gdb/
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_wait.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* Stub functions */
438
439 void
440 target_ignore (void)
441 {
442 }
443
444 void
445 target_kill (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 if (t->to_kill != NULL)
451 {
452 if (targetdebug)
453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
454
455 t->to_kill (t);
456 return;
457 }
458
459 noprocess ();
460 }
461
462 void
463 target_load (char *arg, int from_tty)
464 {
465 target_dcache_invalidate ();
466 (*current_target.to_load) (arg, from_tty);
467 }
468
469 void
470 target_create_inferior (char *exec_file, char *args,
471 char **env, int from_tty)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_create_inferior != NULL)
478 {
479 t->to_create_inferior (t, exec_file, args, env, from_tty);
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog,
482 "target_create_inferior (%s, %s, xxx, %d)\n",
483 exec_file, args, from_tty);
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("could not find a target to create inferior"));
490 }
491
492 void
493 target_terminal_inferior (void)
494 {
495 /* A background resume (``run&'') should leave GDB in control of the
496 terminal. Use target_can_async_p, not target_is_async_p, since at
497 this point the target is not async yet. However, if sync_execution
498 is not set, we know it will become async prior to resume. */
499 if (target_can_async_p () && !sync_execution)
500 return;
501
502 /* If GDB is resuming the inferior in the foreground, install
503 inferior's terminal modes. */
504 (*current_target.to_terminal_inferior) ();
505 }
506
507 static int
508 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
509 struct target_ops *t)
510 {
511 errno = EIO; /* Can't read/write this location. */
512 return 0; /* No bytes handled. */
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_target.to_shortname);
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (long lwp, long tid)
542 {
543 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (void)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* Go through the target stack from top to bottom, copying over zero
559 entries in current_target, then filling in still empty entries. In
560 effect, we are doing class inheritance through the pushed target
561 vectors.
562
563 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
564 is currently implemented, is that it discards any knowledge of
565 which target an inherited method originally belonged to.
566 Consequently, new new target methods should instead explicitly and
567 locally search the target stack for the target that can handle the
568 request. */
569
570 static void
571 update_current_target (void)
572 {
573 struct target_ops *t;
574
575 /* First, reset current's contents. */
576 memset (&current_target, 0, sizeof (current_target));
577
578 #define INHERIT(FIELD, TARGET) \
579 if (!current_target.FIELD) \
580 current_target.FIELD = (TARGET)->FIELD
581
582 for (t = target_stack; t; t = t->beneath)
583 {
584 INHERIT (to_shortname, t);
585 INHERIT (to_longname, t);
586 INHERIT (to_doc, t);
587 /* Do not inherit to_open. */
588 /* Do not inherit to_close. */
589 /* Do not inherit to_attach. */
590 INHERIT (to_post_attach, t);
591 INHERIT (to_attach_no_wait, t);
592 /* Do not inherit to_detach. */
593 /* Do not inherit to_disconnect. */
594 /* Do not inherit to_resume. */
595 /* Do not inherit to_wait. */
596 /* Do not inherit to_fetch_registers. */
597 /* Do not inherit to_store_registers. */
598 INHERIT (to_prepare_to_store, t);
599 INHERIT (deprecated_xfer_memory, t);
600 INHERIT (to_files_info, t);
601 INHERIT (to_insert_breakpoint, t);
602 INHERIT (to_remove_breakpoint, t);
603 INHERIT (to_can_use_hw_breakpoint, t);
604 INHERIT (to_insert_hw_breakpoint, t);
605 INHERIT (to_remove_hw_breakpoint, t);
606 /* Do not inherit to_ranged_break_num_registers. */
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 /* Do not inherit to_insert_mask_watchpoint. */
610 /* Do not inherit to_remove_mask_watchpoint. */
611 INHERIT (to_stopped_data_address, t);
612 INHERIT (to_have_steppable_watchpoint, t);
613 INHERIT (to_have_continuable_watchpoint, t);
614 INHERIT (to_stopped_by_watchpoint, t);
615 INHERIT (to_watchpoint_addr_within_range, t);
616 INHERIT (to_region_ok_for_hw_watchpoint, t);
617 INHERIT (to_can_accel_watchpoint_condition, t);
618 /* Do not inherit to_masked_watch_num_registers. */
619 INHERIT (to_terminal_init, t);
620 INHERIT (to_terminal_inferior, t);
621 INHERIT (to_terminal_ours_for_output, t);
622 INHERIT (to_terminal_ours, t);
623 INHERIT (to_terminal_save_ours, t);
624 INHERIT (to_terminal_info, t);
625 /* Do not inherit to_kill. */
626 INHERIT (to_load, t);
627 /* Do no inherit to_create_inferior. */
628 INHERIT (to_post_startup_inferior, t);
629 INHERIT (to_insert_fork_catchpoint, t);
630 INHERIT (to_remove_fork_catchpoint, t);
631 INHERIT (to_insert_vfork_catchpoint, t);
632 INHERIT (to_remove_vfork_catchpoint, t);
633 /* Do not inherit to_follow_fork. */
634 INHERIT (to_insert_exec_catchpoint, t);
635 INHERIT (to_remove_exec_catchpoint, t);
636 INHERIT (to_set_syscall_catchpoint, t);
637 INHERIT (to_has_exited, t);
638 /* Do not inherit to_mourn_inferior. */
639 INHERIT (to_can_run, t);
640 /* Do not inherit to_pass_signals. */
641 /* Do not inherit to_thread_alive. */
642 /* Do not inherit to_find_new_threads. */
643 /* Do not inherit to_pid_to_str. */
644 INHERIT (to_extra_thread_info, t);
645 INHERIT (to_thread_name, t);
646 INHERIT (to_stop, t);
647 /* Do not inherit to_xfer_partial. */
648 INHERIT (to_rcmd, t);
649 INHERIT (to_pid_to_exec_file, t);
650 INHERIT (to_log_command, t);
651 INHERIT (to_stratum, t);
652 /* Do not inherit to_has_all_memory. */
653 /* Do not inherit to_has_memory. */
654 /* Do not inherit to_has_stack. */
655 /* Do not inherit to_has_registers. */
656 /* Do not inherit to_has_execution. */
657 INHERIT (to_has_thread_control, t);
658 INHERIT (to_can_async_p, t);
659 INHERIT (to_is_async_p, t);
660 INHERIT (to_async, t);
661 INHERIT (to_find_memory_regions, t);
662 INHERIT (to_make_corefile_notes, t);
663 INHERIT (to_get_bookmark, t);
664 INHERIT (to_goto_bookmark, t);
665 /* Do not inherit to_get_thread_local_address. */
666 INHERIT (to_can_execute_reverse, t);
667 INHERIT (to_execution_direction, t);
668 INHERIT (to_thread_architecture, t);
669 /* Do not inherit to_read_description. */
670 INHERIT (to_get_ada_task_ptid, t);
671 /* Do not inherit to_search_memory. */
672 INHERIT (to_supports_multi_process, t);
673 INHERIT (to_supports_enable_disable_tracepoint, t);
674 INHERIT (to_supports_string_tracing, t);
675 INHERIT (to_trace_init, t);
676 INHERIT (to_download_tracepoint, t);
677 INHERIT (to_can_download_tracepoint, t);
678 INHERIT (to_download_trace_state_variable, t);
679 INHERIT (to_enable_tracepoint, t);
680 INHERIT (to_disable_tracepoint, t);
681 INHERIT (to_trace_set_readonly_regions, t);
682 INHERIT (to_trace_start, t);
683 INHERIT (to_get_trace_status, t);
684 INHERIT (to_get_tracepoint_status, t);
685 INHERIT (to_trace_stop, t);
686 INHERIT (to_trace_find, t);
687 INHERIT (to_get_trace_state_variable_value, t);
688 INHERIT (to_save_trace_data, t);
689 INHERIT (to_upload_tracepoints, t);
690 INHERIT (to_upload_trace_state_variables, t);
691 INHERIT (to_get_raw_trace_data, t);
692 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
693 INHERIT (to_set_disconnected_tracing, t);
694 INHERIT (to_set_circular_trace_buffer, t);
695 INHERIT (to_set_trace_notes, t);
696 INHERIT (to_get_tib_address, t);
697 INHERIT (to_set_permissions, t);
698 INHERIT (to_static_tracepoint_marker_at, t);
699 INHERIT (to_static_tracepoint_markers_by_strid, t);
700 INHERIT (to_traceframe_info, t);
701 INHERIT (to_magic, t);
702 /* Do not inherit to_memory_map. */
703 /* Do not inherit to_flash_erase. */
704 /* Do not inherit to_flash_done. */
705 }
706 #undef INHERIT
707
708 /* Clean up a target struct so it no longer has any zero pointers in
709 it. Some entries are defaulted to a method that print an error,
710 others are hard-wired to a standard recursive default. */
711
712 #define de_fault(field, value) \
713 if (!current_target.field) \
714 current_target.field = value
715
716 de_fault (to_open,
717 (void (*) (char *, int))
718 tcomplain);
719 de_fault (to_close,
720 (void (*) (int))
721 target_ignore);
722 de_fault (to_post_attach,
723 (void (*) (int))
724 target_ignore);
725 de_fault (to_prepare_to_store,
726 (void (*) (struct regcache *))
727 noprocess);
728 de_fault (deprecated_xfer_memory,
729 (int (*) (CORE_ADDR, gdb_byte *, int, int,
730 struct mem_attrib *, struct target_ops *))
731 nomemory);
732 de_fault (to_files_info,
733 (void (*) (struct target_ops *))
734 target_ignore);
735 de_fault (to_insert_breakpoint,
736 memory_insert_breakpoint);
737 de_fault (to_remove_breakpoint,
738 memory_remove_breakpoint);
739 de_fault (to_can_use_hw_breakpoint,
740 (int (*) (int, int, int))
741 return_zero);
742 de_fault (to_insert_hw_breakpoint,
743 (int (*) (struct gdbarch *, struct bp_target_info *))
744 return_minus_one);
745 de_fault (to_remove_hw_breakpoint,
746 (int (*) (struct gdbarch *, struct bp_target_info *))
747 return_minus_one);
748 de_fault (to_insert_watchpoint,
749 (int (*) (CORE_ADDR, int, int, struct expression *))
750 return_minus_one);
751 de_fault (to_remove_watchpoint,
752 (int (*) (CORE_ADDR, int, int, struct expression *))
753 return_minus_one);
754 de_fault (to_stopped_by_watchpoint,
755 (int (*) (void))
756 return_zero);
757 de_fault (to_stopped_data_address,
758 (int (*) (struct target_ops *, CORE_ADDR *))
759 return_zero);
760 de_fault (to_watchpoint_addr_within_range,
761 default_watchpoint_addr_within_range);
762 de_fault (to_region_ok_for_hw_watchpoint,
763 default_region_ok_for_hw_watchpoint);
764 de_fault (to_can_accel_watchpoint_condition,
765 (int (*) (CORE_ADDR, int, int, struct expression *))
766 return_zero);
767 de_fault (to_terminal_init,
768 (void (*) (void))
769 target_ignore);
770 de_fault (to_terminal_inferior,
771 (void (*) (void))
772 target_ignore);
773 de_fault (to_terminal_ours_for_output,
774 (void (*) (void))
775 target_ignore);
776 de_fault (to_terminal_ours,
777 (void (*) (void))
778 target_ignore);
779 de_fault (to_terminal_save_ours,
780 (void (*) (void))
781 target_ignore);
782 de_fault (to_terminal_info,
783 default_terminal_info);
784 de_fault (to_load,
785 (void (*) (char *, int))
786 tcomplain);
787 de_fault (to_post_startup_inferior,
788 (void (*) (ptid_t))
789 target_ignore);
790 de_fault (to_insert_fork_catchpoint,
791 (int (*) (int))
792 return_one);
793 de_fault (to_remove_fork_catchpoint,
794 (int (*) (int))
795 return_one);
796 de_fault (to_insert_vfork_catchpoint,
797 (int (*) (int))
798 return_one);
799 de_fault (to_remove_vfork_catchpoint,
800 (int (*) (int))
801 return_one);
802 de_fault (to_insert_exec_catchpoint,
803 (int (*) (int))
804 return_one);
805 de_fault (to_remove_exec_catchpoint,
806 (int (*) (int))
807 return_one);
808 de_fault (to_set_syscall_catchpoint,
809 (int (*) (int, int, int, int, int *))
810 return_one);
811 de_fault (to_has_exited,
812 (int (*) (int, int, int *))
813 return_zero);
814 de_fault (to_can_run,
815 return_zero);
816 de_fault (to_extra_thread_info,
817 (char *(*) (struct thread_info *))
818 return_zero);
819 de_fault (to_thread_name,
820 (char *(*) (struct thread_info *))
821 return_zero);
822 de_fault (to_stop,
823 (void (*) (ptid_t))
824 target_ignore);
825 current_target.to_xfer_partial = current_xfer_partial;
826 de_fault (to_rcmd,
827 (void (*) (char *, struct ui_file *))
828 tcomplain);
829 de_fault (to_pid_to_exec_file,
830 (char *(*) (int))
831 return_zero);
832 de_fault (to_async,
833 (void (*) (void (*) (enum inferior_event_type, void*), void*))
834 tcomplain);
835 de_fault (to_thread_architecture,
836 default_thread_architecture);
837 current_target.to_read_description = NULL;
838 de_fault (to_get_ada_task_ptid,
839 (ptid_t (*) (long, long))
840 default_get_ada_task_ptid);
841 de_fault (to_supports_multi_process,
842 (int (*) (void))
843 return_zero);
844 de_fault (to_supports_enable_disable_tracepoint,
845 (int (*) (void))
846 return_zero);
847 de_fault (to_supports_string_tracing,
848 (int (*) (void))
849 return_zero);
850 de_fault (to_trace_init,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_download_tracepoint,
854 (void (*) (struct bp_location *))
855 tcomplain);
856 de_fault (to_can_download_tracepoint,
857 (int (*) (void))
858 return_zero);
859 de_fault (to_download_trace_state_variable,
860 (void (*) (struct trace_state_variable *))
861 tcomplain);
862 de_fault (to_enable_tracepoint,
863 (void (*) (struct bp_location *))
864 tcomplain);
865 de_fault (to_disable_tracepoint,
866 (void (*) (struct bp_location *))
867 tcomplain);
868 de_fault (to_trace_set_readonly_regions,
869 (void (*) (void))
870 tcomplain);
871 de_fault (to_trace_start,
872 (void (*) (void))
873 tcomplain);
874 de_fault (to_get_trace_status,
875 (int (*) (struct trace_status *))
876 return_minus_one);
877 de_fault (to_get_tracepoint_status,
878 (void (*) (struct breakpoint *, struct uploaded_tp *))
879 tcomplain);
880 de_fault (to_trace_stop,
881 (void (*) (void))
882 tcomplain);
883 de_fault (to_trace_find,
884 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
885 return_minus_one);
886 de_fault (to_get_trace_state_variable_value,
887 (int (*) (int, LONGEST *))
888 return_zero);
889 de_fault (to_save_trace_data,
890 (int (*) (const char *))
891 tcomplain);
892 de_fault (to_upload_tracepoints,
893 (int (*) (struct uploaded_tp **))
894 return_zero);
895 de_fault (to_upload_trace_state_variables,
896 (int (*) (struct uploaded_tsv **))
897 return_zero);
898 de_fault (to_get_raw_trace_data,
899 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
900 tcomplain);
901 de_fault (to_get_min_fast_tracepoint_insn_len,
902 (int (*) (void))
903 return_minus_one);
904 de_fault (to_set_disconnected_tracing,
905 (void (*) (int))
906 target_ignore);
907 de_fault (to_set_circular_trace_buffer,
908 (void (*) (int))
909 target_ignore);
910 de_fault (to_set_trace_notes,
911 (int (*) (char *, char *, char *))
912 return_zero);
913 de_fault (to_get_tib_address,
914 (int (*) (ptid_t, CORE_ADDR *))
915 tcomplain);
916 de_fault (to_set_permissions,
917 (void (*) (void))
918 target_ignore);
919 de_fault (to_static_tracepoint_marker_at,
920 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
921 return_zero);
922 de_fault (to_static_tracepoint_markers_by_strid,
923 (VEC(static_tracepoint_marker_p) * (*) (const char *))
924 tcomplain);
925 de_fault (to_traceframe_info,
926 (struct traceframe_info * (*) (void))
927 tcomplain);
928 de_fault (to_execution_direction, default_execution_direction);
929
930 #undef de_fault
931
932 /* Finally, position the target-stack beneath the squashed
933 "current_target". That way code looking for a non-inherited
934 target method can quickly and simply find it. */
935 current_target.beneath = target_stack;
936
937 if (targetdebug)
938 setup_target_debug ();
939 }
940
941 /* Push a new target type into the stack of the existing target accessors,
942 possibly superseding some of the existing accessors.
