*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct bp_target_info *);
107
108 static int debug_to_can_use_hw_breakpoint (int, int, int);
109
110 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
111
112 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
113
114 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
115
116 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
117
118 static int debug_to_stopped_by_watchpoint (void);
119
120 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
121
122 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
123 CORE_ADDR, CORE_ADDR, int);
124
125 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
126
127 static void debug_to_terminal_init (void);
128
129 static void debug_to_terminal_inferior (void);
130
131 static void debug_to_terminal_ours_for_output (void);
132
133 static void debug_to_terminal_save_ours (void);
134
135 static void debug_to_terminal_ours (void);
136
137 static void debug_to_terminal_info (char *, int);
138
139 static void debug_to_kill (void);
140
141 static void debug_to_load (char *, int);
142
143 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
144
145 static int debug_to_can_run (void);
146
147 static void debug_to_notice_signals (ptid_t);
148
149 static void debug_to_stop (ptid_t);
150
151 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
152 wierd and mysterious ways. Putting the variable here lets those
153 wierd and mysterious ways keep building while they are being
154 converted to the inferior inheritance structure. */
155 struct target_ops deprecated_child_ops;
156
157 /* Pointer to array of target architecture structures; the size of the
158 array; the current index into the array; the allocated size of the
159 array. */
160 struct target_ops **target_structs;
161 unsigned target_struct_size;
162 unsigned target_struct_index;
163 unsigned target_struct_allocsize;
164 #define DEFAULT_ALLOCSIZE 10
165
166 /* The initial current target, so that there is always a semi-valid
167 current target. */
168
169 static struct target_ops dummy_target;
170
171 /* Top of target stack. */
172
173 static struct target_ops *target_stack;
174
175 /* The target structure we are currently using to talk to a process
176 or file or whatever "inferior" we have. */
177
178 struct target_ops current_target;
179
180 /* Command list for target. */
181
182 static struct cmd_list_element *targetlist = NULL;
183
184 /* Nonzero if we should trust readonly sections from the
185 executable when reading memory. */
186
187 static int trust_readonly = 0;
188
189 /* Nonzero if we should show true memory content including
190 memory breakpoint inserted by gdb. */
191
192 static int show_memory_breakpoints = 0;
193
194 /* Non-zero if we want to see trace of target level stuff. */
195
196 static int targetdebug = 0;
197 static void
198 show_targetdebug (struct ui_file *file, int from_tty,
199 struct cmd_list_element *c, const char *value)
200 {
201 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
202 }
203
204 static void setup_target_debug (void);
205
206 DCACHE *target_dcache;
207
208 /* The user just typed 'target' without the name of a target. */
209
210 static void
211 target_command (char *arg, int from_tty)
212 {
213 fputs_filtered ("Argument required (target name). Try `help target'\n",
214 gdb_stdout);
215 }
216
217 /* Add a possible target architecture to the list. */
218
219 void
220 add_target (struct target_ops *t)
221 {
222 /* Provide default values for all "must have" methods. */
223 if (t->to_xfer_partial == NULL)
224 t->to_xfer_partial = default_xfer_partial;
225
226 if (!target_structs)
227 {
228 target_struct_allocsize = DEFAULT_ALLOCSIZE;
229 target_structs = (struct target_ops **) xmalloc
230 (target_struct_allocsize * sizeof (*target_structs));
231 }
232 if (target_struct_size >= target_struct_allocsize)
233 {
234 target_struct_allocsize *= 2;
235 target_structs = (struct target_ops **)
236 xrealloc ((char *) target_structs,
237 target_struct_allocsize * sizeof (*target_structs));
238 }
239 target_structs[target_struct_size++] = t;
240
241 if (targetlist == NULL)
242 add_prefix_cmd ("target", class_run, target_command, _("\
243 Connect to a target machine or process.\n\
244 The first argument is the type or protocol of the target machine.\n\
245 Remaining arguments are interpreted by the target protocol. For more\n\
246 information on the arguments for a particular protocol, type\n\
247 `help target ' followed by the protocol name."),
248 &targetlist, "target ", 0, &cmdlist);
249 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
250 }
251
252 /* Stub functions */
253
254 void
255 target_ignore (void)
256 {
257 }
258
259 void
260 target_load (char *arg, int from_tty)
261 {
262 dcache_invalidate (target_dcache);
263 (*current_target.to_load) (arg, from_tty);
264 }
265
266 void
267 target_create_inferior (char *exec_file, char *args,
268 char **env, int from_tty)
269 {
270 struct target_ops *t;
271 for (t = current_target.beneath; t != NULL; t = t->beneath)
272 {
273 if (t->to_create_inferior != NULL)
274 {
275 t->to_create_inferior (t, exec_file, args, env, from_tty);
276 if (targetdebug)
277 fprintf_unfiltered (gdb_stdlog,
278 "target_create_inferior (%s, %s, xxx, %d)\n",
279 exec_file, args, from_tty);
280 return;
281 }
282 }
283
284 internal_error (__FILE__, __LINE__,
285 "could not find a target to create inferior");
286 }
287
288
289 static int
290 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
291 struct target_ops *t)
292 {
293 errno = EIO; /* Can't read/write this location */
294 return 0; /* No bytes handled */
295 }
296
297 static void
298 tcomplain (void)
299 {
300 error (_("You can't do that when your target is `%s'"),
301 current_target.to_shortname);
302 }
303
304 void
305 noprocess (void)
306 {
307 error (_("You can't do that without a process to debug."));
308 }
309
310 static int
311 nosymbol (char *name, CORE_ADDR *addrp)
312 {
313 return 1; /* Symbol does not exist in target env */
314 }
315
316 static void
317 nosupport_runtime (void)
318 {
319 if (ptid_equal (inferior_ptid, null_ptid))
320 noprocess ();
321 else
322 error (_("No run-time support for this"));
323 }
324
325
326 static void
327 default_terminal_info (char *args, int from_tty)
328 {
329 printf_unfiltered (_("No saved terminal information.\n"));
330 }
331
332 /* This is the default target_create_inferior and target_attach function.
333 If the current target is executing, it asks whether to kill it off.
334 If this function returns without calling error(), it has killed off
335 the target, and the operation should be attempted. */
336
337 static void
338 kill_or_be_killed (int from_tty)
339 {
340 if (target_has_execution)
341 {
342 printf_unfiltered (_("You are already running a program:\n"));
343 target_files_info ();
344 if (query (_("Kill it? ")))
345 {
346 target_kill ();
347 if (target_has_execution)
348 error (_("Killing the program did not help."));
349 return;
350 }
351 else
352 {
353 error (_("Program not killed."));
354 }
355 }
356 tcomplain ();
357 }
358
359 /* A default implementation for the to_get_ada_task_ptid target method.
360
361 This function builds the PTID by using both LWP and TID as part of
362 the PTID lwp and tid elements. The pid used is the pid of the
363 inferior_ptid. */
364
365 static ptid_t
366 default_get_ada_task_ptid (long lwp, long tid)
367 {
368 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
369 }
370
371 /* Go through the target stack from top to bottom, copying over zero
372 entries in current_target, then filling in still empty entries. In
373 effect, we are doing class inheritance through the pushed target
374 vectors.
375
376 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
377 is currently implemented, is that it discards any knowledge of
378 which target an inherited method originally belonged to.
379 Consequently, new new target methods should instead explicitly and
380 locally search the target stack for the target that can handle the
381 request. */
382
383 static void
384 update_current_target (void)
385 {
386 struct target_ops *t;
387
388 /* First, reset current's contents. */
389 memset (&current_target, 0, sizeof (current_target));
390
391 #define INHERIT(FIELD, TARGET) \
392 if (!current_target.FIELD) \
393 current_target.FIELD = (TARGET)->FIELD
394
395 for (t = target_stack; t; t = t->beneath)
396 {
397 INHERIT (to_shortname, t);
398 INHERIT (to_longname, t);
399 INHERIT (to_doc, t);
400 /* Do not inherit to_open. */
401 /* Do not inherit to_close. */
402 /* Do not inherit to_attach. */
403 INHERIT (to_post_attach, t);
404 INHERIT (to_attach_no_wait, t);
405 /* Do not inherit to_detach. */
406 /* Do not inherit to_disconnect. */
407 /* Do not inherit to_resume. */
408 /* Do not inherit to_wait. */
409 /* Do not inherit to_fetch_registers. */
410 /* Do not inherit to_store_registers. */
411 INHERIT (to_prepare_to_store, t);
412 INHERIT (deprecated_xfer_memory, t);
413 INHERIT (to_files_info, t);
414 INHERIT (to_insert_breakpoint, t);
415 INHERIT (to_remove_breakpoint, t);
416 INHERIT (to_can_use_hw_breakpoint, t);
417 INHERIT (to_insert_hw_breakpoint, t);
418 INHERIT (to_remove_hw_breakpoint, t);
419 INHERIT (to_insert_watchpoint, t);
420 INHERIT (to_remove_watchpoint, t);
421 INHERIT (to_stopped_data_address, t);
422 INHERIT (to_have_steppable_watchpoint, t);
