Fix gdbserver/MI testing regression
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Always delete the current UI's input file handler, regardless of
490 terminal_state, because terminal_state is only valid for the main
491 UI. */
492 delete_file_handler (ui->input_fd);
493
494 /* Since we always run the inferior in the main console (unless "set
495 inferior-tty" is in effect), when some UI other than the main one
496 calls target_terminal_inferior/target_terminal_inferior, then we
497 only register/unregister the UI's input from the event loop, but
498 leave the main UI's terminal settings as is. */
499 if (ui != main_ui)
500 return;
501
502 if (terminal_state == terminal_is_inferior)
503 return;
504
505 /* If GDB is resuming the inferior in the foreground, install
506 inferior's terminal modes. */
507 (*current_target.to_terminal_inferior) (&current_target);
508 terminal_state = terminal_is_inferior;
509
510 /* If the user hit C-c before, pretend that it was hit right
511 here. */
512 if (check_quit_flag ())
513 target_pass_ctrlc ();
514 }
515
516 /* See target.h. */
517
518 void
519 target_terminal_ours (void)
520 {
521 struct ui *ui = current_ui;
522
523 /* Always add the current UI's input file handler, regardless of
524 terminal_state, because terminal_state is only valid for the main
525 UI. */
526 add_file_handler (ui->input_fd, stdin_event_handler, ui);
527
528 /* See target_terminal_inferior. */
529 if (ui != main_ui)
530 return;
531
532 if (terminal_state == terminal_is_ours)
533 return;
534
535 (*current_target.to_terminal_ours) (&current_target);
536 terminal_state = terminal_is_ours;
537 }
538
539 /* See target.h. */
540
541 void
542 target_terminal_ours_for_output (void)
543 {
544 struct ui *ui = current_ui;
545
546 /* See target_terminal_inferior. */
547 if (ui != main_ui)
548 return;
549
550 if (terminal_state != terminal_is_inferior)
551 return;
552 (*current_target.to_terminal_ours_for_output) (&current_target);
553 terminal_state = terminal_is_ours_for_output;
554 }
555
556 /* See target.h. */
557
558 int
559 target_supports_terminal_ours (void)
560 {
561 struct target_ops *t;
562
563 for (t = current_target.beneath; t != NULL; t = t->beneath)
564 {
565 if (t->to_terminal_ours != delegate_terminal_ours
566 && t->to_terminal_ours != tdefault_terminal_ours)
567 return 1;
568 }
569
570 return 0;
571 }
572
573 /* Restore the terminal to its previous state (helper for
574 make_cleanup_restore_target_terminal). */
575
576 static void
577 cleanup_restore_target_terminal (void *arg)
578 {
579 enum terminal_state *previous_state = (enum terminal_state *) arg;
580
581 switch (*previous_state)
582 {
583 case terminal_is_ours:
584 target_terminal_ours ();
585 break;
586 case terminal_is_ours_for_output:
587 target_terminal_ours_for_output ();
588 break;
589 case terminal_is_inferior:
590 target_terminal_inferior ();
591 break;
592 }
593 }
594
595 /* See target.h. */
596
597 struct cleanup *
598 make_cleanup_restore_target_terminal (void)
599 {
600 enum terminal_state *ts = XNEW (enum terminal_state);
601
602 *ts = terminal_state;
603
604 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
605 }
606
607 static void
608 tcomplain (void)
609 {
610 error (_("You can't do that when your target is `%s'"),
611 current_target.to_shortname);
612 }
613
614 void
615 noprocess (void)
616 {
617 error (_("You can't do that without a process to debug."));
618 }
619
620 static void
621 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
622 {
623 printf_unfiltered (_("No saved terminal information.\n"));
624 }
625
626 /* A default implementation for the to_get_ada_task_ptid target method.
627
628 This function builds the PTID by using both LWP and TID as part of
629 the PTID lwp and tid elements. The pid used is the pid of the
630 inferior_ptid. */
631
632 static ptid_t
633 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
634 {
635 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
636 }
637
638 static enum exec_direction_kind
639 default_execution_direction (struct target_ops *self)
640 {
641 if (!target_can_execute_reverse)
642 return EXEC_FORWARD;
643 else if (!target_can_async_p ())
644 return EXEC_FORWARD;
645 else
646 gdb_assert_not_reached ("\
647 to_execution_direction must be implemented for reverse async");
648 }
649
650 /* Go through the target stack from top to bottom, copying over zero
651 entries in current_target, then filling in still empty entries. In
652 effect, we are doing class inheritance through the pushed target
653 vectors.
654
655 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
656 is currently implemented, is that it discards any knowledge of
657 which target an inherited method originally belonged to.
658 Consequently, new new target methods should instead explicitly and
659 locally search the target stack for the target that can handle the
660 request. */
661
662 static void
663 update_current_target (void)
664 {
665 struct target_ops *t;
666
667 /* First, reset current's contents. */
668 memset (&current_target, 0, sizeof (current_target));
669
670 /* Install the delegators. */
671 install_delegators (&current_target);
672
673 current_target.to_stratum = target_stack->to_stratum;
674
675 #define INHERIT(FIELD, TARGET) \
676 if (!current_target.FIELD) \
677 current_target.FIELD = (TARGET)->FIELD
678
679 /* Do not add any new INHERITs here. Instead, use the delegation
680 mechanism provided by make-target-delegates. */
681 for (t = target_stack; t; t = t->beneath)
682 {
683 INHERIT (to_shortname, t);
684 INHERIT (to_longname, t);
685 INHERIT (to_attach_no_wait, t);
686 INHERIT (to_have_steppable_watchpoint, t);
687 INHERIT (to_have_continuable_watchpoint, t);
688 INHERIT (to_has_thread_control, t);
689 }
690 #undef INHERIT
691
692 /* Finally, position the target-stack beneath the squashed
693 "current_target". That way code looking for a non-inherited
694 target method can quickly and simply find it. */
695 current_target.beneath = target_stack;
696
697 if (targetdebug)
698 setup_target_debug ();
699 }
700
701 /* Push a new target type into the stack of the existing target accessors,
702 possibly superseding some of the existing accessors.
703
704 Rather than allow an empty stack, we always have the dummy target at
705 the bottom stratum, so we can call the function vectors without
706 checking them. */
707
708 void
709 push_target (struct target_ops *t)
710 {
711 struct target_ops **cur;
712
713 /* Check magic number. If wrong, it probably means someone changed
714 the struct definition, but not all the places that initialize one. */
715 if (t->to_magic != OPS_MAGIC)
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "Magic number of %s target struct wrong\n",
719 t->to_shortname);
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723
724 /* Find the proper stratum to install this target in. */
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
726 {
727 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
728 break;
729 }
730
731 /* If there's already targets at this stratum, remove them. */
732 /* FIXME: cagney/2003-10-15: I think this should be popping all
733 targets to CUR, and not just those at this stratum level. */
734 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
735 {
736 /* There's already something at this stratum level. Close it,
737 and un-hook it from the stack. */
738 struct target_ops *tmp = (*cur);
739
740 (*cur) = (*cur)->beneath;
741 tmp->beneath = NULL;
742 target_close (tmp);
743 }
744
745 /* We have removed all targets in our stratum, now add the new one. */
746 t->beneath = (*cur);
747 (*cur) = t;
748
749 update_current_target ();
750 }
751
752 /* Remove a target_ops vector from the stack, wherever it may be.
753 Return how many times it was removed (0 or 1). */
754
755 int
756 unpush_target (struct target_ops *t)
757 {
758 struct target_ops **cur;
759 struct target_ops *tmp;
760
761 if (t->to_stratum == dummy_stratum)
762 internal_error (__FILE__, __LINE__,
763 _("Attempt to unpush the dummy target"));
764
765 /* Look for the specified target. Note that we assume that a target
766 can only occur once in the target stack. */
767
768 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
769 {
770 if ((*cur) == t)
771 break;
772 }
773
774 /* If we don't find target_ops, quit. Only open targets should be
775 closed. */
776 if ((*cur) == NULL)
777 return 0;
778
779 /* Unchain the target. */
780 tmp = (*cur);
781 (*cur) = (*cur)->beneath;
782 tmp->beneath = NULL;
783
784 update_current_target ();
785
786 /* Finally close the target. Note we do this after unchaining, so
787 any target method calls from within the target_close
788 implementation don't end up in T anymore. */
789 target_close (t);
790
791 return 1;
792 }
793
794 /* Unpush TARGET and assert that it worked. */
795
796 static void
797 unpush_target_and_assert (struct target_ops *target)
798 {
799 if (!unpush_target (target))
800 {
801 fprintf_unfiltered (gdb_stderr,
802 "pop_all_targets couldn't find target %s\n",
803 target->to_shortname);
804 internal_error (__FILE__, __LINE__,
805 _("failed internal consistency check"));
806 }
807 }
808
809 void
810 pop_all_targets_above (enum strata above_stratum)
811 {
812 while ((int) (current_target.to_stratum) > (int) above_stratum)
813 unpush_target_and_assert (target_stack);
814 }
815
816 /* See target.h. */
817
818 void
819 pop_all_targets_at_and_above (enum strata stratum)
820 {
821 while ((int) (current_target.to_stratum) >= (int) stratum)
822 unpush_target_and_assert (target_stack);
823 }
824
825 void
826 pop_all_targets (void)
827 {
828 pop_all_targets_above (dummy_stratum);
829 }
830
831 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
832
833 int
834 target_is_pushed (struct target_ops *t)
835 {
836 struct target_ops *cur;
837
838 /* Check magic number. If wrong, it probably means someone changed
839 the struct definition, but not all the places that initialize one. */
840 if (t->to_magic != OPS_MAGIC)
841 {
842 fprintf_unfiltered (gdb_stderr,
843 "Magic number of %s target struct wrong\n",
844 t->to_shortname);
845 internal_error (__FILE__, __LINE__,
846 _("failed internal consistency check"));
847 }
848
849 for (cur = target_stack; cur != NULL; cur = cur->beneath)
850 if (cur == t)
851 return 1;
852
853 return 0;
854 }
855
856 /* Default implementation of to_get_thread_local_address. */
857
858 static void
859 generic_tls_error (void)
860 {
861 throw_error (TLS_GENERIC_ERROR,
862 _("Cannot find thread-local variables on this target"));
863 }
864
865 /* Using the objfile specified in OBJFILE, find the address for the
866 current thread's thread-local storage with offset OFFSET. */
867 CORE_ADDR
868 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
869 {
870 volatile CORE_ADDR addr = 0;
871 struct target_ops *target = &current_target;
872
873 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
874 {
875 ptid_t ptid = inferior_ptid;
876
877 TRY
878 {
879 CORE_ADDR lm_addr;
880
881 /* Fetch the load module address for this objfile. */
882 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
883 objfile);
884
885 addr = target->to_get_thread_local_address (target, ptid,
886 lm_addr, offset);
887 }
888 /* If an error occurred, print TLS related messages here. Otherwise,
889 throw the error to some higher catcher. */
890 CATCH (ex, RETURN_MASK_ALL)
891 {
892 int objfile_is_library = (objfile->flags & OBJF_SHARED);
893
894 switch (ex.error)
895 {
896 case TLS_NO_LIBRARY_SUPPORT_ERROR:
897 error (_("Cannot find thread-local variables "
898 "in this thread library."));
899 break;
900 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
901 if (objfile_is_library)
902 error (_("Cannot find shared library `%s' in dynamic"
903 " linker's load module list"), objfile_name (objfile));
904 else
905 error (_("Cannot find executable file `%s' in dynamic"
906 " linker's load module list"), objfile_name (objfile));
907 break;
908 case TLS_NOT_ALLOCATED_YET_ERROR:
909 if (objfile_is_library)
910 error (_("The inferior has not yet allocated storage for"
911 " thread-local variables in\n"
912 "the shared library `%s'\n"
913 "for %s"),
914 objfile_name (objfile), target_pid_to_str (ptid));
915 else
916 error (_("The inferior has not yet allocated storage for"
917 " thread-local variables in\n"
918 "the executable `%s'\n"
919 "for %s"),
920 objfile_name (objfile), target_pid_to_str (ptid));
921 break;
922 case TLS_GENERIC_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find thread-local storage for %s, "
925 "shared library %s:\n%s"),
926 target_pid_to_str (ptid),
927 objfile_name (objfile), ex.message);
928 else
929 error (_("Cannot find thread-local storage for %s, "
930 "executable file %s:\n%s"),
931 target_pid_to_str (ptid),
932 objfile_name (objfile), ex.message);
933 break;
934 default:
935 throw_exception (ex);
936 break;
937 }
938 }
939 END_CATCH
940 }
941 /* It wouldn't be wrong here to try a gdbarch method, too; finding
942 TLS is an ABI-specific thing. But we don't do that yet. */
943 else
944 error (_("Cannot find thread-local variables on this target"));
945
946 return addr;
947 }
948
949 const char *
950 target_xfer_status_to_string (enum target_xfer_status status)
951 {
952 #define CASE(X) case X: return #X
953 switch (status)
954 {
955 CASE(TARGET_XFER_E_IO);
956 CASE(TARGET_XFER_UNAVAILABLE);
957 default:
958 return "<unknown>";
959 }
960 #undef CASE
961 };
962
963
964 #undef MIN
965 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
966
967 /* target_read_string -- read a null terminated string, up to LEN bytes,
968 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
969 Set *STRING to a pointer to malloc'd memory containing the data; the caller
970 is responsible for freeing it. Return the number of bytes successfully
971 read. */
972
973 int
974 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
975 {
976 int tlen, offset, i;
977 gdb_byte buf[4];
978 int errcode = 0;
979 char *buffer;
980 int buffer_allocated;
981 char *bufptr;
982 unsigned int nbytes_read = 0;
983
984 gdb_assert (string);
985
986 /* Small for testing. */
987 buffer_allocated = 4;
988 buffer = (char *) xmalloc (buffer_allocated);
989 bufptr = buffer;
990
991 while (len > 0)
992 {
993 tlen = MIN (len, 4 - (memaddr & 3));
994 offset = memaddr & 3;
995
996 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
997 if (errcode != 0)
998 {
999 /* The transfer request might have crossed the boundary to an
1000 unallocated region of memory. Retry the transfer, requesting
1001 a single byte. */
1002 tlen = 1;
1003 offset = 0;
1004 errcode = target_read_memory (memaddr, buf, 1);
1005 if (errcode != 0)
1006 goto done;
1007 }
1008
1009 if (bufptr - buffer + tlen > buffer_allocated)
1010 {
1011 unsigned int bytes;
1012
1013 bytes = bufptr - buffer;
1014 buffer_allocated *= 2;
1015 buffer = (char *) xrealloc (buffer, buffer_allocated);
1016 bufptr = buffer + bytes;
1017 }
1018
1019 for (i = 0; i < tlen; i++)
1020 {
1021 *bufptr++ = buf[i + offset];
1022 if (buf[i + offset] == '\000')
1023 {
1024 nbytes_read += i + 1;
1025 goto done;
1026 }
1027 }
1028
1029 memaddr += tlen;
1030 len -= tlen;
1031 nbytes_read += tlen;
1032 }
1033 done:
1034 *string = buffer;
1035 if (errnop != NULL)
1036 *errnop = errcode;
1037 return nbytes_read;
1038 }
1039
1040 struct target_section_table *
1041 target_get_section_table (struct target_ops *target)
1042 {
1043 return (*target->to_get_section_table) (target);
1044 }
1045
1046 /* Find a section containing ADDR. */
1047
1048 struct target_section *
1049 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1050 {
1051 struct target_section_table *table = target_get_section_table (target);
1052 struct target_section *secp;
1053
1054 if (table == NULL)
1055 return NULL;
1056
1057 for (secp = table->sections; secp < table->sections_end; secp++)
1058 {
1059 if (addr >= secp->addr && addr < secp->endaddr)
1060 return secp;
1061 }
1062 return NULL;
1063 }
1064
1065
1066 /* Helper for the memory xfer routines. Checks the attributes of the
1067 memory region of MEMADDR against the read or write being attempted.