943
944 Rather than allow an empty stack, we always have the dummy target at
945 the bottom stratum, so we can call the function vectors without
946 checking them. */
947
948 void
949 push_target (struct target_ops *t)
950 {
951 struct target_ops **cur;
952
953 /* Check magic number. If wrong, it probably means someone changed
954 the struct definition, but not all the places that initialize one. */
955 if (t->to_magic != OPS_MAGIC)
956 {
957 fprintf_unfiltered (gdb_stderr,
958 "Magic number of %s target struct wrong\n",
959 t->to_shortname);
960 internal_error (__FILE__, __LINE__,
961 _("failed internal consistency check"));
962 }
963
964 /* Find the proper stratum to install this target in. */
965 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
966 {
967 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
968 break;
969 }
970
971 /* If there's already targets at this stratum, remove them. */
972 /* FIXME: cagney/2003-10-15: I think this should be popping all
973 targets to CUR, and not just those at this stratum level. */
974 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
975 {
976 /* There's already something at this stratum level. Close it,
977 and un-hook it from the stack. */
978 struct target_ops *tmp = (*cur);
979
980 (*cur) = (*cur)->beneath;
981 tmp->beneath = NULL;
982 target_close (tmp, 0);
983 }
984
985 /* We have removed all targets in our stratum, now add the new one. */
986 t->beneath = (*cur);
987 (*cur) = t;
988
989 update_current_target ();
990 }
991
992 /* Remove a target_ops vector from the stack, wherever it may be.
993 Return how many times it was removed (0 or 1). */
994
995 int
996 unpush_target (struct target_ops *t)
997 {
998 struct target_ops **cur;
999 struct target_ops *tmp;
1000
1001 if (t->to_stratum == dummy_stratum)
1002 internal_error (__FILE__, __LINE__,
1003 _("Attempt to unpush the dummy target"));
1004
1005 /* Look for the specified target. Note that we assume that a target
1006 can only occur once in the target stack. */
1007
1008 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1009 {
1010 if ((*cur) == t)
1011 break;
1012 }
1013
1014 /* If we don't find target_ops, quit. Only open targets should be
1015 closed. */
1016 if ((*cur) == NULL)
1017 return 0;
1018
1019 /* Unchain the target. */
1020 tmp = (*cur);
1021 (*cur) = (*cur)->beneath;
1022 tmp->beneath = NULL;
1023
1024 update_current_target ();
1025
1026 /* Finally close the target. Note we do this after unchaining, so
1027 any target method calls from within the target_close
1028 implementation don't end up in T anymore. */
1029 target_close (t, 0);
1030
1031 return 1;
1032 }
1033
1034 void
1035 pop_target (void)
1036 {
1037 target_close (target_stack, 0); /* Let it clean up. */
1038 if (unpush_target (target_stack) == 1)
1039 return;
1040
1041 fprintf_unfiltered (gdb_stderr,
1042 "pop_target couldn't find target %s\n",
1043 current_target.to_shortname);
1044 internal_error (__FILE__, __LINE__,
1045 _("failed internal consistency check"));
1046 }
1047
1048 void
1049 pop_all_targets_above (enum strata above_stratum, int quitting)
1050 {
1051 while ((int) (current_target.to_stratum) > (int) above_stratum)
1052 {
1053 target_close (target_stack, quitting);
1054 if (!unpush_target (target_stack))
1055 {
1056 fprintf_unfiltered (gdb_stderr,
1057 "pop_all_targets couldn't find target %s\n",
1058 target_stack->to_shortname);
1059 internal_error (__FILE__, __LINE__,
1060 _("failed internal consistency check"));
1061 break;
1062 }
1063 }
1064 }
1065
1066 void
1067 pop_all_targets (int quitting)
1068 {
1069 pop_all_targets_above (dummy_stratum, quitting);
1070 }
1071
1072 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1073
1074 int
1075 target_is_pushed (struct target_ops *t)
1076 {
1077 struct target_ops **cur;
1078
1079 /* Check magic number. If wrong, it probably means someone changed
1080 the struct definition, but not all the places that initialize one. */
1081 if (t->to_magic != OPS_MAGIC)
1082 {
1083 fprintf_unfiltered (gdb_stderr,
1084 "Magic number of %s target struct wrong\n",
1085 t->to_shortname);
1086 internal_error (__FILE__, __LINE__,
1087 _("failed internal consistency check"));
1088 }
1089
1090 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1091 if (*cur == t)
1092 return 1;
1093
1094 return 0;
1095 }
1096
1097 /* Using the objfile specified in OBJFILE, find the address for the
1098 current thread's thread-local storage with offset OFFSET. */
1099 CORE_ADDR
1100 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1101 {
1102 volatile CORE_ADDR addr = 0;
1103 struct target_ops *target;
1104
1105 for (target = current_target.beneath;
1106 target != NULL;
1107 target = target->beneath)
1108 {
1109 if (target->to_get_thread_local_address != NULL)
1110 break;
1111 }
1112
1113 if (target != NULL
1114 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1115 {
1116 ptid_t ptid = inferior_ptid;
1117 volatile struct gdb_exception ex;
1118
1119 TRY_CATCH (ex, RETURN_MASK_ALL)
1120 {
1121 CORE_ADDR lm_addr;
1122
1123 /* Fetch the load module address for this objfile. */
1124 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1125 objfile);
1126 /* If it's 0, throw the appropriate exception. */
1127 if (lm_addr == 0)
1128 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1129 _("TLS load module not found"));
1130
1131 addr = target->to_get_thread_local_address (target, ptid,
1132 lm_addr, offset);
1133 }
1134 /* If an error occurred, print TLS related messages here. Otherwise,
1135 throw the error to some higher catcher. */
1136 if (ex.reason < 0)
1137 {
1138 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1139
1140 switch (ex.error)
1141 {
1142 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1143 error (_("Cannot find thread-local variables "
1144 "in this thread library."));
1145 break;
1146 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1147 if (objfile_is_library)
1148 error (_("Cannot find shared library `%s' in dynamic"
1149 " linker's load module list"), objfile->name);
1150 else
1151 error (_("Cannot find executable file `%s' in dynamic"
1152 " linker's load module list"), objfile->name);
1153 break;
1154 case TLS_NOT_ALLOCATED_YET_ERROR:
1155 if (objfile_is_library)
1156 error (_("The inferior has not yet allocated storage for"
1157 " thread-local variables in\n"
1158 "the shared library `%s'\n"
1159 "for %s"),
1160 objfile->name, target_pid_to_str (ptid));
1161 else
1162 error (_("The inferior has not yet allocated storage for"
1163 " thread-local variables in\n"
1164 "the executable `%s'\n"
1165 "for %s"),
1166 objfile->name, target_pid_to_str (ptid));
1167 break;
1168 case TLS_GENERIC_ERROR:
1169 if (objfile_is_library)
1170 error (_("Cannot find thread-local storage for %s, "
1171 "shared library %s:\n%s"),
1172 target_pid_to_str (ptid),
1173 objfile->name, ex.message);
1174 else
1175 error (_("Cannot find thread-local storage for %s, "
1176 "executable file %s:\n%s"),
1177 target_pid_to_str (ptid),
1178 objfile->name, ex.message);
1179 break;
1180 default:
1181 throw_exception (ex);
1182 break;
1183 }
1184 }
1185 }
1186 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1187 TLS is an ABI-specific thing. But we don't do that yet. */
1188 else
1189 error (_("Cannot find thread-local variables on this target"));
1190
1191 return addr;
1192 }
1193
1194 #undef MIN
1195 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1196
1197 /* target_read_string -- read a null terminated string, up to LEN bytes,
1198 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1199 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1200 is responsible for freeing it. Return the number of bytes successfully
1201 read. */
1202
1203 int
1204 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1205 {
1206 int tlen, origlen, offset, i;
1207 gdb_byte buf[4];
1208 int errcode = 0;
1209 char *buffer;
1210 int buffer_allocated;
1211 char *bufptr;
1212 unsigned int nbytes_read = 0;
1213
1214 gdb_assert (string);
1215
1216 /* Small for testing. */
1217 buffer_allocated = 4;
1218 buffer = xmalloc (buffer_allocated);
1219 bufptr = buffer;
1220
1221 origlen = len;
1222
1223 while (len > 0)
1224 {
1225 tlen = MIN (len, 4 - (memaddr & 3));
1226 offset = memaddr & 3;
1227
1228 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1229 if (errcode != 0)
1230 {
1231 /* The transfer request might have crossed the boundary to an
1232 unallocated region of memory. Retry the transfer, requesting
1233 a single byte. */
1234 tlen = 1;
1235 offset = 0;
1236 errcode = target_read_memory (memaddr, buf, 1);
1237 if (errcode != 0)
1238 goto done;
1239 }
1240
1241 if (bufptr - buffer + tlen > buffer_allocated)
1242 {
1243 unsigned int bytes;
1244
1245 bytes = bufptr - buffer;
1246 buffer_allocated *= 2;
1247 buffer = xrealloc (buffer, buffer_allocated);
1248 bufptr = buffer + bytes;
1249 }
1250
1251 for (i = 0; i < tlen; i++)
1252 {
1253 *bufptr++ = buf[i + offset];
1254 if (buf[i + offset] == '\000')
1255 {
1256 nbytes_read += i + 1;
1257 goto done;
1258 }
1259 }
1260
1261 memaddr += tlen;
1262 len -= tlen;
1263 nbytes_read += tlen;
1264 }
1265 done:
1266 *string = buffer;
1267 if (errnop != NULL)
1268 *errnop = errcode;
1269 return nbytes_read;
1270 }
1271
1272 struct target_section_table *
1273 target_get_section_table (struct target_ops *target)
1274 {
1275 struct target_ops *t;
1276
1277 if (targetdebug)
1278 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1279
1280 for (t = target; t != NULL; t = t->beneath)
1281 if (t->to_get_section_table != NULL)
1282 return (*t->to_get_section_table) (t);
1283
1284 return NULL;
1285 }
1286
1287 /* Find a section containing ADDR. */
1288
1289 struct target_section *
1290 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1291 {
1292 struct target_section_table *table = target_get_section_table (target);
1293 struct target_section *secp;
1294
1295 if (table == NULL)
1296 return NULL;
1297
1298 for (secp = table->sections; secp < table->sections_end; secp++)
1299 {
1300 if (addr >= secp->addr && addr < secp->endaddr)
1301 return secp;
1302 }
1303 return NULL;
1304 }
1305
1306 /* Read memory from the live target, even if currently inspecting a
1307 traceframe. The return is the same as that of target_read. */
1308
1309 static LONGEST
1310 target_read_live_memory (enum target_object object,
1311 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1312 {
1313 int ret;
1314 struct cleanup *cleanup;
1315
1316 /* Switch momentarily out of tfind mode so to access live memory.
1317 Note that this must not clear global state, such as the frame
1318 cache, which must still remain valid for the previous traceframe.
1319 We may be _building_ the frame cache at this point. */
1320 cleanup = make_cleanup_restore_traceframe_number ();
1321 set_traceframe_number (-1);
1322
1323 ret = target_read (current_target.beneath, object, NULL,
1324 myaddr, memaddr, len);
1325
1326 do_cleanups (cleanup);
1327 return ret;
1328 }
1329
1330 /* Using the set of read-only target sections of OPS, read live
1331 read-only memory. Note that the actual reads start from the
1332 top-most target again.
1333
1334 For interface/parameters/return description see target.h,
1335 to_xfer_partial. */
1336
1337 static LONGEST
1338 memory_xfer_live_readonly_partial (struct target_ops *ops,
1339 enum target_object object,
1340 gdb_byte *readbuf, ULONGEST memaddr,
1341 LONGEST len)
1342 {
1343 struct target_section *secp;
1344 struct target_section_table *table;
1345
1346 secp = target_section_by_addr (ops, memaddr);
1347 if (secp != NULL
1348 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1349 & SEC_READONLY))
1350 {
1351 struct target_section *p;
1352 ULONGEST memend = memaddr + len;
1353
1354 table = target_get_section_table (ops);
1355
1356 for (p = table->sections; p < table->sections_end; p++)
1357 {
1358 if (memaddr >= p->addr)
1359 {
1360 if (memend <= p->endaddr)
1361 {
1362 /* Entire transfer is within this section. */
1363 return target_read_live_memory (object, memaddr,
1364 readbuf, len);
1365 }
1366 else if (memaddr >= p->endaddr)
1367 {
1368 /* This section ends before the transfer starts. */
1369 continue;
1370 }
1371 else
1372 {
1373 /* This section overlaps the transfer. Just do half. */
1374 len = p->endaddr - memaddr;
1375 return target_read_live_memory (object, memaddr,
1376 readbuf, len);
1377 }
1378 }
1379 }
1380 }
1381
1382 return 0;
1383 }
1384
1385 /* Perform a partial memory transfer.
