033 the collected memory range fails. */
1034 && get_traceframe_number () == -1
1035 && (region->attrib.cache
1036 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1037 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1038 {
1039 DCACHE *dcache = target_dcache_get_or_init ();
1040
1041 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1042 reg_len, xfered_len);
1043 }
1044
1045 /* If none of those methods found the memory we wanted, fall back
1046 to a target partial transfer. Normally a single call to
1047 to_xfer_partial is enough; if it doesn't recognize an object
1048 it will call the to_xfer_partial of the next target down.
1049 But for memory this won't do. Memory is the only target
1050 object which can be read from more than one valid target.
1051 A core file, for instance, could have some of memory but
1052 delegate other bits to the target below it. So, we must
1053 manually try all targets. */
1054
1055 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1056 xfered_len);
1057
1058 /* If we still haven't got anything, return the last error. We
1059 give up. */
1060 return res;
1061 }
1062
1063 /* Perform a partial memory transfer. For docs see target.h,
1064 to_xfer_partial. */
1065
1066 static enum target_xfer_status
1067 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1068 gdb_byte *readbuf, const gdb_byte *writebuf,
1069 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1070 {
1071 enum target_xfer_status res;
1072
1073 /* Zero length requests are ok and require no work. */
1074 if (len == 0)
1075 return TARGET_XFER_EOF;
1076
1077 memaddr = address_significant (target_gdbarch (), memaddr);
1078
1079 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1080 breakpoint insns, thus hiding out from higher layers whether
1081 there are software breakpoints inserted in the code stream. */
1082 if (readbuf != NULL)
1083 {
1084 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1085 xfered_len);
1086
1087 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1088 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1089 }
1090 else
1091 {
1092 /* A large write request is likely to be partially satisfied
1093 by memory_xfer_partial_1. We will continually malloc
1094 and free a copy of the entire write request for breakpoint
1095 shadow handling even though we only end up writing a small
1096 subset of it. Cap writes to a limit specified by the target
1097 to mitigate this. */
1098 len = std::min (ops->get_memory_xfer_limit (), len);
1099
1100 gdb::byte_vector buf (writebuf, writebuf + len);
1101 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1102 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1103 xfered_len);
1104 }
1105
1106 return res;
1107 }
1108
1109 scoped_restore_tmpl<int>
1110 make_scoped_restore_show_memory_breakpoints (int show)
1111 {
1112 return make_scoped_restore (&show_memory_breakpoints, show);
1113 }
1114
1115 /* For docs see target.h, to_xfer_partial. */
1116
1117 enum target_xfer_status
1118 target_xfer_partial (struct target_ops *ops,
1119 enum target_object object, const char *annex,
1120 gdb_byte *readbuf, const gdb_byte *writebuf,
1121 ULONGEST offset, ULONGEST len,
1122 ULONGEST *xfered_len)
1123 {
1124 enum target_xfer_status retval;
1125
1126 /* Transfer is done when LEN is zero. */
1127 if (len == 0)
1128 return TARGET_XFER_EOF;
1129
1130 if (writebuf && !may_write_memory)
1131 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1132 core_addr_to_string_nz (offset), plongest (len));
1133
1134 *xfered_len = 0;
1135
1136 /* If this is a memory transfer, let the memory-specific code
1137 have a look at it instead. Memory transfers are more
1138 complicated. */
1139 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1140 || object == TARGET_OBJECT_CODE_MEMORY)
1141 retval = memory_xfer_partial (ops, object, readbuf,
1142 writebuf, offset, len, xfered_len);
1143 else if (object == TARGET_OBJECT_RAW_MEMORY)
1144 {
1145 /* Skip/avoid accessing the target if the memory region
1146 attributes block the access. Check this here instead of in
1147 raw_memory_xfer_partial as otherwise we'd end up checking
1148 this twice in the case of the memory_xfer_partial path is
1149 taken; once before checking the dcache, and another in the
1150 tail call to raw_memory_xfer_partial. */
1151 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1152 NULL))
1153 return TARGET_XFER_E_IO;
1154
1155 /* Request the normal memory object from other layers. */
1156 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1157 xfered_len);
1158 }
1159 else
1160 retval = ops->xfer_partial (object, annex, readbuf,
1161 writebuf, offset, len, xfered_len);
1162
1163 if (targetdebug)
1164 {
1165 const unsigned char *myaddr = NULL;
1166
1167 fprintf_unfiltered (gdb_stdlog,
1168 "%s:target_xfer_partial "
1169 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1170 ops->shortname (),
1171 (int) object,
1172 (annex ? annex : "(null)"),
1173 host_address_to_string (readbuf),
1174 host_address_to_string (writebuf),
1175 core_addr_to_string_nz (offset),
1176 pulongest (len), retval,
1177 pulongest (*xfered_len));
1178
1179 if (readbuf)
1180 myaddr = readbuf;
1181 if (writebuf)
1182 myaddr = writebuf;
1183 if (retval == TARGET_XFER_OK && myaddr != NULL)
1184 {
1185 int i;
1186
1187 fputs_unfiltered (", bytes =", gdb_stdlog);
1188 for (i = 0; i < *xfered_len; i++)
1189 {
1190 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1191 {
1192 if (targetdebug < 2 && i > 0)
1193 {
1194 fprintf_unfiltered (gdb_stdlog, " ...");
1195 break;
1196 }
1197 fprintf_unfiltered (gdb_stdlog, "\n");
1198 }
1199
1200 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1201 }
1202 }
1203
1204 fputc_unfiltered ('\n', gdb_stdlog);
1205 }
1206
1207 /* Check implementations of to_xfer_partial update *XFERED_LEN
1208 properly. Do assertion after printing debug messages, so that we
1209 can find more clues on assertion failure from debugging messages. */
1210 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1211 gdb_assert (*xfered_len > 0);
1212
1213 return retval;
1214 }
1215
1216 /* Read LEN bytes of target memory at address MEMADDR, placing the
1217 results in GDB's memory at MYADDR. Returns either 0 for success or
1218 -1 if any error occurs.
1219
1220 If an error occurs, no guarantee is made about the contents of the data at
1221 MYADDR. In particular, the caller should not depend upon partial reads
1222 filling the buffer with good data. There is no way for the caller to know
1223 how much good data might have been transfered anyway. Callers that can
1224 deal with partial reads should call target_read (which will retry until
1225 it makes no progress, and then return how much was transferred). */
1226
1227 int
1228 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1229 {
1230 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1231 myaddr, memaddr, len) == len)
1232 return 0;
1233 else
1234 return -1;
1235 }
1236
1237 /* See target/target.h. */
1238
1239 int
1240 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1241 {
1242 gdb_byte buf[4];
1243 int r;
1244
1245 r = target_read_memory (memaddr, buf, sizeof buf);
1246 if (r != 0)
1247 return r;
1248 *result = extract_unsigned_integer (buf, sizeof buf,
1249 gdbarch_byte_order (target_gdbarch ()));
1250 return 0;
1251 }
1252
1253 /* Like target_read_memory, but specify explicitly that this is a read
1254 from the target's raw memory. That is, this read bypasses the
1255 dcache, breakpoint shadowing, etc. */
1256
1257 int
1258 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1259 {
1260 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1261 myaddr, memaddr, len) == len)
1262 return 0;
1263 else
1264 return -1;
1265 }
1266
1267 /* Like target_read_memory, but specify explicitly that this is a read from
1268 the target's stack. This may trigger different cache behavior. */
1269
1270 int
1271 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1272 {
1273 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1274 myaddr, memaddr, len) == len)
1275 return 0;
1276 else
1277 return -1;
1278 }
1279
1280 /* Like target_read_memory, but specify explicitly that this is a read from
1281 the target's code. This may trigger different cache behavior. */
1282
1283 int
1284 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1285 {
1286 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1287 myaddr, memaddr, len) == len)
1288 return 0;
1289 else
1290 return -1;
1291 }
1292
1293 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1294 Returns either 0 for success or -1 if any error occurs. If an
1295 error occurs, no guarantee is made about how much data got written.
1296 Callers that can deal with partial writes should call
1297 target_write. */
1298
1299 int
1300 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1301 {
1302 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return -1;
1307 }
1308
1309 /* Write LEN bytes from MYADDR to target raw memory at address
1310 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1311 If an error occurs, no guarantee is made about how much data got
1312 written. Callers that can deal with partial writes should call
1313 target_write. */
1314
1315 int
1316 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1317 {
1318 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1319 myaddr, memaddr, len) == len)
1320 return 0;
1321 else
1322 return -1;
1323 }
1324
1325 /* Fetch the target's memory map. */
1326
1327 std::vector<mem_region>
1328 target_memory_map (void)
1329 {
1330 std::vector<mem_region> result = current_top_target ()->memory_map ();
1331 if (result.empty ())
1332 return result;
1333
1334 std::sort (result.begin (), result.end ());
1335
1336 /* Check that regions do not overlap. Simultaneously assign
1337 a numbering for the "mem" commands to use to refer to
1338 each region. */
1339 mem_region *last_one = NULL;
1340 for (size_t ix = 0; ix < result.size (); ix++)
1341 {
1342 mem_region *this_one = &result[ix];
1343 this_one->number = ix;
1344
1345 if (last_one != NULL && last_one->hi > this_one->lo)
1346 {
1347 warning (_("Overlapping regions in memory map: ignoring"));
1348 return std::vector<mem_region> ();
1349 }
1350
1351 last_one = this_one;
1352 }
1353
1354 return result;
1355 }
1356
1357 void
1358 target_flash_erase (ULONGEST address, LONGEST length)
1359 {
1360 current_top_target ()->flash_erase (address, length);
1361 }
1362
1363 void
1364 target_flash_done (void)
1365 {
1366 current_top_target ()->flash_done ();
1367 }
1368
1369 static void
1370 show_trust_readonly (struct ui_file *file, int from_tty,
1371 struct cmd_list_element *c, const char *value)
1372 {
1373 fprintf_filtered (file,
1374 _("Mode for reading from readonly sections is %s.\n"),
1375 value);
1376 }
1377
1378 /* Target vector read/write partial wrapper functions. */
1379
1380 static enum target_xfer_status
1381 target_read_partial (struct target_ops *ops,
1382 enum target_object object,
1383 const char *annex, gdb_byte *buf,
1384 ULONGEST offset, ULONGEST len,
1385 ULONGEST *xfered_len)
1386 {
1387 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1388 xfered_len);
1389 }
1390
1391 static enum target_xfer_status
1392 target_write_partial (struct target_ops *ops,
1393 enum target_object object,
1394 const char *annex, const gdb_byte *buf,
1395 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1396 {
1397 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1398 xfered_len);
1399 }
1400
1401 /* Wrappers to perform the full transfer. */
1402
1403 /* For docs on target_read see target.h. */
1404
1405 LONGEST
1406 target_read (struct target_ops *ops,
1407 enum target_object object,
1408 const char *annex, gdb_byte *buf,
1409 ULONGEST offset, LONGEST len)
1410 {
1411 LONGEST xfered_total = 0;
1412 int unit_size = 1;
1413
1414 /* If we are reading from a memory object, find the length of an addressable
1415 unit for that architecture. */
1416 if (object == TARGET_OBJECT_MEMORY
1417 || object == TARGET_OBJECT_STACK_MEMORY
1418 || object == TARGET_OBJECT_CODE_MEMORY
1419 || object == TARGET_OBJECT_RAW_MEMORY)
1420 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1421
1422 while (xfered_total < len)
1423 {
1424 ULONGEST xfered_partial;
1425 enum target_xfer_status status;
1426
1427 status = target_read_partial (ops, object, annex,
1428 buf + xfered_total * unit_size,
1429 offset + xfered_total, len - xfered_total,
1430 &xfered_partial);
1431
1432 /* Call an observer, notifying them of the xfer progress? */
1433 if (status == TARGET_XFER_EOF)
1434 return xfered_total;
1435 else if (status == TARGET_XFER_OK)
1436 {
1437 xfered_total += xfered_partial;
1438 QUIT;
1439 }
1440 else
1441 return TARGET_XFER_E_IO;
1442
1443 }
1444 return len;
1445 }
1446
1447 /* Assuming that the entire [begin, end) range of memory cannot be
1448 read, try to read whatever subrange is possible to read.
