*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdb_stdint.h"
43
44 static void target_info (char *, int);
45
46 static void maybe_kill_then_attach (char *, int);
47
48 static void kill_or_be_killed (int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTR_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static void nosupport_runtime (void);
76
77 static LONGEST default_xfer_partial (struct target_ops *ops,
78 enum target_object object,
79 const char *annex, gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, LONGEST len);
82
83 static LONGEST current_xfer_partial (struct target_ops *ops,
84 enum target_object object,
85 const char *annex, gdb_byte *readbuf,
86 const gdb_byte *writebuf,
87 ULONGEST offset, LONGEST len);
88
89 static LONGEST target_xfer_partial (struct target_ops *ops,
90 enum target_object object,
91 const char *annex,
92 void *readbuf, const void *writebuf,
93 ULONGEST offset, LONGEST len);
94
95 static void init_dummy_target (void);
96
97 static struct target_ops debug_target;
98
99 static void debug_to_open (char *, int);
100
101 static void debug_to_close (int);
102
103 static void debug_to_attach (char *, int);
104
105 static void debug_to_detach (char *, int);
106
107 static void debug_to_resume (ptid_t, int, enum target_signal);
108
109 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
110
111 static void debug_to_fetch_registers (struct regcache *, int);
112
113 static void debug_to_store_registers (struct regcache *, int);
114
115 static void debug_to_prepare_to_store (struct regcache *);
116
117 static void debug_to_files_info (struct target_ops *);
118
119 static int debug_to_insert_breakpoint (struct bp_target_info *);
120
121 static int debug_to_remove_breakpoint (struct bp_target_info *);
122
123 static int debug_to_can_use_hw_breakpoint (int, int, int);
124
125 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
128
129 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
132
133 static int debug_to_stopped_by_watchpoint (void);
134
135 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
136
137 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
138 CORE_ADDR, CORE_ADDR, int);
139
140 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
141
142 static void debug_to_terminal_init (void);
143
144 static void debug_to_terminal_inferior (void);
145
146 static void debug_to_terminal_ours_for_output (void);
147
148 static void debug_to_terminal_save_ours (void);
149
150 static void debug_to_terminal_ours (void);
151
152 static void debug_to_terminal_info (char *, int);
153
154 static void debug_to_kill (void);
155
156 static void debug_to_load (char *, int);
157
158 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
159
160 static void debug_to_mourn_inferior (void);
161
162 static int debug_to_can_run (void);
163
164 static void debug_to_notice_signals (ptid_t);
165
166 static int debug_to_thread_alive (ptid_t);
167
168 static void debug_to_stop (void);
169
170 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
171 wierd and mysterious ways. Putting the variable here lets those
172 wierd and mysterious ways keep building while they are being
173 converted to the inferior inheritance structure. */
174 struct target_ops deprecated_child_ops;
175
176 /* Pointer to array of target architecture structures; the size of the
177 array; the current index into the array; the allocated size of the
178 array. */
179 struct target_ops **target_structs;
180 unsigned target_struct_size;
181 unsigned target_struct_index;
182 unsigned target_struct_allocsize;
183 #define DEFAULT_ALLOCSIZE 10
184
185 /* The initial current target, so that there is always a semi-valid
186 current target. */
187
188 static struct target_ops dummy_target;
189
190 /* Top of target stack. */
191
192 static struct target_ops *target_stack;
193
194 /* The target structure we are currently using to talk to a process
195 or file or whatever "inferior" we have. */
196
197 struct target_ops current_target;
198
199 /* Command list for target. */
200
201 static struct cmd_list_element *targetlist = NULL;
202
203 /* Nonzero if we are debugging an attached outside process
204 rather than an inferior. */
205
206 int attach_flag;
207
208 /* Nonzero if we should trust readonly sections from the
209 executable when reading memory. */
210
211 static int trust_readonly = 0;
212
213 /* Nonzero if we should show true memory content including
214 memory breakpoint inserted by gdb. */
215
216 static int show_memory_breakpoints = 0;
217
218 /* Non-zero if we want to see trace of target level stuff. */
219
220 static int targetdebug = 0;
221 static void
222 show_targetdebug (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
226 }
227
228 static void setup_target_debug (void);
229
230 DCACHE *target_dcache;
231
232 /* The user just typed 'target' without the name of a target. */
233
234 static void
235 target_command (char *arg, int from_tty)
236 {
237 fputs_filtered ("Argument required (target name). Try `help target'\n",
238 gdb_stdout);
239 }
240
241 /* Add a possible target architecture to the list. */
242
243 void
244 add_target (struct target_ops *t)
245 {
246 /* Provide default values for all "must have" methods. */
247 if (t->to_xfer_partial == NULL)
248 t->to_xfer_partial = default_xfer_partial;
249
250 if (!target_structs)
251 {
252 target_struct_allocsize = DEFAULT_ALLOCSIZE;
253 target_structs = (struct target_ops **) xmalloc
254 (target_struct_allocsize * sizeof (*target_structs));
255 }
256 if (target_struct_size >= target_struct_allocsize)
257 {
258 target_struct_allocsize *= 2;
259 target_structs = (struct target_ops **)
260 xrealloc ((char *) target_structs,
261 target_struct_allocsize * sizeof (*target_structs));
262 }
263 target_structs[target_struct_size++] = t;
264
265 if (targetlist == NULL)
266 add_prefix_cmd ("target", class_run, target_command, _("\
267 Connect to a target machine or process.\n\
268 The first argument is the type or protocol of the target machine.\n\
269 Remaining arguments are interpreted by the target protocol. For more\n\
270 information on the arguments for a particular protocol, type\n\
271 `help target ' followed by the protocol name."),
272 &targetlist, "target ", 0, &cmdlist);
273 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
274 }
275
276 /* Stub functions */
277
278 void
279 target_ignore (void)
280 {
281 }
282
283 void
284 target_load (char *arg, int from_tty)
285 {
286 dcache_invalidate (target_dcache);
287 (*current_target.to_load) (arg, from_tty);
288 }
289
290 static int
291 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
292 struct target_ops *t)
293 {
294 errno = EIO; /* Can't read/write this location */
295 return 0; /* No bytes handled */
296 }
297
298 static void
299 tcomplain (void)
300 {
301 error (_("You can't do that when your target is `%s'"),
302 current_target.to_shortname);
303 }
304
305 void
306 noprocess (void)
307 {
308 error (_("You can't do that without a process to debug."));
309 }
310
311 static int
312 nosymbol (char *name, CORE_ADDR *addrp)
313 {
314 return 1; /* Symbol does not exist in target env */
315 }
316
317 static void
318 nosupport_runtime (void)
319 {
320 if (ptid_equal (inferior_ptid, null_ptid))
321 noprocess ();
322 else
323 error (_("No run-time support for this"));
324 }
325
326
327 static void
328 default_terminal_info (char *args, int from_tty)
329 {
330 printf_unfiltered (_("No saved terminal information.\n"));
331 }
332
333 /* This is the default target_create_inferior and target_attach function.
334 If the current target is executing, it asks whether to kill it off.
335 If this function returns without calling error(), it has killed off
336 the target, and the operation should be attempted. */
337
338 static void
339 kill_or_be_killed (int from_tty)
340 {
341 if (target_has_execution)
342 {
343 printf_unfiltered (_("You are already running a program:\n"));
344 target_files_info ();
345 if (query ("Kill it? "))
346 {
347 target_kill ();
348 if (target_has_execution)
349 error (_("Killing the program did not help."));
350 return;
351 }
352 else
353 {
354 error (_("Program not killed."));
355 }
356 }
357 tcomplain ();
358 }
359
360 static void
361 maybe_kill_then_attach (char *args, int from_tty)
362 {
363 kill_or_be_killed (from_tty);
364 target_attach (args, from_tty);
365 }
366
367 static void
368 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
369 int from_tty)
370 {
371 kill_or_be_killed (0);
372 target_create_inferior (exec, args, env, from_tty);
373 }
374
375 /* Go through the target stack from top to bottom, copying over zero
376 entries in current_target, then filling in still empty entries. In
377 effect, we are doing class inheritance through the pushed target
378 vectors.
379
380 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
381 is currently implemented, is that it discards any knowledge of
382 which target an inherited method originally belonged to.
