Remove target_has_execution macro
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 #include "target-connection.h"
53 #include "valprint.h"
54
55 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56
57 static void default_terminal_info (struct target_ops *, const char *, int);
58
59 static int default_watchpoint_addr_within_range (struct target_ops *,
60 CORE_ADDR, CORE_ADDR, int);
61
62 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 CORE_ADDR, int);
64
65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66
67 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 long lwp, long tid);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static struct target_ops *find_default_run_target (const char *);
86
87 static int dummy_find_memory_regions (struct target_ops *self,
88 find_memory_region_ftype ignore1,
89 void *ignore2);
90
91 static char *dummy_make_corefile_notes (struct target_ops *self,
92 bfd *ignore1, int *ignore2);
93
94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
95
96 static enum exec_direction_kind default_execution_direction
97 (struct target_ops *self);
98
99 /* Mapping between target_info objects (which have address identity)
100 and corresponding open/factory function/callback. Each add_target
101 call adds one entry to this map, and registers a "target
102 TARGET_NAME" command that when invoked calls the factory registered
103 here. The target_info object is associated with the command via
104 the command's context. */
105 static std::unordered_map<const target_info *, target_open_ftype *>
106 target_factories;
107
108 /* The singleton debug target. */
109
110 static struct target_ops *the_debug_target;
111
112 /* Top of target stack. */
113 /* The target structure we are currently using to talk to a process
114 or file or whatever "inferior" we have. */
115
116 target_ops *
117 current_top_target ()
118 {
119 return current_inferior ()->top_target ();
120 }
121
122 /* Command list for target. */
123
124 static struct cmd_list_element *targetlist = NULL;
125
126 /* True if we should trust readonly sections from the
127 executable when reading memory. */
128
129 static bool trust_readonly = false;
130
131 /* Nonzero if we should show true memory content including
132 memory breakpoint inserted by gdb. */
133
134 static int show_memory_breakpoints = 0;
135
136 /* These globals control whether GDB attempts to perform these
137 operations; they are useful for targets that need to prevent
138 inadvertent disruption, such as in non-stop mode. */
139
140 bool may_write_registers = true;
141
142 bool may_write_memory = true;
143
144 bool may_insert_breakpoints = true;
145
146 bool may_insert_tracepoints = true;
147
148 bool may_insert_fast_tracepoints = true;
149
150 bool may_stop = true;
151
152 /* Non-zero if we want to see trace of target level stuff. */
153
154 static unsigned int targetdebug = 0;
155
156 static void
157 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
158 {
159 if (targetdebug)
160 push_target (the_debug_target);
161 else
162 unpush_target (the_debug_target);
163 }
164
165 static void
166 show_targetdebug (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
170 }
171
172 int
173 target_has_memory ()
174 {
175 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
176 if (t->has_memory ())
177 return 1;
178
179 return 0;
180 }
181
182 int
183 target_has_stack ()
184 {
185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
186 if (t->has_stack ())
187 return 1;
188
189 return 0;
190 }
191
192 int
193 target_has_registers ()
194 {
195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196 if (t->has_registers ())
197 return 1;
198
199 return 0;
200 }
201
202 bool
203 target_has_execution (inferior *inf)
204 {
205 if (inf == nullptr)
206 inf = current_inferior ();
207
208 for (target_ops *t = inf->top_target ();
209 t != nullptr;
210 t = inf->find_target_beneath (t))
211 if (t->has_execution (inf))
212 return true;
213
214 return false;
215 }
216
217 /* This is used to implement the various target commands. */
218
