* gdb.dwarf2/dup-psym.exp: Use prepare_for_testing_full.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdb_assert.h"
36 #include "gdbcore.h"
37 #include "exceptions.h"
38 #include "target-descriptions.h"
39 #include "gdbthread.h"
40 #include "solib.h"
41 #include "exec.h"
42 #include "inline-frame.h"
43 #include "tracepoint.h"
44 #include "gdb/fileio.h"
45 #include "agent.h"
46
47 static void target_info (char *, int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static void tcomplain (void) ATTRIBUTE_NORETURN;
57
58 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
59
60 static int return_zero (void);
61
62 static int return_one (void);
63
64 static int return_minus_one (void);
65
66 void target_ignore (void);
67
68 static void target_command (char *, int);
69
70 static struct target_ops *find_default_run_target (char *);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, gdb_byte *readbuf,
75 const gdb_byte *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 static LONGEST current_xfer_partial (struct target_ops *ops,
79 enum target_object object,
80 const char *annex, gdb_byte *readbuf,
81 const gdb_byte *writebuf,
82 ULONGEST offset, LONGEST len);
83
84 static LONGEST target_xfer_partial (struct target_ops *ops,
85 enum target_object object,
86 const char *annex,
87 void *readbuf, const void *writebuf,
88 ULONGEST offset, LONGEST len);
89
90 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
91 ptid_t ptid);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_prepare_to_store (struct regcache *);
100
101 static void debug_to_files_info (struct target_ops *);
102
103 static int debug_to_insert_breakpoint (struct gdbarch *,
104 struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_can_use_hw_breakpoint (int, int, int);
110
111 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
118 struct expression *);
119
120 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_by_watchpoint (void);
124
125 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
126
127 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
128 CORE_ADDR, CORE_ADDR, int);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_load (char *, int);
148
149 static int debug_to_can_run (void);
150
151 static void debug_to_stop (ptid_t);
152
153 /* Pointer to array of target architecture structures; the size of the
154 array; the current index into the array; the allocated size of the
155 array. */
156 struct target_ops **target_structs;
157 unsigned target_struct_size;
158 unsigned target_struct_index;
159 unsigned target_struct_allocsize;
160 #define DEFAULT_ALLOCSIZE 10
161
162 /* The initial current target, so that there is always a semi-valid
163 current target. */
164
165 static struct target_ops dummy_target;
166
167 /* Top of target stack. */
168
169 static struct target_ops *target_stack;
170
171 /* The target structure we are currently using to talk to a process
172 or file or whatever "inferior" we have. */
173
174 struct target_ops current_target;
175
176 /* Command list for target. */
177
178 static struct cmd_list_element *targetlist = NULL;
179
180 /* Nonzero if we should trust readonly sections from the
181 executable when reading memory. */
182
183 static int trust_readonly = 0;
184
185 /* Nonzero if we should show true memory content including
186 memory breakpoint inserted by gdb. */
187
188 static int show_memory_breakpoints = 0;
189
190 /* These globals control whether GDB attempts to perform these
191 operations; they are useful for targets that need to prevent
192 inadvertant disruption, such as in non-stop mode. */
193
194 int may_write_registers = 1;
195
196 int may_write_memory = 1;
197
198 int may_insert_breakpoints = 1;
199
200 int may_insert_tracepoints = 1;
201
202 int may_insert_fast_tracepoints = 1;
203
204 int may_stop = 1;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 /* The option sets this. */
219 static int stack_cache_enabled_p_1 = 1;
220 /* And set_stack_cache_enabled_p updates this.
221 The reason for the separation is so that we don't flush the cache for
222 on->on transitions. */
223 static int stack_cache_enabled_p = 1;
224
225 /* This is called *after* the stack-cache has been set.
226 Flush the cache for off->on and on->off transitions.
227 There's no real need to flush the cache for on->off transitions,
228 except cleanliness. */
229
230 static void
231 set_stack_cache_enabled_p (char *args, int from_tty,
232 struct cmd_list_element *c)
233 {
234 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
235 target_dcache_invalidate ();
236
237 stack_cache_enabled_p = stack_cache_enabled_p_1;
238 }
239
240 static void
241 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
242 struct cmd_list_element *c, const char *value)
243 {
244 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
245 }
246
247 /* Cache of memory operations, to speed up remote access. */
248 static DCACHE *target_dcache;
249
250 /* Invalidate the target dcache. */
251
252 void
253 target_dcache_invalidate (void)
254 {
255 dcache_invalidate (target_dcache);
256 }
257
258 /* The user just typed 'target' without the name of a target. */
259
260 static void
261 target_command (char *arg, int from_tty)
262 {
263 fputs_filtered ("Argument required (target name). Try `help target'\n",
264 gdb_stdout);
265 }
266
267 /* Default target_has_* methods for process_stratum targets. */
268
269 int
270 default_child_has_all_memory (struct target_ops *ops)
271 {
272 /* If no inferior selected, then we can't read memory here. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_memory (struct target_ops *ops)
281 {
282 /* If no inferior selected, then we can't read memory here. */
283 if (ptid_equal (inferior_ptid, null_ptid))
284 return 0;
285
286 return 1;
287 }
288
289 int
290 default_child_has_stack (struct target_ops *ops)
291 {
292 /* If no inferior selected, there's no stack. */
293 if (ptid_equal (inferior_ptid, null_ptid))
294 return 0;
295
296 return 1;
297 }
298
299 int
300 default_child_has_registers (struct target_ops *ops)
301 {
302 /* Can't read registers from no inferior. */
303 if (ptid_equal (inferior_ptid, null_ptid))
304 return 0;
305
306 return 1;
307 }
308
309 int
310 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
311 {
312 /* If there's no thread selected, then we can't make it run through
313 hoops. */
314 if (ptid_equal (the_ptid, null_ptid))
315 return 0;
316
317 return 1;
318 }
319
320
321 int
322 target_has_all_memory_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_all_memory (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_memory_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_memory (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_stack_1 (void)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_stack (t))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_registers_1 (void)
359 {
360 struct target_ops *t;
361
362 for (t = current_target.beneath; t != NULL; t = t->beneath)
363 if (t->to_has_registers (t))
364 return 1;
365
366 return 0;
367 }
368
369 int
370 target_has_execution_1 (ptid_t the_ptid)
371 {
372 struct target_ops *t;
373
374 for (t = current_target.beneath; t != NULL; t = t->beneath)
375 if (t->to_has_execution (t, the_ptid))
376 return 1;
377
378 return 0;
379 }
380
381 int
382 target_has_execution_current (void)
383 {
384 return target_has_execution_1 (inferior_ptid);
385 }
386
387 /* Add a possible target architecture to the list. */
388
389 void
390 add_target (struct target_ops *t)
391 {
392 /* Provide default values for all "must have" methods. */
393 if (t->to_xfer_partial == NULL)
394 t->to_xfer_partial = default_xfer_partial;
395
396 if (t->to_has_all_memory == NULL)
397 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
398
399 if (t->to_has_memory == NULL)
400 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
401
402 if (t->to_has_stack == NULL)
403 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
404
405 if (t->to_has_registers == NULL)
406 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
407
408 if (t->to_has_execution == NULL)
409 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
410
411 if (!target_structs)
412 {
413 target_struct_allocsize = DEFAULT_ALLOCSIZE;
414 target_structs = (struct target_ops **) xmalloc
415 (target_struct_allocsize * sizeof (*target_structs));
416 }
417 if (target_struct_size >= target_struct_allocsize)
418 {
419 target_struct_allocsize *= 2;
420 target_structs = (struct target_ops **)
421 xrealloc ((char *) target_structs,
422 target_struct_allocsize * sizeof (*target_structs));
423 }
424 target_structs[target_struct_size++] = t;
425
426 if (targetlist == NULL)
427 add_prefix_cmd ("target", class_run, target_command, _("\
428 Connect to a target machine or process.\n\
429 The first argument is the type or protocol of the target machine.\n\
430 Remaining arguments are interpreted by the target protocol. For more\n\
431 information on the arguments for a particular protocol, type\n\
432 `help target ' followed by the protocol name."),
433 &targetlist, "target ", 0, &cmdlist);
434 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
435 }
436
437 /* Stub functions */
438
439 void
440 target_ignore (void)
441 {
442 }
443
444 void
445 target_kill (void)
446 {
447 struct target_ops *t;
448
449 for (t = current_target.beneath; t != NULL; t = t->beneath)
450 if (t->to_kill != NULL)
451 {
452 if (targetdebug)
453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
454
455 t->to_kill (t);
456 return;
457 }
458
459 noprocess ();
460 }
461
462 void
463 target_load (char *arg, int from_tty)
464 {
465 target_dcache_invalidate ();
466 (*current_target.to_load) (arg, from_tty);
467 }
468
469 void
470 target_create_inferior (char *exec_file, char *args,
471 char **env, int from_tty)
472 {
473 struct target_ops *t;
474
475 for (t = current_target.beneath; t != NULL; t = t->beneath)
476 {
477 if (t->to_create_inferior != NULL)
478 {
479 t->to_create_inferior (t, exec_file, args, env, from_tty);
480 if (targetdebug)
481 fprintf_unfiltered (gdb_stdlog,
482 "target_create_inferior (%s, %s, xxx, %d)\n",
483 exec_file, args, from_tty);
484 return;
485 }
486 }
487
488 internal_error (__FILE__, __LINE__,
489 _("could not find a target to create inferior"));
490 }
491
492 void
493 target_terminal_inferior (void)
494 {
495 /* A background resume (``run&'') should leave GDB in control of the
496 terminal. Use target_can_async_p, not target_is_async_p, since at
497 this point the target is not async yet. However, if sync_execution
498 is not set, we know it will become async prior to resume. */
499 if (target_can_async_p () && !sync_execution)
500 return;
501
502 /* If GDB is resuming the inferior in the foreground, install
503 inferior's terminal modes. */
504 (*current_target.to_terminal_inferior) ();
505 }
506
507 static int
508 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
509 struct target_ops *t)
510 {
511 errno = EIO; /* Can't read/write this location. */
512 return 0; /* No bytes handled. */
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_target.to_shortname);
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (long lwp, long tid)
542 {
543 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (void)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* Go through the target stack from top to bottom, copying over zero
559 entries in current_target, then filling in still empty entries. In
560 effect, we are doing class inheritance through the pushed target
561 vectors.
562
563 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
564 is currently implemented, is that it discards any knowledge of
565 which target an inherited method originally belonged to.
566 Consequently, new new target methods should instead explicitly and
567 locally search the target stack for the target that can handle the
568 request. */
569
570 static void
571 update_current_target (void)
572 {
573 struct target_ops *t;
574
575 /* First, reset current's contents. */
576 memset (&current_target, 0, sizeof (current_target));
577
578 #define INHERIT(FIELD, TARGET) \
579 if (!current_target.FIELD) \
580 current_target.FIELD = (TARGET)->FIELD
581
582 for (t = target_stack; t; t = t->beneath)
583 {
584 INHERIT (to_shortname, t);
585 INHERIT (to_longname, t);
586 INHERIT (to_doc, t);
587 /* Do not inherit to_open. */
588 /* Do not inherit to_close. */
589 /* Do not inherit to_attach. */
590 INHERIT (to_post_attach, t);
591 INHERIT (to_attach_no_wait, t);
592 /* Do not inherit to_detach. */
593 /* Do not inherit to_disconnect. */
594 /* Do not inherit to_resume. */
595 /* Do not inherit to_wait. */
596 /* Do not inherit to_fetch_registers. */
597 /* Do not inherit to_store_registers. */
598 INHERIT (to_prepare_to_store, t);
599 INHERIT (deprecated_xfer_memory, t);
600 INHERIT (to_files_info, t);
601 INHERIT (to_insert_breakpoint, t);
602 INHERIT (to_remove_breakpoint, t);
603 INHERIT (to_can_use_hw_breakpoint, t);
604 INHERIT (to_insert_hw_breakpoint, t);
605 INHERIT (to_remove_hw_breakpoint, t);
606 /* Do not inherit to_ranged_break_num_registers. */
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 /* Do not inherit to_insert_mask_watchpoint. */
610 /* Do not inherit to_remove_mask_watchpoint. */
611 INHERIT (to_stopped_data_address, t);
612 INHERIT (to_have_steppable_watchpoint, t);
613 INHERIT (to_have_continuable_watchpoint, t);
614 INHERIT (to_stopped_by_watchpoint, t);
615 INHERIT (to_watchpoint_addr_within_range, t);
616 INHERIT (to_region_ok_for_hw_watchpoint, t);
617 INHERIT (to_can_accel_watchpoint_condition, t);
618 /* Do not inherit to_masked_watch_num_registers. */
619 INHERIT (to_terminal_init, t);
620 INHERIT (to_terminal_inferior, t);
621 INHERIT (to_terminal_ours_for_output, t);
622 INHERIT (to_terminal_ours, t);
623 INHERIT (to_terminal_save_ours, t);
624 INHERIT (to_terminal_info, t);
625 /* Do not inherit to_kill. */
626 INHERIT (to_load, t);
627 /* Do no inherit to_create_inferior. */
628 INHERIT (to_post_startup_inferior, t);
629 INHERIT (to_insert_fork_catchpoint, t);
630 INHERIT (to_remove_fork_catchpoint, t);
631 INHERIT (to_insert_vfork_catchpoint, t);
632 INHERIT (to_remove_vfork_catchpoint, t);
633 /* Do not inherit to_follow_fork. */
634 INHERIT (to_insert_exec_catchpoint, t);
635 INHERIT (to_remove_exec_catchpoint, t);
636 INHERIT (to_set_syscall_catchpoint, t);
637 INHERIT (to_has_exited, t);
638 /* Do not inherit to_mourn_inferior. */
639 INHERIT (to_can_run, t);
640 /* Do not inherit to_pass_signals. */
641 /* Do not inherit to_program_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_notes, t);
697 INHERIT (to_get_tib_address, t);
698 INHERIT (to_set_permissions, t);
699 INHERIT (to_static_tracepoint_marker_at, t);
700 INHERIT (to_static_tracepoint_markers_by_strid, t);
701 INHERIT (to_traceframe_info, t);
702 INHERIT (to_use_agent, t);
703 INHERIT (to_can_use_agent, t);
704 INHERIT (to_magic, t);
705 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
706 INHERIT (to_can_run_breakpoint_commands, t);
707 /* Do not inherit to_memory_map. */
708 /* Do not inherit to_flash_erase. */
709 /* Do not inherit to_flash_done. */
710 }
711 #undef INHERIT
712
713 /* Clean up a target struct so it no longer has any zero pointers in
714 it. Some entries are defaulted to a method that print an error,
715 others are hard-wired to a standard recursive default. */
716
717 #define de_fault(field, value) \
718 if (!current_target.field) \
719 current_target.field = value
720
721 de_fault (to_open,
722 (void (*) (char *, int))
723 tcomplain);
724 de_fault (to_close,
725 (void (*) (int))
726 target_ignore);
727 de_fault (to_post_attach,
728 (void (*) (int))
729 target_ignore);
730 de_fault (to_prepare_to_store,
731 (void (*) (struct regcache *))
732 noprocess);
733 de_fault (deprecated_xfer_memory,
734 (int (*) (CORE_ADDR, gdb_byte *, int, int,
735 struct mem_attrib *, struct target_ops *))
736 nomemory);
737 de_fault (to_files_info,
738 (void (*) (struct target_ops *))
739 target_ignore);
740 de_fault (to_insert_breakpoint,
741 memory_insert_breakpoint);
742 de_fault (to_remove_breakpoint,
743 memory_remove_breakpoint);
744 de_fault (to_can_use_hw_breakpoint,
745 (int (*) (int, int, int))
746 return_zero);
747 de_fault (to_insert_hw_breakpoint,
748 (int (*) (struct gdbarch *, struct bp_target_info *))
749 return_minus_one);
750 de_fault (to_remove_hw_breakpoint,
751 (int (*) (struct gdbarch *, struct bp_target_info *))
752 return_minus_one);
753 de_fault (to_insert_watchpoint,
754 (int (*) (CORE_ADDR, int, int, struct expression *))
755 return_minus_one);
756 de_fault (to_remove_watchpoint,