383 Consequently, new new target methods should instead explicitly and
384 locally search the target stack for the target that can handle the
385 request. */
386
387 static void
388 update_current_target (void)
389 {
390 struct target_ops *t;
391
392 /* First, reset current's contents. */
393 memset (&current_target, 0, sizeof (current_target));
394
395 #define INHERIT(FIELD, TARGET) \
396 if (!current_target.FIELD) \
397 current_target.FIELD = (TARGET)->FIELD
398
399 for (t = target_stack; t; t = t->beneath)
400 {
401 INHERIT (to_shortname, t);
402 INHERIT (to_longname, t);
403 INHERIT (to_doc, t);
404 INHERIT (to_open, t);
405 INHERIT (to_close, t);
406 INHERIT (to_attach, t);
407 INHERIT (to_post_attach, t);
408 INHERIT (to_detach, t);
409 /* Do not inherit to_disconnect. */
410 INHERIT (to_resume, t);
411 INHERIT (to_wait, t);
412 INHERIT (to_fetch_registers, t);
413 INHERIT (to_store_registers, t);
414 INHERIT (to_prepare_to_store, t);
415 INHERIT (deprecated_xfer_memory, t);
416 INHERIT (to_files_info, t);
417 INHERIT (to_insert_breakpoint, t);
418 INHERIT (to_remove_breakpoint, t);
419 INHERIT (to_can_use_hw_breakpoint, t);
420 INHERIT (to_insert_hw_breakpoint, t);
421 INHERIT (to_remove_hw_breakpoint, t);
422 INHERIT (to_insert_watchpoint, t);
423 INHERIT (to_remove_watchpoint, t);
424 INHERIT (to_stopped_data_address, t);
425 INHERIT (to_have_steppable_watchpoint, t);
426 INHERIT (to_have_continuable_watchpoint, t);
427 INHERIT (to_stopped_by_watchpoint, t);
428 INHERIT (to_watchpoint_addr_within_range, t);
429 INHERIT (to_region_ok_for_hw_watchpoint, t);
430 INHERIT (to_terminal_init, t);
431 INHERIT (to_terminal_inferior, t);
432 INHERIT (to_terminal_ours_for_output, t);
433 INHERIT (to_terminal_ours, t);
434 INHERIT (to_terminal_save_ours, t);
435 INHERIT (to_terminal_info, t);
436 INHERIT (to_kill, t);
437 INHERIT (to_load, t);
438 INHERIT (to_lookup_symbol, t);
439 INHERIT (to_create_inferior, t);
440 INHERIT (to_post_startup_inferior, t);
441 INHERIT (to_acknowledge_created_inferior, t);
442 INHERIT (to_insert_fork_catchpoint, t);
443 INHERIT (to_remove_fork_catchpoint, t);
444 INHERIT (to_insert_vfork_catchpoint, t);
445 INHERIT (to_remove_vfork_catchpoint, t);
446 /* Do not inherit to_follow_fork. */
447 INHERIT (to_insert_exec_catchpoint, t);
448 INHERIT (to_remove_exec_catchpoint, t);
449 INHERIT (to_has_exited, t);
450 INHERIT (to_mourn_inferior, t);
451 INHERIT (to_can_run, t);
452 INHERIT (to_notice_signals, t);
453 INHERIT (to_thread_alive, t);
454 INHERIT (to_find_new_threads, t);
455 INHERIT (to_pid_to_str, t);
456 INHERIT (to_extra_thread_info, t);
457 INHERIT (to_stop, t);
458 /* Do not inherit to_xfer_partial. */
459 INHERIT (to_rcmd, t);
460 INHERIT (to_pid_to_exec_file, t);
461 INHERIT (to_log_command, t);
462 INHERIT (to_stratum, t);
463 INHERIT (to_has_all_memory, t);
464 INHERIT (to_has_memory, t);
465 INHERIT (to_has_stack, t);
466 INHERIT (to_has_registers, t);
467 INHERIT (to_has_execution, t);
468 INHERIT (to_has_thread_control, t);
469 INHERIT (to_sections, t);
470 INHERIT (to_sections_end, t);
471 INHERIT (to_can_async_p, t);
472 INHERIT (to_is_async_p, t);
473 INHERIT (to_async, t);
474 INHERIT (to_async_mask, t);
475 INHERIT (to_find_memory_regions, t);
476 INHERIT (to_make_corefile_notes, t);
477 INHERIT (to_get_thread_local_address, t);
478 /* Do not inherit to_read_description. */
479 /* Do not inherit to_search_memory. */
480 INHERIT (to_magic, t);
481 /* Do not inherit to_memory_map. */
482 /* Do not inherit to_flash_erase. */
483 /* Do not inherit to_flash_done. */
484 }
485 #undef INHERIT
486
487 /* Clean up a target struct so it no longer has any zero pointers in
488 it. Some entries are defaulted to a method that print an error,
489 others are hard-wired to a standard recursive default. */
490
491 #define de_fault(field, value) \
492 if (!current_target.field) \
493 current_target.field = value
494
495 de_fault (to_open,
496 (void (*) (char *, int))
497 tcomplain);
498 de_fault (to_close,
499 (void (*) (int))
500 target_ignore);
501 de_fault (to_attach,
502 maybe_kill_then_attach);
503 de_fault (to_post_attach,
504 (void (*) (int))
505 target_ignore);
506 de_fault (to_detach,
507 (void (*) (char *, int))
508 target_ignore);
509 de_fault (to_resume,
510 (void (*) (ptid_t, int, enum target_signal))
511 noprocess);
512 de_fault (to_wait,
513 (ptid_t (*) (ptid_t, struct target_waitstatus *))
514 noprocess);
515 de_fault (to_fetch_registers,
516 (void (*) (struct regcache *, int))
517 target_ignore);
518 de_fault (to_store_registers,
519 (void (*) (struct regcache *, int))
520 noprocess);
521 de_fault (to_prepare_to_store,
522 (void (*) (struct regcache *))
523 noprocess);
524 de_fault (deprecated_xfer_memory,
525 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
526 nomemory);
527 de_fault (to_files_info,
528 (void (*) (struct target_ops *))
529 target_ignore);
530 de_fault (to_insert_breakpoint,
531 memory_insert_breakpoint);
532 de_fault (to_remove_breakpoint,
533 memory_remove_breakpoint);
534 de_fault (to_can_use_hw_breakpoint,
535 (int (*) (int, int, int))
536 return_zero);
537 de_fault (to_insert_hw_breakpoint,
538 (int (*) (struct bp_target_info *))
539 return_minus_one);
540 de_fault (to_remove_hw_breakpoint,
541 (int (*) (struct bp_target_info *))
542 return_minus_one);
543 de_fault (to_insert_watchpoint,
544 (int (*) (CORE_ADDR, int, int))
545 return_minus_one);
546 de_fault (to_remove_watchpoint,
547 (int (*) (CORE_ADDR, int, int))
548 return_minus_one);
549 de_fault (to_stopped_by_watchpoint,
550 (int (*) (void))
551 return_zero);
552 de_fault (to_stopped_data_address,
553 (int (*) (struct target_ops *, CORE_ADDR *))
554 return_zero);
555 de_fault (to_watchpoint_addr_within_range,
556 default_watchpoint_addr_within_range);
557 de_fault (to_region_ok_for_hw_watchpoint,
558 default_region_ok_for_hw_watchpoint);
559 de_fault (to_terminal_init,
560 (void (*) (void))
561 target_ignore);
562 de_fault (to_terminal_inferior,
563 (void (*) (void))
564 target_ignore);
565 de_fault (to_terminal_ours_for_output,
566 (void (*) (void))
567 target_ignore);
568 de_fault (to_terminal_ours,
569 (void (*) (void))
570 target_ignore);
571 de_fault (to_terminal_save_ours,
572 (void (*) (void))
573 target_ignore);
574 de_fault (to_terminal_info,
575 default_terminal_info);
576 de_fault (to_kill,
577 (void (*) (void))
578 noprocess);
579 de_fault (to_load,
580 (void (*) (char *, int))
581 tcomplain);
582 de_fault (to_lookup_symbol,
583 (int (*) (char *, CORE_ADDR *))
584 nosymbol);
585 de_fault (to_create_inferior,
586 maybe_kill_then_create_inferior);
587 de_fault (to_post_startup_inferior,
588 (void (*) (ptid_t))
589 target_ignore);
590 de_fault (to_acknowledge_created_inferior,
591 (void (*) (int))
592 target_ignore);
593 de_fault (to_insert_fork_catchpoint,
594 (void (*) (int))
595 tcomplain);
596 de_fault (to_remove_fork_catchpoint,
597 (int (*) (int))
598 tcomplain);
599 de_fault (to_insert_vfork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_vfork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_exec_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_exec_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_has_exited,
612 (int (*) (int, int, int *))
613 return_zero);
614 de_fault (to_mourn_inferior,
615 (void (*) (void))
616 noprocess);
617 de_fault (to_can_run,
618 return_zero);
619 de_fault (to_notice_signals,
620 (void (*) (ptid_t))
621 target_ignore);
622 de_fault (to_thread_alive,
623 (int (*) (ptid_t))
624 return_zero);
625 de_fault (to_find_new_threads,
626 (void (*) (void))
627 target_ignore);
628 de_fault (to_extra_thread_info,
629 (char *(*) (struct thread_info *))
630 return_zero);
631 de_fault (to_stop,
632 (void (*) (void))
633 target_ignore);
634 current_target.to_xfer_partial = current_xfer_partial;
635 de_fault (to_rcmd,
636 (void (*) (char *, struct ui_file *))
637 tcomplain);
638 de_fault (to_pid_to_exec_file,
639 (char *(*) (int))
640 return_zero);
641 de_fault (to_can_async_p,
642 (int (*) (void))
643 return_zero);
644 de_fault (to_is_async_p,
645 (int (*) (void))
646 return_zero);
647 de_fault (to_async,
648 (void (*) (void (*) (enum inferior_event_type, void*), void*))
649 tcomplain);
650 de_fault (to_async_mask,
651 (int (*) (int))
652 return_one);
653 current_target.to_read_description = NULL;
654 #undef de_fault
655
656 /* Finally, position the target-stack beneath the squashed
657 "current_target". That way code looking for a non-inherited
658 target method can quickly and simply find it. */
659 current_target.beneath = target_stack;
660
661 if (targetdebug)
662 setup_target_debug ();
663 }
664
665 /* Mark OPS as a running target. This reverses the effect
666 of target_mark_exited. */
667
668 void
669 target_mark_running (struct target_ops *ops)
670 {
671 struct target_ops *t;
672
673 for (t = target_stack; t != NULL; t = t->beneath)
674 if (t == ops)
675 break;
676 if (t == NULL)
677 internal_error (__FILE__, __LINE__,
678 "Attempted to mark unpushed target \"%s\" as running",
679 ops->to_shortname);
680
681 ops->to_has_execution = 1;
682 ops->to_has_all_memory = 1;
683 ops->to_has_memory = 1;
684 ops->to_has_stack = 1;
685 ops->to_has_registers = 1;
686
687 update_current_target ();
688 }
689
690 /* Mark OPS as a non-running target. This reverses the effect
691 of target_mark_running. */
692
693 void
694 target_mark_exited (struct target_ops *ops)
695 {
696 struct target_ops *t;
697
698 for (t = target_stack; t != NULL; t = t->beneath)
699 if (t == ops)
700 break;
701 if (t == NULL)
702 internal_error (__FILE__, __LINE__,
703 "Attempted to mark unpushed target \"%s\" as running",
704 ops->to_shortname);
705
706 ops->to_has_execution = 0;
707 ops->to_has_all_memory = 0;
708 ops->to_has_memory = 0;
709 ops->to_has_stack = 0;
710 ops->to_has_registers = 0;
711
712 update_current_target ();
713 }
714
715 /* Push a new target type into the stack of the existing target accessors,
716 possibly superseding some of the existing accessors.
717
718 Result is zero if the pushed target ended up on top of the stack,
719 nonzero if at least one target is on top of it.
720
721 Rather than allow an empty stack, we always have the dummy target at
722 the bottom stratum, so we can call the function vectors without
723 checking them. */
724
725 int
726 push_target (struct target_ops *t)
727 {
728 struct target_ops **cur;
729
730 /* Check magic number. If wrong, it probably means someone changed
731 the struct definition, but not all the places that initialize one. */
732 if (t->to_magic != OPS_MAGIC)
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "Magic number of %s target struct wrong\n",
736 t->to_shortname);
737 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
738 }
739
740 /* Find the proper stratum to install this target in. */
741 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
742 {
743 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
744 break;
745 }
746
747 /* If there's already targets at this stratum, remove them. */
748 /* FIXME: cagney/2003-10-15: I think this should be popping all
749 targets to CUR, and not just those at this stratum level. */
750 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
751 {
752 /* There's already something at this stratum level. Close it,
753 and un-hook it from the stack. */
754 struct target_ops *tmp = (*cur);
755 (*cur) = (*cur)->beneath;
756 tmp->beneath = NULL;
757 target_close (tmp, 0);
758 }
759
760 /* We have removed all targets in our stratum, now add the new one. */
761 t->beneath = (*cur);
762 (*cur) = t;
763
764 update_current_target ();
765
766 /* Not on top? */
767 return (t != target_stack);
768 }
769
770 /* Remove a target_ops vector from the stack, wherever it may be.