219 static void
220 open_target (const char *args, int from_tty, struct cmd_list_element *command)
221 {
222 auto *ti = static_cast<target_info *> (get_cmd_context (command));
223 target_open_ftype *func = target_factories[ti];
224
225 if (targetdebug)
226 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
227 ti->shortname);
228
229 func (args, from_tty);
230
231 if (targetdebug)
232 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
233 ti->shortname, args, from_tty);
234 }
235
236 /* See target.h. */
237
238 void
239 add_target (const target_info &t, target_open_ftype *func,
240 completer_ftype *completer)
241 {
242 struct cmd_list_element *c;
243
244 auto &func_slot = target_factories[&t];
245 if (func_slot != nullptr)
246 internal_error (__FILE__, __LINE__,
247 _("target already added (\"%s\")."), t.shortname);
248 func_slot = func;
249
250 if (targetlist == NULL)
251 add_basic_prefix_cmd ("target", class_run, _("\
252 Connect to a target machine or process.\n\
253 The first argument is the type or protocol of the target machine.\n\
254 Remaining arguments are interpreted by the target protocol. For more\n\
255 information on the arguments for a particular protocol, type\n\
256 `help target ' followed by the protocol name."),
257 &targetlist, "target ", 0, &cmdlist);
258 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
259 set_cmd_context (c, (void *) &t);
260 set_cmd_sfunc (c, open_target);
261 if (completer != NULL)
262 set_cmd_completer (c, completer);
263 }
264
265 /* See target.h. */
266
267 void
268 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
269 {
270 struct cmd_list_element *c;
271 char *alt;
272
273 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
274 see PR cli/15104. */
275 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
276 set_cmd_sfunc (c, open_target);
277 set_cmd_context (c, (void *) &tinfo);
278 alt = xstrprintf ("target %s", tinfo.shortname);
279 deprecate_cmd (c, alt);
280 }
281
282 /* Stub functions */
283
284 void
285 target_kill (void)
286 {
287 current_top_target ()->kill ();
288 }
289
290 void
291 target_load (const char *arg, int from_tty)
292 {
293 target_dcache_invalidate ();
294 current_top_target ()->load (arg, from_tty);
295 }
296
297 /* Define it. */
298
299 target_terminal_state target_terminal::m_terminal_state
300 = target_terminal_state::is_ours;
301
302 /* See target/target.h. */
303
304 void
305 target_terminal::init (void)
306 {
307 current_top_target ()->terminal_init ();
308
309 m_terminal_state = target_terminal_state::is_ours;
310 }
311
312 /* See target/target.h. */
313
314 void
315 target_terminal::inferior (void)
316 {
317 struct ui *ui = current_ui;
318
319 /* A background resume (``run&'') should leave GDB in control of the
320 terminal. */
321 if (ui->prompt_state != PROMPT_BLOCKED)
322 return;
323
324 /* Since we always run the inferior in the main console (unless "set
325 inferior-tty" is in effect), when some UI other than the main one
326 calls target_terminal::inferior, then we leave the main UI's
327 terminal settings as is. */
328 if (ui != main_ui)
329 return;
330
331 /* If GDB is resuming the inferior in the foreground, install
332 inferior's terminal modes. */
333
334 struct inferior *inf = current_inferior ();
335
336 if (inf->terminal_state != target_terminal_state::is_inferior)
337 {
338 current_top_target ()->terminal_inferior ();
339 inf->terminal_state = target_terminal_state::is_inferior;
340 }
341
342 m_terminal_state = target_terminal_state::is_inferior;
343
344 /* If the user hit C-c before, pretend that it was hit right
345 here. */
346 if (check_quit_flag ())
347 target_pass_ctrlc ();
348 }
349
350 /* See target/target.h. */
351
352 void
353 target_terminal::restore_inferior (void)
354 {
355 struct ui *ui = current_ui;
356
357 /* See target_terminal::inferior(). */
358 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
359 return;
360
361 /* Restore the terminal settings of inferiors that were in the
362 foreground but are now ours_for_output due to a temporary