1068 If the access is permitted returns true, otherwise returns false.
1069 REGION_P is an optional output parameter. If not-NULL, it is
1070 filled with a pointer to the memory region of MEMADDR. REG_LEN
1071 returns LEN trimmed to the end of the region. This is how much the
1072 caller can continue requesting, if the access is permitted. A
1073 single xfer request must not straddle memory region boundaries. */
1074
1075 static int
1076 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1077 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1078 struct mem_region **region_p)
1079 {
1080 struct mem_region *region;
1081
1082 region = lookup_mem_region (memaddr);
1083
1084 if (region_p != NULL)
1085 *region_p = region;
1086
1087 switch (region->attrib.mode)
1088 {
1089 case MEM_RO:
1090 if (writebuf != NULL)
1091 return 0;
1092 break;
1093
1094 case MEM_WO:
1095 if (readbuf != NULL)
1096 return 0;
1097 break;
1098
1099 case MEM_FLASH:
1100 /* We only support writing to flash during "load" for now. */
1101 if (writebuf != NULL)
1102 error (_("Writing to flash memory forbidden in this context"));
1103 break;
1104
1105 case MEM_NONE:
1106 return 0;
1107 }
1108
1109 /* region->hi == 0 means there's no upper bound. */
1110 if (memaddr + len < region->hi || region->hi == 0)
1111 *reg_len = len;
1112 else
1113 *reg_len = region->hi - memaddr;
1114
1115 return 1;
1116 }
1117
1118 /* Read memory from more than one valid target. A core file, for
1119 instance, could have some of memory but delegate other bits to
1120 the target below it. So, we must manually try all targets. */
1121
1122 enum target_xfer_status
1123 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1124 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1125 ULONGEST *xfered_len)
1126 {
1127 enum target_xfer_status res;
1128
1129 do
1130 {
1131 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1132 readbuf, writebuf, memaddr, len,
1133 xfered_len);
1134 if (res == TARGET_XFER_OK)
1135 break;
1136
1137 /* Stop if the target reports that the memory is not available. */
1138 if (res == TARGET_XFER_UNAVAILABLE)
1139 break;
1140
1141 /* We want to continue past core files to executables, but not
1142 past a running target's memory. */
1143 if (ops->to_has_all_memory (ops))
1144 break;
1145
1146 ops = ops->beneath;
1147 }
1148 while (ops != NULL);
1149
1150 /* The cache works at the raw memory level. Make sure the cache
1151 gets updated with raw contents no matter what kind of memory
1152 object was originally being written. Note we do write-through
1153 first, so that if it fails, we don't write to the cache contents
1154 that never made it to the target. */
1155 if (writebuf != NULL
1156 && !ptid_equal (inferior_ptid, null_ptid)
1157 && target_dcache_init_p ()
1158 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1159 {
1160 DCACHE *dcache = target_dcache_get ();
1161
1162 /* Note that writing to an area of memory which wasn't present
1163 in the cache doesn't cause it to be loaded in. */
1164 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1165 }
1166
1167 return res;
1168 }
1169
1170 /* Perform a partial memory transfer.
1171 For docs see target.h, to_xfer_partial. */
1172
1173 static enum target_xfer_status
1174 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1175 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1176 ULONGEST len, ULONGEST *xfered_len)
1177 {
1178 enum target_xfer_status res;
1179 ULONGEST reg_len;
1180 struct mem_region *region;
1181 struct inferior *inf;
1182
1183 /* For accesses to unmapped overlay sections, read directly from
1184 files. Must do this first, as MEMADDR may need adjustment. */
1185 if (readbuf != NULL && overlay_debugging)
1186 {
1187 struct obj_section *section = find_pc_overlay (memaddr);
1188
1189 if (pc_in_unmapped_range (memaddr, section))
1190 {
1191 struct target_section_table *table
1192 = target_get_section_table (ops);
1193 const char *section_name = section->the_bfd_section->name;
1194
1195 memaddr = overlay_mapped_address (memaddr, section);
1196 return section_table_xfer_memory_partial (readbuf, writebuf,
1197 memaddr, len, xfered_len,
1198 table->sections,
1199 table->sections_end,
1200 section_name);
1201 }
1202 }
1203
1204 /* Try the executable files, if "trust-readonly-sections" is set. */
1205 if (readbuf != NULL && trust_readonly)
1206 {
1207 struct target_section *secp;
1208 struct target_section_table *table;
1209
1210 secp = target_section_by_addr (ops, memaddr);
1211 if (secp != NULL
1212 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1213 secp->the_bfd_section)
1214 & SEC_READONLY))
1215 {
1216 table = target_get_section_table (ops);
1217 return section_table_xfer_memory_partial (readbuf, writebuf,
1218 memaddr, len, xfered_len,
1219 table->sections,
1220 table->sections_end,
1221 NULL);
1222 }
1223 }
1224
1225 /* Try GDB's internal data cache. */
1226
1227 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1228 &region))
1229 return TARGET_XFER_E_IO;
1230
1231 if (!ptid_equal (inferior_ptid, null_ptid))
1232 inf = find_inferior_ptid (inferior_ptid);
1233 else
1234 inf = NULL;
1235
1236 if (inf != NULL
1237 && readbuf != NULL
1238 /* The dcache reads whole cache lines; that doesn't play well
1239 with reading from a trace buffer, because reading outside of
1240 the collected memory range fails. */
1241 && get_traceframe_number () == -1
1242 && (region->attrib.cache
1243 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1244 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1245 {
1246 DCACHE *dcache = target_dcache_get_or_init ();
1247
1248 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1249 reg_len, xfered_len);
1250 }
1251
1252 /* If none of those methods found the memory we wanted, fall back
1253 to a target partial transfer. Normally a single call to
1254 to_xfer_partial is enough; if it doesn't recognize an object
1255 it will call the to_xfer_partial of the next target down.
1256 But for memory this won't do. Memory is the only target
1257 object which can be read from more than one valid target.
1258 A core file, for instance, could have some of memory but
1259 delegate other bits to the target below it. So, we must
1260 manually try all targets. */
1261
1262 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1263 xfered_len);
1264
1265 /* If we still haven't got anything, return the last error. We
1266 give up. */
1267 return res;
1268 }
1269
1270 /* Perform a partial memory transfer. For docs see target.h,
1271 to_xfer_partial. */
1272
1273 static enum target_xfer_status
1274 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1275 gdb_byte *readbuf, const gdb_byte *writebuf,
1276 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1277 {
1278 enum target_xfer_status res;
1279
1280 /* Zero length requests are ok and require no work. */
1281 if (len == 0)
1282 return TARGET_XFER_EOF;
1283
1284 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1285 breakpoint insns, thus hiding out from higher layers whether
1286 there are software breakpoints inserted in the code stream. */
1287 if (readbuf != NULL)
1288 {
1289 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1290 xfered_len);
1291
1292 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1293 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1294 }
1295 else
1296 {
1297 gdb_byte *buf;
1298 struct cleanup *old_chain;
1299
1300 /* A large write request is likely to be partially satisfied
1301 by memory_xfer_partial_1. We will continually malloc
1302 and free a copy of the entire write request for breakpoint
1303 shadow handling even though we only end up writing a small
1304 subset of it. Cap writes to 4KB to mitigate this. */
1305 len = min (4096, len);
1306
1307 buf = (gdb_byte *) xmalloc (len);
1308 old_chain = make_cleanup (xfree, buf);
1309 memcpy (buf, writebuf, len);
1310
1311 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1312 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1313 xfered_len);
1314
1315 do_cleanups (old_chain);
1316 }
1317
1318 return res;
1319 }
1320
1321 static void
1322 restore_show_memory_breakpoints (void *arg)
1323 {
1324 show_memory_breakpoints = (uintptr_t) arg;
1325 }
1326
1327 struct cleanup *
1328 make_show_memory_breakpoints_cleanup (int show)
1329 {
1330 int current = show_memory_breakpoints;
1331
1332 show_memory_breakpoints = show;
1333 return make_cleanup (restore_show_memory_breakpoints,
1334 (void *) (uintptr_t) current);
1335 }
1336
1337 /* For docs see target.h, to_xfer_partial. */
1338
1339 enum target_xfer_status
1340 target_xfer_partial (struct target_ops *ops,
1341 enum target_object object, const char *annex,
1342 gdb_byte *readbuf, const gdb_byte *writebuf,
1343 ULONGEST offset, ULONGEST len,
1344 ULONGEST *xfered_len)
1345 {
1346 enum target_xfer_status retval;
1347
1348 gdb_assert (ops->to_xfer_partial != NULL);
1349
1350 /* Transfer is done when LEN is zero. */
1351 if (len == 0)
1352 return TARGET_XFER_EOF;
1353
1354 if (writebuf && !may_write_memory)
1355 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1356 core_addr_to_string_nz (offset), plongest (len));
1357
1358 *xfered_len = 0;
1359
1360 /* If this is a memory transfer, let the memory-specific code
1361 have a look at it instead. Memory transfers are more
1362 complicated. */
1363 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1364 || object == TARGET_OBJECT_CODE_MEMORY)
1365 retval = memory_xfer_partial (ops, object, readbuf,
1366 writebuf, offset, len, xfered_len);
1367 else if (object == TARGET_OBJECT_RAW_MEMORY)
1368 {
1369 /* Skip/avoid accessing the target if the memory region
1370 attributes block the access. Check this here instead of in
1371 raw_memory_xfer_partial as otherwise we'd end up checking
1372 this twice in the case of the memory_xfer_partial path is
1373 taken; once before checking the dcache, and another in the
1374 tail call to raw_memory_xfer_partial. */
1375 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1376 NULL))
1377 return TARGET_XFER_E_IO;
1378
1379 /* Request the normal memory object from other layers. */
1380 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1381 xfered_len);
1382 }
1383 else
1384 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1385 writebuf, offset, len, xfered_len);
1386
1387 if (targetdebug)
1388 {
1389 const unsigned char *myaddr = NULL;
1390
1391 fprintf_unfiltered (gdb_stdlog,
1392 "%s:target_xfer_partial "
1393 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1394 ops->to_shortname,
1395 (int) object,
1396 (annex ? annex : "(null)"),
1397 host_address_to_string (readbuf),
1398 host_address_to_string (writebuf),
1399 core_addr_to_string_nz (offset),
1400 pulongest (len), retval,
1401 pulongest (*xfered_len));
1402
1403 if (readbuf)
1404 myaddr = readbuf;
1405 if (writebuf)
1406 myaddr = writebuf;
1407 if (retval == TARGET_XFER_OK && myaddr != NULL)
1408 {
1409 int i;
1410
1411 fputs_unfiltered (", bytes =", gdb_stdlog);
1412 for (i = 0; i < *xfered_len; i++)
1413 {
1414 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1415 {
1416 if (targetdebug < 2 && i > 0)
1417 {
1418 fprintf_unfiltered (gdb_stdlog, " ...");
1419 break;
1420 }
1421 fprintf_unfiltered (gdb_stdlog, "\n");
1422 }
1423
1424 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1425 }
1426 }
1427
1428 fputc_unfiltered ('\n', gdb_stdlog);
1429 }
1430
1431 /* Check implementations of to_xfer_partial update *XFERED_LEN
1432 properly. Do assertion after printing debug messages, so that we
1433 can find more clues on assertion failure from debugging messages. */
1434 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1435 gdb_assert (*xfered_len > 0);
1436
1437 return retval;
1438 }
1439
1440 /* Read LEN bytes of target memory at address MEMADDR, placing the
1441 results in GDB's memory at MYADDR. Returns either 0 for success or
1442 -1 if any error occurs.