771 Return how many times it was removed (0 or 1). */
772
773 int
774 unpush_target (struct target_ops *t)
775 {
776 struct target_ops **cur;
777 struct target_ops *tmp;
778
779 /* Look for the specified target. Note that we assume that a target
780 can only occur once in the target stack. */
781
782 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
783 {
784 if ((*cur) == t)
785 break;
786 }
787
788 if ((*cur) == NULL)
789 return 0; /* Didn't find target_ops, quit now */
790
791 /* NOTE: cagney/2003-12-06: In '94 the close call was made
792 unconditional by moving it to before the above check that the
793 target was in the target stack (something about "Change the way
794 pushing and popping of targets work to support target overlays
795 and inheritance"). This doesn't make much sense - only open
796 targets should be closed. */
797 target_close (t, 0);
798
799 /* Unchain the target */
800 tmp = (*cur);
801 (*cur) = (*cur)->beneath;
802 tmp->beneath = NULL;
803
804 update_current_target ();
805
806 return 1;
807 }
808
809 void
810 pop_target (void)
811 {
812 target_close (&current_target, 0); /* Let it clean up */
813 if (unpush_target (target_stack) == 1)
814 return;
815
816 fprintf_unfiltered (gdb_stderr,
817 "pop_target couldn't find target %s\n",
818 current_target.to_shortname);
819 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
820 }
821
822 /* Using the objfile specified in OBJFILE, find the address for the
823 current thread's thread-local storage with offset OFFSET. */
824 CORE_ADDR
825 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
826 {
827 volatile CORE_ADDR addr = 0;
828
829 if (target_get_thread_local_address_p ()
830 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
831 {
832 ptid_t ptid = inferior_ptid;
833 volatile struct gdb_exception ex;
834
835 TRY_CATCH (ex, RETURN_MASK_ALL)
836 {
837 CORE_ADDR lm_addr;
838
839 /* Fetch the load module address for this objfile. */
840 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
841 objfile);
842 /* If it's 0, throw the appropriate exception. */
843 if (lm_addr == 0)
844 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
845 _("TLS load module not found"));
846
847 addr = target_get_thread_local_address (ptid, lm_addr, offset);
848 }
849 /* If an error occurred, print TLS related messages here. Otherwise,
850 throw the error to some higher catcher. */
851 if (ex.reason < 0)
852 {
853 int objfile_is_library = (objfile->flags & OBJF_SHARED);
854
855 switch (ex.error)
856 {
857 case TLS_NO_LIBRARY_SUPPORT_ERROR:
858 error (_("Cannot find thread-local variables in this thread library."));
859 break;
860 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
861 if (objfile_is_library)
862 error (_("Cannot find shared library `%s' in dynamic"
863 " linker's load module list"), objfile->name);
864 else
865 error (_("Cannot find executable file `%s' in dynamic"
866 " linker's load module list"), objfile->name);
867 break;
868 case TLS_NOT_ALLOCATED_YET_ERROR:
869 if (objfile_is_library)
870 error (_("The inferior has not yet allocated storage for"
871 " thread-local variables in\n"
872 "the shared library `%s'\n"
873 "for %s"),
874 objfile->name, target_pid_to_str (ptid));
875 else
876 error (_("The inferior has not yet allocated storage for"
877 " thread-local variables in\n"
878 "the executable `%s'\n"
879 "for %s"),
880 objfile->name, target_pid_to_str (ptid));
881 break;
882 case TLS_GENERIC_ERROR:
883 if (objfile_is_library)
884 error (_("Cannot find thread-local storage for %s, "
885 "shared library %s:\n%s"),
886 target_pid_to_str (ptid),
887 objfile->name, ex.message);
888 else
889 error (_("Cannot find thread-local storage for %s, "
890 "executable file %s:\n%s"),
891 target_pid_to_str (ptid),
892 objfile->name, ex.message);
893 break;
894 default:
895 throw_exception (ex);
896 break;
897 }
898 }
899 }
900 /* It wouldn't be wrong here to try a gdbarch method, too; finding
901 TLS is an ABI-specific thing. But we don't do that yet. */
902 else
903 error (_("Cannot find thread-local variables on this target"));
904
905 return addr;
906 }
907
908 #undef MIN
909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
910
911 /* target_read_string -- read a null terminated string, up to LEN bytes,
912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
913 Set *STRING to a pointer to malloc'd memory containing the data; the caller
914 is responsible for freeing it. Return the number of bytes successfully
915 read. */
916
917 int
918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
919 {
920 int tlen, origlen, offset, i;
921 gdb_byte buf[4];
922 int errcode = 0;
923 char *buffer;
924 int buffer_allocated;
925 char *bufptr;
926 unsigned int nbytes_read = 0;
927
928 gdb_assert (string);
929
930 /* Small for testing. */
931 buffer_allocated = 4;
932 buffer = xmalloc (buffer_allocated);
933 bufptr = buffer;
934
935 origlen = len;
936
937 while (len > 0)
938 {
939 tlen = MIN (len, 4 - (memaddr & 3));
940 offset = memaddr & 3;
941
942 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
943 if (errcode != 0)
944 {
945 /* The transfer request might have crossed the boundary to an
946 unallocated region of memory. Retry the transfer, requesting
947 a single byte. */
948 tlen = 1;
949 offset = 0;
950 errcode = target_read_memory (memaddr, buf, 1);
951 if (errcode != 0)
952 goto done;
953 }
954
955 if (bufptr - buffer + tlen > buffer_allocated)
956 {
957 unsigned int bytes;
958 bytes = bufptr - buffer;
959 buffer_allocated *= 2;
960 buffer = xrealloc (buffer, buffer_allocated);
961 bufptr = buffer + bytes;
962 }
963
964 for (i = 0; i < tlen; i++)
965 {
966 *bufptr++ = buf[i + offset];
967 if (buf[i + offset] == '\000')
968 {
969 nbytes_read += i + 1;
970 goto done;
971 }
972 }
973
974 memaddr += tlen;
975 len -= tlen;
976 nbytes_read += tlen;
977 }
978 done:
979 *string = buffer;
980 if (errnop != NULL)
981 *errnop = errcode;
982 return nbytes_read;
983 }
984
985 /* Find a section containing ADDR. */
986 struct section_table *
987 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
988 {
989 struct section_table *secp;
990 for (secp = target->to_sections;
991 secp < target->to_sections_end;
992 secp++)
993 {
994 if (addr >= secp->addr && addr < secp->endaddr)
995 return secp;
996 }
997 return NULL;
998 }
999
1000 /* Perform a partial memory transfer. The arguments and return
1001 value are just as for target_xfer_partial. */
1002
1003 static LONGEST
1004 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1005 ULONGEST memaddr, LONGEST len)
1006 {
1007 LONGEST res;
1008 int reg_len;
1009 struct mem_region *region;
1010
1011 /* Zero length requests are ok and require no work. */
1012 if (len == 0)
1013 return 0;
1014
1015 /* Try the executable file, if "trust-readonly-sections" is set. */
1016 if (readbuf != NULL && trust_readonly)
1017 {
1018 struct section_table *secp;
1019
1020 secp = target_section_by_addr (ops, memaddr);
1021 if (secp != NULL
1022 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1023 & SEC_READONLY))
1024 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1025 }
1026
1027 /* Likewise for accesses to unmapped overlay sections. */
1028 if (readbuf != NULL && overlay_debugging)
1029 {
1030 asection *section = find_pc_overlay (memaddr);
1031 if (pc_in_unmapped_range (memaddr, section))
1032 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1033 }
1034
1035 /* Try GDB's internal data cache. */
1036 region = lookup_mem_region (memaddr);
1037 /* region->hi == 0 means there's no upper bound. */
1038 if (memaddr + len < region->hi || region->hi == 0)
1039 reg_len = len;
1040 else
1041 reg_len = region->hi - memaddr;
1042
1043 switch (region->attrib.mode)
1044 {
1045 case MEM_RO:
1046 if (writebuf != NULL)
1047 return -1;
1048 break;
1049
1050 case MEM_WO:
1051 if (readbuf != NULL)
1052 return -1;
1053 break;
1054
1055 case MEM_FLASH:
1056 /* We only support writing to flash during "load" for now. */
1057 if (writebuf != NULL)
1058 error (_("Writing to flash memory forbidden in this context"));
1059 break;
1060
1061 case MEM_NONE:
1062 return -1;
1063 }
1064
1065 if (region->attrib.cache)
1066 {
1067 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1068 memory request will start back at current_target. */
1069 if (readbuf != NULL)
1070 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1071 reg_len, 0);
1072 else
1073 /* FIXME drow/2006-08-09: If we're going to preserve const
1074 correctness dcache_xfer_memory should take readbuf and
1075 writebuf. */
1076 res = dcache_xfer_memory (target_dcache, memaddr,
1077 (void *) writebuf,
1078 reg_len, 1);
1079 if (res <= 0)
1080 return -1;
1081 else
1082 {
1083 if (readbuf && !show_memory_breakpoints)
1084 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1085 return res;
1086 }
1087 }
1088
1089 /* If none of those methods found the memory we wanted, fall back
1090 to a target partial transfer. Normally a single call to
1091 to_xfer_partial is enough; if it doesn't recognize an object
1092 it will call the to_xfer_partial of the next target down.
1093 But for memory this won't do. Memory is the only target
1094 object which can be read from more than one valid target.