423 INHERIT (to_have_continuable_watchpoint, t);
424 INHERIT (to_stopped_by_watchpoint, t);
425 INHERIT (to_watchpoint_addr_within_range, t);
426 INHERIT (to_region_ok_for_hw_watchpoint, t);
427 INHERIT (to_terminal_init, t);
428 INHERIT (to_terminal_inferior, t);
429 INHERIT (to_terminal_ours_for_output, t);
430 INHERIT (to_terminal_ours, t);
431 INHERIT (to_terminal_save_ours, t);
432 INHERIT (to_terminal_info, t);
433 INHERIT (to_kill, t);
434 INHERIT (to_load, t);
435 INHERIT (to_lookup_symbol, t);
436 /* Do no inherit to_create_inferior. */
437 INHERIT (to_post_startup_inferior, t);
438 INHERIT (to_acknowledge_created_inferior, t);
439 INHERIT (to_insert_fork_catchpoint, t);
440 INHERIT (to_remove_fork_catchpoint, t);
441 INHERIT (to_insert_vfork_catchpoint, t);
442 INHERIT (to_remove_vfork_catchpoint, t);
443 /* Do not inherit to_follow_fork. */
444 INHERIT (to_insert_exec_catchpoint, t);
445 INHERIT (to_remove_exec_catchpoint, t);
446 INHERIT (to_has_exited, t);
447 /* Do not inherit to_mourn_inferiour. */
448 INHERIT (to_can_run, t);
449 INHERIT (to_notice_signals, t);
450 /* Do not inherit to_thread_alive. */
451 /* Do not inherit to_find_new_threads. */
452 /* Do not inherit to_pid_to_str. */
453 INHERIT (to_extra_thread_info, t);
454 INHERIT (to_stop, t);
455 /* Do not inherit to_xfer_partial. */
456 INHERIT (to_rcmd, t);
457 INHERIT (to_pid_to_exec_file, t);
458 INHERIT (to_log_command, t);
459 INHERIT (to_stratum, t);
460 INHERIT (to_has_all_memory, t);
461 INHERIT (to_has_memory, t);
462 INHERIT (to_has_stack, t);
463 INHERIT (to_has_registers, t);
464 INHERIT (to_has_execution, t);
465 INHERIT (to_has_thread_control, t);
466 INHERIT (to_sections, t);
467 INHERIT (to_sections_end, t);
468 INHERIT (to_can_async_p, t);
469 INHERIT (to_is_async_p, t);
470 INHERIT (to_async, t);
471 INHERIT (to_async_mask, t);
472 INHERIT (to_find_memory_regions, t);
473 INHERIT (to_make_corefile_notes, t);
474 /* Do not inherit to_get_thread_local_address. */
475 INHERIT (to_can_execute_reverse, t);
476 /* Do not inherit to_read_description. */
477 INHERIT (to_get_ada_task_ptid, t);
478 /* Do not inherit to_search_memory. */
479 INHERIT (to_supports_multi_process, t);
480 INHERIT (to_magic, t);
481 /* Do not inherit to_memory_map. */
482 /* Do not inherit to_flash_erase. */
483 /* Do not inherit to_flash_done. */
484 }
485 #undef INHERIT
486
487 /* Clean up a target struct so it no longer has any zero pointers in
488 it. Some entries are defaulted to a method that print an error,
489 others are hard-wired to a standard recursive default. */
490
491 #define de_fault(field, value) \
492 if (!current_target.field) \
493 current_target.field = value
494
495 de_fault (to_open,
496 (void (*) (char *, int))
497 tcomplain);
498 de_fault (to_close,
499 (void (*) (int))
500 target_ignore);
501 de_fault (to_post_attach,
502 (void (*) (int))
503 target_ignore);
504 de_fault (to_prepare_to_store,
505 (void (*) (struct regcache *))
506 noprocess);
507 de_fault (deprecated_xfer_memory,
508 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
509 nomemory);
510 de_fault (to_files_info,
511 (void (*) (struct target_ops *))
512 target_ignore);
513 de_fault (to_insert_breakpoint,
514 memory_insert_breakpoint);
515 de_fault (to_remove_breakpoint,
516 memory_remove_breakpoint);
517 de_fault (to_can_use_hw_breakpoint,
518 (int (*) (int, int, int))
519 return_zero);
520 de_fault (to_insert_hw_breakpoint,
521 (int (*) (struct bp_target_info *))
522 return_minus_one);
523 de_fault (to_remove_hw_breakpoint,
524 (int (*) (struct bp_target_info *))
525 return_minus_one);
526 de_fault (to_insert_watchpoint,
527 (int (*) (CORE_ADDR, int, int))
528 return_minus_one);
529 de_fault (to_remove_watchpoint,
530 (int (*) (CORE_ADDR, int, int))
531 return_minus_one);
532 de_fault (to_stopped_by_watchpoint,
533 (int (*) (void))
534 return_zero);
535 de_fault (to_stopped_data_address,
536 (int (*) (struct target_ops *, CORE_ADDR *))
537 return_zero);
538 de_fault (to_watchpoint_addr_within_range,
539 default_watchpoint_addr_within_range);
540 de_fault (to_region_ok_for_hw_watchpoint,
541 default_region_ok_for_hw_watchpoint);
542 de_fault (to_terminal_init,
543 (void (*) (void))
544 target_ignore);
545 de_fault (to_terminal_inferior,
546 (void (*) (void))
547 target_ignore);
548 de_fault (to_terminal_ours_for_output,
549 (void (*) (void))
550 target_ignore);
551 de_fault (to_terminal_ours,
552 (void (*) (void))
553 target_ignore);
554 de_fault (to_terminal_save_ours,
555 (void (*) (void))
556 target_ignore);
557 de_fault (to_terminal_info,
558 default_terminal_info);
559 de_fault (to_kill,
560 (void (*) (void))
561 noprocess);
562 de_fault (to_load,
563 (void (*) (char *, int))
564 tcomplain);
565 de_fault (to_lookup_symbol,
566 (int (*) (char *, CORE_ADDR *))
567 nosymbol);
568 de_fault (to_post_startup_inferior,
569 (void (*) (ptid_t))
570 target_ignore);
571 de_fault (to_acknowledge_created_inferior,
572 (void (*) (int))
573 target_ignore);
574 de_fault (to_insert_fork_catchpoint,
575 (void (*) (int))
576 tcomplain);
577 de_fault (to_remove_fork_catchpoint,
578 (int (*) (int))
579 tcomplain);
580 de_fault (to_insert_vfork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_vfork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_exec_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_exec_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_has_exited,
593 (int (*) (int, int, int *))
594 return_zero);
595 de_fault (to_can_run,
596 return_zero);
597 de_fault (to_notice_signals,
598 (void (*) (ptid_t))
599 target_ignore);
600 de_fault (to_extra_thread_info,
601 (char *(*) (struct thread_info *))
602 return_zero);
603 de_fault (to_stop,
604 (void (*) (ptid_t))
605 target_ignore);
606 current_target.to_xfer_partial = current_xfer_partial;
607 de_fault (to_rcmd,
608 (void (*) (char *, struct ui_file *))
609 tcomplain);
610 de_fault (to_pid_to_exec_file,
611 (char *(*) (int))
612 return_zero);
613 de_fault (to_async,
614 (void (*) (void (*) (enum inferior_event_type, void*), void*))
615 tcomplain);
616 de_fault (to_async_mask,
617 (int (*) (int))
618 return_one);
619 current_target.to_read_description = NULL;
620 de_fault (to_get_ada_task_ptid,
621 (ptid_t (*) (long, long))
622 default_get_ada_task_ptid);
623 de_fault (to_supports_multi_process,
624 (int (*) (void))
625 return_zero);
626 #undef de_fault
627
628 /* Finally, position the target-stack beneath the squashed
629 "current_target". That way code looking for a non-inherited
630 target method can quickly and simply find it. */
631 current_target.beneath = target_stack;
632
633 if (targetdebug)
634 setup_target_debug ();
635 }
636
637 /* Mark OPS as a running target. This reverses the effect
638 of target_mark_exited. */
639
640 void
641 target_mark_running (struct target_ops *ops)
642 {
643 struct target_ops *t;
644
645 for (t = target_stack; t != NULL; t = t->beneath)
646 if (t == ops)
647 break;
648 if (t == NULL)
649 internal_error (__FILE__, __LINE__,
650 "Attempted to mark unpushed target \"%s\" as running",
651 ops->to_shortname);
652
653 ops->to_has_execution = 1;
654 ops->to_has_all_memory = 1;
655 ops->to_has_memory = 1;
656 ops->to_has_stack = 1;
657 ops->to_has_registers = 1;
658
659 update_current_target ();
660 }
661
662 /* Mark OPS as a non-running target. This reverses the effect
663 of target_mark_running. */
664
665 void
666 target_mark_exited (struct target_ops *ops)
667 {
668 struct target_ops *t;
669
670 for (t = target_stack; t != NULL; t = t->beneath)
671 if (t == ops)
672 break;
673 if (t == NULL)
674 internal_error (__FILE__, __LINE__,
675 "Attempted to mark unpushed target \"%s\" as running",
676 ops->to_shortname);
677
678 ops->to_has_execution = 0;
679 ops->to_has_all_memory = 0;
680 ops->to_has_memory = 0;
681 ops->to_has_stack = 0;
682 ops->to_has_registers = 0;
683
684 update_current_target ();
685 }
686
687 /* Push a new target type into the stack of the existing target accessors,
688 possibly superseding some of the existing accessors.
689
690 Result is zero if the pushed target ended up on top of the stack,
691 nonzero if at least one target is on top of it.
692
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
697 int
698 push_target (struct target_ops *t)
699 {
700 struct target_ops **cur;
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
709 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
710 }
711
712 /* Find the proper stratum to install this target in. */
713 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
714 {
715 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
716 break;
717 }
718
719 /* If there's already targets at this stratum, remove them. */
720 /* FIXME: cagney/2003-10-15: I think this should be popping all
721 targets to CUR, and not just those at this stratum level. */
722 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
723 {
724 /* There's already something at this stratum level. Close it,
725 and un-hook it from the stack. */
726 struct target_ops *tmp = (*cur);
727 (*cur) = (*cur)->beneath;
728 tmp->beneath = NULL;
729 target_close (tmp, 0);
730 }
731
732 /* We have removed all targets in our stratum, now add the new one. */
733 t->beneath = (*cur);
734 (*cur) = t;
735
736 update_current_target ();
737
738 /* Not on top? */
739 return (t != target_stack);
740 }
741
742 /* Remove a target_ops vector from the stack, wherever it may be.