1386 For docs see target.h, to_xfer_partial. */
1387
1388 static LONGEST
1389 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1390 void *readbuf, const void *writebuf, ULONGEST memaddr,
1391 LONGEST len)
1392 {
1393 LONGEST res;
1394 int reg_len;
1395 struct mem_region *region;
1396 struct inferior *inf;
1397
1398 /* For accesses to unmapped overlay sections, read directly from
1399 files. Must do this first, as MEMADDR may need adjustment. */
1400 if (readbuf != NULL && overlay_debugging)
1401 {
1402 struct obj_section *section = find_pc_overlay (memaddr);
1403
1404 if (pc_in_unmapped_range (memaddr, section))
1405 {
1406 struct target_section_table *table
1407 = target_get_section_table (ops);
1408 const char *section_name = section->the_bfd_section->name;
1409
1410 memaddr = overlay_mapped_address (memaddr, section);
1411 return section_table_xfer_memory_partial (readbuf, writebuf,
1412 memaddr, len,
1413 table->sections,
1414 table->sections_end,
1415 section_name);
1416 }
1417 }
1418
1419 /* Try the executable files, if "trust-readonly-sections" is set. */
1420 if (readbuf != NULL && trust_readonly)
1421 {
1422 struct target_section *secp;
1423 struct target_section_table *table;
1424
1425 secp = target_section_by_addr (ops, memaddr);
1426 if (secp != NULL
1427 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1428 & SEC_READONLY))
1429 {
1430 table = target_get_section_table (ops);
1431 return section_table_xfer_memory_partial (readbuf, writebuf,
1432 memaddr, len,
1433 table->sections,
1434 table->sections_end,
1435 NULL);
1436 }
1437 }
1438
1439 /* If reading unavailable memory in the context of traceframes, and
1440 this address falls within a read-only section, fallback to
1441 reading from live memory. */
1442 if (readbuf != NULL && get_traceframe_number () != -1)
1443 {
1444 VEC(mem_range_s) *available;
1445
1446 /* If we fail to get the set of available memory, then the
1447 target does not support querying traceframe info, and so we
1448 attempt reading from the traceframe anyway (assuming the
1449 target implements the old QTro packet then). */
1450 if (traceframe_available_memory (&available, memaddr, len))
1451 {
1452 struct cleanup *old_chain;
1453
1454 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1455
1456 if (VEC_empty (mem_range_s, available)
1457 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1458 {
1459 /* Don't read into the traceframe's available
1460 memory. */
1461 if (!VEC_empty (mem_range_s, available))
1462 {
1463 LONGEST oldlen = len;
1464
1465 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1466 gdb_assert (len <= oldlen);
1467 }
1468
1469 do_cleanups (old_chain);
1470
1471 /* This goes through the topmost target again. */
1472 res = memory_xfer_live_readonly_partial (ops, object,
1473 readbuf, memaddr, len);
1474 if (res > 0)
1475 return res;
1476
1477 /* No use trying further, we know some memory starting
1478 at MEMADDR isn't available. */
1479 return -1;
1480 }
1481
1482 /* Don't try to read more than how much is available, in
1483 case the target implements the deprecated QTro packet to
1484 cater for older GDBs (the target's knowledge of read-only
1485 sections may be outdated by now). */
1486 len = VEC_index (mem_range_s, available, 0)->length;
1487
1488 do_cleanups (old_chain);
1489 }
1490 }
1491
1492 /* Try GDB's internal data cache. */
1493 region = lookup_mem_region (memaddr);
1494 /* region->hi == 0 means there's no upper bound. */
1495 if (memaddr + len < region->hi || region->hi == 0)
1496 reg_len = len;
1497 else
1498 reg_len = region->hi - memaddr;
1499
1500 switch (region->attrib.mode)
1501 {
1502 case MEM_RO:
1503 if (writebuf != NULL)
1504 return -1;
1505 break;
1506
1507 case MEM_WO:
1508 if (readbuf != NULL)
1509 return -1;
1510 break;
1511
1512 case MEM_FLASH:
1513 /* We only support writing to flash during "load" for now. */
1514 if (writebuf != NULL)
1515 error (_("Writing to flash memory forbidden in this context"));
1516 break;
1517
1518 case MEM_NONE:
1519 return -1;
1520 }
1521
1522 if (!ptid_equal (inferior_ptid, null_ptid))
1523 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1524 else
1525 inf = NULL;
1526
1527 if (inf != NULL
1528 /* The dcache reads whole cache lines; that doesn't play well
1529 with reading from a trace buffer, because reading outside of
1530 the collected memory range fails. */
1531 && get_traceframe_number () == -1
1532 && (region->attrib.cache
1533 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1534 {
1535 if (readbuf != NULL)
1536 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1537 reg_len, 0);
1538 else
1539 /* FIXME drow/2006-08-09: If we're going to preserve const
1540 correctness dcache_xfer_memory should take readbuf and
1541 writebuf. */
1542 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1543 (void *) writebuf,
1544 reg_len, 1);
1545 if (res <= 0)
1546 return -1;
1547 else
1548 return res;
1549 }
1550
1551 /* If none of those methods found the memory we wanted, fall back
1552 to a target partial transfer. Normally a single call to
1553 to_xfer_partial is enough; if it doesn't recognize an object
1554 it will call the to_xfer_partial of the next target down.
1555 But for memory this won't do. Memory is the only target
1556 object which can be read from more than one valid target.
1557 A core file, for instance, could have some of memory but
1558 delegate other bits to the target below it. So, we must
1559 manually try all targets. */
1560
1561 do
1562 {
1563 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1564 readbuf, writebuf, memaddr, reg_len);
1565 if (res > 0)
1566 break;
1567
1568 /* We want to continue past core files to executables, but not
1569 past a running target's memory. */
1570 if (ops->to_has_all_memory (ops))
1571 break;
1572
1573 ops = ops->beneath;
1574 }
1575 while (ops != NULL);
1576
1577 /* Make sure the cache gets updated no matter what - if we are writing
1578 to the stack. Even if this write is not tagged as such, we still need
1579 to update the cache. */
1580
1581 if (res > 0
1582 && inf != NULL
1583 && writebuf != NULL
1584 && !region->attrib.cache
1585 && stack_cache_enabled_p
1586 && object != TARGET_OBJECT_STACK_MEMORY)
1587 {
1588 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1589 }
1590
1591 /* If we still haven't got anything, return the last error. We
1592 give up. */
1593 return res;
1594 }
1595
1596 /* Perform a partial memory transfer. For docs see target.h,
1597 to_xfer_partial. */
1598
1599 static LONGEST
1600 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1601 void *readbuf, const void *writebuf, ULONGEST memaddr,
1602 LONGEST len)
1603 {
1604 int res;
1605
1606 /* Zero length requests are ok and require no work. */
1607 if (len == 0)
1608 return 0;
1609
1610 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1611 breakpoint insns, thus hiding out from higher layers whether
1612 there are software breakpoints inserted in the code stream. */
1613 if (readbuf != NULL)
1614 {
1615 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1616
1617 if (res > 0 && !show_memory_breakpoints)
1618 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1619 }
1620 else
1621 {
1622 void *buf;
1623 struct cleanup *old_chain;
1624
1625 buf = xmalloc (len);
1626 old_chain = make_cleanup (xfree, buf);
1627 memcpy (buf, writebuf, len);
1628
1629 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1630 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1631
1632 do_cleanups (old_chain);
1633 }
1634
1635 return res;
1636 }
1637
1638 static void
1639 restore_show_memory_breakpoints (void *arg)
1640 {
1641 show_memory_breakpoints = (uintptr_t) arg;
1642 }
1643
1644 struct cleanup *
1645 make_show_memory_breakpoints_cleanup (int show)
1646 {
1647 int current = show_memory_breakpoints;
1648
1649 show_memory_breakpoints = show;
1650 return make_cleanup (restore_show_memory_breakpoints,
1651 (void *) (uintptr_t) current);
1652 }
1653
1654 /* For docs see target.h, to_xfer_partial. */
1655
1656 static LONGEST
1657 target_xfer_partial (struct target_ops *ops,
1658 enum target_object object, const char *annex,
1659 void *readbuf, const void *writebuf,
1660 ULONGEST offset, LONGEST len)
1661 {
1662 LONGEST retval;
1663
1664 gdb_assert (ops->to_xfer_partial != NULL);
1665
1666 if (writebuf && !may_write_memory)
1667 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1668 core_addr_to_string_nz (offset), plongest (len));
1669
1670 /* If this is a memory transfer, let the memory-specific code
1671 have a look at it instead. Memory transfers are more
1672 complicated. */
1673 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1674 retval = memory_xfer_partial (ops, object, readbuf,
1675 writebuf, offset, len);
1676 else
1677 {
1678 enum target_object raw_object = object;
1679
1680 /* If this is a raw memory transfer, request the normal
1681 memory object from other layers. */
1682 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1683 raw_object = TARGET_OBJECT_MEMORY;
1684
1685 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1686 writebuf, offset, len);
1687 }
1688
1689 if (targetdebug)
1690 {
1691 const unsigned char *myaddr = NULL;
1692
1693 fprintf_unfiltered (gdb_stdlog,
1694 "%s:target_xfer_partial "
1695 "(%d, %s, %s, %s, %s, %s) = %s",
1696 ops->to_shortname,
1697 (int) object,
1698 (annex ? annex : "(null)"),
1699 host_address_to_string (readbuf),
1700 host_address_to_string (writebuf),
1701 core_addr_to_string_nz (offset),
1702 plongest (len), plongest (retval));
1703
1704 if (readbuf)
1705 myaddr = readbuf;
1706 if (writebuf)
1707 myaddr = writebuf;
1708 if (retval > 0 && myaddr != NULL)
1709 {
1710 int i;
1711
1712 fputs_unfiltered (", bytes =", gdb_stdlog);
1713 for (i = 0; i < retval; i++)
1714 {
1715 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1716 {
1717 if (targetdebug < 2 && i > 0)
1718 {
1719 fprintf_unfiltered (gdb_stdlog, " ...");
1720 break;
1721 }
1722 fprintf_unfiltered (gdb_stdlog, "\n");
1723 }
1724
1725 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1726 }
1727 }
1728
1729 fputc_unfiltered ('\n', gdb_stdlog);
1730 }
1731 return retval;
1732 }
1733
1734 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1735 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1736 if any error occurs.
1737
1738 If an error occurs, no guarantee is made about the contents of the data at
1739 MYADDR. In particular, the caller should not depend upon partial reads
1740 filling the buffer with good data. There is no way for the caller to know
1741 how much good data might have been transfered anyway. Callers that can
1742 deal with partial reads should call target_read (which will retry until
1743 it makes no progress, and then return how much was transferred). */
1744
1745 int
1746 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1747 {
1748 /* Dispatch to the topmost target, not the flattened current_target.
1749 Memory accesses check target->to_has_(all_)memory, and the
1750 flattened target doesn't inherit those. */
1751 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1752 myaddr, memaddr, len) == len)
1753 return 0;
1754 else
1755 return EIO;
1756 }
1757
1758 /* Like target_read_memory, but specify explicitly that this is a read from
1759 the target's stack. This may trigger different cache behavior. */
1760
1761 int
1762 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1763 {
1764 /* Dispatch to the topmost target, not the flattened current_target.
1765 Memory accesses check target->to_has_(all_)memory, and the
1766 flattened target doesn't inherit those. */
1767
1768 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1769 myaddr, memaddr, len) == len)
1770 return 0;
1771 else
1772 return EIO;
1773 }
1774
1775 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1776 Returns either 0 for success or an errno value if any error occurs.
1777 If an error occurs, no guarantee is made about how much data got written.
1778 Callers that can deal with partial writes should call target_write. */
1779
1780 int
1781 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1782 {
1783 /* Dispatch to the topmost target, not the flattened current_target.
1784 Memory accesses check target->to_has_(all_)memory, and the
1785 flattened target doesn't inherit those. */
1786 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1787 myaddr, memaddr, len) == len)
1788 return 0;
1789 else
1790 return EIO;
1791 }
1792
1793 /* Write LEN bytes from MYADDR to target raw memory at address
1794 MEMADDR. Returns either 0 for success or an errno value if any
1795 error occurs. If an error occurs, no guarantee is made about how
1796 much data got written. Callers that can deal with partial writes
1797 should call target_write. */
1798
1799 int
1800 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1801 {
1802 /* Dispatch to the topmost target, not the flattened current_target.
1803 Memory accesses check target->to_has_(all_)memory, and the
1804 flattened target doesn't inherit those. */
1805 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1806 myaddr, memaddr, len) == len)
1807 return 0;
1808 else
1809 return EIO;
1810 }
1811
1812 /* Fetch the target's memory map. */
1813
1814 VEC(mem_region_s) *
1815 target_memory_map (void)
1816 {
1817 VEC(mem_region_s) *result;
1818 struct mem_region *last_one, *this_one;
1819 int ix;
1820 struct target_ops *t;
1821
1822 if (targetdebug)
1823 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1824
1825 for (t = current_target.beneath; t != NULL; t = t->beneath)
1826 if (t->to_memory_map != NULL)
1827 break;
1828
1829 if (t == NULL)
1830 return NULL;
1831
1832 result = t->to_memory_map (t);
1833 if (result == NULL)
1834 return NULL;
1835
1836 qsort (VEC_address (mem_region_s, result),
1837 VEC_length (mem_region_s, result),
1838 sizeof (struct mem_region), mem_region_cmp);
1839
1840 /* Check that regions do not overlap. Simultaneously assign
1841 a numbering for the "mem" commands to use to refer to
1842 each region. */
1843 last_one = NULL;
1844 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1845 {
1846 this_one->number = ix;
1847
1848 if (last_one && last_one->hi > this_one->lo)
1849 {
1850 warning (_("Overlapping regions in memory map: ignoring"));
1851 VEC_free (mem_region_s, result);
1852 return NULL;
1853 }
1854 last_one = this_one;
1855 }
1856
1857 return result;
1858 }
1859
1860 void
1861 target_flash_erase (ULONGEST address, LONGEST length)
1862 {
1863 struct target_ops *t;
1864
1865 for (t = current_target.beneath; t != NULL; t = t->beneath)
1866 if (t->to_flash_erase != NULL)
1867 {
1868 if (targetdebug)
1869 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1870 hex_string (address), phex (length, 0));
1871 t->to_flash_erase (t, address, length);
1872 return;
1873 }
1874
1875 tcomplain ();
1876 }
1877
1878 void
1879 target_flash_done (void)
1880 {
1881 struct target_ops *t;
1882
1883 for (t = current_target.beneath; t != NULL; t = t->beneath)
1884 if (t->to_flash_done != NULL)
1885 {
1886 if (targetdebug)
1887 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1888 t->to_flash_done (t);
1889 return;
1890 }
1891
1892 tcomplain ();
1893 }
1894
1895 static void
1896 show_trust_readonly (struct ui_file *file, int from_tty,
1897 struct cmd_list_element *c, const char *value)
1898 {
1899 fprintf_filtered (file,
1900 _("Mode for reading from readonly sections is %s.\n"),
1901 value);
1902 }
1903
1904 /* More generic transfers. */
1905
1906 static LONGEST
1907 default_xfer_partial (struct target_ops *ops, enum target_object object,
1908 const char *annex, gdb_byte *readbuf,
1909 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1910 {
1911 if (object == TARGET_OBJECT_MEMORY
1912 && ops->deprecated_xfer_memory != NULL)
1913 /* If available, fall back to the target's
1914 "deprecated_xfer_memory" method. */
1915 {
1916 int xfered = -1;
1917
1918 errno = 0;
1919 if (writebuf != NULL)
1920 {
1921 void *buffer = xmalloc (len);
1922 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1923
1924 memcpy (buffer, writebuf, len);
1925 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1926 1/*write*/, NULL, ops);
1927 do_cleanups (cleanup);
1928 }
1929 if (readbuf != NULL)
1930 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1931 0/*read*/, NULL, ops);
1932 if (xfered > 0)
1933 return xfered;
1934 else if (xfered == 0 && errno == 0)
1935 /* "deprecated_xfer_memory" uses 0, cross checked against
1936 ERRNO as one indication of an error. */
1937 return 0;
1938 else
1939 return -1;
1940 }
1941 else if (ops->beneath != NULL)
1942 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1943 readbuf, writebuf, offset, len);
1944 else
1945 return -1;
1946 }
1947
1948 /* The xfer_partial handler for the topmost target. Unlike the default,
1949 it does not need to handle memory specially; it just passes all
1950 requests down the stack. */
1951
1952 static LONGEST
1953 current_xfer_partial (struct target_ops *ops, enum target_object object,
1954 const char *annex, gdb_byte *readbuf,
1955 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1956 {
1957 if (ops->beneath != NULL)
1958 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1959 readbuf, writebuf, offset, len);
1960 else
1961 return -1;
1962 }
1963
1964 /* Target vector read/write partial wrapper functions. */
1965
1966 static LONGEST
1967 target_read_partial (struct target_ops *ops,
1968 enum target_object object,
1969 const char *annex, gdb_byte *buf,
1970 ULONGEST offset, LONGEST len)
1971 {
1972 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1973 }
1974
1975 static LONGEST
1976 target_write_partial (struct target_ops *ops,
1977 enum target_object object,
1978 const char *annex, const gdb_byte *buf,
1979 ULONGEST offset, LONGEST len)
1980 {
1981 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1982 }
1983
1984 /* Wrappers to perform the full transfer. */
1985
1986 /* For docs on target_read see target.h. */
1987
1988 LONGEST
1989 target_read (struct target_ops *ops,
1990 enum target_object object,
1991 const char *annex, gdb_byte *buf,
1992 ULONGEST offset, LONGEST len)
1993 {
1994 LONGEST xfered = 0;
1995
1996 while (xfered < len)
1997 {
1998 LONGEST xfer = target_read_partial (ops, object, annex,
1999 (gdb_byte *) buf + xfered,
2000 offset + xfered, len - xfered);
2001
2002 /* Call an observer, notifying them of the xfer progress? */
2003 if (xfer == 0)
2004 return xfered;
2005 if (xfer < 0)
2006 return -1;
2007 xfered += xfer;
2008 QUIT;
2009 }
2010 return len;
2011 }
2012
2013 /* Assuming that the entire [begin, end) range of memory cannot be
2014 read, try to read whatever subrange is possible to read.