1095 A core file, for instance, could have some of memory but
1096 delegate other bits to the target below it. So, we must
1097 manually try all targets. */
1098
1099 do
1100 {
1101 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1102 readbuf, writebuf, memaddr, reg_len);
1103 if (res > 0)
1104 break;
1105
1106 /* We want to continue past core files to executables, but not
1107 past a running target's memory. */
1108 if (ops->to_has_all_memory)
1109 break;
1110
1111 ops = ops->beneath;
1112 }
1113 while (ops != NULL);
1114
1115 if (readbuf && !show_memory_breakpoints)
1116 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1117
1118 /* If we still haven't got anything, return the last error. We
1119 give up. */
1120 return res;
1121 }
1122
1123 static void
1124 restore_show_memory_breakpoints (void *arg)
1125 {
1126 show_memory_breakpoints = (uintptr_t) arg;
1127 }
1128
1129 struct cleanup *
1130 make_show_memory_breakpoints_cleanup (int show)
1131 {
1132 int current = show_memory_breakpoints;
1133 show_memory_breakpoints = show;
1134
1135 return make_cleanup (restore_show_memory_breakpoints,
1136 (void *) (uintptr_t) current);
1137 }
1138
1139 static LONGEST
1140 target_xfer_partial (struct target_ops *ops,
1141 enum target_object object, const char *annex,
1142 void *readbuf, const void *writebuf,
1143 ULONGEST offset, LONGEST len)
1144 {
1145 LONGEST retval;
1146
1147 gdb_assert (ops->to_xfer_partial != NULL);
1148
1149 /* If this is a memory transfer, let the memory-specific code
1150 have a look at it instead. Memory transfers are more
1151 complicated. */
1152 if (object == TARGET_OBJECT_MEMORY)
1153 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1154 else
1155 {
1156 enum target_object raw_object = object;
1157
1158 /* If this is a raw memory transfer, request the normal
1159 memory object from other layers. */
1160 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1161 raw_object = TARGET_OBJECT_MEMORY;
1162
1163 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1164 writebuf, offset, len);
1165 }
1166
1167 if (targetdebug)
1168 {
1169 const unsigned char *myaddr = NULL;
1170
1171 fprintf_unfiltered (gdb_stdlog,
1172 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1173 ops->to_shortname,
1174 (int) object,
1175 (annex ? annex : "(null)"),
1176 (long) readbuf, (long) writebuf,
1177 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1178
1179 if (readbuf)
1180 myaddr = readbuf;
1181 if (writebuf)
1182 myaddr = writebuf;
1183 if (retval > 0 && myaddr != NULL)
1184 {
1185 int i;
1186
1187 fputs_unfiltered (", bytes =", gdb_stdlog);
1188 for (i = 0; i < retval; i++)
1189 {
1190 if ((((long) &(myaddr[i])) & 0xf) == 0)
1191 {
1192 if (targetdebug < 2 && i > 0)
1193 {
1194 fprintf_unfiltered (gdb_stdlog, " ...");
1195 break;
1196 }
1197 fprintf_unfiltered (gdb_stdlog, "\n");
1198 }
1199
1200 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1201 }
1202 }
1203
1204 fputc_unfiltered ('\n', gdb_stdlog);
1205 }
1206 return retval;
1207 }
1208
1209 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1210 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1211 if any error occurs.
1212
1213 If an error occurs, no guarantee is made about the contents of the data at
1214 MYADDR. In particular, the caller should not depend upon partial reads
1215 filling the buffer with good data. There is no way for the caller to know
1216 how much good data might have been transfered anyway. Callers that can
1217 deal with partial reads should call target_read (which will retry until
1218 it makes no progress, and then return how much was transferred). */
1219
1220 int
1221 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1222 {
1223 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1224 myaddr, memaddr, len) == len)
1225 return 0;
1226 else
1227 return EIO;
1228 }
1229
1230 int
1231 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1232 {
1233 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1234 myaddr, memaddr, len) == len)
1235 return 0;
1236 else
1237 return EIO;
1238 }
1239
1240 /* Fetch the target's memory map. */
1241
1242 VEC(mem_region_s) *
1243 target_memory_map (void)
1244 {
1245 VEC(mem_region_s) *result;
1246 struct mem_region *last_one, *this_one;
1247 int ix;
1248 struct target_ops *t;
1249
1250 if (targetdebug)
1251 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1252
1253 for (t = current_target.beneath; t != NULL; t = t->beneath)
1254 if (t->to_memory_map != NULL)
1255 break;
1256
1257 if (t == NULL)
1258 return NULL;
1259
1260 result = t->to_memory_map (t);
1261 if (result == NULL)
1262 return NULL;
1263
1264 qsort (VEC_address (mem_region_s, result),
1265 VEC_length (mem_region_s, result),
1266 sizeof (struct mem_region), mem_region_cmp);
1267
1268 /* Check that regions do not overlap. Simultaneously assign
1269 a numbering for the "mem" commands to use to refer to
1270 each region. */
1271 last_one = NULL;
1272 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1273 {
1274 this_one->number = ix;
1275
1276 if (last_one && last_one->hi > this_one->lo)
1277 {
1278 warning (_("Overlapping regions in memory map: ignoring"));
1279 VEC_free (mem_region_s, result);
1280 return NULL;
1281 }
1282 last_one = this_one;
1283 }
1284
1285 return result;
1286 }
1287
1288 void
1289 target_flash_erase (ULONGEST address, LONGEST length)
1290 {
1291 struct target_ops *t;
1292
1293 for (t = current_target.beneath; t != NULL; t = t->beneath)
1294 if (t->to_flash_erase != NULL)
1295 {
1296 if (targetdebug)
1297 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1298 paddr (address), phex (length, 0));
1299 t->to_flash_erase (t, address, length);
1300 return;
1301 }
1302
1303 tcomplain ();
1304 }
1305
1306 void
1307 target_flash_done (void)
1308 {
1309 struct target_ops *t;
1310
1311 for (t = current_target.beneath; t != NULL; t = t->beneath)
1312 if (t->to_flash_done != NULL)
1313 {
1314 if (targetdebug)
1315 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1316 t->to_flash_done (t);
1317 return;
1318 }
1319
1320 tcomplain ();
1321 }
1322
1323 #ifndef target_stopped_data_address_p
1324 int
1325 target_stopped_data_address_p (struct target_ops *target)
1326 {
1327 if (target->to_stopped_data_address
1328 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1329 return 0;
1330 if (target->to_stopped_data_address == debug_to_stopped_data_address
1331 && (debug_target.to_stopped_data_address
1332 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1333 return 0;
1334 return 1;
1335 }
1336 #endif
1337
1338 static void
1339 show_trust_readonly (struct ui_file *file, int from_tty,
1340 struct cmd_list_element *c, const char *value)
1341 {
1342 fprintf_filtered (file, _("\
1343 Mode for reading from readonly sections is %s.\n"),
1344 value);
1345 }
1346
1347 /* More generic transfers. */
1348
1349 static LONGEST
1350 default_xfer_partial (struct target_ops *ops, enum target_object object,
1351 const char *annex, gdb_byte *readbuf,
1352 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1353 {
1354 if (object == TARGET_OBJECT_MEMORY
1355 && ops->deprecated_xfer_memory != NULL)
1356 /* If available, fall back to the target's
1357 "deprecated_xfer_memory" method. */
1358 {
1359 int xfered = -1;
1360 errno = 0;
1361 if (writebuf != NULL)
1362 {
1363 void *buffer = xmalloc (len);
1364 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1365 memcpy (buffer, writebuf, len);
1366 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1367 1/*write*/, NULL, ops);
1368 do_cleanups (cleanup);
1369 }
1370 if (readbuf != NULL)
1371 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1372 0/*read*/, NULL, ops);
1373 if (xfered > 0)
1374 return xfered;
1375 else if (xfered == 0 && errno == 0)
1376 /* "deprecated_xfer_memory" uses 0, cross checked against
1377 ERRNO as one indication of an error. */
1378 return 0;
1379 else
1380 return -1;
1381 }
1382 else if (ops->beneath != NULL)
1383 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1384 readbuf, writebuf, offset, len);
1385 else
1386 return -1;
1387 }
1388
1389 /* The xfer_partial handler for the topmost target. Unlike the default,
1390 it does not need to handle memory specially; it just passes all
1391 requests down the stack. */
1392
1393 static LONGEST
1394 current_xfer_partial (struct target_ops *ops, enum target_object object,
1395 const char *annex, gdb_byte *readbuf,
1396 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1397 {
1398 if (ops->beneath != NULL)
1399 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1400 readbuf, writebuf, offset, len);
1401 else
1402 return -1;
1403 }
1404
1405 /* Target vector read/write partial wrapper functions.