743 Return how many times it was removed (0 or 1). */
744
745 int
746 unpush_target (struct target_ops *t)
747 {
748 struct target_ops **cur;
749 struct target_ops *tmp;
750
751 if (t->to_stratum == dummy_stratum)
752 internal_error (__FILE__, __LINE__,
753 "Attempt to unpush the dummy target");
754
755 /* Look for the specified target. Note that we assume that a target
756 can only occur once in the target stack. */
757
758 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
759 {
760 if ((*cur) == t)
761 break;
762 }
763
764 if ((*cur) == NULL)
765 return 0; /* Didn't find target_ops, quit now */
766
767 /* NOTE: cagney/2003-12-06: In '94 the close call was made
768 unconditional by moving it to before the above check that the
769 target was in the target stack (something about "Change the way
770 pushing and popping of targets work to support target overlays
771 and inheritance"). This doesn't make much sense - only open
772 targets should be closed. */
773 target_close (t, 0);
774
775 /* Unchain the target */
776 tmp = (*cur);
777 (*cur) = (*cur)->beneath;
778 tmp->beneath = NULL;
779
780 update_current_target ();
781
782 return 1;
783 }
784
785 void
786 pop_target (void)
787 {
788 target_close (target_stack, 0); /* Let it clean up */
789 if (unpush_target (target_stack) == 1)
790 return;
791
792 fprintf_unfiltered (gdb_stderr,
793 "pop_target couldn't find target %s\n",
794 current_target.to_shortname);
795 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
796 }
797
798 void
799 pop_all_targets_above (enum strata above_stratum, int quitting)
800 {
801 while ((int) (current_target.to_stratum) > (int) above_stratum)
802 {
803 target_close (target_stack, quitting);
804 if (!unpush_target (target_stack))
805 {
806 fprintf_unfiltered (gdb_stderr,
807 "pop_all_targets couldn't find target %s\n",
808 target_stack->to_shortname);
809 internal_error (__FILE__, __LINE__,
810 _("failed internal consistency check"));
811 break;
812 }
813 }
814 }
815
816 void
817 pop_all_targets (int quitting)
818 {
819 pop_all_targets_above (dummy_stratum, quitting);
820 }
821
822 /* Using the objfile specified in OBJFILE, find the address for the
823 current thread's thread-local storage with offset OFFSET. */
824 CORE_ADDR
825 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
826 {
827 volatile CORE_ADDR addr = 0;
828 struct target_ops *target;
829
830 for (target = current_target.beneath;
831 target != NULL;
832 target = target->beneath)
833 {
834 if (target->to_get_thread_local_address != NULL)
835 break;
836 }
837
838 if (target != NULL
839 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
840 {
841 ptid_t ptid = inferior_ptid;
842 volatile struct gdb_exception ex;
843
844 TRY_CATCH (ex, RETURN_MASK_ALL)
845 {
846 CORE_ADDR lm_addr;
847
848 /* Fetch the load module address for this objfile. */
849 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
850 objfile);
851 /* If it's 0, throw the appropriate exception. */
852 if (lm_addr == 0)
853 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
854 _("TLS load module not found"));
855
856 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
857 }
858 /* If an error occurred, print TLS related messages here. Otherwise,
859 throw the error to some higher catcher. */
860 if (ex.reason < 0)
861 {
862 int objfile_is_library = (objfile->flags & OBJF_SHARED);
863
864 switch (ex.error)
865 {
866 case TLS_NO_LIBRARY_SUPPORT_ERROR:
867 error (_("Cannot find thread-local variables in this thread library."));
868 break;
869 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
870 if (objfile_is_library)
871 error (_("Cannot find shared library `%s' in dynamic"
872 " linker's load module list"), objfile->name);
873 else
874 error (_("Cannot find executable file `%s' in dynamic"
875 " linker's load module list"), objfile->name);
876 break;
877 case TLS_NOT_ALLOCATED_YET_ERROR:
878 if (objfile_is_library)
879 error (_("The inferior has not yet allocated storage for"
880 " thread-local variables in\n"
881 "the shared library `%s'\n"
882 "for %s"),
883 objfile->name, target_pid_to_str (ptid));
884 else
885 error (_("The inferior has not yet allocated storage for"
886 " thread-local variables in\n"
887 "the executable `%s'\n"
888 "for %s"),
889 objfile->name, target_pid_to_str (ptid));
890 break;
891 case TLS_GENERIC_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find thread-local storage for %s, "
894 "shared library %s:\n%s"),
895 target_pid_to_str (ptid),
896 objfile->name, ex.message);
897 else
898 error (_("Cannot find thread-local storage for %s, "
899 "executable file %s:\n%s"),
900 target_pid_to_str (ptid),
901 objfile->name, ex.message);
902 break;
903 default:
904 throw_exception (ex);
905 break;
906 }
907 }
908 }
909 /* It wouldn't be wrong here to try a gdbarch method, too; finding
910 TLS is an ABI-specific thing. But we don't do that yet. */
911 else
912 error (_("Cannot find thread-local variables on this target"));
913
914 return addr;
915 }
916
917 #undef MIN
918 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
919
920 /* target_read_string -- read a null terminated string, up to LEN bytes,
921 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
922 Set *STRING to a pointer to malloc'd memory containing the data; the caller
923 is responsible for freeing it. Return the number of bytes successfully
924 read. */
925
926 int
927 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
928 {
929 int tlen, origlen, offset, i;
930 gdb_byte buf[4];
931 int errcode = 0;
932 char *buffer;
933 int buffer_allocated;
934 char *bufptr;
935 unsigned int nbytes_read = 0;
936
937 gdb_assert (string);
938
939 /* Small for testing. */
940 buffer_allocated = 4;
941 buffer = xmalloc (buffer_allocated);
942 bufptr = buffer;
943
944 origlen = len;
945
946 while (len > 0)
947 {
948 tlen = MIN (len, 4 - (memaddr & 3));
949 offset = memaddr & 3;
950
951 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
952 if (errcode != 0)
953 {
954 /* The transfer request might have crossed the boundary to an
955 unallocated region of memory. Retry the transfer, requesting
956 a single byte. */
957 tlen = 1;
958 offset = 0;
959 errcode = target_read_memory (memaddr, buf, 1);
960 if (errcode != 0)
961 goto done;
962 }
963
964 if (bufptr - buffer + tlen > buffer_allocated)
965 {
966 unsigned int bytes;
967 bytes = bufptr - buffer;
968 buffer_allocated *= 2;
969 buffer = xrealloc (buffer, buffer_allocated);
970 bufptr = buffer + bytes;
971 }
972
973 for (i = 0; i < tlen; i++)
974 {
975 *bufptr++ = buf[i + offset];
976 if (buf[i + offset] == '\000')
977 {
978 nbytes_read += i + 1;
979 goto done;
980 }
981 }
982
983 memaddr += tlen;
984 len -= tlen;
985 nbytes_read += tlen;
986 }
987 done:
988 *string = buffer;
989 if (errnop != NULL)
990 *errnop = errcode;
991 return nbytes_read;
992 }
993
994 /* Find a section containing ADDR. */
995 struct section_table *
996 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
997 {
998 struct section_table *secp;
999 for (secp = target->to_sections;
1000 secp < target->to_sections_end;
1001 secp++)
1002 {
1003 if (addr >= secp->addr && addr < secp->endaddr)
1004 return secp;
1005 }
1006 return NULL;
1007 }
1008
1009 /* Perform a partial memory transfer. The arguments and return
1010 value are just as for target_xfer_partial. */
1011
1012 static LONGEST
1013 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1014 ULONGEST memaddr, LONGEST len)
1015 {
1016 LONGEST res;
1017 int reg_len;
1018 struct mem_region *region;
1019
1020 /* Zero length requests are ok and require no work. */
1021 if (len == 0)
1022 return 0;
1023
1024 /* Try the executable file, if "trust-readonly-sections" is set. */
1025 if (readbuf != NULL && trust_readonly)
1026 {
1027 struct section_table *secp;
1028
1029 secp = target_section_by_addr (ops, memaddr);
1030 if (secp != NULL
1031 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1032 & SEC_READONLY))
1033 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1034 }
1035
1036 /* Likewise for accesses to unmapped overlay sections. */
1037 if (readbuf != NULL && overlay_debugging)
1038 {
1039 struct obj_section *section = find_pc_overlay (memaddr);
1040 if (pc_in_unmapped_range (memaddr, section))
1041 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1042 }
1043
1044 /* Try GDB's internal data cache. */
1045 region = lookup_mem_region (memaddr);
1046 /* region->hi == 0 means there's no upper bound. */
1047 if (memaddr + len < region->hi || region->hi == 0)
1048 reg_len = len;
1049 else
1050 reg_len = region->hi - memaddr;
1051
1052 switch (region->attrib.mode)
1053 {
1054 case MEM_RO:
1055 if (writebuf != NULL)
1056 return -1;
1057 break;
1058
1059 case MEM_WO:
1060 if (readbuf != NULL)
1061 return -1;
1062 break;
1063
1064 case MEM_FLASH:
1065 /* We only support writing to flash during "load" for now. */
1066 if (writebuf != NULL)
1067 error (_("Writing to flash memory forbidden in this context"));
1068 break;
1069
1070 case MEM_NONE:
1071 return -1;
1072 }
1073
1074 if (region->attrib.cache)
1075 {
1076 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1077 memory request will start back at current_target. */
1078 if (readbuf != NULL)
1079 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1080 reg_len, 0);
1081 else
1082 /* FIXME drow/2006-08-09: If we're going to preserve const
1083 correctness dcache_xfer_memory should take readbuf and
1084 writebuf. */
1085 res = dcache_xfer_memory (target_dcache, memaddr,
1086 (void *) writebuf,
1087 reg_len, 1);
1088 if (res <= 0)
1089 return -1;
1090 else
1091 {
1092 if (readbuf && !show_memory_breakpoints)
1093 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1094 return res;
1095 }
1096 }
1097
1098 /* If none of those methods found the memory we wanted, fall back
1099 to a target partial transfer. Normally a single call to
1100 to_xfer_partial is enough; if it doesn't recognize an object
1101 it will call the to_xfer_partial of the next target down.
1102 But for memory this won't do. Memory is the only target
1103 object which can be read from more than one valid target.
1104 A core file, for instance, could have some of memory but
1105 delegate other bits to the target below it. So, we must
1106 manually try all targets. */
1107
1108 do
1109 {
1110 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1111 readbuf, writebuf, memaddr, reg_len);
1112 if (res > 0)
1113 break;
1114
1115 /* We want to continue past core files to executables, but not
1116 past a running target's memory. */
1117 if (ops->to_has_all_memory)
1118 break;
1119
1120 ops = ops->beneath;
1121 }
1122 while (ops != NULL);
1123
1124 if (readbuf && !show_memory_breakpoints)
1125 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1126
1127 /* If we still haven't got anything, return the last error. We
1128 give up. */
1129 return res;
1130 }
1131
1132 static void
1133 restore_show_memory_breakpoints (void *arg)
1134 {
1135 show_memory_breakpoints = (uintptr_t) arg;
1136 }
1137
1138 struct cleanup *
1139 make_show_memory_breakpoints_cleanup (int show)
1140 {
1141 int current = show_memory_breakpoints;
1142 show_memory_breakpoints = show;
1143
1144 return make_cleanup (restore_show_memory_breakpoints,
1145 (void *) (uintptr_t) current);
1146 }
1147
1148 static LONGEST
1149 target_xfer_partial (struct target_ops *ops,
1150 enum target_object object, const char *annex,
1151 void *readbuf, const void *writebuf,
1152 ULONGEST offset, LONGEST len)
1153 {
1154 LONGEST retval;
1155
1156 gdb_assert (ops->to_xfer_partial != NULL);
1157
1158 /* If this is a memory transfer, let the memory-specific code
1159 have a look at it instead. Memory transfers are more
1160 complicated. */
1161 if (object == TARGET_OBJECT_MEMORY)
1162 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1163 else
1164 {
1165 enum target_object raw_object = object;
1166
1167 /* If this is a raw memory transfer, request the normal
1168 memory object from other layers. */
1169 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1170 raw_object = TARGET_OBJECT_MEMORY;
1171
1172 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1173 writebuf, offset, len);
1174 }
1175
1176 if (targetdebug)
1177 {
1178 const unsigned char *myaddr = NULL;
1179
1180 fprintf_unfiltered (gdb_stdlog,
1181 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1182 ops->to_shortname,
1183 (int) object,
1184 (annex ? annex : "(null)"),
1185 host_address_to_string (readbuf),
1186 host_address_to_string (writebuf),
1187 core_addr_to_string_nz (offset),
1188 plongest (len), plongest (retval));
1189
1190 if (readbuf)
1191 myaddr = readbuf;
1192 if (writebuf)
1193 myaddr = writebuf;
1194 if (retval > 0 && myaddr != NULL)
1195 {
1196 int i;
1197
1198 fputs_unfiltered (", bytes =", gdb_stdlog);
1199 for (i = 0; i < retval; i++)
1200 {
1201 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1202 {
1203 if (targetdebug < 2 && i > 0)
1204 {
1205 fprintf_unfiltered (gdb_stdlog, " ...");
1206 break;
1207 }
1208 fprintf_unfiltered (gdb_stdlog, "\n");
1209 }
1210
1211 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1212 }
1213 }
1214
1215 fputc_unfiltered ('\n', gdb_stdlog);
1216 }
1217 return retval;
1218 }
1219
1220 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1221 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1222 if any error occurs.