363 target_target::ours_for_output() call. */
364
365 {
366 scoped_restore_current_inferior restore_inferior;
367
368 for (::inferior *inf : all_inferiors ())
369 {
370 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
371 {
372 set_current_inferior (inf);
373 current_top_target ()->terminal_inferior ();
374 inf->terminal_state = target_terminal_state::is_inferior;
375 }
376 }
377 }
378
379 m_terminal_state = target_terminal_state::is_inferior;
380
381 /* If the user hit C-c before, pretend that it was hit right
382 here. */
383 if (check_quit_flag ())
384 target_pass_ctrlc ();
385 }
386
387 /* Switch terminal state to DESIRED_STATE, either is_ours, or
388 is_ours_for_output. */
389
390 static void
391 target_terminal_is_ours_kind (target_terminal_state desired_state)
392 {
393 scoped_restore_current_inferior restore_inferior;
394
395 /* Must do this in two passes. First, have all inferiors save the
396 current terminal settings. Then, after all inferiors have add a
397 chance to safely save the terminal settings, restore GDB's
398 terminal settings. */
399
400 for (inferior *inf : all_inferiors ())
401 {
402 if (inf->terminal_state == target_terminal_state::is_inferior)
403 {
404 set_current_inferior (inf);
405 current_top_target ()->terminal_save_inferior ();
406 }
407 }
408
409 for (inferior *inf : all_inferiors ())
410 {
411 /* Note we don't check is_inferior here like above because we
412 need to handle 'is_ours_for_output -> is_ours' too. Careful
413 to never transition from 'is_ours' to 'is_ours_for_output',
414 though. */
415 if (inf->terminal_state != target_terminal_state::is_ours
416 && inf->terminal_state != desired_state)
417 {
418 set_current_inferior (inf);
419 if (desired_state == target_terminal_state::is_ours)
420 current_top_target ()->terminal_ours ();
421 else if (desired_state == target_terminal_state::is_ours_for_output)
422 current_top_target ()->terminal_ours_for_output ();
423 else
424 gdb_assert_not_reached ("unhandled desired state");
425 inf->terminal_state = desired_state;
426 }
427 }
428 }
429
430 /* See target/target.h. */
431
432 void
433 target_terminal::ours ()
434 {
435 struct ui *ui = current_ui;
436
437 /* See target_terminal::inferior. */
438 if (ui != main_ui)
439 return;
440
441 if (m_terminal_state == target_terminal_state::is_ours)
442 return;
443
444 target_terminal_is_ours_kind (target_terminal_state::is_ours);
445 m_terminal_state = target_terminal_state::is_ours;
446 }
447
448 /* See target/target.h. */
449
450 void
451 target_terminal::ours_for_output ()
452 {
453 struct ui *ui = current_ui;
454
455 /* See target_terminal::inferior. */
456 if (ui != main_ui)
457 return;
458
459 if (!target_terminal::is_inferior ())
460 return;
461
462 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
463 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
464 }
465
466 /* See target/target.h. */
467
468 void
469 target_terminal::info (const char *arg, int from_tty)
470 {
471 current_top_target ()->terminal_info (arg, from_tty);
472 }
473
474 /* See target.h. */
475
476 bool
477 target_supports_terminal_ours (void)
478 {
479 /* The current top target is the target at the top of the target
480 stack of the current inferior. While normally there's always an
481 inferior, we must check for nullptr here because we can get here
482 very early during startup, before the initial inferior is first
483 created. */
484 inferior *inf = current_inferior ();
485
486 if (inf == nullptr)
487 return false;
488 return inf->top_target ()->supports_terminal_ours ();
489 }
490
491 static void
492 tcomplain (void)
493 {
494 error (_("You can't do that when your target is `%s'"),
495 current_top_target ()->shortname ());
496 }
497
498 void
499 noprocess (void)
500 {
501 error (_("You can't do that without a process to debug."));
502 }
503
504 static void
505 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
506 {
507 printf_unfiltered (_("No saved terminal information.\n"));
508 }
509
510 /* A default implementation for the to_get_ada_task_ptid target method.