757 (int (*) (CORE_ADDR, int, int, struct expression *))
758 return_minus_one);
759 de_fault (to_stopped_by_watchpoint,
760 (int (*) (void))
761 return_zero);
762 de_fault (to_stopped_data_address,
763 (int (*) (struct target_ops *, CORE_ADDR *))
764 return_zero);
765 de_fault (to_watchpoint_addr_within_range,
766 default_watchpoint_addr_within_range);
767 de_fault (to_region_ok_for_hw_watchpoint,
768 default_region_ok_for_hw_watchpoint);
769 de_fault (to_can_accel_watchpoint_condition,
770 (int (*) (CORE_ADDR, int, int, struct expression *))
771 return_zero);
772 de_fault (to_terminal_init,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_inferior,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_ours_for_output,
779 (void (*) (void))
780 target_ignore);
781 de_fault (to_terminal_ours,
782 (void (*) (void))
783 target_ignore);
784 de_fault (to_terminal_save_ours,
785 (void (*) (void))
786 target_ignore);
787 de_fault (to_terminal_info,
788 default_terminal_info);
789 de_fault (to_load,
790 (void (*) (char *, int))
791 tcomplain);
792 de_fault (to_post_startup_inferior,
793 (void (*) (ptid_t))
794 target_ignore);
795 de_fault (to_insert_fork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_fork_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_insert_vfork_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_remove_vfork_catchpoint,
805 (int (*) (int))
806 return_one);
807 de_fault (to_insert_exec_catchpoint,
808 (int (*) (int))
809 return_one);
810 de_fault (to_remove_exec_catchpoint,
811 (int (*) (int))
812 return_one);
813 de_fault (to_set_syscall_catchpoint,
814 (int (*) (int, int, int, int, int *))
815 return_one);
816 de_fault (to_has_exited,
817 (int (*) (int, int, int *))
818 return_zero);
819 de_fault (to_can_run,
820 return_zero);
821 de_fault (to_extra_thread_info,
822 (char *(*) (struct thread_info *))
823 return_zero);
824 de_fault (to_thread_name,
825 (char *(*) (struct thread_info *))
826 return_zero);
827 de_fault (to_stop,
828 (void (*) (ptid_t))
829 target_ignore);
830 current_target.to_xfer_partial = current_xfer_partial;
831 de_fault (to_rcmd,
832 (void (*) (char *, struct ui_file *))
833 tcomplain);
834 de_fault (to_pid_to_exec_file,
835 (char *(*) (int))
836 return_zero);
837 de_fault (to_async,
838 (void (*) (void (*) (enum inferior_event_type, void*), void*))
839 tcomplain);
840 de_fault (to_thread_architecture,
841 default_thread_architecture);
842 current_target.to_read_description = NULL;
843 de_fault (to_get_ada_task_ptid,
844 (ptid_t (*) (long, long))
845 default_get_ada_task_ptid);
846 de_fault (to_supports_multi_process,
847 (int (*) (void))
848 return_zero);
849 de_fault (to_supports_enable_disable_tracepoint,
850 (int (*) (void))
851 return_zero);
852 de_fault (to_supports_string_tracing,
853 (int (*) (void))
854 return_zero);
855 de_fault (to_trace_init,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_download_tracepoint,
859 (void (*) (struct bp_location *))
860 tcomplain);
861 de_fault (to_can_download_tracepoint,
862 (int (*) (void))
863 return_zero);
864 de_fault (to_download_trace_state_variable,
865 (void (*) (struct trace_state_variable *))
866 tcomplain);
867 de_fault (to_enable_tracepoint,
868 (void (*) (struct bp_location *))
869 tcomplain);
870 de_fault (to_disable_tracepoint,
871 (void (*) (struct bp_location *))
872 tcomplain);
873 de_fault (to_trace_set_readonly_regions,
874 (void (*) (void))
875 tcomplain);
876 de_fault (to_trace_start,
877 (void (*) (void))
878 tcomplain);
879 de_fault (to_get_trace_status,
880 (int (*) (struct trace_status *))
881 return_minus_one);
882 de_fault (to_get_tracepoint_status,
883 (void (*) (struct breakpoint *, struct uploaded_tp *))
884 tcomplain);
885 de_fault (to_trace_stop,
886 (void (*) (void))
887 tcomplain);
888 de_fault (to_trace_find,
889 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
890 return_minus_one);
891 de_fault (to_get_trace_state_variable_value,
892 (int (*) (int, LONGEST *))
893 return_zero);
894 de_fault (to_save_trace_data,
895 (int (*) (const char *))
896 tcomplain);
897 de_fault (to_upload_tracepoints,
898 (int (*) (struct uploaded_tp **))
899 return_zero);
900 de_fault (to_upload_trace_state_variables,
901 (int (*) (struct uploaded_tsv **))
902 return_zero);
903 de_fault (to_get_raw_trace_data,
904 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
905 tcomplain);
906 de_fault (to_get_min_fast_tracepoint_insn_len,
907 (int (*) (void))
908 return_minus_one);
909 de_fault (to_set_disconnected_tracing,
910 (void (*) (int))
911 target_ignore);
912 de_fault (to_set_circular_trace_buffer,
913 (void (*) (int))
914 target_ignore);
915 de_fault (to_set_trace_notes,
916 (int (*) (char *, char *, char *))
917 return_zero);
918 de_fault (to_get_tib_address,
919 (int (*) (ptid_t, CORE_ADDR *))
920 tcomplain);
921 de_fault (to_set_permissions,
922 (void (*) (void))
923 target_ignore);
924 de_fault (to_static_tracepoint_marker_at,
925 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
926 return_zero);
927 de_fault (to_static_tracepoint_markers_by_strid,
928 (VEC(static_tracepoint_marker_p) * (*) (const char *))
929 tcomplain);
930 de_fault (to_traceframe_info,
931 (struct traceframe_info * (*) (void))
932 tcomplain);
933 de_fault (to_supports_evaluation_of_breakpoint_conditions,
934 (int (*) (void))
935 return_zero);
936 de_fault (to_can_run_breakpoint_commands,
937 (int (*) (void))
938 return_zero);
939 de_fault (to_use_agent,
940 (int (*) (int))
941 tcomplain);
942 de_fault (to_can_use_agent,
943 (int (*) (void))
944 return_zero);
945 de_fault (to_execution_direction, default_execution_direction);
946
947 #undef de_fault
948
949 /* Finally, position the target-stack beneath the squashed
950 "current_target". That way code looking for a non-inherited
951 target method can quickly and simply find it. */
952 current_target.beneath = target_stack;
953
954 if (targetdebug)
955 setup_target_debug ();
956 }
957
958 /* Push a new target type into the stack of the existing target accessors,
959 possibly superseding some of the existing accessors.
960
961 Rather than allow an empty stack, we always have the dummy target at
962 the bottom stratum, so we can call the function vectors without
963 checking them. */
964
965 void
966 push_target (struct target_ops *t)
967 {
968 struct target_ops **cur;
969
970 /* Check magic number. If wrong, it probably means someone changed
971 the struct definition, but not all the places that initialize one. */
972 if (t->to_magic != OPS_MAGIC)
973 {
974 fprintf_unfiltered (gdb_stderr,
975 "Magic number of %s target struct wrong\n",
976 t->to_shortname);
977 internal_error (__FILE__, __LINE__,
978 _("failed internal consistency check"));
979 }
980
981 /* Find the proper stratum to install this target in. */
982 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
983 {
984 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
985 break;
986 }
987
988 /* If there's already targets at this stratum, remove them. */
989 /* FIXME: cagney/2003-10-15: I think this should be popping all
990 targets to CUR, and not just those at this stratum level. */
991 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
992 {
993 /* There's already something at this stratum level. Close it,
994 and un-hook it from the stack. */
995 struct target_ops *tmp = (*cur);
996
997 (*cur) = (*cur)->beneath;
998 tmp->beneath = NULL;
999 target_close (tmp, 0);
1000 }
1001
1002 /* We have removed all targets in our stratum, now add the new one. */
1003 t->beneath = (*cur);
1004 (*cur) = t;
1005
1006 update_current_target ();
1007 }
1008
1009 /* Remove a target_ops vector from the stack, wherever it may be.
1010 Return how many times it was removed (0 or 1). */
1011
1012 int
1013 unpush_target (struct target_ops *t)
1014 {
1015 struct target_ops **cur;
1016 struct target_ops *tmp;
1017
1018 if (t->to_stratum == dummy_stratum)
1019 internal_error (__FILE__, __LINE__,
1020 _("Attempt to unpush the dummy target"));
1021
1022 /* Look for the specified target. Note that we assume that a target
1023 can only occur once in the target stack. */
1024
1025 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1026 {
1027 if ((*cur) == t)
1028 break;
1029 }
1030
1031 /* If we don't find target_ops, quit. Only open targets should be
1032 closed. */
1033 if ((*cur) == NULL)
1034 return 0;
1035
1036 /* Unchain the target. */
1037 tmp = (*cur);
1038 (*cur) = (*cur)->beneath;
1039 tmp->beneath = NULL;
1040
1041 update_current_target ();
1042
1043 /* Finally close the target. Note we do this after unchaining, so
1044 any target method calls from within the target_close
1045 implementation don't end up in T anymore. */
1046 target_close (t, 0);
1047
1048 return 1;
1049 }
1050
1051 void
1052 pop_target (void)
1053 {
1054 target_close (target_stack, 0); /* Let it clean up. */
1055 if (unpush_target (target_stack) == 1)
1056 return;
1057
1058 fprintf_unfiltered (gdb_stderr,
1059 "pop_target couldn't find target %s\n",
1060 current_target.to_shortname);
1061 internal_error (__FILE__, __LINE__,
1062 _("failed internal consistency check"));
1063 }
1064
1065 void
1066 pop_all_targets_above (enum strata above_stratum, int quitting)
1067 {
1068 while ((int) (current_target.to_stratum) > (int) above_stratum)
1069 {
1070 target_close (target_stack, quitting);
1071 if (!unpush_target (target_stack))
1072 {
1073 fprintf_unfiltered (gdb_stderr,
1074 "pop_all_targets couldn't find target %s\n",
1075 target_stack->to_shortname);
1076 internal_error (__FILE__, __LINE__,
1077 _("failed internal consistency check"));
1078 break;
1079 }
1080 }
1081 }
1082
1083 void
1084 pop_all_targets (int quitting)
1085 {
1086 pop_all_targets_above (dummy_stratum, quitting);
1087 }
1088
1089 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1090
1091 int
1092 target_is_pushed (struct target_ops *t)
1093 {
1094 struct target_ops **cur;
1095
1096 /* Check magic number. If wrong, it probably means someone changed
1097 the struct definition, but not all the places that initialize one. */
1098 if (t->to_magic != OPS_MAGIC)
1099 {
1100 fprintf_unfiltered (gdb_stderr,
1101 "Magic number of %s target struct wrong\n",
1102 t->to_shortname);
1103 internal_error (__FILE__, __LINE__,
1104 _("failed internal consistency check"));
1105 }
1106
1107 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1108 if (*cur == t)
1109 return 1;
1110
1111 return 0;
1112 }
1113
1114 /* Using the objfile specified in OBJFILE, find the address for the
1115 current thread's thread-local storage with offset OFFSET. */
1116 CORE_ADDR
1117 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1118 {
1119 volatile CORE_ADDR addr = 0;
1120 struct target_ops *target;
1121
1122 for (target = current_target.beneath;
1123 target != NULL;
1124 target = target->beneath)
1125 {
1126 if (target->to_get_thread_local_address != NULL)
1127 break;
1128 }
1129
1130 if (target != NULL
1131 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1132 {
1133 ptid_t ptid = inferior_ptid;
1134 volatile struct gdb_exception ex;
1135
1136 TRY_CATCH (ex, RETURN_MASK_ALL)
1137 {
1138 CORE_ADDR lm_addr;
1139
1140 /* Fetch the load module address for this objfile. */
1141 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1142 objfile);
1143 /* If it's 0, throw the appropriate exception. */
1144 if (lm_addr == 0)
1145 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1146 _("TLS load module not found"));
1147
1148 addr = target->to_get_thread_local_address (target, ptid,
1149 lm_addr, offset);
1150 }
1151 /* If an error occurred, print TLS related messages here. Otherwise,
1152 throw the error to some higher catcher. */
1153 if (ex.reason < 0)
1154 {
1155 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1156
1157 switch (ex.error)
1158 {
1159 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1160 error (_("Cannot find thread-local variables "
1161 "in this thread library."));
1162 break;
1163 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1164 if (objfile_is_library)
1165 error (_("Cannot find shared library `%s' in dynamic"
1166 " linker's load module list"), objfile->name);
1167 else
1168 error (_("Cannot find executable file `%s' in dynamic"
1169 " linker's load module list"), objfile->name);
1170 break;
1171 case TLS_NOT_ALLOCATED_YET_ERROR:
1172 if (objfile_is_library)
1173 error (_("The inferior has not yet allocated storage for"
1174 " thread-local variables in\n"
1175 "the shared library `%s'\n"
1176 "for %s"),
1177 objfile->name, target_pid_to_str (ptid));
1178 else
1179 error (_("The inferior has not yet allocated storage for"
1180 " thread-local variables in\n"
1181 "the executable `%s'\n"
1182 "for %s"),
1183 objfile->name, target_pid_to_str (ptid));
1184 break;
1185 case TLS_GENERIC_ERROR:
1186 if (objfile_is_library)
1187 error (_("Cannot find thread-local storage for %s, "
1188 "shared library %s:\n%s"),
1189 target_pid_to_str (ptid),
1190 objfile->name, ex.message);
1191 else
1192 error (_("Cannot find thread-local storage for %s, "
1193 "executable file %s:\n%s"),
1194 target_pid_to_str (ptid),
1195 objfile->name, ex.message);
1196 break;
1197 default:
1198 throw_exception (ex);
1199 break;
1200 }
1201 }
1202 }
1203 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1204 TLS is an ABI-specific thing. But we don't do that yet. */
1205 else
1206 error (_("Cannot find thread-local variables on this target"));
1207
1208 return addr;
1209 }
1210
1211 #undef MIN
1212 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1213
1214 /* target_read_string -- read a null terminated string, up to LEN bytes,
1215 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1216 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1217 is responsible for freeing it. Return the number of bytes successfully
1218 read. */
1219
1220 int
1221 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1222 {
1223 int tlen, origlen, offset, i;
1224 gdb_byte buf[4];
1225 int errcode = 0;
1226 char *buffer;
1227 int buffer_allocated;
1228 char *bufptr;
1229 unsigned int nbytes_read = 0;
1230
1231 gdb_assert (string);
1232
1233 /* Small for testing. */
1234 buffer_allocated = 4;
1235 buffer = xmalloc (buffer_allocated);
1236 bufptr = buffer;
1237
1238 origlen = len;
1239
1240 while (len > 0)
1241 {
1242 tlen = MIN (len, 4 - (memaddr & 3));
1243 offset = memaddr & 3;
1244
1245 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1246 if (errcode != 0)
1247 {
1248 /* The transfer request might have crossed the boundary to an
1249 unallocated region of memory. Retry the transfer, requesting
1250 a single byte. */
1251 tlen = 1;
1252 offset = 0;
1253 errcode = target_read_memory (memaddr, buf, 1);
1254 if (errcode != 0)
1255 goto done;
1256 }
1257
1258 if (bufptr - buffer + tlen > buffer_allocated)
1259 {
1260 unsigned int bytes;
1261
1262 bytes = bufptr - buffer;
1263 buffer_allocated *= 2;
1264 buffer = xrealloc (buffer, buffer_allocated);
1265 bufptr = buffer + bytes;
1266 }
1267
1268 for (i = 0; i < tlen; i++)
1269 {
1270 *bufptr++ = buf[i + offset];
1271 if (buf[i + offset] == '\000')
1272 {
1273 nbytes_read += i + 1;
1274 goto done;
1275 }
1276 }
1277
1278 memaddr += tlen;
1279 len -= tlen;
1280 nbytes_read += tlen;
1281 }
1282 done:
1283 *string = buffer;
1284 if (errnop != NULL)
1285 *errnop = errcode;
1286 return nbytes_read;
1287 }
1288
1289 struct target_section_table *
1290 target_get_section_table (struct target_ops *target)
1291 {
1292 struct target_ops *t;
1293
1294 if (targetdebug)
1295 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1296
1297 for (t = target; t != NULL; t = t->beneath)
1298 if (t->to_get_section_table != NULL)
1299 return (*t->to_get_section_table) (t);
1300
1301 return NULL;
1302 }
1303
1304 /* Find a section containing ADDR. */
1305
1306 struct target_section *
1307 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1308 {
1309 struct target_section_table *table = target_get_section_table (target);
1310 struct target_section *secp;
1311
1312 if (table == NULL)
1313 return NULL;
1314
1315 for (secp = table->sections; secp < table->sections_end; secp++)
1316 {
1317 if (addr >= secp->addr && addr < secp->endaddr)
1318 return secp;
1319 }
1320 return NULL;
1321 }
1322
1323 /* Read memory from the live target, even if currently inspecting a
1324 traceframe. The return is the same as that of target_read. */
1325
1326 static LONGEST
1327 target_read_live_memory (enum target_object object,
1328 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1329 {
1330 int ret;
1331 struct cleanup *cleanup;
1332
1333 /* Switch momentarily out of tfind mode so to access live memory.