1406
1407 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1408 (inbuf, outbuf)", instead of separate read/write methods, make life
1409 easier. */
1410
1411 static LONGEST
1412 target_read_partial (struct target_ops *ops,
1413 enum target_object object,
1414 const char *annex, gdb_byte *buf,
1415 ULONGEST offset, LONGEST len)
1416 {
1417 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1418 }
1419
1420 static LONGEST
1421 target_write_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, const gdb_byte *buf,
1424 ULONGEST offset, LONGEST len)
1425 {
1426 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1427 }
1428
1429 /* Wrappers to perform the full transfer. */
1430 LONGEST
1431 target_read (struct target_ops *ops,
1432 enum target_object object,
1433 const char *annex, gdb_byte *buf,
1434 ULONGEST offset, LONGEST len)
1435 {
1436 LONGEST xfered = 0;
1437 while (xfered < len)
1438 {
1439 LONGEST xfer = target_read_partial (ops, object, annex,
1440 (gdb_byte *) buf + xfered,
1441 offset + xfered, len - xfered);
1442 /* Call an observer, notifying them of the xfer progress? */
1443 if (xfer == 0)
1444 return xfered;
1445 if (xfer < 0)
1446 return -1;
1447 xfered += xfer;
1448 QUIT;
1449 }
1450 return len;
1451 }
1452
1453 /* An alternative to target_write with progress callbacks. */
1454
1455 LONGEST
1456 target_write_with_progress (struct target_ops *ops,
1457 enum target_object object,
1458 const char *annex, const gdb_byte *buf,
1459 ULONGEST offset, LONGEST len,
1460 void (*progress) (ULONGEST, void *), void *baton)
1461 {
1462 LONGEST xfered = 0;
1463
1464 /* Give the progress callback a chance to set up. */
1465 if (progress)
1466 (*progress) (0, baton);
1467
1468 while (xfered < len)
1469 {
1470 LONGEST xfer = target_write_partial (ops, object, annex,
1471 (gdb_byte *) buf + xfered,
1472 offset + xfered, len - xfered);
1473
1474 if (xfer == 0)
1475 return xfered;
1476 if (xfer < 0)
1477 return -1;
1478
1479 if (progress)
1480 (*progress) (xfer, baton);
1481
1482 xfered += xfer;
1483 QUIT;
1484 }
1485 return len;
1486 }
1487
1488 LONGEST
1489 target_write (struct target_ops *ops,
1490 enum target_object object,
1491 const char *annex, const gdb_byte *buf,
1492 ULONGEST offset, LONGEST len)
1493 {
1494 return target_write_with_progress (ops, object, annex, buf, offset, len,
1495 NULL, NULL);
1496 }
1497
1498 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1499 the size of the transferred data. PADDING additional bytes are
1500 available in *BUF_P. This is a helper function for
1501 target_read_alloc; see the declaration of that function for more
1502 information. */
1503
1504 static LONGEST
1505 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1506 const char *annex, gdb_byte **buf_p, int padding)
1507 {
1508 size_t buf_alloc, buf_pos;
1509 gdb_byte *buf;
1510 LONGEST n;
1511
1512 /* This function does not have a length parameter; it reads the
1513 entire OBJECT). Also, it doesn't support objects fetched partly
1514 from one target and partly from another (in a different stratum,
1515 e.g. a core file and an executable). Both reasons make it
1516 unsuitable for reading memory. */
1517 gdb_assert (object != TARGET_OBJECT_MEMORY);
1518
1519 /* Start by reading up to 4K at a time. The target will throttle
1520 this number down if necessary. */
1521 buf_alloc = 4096;
1522 buf = xmalloc (buf_alloc);
1523 buf_pos = 0;
1524 while (1)
1525 {
1526 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1527 buf_pos, buf_alloc - buf_pos - padding);
1528 if (n < 0)
1529 {
1530 /* An error occurred. */
1531 xfree (buf);
1532 return -1;
1533 }
1534 else if (n == 0)
1535 {
1536 /* Read all there was. */
1537 if (buf_pos == 0)
1538 xfree (buf);
1539 else
1540 *buf_p = buf;
1541 return buf_pos;
1542 }
1543
1544 buf_pos += n;
1545
1546 /* If the buffer is filling up, expand it. */
1547 if (buf_alloc < buf_pos * 2)
1548 {
1549 buf_alloc *= 2;
1550 buf = xrealloc (buf, buf_alloc);
1551 }
1552
1553 QUIT;
1554 }
1555 }
1556
1557 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1558 the size of the transferred data. See the declaration in "target.h"
1559 function for more information about the return value. */
1560
1561 LONGEST
1562 target_read_alloc (struct target_ops *ops, enum target_object object,
1563 const char *annex, gdb_byte **buf_p)
1564 {
1565 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1566 }
1567
1568 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1569 returned as a string, allocated using xmalloc. If an error occurs
1570 or the transfer is unsupported, NULL is returned. Empty objects
1571 are returned as allocated but empty strings. A warning is issued
1572 if the result contains any embedded NUL bytes. */
1573
1574 char *
1575 target_read_stralloc (struct target_ops *ops, enum target_object object,
1576 const char *annex)
1577 {
1578 gdb_byte *buffer;
1579 LONGEST transferred;
1580
1581 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1582
1583 if (transferred < 0)
1584 return NULL;
1585
1586 if (transferred == 0)
1587 return xstrdup ("");
1588
1589 buffer[transferred] = 0;
1590 if (strlen (buffer) < transferred)
1591 warning (_("target object %d, annex %s, "
1592 "contained unexpected null characters"),
1593 (int) object, annex ? annex : "(none)");
1594
1595 return (char *) buffer;
1596 }
1597
1598 /* Memory transfer methods. */
1599
1600 void
1601 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1602 LONGEST len)
1603 {
1604 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1605 != len)
1606 memory_error (EIO, addr);
1607 }
1608
1609 ULONGEST
1610 get_target_memory_unsigned (struct target_ops *ops,
1611 CORE_ADDR addr, int len)
1612 {
1613 gdb_byte buf[sizeof (ULONGEST)];
1614
1615 gdb_assert (len <= sizeof (buf));
1616 get_target_memory (ops, addr, buf, len);
1617 return extract_unsigned_integer (buf, len);
1618 }
1619
1620 static void
1621 target_info (char *args, int from_tty)
1622 {
1623 struct target_ops *t;
1624 int has_all_mem = 0;
1625
1626 if (symfile_objfile != NULL)
1627 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1628
1629 for (t = target_stack; t != NULL; t = t->beneath)
1630 {
1631 if (!t->to_has_memory)
1632 continue;
1633
1634 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1635 continue;
1636 if (has_all_mem)
1637 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1638 printf_unfiltered ("%s:\n", t->to_longname);
1639 (t->to_files_info) (t);
1640 has_all_mem = t->to_has_all_memory;
1641 }
1642 }
1643
1644 /* This function is called before any new inferior is created, e.g.
1645 by running a program, attaching, or connecting to a target.
1646 It cleans up any state from previous invocations which might
1647 change between runs. This is a subset of what target_preopen
1648 resets (things which might change between targets). */
1649
1650 void
1651 target_pre_inferior (int from_tty)
1652 {
1653 invalidate_target_mem_regions ();
1654
1655 target_clear_description ();
1656 }
1657
1658 /* This is to be called by the open routine before it does
1659 anything. */
1660
1661 void
1662 target_preopen (int from_tty)
1663 {
1664 dont_repeat ();
1665
1666 if (target_has_execution)
1667 {
1668 if (!from_tty
1669 || query (_("A program is being debugged already. Kill it? ")))
1670 target_kill ();
1671 else
1672 error (_("Program not killed."));
1673 }
1674
1675 /* Calling target_kill may remove the target from the stack. But if
1676 it doesn't (which seems like a win for UDI), remove it now. */
1677
1678 if (target_has_execution)
1679 pop_target ();
1680
1681 target_pre_inferior (from_tty);
1682 }
1683
1684 /* Detach a target after doing deferred register stores. */
1685
1686 void
1687 target_detach (char *args, int from_tty)
1688 {
1689 /* If we're in breakpoints-always-inserted mode, have to
1690 remove them before detaching. */
1691 remove_breakpoints ();
1692
1693 (current_target.to_detach) (args, from_tty);
1694 }
1695
1696 void
1697 target_disconnect (char *args, int from_tty)
1698 {
1699 struct target_ops *t;
1700
1701 /* If we're in breakpoints-always-inserted mode, have to
1702 remove them before disconnecting. */
1703 remove_breakpoints ();
1704
1705 for (t = current_target.beneath; t != NULL; t = t->beneath)
1706 if (t->to_disconnect != NULL)
1707 {
1708 if (targetdebug)
1709 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1710 args, from_tty);
1711 t->to_disconnect (t, args, from_tty);
1712 return;
1713 }
1714
1715 tcomplain ();
1716 }
1717
1718 /* Look through the list of possible targets for a target that can
1719 follow forks. */
1720
1721 int
1722 target_follow_fork (int follow_child)
1723 {
1724 struct target_ops *t;
1725
1726 for (t = current_target.beneath; t != NULL; t = t->beneath)
1727 {
1728 if (t->to_follow_fork != NULL)
1729 {
1730 int retval = t->to_follow_fork (t, follow_child);
1731 if (targetdebug)
1732 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1733 follow_child, retval);
1734 return retval;
1735 }
1736 }
1737
1738 /* Some target returned a fork event, but did not know how to follow it. */
1739 internal_error (__FILE__, __LINE__,
1740 "could not find a target to follow fork");
1741 }
1742
1743 /* Look for a target which can describe architectural features, starting
1744 from TARGET. If we find one, return its description. */
1745
1746 const struct target_desc *
1747 target_read_description (struct target_ops *target)
1748 {
1749 struct target_ops *t;
1750
1751 for (t = target; t != NULL; t = t->beneath)
1752 if (t->to_read_description != NULL)
1753 {
1754 const struct target_desc *tdesc;
1755
1756 tdesc = t->to_read_description (t);
1757 if (tdesc)
1758 return tdesc;
1759 }
1760
1761 return NULL;
1762 }
1763
1764 /* The default implementation of to_search_memory.
1765 This implements a basic search of memory, reading target memory and
1766 performing the search here (as opposed to performing the search in on the
1767 target side with, for example, gdbserver). */
1768
1769 int
1770 simple_search_memory (struct target_ops *ops,
1771 CORE_ADDR start_addr, ULONGEST search_space_len,
1772 const gdb_byte *pattern, ULONGEST pattern_len,
1773 CORE_ADDR *found_addrp)
1774 {
1775 /* NOTE: also defined in find.c testcase. */
1776 #define SEARCH_CHUNK_SIZE 16000
1777 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1778 /* Buffer to hold memory contents for searching. */
1779 gdb_byte *search_buf;
1780 unsigned search_buf_size;
1781 struct cleanup *old_cleanups;
1782
1783 search_buf_size = chunk_size + pattern_len - 1;
1784
1785 /* No point in trying to allocate a buffer larger than the search space. */
1786 if (search_space_len < search_buf_size)
1787 search_buf_size = search_space_len;
1788
1789 search_buf = malloc (search_buf_size);
1790 if (search_buf == NULL)
1791 error (_("Unable to allocate memory to perform the search."));
1792 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1793
1794 /* Prime the search buffer. */
1795
1796 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1797 search_buf, start_addr, search_buf_size) != search_buf_size)
1798 {
1799 warning (_("Unable to access target memory at %s, halting search."),
1800 hex_string (start_addr));
1801 do_cleanups (old_cleanups);
1802 return -1;
1803 }
1804
1805 /* Perform the search.
1806
1807 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1808 When we've scanned N bytes we copy the trailing bytes to the start and
1809 read in another N bytes. */
1810
1811 while (search_space_len >= pattern_len)
1812 {
1813 gdb_byte *found_ptr;
1814 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1815
1816 found_ptr = memmem (search_buf, nr_search_bytes,
1817 pattern, pattern_len);
1818
1819 if (found_ptr != NULL)
1820 {
1821 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1822 *found_addrp = found_addr;
1823 do_cleanups (old_cleanups);
1824 return 1;
1825 }
1826
1827 /* Not found in this chunk, skip to next chunk. */
1828
1829 /* Don't let search_space_len wrap here, it's unsigned. */
1830 if (search_space_len >= chunk_size)
1831 search_space_len -= chunk_size;
1832 else
1833 search_space_len = 0;
1834
1835 if (search_space_len >= pattern_len)
1836 {
1837 unsigned keep_len = search_buf_size - chunk_size;
1838 CORE_ADDR read_addr = start_addr + keep_len;
1839 int nr_to_read;
1840
1841 /* Copy the trailing part of the previous iteration to the front
1842 of the buffer for the next iteration. */
1843 gdb_assert (keep_len == pattern_len - 1);
1844 memcpy (search_buf, search_buf + chunk_size, keep_len);
1845
1846 nr_to_read = min (search_space_len - keep_len, chunk_size);
1847
1848 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1849 search_buf + keep_len, read_addr,
1850 nr_to_read) != nr_to_read)
1851 {
1852 warning (_("Unable to access target memory at %s, halting search."),
1853 hex_string (read_addr));
1854 do_cleanups (old_cleanups);
1855 return -1;
1856 }
1857
1858 start_addr += chunk_size;
1859 }
1860 }
1861
1862 /* Not found. */
1863
1864 do_cleanups (old_cleanups);
1865 return 0;
1866 }
1867
1868 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1869 sequence of bytes in PATTERN with length PATTERN_LEN.