511
512 This function builds the PTID by using both LWP and TID as part of
513 the PTID lwp and tid elements. The pid used is the pid of the
514 inferior_ptid. */
515
516 static ptid_t
517 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
518 {
519 return ptid_t (inferior_ptid.pid (), lwp, tid);
520 }
521
522 static enum exec_direction_kind
523 default_execution_direction (struct target_ops *self)
524 {
525 if (!target_can_execute_reverse ())
526 return EXEC_FORWARD;
527 else if (!target_can_async_p ())
528 return EXEC_FORWARD;
529 else
530 gdb_assert_not_reached ("\
531 to_execution_direction must be implemented for reverse async");
532 }
533
534 /* See target.h. */
535
536 void
537 decref_target (target_ops *t)
538 {
539 t->decref ();
540 if (t->refcount () == 0)
541 {
542 if (t->stratum () == process_stratum)
543 connection_list_remove (as_process_stratum_target (t));
544 target_close (t);
545 }
546 }
547
548 /* See target.h. */
549
550 void
551 target_stack::push (target_ops *t)
552 {
553 t->incref ();
554
555 strata stratum = t->stratum ();
556
557 if (stratum == process_stratum)
558 connection_list_add (as_process_stratum_target (t));
559
560 /* If there's already a target at this stratum, remove it. */
561
562 if (m_stack[stratum] != NULL)
563 unpush (m_stack[stratum]);
564
565 /* Now add the new one. */
566 m_stack[stratum] = t;
567
568 if (m_top < stratum)
569 m_top = stratum;
570 }
571
572 /* See target.h. */
573
574 void
575 push_target (struct target_ops *t)
576 {
577 current_inferior ()->push_target (t);
578 }
579
580 /* See target.h. */
581
582 void
583 push_target (target_ops_up &&t)
584 {
585 current_inferior ()->push_target (t.get ());
586 t.release ();
587 }
588
589 /* See target.h. */
590
591 int
592 unpush_target (struct target_ops *t)
593 {
594 return current_inferior ()->unpush_target (t);
595 }
596
597 /* See target.h. */
598
599 bool
600 target_stack::unpush (target_ops *t)
601 {
602 gdb_assert (t != NULL);
603
604 strata stratum = t->stratum ();
605
606 if (stratum == dummy_stratum)
607 internal_error (__FILE__, __LINE__,
608 _("Attempt to unpush the dummy target"));
609
610 /* Look for the specified target. Note that a target can only occur
611 once in the target stack. */
612
613 if (m_stack[stratum] != t)
614 {
615 /* If T wasn't pushed, quit. Only open targets should be
616 closed. */
617 return false;
618 }
619
620 /* Unchain the target. */
621 m_stack[stratum] = NULL;
622
623 if (m_top == stratum)
624 m_top = t->beneath ()->stratum ();
625
626 /* Finally close the target, if there are no inferiors
627 referencing this target still. Note we do this after unchaining,
628 so any target method calls from within the target_close
629 implementation don't end up in T anymore. Do leave the target
630 open if we have are other inferiors referencing this target
631 still. */
632 decref_target (t);
633
634 return true;
635 }
636
637 /* Unpush TARGET and assert that it worked. */
638
639 static void
640 unpush_target_and_assert (struct target_ops *target)
641 {
642 if (!unpush_target (target))
643 {
644 fprintf_unfiltered (gdb_stderr,
645 "pop_all_targets couldn't find target %s\n",
646 target->shortname ());
647 internal_error (__FILE__, __LINE__,
648 _("failed internal consistency check"));
649 }
650 }
651
652 void
653 pop_all_targets_above (enum strata above_stratum)
654 {
655 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
656 unpush_target_and_assert (current_top_target ());
657 }
658
659 /* See target.h. */
660
661 void
662 pop_all_targets_at_and_above (enum strata stratum)
663 {
664 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
665 unpush_target_and_assert (current_top_target ());
666 }
667
668 void
669 pop_all_targets (void)
670 {
671 pop_all_targets_above (dummy_stratum);
672 }
673
674 /* Return true if T is now pushed in the current inferior's target
675 stack. Return false otherwise. */
676
677 bool
678 target_is_pushed (target_ops *t)
679 {
680 return current_inferior ()->target_is_pushed (t);
681 }
682
683 /* Default implementation of to_get_thread_local_address. */
684
685 static void
686 generic_tls_error (void)
687 {
688 throw_error (TLS_GENERIC_ERROR,
689 _("Cannot find thread-local variables on this target"));