1334 Note that this must not clear global state, such as the frame
1335 cache, which must still remain valid for the previous traceframe.
1336 We may be _building_ the frame cache at this point. */
1337 cleanup = make_cleanup_restore_traceframe_number ();
1338 set_traceframe_number (-1);
1339
1340 ret = target_read (current_target.beneath, object, NULL,
1341 myaddr, memaddr, len);
1342
1343 do_cleanups (cleanup);
1344 return ret;
1345 }
1346
1347 /* Using the set of read-only target sections of OPS, read live
1348 read-only memory. Note that the actual reads start from the
1349 top-most target again.
1350
1351 For interface/parameters/return description see target.h,
1352 to_xfer_partial. */
1353
1354 static LONGEST
1355 memory_xfer_live_readonly_partial (struct target_ops *ops,
1356 enum target_object object,
1357 gdb_byte *readbuf, ULONGEST memaddr,
1358 LONGEST len)
1359 {
1360 struct target_section *secp;
1361 struct target_section_table *table;
1362
1363 secp = target_section_by_addr (ops, memaddr);
1364 if (secp != NULL
1365 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1366 & SEC_READONLY))
1367 {
1368 struct target_section *p;
1369 ULONGEST memend = memaddr + len;
1370
1371 table = target_get_section_table (ops);
1372
1373 for (p = table->sections; p < table->sections_end; p++)
1374 {
1375 if (memaddr >= p->addr)
1376 {
1377 if (memend <= p->endaddr)
1378 {
1379 /* Entire transfer is within this section. */
1380 return target_read_live_memory (object, memaddr,
1381 readbuf, len);
1382 }
1383 else if (memaddr >= p->endaddr)
1384 {
1385 /* This section ends before the transfer starts. */
1386 continue;
1387 }
1388 else
1389 {
1390 /* This section overlaps the transfer. Just do half. */
1391 len = p->endaddr - memaddr;
1392 return target_read_live_memory (object, memaddr,
1393 readbuf, len);
1394 }
1395 }
1396 }
1397 }
1398
1399 return 0;
1400 }
1401
1402 /* Perform a partial memory transfer.
1403 For docs see target.h, to_xfer_partial. */
1404
1405 static LONGEST
1406 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1407 void *readbuf, const void *writebuf, ULONGEST memaddr,
1408 LONGEST len)
1409 {
1410 LONGEST res;
1411 int reg_len;
1412 struct mem_region *region;
1413 struct inferior *inf;
1414
1415 /* For accesses to unmapped overlay sections, read directly from
1416 files. Must do this first, as MEMADDR may need adjustment. */
1417 if (readbuf != NULL && overlay_debugging)
1418 {
1419 struct obj_section *section = find_pc_overlay (memaddr);
1420
1421 if (pc_in_unmapped_range (memaddr, section))
1422 {
1423 struct target_section_table *table
1424 = target_get_section_table (ops);
1425 const char *section_name = section->the_bfd_section->name;
1426
1427 memaddr = overlay_mapped_address (memaddr, section);
1428 return section_table_xfer_memory_partial (readbuf, writebuf,
1429 memaddr, len,
1430 table->sections,
1431 table->sections_end,
1432 section_name);
1433 }
1434 }
1435
1436 /* Try the executable files, if "trust-readonly-sections" is set. */
1437 if (readbuf != NULL && trust_readonly)
1438 {
1439 struct target_section *secp;
1440 struct target_section_table *table;
1441
1442 secp = target_section_by_addr (ops, memaddr);
1443 if (secp != NULL
1444 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1445 & SEC_READONLY))
1446 {
1447 table = target_get_section_table (ops);
1448 return section_table_xfer_memory_partial (readbuf, writebuf,
1449 memaddr, len,
1450 table->sections,
1451 table->sections_end,
1452 NULL);
1453 }
1454 }
1455
1456 /* If reading unavailable memory in the context of traceframes, and
1457 this address falls within a read-only section, fallback to
1458 reading from live memory. */
1459 if (readbuf != NULL && get_traceframe_number () != -1)
1460 {
1461 VEC(mem_range_s) *available;
1462
1463 /* If we fail to get the set of available memory, then the
1464 target does not support querying traceframe info, and so we
1465 attempt reading from the traceframe anyway (assuming the
1466 target implements the old QTro packet then). */
1467 if (traceframe_available_memory (&available, memaddr, len))
1468 {
1469 struct cleanup *old_chain;
1470
1471 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1472
1473 if (VEC_empty (mem_range_s, available)
1474 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1475 {
1476 /* Don't read into the traceframe's available
1477 memory. */
1478 if (!VEC_empty (mem_range_s, available))
1479 {
1480 LONGEST oldlen = len;
1481
1482 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1483 gdb_assert (len <= oldlen);
1484 }
1485
1486 do_cleanups (old_chain);
1487
1488 /* This goes through the topmost target again. */
1489 res = memory_xfer_live_readonly_partial (ops, object,
1490 readbuf, memaddr, len);
1491 if (res > 0)
1492 return res;
1493
1494 /* No use trying further, we know some memory starting
1495 at MEMADDR isn't available. */
1496 return -1;
1497 }
1498
1499 /* Don't try to read more than how much is available, in
1500 case the target implements the deprecated QTro packet to
1501 cater for older GDBs (the target's knowledge of read-only
1502 sections may be outdated by now). */
1503 len = VEC_index (mem_range_s, available, 0)->length;
1504
1505 do_cleanups (old_chain);
1506 }
1507 }
1508
1509 /* Try GDB's internal data cache. */
1510 region = lookup_mem_region (memaddr);
1511 /* region->hi == 0 means there's no upper bound. */
1512 if (memaddr + len < region->hi || region->hi == 0)
1513 reg_len = len;
1514 else
1515 reg_len = region->hi - memaddr;
1516
1517 switch (region->attrib.mode)
1518 {
1519 case MEM_RO:
1520 if (writebuf != NULL)
1521 return -1;
1522 break;
1523
1524 case MEM_WO:
1525 if (readbuf != NULL)
1526 return -1;
1527 break;
1528
1529 case MEM_FLASH:
1530 /* We only support writing to flash during "load" for now. */
1531 if (writebuf != NULL)
1532 error (_("Writing to flash memory forbidden in this context"));
1533 break;
1534
1535 case MEM_NONE:
1536 return -1;
1537 }
1538
1539 if (!ptid_equal (inferior_ptid, null_ptid))
1540 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1541 else
1542 inf = NULL;
1543
1544 if (inf != NULL
1545 /* The dcache reads whole cache lines; that doesn't play well
1546 with reading from a trace buffer, because reading outside of
1547 the collected memory range fails. */
1548 && get_traceframe_number () == -1
1549 && (region->attrib.cache
1550 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1551 {
1552 if (readbuf != NULL)
1553 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1554 reg_len, 0);
1555 else
1556 /* FIXME drow/2006-08-09: If we're going to preserve const
1557 correctness dcache_xfer_memory should take readbuf and
1558 writebuf. */
1559 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1560 (void *) writebuf,
1561 reg_len, 1);
1562 if (res <= 0)
1563 return -1;
1564 else
1565 return res;
1566 }
1567
1568 /* If none of those methods found the memory we wanted, fall back
1569 to a target partial transfer. Normally a single call to
1570 to_xfer_partial is enough; if it doesn't recognize an object
1571 it will call the to_xfer_partial of the next target down.
1572 But for memory this won't do. Memory is the only target
1573 object which can be read from more than one valid target.
1574 A core file, for instance, could have some of memory but
1575 delegate other bits to the target below it. So, we must
1576 manually try all targets. */
1577
1578 do
1579 {
1580 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1581 readbuf, writebuf, memaddr, reg_len);
1582 if (res > 0)
1583 break;
1584
1585 /* We want to continue past core files to executables, but not
1586 past a running target's memory. */
1587 if (ops->to_has_all_memory (ops))
1588 break;
1589
1590 ops = ops->beneath;
1591 }
1592 while (ops != NULL);
1593
1594 /* Make sure the cache gets updated no matter what - if we are writing
1595 to the stack. Even if this write is not tagged as such, we still need
1596 to update the cache. */
1597
1598 if (res > 0
1599 && inf != NULL
1600 && writebuf != NULL
1601 && !region->attrib.cache
1602 && stack_cache_enabled_p
1603 && object != TARGET_OBJECT_STACK_MEMORY)
1604 {
1605 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1606 }
1607
1608 /* If we still haven't got anything, return the last error. We
1609 give up. */
1610 return res;
1611 }
1612
1613 /* Perform a partial memory transfer. For docs see target.h,
1614 to_xfer_partial. */
1615
1616 static LONGEST
1617 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1618 void *readbuf, const void *writebuf, ULONGEST memaddr,
1619 LONGEST len)
1620 {
1621 int res;
1622
1623 /* Zero length requests are ok and require no work. */
1624 if (len == 0)
1625 return 0;
1626
1627 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1628 breakpoint insns, thus hiding out from higher layers whether
1629 there are software breakpoints inserted in the code stream. */
1630 if (readbuf != NULL)
1631 {
1632 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1633
1634 if (res > 0 && !show_memory_breakpoints)
1635 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1636 }
1637 else
1638 {
1639 void *buf;
1640 struct cleanup *old_chain;
1641
1642 buf = xmalloc (len);
1643 old_chain = make_cleanup (xfree, buf);
1644 memcpy (buf, writebuf, len);
1645
1646 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1647 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1648
1649 do_cleanups (old_chain);
1650 }
1651
1652 return res;
1653 }
1654
1655 static void
1656 restore_show_memory_breakpoints (void *arg)
1657 {
1658 show_memory_breakpoints = (uintptr_t) arg;
1659 }
1660
1661 struct cleanup *
1662 make_show_memory_breakpoints_cleanup (int show)
1663 {
1664 int current = show_memory_breakpoints;
1665
1666 show_memory_breakpoints = show;
1667 return make_cleanup (restore_show_memory_breakpoints,
1668 (void *) (uintptr_t) current);
1669 }
1670
1671 /* For docs see target.h, to_xfer_partial. */
1672
1673 static LONGEST
1674 target_xfer_partial (struct target_ops *ops,
1675 enum target_object object, const char *annex,
1676 void *readbuf, const void *writebuf,
1677 ULONGEST offset, LONGEST len)
1678 {
1679 LONGEST retval;
1680
1681 gdb_assert (ops->to_xfer_partial != NULL);
1682
1683 if (writebuf && !may_write_memory)
1684 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1685 core_addr_to_string_nz (offset), plongest (len));
1686
1687 /* If this is a memory transfer, let the memory-specific code
1688 have a look at it instead. Memory transfers are more
1689 complicated. */
1690 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1691 retval = memory_xfer_partial (ops, object, readbuf,
1692 writebuf, offset, len);
1693 else
1694 {
1695 enum target_object raw_object = object;
1696
1697 /* If this is a raw memory transfer, request the normal
1698 memory object from other layers. */
1699 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1700 raw_object = TARGET_OBJECT_MEMORY;
1701
1702 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1703 writebuf, offset, len);
1704 }
1705
1706 if (targetdebug)
1707 {
1708 const unsigned char *myaddr = NULL;
1709
1710 fprintf_unfiltered (gdb_stdlog,
1711 "%s:target_xfer_partial "
1712 "(%d, %s, %s, %s, %s, %s) = %s",
1713 ops->to_shortname,
1714 (int) object,
1715 (annex ? annex : "(null)"),
1716 host_address_to_string (readbuf),
1717 host_address_to_string (writebuf),
1718 core_addr_to_string_nz (offset),
1719 plongest (len), plongest (retval));
1720
1721 if (readbuf)
1722 myaddr = readbuf;
1723 if (writebuf)
1724 myaddr = writebuf;
1725 if (retval > 0 && myaddr != NULL)
1726 {
1727 int i;
1728
1729 fputs_unfiltered (", bytes =", gdb_stdlog);
1730 for (i = 0; i < retval; i++)
1731 {
1732 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1733 {
1734 if (targetdebug < 2 && i > 0)
1735 {
1736 fprintf_unfiltered (gdb_stdlog, " ...");
1737 break;
1738 }
1739 fprintf_unfiltered (gdb_stdlog, "\n");
1740 }
1741
1742 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1743 }
1744 }
1745
1746 fputc_unfiltered ('\n', gdb_stdlog);
1747 }
1748 return retval;
1749 }
1750
1751 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1752 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1753 if any error occurs.
1754
1755 If an error occurs, no guarantee is made about the contents of the data at
1756 MYADDR. In particular, the caller should not depend upon partial reads
1757 filling the buffer with good data. There is no way for the caller to know
1758 how much good data might have been transfered anyway. Callers that can
1759 deal with partial reads should call target_read (which will retry until
1760 it makes no progress, and then return how much was transferred). */
1761
1762 int
1763 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1764 {
1765 /* Dispatch to the topmost target, not the flattened current_target.
1766 Memory accesses check target->to_has_(all_)memory, and the
1767 flattened target doesn't inherit those. */
1768 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1769 myaddr, memaddr, len) == len)
1770 return 0;
1771 else
1772 return EIO;
1773 }
1774
1775 /* Like target_read_memory, but specify explicitly that this is a read from
1776 the target's stack. This may trigger different cache behavior. */
1777
1778 int
1779 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1780 {
1781 /* Dispatch to the topmost target, not the flattened current_target.
1782 Memory accesses check target->to_has_(all_)memory, and the
1783 flattened target doesn't inherit those. */
1784
1785 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1786 myaddr, memaddr, len) == len)
1787 return 0;
1788 else
1789 return EIO;
1790 }
1791
1792 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1793 Returns either 0 for success or an errno value if any error occurs.
1794 If an error occurs, no guarantee is made about how much data got written.
1795 Callers that can deal with partial writes should call target_write. */
1796
1797 int
1798 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1799 {
1800 /* Dispatch to the topmost target, not the flattened current_target.
1801 Memory accesses check target->to_has_(all_)memory, and the
1802 flattened target doesn't inherit those. */
1803 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1804 myaddr, memaddr, len) == len)
1805 return 0;
1806 else
1807 return EIO;
1808 }
1809
1810 /* Write LEN bytes from MYADDR to target raw memory at address
1811 MEMADDR. Returns either 0 for success or an errno value if any
1812 error occurs. If an error occurs, no guarantee is made about how
1813 much data got written. Callers that can deal with partial writes
1814 should call target_write. */
1815
1816 int
1817 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1818 {
1819 /* Dispatch to the topmost target, not the flattened current_target.