2015
2016 The function returns, in RESULT, either zero or one memory block.
2017 If there's a readable subrange at the beginning, it is completely
2018 read and returned. Any further readable subrange will not be read.
2019 Otherwise, if there's a readable subrange at the end, it will be
2020 completely read and returned. Any readable subranges before it
2021 (obviously, not starting at the beginning), will be ignored. In
2022 other cases -- either no readable subrange, or readable subrange(s)
2023 that is neither at the beginning, or end, nothing is returned.
2024
2025 The purpose of this function is to handle a read across a boundary
2026 of accessible memory in a case when memory map is not available.
2027 The above restrictions are fine for this case, but will give
2028 incorrect results if the memory is 'patchy'. However, supporting
2029 'patchy' memory would require trying to read every single byte,
2030 and it seems unacceptable solution. Explicit memory map is
2031 recommended for this case -- and target_read_memory_robust will
2032 take care of reading multiple ranges then. */
2033
2034 static void
2035 read_whatever_is_readable (struct target_ops *ops,
2036 ULONGEST begin, ULONGEST end,
2037 VEC(memory_read_result_s) **result)
2038 {
2039 gdb_byte *buf = xmalloc (end - begin);
2040 ULONGEST current_begin = begin;
2041 ULONGEST current_end = end;
2042 int forward;
2043 memory_read_result_s r;
2044
2045 /* If we previously failed to read 1 byte, nothing can be done here. */
2046 if (end - begin <= 1)
2047 {
2048 xfree (buf);
2049 return;
2050 }
2051
2052 /* Check that either first or the last byte is readable, and give up
2053 if not. This heuristic is meant to permit reading accessible memory
2054 at the boundary of accessible region. */
2055 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2056 buf, begin, 1) == 1)
2057 {
2058 forward = 1;
2059 ++current_begin;
2060 }
2061 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2062 buf + (end-begin) - 1, end - 1, 1) == 1)
2063 {
2064 forward = 0;
2065 --current_end;
2066 }
2067 else
2068 {
2069 xfree (buf);
2070 return;
2071 }
2072
2073 /* Loop invariant is that the [current_begin, current_end) was previously
2074 found to be not readable as a whole.
2075
2076 Note loop condition -- if the range has 1 byte, we can't divide the range
2077 so there's no point trying further. */
2078 while (current_end - current_begin > 1)
2079 {
2080 ULONGEST first_half_begin, first_half_end;
2081 ULONGEST second_half_begin, second_half_end;
2082 LONGEST xfer;
2083 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2084
2085 if (forward)
2086 {
2087 first_half_begin = current_begin;
2088 first_half_end = middle;
2089 second_half_begin = middle;
2090 second_half_end = current_end;
2091 }
2092 else
2093 {
2094 first_half_begin = middle;
2095 first_half_end = current_end;
2096 second_half_begin = current_begin;
2097 second_half_end = middle;
2098 }
2099
2100 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2101 buf + (first_half_begin - begin),
2102 first_half_begin,
2103 first_half_end - first_half_begin);
2104
2105 if (xfer == first_half_end - first_half_begin)
2106 {
2107 /* This half reads up fine. So, the error must be in the
2108 other half. */
2109 current_begin = second_half_begin;
2110 current_end = second_half_end;
2111 }
2112 else
2113 {
2114 /* This half is not readable. Because we've tried one byte, we
2115 know some part of this half if actually redable. Go to the next
2116 iteration to divide again and try to read.
2117
2118 We don't handle the other half, because this function only tries
2119 to read a single readable subrange. */
2120 current_begin = first_half_begin;
2121 current_end = first_half_end;
2122 }
2123 }
2124
2125 if (forward)
2126 {
2127 /* The [begin, current_begin) range has been read. */
2128 r.begin = begin;
2129 r.end = current_begin;
2130 r.data = buf;
2131 }
2132 else
2133 {
2134 /* The [current_end, end) range has been read. */
2135 LONGEST rlen = end - current_end;
2136
2137 r.data = xmalloc (rlen);
2138 memcpy (r.data, buf + current_end - begin, rlen);
2139 r.begin = current_end;
2140 r.end = end;
2141 xfree (buf);
2142 }
2143 VEC_safe_push(memory_read_result_s, (*result), &r);
2144 }
2145
2146 void
2147 free_memory_read_result_vector (void *x)
2148 {
2149 VEC(memory_read_result_s) *v = x;
2150 memory_read_result_s *current;
2151 int ix;
2152
2153 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2154 {
2155 xfree (current->data);
2156 }
2157 VEC_free (memory_read_result_s, v);
2158 }
2159
2160 VEC(memory_read_result_s) *
2161 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2162 {
2163 VEC(memory_read_result_s) *result = 0;
2164
2165 LONGEST xfered = 0;
2166 while (xfered < len)
2167 {
2168 struct mem_region *region = lookup_mem_region (offset + xfered);
2169 LONGEST rlen;
2170
2171 /* If there is no explicit region, a fake one should be created. */
2172 gdb_assert (region);
2173
2174 if (region->hi == 0)
2175 rlen = len - xfered;
2176 else
2177 rlen = region->hi - offset;
2178
2179 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2180 {
2181 /* Cannot read this region. Note that we can end up here only
2182 if the region is explicitly marked inaccessible, or
2183 'inaccessible-by-default' is in effect. */
2184 xfered += rlen;
2185 }
2186 else
2187 {
2188 LONGEST to_read = min (len - xfered, rlen);
2189 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2190
2191 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2192 (gdb_byte *) buffer,
2193 offset + xfered, to_read);
2194 /* Call an observer, notifying them of the xfer progress? */
2195 if (xfer <= 0)
2196 {
2197 /* Got an error reading full chunk. See if maybe we can read
2198 some subrange. */
2199 xfree (buffer);
2200 read_whatever_is_readable (ops, offset + xfered,
2201 offset + xfered + to_read, &result);
2202 xfered += to_read;
2203 }
2204 else
2205 {
2206 struct memory_read_result r;
2207 r.data = buffer;
2208 r.begin = offset + xfered;
2209 r.end = r.begin + xfer;
2210 VEC_safe_push (memory_read_result_s, result, &r);
2211 xfered += xfer;
2212 }
2213 QUIT;
2214 }
2215 }
2216 return result;
2217 }
2218
2219
2220 /* An alternative to target_write with progress callbacks. */
2221
2222 LONGEST
2223 target_write_with_progress (struct target_ops *ops,
2224 enum target_object object,
2225 const char *annex, const gdb_byte *buf,
2226 ULONGEST offset, LONGEST len,
2227 void (*progress) (ULONGEST, void *), void *baton)
2228 {
2229 LONGEST xfered = 0;
2230
2231 /* Give the progress callback a chance to set up. */
2232 if (progress)
2233 (*progress) (0, baton);
2234
2235 while (xfered < len)
2236 {
2237 LONGEST xfer = target_write_partial (ops, object, annex,
2238 (gdb_byte *) buf + xfered,
2239 offset + xfered, len - xfered);
2240
2241 if (xfer == 0)
2242 return xfered;
2243 if (xfer < 0)
2244 return -1;
2245
2246 if (progress)
2247 (*progress) (xfer, baton);
2248
2249 xfered += xfer;
2250 QUIT;
2251 }
2252 return len;
2253 }
2254
2255 /* For docs on target_write see target.h. */
2256
2257 LONGEST
2258 target_write (struct target_ops *ops,
2259 enum target_object object,
2260 const char *annex, const gdb_byte *buf,
2261 ULONGEST offset, LONGEST len)
2262 {
2263 return target_write_with_progress (ops, object, annex, buf, offset, len,
2264 NULL, NULL);
2265 }
2266
2267 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2268 the size of the transferred data. PADDING additional bytes are
2269 available in *BUF_P. This is a helper function for
2270 target_read_alloc; see the declaration of that function for more
2271 information. */
2272
2273 static LONGEST
2274 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2275 const char *annex, gdb_byte **buf_p, int padding)
2276 {
2277 size_t buf_alloc, buf_pos;
2278 gdb_byte *buf;
2279 LONGEST n;
2280
2281 /* This function does not have a length parameter; it reads the
2282 entire OBJECT). Also, it doesn't support objects fetched partly
2283 from one target and partly from another (in a different stratum,
2284 e.g. a core file and an executable). Both reasons make it
2285 unsuitable for reading memory. */
2286 gdb_assert (object != TARGET_OBJECT_MEMORY);
2287
2288 /* Start by reading up to 4K at a time. The target will throttle
2289 this number down if necessary. */
2290 buf_alloc = 4096;
2291 buf = xmalloc (buf_alloc);
2292 buf_pos = 0;
2293 while (1)
2294 {
2295 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2296 buf_pos, buf_alloc - buf_pos - padding);
2297 if (n < 0)
2298 {
2299 /* An error occurred. */
2300 xfree (buf);
2301 return -1;
2302 }
2303 else if (n == 0)
2304 {
2305 /* Read all there was. */
2306 if (buf_pos == 0)
2307 xfree (buf);
2308 else
2309 *buf_p = buf;
2310 return buf_pos;
2311 }
2312
2313 buf_pos += n;
2314
2315 /* If the buffer is filling up, expand it. */
2316 if (buf_alloc < buf_pos * 2)
2317 {
2318 buf_alloc *= 2;
2319 buf = xrealloc (buf, buf_alloc);
2320 }
2321
2322 QUIT;
2323 }
2324 }
2325
2326 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2327 the size of the transferred data. See the declaration in "target.h"
2328 function for more information about the return value. */
2329
2330 LONGEST
2331 target_read_alloc (struct target_ops *ops, enum target_object object,
2332 const char *annex, gdb_byte **buf_p)
2333 {
2334 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2335 }
2336
2337 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2338 returned as a string, allocated using xmalloc. If an error occurs
2339 or the transfer is unsupported, NULL is returned. Empty objects
2340 are returned as allocated but empty strings. A warning is issued
2341 if the result contains any embedded NUL bytes. */
2342
2343 char *
2344 target_read_stralloc (struct target_ops *ops, enum target_object object,
2345 const char *annex)
2346 {
2347 gdb_byte *buffer;
2348 LONGEST i, transferred;
2349
2350 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2351
2352 if (transferred < 0)
2353 return NULL;
2354
2355 if (transferred == 0)
2356 return xstrdup ("");
2357
2358 buffer[transferred] = 0;
2359
2360 /* Check for embedded NUL bytes; but allow trailing NULs. */
2361 for (i = strlen (buffer); i < transferred; i++)
2362 if (buffer[i] != 0)
2363 {
2364 warning (_("target object %d, annex %s, "
2365 "contained unexpected null characters"),
2366 (int) object, annex ? annex : "(none)");
2367 break;
2368 }
2369
2370 return (char *) buffer;
2371 }
2372
2373 /* Memory transfer methods. */
2374
2375 void
2376 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2377 LONGEST len)
2378 {
2379 /* This method is used to read from an alternate, non-current
2380 target. This read must bypass the overlay support (as symbols
2381 don't match this target), and GDB's internal cache (wrong cache
2382 for this target). */
2383 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2384 != len)
2385 memory_error (EIO, addr);
2386 }
2387
2388 ULONGEST
2389 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2390 int len, enum bfd_endian byte_order)
2391 {
2392 gdb_byte buf[sizeof (ULONGEST)];
2393
2394 gdb_assert (len <= sizeof (buf));
2395 get_target_memory (ops, addr, buf, len);
2396 return extract_unsigned_integer (buf, len, byte_order);
2397 }
2398
2399 int
2400 target_insert_breakpoint (struct gdbarch *gdbarch,
2401 struct bp_target_info *bp_tgt)
2402 {
2403 if (!may_insert_breakpoints)
2404 {
2405 warning (_("May not insert breakpoints"));
2406 return 1;
2407 }
2408
2409 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2410 }
2411
2412 int
2413 target_remove_breakpoint (struct gdbarch *gdbarch,
2414 struct bp_target_info *bp_tgt)
2415 {
2416 /* This is kind of a weird case to handle, but the permission might
2417 have been changed after breakpoints were inserted - in which case
2418 we should just take the user literally and assume that any
2419 breakpoints should be left in place. */
2420 if (!may_insert_breakpoints)
2421 {
2422 warning (_("May not remove breakpoints"));
2423 return 1;
2424 }
2425
2426 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2427 }
2428
2429 static void
2430 target_info (char *args, int from_tty)
2431 {
2432 struct target_ops *t;
2433 int has_all_mem = 0;
2434
2435 if (symfile_objfile != NULL)
2436 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2437
2438 for (t = target_stack; t != NULL; t = t->beneath)
2439 {
2440 if (!(*t->to_has_memory) (t))
2441 continue;
2442
2443 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2444 continue;
2445 if (has_all_mem)
2446 printf_unfiltered (_("\tWhile running this, "
2447 "GDB does not access memory from...\n"));
2448 printf_unfiltered ("%s:\n", t->to_longname);
2449 (t->to_files_info) (t);
2450 has_all_mem = (*t->to_has_all_memory) (t);
2451 }
2452 }
2453
2454 /* This function is called before any new inferior is created, e.g.
2455 by running a program, attaching, or connecting to a target.
2456 It cleans up any state from previous invocations which might
2457 change between runs. This is a subset of what target_preopen
2458 resets (things which might change between targets). */
2459
2460 void
2461 target_pre_inferior (int from_tty)
2462 {
2463 /* Clear out solib state. Otherwise the solib state of the previous
2464 inferior might have survived and is entirely wrong for the new
2465 target. This has been observed on GNU/Linux using glibc 2.3. How
2466 to reproduce:
2467
2468 bash$ ./foo&
2469 [1] 4711
2470 bash$ ./foo&
2471 [1] 4712
2472 bash$ gdb ./foo
2473 [...]