690 }
691
692 /* Using the objfile specified in OBJFILE, find the address for the
693 current thread's thread-local storage with offset OFFSET. */
694 CORE_ADDR
695 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
696 {
697 volatile CORE_ADDR addr = 0;
698 struct target_ops *target = current_top_target ();
699 struct gdbarch *gdbarch = target_gdbarch ();
700
701 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
702 {
703 ptid_t ptid = inferior_ptid;
704
705 try
706 {
707 CORE_ADDR lm_addr;
708
709 /* Fetch the load module address for this objfile. */
710 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
711 objfile);
712
713 if (gdbarch_get_thread_local_address_p (gdbarch))
714 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
715 offset);
716 else
717 addr = target->get_thread_local_address (ptid, lm_addr, offset);
718 }
719 /* If an error occurred, print TLS related messages here. Otherwise,
720 throw the error to some higher catcher. */
721 catch (const gdb_exception &ex)
722 {
723 int objfile_is_library = (objfile->flags & OBJF_SHARED);
724
725 switch (ex.error)
726 {
727 case TLS_NO_LIBRARY_SUPPORT_ERROR:
728 error (_("Cannot find thread-local variables "
729 "in this thread library."));
730 break;
731 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
732 if (objfile_is_library)
733 error (_("Cannot find shared library `%s' in dynamic"
734 " linker's load module list"), objfile_name (objfile));
735 else
736 error (_("Cannot find executable file `%s' in dynamic"
737 " linker's load module list"), objfile_name (objfile));
738 break;
739 case TLS_NOT_ALLOCATED_YET_ERROR:
740 if (objfile_is_library)
741 error (_("The inferior has not yet allocated storage for"
742 " thread-local variables in\n"
743 "the shared library `%s'\n"
744 "for %s"),
745 objfile_name (objfile),
746 target_pid_to_str (ptid).c_str ());
747 else
748 error (_("The inferior has not yet allocated storage for"
749 " thread-local variables in\n"
750 "the executable `%s'\n"
751 "for %s"),
752 objfile_name (objfile),
753 target_pid_to_str (ptid).c_str ());
754 break;
755 case TLS_GENERIC_ERROR:
756 if (objfile_is_library)
757 error (_("Cannot find thread-local storage for %s, "
758 "shared library %s:\n%s"),
759 target_pid_to_str (ptid).c_str (),
760 objfile_name (objfile), ex.what ());
761 else
762 error (_("Cannot find thread-local storage for %s, "
763 "executable file %s:\n%s"),
764 target_pid_to_str (ptid).c_str (),
765 objfile_name (objfile), ex.what ());
766 break;
767 default:
768 throw;
769 break;
770 }
771 }
772 }
773 else
774 error (_("Cannot find thread-local variables on this target"));
775
776 return addr;
777 }
778
779 const char *
780 target_xfer_status_to_string (enum target_xfer_status status)
781 {
782 #define CASE(X) case X: return #X
783 switch (status)
784 {
785 CASE(TARGET_XFER_E_IO);
786 CASE(TARGET_XFER_UNAVAILABLE);
787 default:
788 return "<unknown>";
789 }
790 #undef CASE
791 };
792
793
794 /* See target.h. */
795
796 gdb::unique_xmalloc_ptr<char>
797 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
798 {
799 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
800
801 int ignore;
802 if (bytes_read == nullptr)
803 bytes_read = &ignore;
804
805 /* Note that the endian-ness does not matter here. */
806 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
807 &buffer, bytes_read);
808 if (errcode != 0)
809 return {};
810
811 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
812 }
813
814 struct target_section_table *
815 target_get_section_table (struct target_ops *target)
816 {
817 return target->get_section_table ();
818 }
819
820 /* Find a section containing ADDR. */
821
822 struct target_section *
823 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
824 {
825 struct target_section_table *table = target_get_section_table (target);
826 struct target_section *secp;
827
828 if (table == NULL)
829 return NULL;
830
831 for (secp = table->sections; secp < table->sections_end; secp++)
832 {
833 if (addr >= secp->addr && addr < secp->endaddr)
834 return secp;
835 }
836 return NULL;
837 }
838
839
840 /* Helper for the memory xfer routines. Checks the attributes of the
841 memory region of MEMADDR against the read or write being attempted.