1449
1450 The function returns, in RESULT, either zero or one memory block.
1451 If there's a readable subrange at the beginning, it is completely
1452 read and returned. Any further readable subrange will not be read.
1453 Otherwise, if there's a readable subrange at the end, it will be
1454 completely read and returned. Any readable subranges before it
1455 (obviously, not starting at the beginning), will be ignored. In
1456 other cases -- either no readable subrange, or readable subrange(s)
1457 that is neither at the beginning, or end, nothing is returned.
1458
1459 The purpose of this function is to handle a read across a boundary
1460 of accessible memory in a case when memory map is not available.
1461 The above restrictions are fine for this case, but will give
1462 incorrect results if the memory is 'patchy'. However, supporting
1463 'patchy' memory would require trying to read every single byte,
1464 and it seems unacceptable solution. Explicit memory map is
1465 recommended for this case -- and target_read_memory_robust will
1466 take care of reading multiple ranges then. */
1467
1468 static void
1469 read_whatever_is_readable (struct target_ops *ops,
1470 const ULONGEST begin, const ULONGEST end,
1471 int unit_size,
1472 std::vector<memory_read_result> *result)
1473 {
1474 ULONGEST current_begin = begin;
1475 ULONGEST current_end = end;
1476 int forward;
1477 ULONGEST xfered_len;
1478
1479 /* If we previously failed to read 1 byte, nothing can be done here. */
1480 if (end - begin <= 1)
1481 return;
1482
1483 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1484
1485 /* Check that either first or the last byte is readable, and give up
1486 if not. This heuristic is meant to permit reading accessible memory
1487 at the boundary of accessible region. */
1488 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1489 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1490 {
1491 forward = 1;
1492 ++current_begin;
1493 }
1494 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1495 buf.get () + (end - begin) - 1, end - 1, 1,
1496 &xfered_len) == TARGET_XFER_OK)
1497 {
1498 forward = 0;
1499 --current_end;
1500 }
1501 else
1502 return;
1503
1504 /* Loop invariant is that the [current_begin, current_end) was previously
1505 found to be not readable as a whole.
1506
1507 Note loop condition -- if the range has 1 byte, we can't divide the range
1508 so there's no point trying further. */
1509 while (current_end - current_begin > 1)
1510 {
1511 ULONGEST first_half_begin, first_half_end;
1512 ULONGEST second_half_begin, second_half_end;
1513 LONGEST xfer;
1514 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1515
1516 if (forward)
1517 {
1518 first_half_begin = current_begin;
1519 first_half_end = middle;
1520 second_half_begin = middle;
1521 second_half_end = current_end;
1522 }
1523 else
1524 {
1525 first_half_begin = middle;
1526 first_half_end = current_end;
1527 second_half_begin = current_begin;
1528 second_half_end = middle;
1529 }
1530
1531 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1532 buf.get () + (first_half_begin - begin) * unit_size,
1533 first_half_begin,
1534 first_half_end - first_half_begin);
1535
1536 if (xfer == first_half_end - first_half_begin)
1537 {
1538 /* This half reads up fine. So, the error must be in the
1539 other half. */
1540 current_begin = second_half_begin;
1541 current_end = second_half_end;
1542 }
1543 else
1544 {
1545 /* This half is not readable. Because we've tried one byte, we
1546 know some part of this half if actually readable. Go to the next
1547 iteration to divide again and try to read.
1548
1549 We don't handle the other half, because this function only tries
1550 to read a single readable subrange. */
1551 current_begin = first_half_begin;
1552 current_end = first_half_end;
1553 }
1554 }
1555
1556 if (forward)
1557 {
1558 /* The [begin, current_begin) range has been read. */
1559 result->emplace_back (begin, current_end, std::move (buf));
1560 }
1561 else
1562 {
1563 /* The [current_end, end) range has been read. */
1564 LONGEST region_len = end - current_end;
1565
1566 gdb::unique_xmalloc_ptr<gdb_byte> data
1567 ((gdb_byte *) xmalloc (region_len * unit_size));
1568 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1569 region_len * unit_size);
1570 result->emplace_back (current_end, end, std::move (data));
1571 }
1572 }
1573
1574 std::vector<memory_read_result>
1575 read_memory_robust (struct target_ops *ops,
1576 const ULONGEST offset, const LONGEST len)
1577 {
1578 std::vector<memory_read_result> result;
1579 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1580
1581 LONGEST xfered_total = 0;
1582 while (xfered_total < len)
1583 {
1584 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1585 LONGEST region_len;
1586
1587 /* If there is no explicit region, a fake one should be created. */
1588 gdb_assert (region);
1589
1590 if (region->hi == 0)
1591 region_len = len - xfered_total;
1592 else
1593 region_len = region->hi - offset;
1594
1595 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1596 {
1597 /* Cannot read this region. Note that we can end up here only
1598 if the region is explicitly marked inaccessible, or
1599 'inaccessible-by-default' is in effect. */
1600 xfered_total += region_len;
1601 }
1602 else
1603 {
1604 LONGEST to_read = std::min (len - xfered_total, region_len);
1605 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1606 ((gdb_byte *) xmalloc (to_read * unit_size));
1607
1608 LONGEST xfered_partial =
1609 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1610 offset + xfered_total, to_read);
1611 /* Call an observer, notifying them of the xfer progress? */
1612 if (xfered_partial <= 0)
1613 {
1614 /* Got an error reading full chunk. See if maybe we can read
1615 some subrange. */
1616 read_whatever_is_readable (ops, offset + xfered_total,
1617 offset + xfered_total + to_read,
1618 unit_size, &result);
1619 xfered_total += to_read;
1620 }
1621 else
1622 {
1623 result.emplace_back (offset + xfered_total,
1624 offset + xfered_total + xfered_partial,
1625 std::move (buffer));
1626 xfered_total += xfered_partial;
1627 }
1628 QUIT;
1629 }
1630 }
1631
1632 return result;
1633 }
1634
1635
1636 /* An alternative to target_write with progress callbacks. */
1637
1638 LONGEST
1639 target_write_with_progress (struct target_ops *ops,
1640 enum target_object object,
1641 const char *annex, const gdb_byte *buf,
1642 ULONGEST offset, LONGEST len,
1643 void (*progress) (ULONGEST, void *), void *baton)
1644 {
1645 LONGEST xfered_total = 0;
1646 int unit_size = 1;
1647
1648 /* If we are writing to a memory object, find the length of an addressable
1649 unit for that architecture. */
1650 if (object == TARGET_OBJECT_MEMORY
1651 || object == TARGET_OBJECT_STACK_MEMORY
1652 || object == TARGET_OBJECT_CODE_MEMORY
1653 || object == TARGET_OBJECT_RAW_MEMORY)
1654 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1655
1656 /* Give the progress callback a chance to set up. */
1657 if (progress)
1658 (*progress) (0, baton);
1659
1660 while (xfered_total < len)
1661 {
1662 ULONGEST xfered_partial;
1663 enum target_xfer_status status;
1664
1665 status = target_write_partial (ops, object, annex,
1666 buf + xfered_total * unit_size,
1667 offset + xfered_total, len - xfered_total,
1668 &xfered_partial);
1669
1670 if (status != TARGET_XFER_OK)
1671 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1672
1673 if (progress)
1674 (*progress) (xfered_partial, baton);
1675
1676 xfered_total += xfered_partial;
1677 QUIT;
1678 }
1679 return len;
1680 }
1681
1682 /* For docs on target_write see target.h. */
1683
1684 LONGEST
1685 target_write (struct target_ops *ops,
1686 enum target_object object,
1687 const char *annex, const gdb_byte *buf,
1688 ULONGEST offset, LONGEST len)
1689 {
1690 return target_write_with_progress (ops, object, annex, buf, offset, len,
1691 NULL, NULL);
1692 }
1693
1694 /* Help for target_read_alloc and target_read_stralloc. See their comments
1695 for details. */
1696
1697 template <typename T>
1698 gdb::optional<gdb::def_vector<T>>
1699 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1700 const char *annex)
1701 {
1702 gdb::def_vector<T> buf;
1703 size_t buf_pos = 0;
1704 const int chunk = 4096;
1705
1706 /* This function does not have a length parameter; it reads the
1707 entire OBJECT). Also, it doesn't support objects fetched partly
1708 from one target and partly from another (in a different stratum,
1709 e.g. a core file and an executable). Both reasons make it
1710 unsuitable for reading memory. */
1711 gdb_assert (object != TARGET_OBJECT_MEMORY);
1712
1713 /* Start by reading up to 4K at a time. The target will throttle
1714 this number down if necessary. */
1715 while (1)
1716 {
1717 ULONGEST xfered_len;
1718 enum target_xfer_status status;
1719
1720 buf.resize (buf_pos + chunk);
1721
1722 status = target_read_partial (ops, object, annex,
1723 (gdb_byte *) &buf[buf_pos],
1724 buf_pos, chunk,
1725 &xfered_len);
1726
1727 if (status == TARGET_XFER_EOF)
1728 {
1729 /* Read all there was. */
1730 buf.resize (buf_pos);
1731 return buf;
1732 }
1733 else if (status != TARGET_XFER_OK)
1734 {
1735 /* An error occurred. */
1736 return {};
1737 }
1738
1739 buf_pos += xfered_len;
1740
1741 QUIT;
1742 }
1743 }
1744
1745 /* See target.h */
1746
1747 gdb::optional<gdb::byte_vector>
1748 target_read_alloc (struct target_ops *ops, enum target_object object,
1749 const char *annex)
1750 {
1751 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1752 }
1753
1754 /* See target.h. */
1755
1756 gdb::optional<gdb::char_vector>
1757 target_read_stralloc (struct target_ops *ops, enum target_object object,
1758 const char *annex)
1759 {
1760 gdb::optional<gdb::char_vector> buf
1761 = target_read_alloc_1<char> (ops, object, annex);
1762
1763 if (!buf)
1764 return {};
1765
1766 if (buf->empty () || buf->back () != '\0')
1767 buf->push_back ('\0');
1768
1769 /* Check for embedded NUL bytes; but allow trailing NULs. */
1770 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1771 it != buf->end (); it++)
1772 if (*it != '\0')
1773 {
1774 warning (_("target object %d, annex %s, "
1775 "contained unexpected null characters"),
1776 (int) object, annex ? annex : "(none)");
1777 break;
1778 }
1779
1780 return buf;
1781 }
1782
1783 /* Memory transfer methods. */
1784
1785 void
1786 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1787 LONGEST len)
1788 {
1789 /* This method is used to read from an alternate, non-current
1790 target. This read must bypass the overlay support (as symbols
1791 don't match this target), and GDB's internal cache (wrong cache
1792 for this target). */
1793 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1794 != len)
1795 memory_error (TARGET_XFER_E_IO, addr);
1796 }
1797
1798 ULONGEST
1799 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1800 int len, enum bfd_endian byte_order)
1801 {
1802 gdb_byte buf[sizeof (ULONGEST)];
1803
1804 gdb_assert (len <= sizeof (buf));
1805 get_target_memory (ops, addr, buf, len);
1806 return extract_unsigned_integer (buf, len, byte_order);
1807 }
1808
1809 /* See target.h. */
1810
1811 int
1812 target_insert_breakpoint (struct gdbarch *gdbarch,
1813 struct bp_target_info *bp_tgt)
1814 {
1815 if (!may_insert_breakpoints)
1816 {
1817 warning (_("May not insert breakpoints"));
1818 return 1;
1819 }
1820
1821 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1822 }
1823
1824 /* See target.h. */
1825
1826 int
1827 target_remove_breakpoint (struct gdbarch *gdbarch,
1828 struct bp_target_info *bp_tgt,
1829 enum remove_bp_reason reason)
1830 {
1831 /* This is kind of a weird case to handle, but the permission might
1832 have been changed after breakpoints were inserted - in which case
1833 we should just take the user literally and assume that any
1834 breakpoints should be left in place. */
1835 if (!may_insert_breakpoints)
1836 {
1837 warning (_("May not remove breakpoints"));
1838 return 1;
1839 }
1840
1841 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1842 }
1843
1844 static void
1845 info_target_command (const char *args, int from_tty)
1846 {
1847 int has_all_mem = 0;
1848
1849 if (symfile_objfile != NULL)
1850 printf_unfiltered (_("Symbols from \"%s\".\n"),
1851 objfile_name (symfile_objfile));
1852
1853 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1854 {
1855 if (!t->has_memory ())
1856 continue;
1857
1858 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1859 continue;
1860 if (has_all_mem)
1861 printf_unfiltered (_("\tWhile running this, "
1862 "GDB does not access memory from...\n"));
1863 printf_unfiltered ("%s:\n", t->longname ());
1864 t->files_info ();
1865 has_all_mem = t->has_all_memory ();
1866 }
1867 }
1868
1869 /* This function is called before any new inferior is created, e.g.