2474 (gdb) attach 4711
2475 (gdb) detach
2476 (gdb) attach 4712
2477 Cannot access memory at address 0xdeadbeef
2478 */
2479
2480 /* In some OSs, the shared library list is the same/global/shared
2481 across inferiors. If code is shared between processes, so are
2482 memory regions and features. */
2483 if (!gdbarch_has_global_solist (target_gdbarch))
2484 {
2485 no_shared_libraries (NULL, from_tty);
2486
2487 invalidate_target_mem_regions ();
2488
2489 target_clear_description ();
2490 }
2491 }
2492
2493 /* Callback for iterate_over_inferiors. Gets rid of the given
2494 inferior. */
2495
2496 static int
2497 dispose_inferior (struct inferior *inf, void *args)
2498 {
2499 struct thread_info *thread;
2500
2501 thread = any_thread_of_process (inf->pid);
2502 if (thread)
2503 {
2504 switch_to_thread (thread->ptid);
2505
2506 /* Core inferiors actually should be detached, not killed. */
2507 if (target_has_execution)
2508 target_kill ();
2509 else
2510 target_detach (NULL, 0);
2511 }
2512
2513 return 0;
2514 }
2515
2516 /* This is to be called by the open routine before it does
2517 anything. */
2518
2519 void
2520 target_preopen (int from_tty)
2521 {
2522 dont_repeat ();
2523
2524 if (have_inferiors ())
2525 {
2526 if (!from_tty
2527 || !have_live_inferiors ()
2528 || query (_("A program is being debugged already. Kill it? ")))
2529 iterate_over_inferiors (dispose_inferior, NULL);
2530 else
2531 error (_("Program not killed."));
2532 }
2533
2534 /* Calling target_kill may remove the target from the stack. But if
2535 it doesn't (which seems like a win for UDI), remove it now. */
2536 /* Leave the exec target, though. The user may be switching from a
2537 live process to a core of the same program. */
2538 pop_all_targets_above (file_stratum, 0);
2539
2540 target_pre_inferior (from_tty);
2541 }
2542
2543 /* Detach a target after doing deferred register stores. */
2544
2545 void
2546 target_detach (char *args, int from_tty)
2547 {
2548 struct target_ops* t;
2549
2550 if (gdbarch_has_global_breakpoints (target_gdbarch))
2551 /* Don't remove global breakpoints here. They're removed on
2552 disconnection from the target. */
2553 ;
2554 else
2555 /* If we're in breakpoints-always-inserted mode, have to remove
2556 them before detaching. */
2557 remove_breakpoints_pid (PIDGET (inferior_ptid));
2558
2559 prepare_for_detach ();
2560
2561 for (t = current_target.beneath; t != NULL; t = t->beneath)
2562 {
2563 if (t->to_detach != NULL)
2564 {
2565 t->to_detach (t, args, from_tty);
2566 if (targetdebug)
2567 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2568 args, from_tty);
2569 return;
2570 }
2571 }
2572
2573 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2574 }
2575
2576 void
2577 target_disconnect (char *args, int from_tty)
2578 {
2579 struct target_ops *t;
2580
2581 /* If we're in breakpoints-always-inserted mode or if breakpoints
2582 are global across processes, we have to remove them before
2583 disconnecting. */
2584 remove_breakpoints ();
2585
2586 for (t = current_target.beneath; t != NULL; t = t->beneath)
2587 if (t->to_disconnect != NULL)
2588 {
2589 if (targetdebug)
2590 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2591 args, from_tty);
2592 t->to_disconnect (t, args, from_tty);
2593 return;
2594 }
2595
2596 tcomplain ();
2597 }
2598
2599 ptid_t
2600 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2601 {
2602 struct target_ops *t;
2603
2604 for (t = current_target.beneath; t != NULL; t = t->beneath)
2605 {
2606 if (t->to_wait != NULL)
2607 {
2608 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2609
2610 if (targetdebug)
2611 {
2612 char *status_string;
2613
2614 status_string = target_waitstatus_to_string (status);
2615 fprintf_unfiltered (gdb_stdlog,
2616 "target_wait (%d, status) = %d, %s\n",
2617 PIDGET (ptid), PIDGET (retval),
2618 status_string);
2619 xfree (status_string);
2620 }
2621
2622 return retval;
2623 }
2624 }
2625
2626 noprocess ();
2627 }
2628
2629 char *
2630 target_pid_to_str (ptid_t ptid)
2631 {
2632 struct target_ops *t;
2633
2634 for (t = current_target.beneath; t != NULL; t = t->beneath)
2635 {
2636 if (t->to_pid_to_str != NULL)
2637 return (*t->to_pid_to_str) (t, ptid);
2638 }
2639
2640 return normal_pid_to_str (ptid);
2641 }
2642
2643 char *
2644 target_thread_name (struct thread_info *info)
2645 {
2646 struct target_ops *t;
2647
2648 for (t = current_target.beneath; t != NULL; t = t->beneath)
2649 {
2650 if (t->to_thread_name != NULL)
2651 return (*t->to_thread_name) (info);
2652 }
2653
2654 return NULL;
2655 }
2656
2657 void
2658 target_resume (ptid_t ptid, int step, enum target_signal signal)
2659 {
2660 struct target_ops *t;
2661
2662 target_dcache_invalidate ();
2663
2664 for (t = current_target.beneath; t != NULL; t = t->beneath)
2665 {
2666 if (t->to_resume != NULL)
2667 {
2668 t->to_resume (t, ptid, step, signal);
2669 if (targetdebug)
2670 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2671 PIDGET (ptid),
2672 step ? "step" : "continue",
2673 target_signal_to_name (signal));
2674
2675 registers_changed_ptid (ptid);
2676 set_executing (ptid, 1);
2677 set_running (ptid, 1);
2678 clear_inline_frame_state (ptid);
2679 return;
2680 }
2681 }
2682
2683 noprocess ();
2684 }
2685
2686 void
2687 target_pass_signals (int numsigs, unsigned char *pass_signals)
2688 {
2689 struct target_ops *t;
2690
2691 for (t = current_target.beneath; t != NULL; t = t->beneath)
2692 {
2693 if (t->to_pass_signals != NULL)
2694 {
2695 if (targetdebug)
2696 {
2697 int i;
2698
2699 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2700 numsigs);
2701
2702 for (i = 0; i < numsigs; i++)
2703 if (pass_signals[i])
2704 fprintf_unfiltered (gdb_stdlog, " %s",
2705 target_signal_to_name (i));
2706
2707 fprintf_unfiltered (gdb_stdlog, " })\n");
2708 }
2709
2710 (*t->to_pass_signals) (numsigs, pass_signals);
2711 return;
2712 }
2713 }
2714 }
2715
2716 /* Look through the list of possible targets for a target that can
2717 follow forks. */
2718
2719 int
2720 target_follow_fork (int follow_child)
2721 {
2722 struct target_ops *t;
2723
2724 for (t = current_target.beneath; t != NULL; t = t->beneath)
2725 {
2726 if (t->to_follow_fork != NULL)
2727 {
2728 int retval = t->to_follow_fork (t, follow_child);
2729
2730 if (targetdebug)
2731 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2732 follow_child, retval);
2733 return retval;
2734 }
2735 }
2736
2737 /* Some target returned a fork event, but did not know how to follow it. */
2738 internal_error (__FILE__, __LINE__,
2739 _("could not find a target to follow fork"));
2740 }
2741
2742 void
2743 target_mourn_inferior (void)
2744 {
2745 struct target_ops *t;
2746
2747 for (t = current_target.beneath; t != NULL; t = t->beneath)
2748 {
2749 if (t->to_mourn_inferior != NULL)
2750 {
2751 t->to_mourn_inferior (t);
2752 if (targetdebug)
2753 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2754
2755 /* We no longer need to keep handles on any of the object files.
2756 Make sure to release them to avoid unnecessarily locking any
2757 of them while we're not actually debugging. */
2758 bfd_cache_close_all ();
2759
2760 return;
2761 }
2762 }
2763
2764 internal_error (__FILE__, __LINE__,
2765 _("could not find a target to follow mourn inferior"));
2766 }
2767
2768 /* Look for a target which can describe architectural features, starting
2769 from TARGET. If we find one, return its description. */
2770
2771 const struct target_desc *
2772 target_read_description (struct target_ops *target)
2773 {
2774 struct target_ops *t;
2775
2776 for (t = target; t != NULL; t = t->beneath)
2777 if (t->to_read_description != NULL)
2778 {
2779 const struct target_desc *tdesc;
2780
2781 tdesc = t->to_read_description (t);
2782 if (tdesc)
2783 return tdesc;
2784 }
2785
2786 return NULL;
2787 }
2788
2789 /* The default implementation of to_search_memory.
2790 This implements a basic search of memory, reading target memory and
2791 performing the search here (as opposed to performing the search in on the
2792 target side with, for example, gdbserver). */
2793
2794 int
2795 simple_search_memory (struct target_ops *ops,
2796 CORE_ADDR start_addr, ULONGEST search_space_len,
2797 const gdb_byte *pattern, ULONGEST pattern_len,
2798 CORE_ADDR *found_addrp)
2799 {
2800 /* NOTE: also defined in find.c testcase. */
2801 #define SEARCH_CHUNK_SIZE 16000
2802 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2803 /* Buffer to hold memory contents for searching. */
2804 gdb_byte *search_buf;
2805 unsigned search_buf_size;
2806 struct cleanup *old_cleanups;
2807
2808 search_buf_size = chunk_size + pattern_len - 1;
2809
2810 /* No point in trying to allocate a buffer larger than the search space. */
2811 if (search_space_len < search_buf_size)
2812 search_buf_size = search_space_len;
2813
2814 search_buf = malloc (search_buf_size);
2815 if (search_buf == NULL)
2816 error (_("Unable to allocate memory to perform the search."));
2817 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2818
2819 /* Prime the search buffer. */
2820
2821 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2822 search_buf, start_addr, search_buf_size) != search_buf_size)
2823 {
2824 warning (_("Unable to access target memory at %s, halting search."),
2825 hex_string (start_addr));
2826 do_cleanups (old_cleanups);
2827 return -1;
2828 }
2829
2830 /* Perform the search.
2831
2832 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2833 When we've scanned N bytes we copy the trailing bytes to the start and
2834 read in another N bytes. */
2835
2836 while (search_space_len >= pattern_len)
2837 {
2838 gdb_byte *found_ptr;
2839 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2840
2841 found_ptr = memmem (search_buf, nr_search_bytes,
2842 pattern, pattern_len);
2843
2844 if (found_ptr != NULL)
2845 {
2846 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2847
2848 *found_addrp = found_addr;
2849 do_cleanups (old_cleanups);
2850 return 1;
2851 }
2852
2853 /* Not found in this chunk, skip to next chunk. */
2854
2855 /* Don't let search_space_len wrap here, it's unsigned. */
2856 if (search_space_len >= chunk_size)
2857 search_space_len -= chunk_size;
2858 else
2859 search_space_len = 0;
2860
2861 if (search_space_len >= pattern_len)
2862 {
2863 unsigned keep_len = search_buf_size - chunk_size;
2864 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2865 int nr_to_read;
2866
2867 /* Copy the trailing part of the previous iteration to the front
2868 of the buffer for the next iteration. */
2869 gdb_assert (keep_len == pattern_len - 1);
2870 memcpy (search_buf, search_buf + chunk_size, keep_len);
2871
2872 nr_to_read = min (search_space_len - keep_len, chunk_size);
2873
2874 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2875 search_buf + keep_len, read_addr,
2876 nr_to_read) != nr_to_read)
2877 {
2878 warning (_("Unable to access target "
2879 "memory at %s, halting search."),
2880 hex_string (read_addr));
2881 do_cleanups (old_cleanups);
2882 return -1;
2883 }
2884
2885 start_addr += chunk_size;
2886 }
2887 }
2888
2889 /* Not found. */
2890
2891 do_cleanups (old_cleanups);
2892 return 0;
2893 }
2894
2895 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2896 sequence of bytes in PATTERN with length PATTERN_LEN.
2897
2898 The result is 1 if found, 0 if not found, and -1 if there was an error
2899 requiring halting of the search (e.g. memory read error).
2900 If the pattern is found the address is recorded in FOUND_ADDRP. */
2901
2902 int
2903 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2904 const gdb_byte *pattern, ULONGEST pattern_len,
2905 CORE_ADDR *found_addrp)
2906 {
2907 struct target_ops *t;
2908 int found;
2909
2910 /* We don't use INHERIT to set current_target.to_search_memory,
2911 so we have to scan the target stack and handle targetdebug
2912 ourselves. */
2913
2914 if (targetdebug)
2915 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2916 hex_string (start_addr));
2917
2918 for (t = current_target.beneath; t != NULL; t = t->beneath)
2919 if (t->to_search_memory != NULL)
2920 break;
2921
2922 if (t != NULL)
2923 {
2924 found = t->to_search_memory (t, start_addr, search_space_len,
2925 pattern, pattern_len, found_addrp);
2926 }
2927 else
2928 {
2929 /* If a special version of to_search_memory isn't available, use the
2930 simple version. */
2931 found = simple_search_memory (current_target.beneath,
2932 start_addr, search_space_len,
2933 pattern, pattern_len, found_addrp);
2934 }
2935
2936 if (targetdebug)
2937 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2938
2939 return found;
2940 }
2941
2942 /* Look through the currently pushed targets. If none of them will
2943 be able to restart the currently running process, issue an error
2944 message. */
2945
2946 void
2947 target_require_runnable (void)
2948 {
2949 struct target_ops *t;
2950
2951 for (t = target_stack; t != NULL; t = t->beneath)
2952 {
2953 /* If this target knows how to create a new program, then
2954 assume we will still be able to after killing the current
2955 one. Either killing and mourning will not pop T, or else
2956 find_default_run_target will find it again. */
2957 if (t->to_create_inferior != NULL)
2958 return;
2959
2960 /* Do not worry about thread_stratum targets that can not
2961 create inferiors. Assume they will be pushed again if
2962 necessary, and continue to the process_stratum. */
2963 if (t->to_stratum == thread_stratum
2964 || t->to_stratum == arch_stratum)
2965 continue;
2966
2967 error (_("The \"%s\" target does not support \"run\". "
2968 "Try \"help target\" or \"continue\"."),
2969 t->to_shortname);
2970 }
2971
2972 /* This function is only called if the target is running. In that
2973 case there should have been a process_stratum target and it
2974 should either know how to create inferiors, or not... */
2975 internal_error (__FILE__, __LINE__, _("No targets found"));
2976 }
2977
2978 /* Look through the list of possible targets for a target that can
2979 execute a run or attach command without any other data. This is
2980 used to locate the default process stratum.