842 If the access is permitted returns true, otherwise returns false.
843 REGION_P is an optional output parameter. If not-NULL, it is
844 filled with a pointer to the memory region of MEMADDR. REG_LEN
845 returns LEN trimmed to the end of the region. This is how much the
846 caller can continue requesting, if the access is permitted. A
847 single xfer request must not straddle memory region boundaries. */
848
849 static int
850 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
851 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
852 struct mem_region **region_p)
853 {
854 struct mem_region *region;
855
856 region = lookup_mem_region (memaddr);
857
858 if (region_p != NULL)
859 *region_p = region;
860
861 switch (region->attrib.mode)
862 {
863 case MEM_RO:
864 if (writebuf != NULL)
865 return 0;
866 break;
867
868 case MEM_WO:
869 if (readbuf != NULL)
870 return 0;
871 break;
872
873 case MEM_FLASH:
874 /* We only support writing to flash during "load" for now. */
875 if (writebuf != NULL)
876 error (_("Writing to flash memory forbidden in this context"));
877 break;
878
879 case MEM_NONE:
880 return 0;
881 }
882
883 /* region->hi == 0 means there's no upper bound. */
884 if (memaddr + len < region->hi || region->hi == 0)
885 *reg_len = len;
886 else
887 *reg_len = region->hi - memaddr;
888
889 return 1;
890 }
891
892 /* Read memory from more than one valid target. A core file, for
893 instance, could have some of memory but delegate other bits to
894 the target below it. So, we must manually try all targets. */
895
896 enum target_xfer_status
897 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
898 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
899 ULONGEST *xfered_len)
900 {
901 enum target_xfer_status res;
902
903 do
904 {
905 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
906 readbuf, writebuf, memaddr, len,
907 xfered_len);
908 if (res == TARGET_XFER_OK)
909 break;
910
911 /* Stop if the target reports that the memory is not available. */
912 if (res == TARGET_XFER_UNAVAILABLE)
913 break;
914
915 /* Don't continue past targets which have all the memory.
916 At one time, this code was necessary to read data from
917 executables / shared libraries when data for the requested
918 addresses weren't available in the core file. But now the
919 core target handles this case itself. */
920 if (ops->has_all_memory ())
921 break;
922
923 ops = ops->beneath ();
924 }
925 while (ops != NULL);
926
927 /* The cache works at the raw memory level. Make sure the cache
928 gets updated with raw contents no matter what kind of memory
929 object was originally being written. Note we do write-through
930 first, so that if it fails, we don't write to the cache contents
931 that never made it to the target. */
932 if (writebuf != NULL
933 && inferior_ptid != null_ptid
934 && target_dcache_init_p ()
935 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
936 {
937 DCACHE *dcache = target_dcache_get ();
938
939 /* Note that writing to an area of memory which wasn't present
940 in the cache doesn't cause it to be loaded in. */
941 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
942 }
943
944 return res;
945 }
946
947 /* Perform a partial memory transfer.
948 For docs see target.h, to_xfer_partial. */
949
950 static enum target_xfer_status
951 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
952 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
953 ULONGEST len, ULONGEST *xfered_len)
954 {
955 enum target_xfer_status res;
956 ULONGEST reg_len;
957 struct mem_region *region;
958 struct inferior *inf;
959
960 /* For accesses to unmapped overlay sections, read directly from
961 files. Must do this first, as MEMADDR may need adjustment. */
962 if (readbuf != NULL && overlay_debugging)
963 {
964 struct obj_section *section = find_pc_overlay (memaddr);
965
966 if (pc_in_unmapped_range (memaddr, section))
967 {
968 struct target_section_table *table
969 = target_get_section_table (ops);
970 const char *section_name = section->the_bfd_section->name;
971
972 memaddr = overlay_mapped_address (memaddr, section);
973
974 auto match_cb = [=] (const struct target_section *s)
975 {
976 return (strcmp (section_name, s->the_bfd_section->name) == 0);
977 };
978
979 return section_table_xfer_memory_partial (readbuf, writebuf,
980 memaddr, len, xfered_len,
981 table->sections,
982 table->sections_end,
983 match_cb);
984 }
985 }
986
987 /* Try the executable files, if "trust-readonly-sections" is set. */
988 if (readbuf != NULL && trust_readonly)
989 {
990 struct target_section *secp;
991 struct target_section_table *table;
992
993 secp = target_section_by_addr (ops, memaddr);
994 if (secp != NULL
995 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
996 {
997 table = target_get_section_table (ops);
998 return section_table_xfer_memory_partial (readbuf, writebuf,
999 memaddr, len, xfered_len,
1000 table->sections,
1001 table->sections_end);
1002 }
1003 }
1004
1005 /* Try GDB's internal data cache. */
1006
1007 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1008 &region))
1009 return TARGET_XFER_E_IO;
1010
1011 if (inferior_ptid != null_ptid)
1012 inf = current_inferior ();
1013 else
1014 inf = NULL;
1015
1016 if (inf != NULL
1017 && readbuf != NULL
1018 /* The dcache reads whole cache lines; that doesn't play well
1019 with reading from a trace buffer, because reading outside of
1020 the collected memory range fails. */
1021 && get_traceframe_number () == -1
1022 && (region->attrib.cache
1023 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1024 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1025 {
1026 DCACHE *dcache = target_dcache_get_or_init ();
1027
1028 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1029 reg_len, xfered_len);
1030 }
1031
1032 /* If none of those methods found the memory we wanted, fall back
1033 to a target partial transfer. Normally a single call to
1034 to_xfer_partial is enough; if it doesn't recognize an object
1035 it will call the to_xfer_partial of the next target down.