1820 Memory accesses check target->to_has_(all_)memory, and the
1821 flattened target doesn't inherit those. */
1822 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1823 myaddr, memaddr, len) == len)
1824 return 0;
1825 else
1826 return EIO;
1827 }
1828
1829 /* Fetch the target's memory map. */
1830
1831 VEC(mem_region_s) *
1832 target_memory_map (void)
1833 {
1834 VEC(mem_region_s) *result;
1835 struct mem_region *last_one, *this_one;
1836 int ix;
1837 struct target_ops *t;
1838
1839 if (targetdebug)
1840 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1841
1842 for (t = current_target.beneath; t != NULL; t = t->beneath)
1843 if (t->to_memory_map != NULL)
1844 break;
1845
1846 if (t == NULL)
1847 return NULL;
1848
1849 result = t->to_memory_map (t);
1850 if (result == NULL)
1851 return NULL;
1852
1853 qsort (VEC_address (mem_region_s, result),
1854 VEC_length (mem_region_s, result),
1855 sizeof (struct mem_region), mem_region_cmp);
1856
1857 /* Check that regions do not overlap. Simultaneously assign
1858 a numbering for the "mem" commands to use to refer to
1859 each region. */
1860 last_one = NULL;
1861 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1862 {
1863 this_one->number = ix;
1864
1865 if (last_one && last_one->hi > this_one->lo)
1866 {
1867 warning (_("Overlapping regions in memory map: ignoring"));
1868 VEC_free (mem_region_s, result);
1869 return NULL;
1870 }
1871 last_one = this_one;
1872 }
1873
1874 return result;
1875 }
1876
1877 void
1878 target_flash_erase (ULONGEST address, LONGEST length)
1879 {
1880 struct target_ops *t;
1881
1882 for (t = current_target.beneath; t != NULL; t = t->beneath)
1883 if (t->to_flash_erase != NULL)
1884 {
1885 if (targetdebug)
1886 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1887 hex_string (address), phex (length, 0));
1888 t->to_flash_erase (t, address, length);
1889 return;
1890 }
1891
1892 tcomplain ();
1893 }
1894
1895 void
1896 target_flash_done (void)
1897 {
1898 struct target_ops *t;
1899
1900 for (t = current_target.beneath; t != NULL; t = t->beneath)
1901 if (t->to_flash_done != NULL)
1902 {
1903 if (targetdebug)
1904 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1905 t->to_flash_done (t);
1906 return;
1907 }
1908
1909 tcomplain ();
1910 }
1911
1912 static void
1913 show_trust_readonly (struct ui_file *file, int from_tty,
1914 struct cmd_list_element *c, const char *value)
1915 {
1916 fprintf_filtered (file,
1917 _("Mode for reading from readonly sections is %s.\n"),
1918 value);
1919 }
1920
1921 /* More generic transfers. */
1922
1923 static LONGEST
1924 default_xfer_partial (struct target_ops *ops, enum target_object object,
1925 const char *annex, gdb_byte *readbuf,
1926 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1927 {
1928 if (object == TARGET_OBJECT_MEMORY
1929 && ops->deprecated_xfer_memory != NULL)
1930 /* If available, fall back to the target's
1931 "deprecated_xfer_memory" method. */
1932 {
1933 int xfered = -1;
1934
1935 errno = 0;
1936 if (writebuf != NULL)
1937 {
1938 void *buffer = xmalloc (len);
1939 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1940
1941 memcpy (buffer, writebuf, len);
1942 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1943 1/*write*/, NULL, ops);
1944 do_cleanups (cleanup);
1945 }
1946 if (readbuf != NULL)
1947 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1948 0/*read*/, NULL, ops);
1949 if (xfered > 0)
1950 return xfered;
1951 else if (xfered == 0 && errno == 0)
1952 /* "deprecated_xfer_memory" uses 0, cross checked against
1953 ERRNO as one indication of an error. */
1954 return 0;
1955 else
1956 return -1;
1957 }
1958 else if (ops->beneath != NULL)
1959 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1960 readbuf, writebuf, offset, len);
1961 else
1962 return -1;
1963 }
1964
1965 /* The xfer_partial handler for the topmost target. Unlike the default,
1966 it does not need to handle memory specially; it just passes all
1967 requests down the stack. */
1968
1969 static LONGEST
1970 current_xfer_partial (struct target_ops *ops, enum target_object object,
1971 const char *annex, gdb_byte *readbuf,
1972 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1973 {
1974 if (ops->beneath != NULL)
1975 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1976 readbuf, writebuf, offset, len);
1977 else
1978 return -1;
1979 }
1980
1981 /* Target vector read/write partial wrapper functions. */
1982
1983 static LONGEST
1984 target_read_partial (struct target_ops *ops,
1985 enum target_object object,
1986 const char *annex, gdb_byte *buf,
1987 ULONGEST offset, LONGEST len)
1988 {
1989 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1990 }
1991
1992 static LONGEST
1993 target_write_partial (struct target_ops *ops,
1994 enum target_object object,
1995 const char *annex, const gdb_byte *buf,
1996 ULONGEST offset, LONGEST len)
1997 {
1998 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1999 }
2000
2001 /* Wrappers to perform the full transfer. */
2002
2003 /* For docs on target_read see target.h. */
2004
2005 LONGEST
2006 target_read (struct target_ops *ops,
2007 enum target_object object,
2008 const char *annex, gdb_byte *buf,
2009 ULONGEST offset, LONGEST len)
2010 {
2011 LONGEST xfered = 0;
2012
2013 while (xfered < len)
2014 {
2015 LONGEST xfer = target_read_partial (ops, object, annex,
2016 (gdb_byte *) buf + xfered,
2017 offset + xfered, len - xfered);
2018
2019 /* Call an observer, notifying them of the xfer progress? */
2020 if (xfer == 0)
2021 return xfered;
2022 if (xfer < 0)
2023 return -1;
2024 xfered += xfer;
2025 QUIT;
2026 }
2027 return len;
2028 }
2029
2030 /* Assuming that the entire [begin, end) range of memory cannot be
2031 read, try to read whatever subrange is possible to read.
2032
2033 The function returns, in RESULT, either zero or one memory block.
2034 If there's a readable subrange at the beginning, it is completely
2035 read and returned. Any further readable subrange will not be read.
2036 Otherwise, if there's a readable subrange at the end, it will be
2037 completely read and returned. Any readable subranges before it
2038 (obviously, not starting at the beginning), will be ignored. In
2039 other cases -- either no readable subrange, or readable subrange(s)
2040 that is neither at the beginning, or end, nothing is returned.
2041
2042 The purpose of this function is to handle a read across a boundary
2043 of accessible memory in a case when memory map is not available.
2044 The above restrictions are fine for this case, but will give
2045 incorrect results if the memory is 'patchy'. However, supporting
2046 'patchy' memory would require trying to read every single byte,
2047 and it seems unacceptable solution. Explicit memory map is
2048 recommended for this case -- and target_read_memory_robust will
2049 take care of reading multiple ranges then. */
2050
2051 static void
2052 read_whatever_is_readable (struct target_ops *ops,
2053 ULONGEST begin, ULONGEST end,
2054 VEC(memory_read_result_s) **result)
2055 {
2056 gdb_byte *buf = xmalloc (end - begin);
2057 ULONGEST current_begin = begin;
2058 ULONGEST current_end = end;
2059 int forward;
2060 memory_read_result_s r;
2061
2062 /* If we previously failed to read 1 byte, nothing can be done here. */
2063 if (end - begin <= 1)
2064 {
2065 xfree (buf);
2066 return;
2067 }
2068
2069 /* Check that either first or the last byte is readable, and give up
2070 if not. This heuristic is meant to permit reading accessible memory
2071 at the boundary of accessible region. */
2072 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2073 buf, begin, 1) == 1)
2074 {
2075 forward = 1;
2076 ++current_begin;
2077 }
2078 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2079 buf + (end-begin) - 1, end - 1, 1) == 1)
2080 {
2081 forward = 0;
2082 --current_end;
2083 }
2084 else
2085 {
2086 xfree (buf);
2087 return;
2088 }
2089
2090 /* Loop invariant is that the [current_begin, current_end) was previously
2091 found to be not readable as a whole.
2092
2093 Note loop condition -- if the range has 1 byte, we can't divide the range
2094 so there's no point trying further. */
2095 while (current_end - current_begin > 1)
2096 {
2097 ULONGEST first_half_begin, first_half_end;
2098 ULONGEST second_half_begin, second_half_end;
2099 LONGEST xfer;
2100 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2101
2102 if (forward)
2103 {
2104 first_half_begin = current_begin;
2105 first_half_end = middle;
2106 second_half_begin = middle;
2107 second_half_end = current_end;
2108 }
2109 else
2110 {
2111 first_half_begin = middle;
2112 first_half_end = current_end;
2113 second_half_begin = current_begin;
2114 second_half_end = middle;
2115 }
2116
2117 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2118 buf + (first_half_begin - begin),
2119 first_half_begin,
2120 first_half_end - first_half_begin);
2121
2122 if (xfer == first_half_end - first_half_begin)
2123 {
2124 /* This half reads up fine. So, the error must be in the
2125 other half. */
2126 current_begin = second_half_begin;
2127 current_end = second_half_end;
2128 }
2129 else
2130 {
2131 /* This half is not readable. Because we've tried one byte, we
2132 know some part of this half if actually redable. Go to the next
2133 iteration to divide again and try to read.
2134
2135 We don't handle the other half, because this function only tries
2136 to read a single readable subrange. */
2137 current_begin = first_half_begin;
2138 current_end = first_half_end;
2139 }
2140 }
2141
2142 if (forward)
2143 {
2144 /* The [begin, current_begin) range has been read. */
2145 r.begin = begin;
2146 r.end = current_begin;
2147 r.data = buf;
2148 }
2149 else
2150 {
2151 /* The [current_end, end) range has been read. */
2152 LONGEST rlen = end - current_end;
2153
2154 r.data = xmalloc (rlen);
2155 memcpy (r.data, buf + current_end - begin, rlen);
2156 r.begin = current_end;
2157 r.end = end;
2158 xfree (buf);
2159 }
2160 VEC_safe_push(memory_read_result_s, (*result), &r);
2161 }
2162
2163 void
2164 free_memory_read_result_vector (void *x)
2165 {
2166 VEC(memory_read_result_s) *v = x;
2167 memory_read_result_s *current;
2168 int ix;
2169
2170 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2171 {
2172 xfree (current->data);
2173 }
2174 VEC_free (memory_read_result_s, v);
2175 }
2176
2177 VEC(memory_read_result_s) *
2178 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2179 {
2180 VEC(memory_read_result_s) *result = 0;
2181
2182 LONGEST xfered = 0;
2183 while (xfered < len)
2184 {
2185 struct mem_region *region = lookup_mem_region (offset + xfered);
2186 LONGEST rlen;
2187
2188 /* If there is no explicit region, a fake one should be created. */
2189 gdb_assert (region);
2190
2191 if (region->hi == 0)
2192 rlen = len - xfered;
2193 else
2194 rlen = region->hi - offset;
2195
2196 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2197 {
2198 /* Cannot read this region. Note that we can end up here only
2199 if the region is explicitly marked inaccessible, or
2200 'inaccessible-by-default' is in effect. */
2201 xfered += rlen;
2202 }
2203 else
2204 {
2205 LONGEST to_read = min (len - xfered, rlen);
2206 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2207
2208 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2209 (gdb_byte *) buffer,
2210 offset + xfered, to_read);
2211 /* Call an observer, notifying them of the xfer progress? */
2212 if (xfer <= 0)
2213 {
2214 /* Got an error reading full chunk. See if maybe we can read
2215 some subrange. */
2216 xfree (buffer);
2217 read_whatever_is_readable (ops, offset + xfered,
2218 offset + xfered + to_read, &result);
2219 xfered += to_read;
2220 }
2221 else
2222 {
2223 struct memory_read_result r;
2224 r.data = buffer;
2225 r.begin = offset + xfered;
2226 r.end = r.begin + xfer;
2227 VEC_safe_push (memory_read_result_s, result, &r);
2228 xfered += xfer;
2229 }
2230 QUIT;
2231 }
2232 }
2233 return result;
2234 }
2235
2236
2237 /* An alternative to target_write with progress callbacks. */
2238
2239 LONGEST
2240 target_write_with_progress (struct target_ops *ops,
2241 enum target_object object,
2242 const char *annex, const gdb_byte *buf,
2243 ULONGEST offset, LONGEST len,
2244 void (*progress) (ULONGEST, void *), void *baton)
2245 {
2246 LONGEST xfered = 0;
2247
2248 /* Give the progress callback a chance to set up. */
2249 if (progress)
2250 (*progress) (0, baton);
2251
2252 while (xfered < len)
2253 {
2254 LONGEST xfer = target_write_partial (ops, object, annex,
2255 (gdb_byte *) buf + xfered,
2256 offset + xfered, len - xfered);
2257
2258 if (xfer == 0)
2259 return xfered;
2260 if (xfer < 0)
2261 return -1;
2262
2263 if (progress)
2264 (*progress) (xfer, baton);
2265
2266 xfered += xfer;
2267 QUIT;
2268 }
2269 return len;
2270 }
2271
2272 /* For docs on target_write see target.h. */
2273
2274 LONGEST
2275 target_write (struct target_ops *ops,
2276 enum target_object object,
2277 const char *annex, const gdb_byte *buf,
2278 ULONGEST offset, LONGEST len)
2279 {
2280 return target_write_with_progress (ops, object, annex, buf, offset, len,
2281 NULL, NULL);
2282 }
2283
2284 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2285 the size of the transferred data. PADDING additional bytes are
2286 available in *BUF_P. This is a helper function for
2287 target_read_alloc; see the declaration of that function for more
2288 information. */
2289
2290 static LONGEST
2291 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2292 const char *annex, gdb_byte **buf_p, int padding)
2293 {
2294 size_t buf_alloc, buf_pos;
2295 gdb_byte *buf;
2296 LONGEST n;
2297
2298 /* This function does not have a length parameter; it reads the
2299 entire OBJECT). Also, it doesn't support objects fetched partly
2300 from one target and partly from another (in a different stratum,
2301 e.g. a core file and an executable). Both reasons make it
2302 unsuitable for reading memory. */
2303 gdb_assert (object != TARGET_OBJECT_MEMORY);
2304
2305 /* Start by reading up to 4K at a time. The target will throttle
2306 this number down if necessary. */
2307 buf_alloc = 4096;
2308 buf = xmalloc (buf_alloc);
2309 buf_pos = 0;
2310 while (1)
2311 {
2312 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2313 buf_pos, buf_alloc - buf_pos - padding);
2314 if (n < 0)
2315 {
2316 /* An error occurred. */
2317 xfree (buf);
2318 return -1;
2319 }
2320 else if (n == 0)
2321 {
2322 /* Read all there was. */
2323 if (buf_pos == 0)
2324 xfree (buf);
2325 else
2326 *buf_p = buf;
2327 return buf_pos;
2328 }
2329
2330 buf_pos += n;
2331
2332 /* If the buffer is filling up, expand it. */
2333 if (buf_alloc < buf_pos * 2)
2334 {
2335 buf_alloc *= 2;
2336 buf = xrealloc (buf, buf_alloc);
2337 }
2338
2339 QUIT;
2340 }
2341 }
2342
2343 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2344 the size of the transferred data. See the declaration in "target.h"
2345 function for more information about the return value. */
2346
2347 LONGEST
2348 target_read_alloc (struct target_ops *ops, enum target_object object,
2349 const char *annex, gdb_byte **buf_p)
2350 {
2351 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2352 }
2353
2354 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2355 returned as a string, allocated using xmalloc. If an error occurs
2356 or the transfer is unsupported, NULL is returned. Empty objects
2357 are returned as allocated but empty strings. A warning is issued
2358 if the result contains any embedded NUL bytes. */
2359
2360 char *
2361 target_read_stralloc (struct target_ops *ops, enum target_object object,
2362 const char *annex)
2363 {
2364 gdb_byte *buffer;
2365 LONGEST i, transferred;
2366
2367 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2368
2369 if (transferred < 0)
2370 return NULL;
2371
2372 if (transferred == 0)
2373 return xstrdup ("");
2374
2375 buffer[transferred] = 0;
2376
2377 /* Check for embedded NUL bytes; but allow trailing NULs. */
2378 for (i = strlen (buffer); i < transferred; i++)
2379 if (buffer[i] != 0)
2380 {
2381 warning (_("target object %d, annex %s, "
2382 "contained unexpected null characters"),
2383 (int) object, annex ? annex : "(none)");
2384 break;
2385 }
2386
2387 return (char *) buffer;
2388 }
2389
2390 /* Memory transfer methods. */
2391
2392 void
2393 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2394 LONGEST len)
2395 {
2396 /* This method is used to read from an alternate, non-current
2397 target. This read must bypass the overlay support (as symbols
2398 don't match this target), and GDB's internal cache (wrong cache
2399 for this target). */
2400 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2401 != len)
2402 memory_error (EIO, addr);
2403 }
2404
2405 ULONGEST
2406 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2407 int len, enum bfd_endian byte_order)
2408 {
2409 gdb_byte buf[sizeof (ULONGEST)];
2410
2411 gdb_assert (len <= sizeof (buf));
2412 get_target_memory (ops, addr, buf, len);
2413 return extract_unsigned_integer (buf, len, byte_order);
2414 }
2415
2416 int
2417 target_insert_breakpoint (struct gdbarch *gdbarch,
2418 struct bp_target_info *bp_tgt)
2419 {
2420 if (!may_insert_breakpoints)
2421 {
2422 warning (_("May not insert breakpoints"));
2423 return 1;
2424 }
2425
2426 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2427 }
2428
2429 int
2430 target_remove_breakpoint (struct gdbarch *gdbarch,
2431 struct bp_target_info *bp_tgt)
2432 {
2433 /* This is kind of a weird case to handle, but the permission might
2434 have been changed after breakpoints were inserted - in which case
2435 we should just take the user literally and assume that any
2436 breakpoints should be left in place. */
2437 if (!may_insert_breakpoints)
2438 {
2439 warning (_("May not remove breakpoints"));
2440 return 1;
2441 }
2442
2443 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2444 }
2445
2446 static void
2447 target_info (char *args, int from_tty)
2448 {
2449 struct target_ops *t;
2450 int has_all_mem = 0;
2451
2452 if (symfile_objfile != NULL)
2453 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2454
2455 for (t = target_stack; t != NULL; t = t->beneath)
2456 {
2457 if (!(*t->to_has_memory) (t))
2458 continue;
2459
2460 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2461 continue;
2462 if (has_all_mem)
2463 printf_unfiltered (_("\tWhile running this, "
2464 "GDB does not access memory from...\n"));
2465 printf_unfiltered ("%s:\n", t->to_longname);
2466 (t->to_files_info) (t);
2467 has_all_mem = (*t->to_has_all_memory) (t);
2468 }
2469 }
2470
2471 /* This function is called before any new inferior is created, e.g.