1223
1224 If an error occurs, no guarantee is made about the contents of the data at
1225 MYADDR. In particular, the caller should not depend upon partial reads
1226 filling the buffer with good data. There is no way for the caller to know
1227 how much good data might have been transfered anyway. Callers that can
1228 deal with partial reads should call target_read (which will retry until
1229 it makes no progress, and then return how much was transferred). */
1230
1231 int
1232 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1233 {
1234 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1235 myaddr, memaddr, len) == len)
1236 return 0;
1237 else
1238 return EIO;
1239 }
1240
1241 int
1242 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1243 {
1244 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1245 myaddr, memaddr, len) == len)
1246 return 0;
1247 else
1248 return EIO;
1249 }
1250
1251 /* Fetch the target's memory map. */
1252
1253 VEC(mem_region_s) *
1254 target_memory_map (void)
1255 {
1256 VEC(mem_region_s) *result;
1257 struct mem_region *last_one, *this_one;
1258 int ix;
1259 struct target_ops *t;
1260
1261 if (targetdebug)
1262 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1263
1264 for (t = current_target.beneath; t != NULL; t = t->beneath)
1265 if (t->to_memory_map != NULL)
1266 break;
1267
1268 if (t == NULL)
1269 return NULL;
1270
1271 result = t->to_memory_map (t);
1272 if (result == NULL)
1273 return NULL;
1274
1275 qsort (VEC_address (mem_region_s, result),
1276 VEC_length (mem_region_s, result),
1277 sizeof (struct mem_region), mem_region_cmp);
1278
1279 /* Check that regions do not overlap. Simultaneously assign
1280 a numbering for the "mem" commands to use to refer to
1281 each region. */
1282 last_one = NULL;
1283 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1284 {
1285 this_one->number = ix;
1286
1287 if (last_one && last_one->hi > this_one->lo)
1288 {
1289 warning (_("Overlapping regions in memory map: ignoring"));
1290 VEC_free (mem_region_s, result);
1291 return NULL;
1292 }
1293 last_one = this_one;
1294 }
1295
1296 return result;
1297 }
1298
1299 void
1300 target_flash_erase (ULONGEST address, LONGEST length)
1301 {
1302 struct target_ops *t;
1303
1304 for (t = current_target.beneath; t != NULL; t = t->beneath)
1305 if (t->to_flash_erase != NULL)
1306 {
1307 if (targetdebug)
1308 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1309 paddr (address), phex (length, 0));
1310 t->to_flash_erase (t, address, length);
1311 return;
1312 }
1313
1314 tcomplain ();
1315 }
1316
1317 void
1318 target_flash_done (void)
1319 {
1320 struct target_ops *t;
1321
1322 for (t = current_target.beneath; t != NULL; t = t->beneath)
1323 if (t->to_flash_done != NULL)
1324 {
1325 if (targetdebug)
1326 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1327 t->to_flash_done (t);
1328 return;
1329 }
1330
1331 tcomplain ();
1332 }
1333
1334 static void
1335 show_trust_readonly (struct ui_file *file, int from_tty,
1336 struct cmd_list_element *c, const char *value)
1337 {
1338 fprintf_filtered (file, _("\
1339 Mode for reading from readonly sections is %s.\n"),
1340 value);
1341 }
1342
1343 /* More generic transfers. */
1344
1345 static LONGEST
1346 default_xfer_partial (struct target_ops *ops, enum target_object object,
1347 const char *annex, gdb_byte *readbuf,
1348 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1349 {
1350 if (object == TARGET_OBJECT_MEMORY
1351 && ops->deprecated_xfer_memory != NULL)
1352 /* If available, fall back to the target's
1353 "deprecated_xfer_memory" method. */
1354 {
1355 int xfered = -1;
1356 errno = 0;
1357 if (writebuf != NULL)
1358 {
1359 void *buffer = xmalloc (len);
1360 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1361 memcpy (buffer, writebuf, len);
1362 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1363 1/*write*/, NULL, ops);
1364 do_cleanups (cleanup);
1365 }
1366 if (readbuf != NULL)
1367 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1368 0/*read*/, NULL, ops);
1369 if (xfered > 0)
1370 return xfered;
1371 else if (xfered == 0 && errno == 0)
1372 /* "deprecated_xfer_memory" uses 0, cross checked against
1373 ERRNO as one indication of an error. */
1374 return 0;
1375 else
1376 return -1;
1377 }
1378 else if (ops->beneath != NULL)
1379 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1380 readbuf, writebuf, offset, len);
1381 else
1382 return -1;
1383 }
1384
1385 /* The xfer_partial handler for the topmost target. Unlike the default,
1386 it does not need to handle memory specially; it just passes all
1387 requests down the stack. */
1388
1389 static LONGEST
1390 current_xfer_partial (struct target_ops *ops, enum target_object object,
1391 const char *annex, gdb_byte *readbuf,
1392 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1393 {
1394 if (ops->beneath != NULL)
1395 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1396 readbuf, writebuf, offset, len);
1397 else
1398 return -1;
1399 }
1400
1401 /* Target vector read/write partial wrapper functions.
1402
1403 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1404 (inbuf, outbuf)", instead of separate read/write methods, make life
1405 easier. */
1406
1407 static LONGEST
1408 target_read_partial (struct target_ops *ops,
1409 enum target_object object,
1410 const char *annex, gdb_byte *buf,
1411 ULONGEST offset, LONGEST len)
1412 {
1413 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1414 }
1415
1416 static LONGEST
1417 target_write_partial (struct target_ops *ops,
1418 enum target_object object,
1419 const char *annex, const gdb_byte *buf,
1420 ULONGEST offset, LONGEST len)
1421 {
1422 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1423 }
1424
1425 /* Wrappers to perform the full transfer. */
1426 LONGEST
1427 target_read (struct target_ops *ops,
1428 enum target_object object,
1429 const char *annex, gdb_byte *buf,
1430 ULONGEST offset, LONGEST len)
1431 {
1432 LONGEST xfered = 0;
1433 while (xfered < len)
1434 {
1435 LONGEST xfer = target_read_partial (ops, object, annex,
1436 (gdb_byte *) buf + xfered,
1437 offset + xfered, len - xfered);
1438 /* Call an observer, notifying them of the xfer progress? */
1439 if (xfer == 0)
1440 return xfered;
1441 if (xfer < 0)
1442 return -1;
1443 xfered += xfer;
1444 QUIT;
1445 }
1446 return len;
1447 }
1448
1449 LONGEST
1450 target_read_until_error (struct target_ops *ops,
1451 enum target_object object,
1452 const char *annex, gdb_byte *buf,
1453 ULONGEST offset, LONGEST len)
1454 {
1455 LONGEST xfered = 0;
1456 while (xfered < len)
1457 {
1458 LONGEST xfer = target_read_partial (ops, object, annex,
1459 (gdb_byte *) buf + xfered,
1460 offset + xfered, len - xfered);
1461 /* Call an observer, notifying them of the xfer progress? */
1462 if (xfer == 0)
1463 return xfered;
1464 if (xfer < 0)
1465 {
1466 /* We've got an error. Try to read in smaller blocks. */
1467 ULONGEST start = offset + xfered;
1468 ULONGEST remaining = len - xfered;
1469 ULONGEST half;
1470
1471 /* If an attempt was made to read a random memory address,
1472 it's likely that the very first byte is not accessible.
1473 Try reading the first byte, to avoid doing log N tries
1474 below. */
1475 xfer = target_read_partial (ops, object, annex,
1476 (gdb_byte *) buf + xfered, start, 1);
1477 if (xfer <= 0)
1478 return xfered;
1479 start += 1;
1480 remaining -= 1;
1481 half = remaining/2;
1482
1483 while (half > 0)
1484 {
1485 xfer = target_read_partial (ops, object, annex,
1486 (gdb_byte *) buf + xfered,
1487 start, half);
1488 if (xfer == 0)
1489 return xfered;
1490 if (xfer < 0)
1491 {
1492 remaining = half;
1493 }
1494 else
1495 {
1496 /* We have successfully read the first half. So, the
1497 error must be in the second half. Adjust start and
1498 remaining to point at the second half. */
1499 xfered += xfer;
1500 start += xfer;
1501 remaining -= xfer;
1502 }
1503 half = remaining/2;
1504 }
1505
1506 return xfered;
1507 }
1508 xfered += xfer;
1509 QUIT;
1510 }
1511 return len;
1512 }
1513
1514
1515 /* An alternative to target_write with progress callbacks. */
1516
1517 LONGEST
1518 target_write_with_progress (struct target_ops *ops,
1519 enum target_object object,
1520 const char *annex, const gdb_byte *buf,
1521 ULONGEST offset, LONGEST len,
1522 void (*progress) (ULONGEST, void *), void *baton)
1523 {
1524 LONGEST xfered = 0;
1525
1526 /* Give the progress callback a chance to set up. */
1527 if (progress)
1528 (*progress) (0, baton);
1529
1530 while (xfered < len)
1531 {
1532 LONGEST xfer = target_write_partial (ops, object, annex,
1533 (gdb_byte *) buf + xfered,
1534 offset + xfered, len - xfered);
1535
1536 if (xfer == 0)
1537 return xfered;
1538 if (xfer < 0)
1539 return -1;
1540
1541 if (progress)
1542 (*progress) (xfer, baton);
1543
1544 xfered += xfer;
1545 QUIT;
1546 }
1547 return len;
1548 }
1549
1550 LONGEST
1551 target_write (struct target_ops *ops,
1552 enum target_object object,
1553 const char *annex, const gdb_byte *buf,
1554 ULONGEST offset, LONGEST len)
1555 {
1556 return target_write_with_progress (ops, object, annex, buf, offset, len,
1557 NULL, NULL);
1558 }
1559
1560 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1561 the size of the transferred data. PADDING additional bytes are
1562 available in *BUF_P. This is a helper function for
1563 target_read_alloc; see the declaration of that function for more
1564 information. */
1565
1566 static LONGEST
1567 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1568 const char *annex, gdb_byte **buf_p, int padding)
1569 {
1570 size_t buf_alloc, buf_pos;
1571 gdb_byte *buf;
1572 LONGEST n;
1573
1574 /* This function does not have a length parameter; it reads the
1575 entire OBJECT). Also, it doesn't support objects fetched partly
1576 from one target and partly from another (in a different stratum,
1577 e.g. a core file and an executable). Both reasons make it
1578 unsuitable for reading memory. */
1579 gdb_assert (object != TARGET_OBJECT_MEMORY);
1580
1581 /* Start by reading up to 4K at a time. The target will throttle
1582 this number down if necessary. */
1583 buf_alloc = 4096;
1584 buf = xmalloc (buf_alloc);
1585 buf_pos = 0;
1586 while (1)
1587 {
1588 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1589 buf_pos, buf_alloc - buf_pos - padding);
1590 if (n < 0)
1591 {
1592 /* An error occurred. */
1593 xfree (buf);
1594 return -1;
1595 }
1596 else if (n == 0)
1597 {
1598 /* Read all there was. */
1599 if (buf_pos == 0)
1600 xfree (buf);
1601 else
1602 *buf_p = buf;
1603 return buf_pos;
1604 }
1605
1606 buf_pos += n;
1607
1608 /* If the buffer is filling up, expand it. */
1609 if (buf_alloc < buf_pos * 2)
1610 {
1611 buf_alloc *= 2;
1612 buf = xrealloc (buf, buf_alloc);
1613 }
1614
1615 QUIT;
1616 }
1617 }
1618
1619 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1620 the size of the transferred data. See the declaration in "target.h"
1621 function for more information about the return value. */
1622
1623 LONGEST
1624 target_read_alloc (struct target_ops *ops, enum target_object object,
1625 const char *annex, gdb_byte **buf_p)
1626 {
1627 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1628 }
1629
1630 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1631 returned as a string, allocated using xmalloc. If an error occurs
1632 or the transfer is unsupported, NULL is returned. Empty objects
1633 are returned as allocated but empty strings. A warning is issued
1634 if the result contains any embedded NUL bytes. */
1635
1636 char *
1637 target_read_stralloc (struct target_ops *ops, enum target_object object,
1638 const char *annex)
1639 {
1640 gdb_byte *buffer;
1641 LONGEST transferred;
1642
1643 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1644
1645 if (transferred < 0)
1646 return NULL;
1647
1648 if (transferred == 0)
1649 return xstrdup ("");
1650
1651 buffer[transferred] = 0;
1652 if (strlen (buffer) < transferred)
1653 warning (_("target object %d, annex %s, "
1654 "contained unexpected null characters"),
1655 (int) object, annex ? annex : "(none)");
1656
1657 return (char *) buffer;
1658 }
1659
1660 /* Memory transfer methods. */
1661
1662 void
1663 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1664 LONGEST len)
1665 {
1666 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1667 != len)
1668 memory_error (EIO, addr);
1669 }
1670
1671 ULONGEST
1672 get_target_memory_unsigned (struct target_ops *ops,
1673 CORE_ADDR addr, int len)
1674 {
1675 gdb_byte buf[sizeof (ULONGEST)];
1676
1677 gdb_assert (len <= sizeof (buf));
1678 get_target_memory (ops, addr, buf, len);
1679 return extract_unsigned_integer (buf, len);
1680 }
1681
1682 static void
1683 target_info (char *args, int from_tty)
1684 {
1685 struct target_ops *t;
1686 int has_all_mem = 0;
1687
1688 if (symfile_objfile != NULL)
1689 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1690
1691 for (t = target_stack; t != NULL; t = t->beneath)
1692 {
1693 if (!t->to_has_memory)
1694 continue;
1695
1696 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1697 continue;
1698 if (has_all_mem)
1699 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1700 printf_unfiltered ("%s:\n", t->to_longname);
1701 (t->to_files_info) (t);
1702 has_all_mem = t->to_has_all_memory;
1703 }
1704 }
1705
1706 /* This function is called before any new inferior is created, e.g.