1443
1444 If an error occurs, no guarantee is made about the contents of the data at
1445 MYADDR. In particular, the caller should not depend upon partial reads
1446 filling the buffer with good data. There is no way for the caller to know
1447 how much good data might have been transfered anyway. Callers that can
1448 deal with partial reads should call target_read (which will retry until
1449 it makes no progress, and then return how much was transferred). */
1450
1451 int
1452 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1453 {
1454 /* Dispatch to the topmost target, not the flattened current_target.
1455 Memory accesses check target->to_has_(all_)memory, and the
1456 flattened target doesn't inherit those. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* See target/target.h. */
1465
1466 int
1467 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1468 {
1469 gdb_byte buf[4];
1470 int r;
1471
1472 r = target_read_memory (memaddr, buf, sizeof buf);
1473 if (r != 0)
1474 return r;
1475 *result = extract_unsigned_integer (buf, sizeof buf,
1476 gdbarch_byte_order (target_gdbarch ()));
1477 return 0;
1478 }
1479
1480 /* Like target_read_memory, but specify explicitly that this is a read
1481 from the target's raw memory. That is, this read bypasses the
1482 dcache, breakpoint shadowing, etc. */
1483
1484 int
1485 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1486 {
1487 /* See comment in target_read_memory about why the request starts at
1488 current_target.beneath. */
1489 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1490 myaddr, memaddr, len) == len)
1491 return 0;
1492 else
1493 return -1;
1494 }
1495
1496 /* Like target_read_memory, but specify explicitly that this is a read from
1497 the target's stack. This may trigger different cache behavior. */
1498
1499 int
1500 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1501 {
1502 /* See comment in target_read_memory about why the request starts at
1503 current_target.beneath. */
1504 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1505 myaddr, memaddr, len) == len)
1506 return 0;
1507 else
1508 return -1;
1509 }
1510
1511 /* Like target_read_memory, but specify explicitly that this is a read from
1512 the target's code. This may trigger different cache behavior. */
1513
1514 int
1515 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1516 {
1517 /* See comment in target_read_memory about why the request starts at
1518 current_target.beneath. */
1519 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1520 myaddr, memaddr, len) == len)
1521 return 0;
1522 else
1523 return -1;
1524 }
1525
1526 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1527 Returns either 0 for success or -1 if any error occurs. If an
1528 error occurs, no guarantee is made about how much data got written.
1529 Callers that can deal with partial writes should call
1530 target_write. */
1531
1532 int
1533 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1534 {
1535 /* See comment in target_read_memory about why the request starts at
1536 current_target.beneath. */
1537 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1538 myaddr, memaddr, len) == len)
1539 return 0;
1540 else
1541 return -1;
1542 }
1543
1544 /* Write LEN bytes from MYADDR to target raw memory at address
1545 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1546 If an error occurs, no guarantee is made about how much data got
1547 written. Callers that can deal with partial writes should call
1548 target_write. */
1549
1550 int
1551 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1552 {
1553 /* See comment in target_read_memory about why the request starts at
1554 current_target.beneath. */
1555 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1556 myaddr, memaddr, len) == len)
1557 return 0;
1558 else
1559 return -1;
1560 }
1561
1562 /* Fetch the target's memory map. */
1563
1564 VEC(mem_region_s) *
1565 target_memory_map (void)
1566 {
1567 VEC(mem_region_s) *result;
1568 struct mem_region *last_one, *this_one;
1569 int ix;
1570 result = current_target.to_memory_map (&current_target);
1571 if (result == NULL)
1572 return NULL;
1573
1574 qsort (VEC_address (mem_region_s, result),
1575 VEC_length (mem_region_s, result),
1576 sizeof (struct mem_region), mem_region_cmp);
1577
1578 /* Check that regions do not overlap. Simultaneously assign
1579 a numbering for the "mem" commands to use to refer to
1580 each region. */
1581 last_one = NULL;
1582 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1583 {
1584 this_one->number = ix;
1585
1586 if (last_one && last_one->hi > this_one->lo)
1587 {
1588 warning (_("Overlapping regions in memory map: ignoring"));
1589 VEC_free (mem_region_s, result);
1590 return NULL;
1591 }
1592 last_one = this_one;
1593 }
1594
1595 return result;
1596 }
1597
1598 void
1599 target_flash_erase (ULONGEST address, LONGEST length)
1600 {
1601 current_target.to_flash_erase (&current_target, address, length);
1602 }
1603
1604 void
1605 target_flash_done (void)
1606 {
1607 current_target.to_flash_done (&current_target);
1608 }
1609
1610 static void
1611 show_trust_readonly (struct ui_file *file, int from_tty,
1612 struct cmd_list_element *c, const char *value)
1613 {
1614 fprintf_filtered (file,
1615 _("Mode for reading from readonly sections is %s.\n"),
1616 value);
1617 }
1618
1619 /* Target vector read/write partial wrapper functions. */
1620
1621 static enum target_xfer_status
1622 target_read_partial (struct target_ops *ops,
1623 enum target_object object,
1624 const char *annex, gdb_byte *buf,
1625 ULONGEST offset, ULONGEST len,
1626 ULONGEST *xfered_len)
1627 {
1628 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1629 xfered_len);
1630 }
1631
1632 static enum target_xfer_status
1633 target_write_partial (struct target_ops *ops,
1634 enum target_object object,
1635 const char *annex, const gdb_byte *buf,
1636 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1637 {
1638 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1639 xfered_len);
1640 }
1641
1642 /* Wrappers to perform the full transfer. */
1643
1644 /* For docs on target_read see target.h. */
1645
1646 LONGEST
1647 target_read (struct target_ops *ops,
1648 enum target_object object,
1649 const char *annex, gdb_byte *buf,
1650 ULONGEST offset, LONGEST len)
1651 {
1652 LONGEST xfered_total = 0;
1653 int unit_size = 1;
1654
1655 /* If we are reading from a memory object, find the length of an addressable
1656 unit for that architecture. */
1657 if (object == TARGET_OBJECT_MEMORY
1658 || object == TARGET_OBJECT_STACK_MEMORY
1659 || object == TARGET_OBJECT_CODE_MEMORY
1660 || object == TARGET_OBJECT_RAW_MEMORY)
1661 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1662
1663 while (xfered_total < len)
1664 {
1665 ULONGEST xfered_partial;
1666 enum target_xfer_status status;
1667
1668 status = target_read_partial (ops, object, annex,
1669 buf + xfered_total * unit_size,
1670 offset + xfered_total, len - xfered_total,
1671 &xfered_partial);
1672
1673 /* Call an observer, notifying them of the xfer progress? */
1674 if (status == TARGET_XFER_EOF)
1675 return xfered_total;
1676 else if (status == TARGET_XFER_OK)
1677 {
1678 xfered_total += xfered_partial;
1679 QUIT;
1680 }
1681 else
1682 return TARGET_XFER_E_IO;
1683
1684 }
1685 return len;
1686 }
1687
1688 /* Assuming that the entire [begin, end) range of memory cannot be
1689 read, try to read whatever subrange is possible to read.
1690
1691 The function returns, in RESULT, either zero or one memory block.
1692 If there's a readable subrange at the beginning, it is completely
1693 read and returned. Any further readable subrange will not be read.
1694 Otherwise, if there's a readable subrange at the end, it will be
1695 completely read and returned. Any readable subranges before it
1696 (obviously, not starting at the beginning), will be ignored. In
1697 other cases -- either no readable subrange, or readable subrange(s)
1698 that is neither at the beginning, or end, nothing is returned.
1699
1700 The purpose of this function is to handle a read across a boundary
1701 of accessible memory in a case when memory map is not available.
1702 The above restrictions are fine for this case, but will give
1703 incorrect results if the memory is 'patchy'. However, supporting
1704 'patchy' memory would require trying to read every single byte,
1705 and it seems unacceptable solution. Explicit memory map is
1706 recommended for this case -- and target_read_memory_robust will
1707 take care of reading multiple ranges then. */
1708
1709 static void
1710 read_whatever_is_readable (struct target_ops *ops,
1711 const ULONGEST begin, const ULONGEST end,
1712 int unit_size,
1713 VEC(memory_read_result_s) **result)
1714 {
1715 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1716 ULONGEST current_begin = begin;
1717 ULONGEST current_end = end;
1718 int forward;
1719 memory_read_result_s r;
1720 ULONGEST xfered_len;
1721
1722 /* If we previously failed to read 1 byte, nothing can be done here. */
1723 if (end - begin <= 1)
1724 {
1725 xfree (buf);
1726 return;
1727 }
1728
1729 /* Check that either first or the last byte is readable, and give up
1730 if not. This heuristic is meant to permit reading accessible memory
1731 at the boundary of accessible region. */
1732 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1733 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1734 {
1735 forward = 1;
1736 ++current_begin;
1737 }
1738 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1739 buf + (end - begin) - 1, end - 1, 1,
1740 &xfered_len) == TARGET_XFER_OK)
1741 {
1742 forward = 0;
1743 --current_end;
1744 }
1745 else
1746 {
1747 xfree (buf);
1748 return;
1749 }
1750
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1753
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1757 {
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1760 LONGEST xfer;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1762
1763 if (forward)
1764 {
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1769 }
1770 else
1771 {
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1776 }
1777
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf + (first_half_begin - begin) * unit_size,
1780 first_half_begin,
1781 first_half_end - first_half_begin);
1782
1783 if (xfer == first_half_end - first_half_begin)
1784 {
1785 /* This half reads up fine. So, the error must be in the
1786 other half. */
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1789 }
1790 else
1791 {
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1795
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1800 }
1801 }
1802
1803 if (forward)
1804 {
1805 /* The [begin, current_begin) range has been read. */
1806 r.begin = begin;
1807 r.end = current_begin;
1808 r.data = buf;
1809 }
1810 else
1811 {
1812 /* The [current_end, end) range has been read. */
1813 LONGEST region_len = end - current_end;
1814
1815 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1816 memcpy (r.data, buf + (current_end - begin) * unit_size,
1817 region_len * unit_size);
1818 r.begin = current_end;
1819 r.end = end;
1820 xfree (buf);
1821 }
1822 VEC_safe_push(memory_read_result_s, (*result), &r);
1823 }
1824
1825 void
1826 free_memory_read_result_vector (void *x)
1827 {
1828 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1829 memory_read_result_s *current;
1830 int ix;
1831
1832 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1833 {
1834 xfree (current->data);
1835 }
1836 VEC_free (memory_read_result_s, *v);
1837 }
1838
1839 VEC(memory_read_result_s) *
1840 read_memory_robust (struct target_ops *ops,
1841 const ULONGEST offset, const LONGEST len)
1842 {
1843 VEC(memory_read_result_s) *result = 0;
1844 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1845 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1846 &result);
1847
1848 LONGEST xfered_total = 0;
1849 while (xfered_total < len)
1850 {
1851 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1852 LONGEST region_len;
1853
1854 /* If there is no explicit region, a fake one should be created. */
1855 gdb_assert (region);
1856
1857 if (region->hi == 0)
1858 region_len = len - xfered_total;
1859 else
1860 region_len = region->hi - offset;
1861
1862 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1863 {
1864 /* Cannot read this region. Note that we can end up here only
1865 if the region is explicitly marked inaccessible, or
1866 'inaccessible-by-default' is in effect. */
1867 xfered_total += region_len;
1868 }
1869 else
1870 {
1871 LONGEST to_read = min (len - xfered_total, region_len);
1872 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1873 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1874
1875 LONGEST xfered_partial =
1876 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1877 (gdb_byte *) buffer,
1878 offset + xfered_total, to_read);
1879 /* Call an observer, notifying them of the xfer progress? */
1880 if (xfered_partial <= 0)
1881 {
1882 /* Got an error reading full chunk. See if maybe we can read
1883 some subrange. */
1884 do_cleanups (inner_cleanup);
1885 read_whatever_is_readable (ops, offset + xfered_total,
1886 offset + xfered_total + to_read,
1887 unit_size, &result);
1888 xfered_total += to_read;
1889 }
1890 else
1891 {
1892 struct memory_read_result r;
1893
1894 discard_cleanups (inner_cleanup);
1895 r.data = buffer;
1896 r.begin = offset + xfered_total;
1897 r.end = r.begin + xfered_partial;
1898 VEC_safe_push (memory_read_result_s, result, &r);
1899 xfered_total += xfered_partial;
1900 }
1901 QUIT;
1902 }
1903 }
1904
1905 discard_cleanups (cleanup);
1906 return result;
1907 }
1908
1909
1910 /* An alternative to target_write with progress callbacks. */
1911
1912 LONGEST
1913 target_write_with_progress (struct target_ops *ops,