2472 by running a program, attaching, or connecting to a target.
2473 It cleans up any state from previous invocations which might
2474 change between runs. This is a subset of what target_preopen
2475 resets (things which might change between targets). */
2476
2477 void
2478 target_pre_inferior (int from_tty)
2479 {
2480 /* Clear out solib state. Otherwise the solib state of the previous
2481 inferior might have survived and is entirely wrong for the new
2482 target. This has been observed on GNU/Linux using glibc 2.3. How
2483 to reproduce:
2484
2485 bash$ ./foo&
2486 [1] 4711
2487 bash$ ./foo&
2488 [1] 4712
2489 bash$ gdb ./foo
2490 [...]
2491 (gdb) attach 4711
2492 (gdb) detach
2493 (gdb) attach 4712
2494 Cannot access memory at address 0xdeadbeef
2495 */
2496
2497 /* In some OSs, the shared library list is the same/global/shared
2498 across inferiors. If code is shared between processes, so are
2499 memory regions and features. */
2500 if (!gdbarch_has_global_solist (target_gdbarch))
2501 {
2502 no_shared_libraries (NULL, from_tty);
2503
2504 invalidate_target_mem_regions ();
2505
2506 target_clear_description ();
2507 }
2508
2509 agent_capability_invalidate ();
2510 }
2511
2512 /* Callback for iterate_over_inferiors. Gets rid of the given
2513 inferior. */
2514
2515 static int
2516 dispose_inferior (struct inferior *inf, void *args)
2517 {
2518 struct thread_info *thread;
2519
2520 thread = any_thread_of_process (inf->pid);
2521 if (thread)
2522 {
2523 switch_to_thread (thread->ptid);
2524
2525 /* Core inferiors actually should be detached, not killed. */
2526 if (target_has_execution)
2527 target_kill ();
2528 else
2529 target_detach (NULL, 0);
2530 }
2531
2532 return 0;
2533 }
2534
2535 /* This is to be called by the open routine before it does
2536 anything. */
2537
2538 void
2539 target_preopen (int from_tty)
2540 {
2541 dont_repeat ();
2542
2543 if (have_inferiors ())
2544 {
2545 if (!from_tty
2546 || !have_live_inferiors ()
2547 || query (_("A program is being debugged already. Kill it? ")))
2548 iterate_over_inferiors (dispose_inferior, NULL);
2549 else
2550 error (_("Program not killed."));
2551 }
2552
2553 /* Calling target_kill may remove the target from the stack. But if
2554 it doesn't (which seems like a win for UDI), remove it now. */
2555 /* Leave the exec target, though. The user may be switching from a
2556 live process to a core of the same program. */
2557 pop_all_targets_above (file_stratum, 0);
2558
2559 target_pre_inferior (from_tty);
2560 }
2561
2562 /* Detach a target after doing deferred register stores. */
2563
2564 void
2565 target_detach (char *args, int from_tty)
2566 {
2567 struct target_ops* t;
2568
2569 if (gdbarch_has_global_breakpoints (target_gdbarch))
2570 /* Don't remove global breakpoints here. They're removed on
2571 disconnection from the target. */
2572 ;
2573 else
2574 /* If we're in breakpoints-always-inserted mode, have to remove
2575 them before detaching. */
2576 remove_breakpoints_pid (PIDGET (inferior_ptid));
2577
2578 prepare_for_detach ();
2579
2580 for (t = current_target.beneath; t != NULL; t = t->beneath)
2581 {
2582 if (t->to_detach != NULL)
2583 {
2584 t->to_detach (t, args, from_tty);
2585 if (targetdebug)
2586 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2587 args, from_tty);
2588 return;
2589 }
2590 }
2591
2592 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2593 }
2594
2595 void
2596 target_disconnect (char *args, int from_tty)
2597 {
2598 struct target_ops *t;
2599
2600 /* If we're in breakpoints-always-inserted mode or if breakpoints
2601 are global across processes, we have to remove them before
2602 disconnecting. */
2603 remove_breakpoints ();
2604
2605 for (t = current_target.beneath; t != NULL; t = t->beneath)
2606 if (t->to_disconnect != NULL)
2607 {
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2610 args, from_tty);
2611 t->to_disconnect (t, args, from_tty);
2612 return;
2613 }
2614
2615 tcomplain ();
2616 }
2617
2618 ptid_t
2619 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2620 {
2621 struct target_ops *t;
2622
2623 for (t = current_target.beneath; t != NULL; t = t->beneath)
2624 {
2625 if (t->to_wait != NULL)
2626 {
2627 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2628
2629 if (targetdebug)
2630 {
2631 char *status_string;
2632
2633 status_string = target_waitstatus_to_string (status);
2634 fprintf_unfiltered (gdb_stdlog,
2635 "target_wait (%d, status) = %d, %s\n",
2636 PIDGET (ptid), PIDGET (retval),
2637 status_string);
2638 xfree (status_string);
2639 }
2640
2641 return retval;
2642 }
2643 }
2644
2645 noprocess ();
2646 }
2647
2648 char *
2649 target_pid_to_str (ptid_t ptid)
2650 {
2651 struct target_ops *t;
2652
2653 for (t = current_target.beneath; t != NULL; t = t->beneath)
2654 {
2655 if (t->to_pid_to_str != NULL)
2656 return (*t->to_pid_to_str) (t, ptid);
2657 }
2658
2659 return normal_pid_to_str (ptid);
2660 }
2661
2662 char *
2663 target_thread_name (struct thread_info *info)
2664 {
2665 struct target_ops *t;
2666
2667 for (t = current_target.beneath; t != NULL; t = t->beneath)
2668 {
2669 if (t->to_thread_name != NULL)
2670 return (*t->to_thread_name) (info);
2671 }
2672
2673 return NULL;
2674 }
2675
2676 void
2677 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2678 {
2679 struct target_ops *t;
2680
2681 target_dcache_invalidate ();
2682
2683 for (t = current_target.beneath; t != NULL; t = t->beneath)
2684 {
2685 if (t->to_resume != NULL)
2686 {
2687 t->to_resume (t, ptid, step, signal);
2688 if (targetdebug)
2689 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2690 PIDGET (ptid),
2691 step ? "step" : "continue",
2692 gdb_signal_to_name (signal));
2693
2694 registers_changed_ptid (ptid);
2695 set_executing (ptid, 1);
2696 set_running (ptid, 1);
2697 clear_inline_frame_state (ptid);
2698 return;
2699 }
2700 }
2701
2702 noprocess ();
2703 }
2704
2705 void
2706 target_pass_signals (int numsigs, unsigned char *pass_signals)
2707 {
2708 struct target_ops *t;
2709
2710 for (t = current_target.beneath; t != NULL; t = t->beneath)
2711 {
2712 if (t->to_pass_signals != NULL)
2713 {
2714 if (targetdebug)
2715 {
2716 int i;
2717
2718 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2719 numsigs);
2720
2721 for (i = 0; i < numsigs; i++)
2722 if (pass_signals[i])
2723 fprintf_unfiltered (gdb_stdlog, " %s",
2724 gdb_signal_to_name (i));
2725
2726 fprintf_unfiltered (gdb_stdlog, " })\n");
2727 }
2728
2729 (*t->to_pass_signals) (numsigs, pass_signals);
2730 return;
2731 }
2732 }
2733 }
2734
2735 void
2736 target_program_signals (int numsigs, unsigned char *program_signals)
2737 {
2738 struct target_ops *t;
2739
2740 for (t = current_target.beneath; t != NULL; t = t->beneath)
2741 {
2742 if (t->to_program_signals != NULL)
2743 {
2744 if (targetdebug)
2745 {
2746 int i;
2747
2748 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2749 numsigs);
2750
2751 for (i = 0; i < numsigs; i++)
2752 if (program_signals[i])
2753 fprintf_unfiltered (gdb_stdlog, " %s",
2754 gdb_signal_to_name (i));
2755
2756 fprintf_unfiltered (gdb_stdlog, " })\n");
2757 }
2758
2759 (*t->to_program_signals) (numsigs, program_signals);
2760 return;
2761 }
2762 }
2763 }
2764
2765 /* Look through the list of possible targets for a target that can
2766 follow forks. */
2767
2768 int
2769 target_follow_fork (int follow_child)
2770 {
2771 struct target_ops *t;
2772
2773 for (t = current_target.beneath; t != NULL; t = t->beneath)
2774 {
2775 if (t->to_follow_fork != NULL)
2776 {
2777 int retval = t->to_follow_fork (t, follow_child);
2778
2779 if (targetdebug)
2780 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2781 follow_child, retval);
2782 return retval;
2783 }
2784 }
2785
2786 /* Some target returned a fork event, but did not know how to follow it. */
2787 internal_error (__FILE__, __LINE__,
2788 _("could not find a target to follow fork"));
2789 }
2790
2791 void
2792 target_mourn_inferior (void)
2793 {
2794 struct target_ops *t;
2795
2796 for (t = current_target.beneath; t != NULL; t = t->beneath)
2797 {
2798 if (t->to_mourn_inferior != NULL)
2799 {
2800 t->to_mourn_inferior (t);
2801 if (targetdebug)
2802 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2803
2804 /* We no longer need to keep handles on any of the object files.
2805 Make sure to release them to avoid unnecessarily locking any
2806 of them while we're not actually debugging. */
2807 bfd_cache_close_all ();
2808
2809 return;
2810 }
2811 }
2812
2813 internal_error (__FILE__, __LINE__,
2814 _("could not find a target to follow mourn inferior"));
2815 }
2816
2817 /* Look for a target which can describe architectural features, starting
2818 from TARGET. If we find one, return its description. */
2819
2820 const struct target_desc *
2821 target_read_description (struct target_ops *target)
2822 {
2823 struct target_ops *t;
2824
2825 for (t = target; t != NULL; t = t->beneath)
2826 if (t->to_read_description != NULL)
2827 {
2828 const struct target_desc *tdesc;
2829
2830 tdesc = t->to_read_description (t);
2831 if (tdesc)
2832 return tdesc;
2833 }
2834
2835 return NULL;
2836 }
2837
2838 /* The default implementation of to_search_memory.
2839 This implements a basic search of memory, reading target memory and
2840 performing the search here (as opposed to performing the search in on the
2841 target side with, for example, gdbserver). */
2842
2843 int
2844 simple_search_memory (struct target_ops *ops,
2845 CORE_ADDR start_addr, ULONGEST search_space_len,
2846 const gdb_byte *pattern, ULONGEST pattern_len,
2847 CORE_ADDR *found_addrp)
2848 {
2849 /* NOTE: also defined in find.c testcase. */
2850 #define SEARCH_CHUNK_SIZE 16000
2851 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2852 /* Buffer to hold memory contents for searching. */
2853 gdb_byte *search_buf;
2854 unsigned search_buf_size;
2855 struct cleanup *old_cleanups;
2856
2857 search_buf_size = chunk_size + pattern_len - 1;
2858
2859 /* No point in trying to allocate a buffer larger than the search space. */
2860 if (search_space_len < search_buf_size)
2861 search_buf_size = search_space_len;
2862
2863 search_buf = malloc (search_buf_size);
2864 if (search_buf == NULL)
2865 error (_("Unable to allocate memory to perform the search."));
2866 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2867
2868 /* Prime the search buffer. */
2869
2870 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2871 search_buf, start_addr, search_buf_size) != search_buf_size)
2872 {
2873 warning (_("Unable to access target memory at %s, halting search."),
2874 hex_string (start_addr));
2875 do_cleanups (old_cleanups);
2876 return -1;
2877 }
2878
2879 /* Perform the search.
2880
2881 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2882 When we've scanned N bytes we copy the trailing bytes to the start and
2883 read in another N bytes. */
2884
2885 while (search_space_len >= pattern_len)
2886 {
2887 gdb_byte *found_ptr;
2888 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2889
2890 found_ptr = memmem (search_buf, nr_search_bytes,
2891 pattern, pattern_len);
2892
2893 if (found_ptr != NULL)
2894 {
2895 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2896
2897 *found_addrp = found_addr;
2898 do_cleanups (old_cleanups);
2899 return 1;
2900 }
2901
2902 /* Not found in this chunk, skip to next chunk. */
2903
2904 /* Don't let search_space_len wrap here, it's unsigned. */
2905 if (search_space_len >= chunk_size)
2906 search_space_len -= chunk_size;
2907 else
2908 search_space_len = 0;
2909
2910 if (search_space_len >= pattern_len)
2911 {
2912 unsigned keep_len = search_buf_size - chunk_size;
2913 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2914 int nr_to_read;
2915
2916 /* Copy the trailing part of the previous iteration to the front
2917 of the buffer for the next iteration. */
2918 gdb_assert (keep_len == pattern_len - 1);
2919 memcpy (search_buf, search_buf + chunk_size, keep_len);
2920
2921 nr_to_read = min (search_space_len - keep_len, chunk_size);
2922
2923 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2924 search_buf + keep_len, read_addr,
2925 nr_to_read) != nr_to_read)
2926 {
2927 warning (_("Unable to access target "
2928 "memory at %s, halting search."),
2929 hex_string (read_addr));
2930 do_cleanups (old_cleanups);
2931 return -1;
2932 }
2933
2934 start_addr += chunk_size;
2935 }
2936 }
2937
2938 /* Not found. */
2939
2940 do_cleanups (old_cleanups);
2941 return 0;
2942 }
2943
2944 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2945 sequence of bytes in PATTERN with length PATTERN_LEN.
2946
2947 The result is 1 if found, 0 if not found, and -1 if there was an error
2948 requiring halting of the search (e.g. memory read error).
2949 If the pattern is found the address is recorded in FOUND_ADDRP. */
2950
2951 int
2952 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2953 const gdb_byte *pattern, ULONGEST pattern_len,
2954 CORE_ADDR *found_addrp)
2955 {
2956 struct target_ops *t;
2957 int found;
2958
2959 /* We don't use INHERIT to set current_target.to_search_memory,
2960 so we have to scan the target stack and handle targetdebug
2961 ourselves. */
2962
2963 if (targetdebug)
2964 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2965 hex_string (start_addr));
2966
2967 for (t = current_target.beneath; t != NULL; t = t->beneath)
2968 if (t->to_search_memory != NULL)
2969 break;
2970
2971 if (t != NULL)
2972 {
2973 found = t->to_search_memory (t, start_addr, search_space_len,
2974 pattern, pattern_len, found_addrp);
2975 }
2976 else
2977 {
2978 /* If a special version of to_search_memory isn't available, use the
2979 simple version. */
2980 found = simple_search_memory (current_target.beneath,
2981 start_addr, search_space_len,
2982 pattern, pattern_len, found_addrp);
2983 }
2984
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2987
2988 return found;
2989 }
2990
2991 /* Look through the currently pushed targets. If none of them will
2992 be able to restart the currently running process, issue an error
2993 message. */
2994
2995 void
2996 target_require_runnable (void)
2997 {
2998 struct target_ops *t;
2999
3000 for (t = target_stack; t != NULL; t = t->beneath)
3001 {
3002 /* If this target knows how to create a new program, then
3003 assume we will still be able to after killing the current
3004 one. Either killing and mourning will not pop T, or else
3005 find_default_run_target will find it again. */
3006 if (t->to_create_inferior != NULL)
3007 return;
3008
3009 /* Do not worry about thread_stratum targets that can not
3010 create inferiors. Assume they will be pushed again if
3011 necessary, and continue to the process_stratum. */
3012 if (t->to_stratum == thread_stratum
3013 || t->to_stratum == arch_stratum)
3014 continue;
3015
3016 error (_("The \"%s\" target does not support \"run\". "
3017 "Try \"help target\" or \"continue\"."),
3018 t->to_shortname);
3019 }
3020
3021 /* This function is only called if the target is running. In that
3022 case there should have been a process_stratum target and it
3023 should either know how to create inferiors, or not... */
3024 internal_error (__FILE__, __LINE__, _("No targets found"));
3025 }
3026
3027 /* Look through the list of possible targets for a target that can
3028 execute a run or attach command without any other data. This is
3029 used to locate the default process stratum.