2981
2982 If DO_MESG is not NULL, the result is always valid (error() is
2983 called for errors); else, return NULL on error. */
2984
2985 static struct target_ops *
2986 find_default_run_target (char *do_mesg)
2987 {
2988 struct target_ops **t;
2989 struct target_ops *runable = NULL;
2990 int count;
2991
2992 count = 0;
2993
2994 for (t = target_structs; t < target_structs + target_struct_size;
2995 ++t)
2996 {
2997 if ((*t)->to_can_run && target_can_run (*t))
2998 {
2999 runable = *t;
3000 ++count;
3001 }
3002 }
3003
3004 if (count != 1)
3005 {
3006 if (do_mesg)
3007 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3008 else
3009 return NULL;
3010 }
3011
3012 return runable;
3013 }
3014
3015 void
3016 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3017 {
3018 struct target_ops *t;
3019
3020 t = find_default_run_target ("attach");
3021 (t->to_attach) (t, args, from_tty);
3022 return;
3023 }
3024
3025 void
3026 find_default_create_inferior (struct target_ops *ops,
3027 char *exec_file, char *allargs, char **env,
3028 int from_tty)
3029 {
3030 struct target_ops *t;
3031
3032 t = find_default_run_target ("run");
3033 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3034 return;
3035 }
3036
3037 static int
3038 find_default_can_async_p (void)
3039 {
3040 struct target_ops *t;
3041
3042 /* This may be called before the target is pushed on the stack;
3043 look for the default process stratum. If there's none, gdb isn't
3044 configured with a native debugger, and target remote isn't
3045 connected yet. */
3046 t = find_default_run_target (NULL);
3047 if (t && t->to_can_async_p)
3048 return (t->to_can_async_p) ();
3049 return 0;
3050 }
3051
3052 static int
3053 find_default_is_async_p (void)
3054 {
3055 struct target_ops *t;
3056
3057 /* This may be called before the target is pushed on the stack;
3058 look for the default process stratum. If there's none, gdb isn't
3059 configured with a native debugger, and target remote isn't
3060 connected yet. */
3061 t = find_default_run_target (NULL);
3062 if (t && t->to_is_async_p)
3063 return (t->to_is_async_p) ();
3064 return 0;
3065 }
3066
3067 static int
3068 find_default_supports_non_stop (void)
3069 {
3070 struct target_ops *t;
3071
3072 t = find_default_run_target (NULL);
3073 if (t && t->to_supports_non_stop)
3074 return (t->to_supports_non_stop) ();
3075 return 0;
3076 }
3077
3078 int
3079 target_supports_non_stop (void)
3080 {
3081 struct target_ops *t;
3082
3083 for (t = &current_target; t != NULL; t = t->beneath)
3084 if (t->to_supports_non_stop)
3085 return t->to_supports_non_stop ();
3086
3087 return 0;
3088 }
3089
3090 /* Implement the "info proc" command. */
3091
3092 void
3093 target_info_proc (char *args, enum info_proc_what what)
3094 {
3095 struct target_ops *t;
3096
3097 /* If we're already connected to something that can get us OS
3098 related data, use it. Otherwise, try using the native
3099 target. */
3100 if (current_target.to_stratum >= process_stratum)
3101 t = current_target.beneath;
3102 else
3103 t = find_default_run_target (NULL);
3104
3105 for (; t != NULL; t = t->beneath)
3106 {
3107 if (t->to_info_proc != NULL)
3108 {
3109 t->to_info_proc (t, args, what);
3110
3111 if (targetdebug)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "target_info_proc (\"%s\", %d)\n", args, what);
3114
3115 return;
3116 }
3117 }
3118
3119 error (_("Not supported on this target."));
3120 }
3121
3122 static int
3123 find_default_supports_disable_randomization (void)
3124 {
3125 struct target_ops *t;
3126
3127 t = find_default_run_target (NULL);
3128 if (t && t->to_supports_disable_randomization)
3129 return (t->to_supports_disable_randomization) ();
3130 return 0;
3131 }
3132
3133 int
3134 target_supports_disable_randomization (void)
3135 {
3136 struct target_ops *t;
3137
3138 for (t = &current_target; t != NULL; t = t->beneath)
3139 if (t->to_supports_disable_randomization)
3140 return t->to_supports_disable_randomization ();
3141
3142 return 0;
3143 }
3144
3145 char *
3146 target_get_osdata (const char *type)
3147 {
3148 struct target_ops *t;
3149
3150 /* If we're already connected to something that can get us OS
3151 related data, use it. Otherwise, try using the native
3152 target. */
3153 if (current_target.to_stratum >= process_stratum)
3154 t = current_target.beneath;
3155 else
3156 t = find_default_run_target ("get OS data");
3157
3158 if (!t)
3159 return NULL;
3160
3161 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3162 }
3163
3164 /* Determine the current address space of thread PTID. */
3165
3166 struct address_space *
3167 target_thread_address_space (ptid_t ptid)
3168 {
3169 struct address_space *aspace;
3170 struct inferior *inf;
3171 struct target_ops *t;
3172
3173 for (t = current_target.beneath; t != NULL; t = t->beneath)
3174 {
3175 if (t->to_thread_address_space != NULL)
3176 {
3177 aspace = t->to_thread_address_space (t, ptid);
3178 gdb_assert (aspace);
3179
3180 if (targetdebug)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "target_thread_address_space (%s) = %d\n",
3183 target_pid_to_str (ptid),
3184 address_space_num (aspace));
3185 return aspace;
3186 }
3187 }
3188
3189 /* Fall-back to the "main" address space of the inferior. */
3190 inf = find_inferior_pid (ptid_get_pid (ptid));
3191
3192 if (inf == NULL || inf->aspace == NULL)
3193 internal_error (__FILE__, __LINE__,
3194 _("Can't determine the current "
3195 "address space of thread %s\n"),
3196 target_pid_to_str (ptid));
3197
3198 return inf->aspace;
3199 }
3200
3201
3202 /* Target file operations. */
3203
3204 static struct target_ops *
3205 default_fileio_target (void)
3206 {
3207 /* If we're already connected to something that can perform
3208 file I/O, use it. Otherwise, try using the native target. */
3209 if (current_target.to_stratum >= process_stratum)
3210 return current_target.beneath;
3211 else
3212 return find_default_run_target ("file I/O");
3213 }
3214
3215 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3216 target file descriptor, or -1 if an error occurs (and set
3217 *TARGET_ERRNO). */
3218 int
3219 target_fileio_open (const char *filename, int flags, int mode,
3220 int *target_errno)
3221 {
3222 struct target_ops *t;
3223
3224 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3225 {
3226 if (t->to_fileio_open != NULL)
3227 {
3228 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3229
3230 if (targetdebug)
3231 fprintf_unfiltered (gdb_stdlog,
3232 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3233 filename, flags, mode,
3234 fd, fd != -1 ? 0 : *target_errno);
3235 return fd;
3236 }
3237 }
3238
3239 *target_errno = FILEIO_ENOSYS;
3240 return -1;
3241 }
3242
3243 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3244 Return the number of bytes written, or -1 if an error occurs
3245 (and set *TARGET_ERRNO). */
3246 int
3247 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3248 ULONGEST offset, int *target_errno)
3249 {
3250 struct target_ops *t;
3251
3252 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3253 {
3254 if (t->to_fileio_pwrite != NULL)
3255 {
3256 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3257 target_errno);
3258
3259 if (targetdebug)
3260 fprintf_unfiltered (gdb_stdlog,
3261 "target_fileio_pwrite (%d,...,%d,%s) "
3262 "= %d (%d)\n",
3263 fd, len, pulongest (offset),
3264 ret, ret != -1 ? 0 : *target_errno);
3265 return ret;
3266 }
3267 }
3268
3269 *target_errno = FILEIO_ENOSYS;
3270 return -1;
3271 }
3272
3273 /* Read up to LEN bytes FD on the target into READ_BUF.
3274 Return the number of bytes read, or -1 if an error occurs
3275 (and set *TARGET_ERRNO). */
3276 int
3277 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3278 ULONGEST offset, int *target_errno)
3279 {
3280 struct target_ops *t;
3281
3282 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3283 {
3284 if (t->to_fileio_pread != NULL)
3285 {
3286 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3287 target_errno);
3288
3289 if (targetdebug)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "target_fileio_pread (%d,...,%d,%s) "
3292 "= %d (%d)\n",
3293 fd, len, pulongest (offset),
3294 ret, ret != -1 ? 0 : *target_errno);
3295 return ret;
3296 }
3297 }
3298
3299 *target_errno = FILEIO_ENOSYS;
3300 return -1;
3301 }
3302
3303 /* Close FD on the target. Return 0, or -1 if an error occurs
3304 (and set *TARGET_ERRNO). */
3305 int
3306 target_fileio_close (int fd, int *target_errno)
3307 {
3308 struct target_ops *t;
3309
3310 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3311 {
3312 if (t->to_fileio_close != NULL)
3313 {
3314 int ret = t->to_fileio_close (fd, target_errno);
3315
3316 if (targetdebug)
3317 fprintf_unfiltered (gdb_stdlog,
3318 "target_fileio_close (%d) = %d (%d)\n",
3319 fd, ret, ret != -1 ? 0 : *target_errno);
3320 return ret;
3321 }
3322 }
3323
3324 *target_errno = FILEIO_ENOSYS;
3325 return -1;
3326 }
3327
3328 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3329 occurs (and set *TARGET_ERRNO). */
3330 int
3331 target_fileio_unlink (const char *filename, int *target_errno)
3332 {
3333 struct target_ops *t;
3334
3335 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3336 {
3337 if (t->to_fileio_unlink != NULL)
3338 {
3339 int ret = t->to_fileio_unlink (filename, target_errno);
3340
3341 if (targetdebug)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "target_fileio_unlink (%s) = %d (%d)\n",
3344 filename, ret, ret != -1 ? 0 : *target_errno);
3345 return ret;
3346 }
3347 }
3348
3349 *target_errno = FILEIO_ENOSYS;
3350 return -1;
3351 }
3352
3353 /* Read value of symbolic link FILENAME on the target. Return a
3354 null-terminated string allocated via xmalloc, or NULL if an error
3355 occurs (and set *TARGET_ERRNO). */
3356 char *
3357 target_fileio_readlink (const char *filename, int *target_errno)
3358 {
3359 struct target_ops *t;
3360
3361 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3362 {
3363 if (t->to_fileio_readlink != NULL)
3364 {
3365 char *ret = t->to_fileio_readlink (filename, target_errno);
3366
3367 if (targetdebug)
3368 fprintf_unfiltered (gdb_stdlog,
3369 "target_fileio_readlink (%s) = %s (%d)\n",
3370 filename, ret? ret : "(nil)",
3371 ret? 0 : *target_errno);
3372 return ret;
3373 }
3374 }
3375
3376 *target_errno = FILEIO_ENOSYS;
3377 return NULL;
3378 }
3379
3380 static void
3381 target_fileio_close_cleanup (void *opaque)
3382 {
3383 int fd = *(int *) opaque;
3384 int target_errno;
3385
3386 target_fileio_close (fd, &target_errno);
3387 }
3388
3389 /* Read target file FILENAME. Store the result in *BUF_P and
3390 return the size of the transferred data. PADDING additional bytes are
3391 available in *BUF_P. This is a helper function for
3392 target_fileio_read_alloc; see the declaration of that function for more
3393 information. */
3394
3395 static LONGEST
3396 target_fileio_read_alloc_1 (const char *filename,
3397 gdb_byte **buf_p, int padding)
3398 {
3399 struct cleanup *close_cleanup;
3400 size_t buf_alloc, buf_pos;
3401 gdb_byte *buf;
3402 LONGEST n;
3403 int fd;
3404 int target_errno;
3405
3406 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3407 if (fd == -1)
3408 return -1;
3409
3410 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3411
3412 /* Start by reading up to 4K at a time. The target will throttle
3413 this number down if necessary. */
3414 buf_alloc = 4096;
3415 buf = xmalloc (buf_alloc);
3416 buf_pos = 0;
3417 while (1)
3418 {
3419 n = target_fileio_pread (fd, &buf[buf_pos],
3420 buf_alloc - buf_pos - padding, buf_pos,
3421 &target_errno);
3422 if (n < 0)
3423 {
3424 /* An error occurred. */
3425 do_cleanups (close_cleanup);
3426 xfree (buf);
3427 return -1;
3428 }
3429 else if (n == 0)
3430 {
3431 /* Read all there was. */
3432 do_cleanups (close_cleanup);
3433 if (buf_pos == 0)
3434 xfree (buf);
3435 else
3436 *buf_p = buf;
3437 return buf_pos;
3438 }
3439
3440 buf_pos += n;
3441
3442 /* If the buffer is filling up, expand it. */
3443 if (buf_alloc < buf_pos * 2)
3444 {
3445 buf_alloc *= 2;
3446 buf = xrealloc (buf, buf_alloc);
3447 }
3448
3449 QUIT;
3450 }
3451 }
3452
3453 /* Read target file FILENAME. Store the result in *BUF_P and return
3454 the size of the transferred data. See the declaration in "target.h"
3455 function for more information about the return value. */
3456
3457 LONGEST
3458 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3459 {
3460 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3461 }
3462
3463 /* Read target file FILENAME. The result is NUL-terminated and
3464 returned as a string, allocated using xmalloc. If an error occurs
3465 or the transfer is unsupported, NULL is returned. Empty objects
3466 are returned as allocated but empty strings. A warning is issued
3467 if the result contains any embedded NUL bytes. */
3468
3469 char *
3470 target_fileio_read_stralloc (const char *filename)
3471 {
3472 gdb_byte *buffer;
3473 LONGEST i, transferred;
3474
3475 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3476
3477 if (transferred < 0)
3478 return NULL;
3479
3480 if (transferred == 0)
3481 return xstrdup ("");
3482
3483 buffer[transferred] = 0;
3484
3485 /* Check for embedded NUL bytes; but allow trailing NULs. */
3486 for (i = strlen (buffer); i < transferred; i++)
3487 if (buffer[i] != 0)
3488 {
3489 warning (_("target file %s "
3490 "contained unexpected null characters"),
3491 filename);
3492 break;
3493 }
3494
3495 return (char *) buffer;
3496 }
3497
3498
3499 static int
3500 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3501 {
3502 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3503 }
3504
3505 static int
3506 default_watchpoint_addr_within_range (struct target_ops *target,
3507 CORE_ADDR addr,
3508 CORE_ADDR start, int length)
3509 {
3510 return addr >= start && addr < start + length;
3511 }
3512
3513 static struct gdbarch *
3514 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3515 {
3516 return target_gdbarch;
3517 }
3518
3519 static int
3520 return_zero (void)
3521 {
3522 return 0;
3523 }
3524
3525 static int
3526 return_one (void)
3527 {
3528 return 1;
3529 }
3530
3531 static int
3532 return_minus_one (void)
3533 {
3534 return -1;
3535 }
3536
3537 /* Find a single runnable target in the stack and return it. If for
3538 some reason there is more than one, return NULL. */
3539
3540 struct target_ops *
3541 find_run_target (void)
3542 {
3543 struct target_ops **t;
3544 struct target_ops *runable = NULL;
3545 int count;
3546
3547 count = 0;
3548
3549 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3550 {
3551 if ((*t)->to_can_run && target_can_run (*t))
3552 {
3553 runable = *t;
3554 ++count;
3555 }
3556 }
3557
3558 return (count == 1 ? runable : NULL);
3559 }
3560
3561 /*
3562 * Find the next target down the stack from the specified target.
3563 */
3564
3565 struct target_ops *
3566 find_target_beneath (struct target_ops *t)
3567 {
3568 return t->beneath;
3569 }
3570
3571 \f
3572 /* The inferior process has died. Long live the inferior! */
3573
3574 void
3575 generic_mourn_inferior (void)
3576 {
3577 ptid_t ptid;
3578
3579 ptid = inferior_ptid;
3580 inferior_ptid = null_ptid;
3581
3582 if (!ptid_equal (ptid, null_ptid))
3583 {
3584 int pid = ptid_get_pid (ptid);
3585 exit_inferior (pid);
3586 }
3587
3588 breakpoint_init_inferior (inf_exited);
3589 registers_changed ();
3590
3591 reopen_exec_file ();
3592 reinit_frame_cache ();
3593
3594 if (deprecated_detach_hook)
3595 deprecated_detach_hook ();
3596 }
3597 \f
3598 /* Helper function for child_wait and the derivatives of child_wait.