1870 by running a program, attaching, or connecting to a target.
1871 It cleans up any state from previous invocations which might
1872 change between runs. This is a subset of what target_preopen
1873 resets (things which might change between targets). */
1874
1875 void
1876 target_pre_inferior (int from_tty)
1877 {
1878 /* Clear out solib state. Otherwise the solib state of the previous
1879 inferior might have survived and is entirely wrong for the new
1880 target. This has been observed on GNU/Linux using glibc 2.3. How
1881 to reproduce:
1882
1883 bash$ ./foo&
1884 [1] 4711
1885 bash$ ./foo&
1886 [1] 4712
1887 bash$ gdb ./foo
1888 [...]
1889 (gdb) attach 4711
1890 (gdb) detach
1891 (gdb) attach 4712
1892 Cannot access memory at address 0xdeadbeef
1893 */
1894
1895 /* In some OSs, the shared library list is the same/global/shared
1896 across inferiors. If code is shared between processes, so are
1897 memory regions and features. */
1898 if (!gdbarch_has_global_solist (target_gdbarch ()))
1899 {
1900 no_shared_libraries (NULL, from_tty);
1901
1902 invalidate_target_mem_regions ();
1903
1904 target_clear_description ();
1905 }
1906
1907 /* attach_flag may be set if the previous process associated with
1908 the inferior was attached to. */
1909 current_inferior ()->attach_flag = 0;
1910
1911 current_inferior ()->highest_thread_num = 0;
1912
1913 agent_capability_invalidate ();
1914 }
1915
1916 /* This is to be called by the open routine before it does
1917 anything. */
1918
1919 void
1920 target_preopen (int from_tty)
1921 {
1922 dont_repeat ();
1923
1924 if (current_inferior ()->pid != 0)
1925 {
1926 if (!from_tty
1927 || !target_has_execution
1928 || query (_("A program is being debugged already. Kill it? ")))
1929 {
1930 /* Core inferiors actually should be detached, not
1931 killed. */
1932 if (target_has_execution)
1933 target_kill ();
1934 else
1935 target_detach (current_inferior (), 0);
1936 }
1937 else
1938 error (_("Program not killed."));
1939 }
1940
1941 /* Calling target_kill may remove the target from the stack. But if
1942 it doesn't (which seems like a win for UDI), remove it now. */
1943 /* Leave the exec target, though. The user may be switching from a
1944 live process to a core of the same program. */
1945 pop_all_targets_above (file_stratum);
1946
1947 target_pre_inferior (from_tty);
1948 }
1949
1950 /* See target.h. */
1951
1952 void
1953 target_detach (inferior *inf, int from_tty)
1954 {
1955 /* After we have detached, we will clear the register cache for this inferior
1956 by calling registers_changed_ptid. We must save the pid_ptid before
1957 detaching, as the target detach method will clear inf->pid. */
1958 ptid_t save_pid_ptid = ptid_t (inf->pid);
1959
1960 /* As long as some to_detach implementations rely on the current_inferior
1961 (either directly, or indirectly, like through target_gdbarch or by
1962 reading memory), INF needs to be the current inferior. When that
1963 requirement will become no longer true, then we can remove this
1964 assertion. */
1965 gdb_assert (inf == current_inferior ());
1966
1967 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1968 /* Don't remove global breakpoints here. They're removed on
1969 disconnection from the target. */
1970 ;
1971 else
1972 /* If we're in breakpoints-always-inserted mode, have to remove
1973 breakpoints before detaching. */
1974 remove_breakpoints_inf (current_inferior ());
1975
1976 prepare_for_detach ();
1977
1978 /* Hold a strong reference because detaching may unpush the
1979 target. */
1980 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1981
1982 current_top_target ()->detach (inf, from_tty);
1983
1984 process_stratum_target *proc_target
1985 = as_process_stratum_target (proc_target_ref.get ());
1986
1987 registers_changed_ptid (proc_target, save_pid_ptid);
1988
1989 /* We have to ensure we have no frame cache left. Normally,
1990 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1991 inferior_ptid matches save_pid_ptid, but in our case, it does not
1992 call it, as inferior_ptid has been reset. */
1993 reinit_frame_cache ();
1994 }
1995
1996 void
1997 target_disconnect (const char *args, int from_tty)
1998 {
1999 /* If we're in breakpoints-always-inserted mode or if breakpoints
2000 are global across processes, we have to remove them before
2001 disconnecting. */
2002 remove_breakpoints ();
2003
2004 current_top_target ()->disconnect (args, from_tty);
2005 }
2006
2007 /* See target/target.h. */
2008
2009 ptid_t
2010 target_wait (ptid_t ptid, struct target_waitstatus *status,
2011 target_wait_flags options)
2012 {
2013 return current_top_target ()->wait (ptid, status, options);
2014 }
2015
2016 /* See target.h. */
2017
2018 ptid_t
2019 default_target_wait (struct target_ops *ops,
2020 ptid_t ptid, struct target_waitstatus *status,
2021 target_wait_flags options)
2022 {
2023 status->kind = TARGET_WAITKIND_IGNORE;
2024 return minus_one_ptid;
2025 }
2026
2027 std::string
2028 target_pid_to_str (ptid_t ptid)
2029 {
2030 return current_top_target ()->pid_to_str (ptid);
2031 }
2032
2033 const char *
2034 target_thread_name (struct thread_info *info)
2035 {
2036 gdb_assert (info->inf == current_inferior ());
2037
2038 return current_top_target ()->thread_name (info);
2039 }
2040
2041 struct thread_info *
2042 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2043 int handle_len,
2044 struct inferior *inf)
2045 {
2046 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2047 handle_len, inf);
2048 }
2049
2050 /* See target.h. */
2051
2052 gdb::byte_vector
2053 target_thread_info_to_thread_handle (struct thread_info *tip)
2054 {
2055 return current_top_target ()->thread_info_to_thread_handle (tip);
2056 }
2057
2058 void
2059 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2060 {
2061 process_stratum_target *curr_target = current_inferior ()->process_target ();
2062
2063 target_dcache_invalidate ();
2064
2065 current_top_target ()->resume (ptid, step, signal);
2066
2067 registers_changed_ptid (curr_target, ptid);
2068 /* We only set the internal executing state here. The user/frontend
2069 running state is set at a higher level. This also clears the
2070 thread's stop_pc as side effect. */
2071 set_executing (curr_target, ptid, true);
2072 clear_inline_frame_state (curr_target, ptid);
2073 }
2074
2075 /* If true, target_commit_resume is a nop. */
2076 static int defer_target_commit_resume;
2077
2078 /* See target.h. */
2079
2080 void
2081 target_commit_resume (void)
2082 {
2083 if (defer_target_commit_resume)
2084 return;
2085
2086 current_top_target ()->commit_resume ();
2087 }
2088
2089 /* See target.h. */
2090
2091 scoped_restore_tmpl<int>
2092 make_scoped_defer_target_commit_resume ()
2093 {
2094 return make_scoped_restore (&defer_target_commit_resume, 1);
2095 }
2096
2097 void
2098 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2099 {
2100 current_top_target ()->pass_signals (pass_signals);
2101 }
2102
2103 void
2104 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2105 {
2106 current_top_target ()->program_signals (program_signals);
2107 }
2108
2109 static bool
2110 default_follow_fork (struct target_ops *self, bool follow_child,
2111 bool detach_fork)
2112 {
2113 /* Some target returned a fork event, but did not know how to follow it. */
2114 internal_error (__FILE__, __LINE__,
2115 _("could not find a target to follow fork"));
2116 }
2117
2118 /* Look through the list of possible targets for a target that can
2119 follow forks. */
2120
2121 bool
2122 target_follow_fork (bool follow_child, bool detach_fork)
2123 {
2124 return current_top_target ()->follow_fork (follow_child, detach_fork);
2125 }
2126
2127 /* Target wrapper for follow exec hook. */
2128
2129 void
2130 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2131 {
2132 current_top_target ()->follow_exec (inf, execd_pathname);
2133 }
2134
2135 static void
2136 default_mourn_inferior (struct target_ops *self)
2137 {
2138 internal_error (__FILE__, __LINE__,
2139 _("could not find a target to follow mourn inferior"));
2140 }
2141
2142 void
2143 target_mourn_inferior (ptid_t ptid)
2144 {
2145 gdb_assert (ptid == inferior_ptid);
2146 current_top_target ()->mourn_inferior ();
2147
2148 /* We no longer need to keep handles on any of the object files.