3030
3031 If DO_MESG is not NULL, the result is always valid (error() is
3032 called for errors); else, return NULL on error. */
3033
3034 static struct target_ops *
3035 find_default_run_target (char *do_mesg)
3036 {
3037 struct target_ops **t;
3038 struct target_ops *runable = NULL;
3039 int count;
3040
3041 count = 0;
3042
3043 for (t = target_structs; t < target_structs + target_struct_size;
3044 ++t)
3045 {
3046 if ((*t)->to_can_run && target_can_run (*t))
3047 {
3048 runable = *t;
3049 ++count;
3050 }
3051 }
3052
3053 if (count != 1)
3054 {
3055 if (do_mesg)
3056 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3057 else
3058 return NULL;
3059 }
3060
3061 return runable;
3062 }
3063
3064 void
3065 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3066 {
3067 struct target_ops *t;
3068
3069 t = find_default_run_target ("attach");
3070 (t->to_attach) (t, args, from_tty);
3071 return;
3072 }
3073
3074 void
3075 find_default_create_inferior (struct target_ops *ops,
3076 char *exec_file, char *allargs, char **env,
3077 int from_tty)
3078 {
3079 struct target_ops *t;
3080
3081 t = find_default_run_target ("run");
3082 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3083 return;
3084 }
3085
3086 static int
3087 find_default_can_async_p (void)
3088 {
3089 struct target_ops *t;
3090
3091 /* This may be called before the target is pushed on the stack;
3092 look for the default process stratum. If there's none, gdb isn't
3093 configured with a native debugger, and target remote isn't
3094 connected yet. */
3095 t = find_default_run_target (NULL);
3096 if (t && t->to_can_async_p)
3097 return (t->to_can_async_p) ();
3098 return 0;
3099 }
3100
3101 static int
3102 find_default_is_async_p (void)
3103 {
3104 struct target_ops *t;
3105
3106 /* This may be called before the target is pushed on the stack;
3107 look for the default process stratum. If there's none, gdb isn't
3108 configured with a native debugger, and target remote isn't
3109 connected yet. */
3110 t = find_default_run_target (NULL);
3111 if (t && t->to_is_async_p)
3112 return (t->to_is_async_p) ();
3113 return 0;
3114 }
3115
3116 static int
3117 find_default_supports_non_stop (void)
3118 {
3119 struct target_ops *t;
3120
3121 t = find_default_run_target (NULL);
3122 if (t && t->to_supports_non_stop)
3123 return (t->to_supports_non_stop) ();
3124 return 0;
3125 }
3126
3127 int
3128 target_supports_non_stop (void)
3129 {
3130 struct target_ops *t;
3131
3132 for (t = &current_target; t != NULL; t = t->beneath)
3133 if (t->to_supports_non_stop)
3134 return t->to_supports_non_stop ();
3135
3136 return 0;
3137 }
3138
3139 /* Implement the "info proc" command. */
3140
3141 void
3142 target_info_proc (char *args, enum info_proc_what what)
3143 {
3144 struct target_ops *t;
3145
3146 /* If we're already connected to something that can get us OS
3147 related data, use it. Otherwise, try using the native
3148 target. */
3149 if (current_target.to_stratum >= process_stratum)
3150 t = current_target.beneath;
3151 else
3152 t = find_default_run_target (NULL);
3153
3154 for (; t != NULL; t = t->beneath)
3155 {
3156 if (t->to_info_proc != NULL)
3157 {
3158 t->to_info_proc (t, args, what);
3159
3160 if (targetdebug)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "target_info_proc (\"%s\", %d)\n", args, what);
3163
3164 return;
3165 }
3166 }
3167
3168 error (_("Not supported on this target."));
3169 }
3170
3171 static int
3172 find_default_supports_disable_randomization (void)
3173 {
3174 struct target_ops *t;
3175
3176 t = find_default_run_target (NULL);
3177 if (t && t->to_supports_disable_randomization)
3178 return (t->to_supports_disable_randomization) ();
3179 return 0;
3180 }
3181
3182 int
3183 target_supports_disable_randomization (void)
3184 {
3185 struct target_ops *t;
3186
3187 for (t = &current_target; t != NULL; t = t->beneath)
3188 if (t->to_supports_disable_randomization)
3189 return t->to_supports_disable_randomization ();
3190
3191 return 0;
3192 }
3193
3194 char *
3195 target_get_osdata (const char *type)
3196 {
3197 struct target_ops *t;
3198
3199 /* If we're already connected to something that can get us OS
3200 related data, use it. Otherwise, try using the native
3201 target. */
3202 if (current_target.to_stratum >= process_stratum)
3203 t = current_target.beneath;
3204 else
3205 t = find_default_run_target ("get OS data");
3206
3207 if (!t)
3208 return NULL;
3209
3210 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3211 }
3212
3213 /* Determine the current address space of thread PTID. */
3214
3215 struct address_space *
3216 target_thread_address_space (ptid_t ptid)
3217 {
3218 struct address_space *aspace;
3219 struct inferior *inf;
3220 struct target_ops *t;
3221
3222 for (t = current_target.beneath; t != NULL; t = t->beneath)
3223 {
3224 if (t->to_thread_address_space != NULL)
3225 {
3226 aspace = t->to_thread_address_space (t, ptid);
3227 gdb_assert (aspace);
3228
3229 if (targetdebug)
3230 fprintf_unfiltered (gdb_stdlog,
3231 "target_thread_address_space (%s) = %d\n",
3232 target_pid_to_str (ptid),
3233 address_space_num (aspace));
3234 return aspace;
3235 }
3236 }
3237
3238 /* Fall-back to the "main" address space of the inferior. */
3239 inf = find_inferior_pid (ptid_get_pid (ptid));
3240
3241 if (inf == NULL || inf->aspace == NULL)
3242 internal_error (__FILE__, __LINE__,
3243 _("Can't determine the current "
3244 "address space of thread %s\n"),
3245 target_pid_to_str (ptid));
3246
3247 return inf->aspace;
3248 }
3249
3250
3251 /* Target file operations. */
3252
3253 static struct target_ops *
3254 default_fileio_target (void)
3255 {
3256 /* If we're already connected to something that can perform
3257 file I/O, use it. Otherwise, try using the native target. */
3258 if (current_target.to_stratum >= process_stratum)
3259 return current_target.beneath;
3260 else
3261 return find_default_run_target ("file I/O");
3262 }
3263
3264 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3265 target file descriptor, or -1 if an error occurs (and set
3266 *TARGET_ERRNO). */
3267 int
3268 target_fileio_open (const char *filename, int flags, int mode,
3269 int *target_errno)
3270 {
3271 struct target_ops *t;
3272
3273 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3274 {
3275 if (t->to_fileio_open != NULL)
3276 {
3277 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3278
3279 if (targetdebug)
3280 fprintf_unfiltered (gdb_stdlog,
3281 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3282 filename, flags, mode,
3283 fd, fd != -1 ? 0 : *target_errno);
3284 return fd;
3285 }
3286 }
3287
3288 *target_errno = FILEIO_ENOSYS;
3289 return -1;
3290 }
3291
3292 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3293 Return the number of bytes written, or -1 if an error occurs
3294 (and set *TARGET_ERRNO). */
3295 int
3296 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3297 ULONGEST offset, int *target_errno)
3298 {
3299 struct target_ops *t;
3300
3301 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3302 {
3303 if (t->to_fileio_pwrite != NULL)
3304 {
3305 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3306 target_errno);
3307
3308 if (targetdebug)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "target_fileio_pwrite (%d,...,%d,%s) "
3311 "= %d (%d)\n",
3312 fd, len, pulongest (offset),
3313 ret, ret != -1 ? 0 : *target_errno);
3314 return ret;
3315 }
3316 }
3317
3318 *target_errno = FILEIO_ENOSYS;
3319 return -1;
3320 }
3321
3322 /* Read up to LEN bytes FD on the target into READ_BUF.
3323 Return the number of bytes read, or -1 if an error occurs
3324 (and set *TARGET_ERRNO). */
3325 int
3326 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3327 ULONGEST offset, int *target_errno)
3328 {
3329 struct target_ops *t;
3330
3331 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3332 {
3333 if (t->to_fileio_pread != NULL)
3334 {
3335 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3336 target_errno);
3337
3338 if (targetdebug)
3339 fprintf_unfiltered (gdb_stdlog,
3340 "target_fileio_pread (%d,...,%d,%s) "
3341 "= %d (%d)\n",
3342 fd, len, pulongest (offset),
3343 ret, ret != -1 ? 0 : *target_errno);
3344 return ret;
3345 }
3346 }
3347
3348 *target_errno = FILEIO_ENOSYS;
3349 return -1;
3350 }
3351
3352 /* Close FD on the target. Return 0, or -1 if an error occurs
3353 (and set *TARGET_ERRNO). */
3354 int
3355 target_fileio_close (int fd, int *target_errno)
3356 {
3357 struct target_ops *t;
3358
3359 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3360 {
3361 if (t->to_fileio_close != NULL)
3362 {
3363 int ret = t->to_fileio_close (fd, target_errno);
3364
3365 if (targetdebug)
3366 fprintf_unfiltered (gdb_stdlog,
3367 "target_fileio_close (%d) = %d (%d)\n",
3368 fd, ret, ret != -1 ? 0 : *target_errno);
3369 return ret;
3370 }
3371 }
3372
3373 *target_errno = FILEIO_ENOSYS;
3374 return -1;
3375 }
3376
3377 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3378 occurs (and set *TARGET_ERRNO). */
3379 int
3380 target_fileio_unlink (const char *filename, int *target_errno)
3381 {
3382 struct target_ops *t;
3383
3384 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3385 {
3386 if (t->to_fileio_unlink != NULL)
3387 {
3388 int ret = t->to_fileio_unlink (filename, target_errno);
3389
3390 if (targetdebug)
3391 fprintf_unfiltered (gdb_stdlog,
3392 "target_fileio_unlink (%s) = %d (%d)\n",
3393 filename, ret, ret != -1 ? 0 : *target_errno);
3394 return ret;
3395 }
3396 }
3397
3398 *target_errno = FILEIO_ENOSYS;
3399 return -1;
3400 }
3401
3402 /* Read value of symbolic link FILENAME on the target. Return a
3403 null-terminated string allocated via xmalloc, or NULL if an error
3404 occurs (and set *TARGET_ERRNO). */
3405 char *
3406 target_fileio_readlink (const char *filename, int *target_errno)
3407 {
3408 struct target_ops *t;
3409
3410 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3411 {
3412 if (t->to_fileio_readlink != NULL)
3413 {
3414 char *ret = t->to_fileio_readlink (filename, target_errno);
3415
3416 if (targetdebug)
3417 fprintf_unfiltered (gdb_stdlog,
3418 "target_fileio_readlink (%s) = %s (%d)\n",
3419 filename, ret? ret : "(nil)",
3420 ret? 0 : *target_errno);
3421 return ret;
3422 }
3423 }
3424
3425 *target_errno = FILEIO_ENOSYS;
3426 return NULL;
3427 }
3428
3429 static void
3430 target_fileio_close_cleanup (void *opaque)
3431 {
3432 int fd = *(int *) opaque;
3433 int target_errno;
3434
3435 target_fileio_close (fd, &target_errno);
3436 }
3437
3438 /* Read target file FILENAME. Store the result in *BUF_P and
3439 return the size of the transferred data. PADDING additional bytes are
3440 available in *BUF_P. This is a helper function for
3441 target_fileio_read_alloc; see the declaration of that function for more
3442 information. */
3443
3444 static LONGEST
3445 target_fileio_read_alloc_1 (const char *filename,
3446 gdb_byte **buf_p, int padding)
3447 {
3448 struct cleanup *close_cleanup;
3449 size_t buf_alloc, buf_pos;
3450 gdb_byte *buf;
3451 LONGEST n;
3452 int fd;
3453 int target_errno;
3454
3455 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3456 if (fd == -1)
3457 return -1;
3458
3459 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3460
3461 /* Start by reading up to 4K at a time. The target will throttle
3462 this number down if necessary. */
3463 buf_alloc = 4096;
3464 buf = xmalloc (buf_alloc);
3465 buf_pos = 0;
3466 while (1)
3467 {
3468 n = target_fileio_pread (fd, &buf[buf_pos],
3469 buf_alloc - buf_pos - padding, buf_pos,
3470 &target_errno);
3471 if (n < 0)
3472 {
3473 /* An error occurred. */
3474 do_cleanups (close_cleanup);
3475 xfree (buf);
3476 return -1;
3477 }
3478 else if (n == 0)
3479 {
3480 /* Read all there was. */
3481 do_cleanups (close_cleanup);
3482 if (buf_pos == 0)
3483 xfree (buf);
3484 else
3485 *buf_p = buf;
3486 return buf_pos;
3487 }
3488
3489 buf_pos += n;
3490
3491 /* If the buffer is filling up, expand it. */
3492 if (buf_alloc < buf_pos * 2)
3493 {
3494 buf_alloc *= 2;
3495 buf = xrealloc (buf, buf_alloc);
3496 }
3497
3498 QUIT;
3499 }
3500 }
3501
3502 /* Read target file FILENAME. Store the result in *BUF_P and return
3503 the size of the transferred data. See the declaration in "target.h"
3504 function for more information about the return value. */
3505
3506 LONGEST
3507 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3508 {
3509 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3510 }
3511
3512 /* Read target file FILENAME. The result is NUL-terminated and
3513 returned as a string, allocated using xmalloc. If an error occurs
3514 or the transfer is unsupported, NULL is returned. Empty objects
3515 are returned as allocated but empty strings. A warning is issued
3516 if the result contains any embedded NUL bytes. */
3517
3518 char *
3519 target_fileio_read_stralloc (const char *filename)
3520 {
3521 gdb_byte *buffer;
3522 LONGEST i, transferred;
3523
3524 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3525
3526 if (transferred < 0)
3527 return NULL;
3528
3529 if (transferred == 0)
3530 return xstrdup ("");
3531
3532 buffer[transferred] = 0;
3533
3534 /* Check for embedded NUL bytes; but allow trailing NULs. */
3535 for (i = strlen (buffer); i < transferred; i++)
3536 if (buffer[i] != 0)
3537 {
3538 warning (_("target file %s "
3539 "contained unexpected null characters"),
3540 filename);
3541 break;
3542 }
3543
3544 return (char *) buffer;
3545 }
3546
3547
3548 static int
3549 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3550 {
3551 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3552 }
3553
3554 static int
3555 default_watchpoint_addr_within_range (struct target_ops *target,
3556 CORE_ADDR addr,
3557 CORE_ADDR start, int length)
3558 {
3559 return addr >= start && addr < start + length;
3560 }
3561
3562 static struct gdbarch *
3563 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3564 {
3565 return target_gdbarch;
3566 }
3567
3568 static int
3569 return_zero (void)
3570 {
3571 return 0;
3572 }
3573
3574 static int
3575 return_one (void)
3576 {
3577 return 1;
3578 }
3579
3580 static int
3581 return_minus_one (void)
3582 {
3583 return -1;
3584 }
3585
3586 /* Find a single runnable target in the stack and return it. If for
3587 some reason there is more than one, return NULL. */
3588
3589 struct target_ops *
3590 find_run_target (void)
3591 {
3592 struct target_ops **t;
3593 struct target_ops *runable = NULL;
3594 int count;
3595
3596 count = 0;
3597
3598 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3599 {
3600 if ((*t)->to_can_run && target_can_run (*t))
3601 {
3602 runable = *t;
3603 ++count;
3604 }
3605 }
3606
3607 return (count == 1 ? runable : NULL);
3608 }
3609
3610 /*
3611 * Find the next target down the stack from the specified target.