1914 enum target_object object,
1915 const char *annex, const gdb_byte *buf,
1916 ULONGEST offset, LONGEST len,
1917 void (*progress) (ULONGEST, void *), void *baton)
1918 {
1919 LONGEST xfered_total = 0;
1920 int unit_size = 1;
1921
1922 /* If we are writing to a memory object, find the length of an addressable
1923 unit for that architecture. */
1924 if (object == TARGET_OBJECT_MEMORY
1925 || object == TARGET_OBJECT_STACK_MEMORY
1926 || object == TARGET_OBJECT_CODE_MEMORY
1927 || object == TARGET_OBJECT_RAW_MEMORY)
1928 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1929
1930 /* Give the progress callback a chance to set up. */
1931 if (progress)
1932 (*progress) (0, baton);
1933
1934 while (xfered_total < len)
1935 {
1936 ULONGEST xfered_partial;
1937 enum target_xfer_status status;
1938
1939 status = target_write_partial (ops, object, annex,
1940 buf + xfered_total * unit_size,
1941 offset + xfered_total, len - xfered_total,
1942 &xfered_partial);
1943
1944 if (status != TARGET_XFER_OK)
1945 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1946
1947 if (progress)
1948 (*progress) (xfered_partial, baton);
1949
1950 xfered_total += xfered_partial;
1951 QUIT;
1952 }
1953 return len;
1954 }
1955
1956 /* For docs on target_write see target.h. */
1957
1958 LONGEST
1959 target_write (struct target_ops *ops,
1960 enum target_object object,
1961 const char *annex, const gdb_byte *buf,
1962 ULONGEST offset, LONGEST len)
1963 {
1964 return target_write_with_progress (ops, object, annex, buf, offset, len,
1965 NULL, NULL);
1966 }
1967
1968 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1969 the size of the transferred data. PADDING additional bytes are
1970 available in *BUF_P. This is a helper function for
1971 target_read_alloc; see the declaration of that function for more
1972 information. */
1973
1974 static LONGEST
1975 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1976 const char *annex, gdb_byte **buf_p, int padding)
1977 {
1978 size_t buf_alloc, buf_pos;
1979 gdb_byte *buf;
1980
1981 /* This function does not have a length parameter; it reads the
1982 entire OBJECT). Also, it doesn't support objects fetched partly
1983 from one target and partly from another (in a different stratum,
1984 e.g. a core file and an executable). Both reasons make it
1985 unsuitable for reading memory. */
1986 gdb_assert (object != TARGET_OBJECT_MEMORY);
1987
1988 /* Start by reading up to 4K at a time. The target will throttle
1989 this number down if necessary. */
1990 buf_alloc = 4096;
1991 buf = (gdb_byte *) xmalloc (buf_alloc);
1992 buf_pos = 0;
1993 while (1)
1994 {
1995 ULONGEST xfered_len;
1996 enum target_xfer_status status;
1997
1998 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1999 buf_pos, buf_alloc - buf_pos - padding,
2000 &xfered_len);
2001
2002 if (status == TARGET_XFER_EOF)
2003 {
2004 /* Read all there was. */
2005 if (buf_pos == 0)
2006 xfree (buf);
2007 else
2008 *buf_p = buf;
2009 return buf_pos;
2010 }
2011 else if (status != TARGET_XFER_OK)
2012 {
2013 /* An error occurred. */
2014 xfree (buf);
2015 return TARGET_XFER_E_IO;
2016 }
2017
2018 buf_pos += xfered_len;
2019
2020 /* If the buffer is filling up, expand it. */
2021 if (buf_alloc < buf_pos * 2)
2022 {
2023 buf_alloc *= 2;
2024 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2025 }
2026
2027 QUIT;
2028 }
2029 }
2030
2031 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2032 the size of the transferred data. See the declaration in "target.h"
2033 function for more information about the return value. */
2034
2035 LONGEST
2036 target_read_alloc (struct target_ops *ops, enum target_object object,
2037 const char *annex, gdb_byte **buf_p)
2038 {
2039 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2040 }
2041
2042 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2043 returned as a string, allocated using xmalloc. If an error occurs
2044 or the transfer is unsupported, NULL is returned. Empty objects
2045 are returned as allocated but empty strings. A warning is issued
2046 if the result contains any embedded NUL bytes. */
2047
2048 char *
2049 target_read_stralloc (struct target_ops *ops, enum target_object object,
2050 const char *annex)
2051 {
2052 gdb_byte *buffer;
2053 char *bufstr;
2054 LONGEST i, transferred;
2055
2056 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2057 bufstr = (char *) buffer;
2058
2059 if (transferred < 0)
2060 return NULL;
2061
2062 if (transferred == 0)
2063 return xstrdup ("");
2064
2065 bufstr[transferred] = 0;
2066
2067 /* Check for embedded NUL bytes; but allow trailing NULs. */
2068 for (i = strlen (bufstr); i < transferred; i++)
2069 if (bufstr[i] != 0)
2070 {
2071 warning (_("target object %d, annex %s, "
2072 "contained unexpected null characters"),
2073 (int) object, annex ? annex : "(none)");
2074 break;
2075 }
2076
2077 return bufstr;
2078 }
2079
2080 /* Memory transfer methods. */
2081
2082 void
2083 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2084 LONGEST len)
2085 {
2086 /* This method is used to read from an alternate, non-current
2087 target. This read must bypass the overlay support (as symbols
2088 don't match this target), and GDB's internal cache (wrong cache
2089 for this target). */
2090 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2091 != len)
2092 memory_error (TARGET_XFER_E_IO, addr);
2093 }
2094
2095 ULONGEST
2096 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2097 int len, enum bfd_endian byte_order)
2098 {
2099 gdb_byte buf[sizeof (ULONGEST)];
2100
2101 gdb_assert (len <= sizeof (buf));
2102 get_target_memory (ops, addr, buf, len);
2103 return extract_unsigned_integer (buf, len, byte_order);
2104 }
2105
2106 /* See target.h. */
2107
2108 int
2109 target_insert_breakpoint (struct gdbarch *gdbarch,
2110 struct bp_target_info *bp_tgt)
2111 {
2112 if (!may_insert_breakpoints)
2113 {
2114 warning (_("May not insert breakpoints"));
2115 return 1;
2116 }
2117
2118 return current_target.to_insert_breakpoint (&current_target,
2119 gdbarch, bp_tgt);
2120 }
2121
2122 /* See target.h. */
2123
2124 int
2125 target_remove_breakpoint (struct gdbarch *gdbarch,
2126 struct bp_target_info *bp_tgt)
2127 {
2128 /* This is kind of a weird case to handle, but the permission might
2129 have been changed after breakpoints were inserted - in which case
2130 we should just take the user literally and assume that any
2131 breakpoints should be left in place. */
2132 if (!may_insert_breakpoints)
2133 {
2134 warning (_("May not remove breakpoints"));
2135 return 1;
2136 }
2137
2138 return current_target.to_remove_breakpoint (&current_target,
2139 gdbarch, bp_tgt);
2140 }
2141
2142 static void
2143 target_info (char *args, int from_tty)
2144 {
2145 struct target_ops *t;
2146 int has_all_mem = 0;
2147
2148 if (symfile_objfile != NULL)
2149 printf_unfiltered (_("Symbols from \"%s\".\n"),
2150 objfile_name (symfile_objfile));
2151
2152 for (t = target_stack; t != NULL; t = t->beneath)
2153 {
2154 if (!(*t->to_has_memory) (t))
2155 continue;
2156
2157 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2158 continue;
2159 if (has_all_mem)
2160 printf_unfiltered (_("\tWhile running this, "
2161 "GDB does not access memory from...\n"));
2162 printf_unfiltered ("%s:\n", t->to_longname);
2163 (t->to_files_info) (t);
2164 has_all_mem = (*t->to_has_all_memory) (t);
2165 }
2166 }
2167
2168 /* This function is called before any new inferior is created, e.g.
2169 by running a program, attaching, or connecting to a target.
2170 It cleans up any state from previous invocations which might
2171 change between runs. This is a subset of what target_preopen
2172 resets (things which might change between targets). */
2173
2174 void
2175 target_pre_inferior (int from_tty)
2176 {
2177 /* Clear out solib state. Otherwise the solib state of the previous
2178 inferior might have survived and is entirely wrong for the new
2179 target. This has been observed on GNU/Linux using glibc 2.3. How
2180 to reproduce:
2181
2182 bash$ ./foo&
2183 [1] 4711
2184 bash$ ./foo&
2185 [1] 4712
2186 bash$ gdb ./foo
2187 [...]
2188 (gdb) attach 4711
2189 (gdb) detach
2190 (gdb) attach 4712
2191 Cannot access memory at address 0xdeadbeef
2192 */
2193
2194 /* In some OSs, the shared library list is the same/global/shared
2195 across inferiors. If code is shared between processes, so are
2196 memory regions and features. */
2197 if (!gdbarch_has_global_solist (target_gdbarch ()))
2198 {
2199 no_shared_libraries (NULL, from_tty);
2200
2201 invalidate_target_mem_regions ();
2202
2203 target_clear_description ();
2204 }
2205
2206 /* attach_flag may be set if the previous process associated with
2207 the inferior was attached to. */
2208 current_inferior ()->attach_flag = 0;
2209
2210 current_inferior ()->highest_thread_num = 0;
2211
2212 agent_capability_invalidate ();
2213 }
2214
2215 /* Callback for iterate_over_inferiors. Gets rid of the given
2216 inferior. */
2217
2218 static int
2219 dispose_inferior (struct inferior *inf, void *args)
2220 {
2221 struct thread_info *thread;
2222
2223 thread = any_thread_of_process (inf->pid);
2224 if (thread)
2225 {
2226 switch_to_thread (thread->ptid);
2227
2228 /* Core inferiors actually should be detached, not killed. */
2229 if (target_has_execution)
2230 target_kill ();
2231 else
2232 target_detach (NULL, 0);
2233 }
2234
2235 return 0;
2236 }
2237
2238 /* This is to be called by the open routine before it does
2239 anything. */
2240
2241 void
2242 target_preopen (int from_tty)
2243 {
2244 dont_repeat ();
2245
2246 if (have_inferiors ())
2247 {
2248 if (!from_tty
2249 || !have_live_inferiors ()
2250 || query (_("A program is being debugged already. Kill it? ")))
2251 iterate_over_inferiors (dispose_inferior, NULL);
2252 else
2253 error (_("Program not killed."));
2254 }
2255
2256 /* Calling target_kill may remove the target from the stack. But if
2257 it doesn't (which seems like a win for UDI), remove it now. */
2258 /* Leave the exec target, though. The user may be switching from a
2259 live process to a core of the same program. */
2260 pop_all_targets_above (file_stratum);
2261
2262 target_pre_inferior (from_tty);
2263 }
2264
2265 /* Detach a target after doing deferred register stores. */
2266
2267 void
2268 target_detach (const char *args, int from_tty)
2269 {
2270 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2271 /* Don't remove global breakpoints here. They're removed on
2272 disconnection from the target. */
2273 ;
2274 else
2275 /* If we're in breakpoints-always-inserted mode, have to remove
2276 them before detaching. */
2277 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2278
2279 prepare_for_detach ();
2280
2281 current_target.to_detach (&current_target, args, from_tty);
2282 }
2283
2284 void
2285 target_disconnect (const char *args, int from_tty)
2286 {
2287 /* If we're in breakpoints-always-inserted mode or if breakpoints
2288 are global across processes, we have to remove them before
2289 disconnecting. */
2290 remove_breakpoints ();
2291
2292 current_target.to_disconnect (&current_target, args, from_tty);
2293 }
2294
2295 ptid_t
2296 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2297 {
2298 return (current_target.to_wait) (&current_target, ptid, status, options);
2299 }
2300
2301 /* See target.h. */
2302
2303 ptid_t
2304 default_target_wait (struct target_ops *ops,
2305 ptid_t ptid, struct target_waitstatus *status,
2306 int options)
2307 {
2308 status->kind = TARGET_WAITKIND_IGNORE;
2309 return minus_one_ptid;
2310 }
2311
2312 char *
2313 target_pid_to_str (ptid_t ptid)
2314 {
2315 return (*current_target.to_pid_to_str) (&current_target, ptid);
2316 }
2317
2318 const char *
2319 target_thread_name (struct thread_info *info)
2320 {
2321 return current_target.to_thread_name (&current_target, info);
2322 }
2323
2324 void
2325 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2326 {
2327 target_dcache_invalidate ();
2328
2329 current_target.to_resume (&current_target, ptid, step, signal);
2330
2331 registers_changed_ptid (ptid);
2332 /* We only set the internal executing state here. The user/frontend
2333 running state is set at a higher level. */
2334 set_executing (ptid, 1);
2335 clear_inline_frame_state (ptid);
2336 }
2337
2338 void
2339 target_pass_signals (int numsigs, unsigned char *pass_signals)
2340 {
2341 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2342 }
2343
2344 void
2345 target_program_signals (int numsigs, unsigned char *program_signals)
2346 {
2347 (*current_target.to_program_signals) (&current_target,
2348 numsigs, program_signals);
2349 }
2350
2351 static int
2352 default_follow_fork (struct target_ops *self, int follow_child,
2353 int detach_fork)
2354 {
2355 /* Some target returned a fork event, but did not know how to follow it. */
2356 internal_error (__FILE__, __LINE__,
2357 _("could not find a target to follow fork"));
2358 }
2359
2360 /* Look through the list of possible targets for a target that can
2361 follow forks. */
2362
2363 int
2364 target_follow_fork (int follow_child, int detach_fork)
2365 {
2366 return current_target.to_follow_fork (&current_target,
2367 follow_child, detach_fork);
2368 }
2369
2370 /* Target wrapper for follow exec hook. */
2371
2372 void
2373 target_follow_exec (struct inferior *inf, char *execd_pathname)
2374 {
2375 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2376 }
2377
2378 static void
2379 default_mourn_inferior (struct target_ops *self)
2380 {
2381 internal_error (__FILE__, __LINE__,
2382 _("could not find a target to follow mourn inferior"));
2383 }
2384
2385 void
2386 target_mourn_inferior (void)
2387 {
2388 current_target.to_mourn_inferior (&current_target);
2389
2390 /* We no longer need to keep handles on any of the object files.