2149 Make sure to release them to avoid unnecessarily locking any
2150 of them while we're not actually debugging. */
2151 bfd_cache_close_all ();
2152 }
2153
2154 /* Look for a target which can describe architectural features, starting
2155 from TARGET. If we find one, return its description. */
2156
2157 const struct target_desc *
2158 target_read_description (struct target_ops *target)
2159 {
2160 return target->read_description ();
2161 }
2162
2163 /* This implements a basic search of memory, reading target memory and
2164 performing the search here (as opposed to performing the search in on the
2165 target side with, for example, gdbserver). */
2166
2167 int
2168 simple_search_memory (struct target_ops *ops,
2169 CORE_ADDR start_addr, ULONGEST search_space_len,
2170 const gdb_byte *pattern, ULONGEST pattern_len,
2171 CORE_ADDR *found_addrp)
2172 {
2173 /* NOTE: also defined in find.c testcase. */
2174 #define SEARCH_CHUNK_SIZE 16000
2175 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2176 /* Buffer to hold memory contents for searching. */
2177 unsigned search_buf_size;
2178
2179 search_buf_size = chunk_size + pattern_len - 1;
2180
2181 /* No point in trying to allocate a buffer larger than the search space. */
2182 if (search_space_len < search_buf_size)
2183 search_buf_size = search_space_len;
2184
2185 gdb::byte_vector search_buf (search_buf_size);
2186
2187 /* Prime the search buffer. */
2188
2189 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2190 search_buf.data (), start_addr, search_buf_size)
2191 != search_buf_size)
2192 {
2193 warning (_("Unable to access %s bytes of target "
2194 "memory at %s, halting search."),
2195 pulongest (search_buf_size), hex_string (start_addr));
2196 return -1;
2197 }
2198
2199 /* Perform the search.
2200
2201 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2202 When we've scanned N bytes we copy the trailing bytes to the start and
2203 read in another N bytes. */
2204
2205 while (search_space_len >= pattern_len)
2206 {
2207 gdb_byte *found_ptr;
2208 unsigned nr_search_bytes
2209 = std::min (search_space_len, (ULONGEST) search_buf_size);
2210
2211 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2212 pattern, pattern_len);
2213
2214 if (found_ptr != NULL)
2215 {
2216 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2217
2218 *found_addrp = found_addr;
2219 return 1;
2220 }
2221
2222 /* Not found in this chunk, skip to next chunk. */
2223
2224 /* Don't let search_space_len wrap here, it's unsigned. */
2225 if (search_space_len >= chunk_size)
2226 search_space_len -= chunk_size;
2227 else
2228 search_space_len = 0;
2229
2230 if (search_space_len >= pattern_len)
2231 {
2232 unsigned keep_len = search_buf_size - chunk_size;
2233 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2234 int nr_to_read;
2235
2236 /* Copy the trailing part of the previous iteration to the front
2237 of the buffer for the next iteration. */
2238 gdb_assert (keep_len == pattern_len - 1);
2239 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2240
2241 nr_to_read = std::min (search_space_len - keep_len,
2242 (ULONGEST) chunk_size);
2243
2244 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2245 &search_buf[keep_len], read_addr,
2246 nr_to_read) != nr_to_read)
2247 {
2248 warning (_("Unable to access %s bytes of target "
2249 "memory at %s, halting search."),
2250 plongest (nr_to_read),
2251 hex_string (read_addr));
2252 return -1;
2253 }
2254
2255 start_addr += chunk_size;
2256 }
2257 }
2258
2259 /* Not found. */
2260
2261 return 0;
2262 }
2263
2264 /* Default implementation of memory-searching. */
2265
2266 static int
2267 default_search_memory (struct target_ops *self,
2268 CORE_ADDR start_addr, ULONGEST search_space_len,
2269 const gdb_byte *pattern, ULONGEST pattern_len,
2270 CORE_ADDR *found_addrp)
2271 {
2272 /* Start over from the top of the target stack. */
2273 return simple_search_memory (current_top_target (),
2274 start_addr, search_space_len,
2275 pattern, pattern_len, found_addrp);
2276 }
2277
2278 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2279 sequence of bytes in PATTERN with length PATTERN_LEN.
2280
2281 The result is 1 if found, 0 if not found, and -1 if there was an error
2282 requiring halting of the search (e.g. memory read error).
2283 If the pattern is found the address is recorded in FOUND_ADDRP. */
2284
2285 int
2286 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2287 const gdb_byte *pattern, ULONGEST pattern_len,
2288 CORE_ADDR *found_addrp)
2289 {
2290 return current_top_target ()->search_memory (start_addr, search_space_len,
2291 pattern, pattern_len, found_addrp);
2292 }
2293
2294 /* Look through the currently pushed targets. If none of them will
2295 be able to restart the currently running process, issue an error
2296 message. */
2297
2298 void
2299 target_require_runnable (void)
2300 {
2301 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2302 {
2303 /* If this target knows how to create a new program, then
2304 assume we will still be able to after killing the current
2305 one. Either killing and mourning will not pop T, or else
2306 find_default_run_target will find it again. */
2307 if (t->can_create_inferior ())
2308 return;
2309
2310 /* Do not worry about targets at certain strata that can not
2311 create inferiors. Assume they will be pushed again if
2312 necessary, and continue to the process_stratum. */
2313 if (t->stratum () > process_stratum)
2314 continue;
2315
2316 error (_("The \"%s\" target does not support \"run\". "
2317 "Try \"help target\" or \"continue\"."),
2318 t->shortname ());
2319 }
2320
2321 /* This function is only called if the target is running. In that
2322 case there should have been a process_stratum target and it
2323 should either know how to create inferiors, or not... */
2324 internal_error (__FILE__, __LINE__, _("No targets found"));
2325 }
2326
2327 /* Whether GDB is allowed to fall back to the default run target for
2328 "run", "attach", etc. when no target is connected yet. */
2329 static bool auto_connect_native_target = true;
2330
2331 static void
2332 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2333 struct cmd_list_element *c, const char *value)
2334 {
2335 fprintf_filtered (file,
2336 _("Whether GDB may automatically connect to the "
2337 "native target is %s.\n"),
2338 value);
2339 }
2340
2341 /* A pointer to the target that can respond to "run" or "attach".
2342 Native targets are always singletons and instantiated early at GDB
2343 startup. */
2344 static target_ops *the_native_target;
2345
2346 /* See target.h. */
2347
2348 void
2349 set_native_target (target_ops *target)
2350 {
2351 if (the_native_target != NULL)
2352 internal_error (__FILE__, __LINE__,
2353 _("native target already set (\"%s\")."),
2354 the_native_target->longname ());
2355
2356 the_native_target = target;
2357 }
2358
2359 /* See target.h. */
2360
2361 target_ops *
2362 get_native_target ()
2363 {
2364 return the_native_target;
2365 }
2366
2367 /* Look through the list of possible targets for a target that can
2368 execute a run or attach command without any other data. This is
2369 used to locate the default process stratum.
2370
2371 If DO_MESG is not NULL, the result is always valid (error() is
2372 called for errors); else, return NULL on error. */
2373
2374 static struct target_ops *
2375 find_default_run_target (const char *do_mesg)
2376 {
2377 if (auto_connect_native_target && the_native_target != NULL)
2378 return the_native_target;
2379
2380 if (do_mesg != NULL)
2381 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2382 return NULL;
2383 }
2384
2385 /* See target.h. */
2386
2387 struct target_ops *
2388 find_attach_target (void)
2389 {
2390 /* If a target on the current stack can attach, use it. */
2391 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2392 {
2393 if (t->can_attach ())
2394 return t;
2395 }
2396
2397 /* Otherwise, use the default run target for attaching. */
2398 return find_default_run_target ("attach");
2399 }
2400
2401 /* See target.h. */
2402
2403 struct target_ops *
2404 find_run_target (void)
2405 {
2406 /* If a target on the current stack can run, use it. */
2407 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2408 {
2409 if (t->can_create_inferior ())
2410 return t;
2411 }
2412
2413 /* Otherwise, use the default run target. */
2414 return find_default_run_target ("run");
2415 }
2416
2417 bool
2418 target_ops::info_proc (const char *args, enum info_proc_what what)
2419 {
2420 return false;
2421 }
2422
2423 /* Implement the "info proc" command. */
2424
2425 int
2426 target_info_proc (const char *args, enum info_proc_what what)
2427 {
2428 struct target_ops *t;
2429
2430 /* If we're already connected to something that can get us OS
2431 related data, use it. Otherwise, try using the native
2432 target. */
2433 t = find_target_at (process_stratum);
2434 if (t == NULL)
2435 t = find_default_run_target (NULL);
2436
2437 for (; t != NULL; t = t->beneath ())
2438 {
2439 if (t->info_proc (args, what))
2440 {
2441 if (targetdebug)
2442 fprintf_unfiltered (gdb_stdlog,
2443 "target_info_proc (\"%s\", %d)\n", args, what);
2444
2445 return 1;
2446 }
2447 }
2448
2449 return 0;
2450 }
2451
2452 static int
2453 find_default_supports_disable_randomization (struct target_ops *self)
2454 {
2455 struct target_ops *t;
2456
2457 t = find_default_run_target (NULL);
2458 if (t != NULL)
2459 return t->supports_disable_randomization ();
2460 return 0;
2461 }
2462
2463 int
2464 target_supports_disable_randomization (void)
2465 {
2466 return current_top_target ()->supports_disable_randomization ();
2467 }
2468
2469 /* See target/target.h. */
2470
2471 int
2472 target_supports_multi_process (void)
2473 {
2474 return current_top_target ()->supports_multi_process ();
2475 }
2476
2477 /* See target.h. */
2478
2479 gdb::optional<gdb::char_vector>
2480 target_get_osdata (const char *type)
2481 {
2482 struct target_ops *t;
2483
2484 /* If we're already connected to something that can get us OS
2485 related data, use it. Otherwise, try using the native
2486 target. */
2487 t = find_target_at (process_stratum);
2488 if (t == NULL)
2489 t = find_default_run_target ("get OS data");
2490
2491 if (!t)
2492 return {};
2493
2494 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2495 }
2496
2497 /* Determine the current address space of thread PTID. */
2498
2499 struct address_space *
2500 target_thread_address_space (ptid_t ptid)
2501 {
2502 struct address_space *aspace;
2503
2504 aspace = current_top_target ()->thread_address_space (ptid);