3599 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3600 translation of that in OURSTATUS. */
3601 void
3602 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3603 {
3604 if (WIFEXITED (hoststatus))
3605 {
3606 ourstatus->kind = TARGET_WAITKIND_EXITED;
3607 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3608 }
3609 else if (!WIFSTOPPED (hoststatus))
3610 {
3611 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3612 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3613 }
3614 else
3615 {
3616 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3617 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3618 }
3619 }
3620 \f
3621 /* Convert a normal process ID to a string. Returns the string in a
3622 static buffer. */
3623
3624 char *
3625 normal_pid_to_str (ptid_t ptid)
3626 {
3627 static char buf[32];
3628
3629 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3630 return buf;
3631 }
3632
3633 static char *
3634 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3635 {
3636 return normal_pid_to_str (ptid);
3637 }
3638
3639 /* Error-catcher for target_find_memory_regions. */
3640 static int
3641 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3642 {
3643 error (_("Command not implemented for this target."));
3644 return 0;
3645 }
3646
3647 /* Error-catcher for target_make_corefile_notes. */
3648 static char *
3649 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3650 {
3651 error (_("Command not implemented for this target."));
3652 return NULL;
3653 }
3654
3655 /* Error-catcher for target_get_bookmark. */
3656 static gdb_byte *
3657 dummy_get_bookmark (char *ignore1, int ignore2)
3658 {
3659 tcomplain ();
3660 return NULL;
3661 }
3662
3663 /* Error-catcher for target_goto_bookmark. */
3664 static void
3665 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3666 {
3667 tcomplain ();
3668 }
3669
3670 /* Set up the handful of non-empty slots needed by the dummy target
3671 vector. */
3672
3673 static void
3674 init_dummy_target (void)
3675 {
3676 dummy_target.to_shortname = "None";
3677 dummy_target.to_longname = "None";
3678 dummy_target.to_doc = "";
3679 dummy_target.to_attach = find_default_attach;
3680 dummy_target.to_detach =
3681 (void (*)(struct target_ops *, char *, int))target_ignore;
3682 dummy_target.to_create_inferior = find_default_create_inferior;
3683 dummy_target.to_can_async_p = find_default_can_async_p;
3684 dummy_target.to_is_async_p = find_default_is_async_p;
3685 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3686 dummy_target.to_supports_disable_randomization
3687 = find_default_supports_disable_randomization;
3688 dummy_target.to_pid_to_str = dummy_pid_to_str;
3689 dummy_target.to_stratum = dummy_stratum;
3690 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3691 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3692 dummy_target.to_get_bookmark = dummy_get_bookmark;
3693 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3694 dummy_target.to_xfer_partial = default_xfer_partial;
3695 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3696 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3697 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3698 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3699 dummy_target.to_has_execution
3700 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3701 dummy_target.to_stopped_by_watchpoint = return_zero;
3702 dummy_target.to_stopped_data_address =
3703 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3704 dummy_target.to_magic = OPS_MAGIC;
3705 }
3706 \f
3707 static void
3708 debug_to_open (char *args, int from_tty)
3709 {
3710 debug_target.to_open (args, from_tty);
3711
3712 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3713 }
3714
3715 void
3716 target_close (struct target_ops *targ, int quitting)
3717 {
3718 if (targ->to_xclose != NULL)
3719 targ->to_xclose (targ, quitting);
3720 else if (targ->to_close != NULL)
3721 targ->to_close (quitting);
3722
3723 if (targetdebug)
3724 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3725 }
3726
3727 void
3728 target_attach (char *args, int from_tty)
3729 {
3730 struct target_ops *t;
3731
3732 for (t = current_target.beneath; t != NULL; t = t->beneath)
3733 {
3734 if (t->to_attach != NULL)
3735 {
3736 t->to_attach (t, args, from_tty);
3737 if (targetdebug)
3738 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3739 args, from_tty);
3740 return;
3741 }
3742 }
3743
3744 internal_error (__FILE__, __LINE__,
3745 _("could not find a target to attach"));
3746 }
3747
3748 int
3749 target_thread_alive (ptid_t ptid)
3750 {
3751 struct target_ops *t;
3752
3753 for (t = current_target.beneath; t != NULL; t = t->beneath)
3754 {
3755 if (t->to_thread_alive != NULL)
3756 {
3757 int retval;
3758
3759 retval = t->to_thread_alive (t, ptid);
3760 if (targetdebug)
3761 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3762 PIDGET (ptid), retval);
3763
3764 return retval;
3765 }
3766 }
3767
3768 return 0;
3769 }
3770
3771 void
3772 target_find_new_threads (void)
3773 {
3774 struct target_ops *t;
3775
3776 for (t = current_target.beneath; t != NULL; t = t->beneath)
3777 {
3778 if (t->to_find_new_threads != NULL)
3779 {
3780 t->to_find_new_threads (t);
3781 if (targetdebug)
3782 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3783
3784 return;
3785 }
3786 }
3787 }
3788
3789 void
3790 target_stop (ptid_t ptid)
3791 {
3792 if (!may_stop)
3793 {
3794 warning (_("May not interrupt or stop the target, ignoring attempt"));
3795 return;
3796 }
3797
3798 (*current_target.to_stop) (ptid);
3799 }
3800
3801 static void
3802 debug_to_post_attach (int pid)
3803 {
3804 debug_target.to_post_attach (pid);
3805
3806 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3807 }
3808
3809 /* Return a pretty printed form of target_waitstatus.
3810 Space for the result is malloc'd, caller must free. */
3811
3812 char *
3813 target_waitstatus_to_string (const struct target_waitstatus *ws)
3814 {
3815 const char *kind_str = "status->kind = ";
3816
3817 switch (ws->kind)
3818 {
3819 case TARGET_WAITKIND_EXITED:
3820 return xstrprintf ("%sexited, status = %d",
3821 kind_str, ws->value.integer);
3822 case TARGET_WAITKIND_STOPPED:
3823 return xstrprintf ("%sstopped, signal = %s",
3824 kind_str, target_signal_to_name (ws->value.sig));
3825 case TARGET_WAITKIND_SIGNALLED:
3826 return xstrprintf ("%ssignalled, signal = %s",
3827 kind_str, target_signal_to_name (ws->value.sig));
3828 case TARGET_WAITKIND_LOADED:
3829 return xstrprintf ("%sloaded", kind_str);
3830 case TARGET_WAITKIND_FORKED:
3831 return xstrprintf ("%sforked", kind_str);
3832 case TARGET_WAITKIND_VFORKED:
3833 return xstrprintf ("%svforked", kind_str);
3834 case TARGET_WAITKIND_EXECD:
3835 return xstrprintf ("%sexecd", kind_str);
3836 case TARGET_WAITKIND_SYSCALL_ENTRY:
3837 return xstrprintf ("%sentered syscall", kind_str);
3838 case TARGET_WAITKIND_SYSCALL_RETURN:
3839 return xstrprintf ("%sexited syscall", kind_str);
3840 case TARGET_WAITKIND_SPURIOUS:
3841 return xstrprintf ("%sspurious", kind_str);
3842 case TARGET_WAITKIND_IGNORE:
3843 return xstrprintf ("%signore", kind_str);
3844 case TARGET_WAITKIND_NO_HISTORY:
3845 return xstrprintf ("%sno-history", kind_str);
3846 case TARGET_WAITKIND_NO_RESUMED:
3847 return xstrprintf ("%sno-resumed", kind_str);
3848 default:
3849 return xstrprintf ("%sunknown???", kind_str);
3850 }
3851 }
3852
3853 static void
3854 debug_print_register (const char * func,
3855 struct regcache *regcache, int regno)
3856 {
3857 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3858
3859 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3860 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3861 && gdbarch_register_name (gdbarch, regno) != NULL
3862 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3863 fprintf_unfiltered (gdb_stdlog, "(%s)",
3864 gdbarch_register_name (gdbarch, regno));
3865 else
3866 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3867 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3868 {
3869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3870 int i, size = register_size (gdbarch, regno);
3871 unsigned char buf[MAX_REGISTER_SIZE];
3872
3873 regcache_raw_collect (regcache, regno, buf);
3874 fprintf_unfiltered (gdb_stdlog, " = ");
3875 for (i = 0; i < size; i++)
3876 {
3877 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3878 }
3879 if (size <= sizeof (LONGEST))
3880 {
3881 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3882
3883 fprintf_unfiltered (gdb_stdlog, " %s %s",
3884 core_addr_to_string_nz (val), plongest (val));
3885 }
3886 }
3887 fprintf_unfiltered (gdb_stdlog, "\n");
3888 }
3889
3890 void
3891 target_fetch_registers (struct regcache *regcache, int regno)
3892 {
3893 struct target_ops *t;
3894
3895 for (t = current_target.beneath; t != NULL; t = t->beneath)
3896 {
3897 if (t->to_fetch_registers != NULL)
3898 {
3899 t->to_fetch_registers (t, regcache, regno);
3900 if (targetdebug)
3901 debug_print_register ("target_fetch_registers", regcache, regno);
3902 return;
3903 }
3904 }
3905 }
3906
3907 void
3908 target_store_registers (struct regcache *regcache, int regno)
3909 {
3910 struct target_ops *t;
3911
3912 if (!may_write_registers)
3913 error (_("Writing to registers is not allowed (regno %d)"), regno);
3914
3915 for (t = current_target.beneath; t != NULL; t = t->beneath)
3916 {
3917 if (t->to_store_registers != NULL)
3918 {
3919 t->to_store_registers (t, regcache, regno);
3920 if (targetdebug)
3921 {
3922 debug_print_register ("target_store_registers", regcache, regno);
3923 }
3924 return;
3925 }
3926 }
3927
3928 noprocess ();
3929 }
3930
3931 int
3932 target_core_of_thread (ptid_t ptid)
3933 {
3934 struct target_ops *t;
3935
3936 for (t = current_target.beneath; t != NULL; t = t->beneath)
3937 {
3938 if (t->to_core_of_thread != NULL)
3939 {
3940 int retval = t->to_core_of_thread (t, ptid);
3941
3942 if (targetdebug)
3943 fprintf_unfiltered (gdb_stdlog,
3944 "target_core_of_thread (%d) = %d\n",
3945 PIDGET (ptid), retval);
3946 return retval;
3947 }
3948 }
3949
3950 return -1;
3951 }
3952
3953 int
3954 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3955 {
3956 struct target_ops *t;
3957
3958 for (t = current_target.beneath; t != NULL; t = t->beneath)
3959 {
3960 if (t->to_verify_memory != NULL)
3961 {
3962 int retval = t->to_verify_memory (t, data, memaddr, size);
3963
3964 if (targetdebug)
3965 fprintf_unfiltered (gdb_stdlog,
3966 "target_verify_memory (%s, %s) = %d\n",
3967 paddress (target_gdbarch, memaddr),
3968 pulongest (size),
3969 retval);
3970 return retval;
3971 }
3972 }
3973
3974 tcomplain ();
3975 }
3976
3977 /* The documentation for this function is in its prototype declaration in
3978 target.h. */
3979
3980 int
3981 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3982 {
3983 struct target_ops *t;
3984
3985 for (t = current_target.beneath; t != NULL; t = t->beneath)
3986 if (t->to_insert_mask_watchpoint != NULL)
3987 {
3988 int ret;
3989
3990 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3991
3992 if (targetdebug)
3993 fprintf_unfiltered (gdb_stdlog, "\
3994 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3995 core_addr_to_string (addr),
3996 core_addr_to_string (mask), rw, ret);
3997
3998 return ret;
3999 }
4000
4001 return 1;
4002 }
4003
4004 /* The documentation for this function is in its prototype declaration in
4005 target.h. */
4006
4007 int
4008 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4009 {
4010 struct target_ops *t;
4011
4012 for (t = current_target.beneath; t != NULL; t = t->beneath)
4013 if (t->to_remove_mask_watchpoint != NULL)
4014 {
4015 int ret;
4016
4017 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4018
4019 if (targetdebug)
4020 fprintf_unfiltered (gdb_stdlog, "\
4021 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4022 core_addr_to_string (addr),
4023 core_addr_to_string (mask), rw, ret);
4024
4025 return ret;
4026 }
4027
4028 return 1;
4029 }
4030
4031 /* The documentation for this function is in its prototype declaration
4032 in target.h. */
4033
4034 int
4035 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4036 {
4037 struct target_ops *t;
4038
4039 for (t = current_target.beneath; t != NULL; t = t->beneath)
4040 if (t->to_masked_watch_num_registers != NULL)
4041 return t->to_masked_watch_num_registers (t, addr, mask);
4042
4043 return -1;
4044 }
4045
4046 /* The documentation for this function is in its prototype declaration
4047 in target.h. */
4048
4049 int
4050 target_ranged_break_num_registers (void)
4051 {
4052 struct target_ops *t;
4053
4054 for (t = current_target.beneath; t != NULL; t = t->beneath)
4055 if (t->to_ranged_break_num_registers != NULL)
4056 return t->to_ranged_break_num_registers (t);
4057
4058 return -1;
4059 }
4060
4061 static void
4062 debug_to_prepare_to_store (struct regcache *regcache)
4063 {
4064 debug_target.to_prepare_to_store (regcache);
4065
4066 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4067 }
4068
4069 static int
4070 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4071 int write, struct mem_attrib *attrib,
4072 struct target_ops *target)
4073 {
4074 int retval;
4075
4076 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4077 attrib, target);
4078
4079 fprintf_unfiltered (gdb_stdlog,
4080 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4081 paddress (target_gdbarch, memaddr), len,
4082 write ? "write" : "read", retval);
4083
4084 if (retval > 0)
4085 {
4086 int i;
4087
4088 fputs_unfiltered (", bytes =", gdb_stdlog);
4089 for (i = 0; i < retval; i++)
4090 {
4091 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4092 {
4093 if (targetdebug < 2 && i > 0)
4094 {
4095 fprintf_unfiltered (gdb_stdlog, " ...");
4096 break;
4097 }
4098 fprintf_unfiltered (gdb_stdlog, "\n");
4099 }
4100
4101 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4102 }
4103 }
4104
4105 fputc_unfiltered ('\n', gdb_stdlog);
4106
4107 return retval;
4108 }
4109
4110 static void
4111 debug_to_files_info (struct target_ops *target)
4112 {
4113 debug_target.to_files_info (target);
4114
4115 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4116 }
4117
4118 static int
4119 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4120 struct bp_target_info *bp_tgt)
4121 {
4122 int retval;
4123
4124 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4125
4126 fprintf_unfiltered (gdb_stdlog,
4127 "target_insert_breakpoint (%s, xxx) = %ld\n",
4128 core_addr_to_string (bp_tgt->placed_address),
4129 (unsigned long) retval);
4130 return retval;
4131 }
4132
4133 static int
4134 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4135 struct bp_target_info *bp_tgt)
4136 {
4137 int retval;
4138
4139 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4140
4141 fprintf_unfiltered (gdb_stdlog,
4142 "target_remove_breakpoint (%s, xxx) = %ld\n",
4143 core_addr_to_string (bp_tgt->placed_address),
4144 (unsigned long) retval);
4145 return retval;
4146 }
4147
4148 static int
4149 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4150 {
4151 int retval;
4152
4153 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4154
4155 fprintf_unfiltered (gdb_stdlog,
4156 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4157 (unsigned long) type,
4158 (unsigned long) cnt,
4159 (unsigned long) from_tty,
4160 (unsigned long) retval);
4161 return retval;
4162 }
4163
4164 static int
4165 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4166 {
4167 CORE_ADDR retval;
4168
4169 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4170
4171 fprintf_unfiltered (gdb_stdlog,
4172 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4173 core_addr_to_string (addr), (unsigned long) len,
4174 core_addr_to_string (retval));
4175 return retval;
4176 }
4177
4178 static int
4179 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4180 struct expression *cond)
4181 {
4182 int retval;
4183
4184 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4185 rw, cond);
4186
4187 fprintf_unfiltered (gdb_stdlog,
4188 "target_can_accel_watchpoint_condition "
4189 "(%s, %d, %d, %s) = %ld\n",
4190 core_addr_to_string (addr), len, rw,
4191 host_address_to_string (cond), (unsigned long) retval);
4192 return retval;
4193 }
4194
4195 static int
4196 debug_to_stopped_by_watchpoint (void)
4197 {
4198 int retval;
4199
4200 retval = debug_target.to_stopped_by_watchpoint ();
4201
4202 fprintf_unfiltered (gdb_stdlog,
4203 "target_stopped_by_watchpoint () = %ld\n",
4204 (unsigned long) retval);
4205 return retval;
4206 }
4207
4208 static int
4209 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4210 {
4211 int retval;
4212
4213 retval = debug_target.to_stopped_data_address (target, addr);
4214
4215 fprintf_unfiltered (gdb_stdlog,
4216 "target_stopped_data_address ([%s]) = %ld\n",
4217 core_addr_to_string (*addr),
4218 (unsigned long)retval);
4219 return retval;
4220 }
4221
4222 static int
4223 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4224 CORE_ADDR addr,
4225 CORE_ADDR start, int length)
4226 {
4227 int retval;
4228
4229 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4230 start, length);
4231
4232 fprintf_filtered (gdb_stdlog,
4233 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4234 core_addr_to_string (addr), core_addr_to_string (start),
4235 length, retval);
4236 return retval;
4237 }
4238
4239 static int
4240 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4241 struct bp_target_info *bp_tgt)
4242 {
4243 int retval;
4244
4245 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4246