2391 Make sure to release them to avoid unnecessarily locking any
2392 of them while we're not actually debugging. */
2393 bfd_cache_close_all ();
2394 }
2395
2396 /* Look for a target which can describe architectural features, starting
2397 from TARGET. If we find one, return its description. */
2398
2399 const struct target_desc *
2400 target_read_description (struct target_ops *target)
2401 {
2402 return target->to_read_description (target);
2403 }
2404
2405 /* This implements a basic search of memory, reading target memory and
2406 performing the search here (as opposed to performing the search in on the
2407 target side with, for example, gdbserver). */
2408
2409 int
2410 simple_search_memory (struct target_ops *ops,
2411 CORE_ADDR start_addr, ULONGEST search_space_len,
2412 const gdb_byte *pattern, ULONGEST pattern_len,
2413 CORE_ADDR *found_addrp)
2414 {
2415 /* NOTE: also defined in find.c testcase. */
2416 #define SEARCH_CHUNK_SIZE 16000
2417 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2418 /* Buffer to hold memory contents for searching. */
2419 gdb_byte *search_buf;
2420 unsigned search_buf_size;
2421 struct cleanup *old_cleanups;
2422
2423 search_buf_size = chunk_size + pattern_len - 1;
2424
2425 /* No point in trying to allocate a buffer larger than the search space. */
2426 if (search_space_len < search_buf_size)
2427 search_buf_size = search_space_len;
2428
2429 search_buf = (gdb_byte *) malloc (search_buf_size);
2430 if (search_buf == NULL)
2431 error (_("Unable to allocate memory to perform the search."));
2432 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2433
2434 /* Prime the search buffer. */
2435
2436 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2437 search_buf, start_addr, search_buf_size) != search_buf_size)
2438 {
2439 warning (_("Unable to access %s bytes of target "
2440 "memory at %s, halting search."),
2441 pulongest (search_buf_size), hex_string (start_addr));
2442 do_cleanups (old_cleanups);
2443 return -1;
2444 }
2445
2446 /* Perform the search.
2447
2448 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2449 When we've scanned N bytes we copy the trailing bytes to the start and
2450 read in another N bytes. */
2451
2452 while (search_space_len >= pattern_len)
2453 {
2454 gdb_byte *found_ptr;
2455 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2456
2457 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2458 pattern, pattern_len);
2459
2460 if (found_ptr != NULL)
2461 {
2462 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2463
2464 *found_addrp = found_addr;
2465 do_cleanups (old_cleanups);
2466 return 1;
2467 }
2468
2469 /* Not found in this chunk, skip to next chunk. */
2470
2471 /* Don't let search_space_len wrap here, it's unsigned. */
2472 if (search_space_len >= chunk_size)
2473 search_space_len -= chunk_size;
2474 else
2475 search_space_len = 0;
2476
2477 if (search_space_len >= pattern_len)
2478 {
2479 unsigned keep_len = search_buf_size - chunk_size;
2480 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2481 int nr_to_read;
2482
2483 /* Copy the trailing part of the previous iteration to the front
2484 of the buffer for the next iteration. */
2485 gdb_assert (keep_len == pattern_len - 1);
2486 memcpy (search_buf, search_buf + chunk_size, keep_len);
2487
2488 nr_to_read = min (search_space_len - keep_len, chunk_size);
2489
2490 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2491 search_buf + keep_len, read_addr,
2492 nr_to_read) != nr_to_read)
2493 {
2494 warning (_("Unable to access %s bytes of target "
2495 "memory at %s, halting search."),
2496 plongest (nr_to_read),
2497 hex_string (read_addr));
2498 do_cleanups (old_cleanups);
2499 return -1;
2500 }
2501
2502 start_addr += chunk_size;
2503 }
2504 }
2505
2506 /* Not found. */
2507
2508 do_cleanups (old_cleanups);
2509 return 0;
2510 }
2511
2512 /* Default implementation of memory-searching. */
2513
2514 static int
2515 default_search_memory (struct target_ops *self,
2516 CORE_ADDR start_addr, ULONGEST search_space_len,
2517 const gdb_byte *pattern, ULONGEST pattern_len,
2518 CORE_ADDR *found_addrp)
2519 {
2520 /* Start over from the top of the target stack. */
2521 return simple_search_memory (current_target.beneath,
2522 start_addr, search_space_len,
2523 pattern, pattern_len, found_addrp);
2524 }
2525
2526 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2527 sequence of bytes in PATTERN with length PATTERN_LEN.
2528
2529 The result is 1 if found, 0 if not found, and -1 if there was an error
2530 requiring halting of the search (e.g. memory read error).
2531 If the pattern is found the address is recorded in FOUND_ADDRP. */
2532
2533 int
2534 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2535 const gdb_byte *pattern, ULONGEST pattern_len,
2536 CORE_ADDR *found_addrp)
2537 {
2538 return current_target.to_search_memory (&current_target, start_addr,
2539 search_space_len,
2540 pattern, pattern_len, found_addrp);
2541 }
2542
2543 /* Look through the currently pushed targets. If none of them will
2544 be able to restart the currently running process, issue an error
2545 message. */
2546
2547 void
2548 target_require_runnable (void)
2549 {
2550 struct target_ops *t;
2551
2552 for (t = target_stack; t != NULL; t = t->beneath)
2553 {
2554 /* If this target knows how to create a new program, then
2555 assume we will still be able to after killing the current
2556 one. Either killing and mourning will not pop T, or else
2557 find_default_run_target will find it again. */
2558 if (t->to_create_inferior != NULL)
2559 return;
2560
2561 /* Do not worry about targets at certain strata that can not
2562 create inferiors. Assume they will be pushed again if
2563 necessary, and continue to the process_stratum. */
2564 if (t->to_stratum == thread_stratum
2565 || t->to_stratum == record_stratum
2566 || t->to_stratum == arch_stratum)
2567 continue;
2568
2569 error (_("The \"%s\" target does not support \"run\". "
2570 "Try \"help target\" or \"continue\"."),
2571 t->to_shortname);
2572 }
2573
2574 /* This function is only called if the target is running. In that
2575 case there should have been a process_stratum target and it
2576 should either know how to create inferiors, or not... */
2577 internal_error (__FILE__, __LINE__, _("No targets found"));
2578 }
2579
2580 /* Whether GDB is allowed to fall back to the default run target for
2581 "run", "attach", etc. when no target is connected yet. */
2582 static int auto_connect_native_target = 1;
2583
2584 static void
2585 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2586 struct cmd_list_element *c, const char *value)
2587 {
2588 fprintf_filtered (file,
2589 _("Whether GDB may automatically connect to the "
2590 "native target is %s.\n"),
2591 value);
2592 }
2593
2594 /* Look through the list of possible targets for a target that can
2595 execute a run or attach command without any other data. This is
2596 used to locate the default process stratum.
2597
2598 If DO_MESG is not NULL, the result is always valid (error() is
2599 called for errors); else, return NULL on error. */
2600
2601 static struct target_ops *
2602 find_default_run_target (char *do_mesg)
2603 {
2604 struct target_ops *runable = NULL;
2605
2606 if (auto_connect_native_target)
2607 {
2608 struct target_ops *t;
2609 int count = 0;
2610 int i;
2611
2612 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2613 {
2614 if (t->to_can_run != delegate_can_run && target_can_run (t))
2615 {
2616 runable = t;
2617 ++count;
2618 }
2619 }
2620
2621 if (count != 1)
2622 runable = NULL;
2623 }
2624
2625 if (runable == NULL)
2626 {
2627 if (do_mesg)
2628 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2629 else
2630 return NULL;
2631 }
2632
2633 return runable;
2634 }
2635
2636 /* See target.h. */
2637
2638 struct target_ops *
2639 find_attach_target (void)
2640 {
2641 struct target_ops *t;
2642
2643 /* If a target on the current stack can attach, use it. */
2644 for (t = current_target.beneath; t != NULL; t = t->beneath)
2645 {
2646 if (t->to_attach != NULL)
2647 break;
2648 }
2649
2650 /* Otherwise, use the default run target for attaching. */
2651 if (t == NULL)
2652 t = find_default_run_target ("attach");
2653
2654 return t;
2655 }
2656
2657 /* See target.h. */
2658
2659 struct target_ops *
2660 find_run_target (void)
2661 {
2662 struct target_ops *t;
2663
2664 /* If a target on the current stack can attach, use it. */
2665 for (t = current_target.beneath; t != NULL; t = t->beneath)
2666 {
2667 if (t->to_create_inferior != NULL)
2668 break;
2669 }
2670
2671 /* Otherwise, use the default run target. */
2672 if (t == NULL)
2673 t = find_default_run_target ("run");
2674
2675 return t;
2676 }
2677
2678 /* Implement the "info proc" command. */
2679
2680 int
2681 target_info_proc (const char *args, enum info_proc_what what)
2682 {
2683 struct target_ops *t;
2684
2685 /* If we're already connected to something that can get us OS
2686 related data, use it. Otherwise, try using the native
2687 target. */
2688 if (current_target.to_stratum >= process_stratum)
2689 t = current_target.beneath;
2690 else
2691 t = find_default_run_target (NULL);
2692
2693 for (; t != NULL; t = t->beneath)
2694 {
2695 if (t->to_info_proc != NULL)
2696 {
2697 t->to_info_proc (t, args, what);
2698
2699 if (targetdebug)
2700 fprintf_unfiltered (gdb_stdlog,
2701 "target_info_proc (\"%s\", %d)\n", args, what);
2702
2703 return 1;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 static int
2711 find_default_supports_disable_randomization (struct target_ops *self)
2712 {
2713 struct target_ops *t;
2714
2715 t = find_default_run_target (NULL);
2716 if (t && t->to_supports_disable_randomization)
2717 return (t->to_supports_disable_randomization) (t);
2718 return 0;
2719 }
2720
2721 int
2722 target_supports_disable_randomization (void)
2723 {
2724 struct target_ops *t;
2725
2726 for (t = &current_target; t != NULL; t = t->beneath)
2727 if (t->to_supports_disable_randomization)
2728 return t->to_supports_disable_randomization (t);
2729
2730 return 0;
2731 }
2732
2733 char *
2734 target_get_osdata (const char *type)
2735 {
2736 struct target_ops *t;
2737
2738 /* If we're already connected to something that can get us OS
2739 related data, use it. Otherwise, try using the native
2740 target. */
2741 if (current_target.to_stratum >= process_stratum)
2742 t = current_target.beneath;
2743 else
2744 t = find_default_run_target ("get OS data");
2745
2746 if (!t)
2747 return NULL;
2748
2749 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2750 }
2751
2752 static struct address_space *
2753 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2754 {
2755 struct inferior *inf;
2756
2757 /* Fall-back to the "main" address space of the inferior. */
2758 inf = find_inferior_ptid (ptid);
2759
2760 if (inf == NULL || inf->aspace == NULL)
2761 internal_error (__FILE__, __LINE__,
2762 _("Can't determine the current "
2763 "address space of thread %s\n"),
2764 target_pid_to_str (ptid));
2765
2766 return inf->aspace;
2767 }
2768
2769 /* Determine the current address space of thread PTID. */
2770
2771 struct address_space *
2772 target_thread_address_space (ptid_t ptid)
2773 {
2774 struct address_space *aspace;
2775
2776 aspace = current_target.to_thread_address_space (&current_target, ptid);
2777 gdb_assert (aspace != NULL);
2778
2779 return aspace;
2780 }
2781
2782