2505 gdb_assert (aspace != NULL);
2506
2507 return aspace;
2508 }
2509
2510 /* See target.h. */
2511
2512 target_ops *
2513 target_ops::beneath () const
2514 {
2515 return current_inferior ()->find_target_beneath (this);
2516 }
2517
2518 void
2519 target_ops::close ()
2520 {
2521 }
2522
2523 bool
2524 target_ops::can_attach ()
2525 {
2526 return 0;
2527 }
2528
2529 void
2530 target_ops::attach (const char *, int)
2531 {
2532 gdb_assert_not_reached ("target_ops::attach called");
2533 }
2534
2535 bool
2536 target_ops::can_create_inferior ()
2537 {
2538 return 0;
2539 }
2540
2541 void
2542 target_ops::create_inferior (const char *, const std::string &,
2543 char **, int)
2544 {
2545 gdb_assert_not_reached ("target_ops::create_inferior called");
2546 }
2547
2548 bool
2549 target_ops::can_run ()
2550 {
2551 return false;
2552 }
2553
2554 int
2555 target_can_run ()
2556 {
2557 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2558 {
2559 if (t->can_run ())
2560 return 1;
2561 }
2562
2563 return 0;
2564 }
2565
2566 /* Target file operations. */
2567
2568 static struct target_ops *
2569 default_fileio_target (void)
2570 {
2571 struct target_ops *t;
2572
2573 /* If we're already connected to something that can perform
2574 file I/O, use it. Otherwise, try using the native target. */
2575 t = find_target_at (process_stratum);
2576 if (t != NULL)
2577 return t;
2578 return find_default_run_target ("file I/O");
2579 }
2580
2581 /* File handle for target file operations. */
2582
2583 struct fileio_fh_t
2584 {
2585 /* The target on which this file is open. NULL if the target is
2586 meanwhile closed while the handle is open. */
2587 target_ops *target;
2588
2589 /* The file descriptor on the target. */
2590 int target_fd;
2591
2592 /* Check whether this fileio_fh_t represents a closed file. */
2593 bool is_closed ()
2594 {
2595 return target_fd < 0;
2596 }
2597 };
2598
2599 /* Vector of currently open file handles. The value returned by
2600 target_fileio_open and passed as the FD argument to other
2601 target_fileio_* functions is an index into this vector. This
2602 vector's entries are never freed; instead, files are marked as
2603 closed, and the handle becomes available for reuse. */
2604 static std::vector<fileio_fh_t> fileio_fhandles;
2605
2606 /* Index into fileio_fhandles of the lowest handle that might be
2607 closed. This permits handle reuse without searching the whole
2608 list each time a new file is opened. */
2609 static int lowest_closed_fd;
2610
2611 /* Invalidate the target associated with open handles that were open
2612 on target TARG, since we're about to close (and maybe destroy) the
2613 target. The handles remain open from the client's perspective, but
2614 trying to do anything with them other than closing them will fail
2615 with EIO. */
2616
2617 static void
2618 fileio_handles_invalidate_target (target_ops *targ)
2619 {
2620 for (fileio_fh_t &fh : fileio_fhandles)
2621 if (fh.target == targ)
2622 fh.target = NULL;
2623 }
2624
2625 /* Acquire a target fileio file descriptor. */
2626
2627 static int
2628 acquire_fileio_fd (target_ops *target, int target_fd)
2629 {
2630 /* Search for closed handles to reuse. */
2631 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2632 {
2633 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2634
2635 if (fh.is_closed ())
2636 break;
2637 }
2638
2639 /* Push a new handle if no closed handles were found. */
2640 if (lowest_closed_fd == fileio_fhandles.size ())
2641 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2642 else
2643 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2644
2645 /* Should no longer be marked closed. */
2646 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2647
2648 /* Return its index, and start the next lookup at
2649 the next index. */
2650 return lowest_closed_fd++;
2651 }
2652
2653 /* Release a target fileio file descriptor. */
2654
2655 static void
2656 release_fileio_fd (int fd, fileio_fh_t *fh)
2657 {
2658 fh->target_fd = -1;
2659 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2660 }
2661
2662 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2663
2664 static fileio_fh_t *
2665 fileio_fd_to_fh (int fd)
2666 {
2667 return &fileio_fhandles[fd];
2668 }
2669
2670
2671 /* Default implementations of file i/o methods. We don't want these
2672 to delegate automatically, because we need to know which target
2673 supported the method, in order to call it directly from within
2674 pread/pwrite, etc. */
2675
2676 int
2677 target_ops::fileio_open (struct inferior *inf, const char *filename,
2678 int flags, int mode, int warn_if_slow,
2679 int *target_errno)
2680 {
2681 *target_errno = FILEIO_ENOSYS;
2682 return -1;
2683 }
2684
2685 int
2686 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2687 ULONGEST offset, int *target_errno)
2688 {
2689 *target_errno = FILEIO_ENOSYS;
2690 return -1;
2691 }
2692
2693 int
2694 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2695 ULONGEST offset, int *target_errno)
2696 {
2697 *target_errno = FILEIO_ENOSYS;
2698 return -1;
2699 }
2700
2701 int
2702 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2703 {
2704 *target_errno = FILEIO_ENOSYS;
2705 return -1;
2706 }
2707
2708 int
2709 target_ops::fileio_close (int fd, int *target_errno)
2710 {
2711 *target_errno = FILEIO_ENOSYS;
2712 return -1;
2713 }
2714
2715 int
2716 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2717 int *target_errno)
2718 {
2719 *target_errno = FILEIO_ENOSYS;
2720 return -1;
2721 }
2722
2723 gdb::optional<std::string>
2724 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2725 int *target_errno)
2726 {
2727 *target_errno = FILEIO_ENOSYS;
2728 return {};
2729 }
2730
2731 /* See target.h. */
2732
2733 int
2734 target_fileio_open (struct inferior *inf, const char *filename,
2735 int flags, int mode, bool warn_if_slow, int *target_errno)
2736 {
2737 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2738 {
2739 int fd = t->fileio_open (inf, filename, flags, mode,
2740 warn_if_slow, target_errno);
2741
2742 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2743 continue;
2744
2745 if (fd < 0)
2746 fd = -1;
2747 else
2748 fd = acquire_fileio_fd (t, fd);
2749
2750 if (targetdebug)
2751 fprintf_unfiltered (gdb_stdlog,
2752 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2753 " = %d (%d)\n",
2754 inf == NULL ? 0 : inf->num,
2755 filename, flags, mode,
2756 warn_if_slow, fd,
2757 fd != -1 ? 0 : *target_errno);
2758 return fd;
2759 }
2760
2761 *target_errno = FILEIO_ENOSYS;
2762 return -1;
2763 }
2764
2765 /* See target.h. */
2766
2767 int
2768 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2769 ULONGEST offset, int *target_errno)
2770 {
2771 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2772 int ret = -1;
2773
2774 if (fh->is_closed ())
2775 *target_errno = EBADF;
2776 else if (fh->target == NULL)
2777 *target_errno = EIO;
2778 else
2779 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2780 len, offset, target_errno);
2781
2782 if (targetdebug)
2783 fprintf_unfiltered (gdb_stdlog,
2784 "target_fileio_pwrite (%d,...,%d,%s) "
2785 "= %d (%d)\n",
2786 fd, len, pulongest (offset),
2787 ret, ret != -1 ? 0 : *target_errno);
2788 return ret;
2789 }
2790
2791 /* See target.h. */
2792
2793 int
2794 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2795 ULONGEST offset, int *target_errno)
2796 {
2797 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2798 int ret = -1;
2799
2800 if (fh->is_closed ())
2801 *target_errno = EBADF;
2802 else if (fh->target == NULL)
2803 *target_errno = EIO;
2804 else
2805 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2806 len, offset, target_errno);
2807
2808 if (targetdebug)
2809 fprintf_unfiltered (gdb_stdlog,
2810 "target_fileio_pread (%d,...,%d,%s) "
2811 "= %d (%d)\n",
2812 fd, len, pulongest (offset),
2813 ret, ret != -1 ? 0 : *target_errno);
2814 return ret;
2815 }
2816
2817 /* See target.h. */
2818
2819 int
2820 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2821 {
2822 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2823 int ret = -1;
2824
2825 if (fh->is_closed ())
2826 *target_errno = EBADF;
2827 else if (fh->target == NULL)
2828 *target_errno = EIO;
2829 else
2830 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2831
2832 if (targetdebug)
2833 fprintf_unfiltered (gdb_stdlog,
2834 "target_fileio_fstat (%d) = %d (%d)\n",
2835 fd, ret, ret != -1 ? 0 : *target_errno);
2836 return ret;
2837 }
2838
2839 /* See target.h. */
2840
2841 int
2842 target_fileio_close (int fd, int *target_errno)
2843 {
2844 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2845 int ret = -1;
2846
2847 if (fh->is_closed ())
2848 *target_errno = EBADF;
2849 else
2850 {
2851 if (fh->target != NULL)
2852 ret = fh->target->fileio_close (fh->target_fd,
2853 target_errno);
2854 else
2855 ret = 0;
2856 release_fileio_fd (fd, fh);
2857 }
2858
2859 if (targetdebug)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "target_fileio_close (%d) = %d (%d)\n",
2862 fd, ret, ret != -1 ? 0 : *target_errno);
2863 return ret;
2864 }
2865
2866 /* See target.h. */
2867
2868 int
2869 target_fileio_unlink (struct inferior *inf, const char *filename,
2870 int *target_errno)
2871 {
2872 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2873 {
2874 int ret = t->fileio_unlink (inf, filename, target_errno);
2875
2876 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2877 continue;
2878
2879 if (targetdebug)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "target_fileio_unlink (%d,%s)"
2882 " = %d (%d)\n",
2883 inf == NULL ? 0 : inf->num, filename,
2884 ret, ret != -1 ? 0 : *target_errno);
2885 return ret;
2886 }
2887
2888 *target_errno = FILEIO_ENOSYS;
2889 return -1;
2890 }
2891
2892 /* See target.h. */
2893
2894 gdb::optional<std::string>
2895 target_fileio_readlink (struct inferior *inf, const char *filename,
2896 int *target_errno)
2897 {
2898 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2899 {
2900 gdb::optional<std::string> ret
2901 = t->fileio_readlink (inf, filename, target_errno);
2902
2903 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2904 continue;
2905
2906 if (targetdebug)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "target_fileio_readlink (%d,%s)"
2909 " = %s (%d)\n",
2910 inf == NULL ? 0 : inf->num,
2911 filename, ret ? ret->c_str () : "(nil)",
2912 ret ? 0 : *target_errno);
2913 return ret;
2914 }
2915
2916 *target_errno = FILEIO_ENOSYS;
2917 return {};
2918 }
2919
2920 /* Like scoped_fd, but specific to target fileio. */
2921
2922 class scoped_target_fd
2923 {
2924 public:
2925 explicit scoped_target_fd (int fd) noexcept
2926 : m_fd (fd)
2927 {
2928 }
2929
2930 ~scoped_target_fd ()
2931 {
2932 if (m_fd >= 0)
2933 {
2934 int target_errno;
2935
2936 target_fileio_close (m_fd, &target_errno);
2937 }
2938 }
2939
2940 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2941
2942 int get () const noexcept
2943 {
2944 return m_fd;
2945 }
2946
2947 private:
2948 int m_fd;
2949 };
2950
2951 /* Read target file FILENAME, in the filesystem as seen by INF. If
2952 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2953 remote targets, the remote stub). Store the result in *BUF_P and
2954 return the size of the transferred data. PADDING additional bytes
2955 are available in *BUF_P. This is a helper function for
2956 target_fileio_read_alloc; see the declaration of that function for
2957 more information. */
2958
2959 static LONGEST
2960 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2961 gdb_byte **buf_p, int padding)
2962 {
2963 size_t buf_alloc, buf_pos;
2964 gdb_byte *buf;
2965 LONGEST n;
2966 int target_errno;
2967
2968 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2969 0700, false, &target_errno));
2970 if (fd.get () == -1)
2971 return -1;
2972
2973 /* Start by reading up to 4K at a time. The target will throttle
2974 this number down if necessary. */
2975 buf_alloc = 4096;
2976 buf = (gdb_byte *) xmalloc (buf_alloc);
2977 buf_pos = 0;
2978 while (1)
2979 {
2980 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2981 buf_alloc - buf_pos - padding, buf_pos,
2982 &target_errno);
2983 if (n < 0)
2984 {
2985 /* An error occurred. */
2986 xfree (buf);
2987 return -1;
2988 }
2989 else if (n == 0)
2990 {
2991 /* Read all there was. */
2992 if (buf_pos == 0)
2993 xfree (buf);
2994 else
2995 *buf_p = buf;
2996 return buf_pos;
2997 }
2998
2999 buf_pos += n;
3000
3001 /* If the buffer is filling up, expand it. */
3002 if (buf_alloc < buf_pos * 2)
3003 {
3004 buf_alloc *= 2;
3005 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3006 }
3007
3008 QUIT;
3009 }
3010 }
3011
3012 /* See target.h. */
3013
3014 LONGEST
3015 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3016 gdb_byte **buf_p)
3017 {
3018 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3019 }
3020
3021 /* See target.h. */
3022
3023 gdb::unique_xmalloc_ptr<char>
3024 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3025 {
3026 gdb_byte *buffer;
3027 char *bufstr;
3028 LONGEST i, transferred;
3029
3030 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3031 bufstr = (char *) buffer;
3032
3033 if (transferred < 0)
3034 return gdb::unique_xmalloc_ptr<char> (nullptr);
3035
3036 if (transferred == 0)
3037 return make_unique_xstrdup ("");
3038
3039 bufstr[transferred] = 0;
3040
3041 /* Check for embedded NUL bytes; but allow trailing NULs. */
3042 for (i = strlen (bufstr); i < transferred; i++)
3043 if (bufstr[i] != 0)
3044 {
3045 warning (_("target file %s "
3046 "contained unexpected null characters"),
3047 filename);
3048 break;
3049 }
3050
3051 return gdb::unique_xmalloc_ptr<char> (bufstr);
3052 }
3053
3054
3055 static int
3056 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3057 CORE_ADDR addr, int len)
3058 {
3059 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3060 }
3061
3062 static int
3063 default_watchpoint_addr_within_range (struct target_ops *target,
3064 CORE_ADDR addr,
3065 CORE_ADDR start, int length)
3066 {
3067 return addr >= start && addr < start + length;
3068 }
3069
3070 /* See target.h. */
3071
3072 target_ops *
3073 target_stack::find_beneath (const target_ops *t) const
3074 {
3075 /* Look for a non-empty slot at stratum levels beneath T's. */
3076 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3077 if (m_stack[stratum] != NULL)
3078 return m_stack[stratum];
3079
3080 return NULL;
3081 }
3082
3083 /* See target.h. */
3084
3085 struct target_ops *
3086 find_target_at (enum strata stratum)
3087 {
3088 return current_inferior ()->target_at (stratum);
3089 }
3090
3091 \f
3092
3093 /* See target.h */
3094
3095 void
3096 target_announce_detach (int from_tty)
3097 {
3098 pid_t pid;
3099 const char *exec_file;
3100
3101 if (!from_tty)
3102 return;
3103
3104 exec_file = get_exec_file (0);
3105 if (exec_file == NULL)
3106 exec_file = "";
3107
3108 pid = inferior_ptid.pid ();
3109 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3110 target_pid_to_str (ptid_t (pid)).c_str ());
3111 }
3112
3113 /* The inferior process has died. Long live the inferior! */
3114
3115 void
3116 generic_mourn_inferior (void)
3117 {
3118 inferior *inf = current_inferior ();
3119
3120 switch_to_no_thread ();
3121
3122 /* Mark breakpoints uninserted in case something tries to delete a
3123 breakpoint while we delete the inferior's threads (which would
3124 fail, since the inferior is long gone). */
3125 mark_breakpoints_out ();
3126
3127 if (inf->pid != 0)
3128 exit_inferior (inf);
3129
3130 /* Note this wipes step-resume breakpoints, so needs to be done
3131 after exit_inferior, which ends up referencing the step-resume
3132 breakpoints through clear_thread_inferior_resources. */
3133 breakpoint_init_inferior (inf_exited);
3134
3135 registers_changed ();
3136
3137 reopen_exec_file ();
3138 reinit_frame_cache ();
3139
3140 if (deprecated_detach_hook)
3141 deprecated_detach_hook ();
3142 }
3143 \f
3144 /* Convert a normal process ID to a string. Returns the string in a
3145 static buffer. */
3146
3147 std::string
3148 normal_pid_to_str (ptid_t ptid)
3149 {
3150 return string_printf ("process %d", ptid.pid ());
3151 }
3152
3153 static std::string
3154 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3155 {
3156 return normal_pid_to_str (ptid);
3157 }
3158
3159 /* Error-catcher for target_find_memory_regions. */
3160 static int
3161 dummy_find_memory_regions (struct target_ops *self,
3162 find_memory_region_ftype ignore1, void *ignore2)
3163 {
3164 error (_("Command not implemented for this target."));
3165 return 0;
3166 }
3167
3168 /* Error-catcher for target_make_corefile_notes. */
3169 static char *
3170 dummy_make_corefile_notes (struct target_ops *self,
3171 bfd *ignore1, int *ignore2)
3172 {
3173 error (_("Command not implemented for this target."));
3174 return NULL;
3175 }
3176
3177 #include "target-delegates.c"
3178
3179 /* The initial current target, so that there is always a semi-valid
3180 current target. */
3181
3182 static dummy_target the_dummy_target;
3183
3184 /* See target.h. */
3185
3186 target_ops *
3187 get_dummy_target ()
3188 {
3189 return &the_dummy_target;
3190 }
3191
3192 static const target_info dummy_target_info = {
3193 "None",
3194 N_("None"),
3195 ""
3196 };
3197
3198 strata
3199 dummy_target::stratum () const
3200 {
3201 return dummy_stratum;
3202 }
3203
3204 strata
3205 debug_target::stratum () const
3206 {
3207 return debug_stratum;
3208 }
3209
3210 const target_info &
3211 dummy_target::info () const
3212 {
3213 return dummy_target_info;
3214 }
3215
3216 const target_info &
3217 debug_target::info () const
3218 {
3219 return beneath ()->info ();
3220 }
3221
3222 \f
3223
3224 void
3225 target_close (struct target_ops *targ)
3226 {
3227 gdb_assert (!target_is_pushed (targ));
3228
3229 fileio_handles_invalidate_target (targ);
3230
3231 targ->close ();
3232
3233 if (targetdebug)
3234 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3235 }
3236
3237 int
3238 target_thread_alive (ptid_t ptid)
3239 {
3240 return current_top_target ()->thread_alive (ptid);
3241 }
3242
3243 void
3244 target_update_thread_list (void)
3245 {
3246 current_top_target ()->update_thread_list ();
3247 }
3248
3249 void
3250 target_stop (ptid_t ptid)
3251 {
3252 if (!may_stop)
3253 {
3254 warning (_("May not interrupt or stop the target, ignoring attempt"));
3255 return;
3256 }
3257
3258 current_top_target ()->stop (ptid);
3259 }
3260
3261 void
3262 target_interrupt ()
3263 {
3264 if (!may_stop)
3265 {
3266 warning (_("May not interrupt or stop the target, ignoring attempt"));
3267 return;
3268 }
3269
3270 current_top_target ()->interrupt ();
3271 }
3272
3273 /* See target.h. */
3274
3275 void
3276 target_pass_ctrlc (void)
3277 {
3278 /* Pass the Ctrl-C to the first target that has a thread
3279 running. */
3280 for (inferior *inf : all_inferiors ())
3281 {
3282 target_ops *proc_target = inf->process_target ();
3283 if (proc_target == NULL)
3284 continue;
3285
3286 for (thread_info *thr : inf->non_exited_threads ())
3287 {
3288 /* A thread can be THREAD_STOPPED and executing, while
3289 running an infcall. */
3290 if (thr->state == THREAD_RUNNING || thr->executing)
3291 {
3292 /* We can get here quite deep in target layers. Avoid
3293 switching thread context or anything that would
3294 communicate with the target (e.g., to fetch
3295 registers), or flushing e.g., the frame cache. We
3296 just switch inferior in order to be able to call
3297 through the target_stack. */
3298 scoped_restore_current_inferior restore_inferior;
3299 set_current_inferior (inf);
3300 current_top_target ()->pass_ctrlc ();
3301 return;
3302 }
3303 }
3304 }
3305 }
3306
3307 /* See target.h. */
3308
3309 void
3310 default_target_pass_ctrlc (struct target_ops *ops)
3311 {
3312 target_interrupt ();
3313 }
3314
3315 /* See target/target.h. */
3316
3317 void
3318 target_stop_and_wait (ptid_t ptid)
3319 {
3320 struct target_waitstatus status;
3321 bool was_non_stop = non_stop;
3322
3323 non_stop = true;
3324 target_stop (ptid);
3325
3326 memset (&status, 0, sizeof (status));
3327 target_wait (ptid, &status, 0);
3328
3329 non_stop = was_non_stop;
3330 }
3331
3332 /* See target/target.h. */
3333
3334 void
3335 target_continue_no_signal (ptid_t ptid)
3336 {
3337 target_resume (ptid, 0, GDB_SIGNAL_0);
3338 }
3339
3340 /* See target/target.h. */
3341
3342 void
3343 target_continue (ptid_t ptid, enum gdb_signal signal)
3344 {
3345 target_resume (ptid, 0, signal);
3346 }
3347
3348 /* Concatenate ELEM to LIST, a comma-separated list. */
3349
3350 static void
3351 str_comma_list_concat_elem (std::string *list, const char *elem)
3352 {
3353 if (!list->empty ())
3354 list->append (", ");
3355
3356 list->append (elem);
3357 }
3358
3359 /* Helper for target_options_to_string. If OPT is present in
3360 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3361 OPT is removed from TARGET_OPTIONS. */
3362
3363 static void
3364 do_option (target_wait_flags *target_options, std::string *ret,
3365 target_wait_flag opt, const char *opt_str)
3366 {
3367 if ((*target_options & opt) != 0)
3368 {
3369 str_comma_list_concat_elem (ret, opt_str);
3370 *target_options &= ~opt;
3371 }
3372 }
3373
3374 /* See target.h. */
3375
3376 std::string