1707 by running a program, attaching, or connecting to a target.
1708 It cleans up any state from previous invocations which might
1709 change between runs. This is a subset of what target_preopen
1710 resets (things which might change between targets). */
1711
1712 void
1713 target_pre_inferior (int from_tty)
1714 {
1715 /* Clear out solib state. Otherwise the solib state of the previous
1716 inferior might have survived and is entirely wrong for the new
1717 target. This has been observed on GNU/Linux using glibc 2.3. How
1718 to reproduce:
1719
1720 bash$ ./foo&
1721 [1] 4711
1722 bash$ ./foo&
1723 [1] 4712
1724 bash$ gdb ./foo
1725 [...]
1726 (gdb) attach 4711
1727 (gdb) detach
1728 (gdb) attach 4712
1729 Cannot access memory at address 0xdeadbeef
1730 */
1731
1732 /* In some OSs, the shared library list is the same/global/shared
1733 across inferiors. If code is shared between processes, so are
1734 memory regions and features. */
1735 if (!gdbarch_has_global_solist (target_gdbarch))
1736 {
1737 no_shared_libraries (NULL, from_tty);
1738
1739 invalidate_target_mem_regions ();
1740
1741 target_clear_description ();
1742 }
1743 }
1744
1745 /* This is to be called by the open routine before it does
1746 anything. */
1747
1748 void
1749 target_preopen (int from_tty)
1750 {
1751 dont_repeat ();
1752
1753 if (target_has_execution)
1754 {
1755 if (!from_tty
1756 || query (_("A program is being debugged already. Kill it? ")))
1757 target_kill ();
1758 else
1759 error (_("Program not killed."));
1760 }
1761
1762 /* Calling target_kill may remove the target from the stack. But if
1763 it doesn't (which seems like a win for UDI), remove it now. */
1764 /* Leave the exec target, though. The user may be switching from a
1765 live process to a core of the same program. */
1766 pop_all_targets_above (file_stratum, 0);
1767
1768 target_pre_inferior (from_tty);
1769 }
1770
1771 /* Detach a target after doing deferred register stores. */
1772
1773 void
1774 target_detach (char *args, int from_tty)
1775 {
1776 struct target_ops* t;
1777
1778 if (gdbarch_has_global_solist (target_gdbarch))
1779 /* Don't remove global breakpoints here. They're removed on
1780 disconnection from the target. */
1781 ;
1782 else
1783 /* If we're in breakpoints-always-inserted mode, have to remove
1784 them before detaching. */
1785 remove_breakpoints ();
1786
1787 for (t = current_target.beneath; t != NULL; t = t->beneath)
1788 {
1789 if (t->to_detach != NULL)
1790 {
1791 t->to_detach (t, args, from_tty);
1792 if (targetdebug)
1793 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
1794 args, from_tty);
1795 return;
1796 }
1797 }
1798
1799 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1800 }
1801
1802 void
1803 target_disconnect (char *args, int from_tty)
1804 {
1805 struct target_ops *t;
1806
1807 /* If we're in breakpoints-always-inserted mode or if breakpoints
1808 are global across processes, we have to remove them before
1809 disconnecting. */
1810 remove_breakpoints ();
1811
1812 for (t = current_target.beneath; t != NULL; t = t->beneath)
1813 if (t->to_disconnect != NULL)
1814 {
1815 if (targetdebug)
1816 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1817 args, from_tty);
1818 t->to_disconnect (t, args, from_tty);
1819 return;
1820 }
1821
1822 tcomplain ();
1823 }
1824
1825 ptid_t
1826 target_wait (ptid_t ptid, struct target_waitstatus *status)
1827 {
1828 struct target_ops *t;
1829
1830 for (t = current_target.beneath; t != NULL; t = t->beneath)
1831 {
1832 if (t->to_wait != NULL)
1833 {
1834 ptid_t retval = (*t->to_wait) (t, ptid, status);
1835
1836 if (targetdebug)
1837 {
1838 char *status_string;
1839
1840 status_string = target_waitstatus_to_string (status);
1841 fprintf_unfiltered (gdb_stdlog,
1842 "target_wait (%d, status) = %d, %s\n",
1843 PIDGET (ptid), PIDGET (retval),
1844 status_string);
1845 xfree (status_string);
1846 }
1847
1848 return retval;
1849 }
1850 }
1851
1852 noprocess ();
1853 }
1854
1855 char *
1856 target_pid_to_str (ptid_t ptid)
1857 {
1858 struct target_ops *t;
1859
1860 for (t = current_target.beneath; t != NULL; t = t->beneath)
1861 {
1862 if (t->to_pid_to_str != NULL)
1863 return (*t->to_pid_to_str) (t, ptid);
1864 }
1865
1866 return normal_pid_to_str (ptid);
1867 }
1868
1869 void
1870 target_resume (ptid_t ptid, int step, enum target_signal signal)
1871 {
1872 struct target_ops *t;
1873
1874 dcache_invalidate (target_dcache);
1875
1876 for (t = current_target.beneath; t != NULL; t = t->beneath)
1877 {
1878 if (t->to_resume != NULL)
1879 {
1880 t->to_resume (t, ptid, step, signal);
1881 if (targetdebug)
1882 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
1883 PIDGET (ptid),
1884 step ? "step" : "continue",
1885 target_signal_to_name (signal));
1886
1887 set_executing (ptid, 1);
1888 set_running (ptid, 1);
1889 return;
1890 }
1891 }
1892
1893 noprocess ();
1894 }
1895 /* Look through the list of possible targets for a target that can
1896 follow forks. */
1897
1898 int
1899 target_follow_fork (int follow_child)
1900 {
1901 struct target_ops *t;
1902
1903 for (t = current_target.beneath; t != NULL; t = t->beneath)
1904 {
1905 if (t->to_follow_fork != NULL)
1906 {
1907 int retval = t->to_follow_fork (t, follow_child);
1908 if (targetdebug)
1909 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1910 follow_child, retval);
1911 return retval;
1912 }
1913 }
1914
1915 /* Some target returned a fork event, but did not know how to follow it. */
1916 internal_error (__FILE__, __LINE__,
1917 "could not find a target to follow fork");
1918 }
1919
1920 void
1921 target_mourn_inferior (void)
1922 {
1923 struct target_ops *t;
1924 for (t = current_target.beneath; t != NULL; t = t->beneath)
1925 {
1926 if (t->to_mourn_inferior != NULL)
1927 {
1928 t->to_mourn_inferior (t);
1929 if (targetdebug)
1930 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
1931 return;
1932 }
1933 }
1934
1935 internal_error (__FILE__, __LINE__,
1936 "could not find a target to follow mourn inferiour");
1937 }
1938
1939 /* Look for a target which can describe architectural features, starting
1940 from TARGET. If we find one, return its description. */
1941
1942 const struct target_desc *
1943 target_read_description (struct target_ops *target)
1944 {
1945 struct target_ops *t;
1946
1947 for (t = target; t != NULL; t = t->beneath)
1948 if (t->to_read_description != NULL)
1949 {
1950 const struct target_desc *tdesc;
1951
1952 tdesc = t->to_read_description (t);
1953 if (tdesc)
1954 return tdesc;
1955 }
1956
1957 return NULL;
1958 }
1959
1960 /* The default implementation of to_search_memory.
1961 This implements a basic search of memory, reading target memory and
1962 performing the search here (as opposed to performing the search in on the
1963 target side with, for example, gdbserver). */
1964
1965 int
1966 simple_search_memory (struct target_ops *ops,
1967 CORE_ADDR start_addr, ULONGEST search_space_len,
1968 const gdb_byte *pattern, ULONGEST pattern_len,
1969 CORE_ADDR *found_addrp)
1970 {
1971 /* NOTE: also defined in find.c testcase. */
1972 #define SEARCH_CHUNK_SIZE 16000
1973 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1974 /* Buffer to hold memory contents for searching. */
1975 gdb_byte *search_buf;
1976 unsigned search_buf_size;
1977 struct cleanup *old_cleanups;
1978
1979 search_buf_size = chunk_size + pattern_len - 1;
1980
1981 /* No point in trying to allocate a buffer larger than the search space. */
1982 if (search_space_len < search_buf_size)
1983 search_buf_size = search_space_len;
1984
1985 search_buf = malloc (search_buf_size);
1986 if (search_buf == NULL)
1987 error (_("Unable to allocate memory to perform the search."));
1988 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1989
1990 /* Prime the search buffer. */
1991
1992 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1993 search_buf, start_addr, search_buf_size) != search_buf_size)
1994 {
1995 warning (_("Unable to access target memory at %s, halting search."),
1996 hex_string (start_addr));
1997 do_cleanups (old_cleanups);
1998 return -1;
1999 }
2000
2001 /* Perform the search.
2002
2003 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2004 When we've scanned N bytes we copy the trailing bytes to the start and
2005 read in another N bytes. */
2006
2007 while (search_space_len >= pattern_len)
2008 {
2009 gdb_byte *found_ptr;
2010 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2011
2012 found_ptr = memmem (search_buf, nr_search_bytes,
2013 pattern, pattern_len);
2014
2015 if (found_ptr != NULL)
2016 {
2017 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2018 *found_addrp = found_addr;
2019 do_cleanups (old_cleanups);
2020 return 1;
2021 }
2022
2023 /* Not found in this chunk, skip to next chunk. */
2024
2025 /* Don't let search_space_len wrap here, it's unsigned. */
2026 if (search_space_len >= chunk_size)
2027 search_space_len -= chunk_size;
2028 else
2029 search_space_len = 0;
2030
2031 if (search_space_len >= pattern_len)
2032 {
2033 unsigned keep_len = search_buf_size - chunk_size;
2034 CORE_ADDR read_addr = start_addr + keep_len;
2035 int nr_to_read;
2036
2037 /* Copy the trailing part of the previous iteration to the front
2038 of the buffer for the next iteration. */
2039 gdb_assert (keep_len == pattern_len - 1);
2040 memcpy (search_buf, search_buf + chunk_size, keep_len);
2041
2042 nr_to_read = min (search_space_len - keep_len, chunk_size);
2043
2044 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2045 search_buf + keep_len, read_addr,
2046 nr_to_read) != nr_to_read)
2047 {
2048 warning (_("Unable to access target memory at %s, halting search."),
2049 hex_string (read_addr));
2050 do_cleanups (old_cleanups);
2051 return -1;
2052 }
2053
2054 start_addr += chunk_size;
2055 }
2056 }
2057
2058 /* Not found. */
2059
2060 do_cleanups (old_cleanups);
2061 return 0;
2062 }
2063
2064 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2065 sequence of bytes in PATTERN with length PATTERN_LEN.