1870
1871 The result is 1 if found, 0 if not found, and -1 if there was an error
1872 requiring halting of the search (e.g. memory read error).
1873 If the pattern is found the address is recorded in FOUND_ADDRP. */
1874
1875 int
1876 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1877 const gdb_byte *pattern, ULONGEST pattern_len,
1878 CORE_ADDR *found_addrp)
1879 {
1880 struct target_ops *t;
1881 int found;
1882
1883 /* We don't use INHERIT to set current_target.to_search_memory,
1884 so we have to scan the target stack and handle targetdebug
1885 ourselves. */
1886
1887 if (targetdebug)
1888 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1889 hex_string (start_addr));
1890
1891 for (t = current_target.beneath; t != NULL; t = t->beneath)
1892 if (t->to_search_memory != NULL)
1893 break;
1894
1895 if (t != NULL)
1896 {
1897 found = t->to_search_memory (t, start_addr, search_space_len,
1898 pattern, pattern_len, found_addrp);
1899 }
1900 else
1901 {
1902 /* If a special version of to_search_memory isn't available, use the
1903 simple version. */
1904 found = simple_search_memory (&current_target,
1905 start_addr, search_space_len,
1906 pattern, pattern_len, found_addrp);
1907 }
1908
1909 if (targetdebug)
1910 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
1911
1912 return found;
1913 }
1914
1915 /* Look through the currently pushed targets. If none of them will
1916 be able to restart the currently running process, issue an error
1917 message. */
1918
1919 void
1920 target_require_runnable (void)
1921 {
1922 struct target_ops *t;
1923
1924 for (t = target_stack; t != NULL; t = t->beneath)
1925 {
1926 /* If this target knows how to create a new program, then
1927 assume we will still be able to after killing the current
1928 one. Either killing and mourning will not pop T, or else
1929 find_default_run_target will find it again. */
1930 if (t->to_create_inferior != NULL)
1931 return;
1932
1933 /* Do not worry about thread_stratum targets that can not
1934 create inferiors. Assume they will be pushed again if
1935 necessary, and continue to the process_stratum. */
1936 if (t->to_stratum == thread_stratum)
1937 continue;
1938
1939 error (_("\
1940 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
1941 t->to_shortname);
1942 }
1943
1944 /* This function is only called if the target is running. In that
1945 case there should have been a process_stratum target and it
1946 should either know how to create inferiors, or not... */
1947 internal_error (__FILE__, __LINE__, "No targets found");
1948 }
1949
1950 /* Look through the list of possible targets for a target that can
1951 execute a run or attach command without any other data. This is
1952 used to locate the default process stratum.
1953
1954 If DO_MESG is not NULL, the result is always valid (error() is
1955 called for errors); else, return NULL on error. */
1956
1957 static struct target_ops *
1958 find_default_run_target (char *do_mesg)
1959 {
1960 struct target_ops **t;
1961 struct target_ops *runable = NULL;
1962 int count;
1963
1964 count = 0;
1965
1966 for (t = target_structs; t < target_structs + target_struct_size;
1967 ++t)
1968 {
1969 if ((*t)->to_can_run && target_can_run (*t))
1970 {
1971 runable = *t;
1972 ++count;
1973 }
1974 }
1975
1976 if (count != 1)
1977 {
1978 if (do_mesg)
1979 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1980 else
1981 return NULL;
1982 }
1983
1984 return runable;
1985 }
1986
1987 void
1988 find_default_attach (char *args, int from_tty)
1989 {
1990 struct target_ops *t;
1991
1992 t = find_default_run_target ("attach");
1993 (t->to_attach) (args, from_tty);
1994 return;
1995 }
1996
1997 void
1998 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1999 int from_tty)
2000 {
2001 struct target_ops *t;
2002
2003 t = find_default_run_target ("run");
2004 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2005 return;
2006 }
2007
2008 int
2009 find_default_can_async_p (void)
2010 {
2011 struct target_ops *t;
2012
2013 /* This may be called before the target is pushed on the stack;
2014 look for the default process stratum. If there's none, gdb isn't
2015 configured with a native debugger, and target remote isn't
2016 connected yet. */
2017 t = find_default_run_target (NULL);
2018 if (t && t->to_can_async_p)
2019 return (t->to_can_async_p) ();
2020 return 0;
2021 }
2022
2023 int
2024 find_default_is_async_p (void)
2025 {
2026 struct target_ops *t;
2027
2028 /* This may be called before the target is pushed on the stack;
2029 look for the default process stratum. If there's none, gdb isn't
2030 configured with a native debugger, and target remote isn't
2031 connected yet. */
2032 t = find_default_run_target (NULL);
2033 if (t && t->to_is_async_p)
2034 return (t->to_is_async_p) ();
2035 return 0;
2036 }
2037
2038 static int
2039 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2040 {
2041 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2042 }
2043
2044 static int
2045 default_watchpoint_addr_within_range (struct target_ops *target,
2046 CORE_ADDR addr,
2047 CORE_ADDR start, int length)
2048 {
2049 return addr >= start && addr < start + length;
2050 }
2051
2052 static int
2053 return_zero (void)
2054 {
2055 return 0;
2056 }
2057
2058 static int
2059 return_one (void)
2060 {
2061 return 1;
2062 }
2063
2064 static int
2065 return_minus_one (void)
2066 {
2067 return -1;
2068 }
2069
2070 /*
2071 * Resize the to_sections pointer. Also make sure that anyone that
2072 * was holding on to an old value of it gets updated.
2073 * Returns the old size.
2074 */
2075
2076 int
2077 target_resize_to_sections (struct target_ops *target, int num_added)
2078 {
2079 struct target_ops **t;
2080 struct section_table *old_value;
2081 int old_count;
2082
2083 old_value = target->to_sections;
2084
2085 if (target->to_sections)
2086 {
2087 old_count = target->to_sections_end - target->to_sections;
2088 target->to_sections = (struct section_table *)
2089 xrealloc ((char *) target->to_sections,
2090 (sizeof (struct section_table)) * (num_added + old_count));
2091 }
2092 else
2093 {
2094 old_count = 0;
2095 target->to_sections = (struct section_table *)
2096 xmalloc ((sizeof (struct section_table)) * num_added);
2097 }
2098 target->to_sections_end = target->to_sections + (num_added + old_count);
2099
2100 /* Check to see if anyone else was pointing to this structure.
2101 If old_value was null, then no one was. */
2102
2103 if (old_value)
2104 {
2105 for (t = target_structs; t < target_structs + target_struct_size;
2106 ++t)
2107 {
2108 if ((*t)->to_sections == old_value)
2109 {
2110 (*t)->to_sections = target->to_sections;
2111 (*t)->to_sections_end = target->to_sections_end;
2112 }
2113 }
2114 /* There is a flattened view of the target stack in current_target,
2115 so its to_sections pointer might also need updating. */
2116 if (current_target.to_sections == old_value)
2117 {
2118 current_target.to_sections = target->to_sections;
2119 current_target.to_sections_end = target->to_sections_end;
2120 }
2121 }
2122
2123 return old_count;
2124
2125 }
2126
2127 /* Remove all target sections taken from ABFD.
2128
2129 Scan the current target stack for targets whose section tables
2130 refer to sections from BFD, and remove those sections. We use this
2131 when we notice that the inferior has unloaded a shared object, for
2132 example. */
2133 void
2134 remove_target_sections (bfd *abfd)
2135 {
2136 struct target_ops **t;
2137
2138 for (t = target_structs; t < target_structs + target_struct_size; t++)
2139 {
2140 struct section_table *src, *dest;
2141
2142 dest = (*t)->to_sections;
2143 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2144 if (src->bfd != abfd)
2145 {
2146 /* Keep this section. */
2147 if (dest < src) *dest = *src;
2148 dest++;
2149 }
2150
2151 /* If we've dropped any sections, resize the section table. */
2152 if (dest < src)
2153 target_resize_to_sections (*t, dest - src);
2154 }
2155 }
2156
2157
2158
2159
2160 /* Find a single runnable target in the stack and return it. If for
2161 some reason there is more than one, return NULL. */
2162
2163 struct target_ops *
2164 find_run_target (void)
2165 {
2166 struct target_ops **t;
2167 struct target_ops *runable = NULL;
2168 int count;
2169
2170 count = 0;
2171
2172 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2173 {
2174 if ((*t)->to_can_run && target_can_run (*t))
2175 {
2176 runable = *t;
2177 ++count;
2178 }
2179 }
2180
2181 return (count == 1 ? runable : NULL);
2182 }
2183
2184 /* Find a single core_stratum target in the list of targets and return it.
2185 If for some reason there is more than one, return NULL. */
2186
2187 struct target_ops *
2188 find_core_target (void)
2189 {
2190 struct target_ops **t;
2191 struct target_ops *runable = NULL;
2192 int count;
2193
2194 count = 0;
2195
2196 for (t = target_structs; t < target_structs + target_struct_size;
2197 ++t)
2198 {
2199 if ((*t)->to_stratum == core_stratum)
2200 {
2201 runable = *t;
2202 ++count;
2203 }
2204 }
2205
2206 return (count == 1 ? runable : NULL);
2207 }
2208
2209 /*
2210 * Find the next target down the stack from the specified target.
2211 */
2212
2213 struct target_ops *
2214 find_target_beneath (struct target_ops *t)
2215 {
2216 return t->beneath;
2217 }
2218
2219 \f
2220 /* The inferior process has died. Long live the inferior! */
2221
2222 void
2223 generic_mourn_inferior (void)
2224 {
2225 extern int show_breakpoint_hit_counts;
2226
2227 inferior_ptid = null_ptid;
2228 attach_flag = 0;
2229 breakpoint_init_inferior (inf_exited);
2230 registers_changed ();
2231
2232 reopen_exec_file ();
2233 reinit_frame_cache ();
2234
2235 /* It is confusing to the user for ignore counts to stick around
2236 from previous runs of the inferior. So clear them. */
2237 /* However, it is more confusing for the ignore counts to disappear when
2238 using hit counts. So don't clear them if we're counting hits. */
2239 if (!show_breakpoint_hit_counts)
2240 breakpoint_clear_ignore_counts ();
2241
2242 if (deprecated_detach_hook)
2243 deprecated_detach_hook ();
2244 }
2245 \f
2246 /* Helper function for child_wait and the derivatives of child_wait.