3377 target_options_to_string (target_wait_flags target_options)
3378 {
3379 std::string ret;
3380
3381 #define DO_TARG_OPTION(OPT) \
3382 do_option (&target_options, &ret, OPT, #OPT)
3383
3384 DO_TARG_OPTION (TARGET_WNOHANG);
3385
3386 if (target_options != 0)
3387 str_comma_list_concat_elem (&ret, "unknown???");
3388
3389 return ret;
3390 }
3391
3392 void
3393 target_fetch_registers (struct regcache *regcache, int regno)
3394 {
3395 current_top_target ()->fetch_registers (regcache, regno);
3396 if (targetdebug)
3397 regcache->debug_print_register ("target_fetch_registers", regno);
3398 }
3399
3400 void
3401 target_store_registers (struct regcache *regcache, int regno)
3402 {
3403 if (!may_write_registers)
3404 error (_("Writing to registers is not allowed (regno %d)"), regno);
3405
3406 current_top_target ()->store_registers (regcache, regno);
3407 if (targetdebug)
3408 {
3409 regcache->debug_print_register ("target_store_registers", regno);
3410 }
3411 }
3412
3413 int
3414 target_core_of_thread (ptid_t ptid)
3415 {
3416 return current_top_target ()->core_of_thread (ptid);
3417 }
3418
3419 int
3420 simple_verify_memory (struct target_ops *ops,
3421 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3422 {
3423 LONGEST total_xfered = 0;
3424
3425 while (total_xfered < size)
3426 {
3427 ULONGEST xfered_len;
3428 enum target_xfer_status status;
3429 gdb_byte buf[1024];
3430 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3431
3432 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3433 buf, NULL, lma + total_xfered, howmuch,
3434 &xfered_len);
3435 if (status == TARGET_XFER_OK
3436 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3437 {
3438 total_xfered += xfered_len;
3439 QUIT;
3440 }
3441 else
3442 return 0;
3443 }
3444 return 1;
3445 }
3446
3447 /* Default implementation of memory verification. */
3448
3449 static int
3450 default_verify_memory (struct target_ops *self,
3451 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3452 {
3453 /* Start over from the top of the target stack. */
3454 return simple_verify_memory (current_top_target (),
3455 data, memaddr, size);
3456 }
3457
3458 int
3459 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3460 {
3461 return current_top_target ()->verify_memory (data, memaddr, size);
3462 }
3463
3464 /* The documentation for this function is in its prototype declaration in
3465 target.h. */
3466
3467 int
3468 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3469 enum target_hw_bp_type rw)
3470 {
3471 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3472 }
3473
3474 /* The documentation for this function is in its prototype declaration in
3475 target.h. */
3476
3477 int
3478 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3479 enum target_hw_bp_type rw)
3480 {
3481 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3482 }
3483
3484 /* The documentation for this function is in its prototype declaration
3485 in target.h. */
3486
3487 int
3488 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3489 {
3490 return current_top_target ()->masked_watch_num_registers (addr, mask);
3491 }
3492
3493 /* The documentation for this function is in its prototype declaration
3494 in target.h. */
3495
3496 int
3497 target_ranged_break_num_registers (void)
3498 {
3499 return current_top_target ()->ranged_break_num_registers ();
3500 }
3501
3502 /* See target.h. */
3503
3504 struct btrace_target_info *
3505 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3506 {
3507 return current_top_target ()->enable_btrace (ptid, conf);
3508 }
3509
3510 /* See target.h. */
3511
3512 void
3513 target_disable_btrace (struct btrace_target_info *btinfo)
3514 {
3515 current_top_target ()->disable_btrace (btinfo);
3516 }
3517
3518 /* See target.h. */
3519
3520 void
3521 target_teardown_btrace (struct btrace_target_info *btinfo)
3522 {
3523 current_top_target ()->teardown_btrace (btinfo);
3524 }
3525
3526 /* See target.h. */
3527
3528 enum btrace_error
3529 target_read_btrace (struct btrace_data *btrace,
3530 struct btrace_target_info *btinfo,
3531 enum btrace_read_type type)
3532 {
3533 return current_top_target ()->read_btrace (btrace, btinfo, type);
3534 }
3535
3536 /* See target.h. */
3537
3538 const struct btrace_config *
3539 target_btrace_conf (const struct btrace_target_info *btinfo)
3540 {
3541 return current_top_target ()->btrace_conf (btinfo);
3542 }
3543
3544 /* See target.h. */
3545
3546 void
3547 target_stop_recording (void)
3548 {
3549 current_top_target ()->stop_recording ();
3550 }
3551
3552 /* See target.h. */
3553
3554 void
3555 target_save_record (const char *filename)
3556 {
3557 current_top_target ()->save_record (filename);
3558 }
3559
3560 /* See target.h. */
3561
3562 int
3563 target_supports_delete_record ()
3564 {
3565 return current_top_target ()->supports_delete_record ();
3566 }
3567
3568 /* See target.h. */
3569
3570 void
3571 target_delete_record (void)
3572 {
3573 current_top_target ()->delete_record ();
3574 }
3575
3576 /* See target.h. */
3577
3578 enum record_method
3579 target_record_method (ptid_t ptid)
3580 {
3581 return current_top_target ()->record_method (ptid);
3582 }
3583
3584 /* See target.h. */
3585
3586 int
3587 target_record_is_replaying (ptid_t ptid)
3588 {
3589 return current_top_target ()->record_is_replaying (ptid);
3590 }
3591
3592 /* See target.h. */
3593
3594 int
3595 target_record_will_replay (ptid_t ptid, int dir)
3596 {
3597 return current_top_target ()->record_will_replay (ptid, dir);
3598 }
3599
3600 /* See target.h. */
3601
3602 void
3603 target_record_stop_replaying (void)
3604 {
3605 current_top_target ()->record_stop_replaying ();
3606 }
3607
3608 /* See target.h. */
3609
3610 void
3611 target_goto_record_begin (void)
3612 {
3613 current_top_target ()->goto_record_begin ();
3614 }
3615
3616 /* See target.h. */
3617
3618 void
3619 target_goto_record_end (void)
3620 {
3621 current_top_target ()->goto_record_end ();
3622 }
3623
3624 /* See target.h. */
3625
3626 void
3627 target_goto_record (ULONGEST insn)
3628 {
3629 current_top_target ()->goto_record (insn);
3630 }
3631
3632 /* See target.h. */
3633
3634 void
3635 target_insn_history (int size, gdb_disassembly_flags flags)
3636 {
3637 current_top_target ()->insn_history (size, flags);
3638 }
3639
3640 /* See target.h. */
3641
3642 void
3643 target_insn_history_from (ULONGEST from, int size,
3644 gdb_disassembly_flags flags)
3645 {
3646 current_top_target ()->insn_history_from (from, size, flags);
3647 }
3648
3649 /* See target.h. */
3650
3651 void
3652 target_insn_history_range (ULONGEST begin, ULONGEST end,
3653 gdb_disassembly_flags flags)
3654 {
3655 current_top_target ()->insn_history_range (begin, end, flags);
3656 }
3657
3658 /* See target.h. */
3659
3660 void
3661 target_call_history (int size, record_print_flags flags)
3662 {
3663 current_top_target ()->call_history (size, flags);
3664 }
3665
3666 /* See target.h. */
3667
3668 void
3669 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3670 {
3671 current_top_target ()->call_history_from (begin, size, flags);
3672 }
3673
3674 /* See target.h. */
3675
3676 void
3677 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3678 {
3679 current_top_target ()->call_history_range (begin, end, flags);
3680 }
3681
3682 /* See target.h. */
3683
3684 const struct frame_unwind *
3685 target_get_unwinder (void)
3686 {
3687 return current_top_target ()->get_unwinder ();
3688 }
3689
3690 /* See target.h. */
3691
3692 const struct frame_unwind *
3693 target_get_tailcall_unwinder (void)
3694 {
3695 return current_top_target ()->get_tailcall_unwinder ();
3696 }
3697
3698 /* See target.h. */
3699
3700 void
3701 target_prepare_to_generate_core (void)
3702 {
3703 current_top_target ()->prepare_to_generate_core ();
3704 }
3705
3706 /* See target.h. */
3707
3708 void
3709 target_done_generating_core (void)
3710 {
3711 current_top_target ()->done_generating_core ();
3712 }
3713
3714 \f
3715
3716 static char targ_desc[] =
3717 "Names of targets and files being debugged.\nShows the entire \
3718 stack of targets currently in use (including the exec-file,\n\
3719 core-file, and process, if any), as well as the symbol file name.";
3720
3721 static void
3722 default_rcmd (struct target_ops *self, const char *command,
3723 struct ui_file *output)
3724 {
3725 error (_("\"monitor\" command not supported by this target."));
3726 }
3727
3728 static void
3729 do_monitor_command (const char *cmd, int from_tty)
3730 {
3731 target_rcmd (cmd, gdb_stdtarg);
3732 }
3733
3734 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3735 ignored. */
3736
3737 void
3738 flash_erase_command (const char *cmd, int from_tty)
3739 {
3740 /* Used to communicate termination of flash operations to the target. */
3741 bool found_flash_region = false;
3742 struct gdbarch *gdbarch = target_gdbarch ();
3743
3744 std::vector<mem_region> mem_regions = target_memory_map ();
3745
3746 /* Iterate over all memory regions. */
3747 for (const mem_region &m : mem_regions)
3748 {
3749 /* Is this a flash memory region? */
3750 if (m.attrib.mode == MEM_FLASH)
3751 {
3752 found_flash_region = true;
3753 target_flash_erase (m.lo, m.hi - m.lo);
3754
3755 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3756
3757 current_uiout->message (_("Erasing flash memory region at address "));
3758 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3759 current_uiout->message (", size = ");
3760 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3761 current_uiout->message ("\n");
3762 }
3763 }
3764
3765 /* Did we do any flash operations? If so, we need to finalize them. */
3766 if (found_flash_region)
3767 target_flash_done ();
3768 else
3769 current_uiout->message (_("No flash memory regions found.\n"));
3770 }
3771
3772 /* Print the name of each layers of our target stack. */
3773
3774 static void
3775 maintenance_print_target_stack (const char *cmd, int from_tty)
3776 {
3777 printf_filtered (_("The current target stack is:\n"));
3778
3779 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3780 {
3781 if (t->stratum () == debug_stratum)
3782 continue;
3783 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3784 }
3785 }
3786
3787 /* See target.h. */
3788
3789 void
3790 target_async (int enable)
3791 {
3792 infrun_async (enable);
3793 current_top_target ()->async (enable);
3794 }
3795
3796 /* See target.h. */
3797
3798 void
3799 target_thread_events (int enable)
3800 {
3801 current_top_target ()->thread_events (enable);
3802 }
3803
3804 /* Controls if targets can report that they can/are async. This is
3805 just for maintainers to use when debugging gdb. */