3612 */
3613
3614 struct target_ops *
3615 find_target_beneath (struct target_ops *t)
3616 {
3617 return t->beneath;
3618 }
3619
3620 \f
3621 /* The inferior process has died. Long live the inferior! */
3622
3623 void
3624 generic_mourn_inferior (void)
3625 {
3626 ptid_t ptid;
3627
3628 ptid = inferior_ptid;
3629 inferior_ptid = null_ptid;
3630
3631 /* Mark breakpoints uninserted in case something tries to delete a
3632 breakpoint while we delete the inferior's threads (which would
3633 fail, since the inferior is long gone). */
3634 mark_breakpoints_out ();
3635
3636 if (!ptid_equal (ptid, null_ptid))
3637 {
3638 int pid = ptid_get_pid (ptid);
3639 exit_inferior (pid);
3640 }
3641
3642 /* Note this wipes step-resume breakpoints, so needs to be done
3643 after exit_inferior, which ends up referencing the step-resume
3644 breakpoints through clear_thread_inferior_resources. */
3645 breakpoint_init_inferior (inf_exited);
3646
3647 registers_changed ();
3648
3649 reopen_exec_file ();
3650 reinit_frame_cache ();
3651
3652 if (deprecated_detach_hook)
3653 deprecated_detach_hook ();
3654 }
3655 \f
3656 /* Convert a normal process ID to a string. Returns the string in a
3657 static buffer. */
3658
3659 char *
3660 normal_pid_to_str (ptid_t ptid)
3661 {
3662 static char buf[32];
3663
3664 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3665 return buf;
3666 }
3667
3668 static char *
3669 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3670 {
3671 return normal_pid_to_str (ptid);
3672 }
3673
3674 /* Error-catcher for target_find_memory_regions. */
3675 static int
3676 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3677 {
3678 error (_("Command not implemented for this target."));
3679 return 0;
3680 }
3681
3682 /* Error-catcher for target_make_corefile_notes. */
3683 static char *
3684 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3685 {
3686 error (_("Command not implemented for this target."));
3687 return NULL;
3688 }
3689
3690 /* Error-catcher for target_get_bookmark. */
3691 static gdb_byte *
3692 dummy_get_bookmark (char *ignore1, int ignore2)
3693 {
3694 tcomplain ();
3695 return NULL;
3696 }
3697
3698 /* Error-catcher for target_goto_bookmark. */
3699 static void
3700 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3701 {
3702 tcomplain ();
3703 }
3704
3705 /* Set up the handful of non-empty slots needed by the dummy target
3706 vector. */
3707
3708 static void
3709 init_dummy_target (void)
3710 {
3711 dummy_target.to_shortname = "None";
3712 dummy_target.to_longname = "None";
3713 dummy_target.to_doc = "";
3714 dummy_target.to_attach = find_default_attach;
3715 dummy_target.to_detach =
3716 (void (*)(struct target_ops *, char *, int))target_ignore;
3717 dummy_target.to_create_inferior = find_default_create_inferior;
3718 dummy_target.to_can_async_p = find_default_can_async_p;
3719 dummy_target.to_is_async_p = find_default_is_async_p;
3720 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3721 dummy_target.to_supports_disable_randomization
3722 = find_default_supports_disable_randomization;
3723 dummy_target.to_pid_to_str = dummy_pid_to_str;
3724 dummy_target.to_stratum = dummy_stratum;
3725 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3726 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3727 dummy_target.to_get_bookmark = dummy_get_bookmark;
3728 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3729 dummy_target.to_xfer_partial = default_xfer_partial;
3730 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3731 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3732 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3733 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3734 dummy_target.to_has_execution
3735 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3736 dummy_target.to_stopped_by_watchpoint = return_zero;
3737 dummy_target.to_stopped_data_address =
3738 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3739 dummy_target.to_magic = OPS_MAGIC;
3740 }
3741 \f
3742 static void
3743 debug_to_open (char *args, int from_tty)
3744 {
3745 debug_target.to_open (args, from_tty);
3746
3747 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3748 }
3749
3750 void
3751 target_close (struct target_ops *targ, int quitting)
3752 {
3753 if (targ->to_xclose != NULL)
3754 targ->to_xclose (targ, quitting);
3755 else if (targ->to_close != NULL)
3756 targ->to_close (quitting);
3757
3758 if (targetdebug)
3759 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3760 }
3761
3762 void
3763 target_attach (char *args, int from_tty)
3764 {
3765 struct target_ops *t;
3766
3767 for (t = current_target.beneath; t != NULL; t = t->beneath)
3768 {
3769 if (t->to_attach != NULL)
3770 {
3771 t->to_attach (t, args, from_tty);
3772 if (targetdebug)
3773 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3774 args, from_tty);
3775 return;
3776 }
3777 }
3778
3779 internal_error (__FILE__, __LINE__,
3780 _("could not find a target to attach"));
3781 }
3782
3783 int
3784 target_thread_alive (ptid_t ptid)
3785 {
3786 struct target_ops *t;
3787
3788 for (t = current_target.beneath; t != NULL; t = t->beneath)
3789 {
3790 if (t->to_thread_alive != NULL)
3791 {
3792 int retval;
3793
3794 retval = t->to_thread_alive (t, ptid);
3795 if (targetdebug)
3796 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3797 PIDGET (ptid), retval);
3798
3799 return retval;
3800 }
3801 }
3802
3803 return 0;
3804 }
3805
3806 void
3807 target_find_new_threads (void)
3808 {
3809 struct target_ops *t;
3810
3811 for (t = current_target.beneath; t != NULL; t = t->beneath)
3812 {
3813 if (t->to_find_new_threads != NULL)
3814 {
3815 t->to_find_new_threads (t);
3816 if (targetdebug)
3817 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3818
3819 return;
3820 }
3821 }
3822 }
3823
3824 void
3825 target_stop (ptid_t ptid)
3826 {
3827 if (!may_stop)
3828 {
3829 warning (_("May not interrupt or stop the target, ignoring attempt"));
3830 return;
3831 }
3832
3833 (*current_target.to_stop) (ptid);
3834 }
3835
3836 static void
3837 debug_to_post_attach (int pid)
3838 {
3839 debug_target.to_post_attach (pid);
3840
3841 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3842 }
3843
3844 /* Return a pretty printed form of target_waitstatus.
3845 Space for the result is malloc'd, caller must free. */
3846
3847 char *
3848 target_waitstatus_to_string (const struct target_waitstatus *ws)
3849 {
3850 const char *kind_str = "status->kind = ";
3851
3852 switch (ws->kind)
3853 {
3854 case TARGET_WAITKIND_EXITED:
3855 return xstrprintf ("%sexited, status = %d",
3856 kind_str, ws->value.integer);
3857 case TARGET_WAITKIND_STOPPED:
3858 return xstrprintf ("%sstopped, signal = %s",
3859 kind_str, gdb_signal_to_name (ws->value.sig));
3860 case TARGET_WAITKIND_SIGNALLED:
3861 return xstrprintf ("%ssignalled, signal = %s",
3862 kind_str, gdb_signal_to_name (ws->value.sig));
3863 case TARGET_WAITKIND_LOADED:
3864 return xstrprintf ("%sloaded", kind_str);
3865 case TARGET_WAITKIND_FORKED:
3866 return xstrprintf ("%sforked", kind_str);
3867 case TARGET_WAITKIND_VFORKED:
3868 return xstrprintf ("%svforked", kind_str);
3869 case TARGET_WAITKIND_EXECD:
3870 return xstrprintf ("%sexecd", kind_str);
3871 case TARGET_WAITKIND_SYSCALL_ENTRY:
3872 return xstrprintf ("%sentered syscall", kind_str);
3873 case TARGET_WAITKIND_SYSCALL_RETURN:
3874 return xstrprintf ("%sexited syscall", kind_str);
3875 case TARGET_WAITKIND_SPURIOUS:
3876 return xstrprintf ("%sspurious", kind_str);
3877 case TARGET_WAITKIND_IGNORE:
3878 return xstrprintf ("%signore", kind_str);
3879 case TARGET_WAITKIND_NO_HISTORY:
3880 return xstrprintf ("%sno-history", kind_str);
3881 case TARGET_WAITKIND_NO_RESUMED:
3882 return xstrprintf ("%sno-resumed", kind_str);
3883 default:
3884 return xstrprintf ("%sunknown???", kind_str);
3885 }
3886 }
3887
3888 static void
3889 debug_print_register (const char * func,
3890 struct regcache *regcache, int regno)
3891 {
3892 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3893
3894 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3895 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3896 && gdbarch_register_name (gdbarch, regno) != NULL
3897 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3898 fprintf_unfiltered (gdb_stdlog, "(%s)",
3899 gdbarch_register_name (gdbarch, regno));
3900 else
3901 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3902 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3903 {
3904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3905 int i, size = register_size (gdbarch, regno);
3906 unsigned char buf[MAX_REGISTER_SIZE];
3907
3908 regcache_raw_collect (regcache, regno, buf);
3909 fprintf_unfiltered (gdb_stdlog, " = ");
3910 for (i = 0; i < size; i++)
3911 {
3912 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3913 }
3914 if (size <= sizeof (LONGEST))
3915 {
3916 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3917
3918 fprintf_unfiltered (gdb_stdlog, " %s %s",
3919 core_addr_to_string_nz (val), plongest (val));
3920 }
3921 }
3922 fprintf_unfiltered (gdb_stdlog, "\n");
3923 }
3924
3925 void
3926 target_fetch_registers (struct regcache *regcache, int regno)
3927 {
3928 struct target_ops *t;
3929
3930 for (t = current_target.beneath; t != NULL; t = t->beneath)
3931 {
3932 if (t->to_fetch_registers != NULL)
3933 {
3934 t->to_fetch_registers (t, regcache, regno);
3935 if (targetdebug)
3936 debug_print_register ("target_fetch_registers", regcache, regno);
3937 return;
3938 }
3939 }
3940 }
3941
3942 void
3943 target_store_registers (struct regcache *regcache, int regno)
3944 {
3945 struct target_ops *t;
3946
3947 if (!may_write_registers)
3948 error (_("Writing to registers is not allowed (regno %d)"), regno);
3949
3950 for (t = current_target.beneath; t != NULL; t = t->beneath)
3951 {
3952 if (t->to_store_registers != NULL)
3953 {
3954 t->to_store_registers (t, regcache, regno);
3955 if (targetdebug)
3956 {
3957 debug_print_register ("target_store_registers", regcache, regno);
3958 }
3959 return;
3960 }
3961 }
3962
3963 noprocess ();
3964 }
3965
3966 int
3967 target_core_of_thread (ptid_t ptid)
3968 {
3969 struct target_ops *t;
3970
3971 for (t = current_target.beneath; t != NULL; t = t->beneath)
3972 {
3973 if (t->to_core_of_thread != NULL)
3974 {
3975 int retval = t->to_core_of_thread (t, ptid);
3976
3977 if (targetdebug)
3978 fprintf_unfiltered (gdb_stdlog,
3979 "target_core_of_thread (%d) = %d\n",
3980 PIDGET (ptid), retval);
3981 return retval;
3982 }
3983 }
3984
3985 return -1;
3986 }
3987
3988 int
3989 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3990 {
3991 struct target_ops *t;
3992
3993 for (t = current_target.beneath; t != NULL; t = t->beneath)
3994 {
3995 if (t->to_verify_memory != NULL)
3996 {
3997 int retval = t->to_verify_memory (t, data, memaddr, size);
3998
3999 if (targetdebug)
4000 fprintf_unfiltered (gdb_stdlog,
4001 "target_verify_memory (%s, %s) = %d\n",
4002 paddress (target_gdbarch, memaddr),
4003 pulongest (size),
4004 retval);
4005 return retval;
4006 }
4007 }
4008
4009 tcomplain ();
4010 }
4011
4012 /* The documentation for this function is in its prototype declaration in
4013 target.h. */
4014
4015 int
4016 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4017 {
4018 struct target_ops *t;
4019
4020 for (t = current_target.beneath; t != NULL; t = t->beneath)
4021 if (t->to_insert_mask_watchpoint != NULL)
4022 {
4023 int ret;
4024
4025 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4026
4027 if (targetdebug)
4028 fprintf_unfiltered (gdb_stdlog, "\
4029 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4030 core_addr_to_string (addr),
4031 core_addr_to_string (mask), rw, ret);
4032
4033 return ret;
4034 }
4035
4036 return 1;
4037 }
4038
4039 /* The documentation for this function is in its prototype declaration in
4040 target.h. */
4041
4042 int
4043 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4044 {
4045 struct target_ops *t;
4046
4047 for (t = current_target.beneath; t != NULL; t = t->beneath)
4048 if (t->to_remove_mask_watchpoint != NULL)
4049 {
4050 int ret;
4051
4052 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4053
4054 if (targetdebug)
4055 fprintf_unfiltered (gdb_stdlog, "\
4056 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4057 core_addr_to_string (addr),
4058 core_addr_to_string (mask), rw, ret);
4059
4060 return ret;
4061 }
4062
4063 return 1;
4064 }
4065
4066 /* The documentation for this function is in its prototype declaration
4067 in target.h. */
4068
4069 int
4070 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4071 {
4072 struct target_ops *t;
4073
4074 for (t = current_target.beneath; t != NULL; t = t->beneath)
4075 if (t->to_masked_watch_num_registers != NULL)
4076 return t->to_masked_watch_num_registers (t, addr, mask);
4077
4078 return -1;
4079 }
4080
4081 /* The documentation for this function is in its prototype declaration
4082 in target.h. */
4083
4084 int
4085 target_ranged_break_num_registers (void)
4086 {
4087 struct target_ops *t;
4088
4089 for (t = current_target.beneath; t != NULL; t = t->beneath)
4090 if (t->to_ranged_break_num_registers != NULL)
4091 return t->to_ranged_break_num_registers (t);
4092
4093 return -1;
4094 }
4095
4096 static void
4097 debug_to_prepare_to_store (struct regcache *regcache)
4098 {
4099 debug_target.to_prepare_to_store (regcache);
4100
4101 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4102 }
4103
4104 static int
4105 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4106 int write, struct mem_attrib *attrib,
4107 struct target_ops *target)
4108 {
4109 int retval;
4110
4111 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4112 attrib, target);
4113
4114 fprintf_unfiltered (gdb_stdlog,
4115 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4116 paddress (target_gdbarch, memaddr), len,
4117 write ? "write" : "read", retval);
4118
4119 if (retval > 0)
4120 {
4121 int i;
4122
4123 fputs_unfiltered (", bytes =", gdb_stdlog);
4124 for (i = 0; i < retval; i++)
4125 {
4126 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4127 {
4128 if (targetdebug < 2 && i > 0)
4129 {
4130 fprintf_unfiltered (gdb_stdlog, " ...");
4131 break;
4132 }
4133 fprintf_unfiltered (gdb_stdlog, "\n");
4134 }
4135
4136 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4137 }
4138 }
4139
4140 fputc_unfiltered ('\n', gdb_stdlog);
4141
4142 return retval;
4143 }
4144
4145 static void
4146 debug_to_files_info (struct target_ops *target)
4147 {
4148 debug_target.to_files_info (target);
4149
4150 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4151 }
4152
4153 static int
4154 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4155 struct bp_target_info *bp_tgt)
4156 {
4157 int retval;
4158
4159 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4160
4161 fprintf_unfiltered (gdb_stdlog,
4162 "target_insert_breakpoint (%s, xxx) = %ld\n",
4163 core_addr_to_string (bp_tgt->placed_address),
4164 (unsigned long) retval);
4165 return retval;
4166 }
4167
4168 static int
4169 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4170 struct bp_target_info *bp_tgt)
4171 {
4172 int retval;
4173
4174 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4175
4176 fprintf_unfiltered (gdb_stdlog,
4177 "target_remove_breakpoint (%s, xxx) = %ld\n",
4178 core_addr_to_string (bp_tgt->placed_address),
4179 (unsigned long) retval);
4180 return retval;
4181 }
4182
4183 static int
4184 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4185 {
4186 int retval;
4187
4188 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4189
4190 fprintf_unfiltered (gdb_stdlog,
4191 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4192 (unsigned long) type,
4193 (unsigned long) cnt,
4194 (unsigned long) from_tty,
4195 (unsigned long) retval);
4196 return retval;
4197 }
4198
4199 static int
4200 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4201 {
4202 CORE_ADDR retval;
4203
4204 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4205
4206 fprintf_unfiltered (gdb_stdlog,
4207 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4208 core_addr_to_string (addr), (unsigned long) len,
4209 core_addr_to_string (retval));
4210 return retval;
4211 }
4212
4213 static int
4214 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4215 struct expression *cond)
4216 {
4217 int retval;
4218
4219 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4220 rw, cond);
4221
4222 fprintf_unfiltered (gdb_stdlog,
4223 "target_can_accel_watchpoint_condition "
4224 "(%s, %d, %d, %s) = %ld\n",
4225 core_addr_to_string (addr), len, rw,
4226 host_address_to_string (cond), (unsigned long) retval);
4227 return retval;
4228 }
4229
4230 static int
4231 debug_to_stopped_by_watchpoint (void)
4232 {
4233 int retval;
4234
4235 retval = debug_target.to_stopped_by_watchpoint ();
4236
4237 fprintf_unfiltered (gdb_stdlog,
4238 "target_stopped_by_watchpoint () = %ld\n",
4239 (unsigned long) retval);
4240 return retval;
4241 }
4242
4243 static int
4244 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4245 {
4246 int retval;
4247
4248 retval = debug_target.to_stopped_data_address (target, addr);
4249
4250 fprintf_unfiltered (gdb_stdlog,
4251 "target_stopped_data_address ([%s]) = %ld\n",
4252 core_addr_to_string (*addr),
4253 (unsigned long)retval);
4254 return retval;
4255 }
4256
4257 static int
4258 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4259 CORE_ADDR addr,
4260 CORE_ADDR start, int length)
4261 {
4262 int retval;
4263
4264 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4265 start, length);
4266
4267 fprintf_filtered (gdb_stdlog,
4268 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4269 core_addr_to_string (addr), core_addr_to_string (start),
4270 length, retval);