4247 fprintf_unfiltered (gdb_stdlog,
4248 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4249 core_addr_to_string (bp_tgt->placed_address),
4250 (unsigned long) retval);
4251 return retval;
4252 }
4253
4254 static int
4255 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4256 struct bp_target_info *bp_tgt)
4257 {
4258 int retval;
4259
4260 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4261
4262 fprintf_unfiltered (gdb_stdlog,
4263 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4264 core_addr_to_string (bp_tgt->placed_address),
4265 (unsigned long) retval);
4266 return retval;
4267 }
4268
4269 static int
4270 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4271 struct expression *cond)
4272 {
4273 int retval;
4274
4275 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4276
4277 fprintf_unfiltered (gdb_stdlog,
4278 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4279 core_addr_to_string (addr), len, type,
4280 host_address_to_string (cond), (unsigned long) retval);
4281 return retval;
4282 }
4283
4284 static int
4285 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4286 struct expression *cond)
4287 {
4288 int retval;
4289
4290 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4291
4292 fprintf_unfiltered (gdb_stdlog,
4293 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4294 core_addr_to_string (addr), len, type,
4295 host_address_to_string (cond), (unsigned long) retval);
4296 return retval;
4297 }
4298
4299 static void
4300 debug_to_terminal_init (void)
4301 {
4302 debug_target.to_terminal_init ();
4303
4304 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4305 }
4306
4307 static void
4308 debug_to_terminal_inferior (void)
4309 {
4310 debug_target.to_terminal_inferior ();
4311
4312 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4313 }
4314
4315 static void
4316 debug_to_terminal_ours_for_output (void)
4317 {
4318 debug_target.to_terminal_ours_for_output ();
4319
4320 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4321 }
4322
4323 static void
4324 debug_to_terminal_ours (void)
4325 {
4326 debug_target.to_terminal_ours ();
4327
4328 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4329 }
4330
4331 static void
4332 debug_to_terminal_save_ours (void)
4333 {
4334 debug_target.to_terminal_save_ours ();
4335
4336 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4337 }
4338
4339 static void
4340 debug_to_terminal_info (char *arg, int from_tty)
4341 {
4342 debug_target.to_terminal_info (arg, from_tty);
4343
4344 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4345 from_tty);
4346 }
4347
4348 static void
4349 debug_to_load (char *args, int from_tty)
4350 {
4351 debug_target.to_load (args, from_tty);
4352
4353 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4354 }
4355
4356 static void
4357 debug_to_post_startup_inferior (ptid_t ptid)
4358 {
4359 debug_target.to_post_startup_inferior (ptid);
4360
4361 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4362 PIDGET (ptid));
4363 }
4364
4365 static int
4366 debug_to_insert_fork_catchpoint (int pid)
4367 {
4368 int retval;
4369
4370 retval = debug_target.to_insert_fork_catchpoint (pid);
4371
4372 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4373 pid, retval);
4374
4375 return retval;
4376 }
4377
4378 static int
4379 debug_to_remove_fork_catchpoint (int pid)
4380 {
4381 int retval;
4382
4383 retval = debug_target.to_remove_fork_catchpoint (pid);
4384
4385 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4386 pid, retval);
4387
4388 return retval;
4389 }
4390
4391 static int
4392 debug_to_insert_vfork_catchpoint (int pid)
4393 {
4394 int retval;
4395
4396 retval = debug_target.to_insert_vfork_catchpoint (pid);
4397
4398 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4399 pid, retval);
4400
4401 return retval;
4402 }
4403
4404 static int
4405 debug_to_remove_vfork_catchpoint (int pid)
4406 {
4407 int retval;
4408
4409 retval = debug_target.to_remove_vfork_catchpoint (pid);
4410
4411 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4412 pid, retval);
4413
4414 return retval;
4415 }
4416
4417 static int
4418 debug_to_insert_exec_catchpoint (int pid)
4419 {
4420 int retval;
4421
4422 retval = debug_target.to_insert_exec_catchpoint (pid);
4423
4424 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4425 pid, retval);
4426
4427 return retval;
4428 }
4429
4430 static int
4431 debug_to_remove_exec_catchpoint (int pid)
4432 {
4433 int retval;
4434
4435 retval = debug_target.to_remove_exec_catchpoint (pid);
4436
4437 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4438 pid, retval);
4439
4440 return retval;
4441 }
4442
4443 static int
4444 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4445 {
4446 int has_exited;
4447
4448 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4449
4450 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4451 pid, wait_status, *exit_status, has_exited);
4452
4453 return has_exited;
4454 }
4455
4456 static int
4457 debug_to_can_run (void)
4458 {
4459 int retval;
4460
4461 retval = debug_target.to_can_run ();
4462
4463 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4464
4465 return retval;
4466 }
4467
4468 static struct gdbarch *
4469 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4470 {
4471 struct gdbarch *retval;
4472
4473 retval = debug_target.to_thread_architecture (ops, ptid);
4474
4475 fprintf_unfiltered (gdb_stdlog,
4476 "target_thread_architecture (%s) = %s [%s]\n",
4477 target_pid_to_str (ptid),
4478 host_address_to_string (retval),
4479 gdbarch_bfd_arch_info (retval)->printable_name);
4480 return retval;
4481 }
4482
4483 static void
4484 debug_to_stop (ptid_t ptid)
4485 {
4486 debug_target.to_stop (ptid);
4487
4488 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4489 target_pid_to_str (ptid));
4490 }
4491
4492 static void
4493 debug_to_rcmd (char *command,
4494 struct ui_file *outbuf)
4495 {
4496 debug_target.to_rcmd (command, outbuf);
4497 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4498 }
4499
4500 static char *
4501 debug_to_pid_to_exec_file (int pid)
4502 {
4503 char *exec_file;
4504
4505 exec_file = debug_target.to_pid_to_exec_file (pid);
4506
4507 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4508 pid, exec_file);
4509
4510 return exec_file;
4511 }
4512
4513 static void
4514 setup_target_debug (void)
4515 {
4516 memcpy (&debug_target, &current_target, sizeof debug_target);
4517
4518 current_target.to_open = debug_to_open;
4519 current_target.to_post_attach = debug_to_post_attach;
4520 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4521 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4522 current_target.to_files_info = debug_to_files_info;
4523 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4524 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4525 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4526 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4527 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4528 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4529 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4530 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4531 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4532 current_target.to_watchpoint_addr_within_range
4533 = debug_to_watchpoint_addr_within_range;
4534 current_target.to_region_ok_for_hw_watchpoint
4535 = debug_to_region_ok_for_hw_watchpoint;
4536 current_target.to_can_accel_watchpoint_condition
4537 = debug_to_can_accel_watchpoint_condition;
4538 current_target.to_terminal_init = debug_to_terminal_init;
4539 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4540 current_target.to_terminal_ours_for_output
4541 = debug_to_terminal_ours_for_output;
4542 current_target.to_terminal_ours = debug_to_terminal_ours;
4543 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4544 current_target.to_terminal_info = debug_to_terminal_info;
4545 current_target.to_load = debug_to_load;
4546 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4547 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4548 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4549 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4550 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4551 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4552 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4553 current_target.to_has_exited = debug_to_has_exited;
4554 current_target.to_can_run = debug_to_can_run;
4555 current_target.to_stop = debug_to_stop;
4556 current_target.to_rcmd = debug_to_rcmd;
4557 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4558 current_target.to_thread_architecture = debug_to_thread_architecture;
4559 }
4560 \f
4561
4562 static char targ_desc[] =
4563 "Names of targets and files being debugged.\nShows the entire \
4564 stack of targets currently in use (including the exec-file,\n\
4565 core-file, and process, if any), as well as the symbol file name.";
4566
4567 static void
4568 do_monitor_command (char *cmd,
4569 int from_tty)
4570 {
4571 if ((current_target.to_rcmd
4572 == (void (*) (char *, struct ui_file *)) tcomplain)
4573 || (current_target.to_rcmd == debug_to_rcmd
4574 && (debug_target.to_rcmd
4575 == (void (*) (char *, struct ui_file *)) tcomplain)))
4576 error (_("\"monitor\" command not supported by this target."));
4577 target_rcmd (cmd, gdb_stdtarg);
4578 }
4579
4580 /* Print the name of each layers of our target stack. */
4581
4582 static void
4583 maintenance_print_target_stack (char *cmd, int from_tty)
4584 {
4585 struct target_ops *t;
4586
4587 printf_filtered (_("The current target stack is:\n"));
4588
4589 for (t = target_stack; t != NULL; t = t->beneath)
4590 {
4591 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4592 }
4593 }
4594
4595 /* Controls if async mode is permitted. */
4596 int target_async_permitted = 0;
4597
4598 /* The set command writes to this variable. If the inferior is
4599 executing, linux_nat_async_permitted is *not* updated. */
4600 static int target_async_permitted_1 = 0;
4601
4602 static void
4603 set_maintenance_target_async_permitted (char *args, int from_tty,
4604 struct cmd_list_element *c)
4605 {
4606 if (have_live_inferiors ())
4607 {
4608 target_async_permitted_1 = target_async_permitted;
4609 error (_("Cannot change this setting while the inferior is running."));
4610 }
4611
4612 target_async_permitted = target_async_permitted_1;
4613 }
4614
4615 static void
4616 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4617 struct cmd_list_element *c,
4618 const char *value)
4619 {
4620 fprintf_filtered (file,
4621 _("Controlling the inferior in "
4622 "asynchronous mode is %s.\n"), value);
4623 }
4624
4625 /* Temporary copies of permission settings. */
4626
4627 static int may_write_registers_1 = 1;
4628 static int may_write_memory_1 = 1;
4629 static int may_insert_breakpoints_1 = 1;
4630 static int may_insert_tracepoints_1 = 1;
4631 static int may_insert_fast_tracepoints_1 = 1;
4632 static int may_stop_1 = 1;
4633
4634 /* Make the user-set values match the real values again. */
4635
4636 void
4637 update_target_permissions (void)
4638 {
4639 may_write_registers_1 = may_write_registers;
4640 may_write_memory_1 = may_write_memory;
4641 may_insert_breakpoints_1 = may_insert_breakpoints;
4642 may_insert_tracepoints_1 = may_insert_tracepoints;
4643 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4644 may_stop_1 = may_stop;
4645 }
4646
4647 /* The one function handles (most of) the permission flags in the same
4648 way. */
4649
4650 static void
4651 set_target_permissions (char *args, int from_tty,
4652 struct cmd_list_element *c)
4653 {
4654 if (target_has_execution)
4655 {
4656 update_target_permissions ();
4657 error (_("Cannot change this setting while the inferior is running."));
4658 }
4659
4660 /* Make the real values match the user-changed values. */
4661 may_write_registers = may_write_registers_1;
4662 may_insert_breakpoints = may_insert_breakpoints_1;
4663 may_insert_tracepoints = may_insert_tracepoints_1;
4664 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4665 may_stop = may_stop_1;
4666 update_observer_mode ();
4667 }
4668
4669 /* Set memory write permission independently of observer mode. */
4670
4671 static void
4672 set_write_memory_permission (char *args, int from_tty,
4673 struct cmd_list_element *c)
4674 {
4675 /* Make the real values match the user-changed values. */
4676 may_write_memory = may_write_memory_1;
4677 update_observer_mode ();
4678 }
4679
4680
4681 void
4682 initialize_targets (void)
4683 {
4684 init_dummy_target ();
4685 push_target (&dummy_target);
4686
4687 add_info ("target", target_info, targ_desc);
4688 add_info ("files", target_info, targ_desc);
4689
4690 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4691 Set target debugging."), _("\
4692 Show target debugging."), _("\
4693 When non-zero, target debugging is enabled. Higher numbers are more\n\
4694 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4695 command."),
4696 NULL,
4697 show_targetdebug,
4698 &setdebuglist, &showdebuglist);
4699
4700 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4701 &trust_readonly, _("\
4702 Set mode for reading from readonly sections."), _("\
4703 Show mode for reading from readonly sections."), _("\
4704 When this mode is on, memory reads from readonly sections (such as .text)\n\
4705 will be read from the object file instead of from the target. This will\n\
4706 result in significant performance improvement for remote targets."),
4707 NULL,
4708 show_trust_readonly,
4709 &setlist, &showlist);
4710
4711 add_com ("monitor", class_obscure, do_monitor_command,
4712 _("Send a command to the remote monitor (remote targets only)."));
4713
4714 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4715 _("Print the name of each layer of the internal target stack."),
4716 &maintenanceprintlist);
4717
4718 add_setshow_boolean_cmd ("target-async", no_class,
4719 &target_async_permitted_1, _("\
4720 Set whether gdb controls the inferior in asynchronous mode."), _("\
4721 Show whether gdb controls the inferior in asynchronous mode."), _("\
4722 Tells gdb whether to control the inferior in asynchronous mode."),
4723 set_maintenance_target_async_permitted,
4724 show_maintenance_target_async_permitted,
4725 &setlist,
4726 &showlist);
4727
4728 add_setshow_boolean_cmd ("stack-cache", class_support,
4729 &stack_cache_enabled_p_1, _("\
4730 Set cache use for stack access."), _("\
4731 Show cache use for stack access."), _("\
4732 When on, use the data cache for all stack access, regardless of any\n\
4733 configured memory regions. This improves remote performance significantly.\n\
4734 By default, caching for stack access is on."),
4735 set_stack_cache_enabled_p,
4736 show_stack_cache_enabled_p,
4737 &setlist, &showlist);
4738
4739 add_setshow_boolean_cmd ("may-write-registers", class_support,
4740 &may_write_registers_1, _("\
4741 Set permission to write into registers."), _("\
4742 Show permission to write into registers."), _("\
4743 When this permission is on, GDB may write into the target's registers.\n\
4744 Otherwise, any sort of write attempt will result in an error."),
4745 set_target_permissions, NULL,
4746 &setlist, &showlist);
4747
4748 add_setshow_boolean_cmd ("may-write-memory", class_support,
4749 &may_write_memory_1, _("\
4750 Set permission to write into target memory."), _("\
4751 Show permission to write into target memory."), _("\
4752 When this permission is on, GDB may write into the target's memory.\n\
4753 Otherwise, any sort of write attempt will result in an error."),
4754 set_write_memory_permission, NULL,
4755 &setlist, &showlist);
4756
4757 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4758 &may_insert_breakpoints_1, _("\
4759 Set permission to insert breakpoints in the target."), _("\
4760 Show permission to insert breakpoints in the target."), _("\
4761 When this permission is on, GDB may insert breakpoints in the program.\n\
4762 Otherwise, any sort of insertion attempt will result in an error."),
4763 set_target_permissions, NULL,
4764 &setlist, &showlist);
4765
4766 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4767 &may_insert_tracepoints_1, _("\
4768 Set permission to insert tracepoints in the target."), _("\
4769 Show permission to insert tracepoints in the target."), _("\
4770 When this permission is on, GDB may insert tracepoints in the program.\n\
4771 Otherwise, any sort of insertion attempt will result in an error."),
4772 set_target_permissions, NULL,
4773 &setlist, &showlist);
4774
4775 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4776 &may_insert_fast_tracepoints_1, _("\
4777 Set permission to insert fast tracepoints in the target."), _("\
4778 Show permission to insert fast tracepoints in the target."), _("\
4779 When this permission is on, GDB may insert fast tracepoints.\n\
4780 Otherwise, any sort of insertion attempt will result in an error."),
4781 set_target_permissions, NULL,
4782 &setlist, &showlist);
4783
4784 add_setshow_boolean_cmd ("may-interrupt", class_support,
4785 &may_stop_1, _("\
4786 Set permission to interrupt or signal the target."), _("\
4787 Show permission to interrupt or signal the target."), _("\
4788 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4789 Otherwise, any attempt to interrupt or stop will be ignored."),
4790 set_target_permissions, NULL,
4791 &setlist, &showlist);
4792
4793
4794 target_dcache = dcache_init ();
4795 }
This page took 0.129218 seconds and 4 git commands to generate.