2066
2067 The result is 1 if found, 0 if not found, and -1 if there was an error
2068 requiring halting of the search (e.g. memory read error).
2069 If the pattern is found the address is recorded in FOUND_ADDRP. */
2070
2071 int
2072 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2073 const gdb_byte *pattern, ULONGEST pattern_len,
2074 CORE_ADDR *found_addrp)
2075 {
2076 struct target_ops *t;
2077 int found;
2078
2079 /* We don't use INHERIT to set current_target.to_search_memory,
2080 so we have to scan the target stack and handle targetdebug
2081 ourselves. */
2082
2083 if (targetdebug)
2084 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2085 hex_string (start_addr));
2086
2087 for (t = current_target.beneath; t != NULL; t = t->beneath)
2088 if (t->to_search_memory != NULL)
2089 break;
2090
2091 if (t != NULL)
2092 {
2093 found = t->to_search_memory (t, start_addr, search_space_len,
2094 pattern, pattern_len, found_addrp);
2095 }
2096 else
2097 {
2098 /* If a special version of to_search_memory isn't available, use the
2099 simple version. */
2100 found = simple_search_memory (&current_target,
2101 start_addr, search_space_len,
2102 pattern, pattern_len, found_addrp);
2103 }
2104
2105 if (targetdebug)
2106 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2107
2108 return found;
2109 }
2110
2111 /* Look through the currently pushed targets. If none of them will
2112 be able to restart the currently running process, issue an error
2113 message. */
2114
2115 void
2116 target_require_runnable (void)
2117 {
2118 struct target_ops *t;
2119
2120 for (t = target_stack; t != NULL; t = t->beneath)
2121 {
2122 /* If this target knows how to create a new program, then
2123 assume we will still be able to after killing the current
2124 one. Either killing and mourning will not pop T, or else
2125 find_default_run_target will find it again. */
2126 if (t->to_create_inferior != NULL)
2127 return;
2128
2129 /* Do not worry about thread_stratum targets that can not
2130 create inferiors. Assume they will be pushed again if
2131 necessary, and continue to the process_stratum. */
2132 if (t->to_stratum == thread_stratum)
2133 continue;
2134
2135 error (_("\
2136 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2137 t->to_shortname);
2138 }
2139
2140 /* This function is only called if the target is running. In that
2141 case there should have been a process_stratum target and it
2142 should either know how to create inferiors, or not... */
2143 internal_error (__FILE__, __LINE__, "No targets found");
2144 }
2145
2146 /* Look through the list of possible targets for a target that can
2147 execute a run or attach command without any other data. This is
2148 used to locate the default process stratum.
2149
2150 If DO_MESG is not NULL, the result is always valid (error() is
2151 called for errors); else, return NULL on error. */
2152
2153 static struct target_ops *
2154 find_default_run_target (char *do_mesg)
2155 {
2156 struct target_ops **t;
2157 struct target_ops *runable = NULL;
2158 int count;
2159
2160 count = 0;
2161
2162 for (t = target_structs; t < target_structs + target_struct_size;
2163 ++t)
2164 {
2165 if ((*t)->to_can_run && target_can_run (*t))
2166 {
2167 runable = *t;
2168 ++count;
2169 }
2170 }
2171
2172 if (count != 1)
2173 {
2174 if (do_mesg)
2175 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2176 else
2177 return NULL;
2178 }
2179
2180 return runable;
2181 }
2182
2183 void
2184 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2185 {
2186 struct target_ops *t;
2187
2188 t = find_default_run_target ("attach");
2189 (t->to_attach) (t, args, from_tty);
2190 return;
2191 }
2192
2193 void
2194 find_default_create_inferior (struct target_ops *ops,
2195 char *exec_file, char *allargs, char **env,
2196 int from_tty)
2197 {
2198 struct target_ops *t;
2199
2200 t = find_default_run_target ("run");
2201 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2202 return;
2203 }
2204
2205 static int
2206 find_default_can_async_p (void)
2207 {
2208 struct target_ops *t;
2209
2210 /* This may be called before the target is pushed on the stack;
2211 look for the default process stratum. If there's none, gdb isn't
2212 configured with a native debugger, and target remote isn't
2213 connected yet. */
2214 t = find_default_run_target (NULL);
2215 if (t && t->to_can_async_p)
2216 return (t->to_can_async_p) ();
2217 return 0;
2218 }
2219
2220 static int
2221 find_default_is_async_p (void)
2222 {
2223 struct target_ops *t;
2224
2225 /* This may be called before the target is pushed on the stack;
2226 look for the default process stratum. If there's none, gdb isn't
2227 configured with a native debugger, and target remote isn't
2228 connected yet. */
2229 t = find_default_run_target (NULL);
2230 if (t && t->to_is_async_p)
2231 return (t->to_is_async_p) ();
2232 return 0;
2233 }
2234
2235 static int
2236 find_default_supports_non_stop (void)
2237 {
2238 struct target_ops *t;
2239
2240 t = find_default_run_target (NULL);
2241 if (t && t->to_supports_non_stop)
2242 return (t->to_supports_non_stop) ();
2243 return 0;
2244 }
2245
2246 int
2247 target_supports_non_stop (void)
2248 {
2249 struct target_ops *t;
2250 for (t = &current_target; t != NULL; t = t->beneath)
2251 if (t->to_supports_non_stop)
2252 return t->to_supports_non_stop ();
2253
2254 return 0;
2255 }
2256
2257
2258 char *
2259 target_get_osdata (const char *type)
2260 {
2261 char *document;
2262 struct target_ops *t;
2263
2264 /* If we're already connected to something that can get us OS
2265 related data, use it. Otherwise, try using the native
2266 target. */
2267 if (current_target.to_stratum >= process_stratum)
2268 t = current_target.beneath;
2269 else
2270 t = find_default_run_target ("get OS data");
2271
2272 if (!t)
2273 return NULL;
2274
2275 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2276 }
2277
2278 static int
2279 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2280 {
2281 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2282 }
2283
2284 static int
2285 default_watchpoint_addr_within_range (struct target_ops *target,
2286 CORE_ADDR addr,
2287 CORE_ADDR start, int length)
2288 {
2289 return addr >= start && addr < start + length;
2290 }
2291
2292 static int
2293 return_zero (void)
2294 {
2295 return 0;
2296 }
2297
2298 static int
2299 return_one (void)
2300 {
2301 return 1;
2302 }
2303
2304 static int
2305 return_minus_one (void)
2306 {
2307 return -1;
2308 }
2309
2310 /*
2311 * Resize the to_sections pointer. Also make sure that anyone that
2312 * was holding on to an old value of it gets updated.
2313 * Returns the old size.
2314 */
2315
2316 int
2317 target_resize_to_sections (struct target_ops *target, int num_added)
2318 {
2319 struct target_ops **t;
2320 struct section_table *old_value;
2321 int old_count;
2322
2323 old_value = target->to_sections;
2324
2325 if (target->to_sections)
2326 {
2327 old_count = target->to_sections_end - target->to_sections;
2328 target->to_sections = (struct section_table *)
2329 xrealloc ((char *) target->to_sections,
2330 (sizeof (struct section_table)) * (num_added + old_count));
2331 }
2332 else
2333 {
2334 old_count = 0;
2335 target->to_sections = (struct section_table *)
2336 xmalloc ((sizeof (struct section_table)) * num_added);
2337 }
2338 target->to_sections_end = target->to_sections + (num_added + old_count);
2339
2340 /* Check to see if anyone else was pointing to this structure.
2341 If old_value was null, then no one was. */
2342
2343 if (old_value)
2344 {
2345 for (t = target_structs; t < target_structs + target_struct_size;
2346 ++t)
2347 {
2348 if ((*t)->to_sections == old_value)
2349 {
2350 (*t)->to_sections = target->to_sections;
2351 (*t)->to_sections_end = target->to_sections_end;
2352 }
2353 }
2354 /* There is a flattened view of the target stack in current_target,
2355 so its to_sections pointer might also need updating. */
2356 if (current_target.to_sections == old_value)
2357 {
2358 current_target.to_sections = target->to_sections;
2359 current_target.to_sections_end = target->to_sections_end;
2360 }
2361 }
2362
2363 return old_count;
2364
2365 }
2366
2367 /* Remove all target sections taken from ABFD.
2368
2369 Scan the current target stack for targets whose section tables
2370 refer to sections from BFD, and remove those sections. We use this
2371 when we notice that the inferior has unloaded a shared object, for
2372 example. */
2373 void
2374 remove_target_sections (bfd *abfd)
2375 {
2376 struct target_ops **t;
2377
2378 for (t = target_structs; t < target_structs + target_struct_size; t++)
2379 {
2380 struct section_table *src, *dest;
2381
2382 dest = (*t)->to_sections;
2383 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2384 if (src->bfd != abfd)
2385 {
2386 /* Keep this section. */
2387 if (dest < src) *dest = *src;
2388 dest++;
2389 }
2390
2391 /* If we've dropped any sections, resize the section table. */
2392 if (dest < src)
2393 target_resize_to_sections (*t, dest - src);
2394 }
2395 }
2396
2397
2398
2399
2400 /* Find a single runnable target in the stack and return it. If for
2401 some reason there is more than one, return NULL. */
2402
2403 struct target_ops *
2404 find_run_target (void)
2405 {
2406 struct target_ops **t;
2407 struct target_ops *runable = NULL;
2408 int count;
2409
2410 count = 0;
2411
2412 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2413 {
2414 if ((*t)->to_can_run && target_can_run (*t))
2415 {
2416 runable = *t;
2417 ++count;
2418 }
2419 }
2420
2421 return (count == 1 ? runable : NULL);
2422 }
2423
2424 /* Find a single core_stratum target in the list of targets and return it.
2425 If for some reason there is more than one, return NULL. */
2426
2427 struct target_ops *
2428 find_core_target (void)
2429 {
2430 struct target_ops **t;
2431 struct target_ops *runable = NULL;
2432 int count;
2433
2434 count = 0;
2435
2436 for (t = target_structs; t < target_structs + target_struct_size;
2437 ++t)
2438 {
2439 if ((*t)->to_stratum == core_stratum)
2440 {
2441 runable = *t;
2442 ++count;
2443 }
2444 }
2445
2446 return (count == 1 ? runable : NULL);
2447 }
2448
2449 /*
2450 * Find the next target down the stack from the specified target.
2451 */
2452
2453 struct target_ops *
2454 find_target_beneath (struct target_ops *t)
2455 {
2456 return t->beneath;
2457 }
2458
2459 \f
2460 /* The inferior process has died. Long live the inferior! */
2461
2462 void
2463 generic_mourn_inferior (void)
2464 {
2465 ptid_t ptid;
2466
2467 ptid = inferior_ptid;
2468 inferior_ptid = null_ptid;
2469
2470 if (!ptid_equal (ptid, null_ptid))
2471 {
2472 int pid = ptid_get_pid (ptid);
2473 delete_inferior (pid);
2474 }
2475
2476 breakpoint_init_inferior (inf_exited);
2477 registers_changed ();
2478
2479 reopen_exec_file ();
2480 reinit_frame_cache ();
2481
2482 if (deprecated_detach_hook)
2483 deprecated_detach_hook ();
2484 }
2485 \f
2486 /* Helper function for child_wait and the derivatives of child_wait.