3806 bool target_async_permitted = true;
3807
3808 /* The set command writes to this variable. If the inferior is
3809 executing, target_async_permitted is *not* updated. */
3810 static bool target_async_permitted_1 = true;
3811
3812 static void
3813 maint_set_target_async_command (const char *args, int from_tty,
3814 struct cmd_list_element *c)
3815 {
3816 if (have_live_inferiors ())
3817 {
3818 target_async_permitted_1 = target_async_permitted;
3819 error (_("Cannot change this setting while the inferior is running."));
3820 }
3821
3822 target_async_permitted = target_async_permitted_1;
3823 }
3824
3825 static void
3826 maint_show_target_async_command (struct ui_file *file, int from_tty,
3827 struct cmd_list_element *c,
3828 const char *value)
3829 {
3830 fprintf_filtered (file,
3831 _("Controlling the inferior in "
3832 "asynchronous mode is %s.\n"), value);
3833 }
3834
3835 /* Return true if the target operates in non-stop mode even with "set
3836 non-stop off". */
3837
3838 static int
3839 target_always_non_stop_p (void)
3840 {
3841 return current_top_target ()->always_non_stop_p ();
3842 }
3843
3844 /* See target.h. */
3845
3846 int
3847 target_is_non_stop_p (void)
3848 {
3849 return (non_stop
3850 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3851 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3852 && target_always_non_stop_p ()));
3853 }
3854
3855 /* See target.h. */
3856
3857 bool
3858 exists_non_stop_target ()
3859 {
3860 if (target_is_non_stop_p ())
3861 return true;
3862
3863 scoped_restore_current_thread restore_thread;
3864
3865 for (inferior *inf : all_inferiors ())
3866 {
3867 switch_to_inferior_no_thread (inf);
3868 if (target_is_non_stop_p ())
3869 return true;
3870 }
3871
3872 return false;
3873 }
3874
3875 /* Controls if targets can report that they always run in non-stop
3876 mode. This is just for maintainers to use when debugging gdb. */
3877 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3878
3879 /* The set command writes to this variable. If the inferior is
3880 executing, target_non_stop_enabled is *not* updated. */
3881 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3882
3883 /* Implementation of "maint set target-non-stop". */
3884
3885 static void
3886 maint_set_target_non_stop_command (const char *args, int from_tty,
3887 struct cmd_list_element *c)
3888 {
3889 if (have_live_inferiors ())
3890 {
3891 target_non_stop_enabled_1 = target_non_stop_enabled;
3892 error (_("Cannot change this setting while the inferior is running."));
3893 }
3894
3895 target_non_stop_enabled = target_non_stop_enabled_1;
3896 }
3897
3898 /* Implementation of "maint show target-non-stop". */
3899
3900 static void
3901 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3902 struct cmd_list_element *c,
3903 const char *value)
3904 {
3905 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3906 fprintf_filtered (file,
3907 _("Whether the target is always in non-stop mode "
3908 "is %s (currently %s).\n"), value,
3909 target_always_non_stop_p () ? "on" : "off");
3910 else
3911 fprintf_filtered (file,
3912 _("Whether the target is always in non-stop mode "
3913 "is %s.\n"), value);
3914 }
3915
3916 /* Temporary copies of permission settings. */
3917
3918 static bool may_write_registers_1 = true;
3919 static bool may_write_memory_1 = true;
3920 static bool may_insert_breakpoints_1 = true;
3921 static bool may_insert_tracepoints_1 = true;
3922 static bool may_insert_fast_tracepoints_1 = true;
3923 static bool may_stop_1 = true;
3924
3925 /* Make the user-set values match the real values again. */
3926
3927 void
3928 update_target_permissions (void)
3929 {
3930 may_write_registers_1 = may_write_registers;
3931 may_write_memory_1 = may_write_memory;
3932 may_insert_breakpoints_1 = may_insert_breakpoints;
3933 may_insert_tracepoints_1 = may_insert_tracepoints;
3934 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3935 may_stop_1 = may_stop;
3936 }
3937
3938 /* The one function handles (most of) the permission flags in the same
3939 way. */
3940
3941 static void
3942 set_target_permissions (const char *args, int from_tty,
3943 struct cmd_list_element *c)
3944 {
3945 if (target_has_execution)
3946 {
3947 update_target_permissions ();
3948 error (_("Cannot change this setting while the inferior is running."));
3949 }
3950
3951 /* Make the real values match the user-changed values. */
3952 may_write_registers = may_write_registers_1;
3953 may_insert_breakpoints = may_insert_breakpoints_1;
3954 may_insert_tracepoints = may_insert_tracepoints_1;
3955 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3956 may_stop = may_stop_1;
3957 update_observer_mode ();
3958 }
3959
3960 /* Set memory write permission independently of observer mode. */
3961
3962 static void
3963 set_write_memory_permission (const char *args, int from_tty,
3964 struct cmd_list_element *c)
3965 {
3966 /* Make the real values match the user-changed values. */
3967 may_write_memory = may_write_memory_1;
3968 update_observer_mode ();
3969 }
3970
3971 void _initialize_target ();
3972
3973 void
3974 _initialize_target ()
3975 {
3976 the_debug_target = new debug_target ();
3977
3978 add_info ("target", info_target_command, targ_desc);
3979 add_info ("files", info_target_command, targ_desc);
3980
3981 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3982 Set target debugging."), _("\
3983 Show target debugging."), _("\
3984 When non-zero, target debugging is enabled. Higher numbers are more\n\
3985 verbose."),
3986 set_targetdebug,
3987 show_targetdebug,
3988 &setdebuglist, &showdebuglist);
3989
3990 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3991 &trust_readonly, _("\
3992 Set mode for reading from readonly sections."), _("\
3993 Show mode for reading from readonly sections."), _("\
3994 When this mode is on, memory reads from readonly sections (such as .text)\n\
3995 will be read from the object file instead of from the target. This will\n\
3996 result in significant performance improvement for remote targets."),
3997 NULL,
3998 show_trust_readonly,
3999 &setlist, &showlist);
4000
4001 add_com ("monitor", class_obscure, do_monitor_command,
4002 _("Send a command to the remote monitor (remote targets only)."));
4003
4004 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4005 _("Print the name of each layer of the internal target stack."),
4006 &maintenanceprintlist);
4007
4008 add_setshow_boolean_cmd ("target-async", no_class,
4009 &target_async_permitted_1, _("\
4010 Set whether gdb controls the inferior in asynchronous mode."), _("\
4011 Show whether gdb controls the inferior in asynchronous mode."), _("\
4012 Tells gdb whether to control the inferior in asynchronous mode."),
4013 maint_set_target_async_command,
4014 maint_show_target_async_command,
4015 &maintenance_set_cmdlist,
4016 &maintenance_show_cmdlist);
4017
4018 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4019 &target_non_stop_enabled_1, _("\
4020 Set whether gdb always controls the inferior in non-stop mode."), _("\
4021 Show whether gdb always controls the inferior in non-stop mode."), _("\
4022 Tells gdb whether to control the inferior in non-stop mode."),
4023 maint_set_target_non_stop_command,
4024 maint_show_target_non_stop_command,
4025 &maintenance_set_cmdlist,
4026 &maintenance_show_cmdlist);
4027
4028 add_setshow_boolean_cmd ("may-write-registers", class_support,
4029 &may_write_registers_1, _("\
4030 Set permission to write into registers."), _("\
4031 Show permission to write into registers."), _("\
4032 When this permission is on, GDB may write into the target's registers.\n\
4033 Otherwise, any sort of write attempt will result in an error."),
4034 set_target_permissions, NULL,
4035 &setlist, &showlist);
4036
4037 add_setshow_boolean_cmd ("may-write-memory", class_support,
4038 &may_write_memory_1, _("\
4039 Set permission to write into target memory."), _("\
4040 Show permission to write into target memory."), _("\
4041 When this permission is on, GDB may write into the target's memory.\n\
4042 Otherwise, any sort of write attempt will result in an error."),
4043 set_write_memory_permission, NULL,
4044 &setlist, &showlist);
4045
4046 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4047 &may_insert_breakpoints_1, _("\
4048 Set permission to insert breakpoints in the target."), _("\
4049 Show permission to insert breakpoints in the target."), _("\
4050 When this permission is on, GDB may insert breakpoints in the program.\n\
4051 Otherwise, any sort of insertion attempt will result in an error."),
4052 set_target_permissions, NULL,
4053 &setlist, &showlist);
4054
4055 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4056 &may_insert_tracepoints_1, _("\
4057 Set permission to insert tracepoints in the target."), _("\
4058 Show permission to insert tracepoints in the target."), _("\
4059 When this permission is on, GDB may insert tracepoints in the program.\n\
4060 Otherwise, any sort of insertion attempt will result in an error."),
4061 set_target_permissions, NULL,
4062 &setlist, &showlist);
4063
4064 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4065 &may_insert_fast_tracepoints_1, _("\
4066 Set permission to insert fast tracepoints in the target."), _("\
4067 Show permission to insert fast tracepoints in the target."), _("\
4068 When this permission is on, GDB may insert fast tracepoints.\n\
4069 Otherwise, any sort of insertion attempt will result in an error."),
4070 set_target_permissions, NULL,
4071 &setlist, &showlist);
4072
4073 add_setshow_boolean_cmd ("may-interrupt", class_support,
4074 &may_stop_1, _("\
4075 Set permission to interrupt or signal the target."), _("\
4076 Show permission to interrupt or signal the target."), _("\
4077 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4078 Otherwise, any attempt to interrupt or stop will be ignored."),
4079 set_target_permissions, NULL,
4080 &setlist, &showlist);
4081
4082 add_com ("flash-erase", no_class, flash_erase_command,
4083 _("Erase all flash memory regions."));
4084
4085 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4086 &auto_connect_native_target, _("\
4087 Set whether GDB may automatically connect to the native target."), _("\
4088 Show whether GDB may automatically connect to the native target."), _("\
4089 When on, and GDB is not connected to a target yet, GDB\n\
4090 attempts \"run\" and other commands with the native target."),
4091 NULL, show_auto_connect_native_target,
4092 &setlist, &showlist);
4093 }
This page took 0.115551 seconds and 4 git commands to generate.