2247 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2248 translation of that in OURSTATUS. */
2249 void
2250 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2251 {
2252 if (WIFEXITED (hoststatus))
2253 {
2254 ourstatus->kind = TARGET_WAITKIND_EXITED;
2255 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2256 }
2257 else if (!WIFSTOPPED (hoststatus))
2258 {
2259 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2260 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2261 }
2262 else
2263 {
2264 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2265 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2266 }
2267 }
2268 \f
2269 /* Returns zero to leave the inferior alone, one to interrupt it. */
2270 int (*target_activity_function) (void);
2271 int target_activity_fd;
2272 \f
2273 /* Convert a normal process ID to a string. Returns the string in a
2274 static buffer. */
2275
2276 char *
2277 normal_pid_to_str (ptid_t ptid)
2278 {
2279 static char buf[32];
2280
2281 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2282 return buf;
2283 }
2284
2285 /* Error-catcher for target_find_memory_regions */
2286 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2287 {
2288 error (_("No target."));
2289 return 0;
2290 }
2291
2292 /* Error-catcher for target_make_corefile_notes */
2293 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2294 {
2295 error (_("No target."));
2296 return NULL;
2297 }
2298
2299 /* Set up the handful of non-empty slots needed by the dummy target
2300 vector. */
2301
2302 static void
2303 init_dummy_target (void)
2304 {
2305 dummy_target.to_shortname = "None";
2306 dummy_target.to_longname = "None";
2307 dummy_target.to_doc = "";
2308 dummy_target.to_attach = find_default_attach;
2309 dummy_target.to_create_inferior = find_default_create_inferior;
2310 dummy_target.to_can_async_p = find_default_can_async_p;
2311 dummy_target.to_is_async_p = find_default_is_async_p;
2312 dummy_target.to_pid_to_str = normal_pid_to_str;
2313 dummy_target.to_stratum = dummy_stratum;
2314 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2315 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2316 dummy_target.to_xfer_partial = default_xfer_partial;
2317 dummy_target.to_magic = OPS_MAGIC;
2318 }
2319 \f
2320 static void
2321 debug_to_open (char *args, int from_tty)
2322 {
2323 debug_target.to_open (args, from_tty);
2324
2325 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2326 }
2327
2328 static void
2329 debug_to_close (int quitting)
2330 {
2331 target_close (&debug_target, quitting);
2332 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2333 }
2334
2335 void
2336 target_close (struct target_ops *targ, int quitting)
2337 {
2338 if (targ->to_xclose != NULL)
2339 targ->to_xclose (targ, quitting);
2340 else if (targ->to_close != NULL)
2341 targ->to_close (quitting);
2342 }
2343
2344 static void
2345 debug_to_attach (char *args, int from_tty)
2346 {
2347 debug_target.to_attach (args, from_tty);
2348
2349 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2350 }
2351
2352
2353 static void
2354 debug_to_post_attach (int pid)
2355 {
2356 debug_target.to_post_attach (pid);
2357
2358 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2359 }
2360
2361 static void
2362 debug_to_detach (char *args, int from_tty)
2363 {
2364 debug_target.to_detach (args, from_tty);
2365
2366 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2367 }
2368
2369 static void
2370 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2371 {
2372 debug_target.to_resume (ptid, step, siggnal);
2373
2374 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2375 step ? "step" : "continue",
2376 target_signal_to_name (siggnal));
2377 }
2378
2379 static ptid_t
2380 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2381 {
2382 ptid_t retval;
2383
2384 retval = debug_target.to_wait (ptid, status);
2385
2386 fprintf_unfiltered (gdb_stdlog,
2387 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2388 PIDGET (retval));
2389 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2390 switch (status->kind)
2391 {
2392 case TARGET_WAITKIND_EXITED:
2393 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2394 status->value.integer);
2395 break;
2396 case TARGET_WAITKIND_STOPPED:
2397 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2398 target_signal_to_name (status->value.sig));
2399 break;
2400 case TARGET_WAITKIND_SIGNALLED:
2401 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2402 target_signal_to_name (status->value.sig));
2403 break;
2404 case TARGET_WAITKIND_LOADED:
2405 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2406 break;
2407 case TARGET_WAITKIND_FORKED:
2408 fprintf_unfiltered (gdb_stdlog, "forked\n");
2409 break;
2410 case TARGET_WAITKIND_VFORKED:
2411 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2412 break;
2413 case TARGET_WAITKIND_EXECD:
2414 fprintf_unfiltered (gdb_stdlog, "execd\n");
2415 break;
2416 case TARGET_WAITKIND_SPURIOUS:
2417 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2418 break;
2419 default:
2420 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2421 break;
2422 }
2423
2424 return retval;
2425 }
2426
2427 static void
2428 debug_print_register (const char * func,
2429 struct regcache *regcache, int regno)
2430 {
2431 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2432 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2433 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2434 + gdbarch_num_pseudo_regs (gdbarch)
2435 && gdbarch_register_name (gdbarch, regno) != NULL
2436 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2437 fprintf_unfiltered (gdb_stdlog, "(%s)",
2438 gdbarch_register_name (gdbarch, regno));
2439 else
2440 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2441 if (regno >= 0)
2442 {
2443 int i, size = register_size (gdbarch, regno);
2444 unsigned char buf[MAX_REGISTER_SIZE];
2445 regcache_cooked_read (regcache, regno, buf);
2446 fprintf_unfiltered (gdb_stdlog, " = ");
2447 for (i = 0; i < size; i++)
2448 {
2449 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2450 }
2451 if (size <= sizeof (LONGEST))
2452 {
2453 ULONGEST val = extract_unsigned_integer (buf, size);
2454 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2455 paddr_nz (val), paddr_d (val));
2456 }
2457 }
2458 fprintf_unfiltered (gdb_stdlog, "\n");
2459 }
2460
2461 static void
2462 debug_to_fetch_registers (struct regcache *regcache, int regno)
2463 {
2464 debug_target.to_fetch_registers (regcache, regno);
2465 debug_print_register ("target_fetch_registers", regcache, regno);
2466 }
2467
2468 static void
2469 debug_to_store_registers (struct regcache *regcache, int regno)
2470 {
2471 debug_target.to_store_registers (regcache, regno);
2472 debug_print_register ("target_store_registers", regcache, regno);
2473 fprintf_unfiltered (gdb_stdlog, "\n");
2474 }
2475
2476 static void
2477 debug_to_prepare_to_store (struct regcache *regcache)
2478 {
2479 debug_target.to_prepare_to_store (regcache);
2480
2481 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2482 }
2483
2484 static int
2485 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2486 int write, struct mem_attrib *attrib,
2487 struct target_ops *target)
2488 {
2489 int retval;
2490
2491 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2492 attrib, target);
2493
2494 fprintf_unfiltered (gdb_stdlog,
2495 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2496 (unsigned int) memaddr, /* possable truncate long long */
2497 len, write ? "write" : "read", retval);
2498
2499 if (retval > 0)
2500 {
2501 int i;
2502
2503 fputs_unfiltered (", bytes =", gdb_stdlog);
2504 for (i = 0; i < retval; i++)
2505 {
2506 if ((((long) &(myaddr[i])) & 0xf) == 0)
2507 {
2508 if (targetdebug < 2 && i > 0)
2509 {
2510 fprintf_unfiltered (gdb_stdlog, " ...");
2511 break;
2512 }
2513 fprintf_unfiltered (gdb_stdlog, "\n");
2514 }
2515
2516 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2517 }
2518 }
2519
2520 fputc_unfiltered ('\n', gdb_stdlog);
2521
2522 return retval;
2523 }
2524
2525 static void
2526 debug_to_files_info (struct target_ops *target)
2527 {
2528 debug_target.to_files_info (target);
2529
2530 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2531 }
2532
2533 static int
2534 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2535 {
2536 int retval;
2537
2538 retval = debug_target.to_insert_breakpoint (bp_tgt);
2539
2540 fprintf_unfiltered (gdb_stdlog,
2541 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2542 (unsigned long) bp_tgt->placed_address,
2543 (unsigned long) retval);
2544 return retval;
2545 }
2546
2547 static int
2548 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2549 {
2550 int retval;
2551
2552 retval = debug_target.to_remove_breakpoint (bp_tgt);
2553
2554 fprintf_unfiltered (gdb_stdlog,
2555 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2556 (unsigned long) bp_tgt->placed_address,
2557 (unsigned long) retval);
2558 return retval;
2559 }
2560
2561 static int
2562 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2563 {
2564 int retval;
2565
2566 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2567
2568 fprintf_unfiltered (gdb_stdlog,
2569 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2570 (unsigned long) type,
2571 (unsigned long) cnt,
2572 (unsigned long) from_tty,
2573 (unsigned long) retval);
2574 return retval;
2575 }
2576
2577 static int
2578 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2579 {
2580 CORE_ADDR retval;
2581
2582 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2583
2584 fprintf_unfiltered (gdb_stdlog,
2585 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2586 (unsigned long) addr,
2587 (unsigned long) len,
2588 (unsigned long) retval);
2589 return retval;
2590 }
2591
2592 static int
2593 debug_to_stopped_by_watchpoint (void)
2594 {
2595 int retval;
2596
2597 retval = debug_target.to_stopped_by_watchpoint ();
2598
2599 fprintf_unfiltered (gdb_stdlog,
2600 "STOPPED_BY_WATCHPOINT () = %ld\n",
2601 (unsigned long) retval);
2602 return retval;
2603 }
2604
2605 static int
2606 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2607 {
2608 int retval;
2609
2610 retval = debug_target.to_stopped_data_address (target, addr);
2611
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_stopped_data_address ([0x%lx]) = %ld\n",
2614 (unsigned long)*addr,
2615 (unsigned long)retval);
2616 return retval;
2617 }
2618
2619 static int
2620 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2621 CORE_ADDR addr,
2622 CORE_ADDR start, int length)
2623 {
2624 int retval;
2625
2626 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2627 start, length);
2628
2629 fprintf_filtered (gdb_stdlog,
2630 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2631 (unsigned long) addr, (unsigned long) start, length,
2632 retval);
2633 return retval;
2634 }
2635
2636 static int
2637 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2638 {
2639 int retval;
2640
2641 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2642
2643 fprintf_unfiltered (gdb_stdlog,
2644 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2645 (unsigned long) bp_tgt->placed_address,
2646 (unsigned long) retval);
2647 return retval;
2648 }
2649
2650 static int
2651 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2652 {
2653 int retval;
2654
2655 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2656
2657 fprintf_unfiltered (gdb_stdlog,
2658 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2659 (unsigned long) bp_tgt->placed_address,
2660 (unsigned long) retval);
2661 return retval;
2662 }
2663
2664 static int
2665 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2666 {
2667 int retval;
2668
2669 retval = debug_target.to_insert_watchpoint (addr, len, type);
2670
2671 fprintf_unfiltered (gdb_stdlog,
2672 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2673 (unsigned long) addr, len, type, (unsigned long) retval);