2783 /* Target file operations. */
2784
2785 static struct target_ops *
2786 default_fileio_target (void)
2787 {
2788 /* If we're already connected to something that can perform
2789 file I/O, use it. Otherwise, try using the native target. */
2790 if (current_target.to_stratum >= process_stratum)
2791 return current_target.beneath;
2792 else
2793 return find_default_run_target ("file I/O");
2794 }
2795
2796 /* File handle for target file operations. */
2797
2798 typedef struct
2799 {
2800 /* The target on which this file is open. */
2801 struct target_ops *t;
2802
2803 /* The file descriptor on the target. */
2804 int fd;
2805 } fileio_fh_t;
2806
2807 DEF_VEC_O (fileio_fh_t);
2808
2809 /* Vector of currently open file handles. The value returned by
2810 target_fileio_open and passed as the FD argument to other
2811 target_fileio_* functions is an index into this vector. This
2812 vector's entries are never freed; instead, files are marked as
2813 closed, and the handle becomes available for reuse. */
2814 static VEC (fileio_fh_t) *fileio_fhandles;
2815
2816 /* Macro to check whether a fileio_fh_t represents a closed file. */
2817 #define is_closed_fileio_fh(fd) ((fd) < 0)
2818
2819 /* Index into fileio_fhandles of the lowest handle that might be
2820 closed. This permits handle reuse without searching the whole
2821 list each time a new file is opened. */
2822 static int lowest_closed_fd;
2823
2824 /* Acquire a target fileio file descriptor. */
2825
2826 static int
2827 acquire_fileio_fd (struct target_ops *t, int fd)
2828 {
2829 fileio_fh_t *fh;
2830
2831 gdb_assert (!is_closed_fileio_fh (fd));
2832
2833 /* Search for closed handles to reuse. */
2834 for (;
2835 VEC_iterate (fileio_fh_t, fileio_fhandles,
2836 lowest_closed_fd, fh);
2837 lowest_closed_fd++)
2838 if (is_closed_fileio_fh (fh->fd))
2839 break;
2840
2841 /* Push a new handle if no closed handles were found. */
2842 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2843 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2844
2845 /* Fill in the handle. */
2846 fh->t = t;
2847 fh->fd = fd;
2848
2849 /* Return its index, and start the next lookup at
2850 the next index. */
2851 return lowest_closed_fd++;
2852 }
2853
2854 /* Release a target fileio file descriptor. */
2855
2856 static void
2857 release_fileio_fd (int fd, fileio_fh_t *fh)
2858 {
2859 fh->fd = -1;
2860 lowest_closed_fd = min (lowest_closed_fd, fd);
2861 }
2862
2863 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2864
2865 #define fileio_fd_to_fh(fd) \
2866 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2867
2868 /* Helper for target_fileio_open and
2869 target_fileio_open_warn_if_slow. */
2870
2871 static int
2872 target_fileio_open_1 (struct inferior *inf, const char *filename,
2873 int flags, int mode, int warn_if_slow,
2874 int *target_errno)
2875 {
2876 struct target_ops *t;
2877
2878 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2879 {
2880 if (t->to_fileio_open != NULL)
2881 {
2882 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2883 warn_if_slow, target_errno);
2884
2885 if (fd < 0)
2886 fd = -1;
2887 else
2888 fd = acquire_fileio_fd (t, fd);
2889
2890 if (targetdebug)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2893 " = %d (%d)\n",
2894 inf == NULL ? 0 : inf->num,
2895 filename, flags, mode,
2896 warn_if_slow, fd,
2897 fd != -1 ? 0 : *target_errno);
2898 return fd;
2899 }
2900 }
2901
2902 *target_errno = FILEIO_ENOSYS;
2903 return -1;
2904 }
2905
2906 /* See target.h. */
2907
2908 int
2909 target_fileio_open (struct inferior *inf, const char *filename,
2910 int flags, int mode, int *target_errno)
2911 {
2912 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2913 target_errno);
2914 }
2915
2916 /* See target.h. */
2917
2918 int
2919 target_fileio_open_warn_if_slow (struct inferior *inf,
2920 const char *filename,
2921 int flags, int mode, int *target_errno)
2922 {
2923 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2924 target_errno);
2925 }
2926
2927 /* See target.h. */
2928
2929 int
2930 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2931 ULONGEST offset, int *target_errno)
2932 {
2933 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2934 int ret = -1;
2935
2936 if (is_closed_fileio_fh (fh->fd))
2937 *target_errno = EBADF;
2938 else
2939 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2940 len, offset, target_errno);
2941
2942 if (targetdebug)
2943 fprintf_unfiltered (gdb_stdlog,
2944 "target_fileio_pwrite (%d,...,%d,%s) "
2945 "= %d (%d)\n",
2946 fd, len, pulongest (offset),
2947 ret, ret != -1 ? 0 : *target_errno);
2948 return ret;
2949 }
2950
2951 /* See target.h. */
2952
2953 int
2954 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2955 ULONGEST offset, int *target_errno)
2956 {
2957 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2958 int ret = -1;
2959
2960 if (is_closed_fileio_fh (fh->fd))
2961 *target_errno = EBADF;
2962 else
2963 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2964 len, offset, target_errno);
2965
2966 if (targetdebug)
2967 fprintf_unfiltered (gdb_stdlog,
2968 "target_fileio_pread (%d,...,%d,%s) "
2969 "= %d (%d)\n",
2970 fd, len, pulongest (offset),
2971 ret, ret != -1 ? 0 : *target_errno);
2972 return ret;
2973 }
2974
2975 /* See target.h. */
2976
2977 int
2978 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2979 {
2980 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2981 int ret = -1;
2982
2983 if (is_closed_fileio_fh (fh->fd))
2984 *target_errno = EBADF;
2985 else
2986 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2987
2988 if (targetdebug)
2989 fprintf_unfiltered (gdb_stdlog,
2990 "target_fileio_fstat (%d) = %d (%d)\n",
2991 fd, ret, ret != -1 ? 0 : *target_errno);
2992 return ret;
2993 }
2994
2995 /* See target.h. */
2996
2997 int
2998 target_fileio_close (int fd, int *target_errno)
2999 {
3000 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3001 int ret = -1;
3002
3003 if (is_closed_fileio_fh (fh->fd))
3004 *target_errno = EBADF;
3005 else
3006 {
3007 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3008 release_fileio_fd (fd, fh);
3009 }
3010
3011 if (targetdebug)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "target_fileio_close (%d) = %d (%d)\n",
3014 fd, ret, ret != -1 ? 0 : *target_errno);
3015 return ret;
3016 }
3017
3018 /* See target.h. */
3019
3020 int
3021 target_fileio_unlink (struct inferior *inf, const char *filename,
3022 int *target_errno)
3023 {
3024 struct target_ops *t;
3025
3026 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3027 {
3028 if (t->to_fileio_unlink != NULL)
3029 {
3030 int ret = t->to_fileio_unlink (t, inf, filename,
3031 target_errno);
3032
3033 if (targetdebug)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "target_fileio_unlink (%d,%s)"
3036 " = %d (%d)\n",
3037 inf == NULL ? 0 : inf->num, filename,
3038 ret, ret != -1 ? 0 : *target_errno);
3039 return ret;
3040 }
3041 }
3042
3043 *target_errno = FILEIO_ENOSYS;
3044 return -1;
3045 }
3046
3047 /* See target.h. */
3048
3049 char *
3050 target_fileio_readlink (struct inferior *inf, const char *filename,
3051 int *target_errno)
3052 {
3053 struct target_ops *t;
3054
3055 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3056 {
3057 if (t->to_fileio_readlink != NULL)
3058 {
3059 char *ret = t->to_fileio_readlink (t, inf, filename,
3060 target_errno);
3061
3062 if (targetdebug)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "target_fileio_readlink (%d,%s)"
3065 " = %s (%d)\n",
3066 inf == NULL ? 0 : inf->num,
3067 filename, ret? ret : "(nil)",
3068 ret? 0 : *target_errno);
3069 return ret;
3070 }
3071 }
3072
3073 *target_errno = FILEIO_ENOSYS;
3074 return NULL;
3075 }
3076
3077 static void
3078 target_fileio_close_cleanup (void *opaque)
3079 {
3080 int fd = *(int *) opaque;
3081 int target_errno;
3082
3083 target_fileio_close (fd, &target_errno);
3084 }
3085
3086 /* Read target file FILENAME, in the filesystem as seen by INF. If
3087 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3088 remote targets, the remote stub). Store the result in *BUF_P and
3089 return the size of the transferred data. PADDING additional bytes
3090 are available in *BUF_P. This is a helper function for
3091 target_fileio_read_alloc; see the declaration of that function for
3092 more information. */
3093
3094 static LONGEST
3095 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3096 gdb_byte **buf_p, int padding)
3097 {
3098 struct cleanup *close_cleanup;
3099 size_t buf_alloc, buf_pos;
3100 gdb_byte *buf;
3101 LONGEST n;
3102 int fd;
3103 int target_errno;
3104
3105 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3106 &target_errno);
3107 if (fd == -1)
3108 return -1;
3109
3110 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3111
3112 /* Start by reading up to 4K at a time. The target will throttle
3113 this number down if necessary. */
3114 buf_alloc = 4096;
3115 buf = (gdb_byte *) xmalloc (buf_alloc);
3116 buf_pos = 0;
3117 while (1)
3118 {
3119 n = target_fileio_pread (fd, &buf[buf_pos],
3120 buf_alloc - buf_pos - padding, buf_pos,
3121 &target_errno);
3122 if (n < 0)
3123 {
3124 /* An error occurred. */
3125 do_cleanups (close_cleanup);
3126 xfree (buf);
3127 return -1;
3128 }
3129 else if (n == 0)
3130 {
3131 /* Read all there was. */
3132 do_cleanups (close_cleanup);
3133 if (buf_pos == 0)
3134 xfree (buf);
3135 else
3136 *buf_p = buf;
3137 return buf_pos;
3138 }
3139
3140 buf_pos += n;
3141
3142 /* If the buffer is filling up, expand it. */
3143 if (buf_alloc < buf_pos * 2)
3144 {
3145 buf_alloc *= 2;
3146 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3147 }
3148
3149 QUIT;
3150 }
3151 }
3152
3153 /* See target.h. */
3154
3155 LONGEST
3156 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3157 gdb_byte **buf_p)
3158 {
3159 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3160 }
3161
3162 /* See target.h. */
3163
3164 char *
3165 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3166 {
3167 gdb_byte *buffer;
3168 char *bufstr;
3169 LONGEST i, transferred;
3170
3171 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3172 bufstr = (char *) buffer;
3173
3174 if (transferred < 0)
3175 return NULL;
3176
3177 if (transferred == 0)
3178 return xstrdup ("");
3179
3180 bufstr[transferred] = 0;
3181
3182 /* Check for embedded NUL bytes; but allow trailing NULs. */
3183 for (i = strlen (bufstr); i < transferred; i++)
3184 if (bufstr[i] != 0)
3185 {
3186 warning (_("target file %s "
3187 "contained unexpected null characters"),
3188 filename);
3189 break;
3190 }
3191
3192 return bufstr;
3193 }
3194
3195
3196 static int
3197 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3198 CORE_ADDR addr, int len)
3199 {
3200 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3201 }
3202
3203 static int
3204 default_watchpoint_addr_within_range (struct target_ops *target,
3205 CORE_ADDR addr,
3206 CORE_ADDR start, int length)
3207 {
3208 return addr >= start && addr < start + length;
3209 }
3210
3211 static struct gdbarch *
3212 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3213 {
3214 return target_gdbarch ();
3215 }
3216
3217 static int
3218 return_zero (struct target_ops *ignore)
3219 {
3220 return 0;
3221 }
3222
3223 static int
3224 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3225 {
3226 return 0;
3227 }
3228
3229 /*
3230 * Find the next target down the stack from the specified target.