2487 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2488 translation of that in OURSTATUS. */
2489 void
2490 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2491 {
2492 if (WIFEXITED (hoststatus))
2493 {
2494 ourstatus->kind = TARGET_WAITKIND_EXITED;
2495 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2496 }
2497 else if (!WIFSTOPPED (hoststatus))
2498 {
2499 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2500 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2501 }
2502 else
2503 {
2504 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2505 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2506 }
2507 }
2508 \f
2509 /* Convert a normal process ID to a string. Returns the string in a
2510 static buffer. */
2511
2512 char *
2513 normal_pid_to_str (ptid_t ptid)
2514 {
2515 static char buf[32];
2516
2517 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2518 return buf;
2519 }
2520
2521 static char *
2522 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2523 {
2524 return normal_pid_to_str (ptid);
2525 }
2526
2527 /* Error-catcher for target_find_memory_regions */
2528 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2529 {
2530 error (_("No target."));
2531 return 0;
2532 }
2533
2534 /* Error-catcher for target_make_corefile_notes */
2535 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2536 {
2537 error (_("No target."));
2538 return NULL;
2539 }
2540
2541 /* Set up the handful of non-empty slots needed by the dummy target
2542 vector. */
2543
2544 static void
2545 init_dummy_target (void)
2546 {
2547 dummy_target.to_shortname = "None";
2548 dummy_target.to_longname = "None";
2549 dummy_target.to_doc = "";
2550 dummy_target.to_attach = find_default_attach;
2551 dummy_target.to_detach =
2552 (void (*)(struct target_ops *, char *, int))target_ignore;
2553 dummy_target.to_create_inferior = find_default_create_inferior;
2554 dummy_target.to_can_async_p = find_default_can_async_p;
2555 dummy_target.to_is_async_p = find_default_is_async_p;
2556 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2557 dummy_target.to_pid_to_str = dummy_pid_to_str;
2558 dummy_target.to_stratum = dummy_stratum;
2559 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2560 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2561 dummy_target.to_xfer_partial = default_xfer_partial;
2562 dummy_target.to_magic = OPS_MAGIC;
2563 }
2564 \f
2565 static void
2566 debug_to_open (char *args, int from_tty)
2567 {
2568 debug_target.to_open (args, from_tty);
2569
2570 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2571 }
2572
2573 void
2574 target_close (struct target_ops *targ, int quitting)
2575 {
2576 if (targ->to_xclose != NULL)
2577 targ->to_xclose (targ, quitting);
2578 else if (targ->to_close != NULL)
2579 targ->to_close (quitting);
2580
2581 if (targetdebug)
2582 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2583 }
2584
2585 void
2586 target_attach (char *args, int from_tty)
2587 {
2588 struct target_ops *t;
2589 for (t = current_target.beneath; t != NULL; t = t->beneath)
2590 {
2591 if (t->to_attach != NULL)
2592 {
2593 t->to_attach (t, args, from_tty);
2594 if (targetdebug)
2595 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2596 args, from_tty);
2597 return;
2598 }
2599 }
2600
2601 internal_error (__FILE__, __LINE__,
2602 "could not find a target to attach");
2603 }
2604
2605 int
2606 target_thread_alive (ptid_t ptid)
2607 {
2608 struct target_ops *t;
2609 for (t = current_target.beneath; t != NULL; t = t->beneath)
2610 {
2611 if (t->to_thread_alive != NULL)
2612 {
2613 int retval;
2614
2615 retval = t->to_thread_alive (t, ptid);
2616 if (targetdebug)
2617 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2618 PIDGET (ptid), retval);
2619
2620 return retval;
2621 }
2622 }
2623
2624 return 0;
2625 }
2626
2627 void
2628 target_find_new_threads (void)
2629 {
2630 struct target_ops *t;
2631 for (t = current_target.beneath; t != NULL; t = t->beneath)
2632 {
2633 if (t->to_find_new_threads != NULL)
2634 {
2635 t->to_find_new_threads (t);
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2638
2639 return;
2640 }
2641 }
2642 }
2643
2644 static void
2645 debug_to_post_attach (int pid)
2646 {
2647 debug_target.to_post_attach (pid);
2648
2649 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2650 }
2651
2652 /* Return a pretty printed form of target_waitstatus.
2653 Space for the result is malloc'd, caller must free. */
2654
2655 char *
2656 target_waitstatus_to_string (const struct target_waitstatus *ws)
2657 {
2658 const char *kind_str = "status->kind = ";
2659
2660 switch (ws->kind)
2661 {
2662 case TARGET_WAITKIND_EXITED:
2663 return xstrprintf ("%sexited, status = %d",
2664 kind_str, ws->value.integer);
2665 case TARGET_WAITKIND_STOPPED:
2666 return xstrprintf ("%sstopped, signal = %s",
2667 kind_str, target_signal_to_name (ws->value.sig));
2668 case TARGET_WAITKIND_SIGNALLED:
2669 return xstrprintf ("%ssignalled, signal = %s",
2670 kind_str, target_signal_to_name (ws->value.sig));
2671 case TARGET_WAITKIND_LOADED:
2672 return xstrprintf ("%sloaded", kind_str);
2673 case TARGET_WAITKIND_FORKED:
2674 return xstrprintf ("%sforked", kind_str);
2675 case TARGET_WAITKIND_VFORKED:
2676 return xstrprintf ("%svforked", kind_str);
2677 case TARGET_WAITKIND_EXECD:
2678 return xstrprintf ("%sexecd", kind_str);
2679 case TARGET_WAITKIND_SYSCALL_ENTRY:
2680 return xstrprintf ("%ssyscall-entry", kind_str);
2681 case TARGET_WAITKIND_SYSCALL_RETURN:
2682 return xstrprintf ("%ssyscall-return", kind_str);
2683 case TARGET_WAITKIND_SPURIOUS:
2684 return xstrprintf ("%sspurious", kind_str);
2685 case TARGET_WAITKIND_IGNORE:
2686 return xstrprintf ("%signore", kind_str);
2687 case TARGET_WAITKIND_NO_HISTORY:
2688 return xstrprintf ("%sno-history", kind_str);
2689 default:
2690 return xstrprintf ("%sunknown???", kind_str);
2691 }
2692 }
2693
2694 static void
2695 debug_print_register (const char * func,
2696 struct regcache *regcache, int regno)
2697 {
2698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2699 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2700 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2701 && gdbarch_register_name (gdbarch, regno) != NULL
2702 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2703 fprintf_unfiltered (gdb_stdlog, "(%s)",
2704 gdbarch_register_name (gdbarch, regno));
2705 else
2706 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2707 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2708 {
2709 int i, size = register_size (gdbarch, regno);
2710 unsigned char buf[MAX_REGISTER_SIZE];
2711 regcache_raw_collect (regcache, regno, buf);
2712 fprintf_unfiltered (gdb_stdlog, " = ");
2713 for (i = 0; i < size; i++)
2714 {
2715 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2716 }
2717 if (size <= sizeof (LONGEST))
2718 {
2719 ULONGEST val = extract_unsigned_integer (buf, size);
2720 fprintf_unfiltered (gdb_stdlog, " %s %s",
2721 core_addr_to_string_nz (val), plongest (val));
2722 }
2723 }
2724 fprintf_unfiltered (gdb_stdlog, "\n");
2725 }
2726
2727 void
2728 target_fetch_registers (struct regcache *regcache, int regno)
2729 {
2730 struct target_ops *t;
2731 for (t = current_target.beneath; t != NULL; t = t->beneath)
2732 {
2733 if (t->to_fetch_registers != NULL)
2734 {
2735 t->to_fetch_registers (t, regcache, regno);
2736 if (targetdebug)
2737 debug_print_register ("target_fetch_registers", regcache, regno);
2738 return;
2739 }
2740 }
2741 }
2742
2743 void
2744 target_store_registers (struct regcache *regcache, int regno)
2745 {
2746
2747 struct target_ops *t;
2748 for (t = current_target.beneath; t != NULL; t = t->beneath)
2749 {
2750 if (t->to_store_registers != NULL)
2751 {
2752 t->to_store_registers (t, regcache, regno);
2753 if (targetdebug)
2754 {
2755 debug_print_register ("target_store_registers", regcache, regno);
2756 }
2757 return;
2758 }
2759 }
2760
2761 noprocess ();
2762 }
2763
2764 static void
2765 debug_to_prepare_to_store (struct regcache *regcache)
2766 {
2767 debug_target.to_prepare_to_store (regcache);
2768
2769 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2770 }
2771
2772 static int
2773 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2774 int write, struct mem_attrib *attrib,
2775 struct target_ops *target)
2776 {
2777 int retval;
2778
2779 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2780 attrib, target);
2781
2782 fprintf_unfiltered (gdb_stdlog,
2783 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2784 paddress (memaddr), len, write ? "write" : "read",
2785 retval);
2786
2787 if (retval > 0)
2788 {
2789 int i;
2790
2791 fputs_unfiltered (", bytes =", gdb_stdlog);
2792 for (i = 0; i < retval; i++)
2793 {
2794 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2795 {
2796 if (targetdebug < 2 && i > 0)
2797 {
2798 fprintf_unfiltered (gdb_stdlog, " ...");
2799 break;
2800 }
2801 fprintf_unfiltered (gdb_stdlog, "\n");
2802 }
2803
2804 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2805 }
2806 }
2807
2808 fputc_unfiltered ('\n', gdb_stdlog);
2809
2810 return retval;
2811 }
2812
2813 static void
2814 debug_to_files_info (struct target_ops *target)
2815 {
2816 debug_target.to_files_info (target);
2817
2818 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2819 }
2820
2821 static int
2822 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2823 {
2824 int retval;
2825
2826 retval = debug_target.to_insert_breakpoint (bp_tgt);
2827
2828 fprintf_unfiltered (gdb_stdlog,
2829 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2830 (unsigned long) bp_tgt->placed_address,
2831 (unsigned long) retval);
2832 return retval;
2833 }
2834
2835 static int
2836 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2837 {
2838 int retval;
2839
2840 retval = debug_target.to_remove_breakpoint (bp_tgt);
2841
2842 fprintf_unfiltered (gdb_stdlog,
2843 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2844 (unsigned long) bp_tgt->placed_address,
2845 (unsigned long) retval);
2846 return retval;
2847 }
2848
2849 static int
2850 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2851 {
2852 int retval;
2853
2854 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2855
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2858 (unsigned long) type,
2859 (unsigned long) cnt,
2860 (unsigned long) from_tty,
2861 (unsigned long) retval);
2862 return retval;
2863 }
2864
2865 static int
2866 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2867 {
2868 CORE_ADDR retval;
2869
2870 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2871
2872 fprintf_unfiltered (gdb_stdlog,
2873 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2874 (unsigned long) addr,
2875 (unsigned long) len,
2876 (unsigned long) retval);
2877 return retval;
2878 }
2879
2880 static int
2881 debug_to_stopped_by_watchpoint (void)
2882 {
2883 int retval;
2884
2885 retval = debug_target.to_stopped_by_watchpoint ();
2886
2887 fprintf_unfiltered (gdb_stdlog,
2888 "STOPPED_BY_WATCHPOINT () = %ld\n",
2889 (unsigned long) retval);
2890 return retval;
2891 }
2892
2893 static int
2894 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2895 {
2896 int retval;
2897
2898 retval = debug_target.to_stopped_data_address (target, addr);
2899
2900 fprintf_unfiltered (gdb_stdlog,
2901 "target_stopped_data_address ([0x%lx]) = %ld\n",
2902 (unsigned long)*addr,
2903 (unsigned long)retval);
2904 return retval;
2905 }
2906
2907 static int
2908 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2909 CORE_ADDR addr,
2910 CORE_ADDR start, int length)
2911 {
2912 int retval;
2913
2914 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2915 start, length);
2916
2917 fprintf_filtered (gdb_stdlog,
2918 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2919 (unsigned long) addr, (unsigned long) start, length,
2920 retval);
2921 return retval;
2922 }
2923
2924 static int
2925 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2926 {
2927 int retval;
2928
2929 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2930
2931 fprintf_unfiltered (gdb_stdlog,
2932 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2933 (unsigned long) bp_tgt->placed_address,
2934 (unsigned long) retval);
2935 return retval;
2936 }
2937
2938 static int
2939 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2940 {