2674 return retval;
2675 }
2676
2677 static int
2678 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2679 {
2680 int retval;
2681
2682 retval = debug_target.to_remove_watchpoint (addr, len, type);
2683
2684 fprintf_unfiltered (gdb_stdlog,
2685 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2686 (unsigned long) addr, len, type, (unsigned long) retval);
2687 return retval;
2688 }
2689
2690 static void
2691 debug_to_terminal_init (void)
2692 {
2693 debug_target.to_terminal_init ();
2694
2695 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2696 }
2697
2698 static void
2699 debug_to_terminal_inferior (void)
2700 {
2701 debug_target.to_terminal_inferior ();
2702
2703 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2704 }
2705
2706 static void
2707 debug_to_terminal_ours_for_output (void)
2708 {
2709 debug_target.to_terminal_ours_for_output ();
2710
2711 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2712 }
2713
2714 static void
2715 debug_to_terminal_ours (void)
2716 {
2717 debug_target.to_terminal_ours ();
2718
2719 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2720 }
2721
2722 static void
2723 debug_to_terminal_save_ours (void)
2724 {
2725 debug_target.to_terminal_save_ours ();
2726
2727 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2728 }
2729
2730 static void
2731 debug_to_terminal_info (char *arg, int from_tty)
2732 {
2733 debug_target.to_terminal_info (arg, from_tty);
2734
2735 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2736 from_tty);
2737 }
2738
2739 static void
2740 debug_to_kill (void)
2741 {
2742 debug_target.to_kill ();
2743
2744 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2745 }
2746
2747 static void
2748 debug_to_load (char *args, int from_tty)
2749 {
2750 debug_target.to_load (args, from_tty);
2751
2752 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2753 }
2754
2755 static int
2756 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2757 {
2758 int retval;
2759
2760 retval = debug_target.to_lookup_symbol (name, addrp);
2761
2762 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2763
2764 return retval;
2765 }
2766
2767 static void
2768 debug_to_create_inferior (char *exec_file, char *args, char **env,
2769 int from_tty)
2770 {
2771 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2772
2773 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2774 exec_file, args, from_tty);
2775 }
2776
2777 static void
2778 debug_to_post_startup_inferior (ptid_t ptid)
2779 {
2780 debug_target.to_post_startup_inferior (ptid);
2781
2782 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2783 PIDGET (ptid));
2784 }
2785
2786 static void
2787 debug_to_acknowledge_created_inferior (int pid)
2788 {
2789 debug_target.to_acknowledge_created_inferior (pid);
2790
2791 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2792 pid);
2793 }
2794
2795 static void
2796 debug_to_insert_fork_catchpoint (int pid)
2797 {
2798 debug_target.to_insert_fork_catchpoint (pid);
2799
2800 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2801 pid);
2802 }
2803
2804 static int
2805 debug_to_remove_fork_catchpoint (int pid)
2806 {
2807 int retval;
2808
2809 retval = debug_target.to_remove_fork_catchpoint (pid);
2810
2811 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2812 pid, retval);
2813
2814 return retval;
2815 }
2816
2817 static void
2818 debug_to_insert_vfork_catchpoint (int pid)
2819 {
2820 debug_target.to_insert_vfork_catchpoint (pid);
2821
2822 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2823 pid);
2824 }
2825
2826 static int
2827 debug_to_remove_vfork_catchpoint (int pid)
2828 {
2829 int retval;
2830
2831 retval = debug_target.to_remove_vfork_catchpoint (pid);
2832
2833 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2834 pid, retval);
2835
2836 return retval;
2837 }
2838
2839 static void
2840 debug_to_insert_exec_catchpoint (int pid)
2841 {
2842 debug_target.to_insert_exec_catchpoint (pid);
2843
2844 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2845 pid);
2846 }
2847
2848 static int
2849 debug_to_remove_exec_catchpoint (int pid)
2850 {
2851 int retval;
2852
2853 retval = debug_target.to_remove_exec_catchpoint (pid);
2854
2855 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2856 pid, retval);
2857
2858 return retval;
2859 }
2860
2861 static int
2862 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2863 {
2864 int has_exited;
2865
2866 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2867
2868 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2869 pid, wait_status, *exit_status, has_exited);
2870
2871 return has_exited;
2872 }
2873
2874 static void
2875 debug_to_mourn_inferior (void)
2876 {
2877 debug_target.to_mourn_inferior ();
2878
2879 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2880 }
2881
2882 static int
2883 debug_to_can_run (void)
2884 {
2885 int retval;
2886
2887 retval = debug_target.to_can_run ();
2888
2889 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2890
2891 return retval;
2892 }
2893
2894 static void
2895 debug_to_notice_signals (ptid_t ptid)
2896 {
2897 debug_target.to_notice_signals (ptid);
2898
2899 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2900 PIDGET (ptid));
2901 }
2902
2903 static int
2904 debug_to_thread_alive (ptid_t ptid)
2905 {
2906 int retval;
2907
2908 retval = debug_target.to_thread_alive (ptid);
2909
2910 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2911 PIDGET (ptid), retval);
2912
2913 return retval;
2914 }
2915
2916 static void
2917 debug_to_find_new_threads (void)
2918 {
2919 debug_target.to_find_new_threads ();
2920
2921 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2922 }
2923
2924 static void
2925 debug_to_stop (void)
2926 {
2927 debug_target.to_stop ();
2928
2929 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2930 }
2931
2932 static void
2933 debug_to_rcmd (char *command,
2934 struct ui_file *outbuf)
2935 {
2936 debug_target.to_rcmd (command, outbuf);
2937 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2938 }
2939
2940 static char *
2941 debug_to_pid_to_exec_file (int pid)
2942 {
2943 char *exec_file;
2944
2945 exec_file = debug_target.to_pid_to_exec_file (pid);
2946
2947 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2948 pid, exec_file);
2949
2950 return exec_file;
2951 }
2952
2953 static void
2954 setup_target_debug (void)
2955 {
2956 memcpy (&debug_target, &current_target, sizeof debug_target);
2957
2958 current_target.to_open = debug_to_open;
2959 current_target.to_close = debug_to_close;
2960 current_target.to_attach = debug_to_attach;
2961 current_target.to_post_attach = debug_to_post_attach;
2962 current_target.to_detach = debug_to_detach;
2963 current_target.to_resume = debug_to_resume;
2964 current_target.to_wait = debug_to_wait;
2965 current_target.to_fetch_registers = debug_to_fetch_registers;
2966 current_target.to_store_registers = debug_to_store_registers;
2967 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2968 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2969 current_target.to_files_info = debug_to_files_info;
2970 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2971 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2972 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2973 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2974 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2975 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2976 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2977 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2978 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2979 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
2980 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2981 current_target.to_terminal_init = debug_to_terminal_init;
2982 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2983 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2984 current_target.to_terminal_ours = debug_to_terminal_ours;
2985 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2986 current_target.to_terminal_info = debug_to_terminal_info;
2987 current_target.to_kill = debug_to_kill;
2988 current_target.to_load = debug_to_load;
2989 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2990 current_target.to_create_inferior = debug_to_create_inferior;
2991 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2992 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2993 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2994 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2995 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2996 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2997 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2998 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2999 current_target.to_has_exited = debug_to_has_exited;
3000 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3001 current_target.to_can_run = debug_to_can_run;
3002 current_target.to_notice_signals = debug_to_notice_signals;
3003 current_target.to_thread_alive = debug_to_thread_alive;
3004 current_target.to_find_new_threads = debug_to_find_new_threads;
3005 current_target.to_stop = debug_to_stop;
3006 current_target.to_rcmd = debug_to_rcmd;
3007 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3008 }
3009 \f
3010
3011 static char targ_desc[] =
3012 "Names of targets and files being debugged.\n\
3013 Shows the entire stack of targets currently in use (including the exec-file,\n\
3014 core-file, and process, if any), as well as the symbol file name.";
3015
3016 static void
3017 do_monitor_command (char *cmd,
3018 int from_tty)
3019 {
3020 if ((current_target.to_rcmd
3021 == (void (*) (char *, struct ui_file *)) tcomplain)
3022 || (current_target.to_rcmd == debug_to_rcmd
3023 && (debug_target.to_rcmd
3024 == (void (*) (char *, struct ui_file *)) tcomplain)))
3025 error (_("\"monitor\" command not supported by this target."));
3026 target_rcmd (cmd, gdb_stdtarg);
3027 }
3028
3029 /* Print the name of each layers of our target stack. */
3030
3031 static void
3032 maintenance_print_target_stack (char *cmd, int from_tty)
3033 {
3034 struct target_ops *t;
3035
3036 printf_filtered (_("The current target stack is:\n"));
3037
3038 for (t = target_stack; t != NULL; t = t->beneath)
3039 {
3040 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3041 }
3042 }
3043
3044 void
3045 initialize_targets (void)
3046 {
3047 init_dummy_target ();
3048 push_target (&dummy_target);
3049
3050 add_info ("target", target_info, targ_desc);
3051 add_info ("files", target_info, targ_desc);
3052
3053 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3054 Set target debugging."), _("\
3055 Show target debugging."), _("\
3056 When non-zero, target debugging is enabled. Higher numbers are more\n\
3057 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3058 command."),
3059 NULL,
3060 show_targetdebug,
3061 &setdebuglist, &showdebuglist);
3062
3063 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3064 &trust_readonly, _("\
3065 Set mode for reading from readonly sections."), _("\
3066 Show mode for reading from readonly sections."), _("\
3067 When this mode is on, memory reads from readonly sections (such as .text)\n\
3068 will be read from the object file instead of from the target. This will\n\
3069 result in significant performance improvement for remote targets."),
3070 NULL,
3071 show_trust_readonly,
3072 &setlist, &showlist);
3073
3074 add_com ("monitor", class_obscure, do_monitor_command,
3075 _("Send a command to the remote monitor (remote targets only)."));
3076
3077 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3078 _("Print the name of each layer of the internal target stack."),
3079 &maintenanceprintlist);
3080
3081 target_dcache = dcache_init ();
3082 }
This page took 0.092015 seconds and 4 git commands to generate.