3231 */
3232
3233 struct target_ops *
3234 find_target_beneath (struct target_ops *t)
3235 {
3236 return t->beneath;
3237 }
3238
3239 /* See target.h. */
3240
3241 struct target_ops *
3242 find_target_at (enum strata stratum)
3243 {
3244 struct target_ops *t;
3245
3246 for (t = current_target.beneath; t != NULL; t = t->beneath)
3247 if (t->to_stratum == stratum)
3248 return t;
3249
3250 return NULL;
3251 }
3252
3253 \f
3254 /* The inferior process has died. Long live the inferior! */
3255
3256 void
3257 generic_mourn_inferior (void)
3258 {
3259 ptid_t ptid;
3260
3261 ptid = inferior_ptid;
3262 inferior_ptid = null_ptid;
3263
3264 /* Mark breakpoints uninserted in case something tries to delete a
3265 breakpoint while we delete the inferior's threads (which would
3266 fail, since the inferior is long gone). */
3267 mark_breakpoints_out ();
3268
3269 if (!ptid_equal (ptid, null_ptid))
3270 {
3271 int pid = ptid_get_pid (ptid);
3272 exit_inferior (pid);
3273 }
3274
3275 /* Note this wipes step-resume breakpoints, so needs to be done
3276 after exit_inferior, which ends up referencing the step-resume
3277 breakpoints through clear_thread_inferior_resources. */
3278 breakpoint_init_inferior (inf_exited);
3279
3280 registers_changed ();
3281
3282 reopen_exec_file ();
3283 reinit_frame_cache ();
3284
3285 if (deprecated_detach_hook)
3286 deprecated_detach_hook ();
3287 }
3288 \f
3289 /* Convert a normal process ID to a string. Returns the string in a
3290 static buffer. */
3291
3292 char *
3293 normal_pid_to_str (ptid_t ptid)
3294 {
3295 static char buf[32];
3296
3297 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3298 return buf;
3299 }
3300
3301 static char *
3302 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3303 {
3304 return normal_pid_to_str (ptid);
3305 }
3306
3307 /* Error-catcher for target_find_memory_regions. */
3308 static int
3309 dummy_find_memory_regions (struct target_ops *self,
3310 find_memory_region_ftype ignore1, void *ignore2)
3311 {
3312 error (_("Command not implemented for this target."));
3313 return 0;
3314 }
3315
3316 /* Error-catcher for target_make_corefile_notes. */
3317 static char *
3318 dummy_make_corefile_notes (struct target_ops *self,
3319 bfd *ignore1, int *ignore2)
3320 {
3321 error (_("Command not implemented for this target."));
3322 return NULL;
3323 }
3324
3325 /* Set up the handful of non-empty slots needed by the dummy target
3326 vector. */
3327
3328 static void
3329 init_dummy_target (void)
3330 {
3331 dummy_target.to_shortname = "None";
3332 dummy_target.to_longname = "None";
3333 dummy_target.to_doc = "";
3334 dummy_target.to_supports_disable_randomization
3335 = find_default_supports_disable_randomization;
3336 dummy_target.to_stratum = dummy_stratum;
3337 dummy_target.to_has_all_memory = return_zero;
3338 dummy_target.to_has_memory = return_zero;
3339 dummy_target.to_has_stack = return_zero;
3340 dummy_target.to_has_registers = return_zero;
3341 dummy_target.to_has_execution = return_zero_has_execution;
3342 dummy_target.to_magic = OPS_MAGIC;
3343
3344 install_dummy_methods (&dummy_target);
3345 }
3346 \f
3347
3348 void
3349 target_close (struct target_ops *targ)
3350 {
3351 gdb_assert (!target_is_pushed (targ));
3352
3353 if (targ->to_xclose != NULL)
3354 targ->to_xclose (targ);
3355 else if (targ->to_close != NULL)
3356 targ->to_close (targ);
3357
3358 if (targetdebug)
3359 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3360 }
3361
3362 int
3363 target_thread_alive (ptid_t ptid)
3364 {
3365 return current_target.to_thread_alive (&current_target, ptid);
3366 }
3367
3368 void
3369 target_update_thread_list (void)
3370 {
3371 current_target.to_update_thread_list (&current_target);
3372 }
3373
3374 void
3375 target_stop (ptid_t ptid)
3376 {
3377 if (!may_stop)
3378 {
3379 warning (_("May not interrupt or stop the target, ignoring attempt"));
3380 return;
3381 }
3382
3383 (*current_target.to_stop) (&current_target, ptid);
3384 }
3385
3386 void
3387 target_interrupt (ptid_t ptid)
3388 {
3389 if (!may_stop)
3390 {
3391 warning (_("May not interrupt or stop the target, ignoring attempt"));
3392 return;
3393 }
3394
3395 (*current_target.to_interrupt) (&current_target, ptid);
3396 }
3397
3398 /* See target.h. */
3399
3400 void
3401 target_pass_ctrlc (void)
3402 {
3403 (*current_target.to_pass_ctrlc) (&current_target);
3404 }
3405
3406 /* See target.h. */
3407
3408 void
3409 default_target_pass_ctrlc (struct target_ops *ops)
3410 {
3411 target_interrupt (inferior_ptid);
3412 }
3413
3414 /* See target/target.h. */
3415
3416 void
3417 target_stop_and_wait (ptid_t ptid)
3418 {
3419 struct target_waitstatus status;
3420 int was_non_stop = non_stop;
3421
3422 non_stop = 1;
3423 target_stop (ptid);
3424
3425 memset (&status, 0, sizeof (status));
3426 target_wait (ptid, &status, 0);
3427
3428 non_stop = was_non_stop;
3429 }
3430
3431 /* See target/target.h. */
3432
3433 void
3434 target_continue_no_signal (ptid_t ptid)
3435 {
3436 target_resume (ptid, 0, GDB_SIGNAL_0);
3437 }
3438
3439 /* Concatenate ELEM to LIST, a comma separate list, and return the
3440 result. The LIST incoming argument is released. */
3441
3442 static char *
3443 str_comma_list_concat_elem (char *list, const char *elem)
3444 {
3445 if (list == NULL)
3446 return xstrdup (elem);
3447 else
3448 return reconcat (list, list, ", ", elem, (char *) NULL);
3449 }
3450
3451 /* Helper for target_options_to_string. If OPT is present in
3452 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3453 Returns the new resulting string. OPT is removed from
3454 TARGET_OPTIONS. */
3455
3456 static char *
3457 do_option (int *target_options, char *ret,
3458 int opt, char *opt_str)
3459 {
3460 if ((*target_options & opt) != 0)
3461 {
3462 ret = str_comma_list_concat_elem (ret, opt_str);
3463 *target_options &= ~opt;
3464 }
3465
3466 return ret;
3467 }
3468
3469 char *
3470 target_options_to_string (int target_options)
3471 {
3472 char *ret = NULL;
3473
3474 #define DO_TARG_OPTION(OPT) \
3475 ret = do_option (&target_options, ret, OPT, #OPT)
3476
3477 DO_TARG_OPTION (TARGET_WNOHANG);
3478
3479 if (target_options != 0)
3480 ret = str_comma_list_concat_elem (ret, "unknown???");
3481
3482 if (ret == NULL)
3483 ret = xstrdup ("");
3484 return ret;
3485 }
3486
3487 static void
3488 debug_print_register (const char * func,
3489 struct regcache *regcache, int regno)
3490 {
3491 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3492
3493 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3494 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3495 && gdbarch_register_name (gdbarch, regno) != NULL
3496 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3497 fprintf_unfiltered (gdb_stdlog, "(%s)",
3498 gdbarch_register_name (gdbarch, regno));
3499 else
3500 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3501 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3502 {
3503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3504 int i, size = register_size (gdbarch, regno);
3505 gdb_byte buf[MAX_REGISTER_SIZE];
3506
3507 regcache_raw_collect (regcache, regno, buf);
3508 fprintf_unfiltered (gdb_stdlog, " = ");
3509 for (i = 0; i < size; i++)
3510 {
3511 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3512 }
3513 if (size <= sizeof (LONGEST))
3514 {
3515 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3516
3517 fprintf_unfiltered (gdb_stdlog, " %s %s",
3518 core_addr_to_string_nz (val), plongest (val));
3519 }
3520 }
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
3524 void
3525 target_fetch_registers (struct regcache *regcache, int regno)
3526 {
3527 current_target.to_fetch_registers (&current_target, regcache, regno);
3528 if (targetdebug)
3529 debug_print_register ("target_fetch_registers", regcache, regno);
3530 }
3531
3532 void
3533 target_store_registers (struct regcache *regcache, int regno)
3534 {
3535 if (!may_write_registers)
3536 error (_("Writing to registers is not allowed (regno %d)"), regno);
3537
3538 current_target.to_store_registers (&current_target, regcache, regno);
3539 if (targetdebug)
3540 {
3541 debug_print_register ("target_store_registers", regcache, regno);
3542 }
3543 }
3544
3545 int
3546 target_core_of_thread (ptid_t ptid)
3547 {
3548 return current_target.to_core_of_thread (&current_target, ptid);
3549 }
3550
3551 int
3552 simple_verify_memory (struct target_ops *ops,
3553 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3554 {
3555 LONGEST total_xfered = 0;
3556
3557 while (total_xfered < size)
3558 {
3559 ULONGEST xfered_len;
3560 enum target_xfer_status status;
3561 gdb_byte buf[1024];
3562 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3563
3564 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3565 buf, NULL, lma + total_xfered, howmuch,
3566 &xfered_len);
3567 if (status == TARGET_XFER_OK
3568 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3569 {
3570 total_xfered += xfered_len;
3571 QUIT;
3572 }
3573 else
3574 return 0;
3575 }
3576 return 1;
3577 }
3578
3579 /* Default implementation of memory verification. */
3580
3581 static int
3582 default_verify_memory (struct target_ops *self,
3583 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3584 {
3585 /* Start over from the top of the target stack. */
3586 return simple_verify_memory (current_target.beneath,
3587 data, memaddr, size);
3588 }
3589
3590 int
3591 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3592 {
3593 return current_target.to_verify_memory (&current_target,
3594 data, memaddr, size);
3595 }
3596
3597 /* The documentation for this function is in its prototype declaration in
3598 target.h. */
3599
3600 int
3601 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3602 enum target_hw_bp_type rw)
3603 {
3604 return current_target.to_insert_mask_watchpoint (&current_target,
3605 addr, mask, rw);
3606 }
3607
3608 /* The documentation for this function is in its prototype declaration in
3609 target.h. */
3610
3611 int
3612 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3613 enum target_hw_bp_type rw)
3614 {
3615 return current_target.to_remove_mask_watchpoint (&current_target,
3616 addr, mask, rw);
3617 }
3618
3619 /* The documentation for this function is in its prototype declaration
3620 in target.h. */
3621
3622 int
3623 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3624 {
3625 return current_target.to_masked_watch_num_registers (&current_target,
3626 addr, mask);
3627 }
3628
3629 /* The documentation for this function is in its prototype declaration
3630 in target.h. */
3631
3632 int
3633 target_ranged_break_num_registers (void)
3634 {
3635 return current_target.to_ranged_break_num_registers (&current_target);
3636 }
3637
3638 /* See target.h. */
3639
3640 int
3641 target_supports_btrace (enum btrace_format format)
3642 {
3643 return current_target.to_supports_btrace (&current_target, format);
3644 }
3645
3646 /* See target.h. */
3647
3648 struct btrace_target_info *
3649 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3650 {
3651 return current_target.to_enable_btrace (&current_target, ptid, conf);
3652 }
3653
3654 /* See target.h. */
3655
3656 void
3657 target_disable_btrace (struct btrace_target_info *btinfo)
3658 {
3659 current_target.to_disable_btrace (&current_target, btinfo);
3660 }
3661
3662 /* See target.h. */
3663
3664 void
3665 target_teardown_btrace (struct btrace_target_info *btinfo)
3666 {
3667 current_target.to_teardown_btrace (&current_target, btinfo);
3668 }
3669
3670 /* See target.h. */
3671
3672 enum btrace_error
3673 target_read_btrace (struct btrace_data *btrace,
3674 struct btrace_target_info *btinfo,
3675 enum btrace_read_type type)
3676 {
3677 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3678 }
3679
3680 /* See target.h. */
3681
3682 const struct btrace_config *
3683 target_btrace_conf (const struct btrace_target_info *btinfo)
3684 {
3685 return current_target.to_btrace_conf (&current_target, btinfo);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_stop_recording (void)
3692 {
3693 current_target.to_stop_recording (&current_target);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_save_record (const char *filename)
3700 {
3701 current_target.to_save_record (&current_target, filename);
3702 }
3703
3704 /* See target.h. */
3705
3706 int
3707 target_supports_delete_record (void)
3708 {
3709 struct target_ops *t;
3710
3711 for (t = current_target.beneath; t != NULL; t = t->beneath)
3712 if (t->to_delete_record != delegate_delete_record
3713 && t->to_delete_record != tdefault_delete_record)
3714 return 1;
3715
3716 return 0;
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_delete_record (void)
3723 {
3724 current_target.to_delete_record (&current_target);
3725 }
3726
3727 /* See target.h. */
3728
3729 int
3730 target_record_is_replaying (ptid_t ptid)
3731 {
3732 return current_target.to_record_is_replaying (&current_target, ptid);
3733 }
3734
3735 /* See target.h. */
3736
3737 int
3738 target_record_will_replay (ptid_t ptid, int dir)
3739 {
3740 return current_target.to_record_will_replay (&current_target, ptid, dir);
3741 }
3742
3743 /* See target.h. */
3744
3745 void
3746 target_record_stop_replaying (void)
3747 {
3748 current_target.to_record_stop_replaying (&current_target);
3749 }
3750
3751 /* See target.h. */
3752
3753 void
3754 target_goto_record_begin (void)
3755 {
3756 current_target.to_goto_record_begin (&current_target);
3757 }
3758
3759 /* See target.h. */
3760
3761 void
3762 target_goto_record_end (void)
3763 {
3764 current_target.to_goto_record_end (&current_target);
3765 }
3766
3767 /* See target.h. */
3768
3769 void