4271 return retval;
4272 }
4273
4274 static int
4275 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4276 struct bp_target_info *bp_tgt)
4277 {
4278 int retval;
4279
4280 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4281
4282 fprintf_unfiltered (gdb_stdlog,
4283 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4284 core_addr_to_string (bp_tgt->placed_address),
4285 (unsigned long) retval);
4286 return retval;
4287 }
4288
4289 static int
4290 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4291 struct bp_target_info *bp_tgt)
4292 {
4293 int retval;
4294
4295 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4296
4297 fprintf_unfiltered (gdb_stdlog,
4298 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4299 core_addr_to_string (bp_tgt->placed_address),
4300 (unsigned long) retval);
4301 return retval;
4302 }
4303
4304 static int
4305 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4306 struct expression *cond)
4307 {
4308 int retval;
4309
4310 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4311
4312 fprintf_unfiltered (gdb_stdlog,
4313 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4314 core_addr_to_string (addr), len, type,
4315 host_address_to_string (cond), (unsigned long) retval);
4316 return retval;
4317 }
4318
4319 static int
4320 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4321 struct expression *cond)
4322 {
4323 int retval;
4324
4325 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4326
4327 fprintf_unfiltered (gdb_stdlog,
4328 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4329 core_addr_to_string (addr), len, type,
4330 host_address_to_string (cond), (unsigned long) retval);
4331 return retval;
4332 }
4333
4334 static void
4335 debug_to_terminal_init (void)
4336 {
4337 debug_target.to_terminal_init ();
4338
4339 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4340 }
4341
4342 static void
4343 debug_to_terminal_inferior (void)
4344 {
4345 debug_target.to_terminal_inferior ();
4346
4347 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4348 }
4349
4350 static void
4351 debug_to_terminal_ours_for_output (void)
4352 {
4353 debug_target.to_terminal_ours_for_output ();
4354
4355 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4356 }
4357
4358 static void
4359 debug_to_terminal_ours (void)
4360 {
4361 debug_target.to_terminal_ours ();
4362
4363 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4364 }
4365
4366 static void
4367 debug_to_terminal_save_ours (void)
4368 {
4369 debug_target.to_terminal_save_ours ();
4370
4371 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4372 }
4373
4374 static void
4375 debug_to_terminal_info (char *arg, int from_tty)
4376 {
4377 debug_target.to_terminal_info (arg, from_tty);
4378
4379 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4380 from_tty);
4381 }
4382
4383 static void
4384 debug_to_load (char *args, int from_tty)
4385 {
4386 debug_target.to_load (args, from_tty);
4387
4388 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4389 }
4390
4391 static void
4392 debug_to_post_startup_inferior (ptid_t ptid)
4393 {
4394 debug_target.to_post_startup_inferior (ptid);
4395
4396 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4397 PIDGET (ptid));
4398 }
4399
4400 static int
4401 debug_to_insert_fork_catchpoint (int pid)
4402 {
4403 int retval;
4404
4405 retval = debug_target.to_insert_fork_catchpoint (pid);
4406
4407 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4408 pid, retval);
4409
4410 return retval;
4411 }
4412
4413 static int
4414 debug_to_remove_fork_catchpoint (int pid)
4415 {
4416 int retval;
4417
4418 retval = debug_target.to_remove_fork_catchpoint (pid);
4419
4420 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4421 pid, retval);
4422
4423 return retval;
4424 }
4425
4426 static int
4427 debug_to_insert_vfork_catchpoint (int pid)
4428 {
4429 int retval;
4430
4431 retval = debug_target.to_insert_vfork_catchpoint (pid);
4432
4433 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4434 pid, retval);
4435
4436 return retval;
4437 }
4438
4439 static int
4440 debug_to_remove_vfork_catchpoint (int pid)
4441 {
4442 int retval;
4443
4444 retval = debug_target.to_remove_vfork_catchpoint (pid);
4445
4446 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4447 pid, retval);
4448
4449 return retval;
4450 }
4451
4452 static int
4453 debug_to_insert_exec_catchpoint (int pid)
4454 {
4455 int retval;
4456
4457 retval = debug_target.to_insert_exec_catchpoint (pid);
4458
4459 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4460 pid, retval);
4461
4462 return retval;
4463 }
4464
4465 static int
4466 debug_to_remove_exec_catchpoint (int pid)
4467 {
4468 int retval;
4469
4470 retval = debug_target.to_remove_exec_catchpoint (pid);
4471
4472 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4473 pid, retval);
4474
4475 return retval;
4476 }
4477
4478 static int
4479 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4480 {
4481 int has_exited;
4482
4483 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4484
4485 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4486 pid, wait_status, *exit_status, has_exited);
4487
4488 return has_exited;
4489 }
4490
4491 static int
4492 debug_to_can_run (void)
4493 {
4494 int retval;
4495
4496 retval = debug_target.to_can_run ();
4497
4498 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4499
4500 return retval;
4501 }
4502
4503 static struct gdbarch *
4504 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4505 {
4506 struct gdbarch *retval;
4507
4508 retval = debug_target.to_thread_architecture (ops, ptid);
4509
4510 fprintf_unfiltered (gdb_stdlog,
4511 "target_thread_architecture (%s) = %s [%s]\n",
4512 target_pid_to_str (ptid),
4513 host_address_to_string (retval),
4514 gdbarch_bfd_arch_info (retval)->printable_name);
4515 return retval;
4516 }
4517
4518 static void
4519 debug_to_stop (ptid_t ptid)
4520 {
4521 debug_target.to_stop (ptid);
4522
4523 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4524 target_pid_to_str (ptid));
4525 }
4526
4527 static void
4528 debug_to_rcmd (char *command,
4529 struct ui_file *outbuf)
4530 {
4531 debug_target.to_rcmd (command, outbuf);
4532 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4533 }
4534
4535 static char *
4536 debug_to_pid_to_exec_file (int pid)
4537 {
4538 char *exec_file;
4539
4540 exec_file = debug_target.to_pid_to_exec_file (pid);
4541
4542 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4543 pid, exec_file);
4544
4545 return exec_file;
4546 }
4547
4548 static void
4549 setup_target_debug (void)
4550 {
4551 memcpy (&debug_target, &current_target, sizeof debug_target);
4552
4553 current_target.to_open = debug_to_open;
4554 current_target.to_post_attach = debug_to_post_attach;
4555 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4556 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4557 current_target.to_files_info = debug_to_files_info;
4558 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4559 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4560 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4561 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4562 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4563 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4564 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4565 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4566 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4567 current_target.to_watchpoint_addr_within_range
4568 = debug_to_watchpoint_addr_within_range;
4569 current_target.to_region_ok_for_hw_watchpoint
4570 = debug_to_region_ok_for_hw_watchpoint;
4571 current_target.to_can_accel_watchpoint_condition
4572 = debug_to_can_accel_watchpoint_condition;
4573 current_target.to_terminal_init = debug_to_terminal_init;
4574 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4575 current_target.to_terminal_ours_for_output
4576 = debug_to_terminal_ours_for_output;
4577 current_target.to_terminal_ours = debug_to_terminal_ours;
4578 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4579 current_target.to_terminal_info = debug_to_terminal_info;
4580 current_target.to_load = debug_to_load;
4581 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4582 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4583 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4584 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4585 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4586 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4587 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4588 current_target.to_has_exited = debug_to_has_exited;
4589 current_target.to_can_run = debug_to_can_run;
4590 current_target.to_stop = debug_to_stop;
4591 current_target.to_rcmd = debug_to_rcmd;
4592 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4593 current_target.to_thread_architecture = debug_to_thread_architecture;
4594 }
4595 \f
4596
4597 static char targ_desc[] =
4598 "Names of targets and files being debugged.\nShows the entire \
4599 stack of targets currently in use (including the exec-file,\n\
4600 core-file, and process, if any), as well as the symbol file name.";
4601
4602 static void
4603 do_monitor_command (char *cmd,
4604 int from_tty)
4605 {
4606 if ((current_target.to_rcmd
4607 == (void (*) (char *, struct ui_file *)) tcomplain)
4608 || (current_target.to_rcmd == debug_to_rcmd
4609 && (debug_target.to_rcmd
4610 == (void (*) (char *, struct ui_file *)) tcomplain)))
4611 error (_("\"monitor\" command not supported by this target."));
4612 target_rcmd (cmd, gdb_stdtarg);
4613 }
4614
4615 /* Print the name of each layers of our target stack. */
4616
4617 static void
4618 maintenance_print_target_stack (char *cmd, int from_tty)
4619 {
4620 struct target_ops *t;
4621
4622 printf_filtered (_("The current target stack is:\n"));
4623
4624 for (t = target_stack; t != NULL; t = t->beneath)
4625 {
4626 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4627 }
4628 }
4629
4630 /* Controls if async mode is permitted. */
4631 int target_async_permitted = 0;
4632
4633 /* The set command writes to this variable. If the inferior is
4634 executing, linux_nat_async_permitted is *not* updated. */
4635 static int target_async_permitted_1 = 0;
4636
4637 static void
4638 set_target_async_command (char *args, int from_tty,
4639 struct cmd_list_element *c)
4640 {
4641 if (have_live_inferiors ())
4642 {
4643 target_async_permitted_1 = target_async_permitted;
4644 error (_("Cannot change this setting while the inferior is running."));
4645 }
4646
4647 target_async_permitted = target_async_permitted_1;
4648 }
4649
4650 static void
4651 show_target_async_command (struct ui_file *file, int from_tty,
4652 struct cmd_list_element *c,
4653 const char *value)
4654 {
4655 fprintf_filtered (file,
4656 _("Controlling the inferior in "
4657 "asynchronous mode is %s.\n"), value);
4658 }
4659
4660 /* Temporary copies of permission settings. */
4661
4662 static int may_write_registers_1 = 1;
4663 static int may_write_memory_1 = 1;
4664 static int may_insert_breakpoints_1 = 1;
4665 static int may_insert_tracepoints_1 = 1;
4666 static int may_insert_fast_tracepoints_1 = 1;
4667 static int may_stop_1 = 1;
4668
4669 /* Make the user-set values match the real values again. */
4670
4671 void
4672 update_target_permissions (void)
4673 {
4674 may_write_registers_1 = may_write_registers;
4675 may_write_memory_1 = may_write_memory;
4676 may_insert_breakpoints_1 = may_insert_breakpoints;
4677 may_insert_tracepoints_1 = may_insert_tracepoints;
4678 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4679 may_stop_1 = may_stop;
4680 }
4681
4682 /* The one function handles (most of) the permission flags in the same
4683 way. */
4684
4685 static void
4686 set_target_permissions (char *args, int from_tty,
4687 struct cmd_list_element *c)
4688 {
4689 if (target_has_execution)
4690 {
4691 update_target_permissions ();
4692 error (_("Cannot change this setting while the inferior is running."));
4693 }
4694
4695 /* Make the real values match the user-changed values. */
4696 may_write_registers = may_write_registers_1;
4697 may_insert_breakpoints = may_insert_breakpoints_1;
4698 may_insert_tracepoints = may_insert_tracepoints_1;
4699 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4700 may_stop = may_stop_1;
4701 update_observer_mode ();
4702 }
4703
4704 /* Set memory write permission independently of observer mode. */
4705
4706 static void
4707 set_write_memory_permission (char *args, int from_tty,
4708 struct cmd_list_element *c)
4709 {
4710 /* Make the real values match the user-changed values. */
4711 may_write_memory = may_write_memory_1;
4712 update_observer_mode ();
4713 }
4714
4715
4716 void
4717 initialize_targets (void)
4718 {
4719 init_dummy_target ();
4720 push_target (&dummy_target);
4721
4722 add_info ("target", target_info, targ_desc);
4723 add_info ("files", target_info, targ_desc);
4724
4725 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4726 Set target debugging."), _("\
4727 Show target debugging."), _("\
4728 When non-zero, target debugging is enabled. Higher numbers are more\n\
4729 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4730 command."),
4731 NULL,
4732 show_targetdebug,
4733 &setdebuglist, &showdebuglist);
4734
4735 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4736 &trust_readonly, _("\
4737 Set mode for reading from readonly sections."), _("\
4738 Show mode for reading from readonly sections."), _("\
4739 When this mode is on, memory reads from readonly sections (such as .text)\n\
4740 will be read from the object file instead of from the target. This will\n\
4741 result in significant performance improvement for remote targets."),
4742 NULL,
4743 show_trust_readonly,
4744 &setlist, &showlist);
4745
4746 add_com ("monitor", class_obscure, do_monitor_command,
4747 _("Send a command to the remote monitor (remote targets only)."));
4748
4749 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4750 _("Print the name of each layer of the internal target stack."),
4751 &maintenanceprintlist);
4752
4753 add_setshow_boolean_cmd ("target-async", no_class,
4754 &target_async_permitted_1, _("\
4755 Set whether gdb controls the inferior in asynchronous mode."), _("\
4756 Show whether gdb controls the inferior in asynchronous mode."), _("\
4757 Tells gdb whether to control the inferior in asynchronous mode."),
4758 set_target_async_command,
4759 show_target_async_command,
4760 &setlist,
4761 &showlist);
4762
4763 add_setshow_boolean_cmd ("stack-cache", class_support,
4764 &stack_cache_enabled_p_1, _("\
4765 Set cache use for stack access."), _("\
4766 Show cache use for stack access."), _("\
4767 When on, use the data cache for all stack access, regardless of any\n\
4768 configured memory regions. This improves remote performance significantly.\n\
4769 By default, caching for stack access is on."),
4770 set_stack_cache_enabled_p,
4771 show_stack_cache_enabled_p,
4772 &setlist, &showlist);
4773
4774 add_setshow_boolean_cmd ("may-write-registers", class_support,
4775 &may_write_registers_1, _("\
4776 Set permission to write into registers."), _("\
4777 Show permission to write into registers."), _("\
4778 When this permission is on, GDB may write into the target's registers.\n\
4779 Otherwise, any sort of write attempt will result in an error."),
4780 set_target_permissions, NULL,
4781 &setlist, &showlist);
4782
4783 add_setshow_boolean_cmd ("may-write-memory", class_support,
4784 &may_write_memory_1, _("\
4785 Set permission to write into target memory."), _("\
4786 Show permission to write into target memory."), _("\
4787 When this permission is on, GDB may write into the target's memory.\n\
4788 Otherwise, any sort of write attempt will result in an error."),
4789 set_write_memory_permission, NULL,
4790 &setlist, &showlist);
4791
4792 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4793 &may_insert_breakpoints_1, _("\
4794 Set permission to insert breakpoints in the target."), _("\
4795 Show permission to insert breakpoints in the target."), _("\
4796 When this permission is on, GDB may insert breakpoints in the program.\n\
4797 Otherwise, any sort of insertion attempt will result in an error."),
4798 set_target_permissions, NULL,
4799 &setlist, &showlist);
4800
4801 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4802 &may_insert_tracepoints_1, _("\
4803 Set permission to insert tracepoints in the target."), _("\
4804 Show permission to insert tracepoints in the target."), _("\
4805 When this permission is on, GDB may insert tracepoints in the program.\n\
4806 Otherwise, any sort of insertion attempt will result in an error."),
4807 set_target_permissions, NULL,
4808 &setlist, &showlist);
4809
4810 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4811 &may_insert_fast_tracepoints_1, _("\
4812 Set permission to insert fast tracepoints in the target."), _("\
4813 Show permission to insert fast tracepoints in the target."), _("\
4814 When this permission is on, GDB may insert fast tracepoints.\n\
4815 Otherwise, any sort of insertion attempt will result in an error."),
4816 set_target_permissions, NULL,
4817 &setlist, &showlist);
4818
4819 add_setshow_boolean_cmd ("may-interrupt", class_support,
4820 &may_stop_1, _("\
4821 Set permission to interrupt or signal the target."), _("\
4822 Show permission to interrupt or signal the target."), _("\
4823 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4824 Otherwise, any attempt to interrupt or stop will be ignored."),
4825 set_target_permissions, NULL,
4826 &setlist, &showlist);
4827
4828
4829 target_dcache = dcache_init ();
4830 }
This page took 0.142302 seconds and 4 git commands to generate.