2941 int retval;
2942
2943 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2944
2945 fprintf_unfiltered (gdb_stdlog,
2946 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2947 (unsigned long) bp_tgt->placed_address,
2948 (unsigned long) retval);
2949 return retval;
2950 }
2951
2952 static int
2953 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2954 {
2955 int retval;
2956
2957 retval = debug_target.to_insert_watchpoint (addr, len, type);
2958
2959 fprintf_unfiltered (gdb_stdlog,
2960 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2961 (unsigned long) addr, len, type, (unsigned long) retval);
2962 return retval;
2963 }
2964
2965 static int
2966 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2967 {
2968 int retval;
2969
2970 retval = debug_target.to_remove_watchpoint (addr, len, type);
2971
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2974 (unsigned long) addr, len, type, (unsigned long) retval);
2975 return retval;
2976 }
2977
2978 static void
2979 debug_to_terminal_init (void)
2980 {
2981 debug_target.to_terminal_init ();
2982
2983 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2984 }
2985
2986 static void
2987 debug_to_terminal_inferior (void)
2988 {
2989 debug_target.to_terminal_inferior ();
2990
2991 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2992 }
2993
2994 static void
2995 debug_to_terminal_ours_for_output (void)
2996 {
2997 debug_target.to_terminal_ours_for_output ();
2998
2999 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3000 }
3001
3002 static void
3003 debug_to_terminal_ours (void)
3004 {
3005 debug_target.to_terminal_ours ();
3006
3007 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3008 }
3009
3010 static void
3011 debug_to_terminal_save_ours (void)
3012 {
3013 debug_target.to_terminal_save_ours ();
3014
3015 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3016 }
3017
3018 static void
3019 debug_to_terminal_info (char *arg, int from_tty)
3020 {
3021 debug_target.to_terminal_info (arg, from_tty);
3022
3023 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3024 from_tty);
3025 }
3026
3027 static void
3028 debug_to_kill (void)
3029 {
3030 debug_target.to_kill ();
3031
3032 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
3033 }
3034
3035 static void
3036 debug_to_load (char *args, int from_tty)
3037 {
3038 debug_target.to_load (args, from_tty);
3039
3040 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3041 }
3042
3043 static int
3044 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3045 {
3046 int retval;
3047
3048 retval = debug_target.to_lookup_symbol (name, addrp);
3049
3050 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3051
3052 return retval;
3053 }
3054
3055 static void
3056 debug_to_post_startup_inferior (ptid_t ptid)
3057 {
3058 debug_target.to_post_startup_inferior (ptid);
3059
3060 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3061 PIDGET (ptid));
3062 }
3063
3064 static void
3065 debug_to_acknowledge_created_inferior (int pid)
3066 {
3067 debug_target.to_acknowledge_created_inferior (pid);
3068
3069 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3070 pid);
3071 }
3072
3073 static void
3074 debug_to_insert_fork_catchpoint (int pid)
3075 {
3076 debug_target.to_insert_fork_catchpoint (pid);
3077
3078 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3079 pid);
3080 }
3081
3082 static int
3083 debug_to_remove_fork_catchpoint (int pid)
3084 {
3085 int retval;
3086
3087 retval = debug_target.to_remove_fork_catchpoint (pid);
3088
3089 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3090 pid, retval);
3091
3092 return retval;
3093 }
3094
3095 static void
3096 debug_to_insert_vfork_catchpoint (int pid)
3097 {
3098 debug_target.to_insert_vfork_catchpoint (pid);
3099
3100 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3101 pid);
3102 }
3103
3104 static int
3105 debug_to_remove_vfork_catchpoint (int pid)
3106 {
3107 int retval;
3108
3109 retval = debug_target.to_remove_vfork_catchpoint (pid);
3110
3111 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3112 pid, retval);
3113
3114 return retval;
3115 }
3116
3117 static void
3118 debug_to_insert_exec_catchpoint (int pid)
3119 {
3120 debug_target.to_insert_exec_catchpoint (pid);
3121
3122 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3123 pid);
3124 }
3125
3126 static int
3127 debug_to_remove_exec_catchpoint (int pid)
3128 {
3129 int retval;
3130
3131 retval = debug_target.to_remove_exec_catchpoint (pid);
3132
3133 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3134 pid, retval);
3135
3136 return retval;
3137 }
3138
3139 static int
3140 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3141 {
3142 int has_exited;
3143
3144 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3145
3146 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3147 pid, wait_status, *exit_status, has_exited);
3148
3149 return has_exited;
3150 }
3151
3152 static int
3153 debug_to_can_run (void)
3154 {
3155 int retval;
3156
3157 retval = debug_target.to_can_run ();
3158
3159 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3160
3161 return retval;
3162 }
3163
3164 static void
3165 debug_to_notice_signals (ptid_t ptid)
3166 {
3167 debug_target.to_notice_signals (ptid);
3168
3169 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3170 PIDGET (ptid));
3171 }
3172
3173 static void
3174 debug_to_stop (ptid_t ptid)
3175 {
3176 debug_target.to_stop (ptid);
3177
3178 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3179 target_pid_to_str (ptid));
3180 }
3181
3182 static void
3183 debug_to_rcmd (char *command,
3184 struct ui_file *outbuf)
3185 {
3186 debug_target.to_rcmd (command, outbuf);
3187 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3188 }
3189
3190 static char *
3191 debug_to_pid_to_exec_file (int pid)
3192 {
3193 char *exec_file;
3194
3195 exec_file = debug_target.to_pid_to_exec_file (pid);
3196
3197 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3198 pid, exec_file);
3199
3200 return exec_file;
3201 }
3202
3203 static void
3204 setup_target_debug (void)
3205 {
3206 memcpy (&debug_target, &current_target, sizeof debug_target);
3207
3208 current_target.to_open = debug_to_open;
3209 current_target.to_post_attach = debug_to_post_attach;
3210 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3211 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3212 current_target.to_files_info = debug_to_files_info;
3213 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3214 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3215 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3216 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3217 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3218 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3219 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3220 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3221 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3222 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3223 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3224 current_target.to_terminal_init = debug_to_terminal_init;
3225 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3226 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3227 current_target.to_terminal_ours = debug_to_terminal_ours;
3228 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3229 current_target.to_terminal_info = debug_to_terminal_info;
3230 current_target.to_kill = debug_to_kill;
3231 current_target.to_load = debug_to_load;
3232 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3233 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3234 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3235 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3236 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3237 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3238 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3239 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3240 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3241 current_target.to_has_exited = debug_to_has_exited;
3242 current_target.to_can_run = debug_to_can_run;
3243 current_target.to_notice_signals = debug_to_notice_signals;
3244 current_target.to_stop = debug_to_stop;
3245 current_target.to_rcmd = debug_to_rcmd;
3246 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3247 }
3248 \f
3249
3250 static char targ_desc[] =
3251 "Names of targets and files being debugged.\n\
3252 Shows the entire stack of targets currently in use (including the exec-file,\n\
3253 core-file, and process, if any), as well as the symbol file name.";
3254
3255 static void
3256 do_monitor_command (char *cmd,
3257 int from_tty)
3258 {
3259 if ((current_target.to_rcmd
3260 == (void (*) (char *, struct ui_file *)) tcomplain)
3261 || (current_target.to_rcmd == debug_to_rcmd
3262 && (debug_target.to_rcmd
3263 == (void (*) (char *, struct ui_file *)) tcomplain)))
3264 error (_("\"monitor\" command not supported by this target."));
3265 target_rcmd (cmd, gdb_stdtarg);
3266 }
3267
3268 /* Print the name of each layers of our target stack. */
3269
3270 static void
3271 maintenance_print_target_stack (char *cmd, int from_tty)
3272 {
3273 struct target_ops *t;
3274
3275 printf_filtered (_("The current target stack is:\n"));
3276
3277 for (t = target_stack; t != NULL; t = t->beneath)
3278 {
3279 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3280 }
3281 }
3282
3283 /* Controls if async mode is permitted. */
3284 int target_async_permitted = 0;
3285
3286 /* The set command writes to this variable. If the inferior is
3287 executing, linux_nat_async_permitted is *not* updated. */
3288 static int target_async_permitted_1 = 0;
3289
3290 static void
3291 set_maintenance_target_async_permitted (char *args, int from_tty,
3292 struct cmd_list_element *c)
3293 {
3294 if (target_has_execution)
3295 {
3296 target_async_permitted_1 = target_async_permitted;
3297 error (_("Cannot change this setting while the inferior is running."));
3298 }
3299
3300 target_async_permitted = target_async_permitted_1;
3301 }
3302
3303 static void
3304 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3305 struct cmd_list_element *c,
3306 const char *value)
3307 {
3308 fprintf_filtered (file, _("\
3309 Controlling the inferior in asynchronous mode is %s.\n"), value);
3310 }
3311
3312 void
3313 initialize_targets (void)
3314 {
3315 init_dummy_target ();
3316 push_target (&dummy_target);
3317
3318 add_info ("target", target_info, targ_desc);
3319 add_info ("files", target_info, targ_desc);
3320
3321 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3322 Set target debugging."), _("\
3323 Show target debugging."), _("\
3324 When non-zero, target debugging is enabled. Higher numbers are more\n\
3325 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3326 command."),
3327 NULL,
3328 show_targetdebug,
3329 &setdebuglist, &showdebuglist);
3330
3331 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3332 &trust_readonly, _("\
3333 Set mode for reading from readonly sections."), _("\
3334 Show mode for reading from readonly sections."), _("\
3335 When this mode is on, memory reads from readonly sections (such as .text)\n\
3336 will be read from the object file instead of from the target. This will\n\
3337 result in significant performance improvement for remote targets."),
3338 NULL,
3339 show_trust_readonly,
3340 &setlist, &showlist);
3341
3342 add_com ("monitor", class_obscure, do_monitor_command,
3343 _("Send a command to the remote monitor (remote targets only)."));
3344
3345 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3346 _("Print the name of each layer of the internal target stack."),
3347 &maintenanceprintlist);
3348
3349 add_setshow_boolean_cmd ("target-async", no_class,
3350 &target_async_permitted_1, _("\
3351 Set whether gdb controls the inferior in asynchronous mode."), _("\
3352 Show whether gdb controls the inferior in asynchronous mode."), _("\
3353 Tells gdb whether to control the inferior in asynchronous mode."),
3354 set_maintenance_target_async_permitted,
3355 show_maintenance_target_async_permitted,
3356 &setlist,
3357 &showlist);
3358
3359 target_dcache = dcache_init ();
3360 }
This page took 0.096418 seconds and 4 git commands to generate.