3770 target_goto_record (ULONGEST insn)
3771 {
3772 current_target.to_goto_record (&current_target, insn);
3773 }
3774
3775 /* See target.h. */
3776
3777 void
3778 target_insn_history (int size, int flags)
3779 {
3780 current_target.to_insn_history (&current_target, size, flags);
3781 }
3782
3783 /* See target.h. */
3784
3785 void
3786 target_insn_history_from (ULONGEST from, int size, int flags)
3787 {
3788 current_target.to_insn_history_from (&current_target, from, size, flags);
3789 }
3790
3791 /* See target.h. */
3792
3793 void
3794 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3795 {
3796 current_target.to_insn_history_range (&current_target, begin, end, flags);
3797 }
3798
3799 /* See target.h. */
3800
3801 void
3802 target_call_history (int size, int flags)
3803 {
3804 current_target.to_call_history (&current_target, size, flags);
3805 }
3806
3807 /* See target.h. */
3808
3809 void
3810 target_call_history_from (ULONGEST begin, int size, int flags)
3811 {
3812 current_target.to_call_history_from (&current_target, begin, size, flags);
3813 }
3814
3815 /* See target.h. */
3816
3817 void
3818 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3819 {
3820 current_target.to_call_history_range (&current_target, begin, end, flags);
3821 }
3822
3823 /* See target.h. */
3824
3825 const struct frame_unwind *
3826 target_get_unwinder (void)
3827 {
3828 return current_target.to_get_unwinder (&current_target);
3829 }
3830
3831 /* See target.h. */
3832
3833 const struct frame_unwind *
3834 target_get_tailcall_unwinder (void)
3835 {
3836 return current_target.to_get_tailcall_unwinder (&current_target);
3837 }
3838
3839 /* See target.h. */
3840
3841 void
3842 target_prepare_to_generate_core (void)
3843 {
3844 current_target.to_prepare_to_generate_core (&current_target);
3845 }
3846
3847 /* See target.h. */
3848
3849 void
3850 target_done_generating_core (void)
3851 {
3852 current_target.to_done_generating_core (&current_target);
3853 }
3854
3855 static void
3856 setup_target_debug (void)
3857 {
3858 memcpy (&debug_target, &current_target, sizeof debug_target);
3859
3860 init_debug_target (&current_target);
3861 }
3862 \f
3863
3864 static char targ_desc[] =
3865 "Names of targets and files being debugged.\nShows the entire \
3866 stack of targets currently in use (including the exec-file,\n\
3867 core-file, and process, if any), as well as the symbol file name.";
3868
3869 static void
3870 default_rcmd (struct target_ops *self, const char *command,
3871 struct ui_file *output)
3872 {
3873 error (_("\"monitor\" command not supported by this target."));
3874 }
3875
3876 static void
3877 do_monitor_command (char *cmd,
3878 int from_tty)
3879 {
3880 target_rcmd (cmd, gdb_stdtarg);
3881 }
3882
3883 /* Print the name of each layers of our target stack. */
3884
3885 static void
3886 maintenance_print_target_stack (char *cmd, int from_tty)
3887 {
3888 struct target_ops *t;
3889
3890 printf_filtered (_("The current target stack is:\n"));
3891
3892 for (t = target_stack; t != NULL; t = t->beneath)
3893 {
3894 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3895 }
3896 }
3897
3898 /* See target.h. */
3899
3900 void
3901 target_async (int enable)
3902 {
3903 infrun_async (enable);
3904 current_target.to_async (&current_target, enable);
3905 }
3906
3907 /* See target.h. */
3908
3909 void
3910 target_thread_events (int enable)
3911 {
3912 current_target.to_thread_events (&current_target, enable);
3913 }
3914
3915 /* Controls if targets can report that they can/are async. This is
3916 just for maintainers to use when debugging gdb. */
3917 int target_async_permitted = 1;
3918
3919 /* The set command writes to this variable. If the inferior is
3920 executing, target_async_permitted is *not* updated. */
3921 static int target_async_permitted_1 = 1;
3922
3923 static void
3924 maint_set_target_async_command (char *args, int from_tty,
3925 struct cmd_list_element *c)
3926 {
3927 if (have_live_inferiors ())
3928 {
3929 target_async_permitted_1 = target_async_permitted;
3930 error (_("Cannot change this setting while the inferior is running."));
3931 }
3932
3933 target_async_permitted = target_async_permitted_1;
3934 }
3935
3936 static void
3937 maint_show_target_async_command (struct ui_file *file, int from_tty,
3938 struct cmd_list_element *c,
3939 const char *value)
3940 {
3941 fprintf_filtered (file,
3942 _("Controlling the inferior in "
3943 "asynchronous mode is %s.\n"), value);
3944 }
3945
3946 /* Return true if the target operates in non-stop mode even with "set
3947 non-stop off". */
3948
3949 static int
3950 target_always_non_stop_p (void)
3951 {
3952 return current_target.to_always_non_stop_p (&current_target);
3953 }
3954
3955 /* See target.h. */
3956
3957 int
3958 target_is_non_stop_p (void)
3959 {
3960 return (non_stop
3961 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3962 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3963 && target_always_non_stop_p ()));
3964 }
3965
3966 /* Controls if targets can report that they always run in non-stop
3967 mode. This is just for maintainers to use when debugging gdb. */
3968 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3969
3970 /* The set command writes to this variable. If the inferior is
3971 executing, target_non_stop_enabled is *not* updated. */
3972 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3973
3974 /* Implementation of "maint set target-non-stop". */
3975
3976 static void
3977 maint_set_target_non_stop_command (char *args, int from_tty,
3978 struct cmd_list_element *c)
3979 {
3980 if (have_live_inferiors ())
3981 {
3982 target_non_stop_enabled_1 = target_non_stop_enabled;
3983 error (_("Cannot change this setting while the inferior is running."));
3984 }
3985
3986 target_non_stop_enabled = target_non_stop_enabled_1;
3987 }
3988
3989 /* Implementation of "maint show target-non-stop". */
3990
3991 static void
3992 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3993 struct cmd_list_element *c,
3994 const char *value)
3995 {
3996 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3997 fprintf_filtered (file,
3998 _("Whether the target is always in non-stop mode "
3999 "is %s (currently %s).\n"), value,
4000 target_always_non_stop_p () ? "on" : "off");
4001 else
4002 fprintf_filtered (file,
4003 _("Whether the target is always in non-stop mode "
4004 "is %s.\n"), value);
4005 }
4006
4007 /* Temporary copies of permission settings. */
4008
4009 static int may_write_registers_1 = 1;
4010 static int may_write_memory_1 = 1;
4011 static int may_insert_breakpoints_1 = 1;
4012 static int may_insert_tracepoints_1 = 1;
4013 static int may_insert_fast_tracepoints_1 = 1;
4014 static int may_stop_1 = 1;
4015
4016 /* Make the user-set values match the real values again. */
4017
4018 void
4019 update_target_permissions (void)
4020 {
4021 may_write_registers_1 = may_write_registers;
4022 may_write_memory_1 = may_write_memory;
4023 may_insert_breakpoints_1 = may_insert_breakpoints;
4024 may_insert_tracepoints_1 = may_insert_tracepoints;
4025 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4026 may_stop_1 = may_stop;
4027 }
4028
4029 /* The one function handles (most of) the permission flags in the same
4030 way. */
4031
4032 static void
4033 set_target_permissions (char *args, int from_tty,
4034 struct cmd_list_element *c)
4035 {
4036 if (target_has_execution)
4037 {
4038 update_target_permissions ();
4039 error (_("Cannot change this setting while the inferior is running."));
4040 }
4041
4042 /* Make the real values match the user-changed values. */
4043 may_write_registers = may_write_registers_1;
4044 may_insert_breakpoints = may_insert_breakpoints_1;
4045 may_insert_tracepoints = may_insert_tracepoints_1;
4046 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4047 may_stop = may_stop_1;
4048 update_observer_mode ();
4049 }
4050
4051 /* Set memory write permission independently of observer mode. */
4052
4053 static void
4054 set_write_memory_permission (char *args, int from_tty,
4055 struct cmd_list_element *c)
4056 {
4057 /* Make the real values match the user-changed values. */
4058 may_write_memory = may_write_memory_1;
4059 update_observer_mode ();
4060 }
4061
4062
4063 void
4064 initialize_targets (void)
4065 {
4066 init_dummy_target ();
4067 push_target (&dummy_target);
4068
4069 add_info ("target", target_info, targ_desc);
4070 add_info ("files", target_info, targ_desc);
4071
4072 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4073 Set target debugging."), _("\
4074 Show target debugging."), _("\
4075 When non-zero, target debugging is enabled. Higher numbers are more\n\
4076 verbose."),
4077 set_targetdebug,
4078 show_targetdebug,
4079 &setdebuglist, &showdebuglist);
4080
4081 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4082 &trust_readonly, _("\
4083 Set mode for reading from readonly sections."), _("\
4084 Show mode for reading from readonly sections."), _("\
4085 When this mode is on, memory reads from readonly sections (such as .text)\n\
4086 will be read from the object file instead of from the target. This will\n\
4087 result in significant performance improvement for remote targets."),
4088 NULL,
4089 show_trust_readonly,
4090 &setlist, &showlist);
4091
4092 add_com ("monitor", class_obscure, do_monitor_command,
4093 _("Send a command to the remote monitor (remote targets only)."));
4094
4095 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4096 _("Print the name of each layer of the internal target stack."),
4097 &maintenanceprintlist);
4098
4099 add_setshow_boolean_cmd ("target-async", no_class,
4100 &target_async_permitted_1, _("\
4101 Set whether gdb controls the inferior in asynchronous mode."), _("\
4102 Show whether gdb controls the inferior in asynchronous mode."), _("\
4103 Tells gdb whether to control the inferior in asynchronous mode."),
4104 maint_set_target_async_command,
4105 maint_show_target_async_command,
4106 &maintenance_set_cmdlist,
4107 &maintenance_show_cmdlist);
4108
4109 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4110 &target_non_stop_enabled_1, _("\
4111 Set whether gdb always controls the inferior in non-stop mode."), _("\
4112 Show whether gdb always controls the inferior in non-stop mode."), _("\
4113 Tells gdb whether to control the inferior in non-stop mode."),
4114 maint_set_target_non_stop_command,
4115 maint_show_target_non_stop_command,
4116 &maintenance_set_cmdlist,
4117 &maintenance_show_cmdlist);
4118
4119 add_setshow_boolean_cmd ("may-write-registers", class_support,
4120 &may_write_registers_1, _("\
4121 Set permission to write into registers."), _("\
4122 Show permission to write into registers."), _("\
4123 When this permission is on, GDB may write into the target's registers.\n\
4124 Otherwise, any sort of write attempt will result in an error."),
4125 set_target_permissions, NULL,
4126 &setlist, &showlist);
4127
4128 add_setshow_boolean_cmd ("may-write-memory", class_support,
4129 &may_write_memory_1, _("\
4130 Set permission to write into target memory."), _("\
4131 Show permission to write into target memory."), _("\
4132 When this permission is on, GDB may write into the target's memory.\n\
4133 Otherwise, any sort of write attempt will result in an error."),
4134 set_write_memory_permission, NULL,
4135 &setlist, &showlist);
4136
4137 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4138 &may_insert_breakpoints_1, _("\
4139 Set permission to insert breakpoints in the target."), _("\
4140 Show permission to insert breakpoints in the target."), _("\
4141 When this permission is on, GDB may insert breakpoints in the program.\n\
4142 Otherwise, any sort of insertion attempt will result in an error."),
4143 set_target_permissions, NULL,
4144 &setlist, &showlist);
4145
4146 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4147 &may_insert_tracepoints_1, _("\
4148 Set permission to insert tracepoints in the target."), _("\
4149 Show permission to insert tracepoints in the target."), _("\
4150 When this permission is on, GDB may insert tracepoints in the program.\n\
4151 Otherwise, any sort of insertion attempt will result in an error."),
4152 set_target_permissions, NULL,
4153 &setlist, &showlist);
4154
4155 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4156 &may_insert_fast_tracepoints_1, _("\
4157 Set permission to insert fast tracepoints in the target."), _("\
4158 Show permission to insert fast tracepoints in the target."), _("\
4159 When this permission is on, GDB may insert fast tracepoints.\n\
4160 Otherwise, any sort of insertion attempt will result in an error."),
4161 set_target_permissions, NULL,
4162 &setlist, &showlist);
4163
4164 add_setshow_boolean_cmd ("may-interrupt", class_support,
4165 &may_stop_1, _("\
4166 Set permission to interrupt or signal the target."), _("\
4167 Show permission to interrupt or signal the target."), _("\
4168 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4169 Otherwise, any attempt to interrupt or stop will be ignored."),
4170 set_target_permissions, NULL,
4171 &setlist, &showlist);
4172
4173 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4174 &auto_connect_native_target, _("\
4175 Set whether GDB may automatically connect to the native target."), _("\
4176 Show whether GDB may automatically connect to the native target."), _("\
4177 When on, and GDB is not connected to a target yet, GDB\n\
4178 attempts \"run\" and other commands with the native target."),
4179 NULL, show_auto_connect_native_target,
4180 &setlist, &showlist);
4181 }
This page took 0.208985 seconds and 4 git commands to generate.