1036 But for memory this won't do. Memory is the only target
1037 object which can be read from more than one valid target.
1038 A core file, for instance, could have some of memory but
1039 delegate other bits to the target below it. So, we must
1040 manually try all targets. */
1041
1042 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1043 xfered_len);
1044
1045 /* If we still haven't got anything, return the last error. We
1046 give up. */
1047 return res;
1048 }
1049
1050 /* Perform a partial memory transfer. For docs see target.h,
1051 to_xfer_partial. */
1052
1053 static enum target_xfer_status
1054 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1055 gdb_byte *readbuf, const gdb_byte *writebuf,
1056 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1057 {
1058 enum target_xfer_status res;
1059
1060 /* Zero length requests are ok and require no work. */
1061 if (len == 0)
1062 return TARGET_XFER_EOF;
1063
1064 memaddr = address_significant (target_gdbarch (), memaddr);
1065
1066 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1067 breakpoint insns, thus hiding out from higher layers whether
1068 there are software breakpoints inserted in the code stream. */
1069 if (readbuf != NULL)
1070 {
1071 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1072 xfered_len);
1073
1074 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1075 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1076 }
1077 else
1078 {
1079 /* A large write request is likely to be partially satisfied
1080 by memory_xfer_partial_1. We will continually malloc
1081 and free a copy of the entire write request for breakpoint
1082 shadow handling even though we only end up writing a small
1083 subset of it. Cap writes to a limit specified by the target
1084 to mitigate this. */
1085 len = std::min (ops->get_memory_xfer_limit (), len);
1086
1087 gdb::byte_vector buf (writebuf, writebuf + len);
1088 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1089 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1090 xfered_len);
1091 }
1092
1093 return res;
1094 }
1095
1096 scoped_restore_tmpl<int>
1097 make_scoped_restore_show_memory_breakpoints (int show)
1098 {
1099 return make_scoped_restore (&show_memory_breakpoints, show);
1100 }
1101
1102 /* For docs see target.h, to_xfer_partial. */
1103
1104 enum target_xfer_status
1105 target_xfer_partial (struct target_ops *ops,
1106 enum target_object object, const char *annex,
1107 gdb_byte *readbuf, const gdb_byte *writebuf,
1108 ULONGEST offset, ULONGEST len,
1109 ULONGEST *xfered_len)
1110 {
1111 enum target_xfer_status retval;
1112
1113 /* Transfer is done when LEN is zero. */
1114 if (len == 0)
1115 return TARGET_XFER_EOF;
1116
1117 if (writebuf && !may_write_memory)
1118 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1119 core_addr_to_string_nz (offset), plongest (len));
1120
1121 *xfered_len = 0;
1122
1123 /* If this is a memory transfer, let the memory-specific code
1124 have a look at it instead. Memory transfers are more
1125 complicated. */
1126 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1127 || object == TARGET_OBJECT_CODE_MEMORY)
1128 retval = memory_xfer_partial (ops, object, readbuf,
1129 writebuf, offset, len, xfered_len);
1130 else if (object == TARGET_OBJECT_RAW_MEMORY)
1131 {
1132 /* Skip/avoid accessing the target if the memory region
1133 attributes block the access. Check this here instead of in
1134 raw_memory_xfer_partial as otherwise we'd end up checking
1135 this twice in the case of the memory_xfer_partial path is
1136 taken; once before checking the dcache, and another in the
1137 tail call to raw_memory_xfer_partial. */
1138 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1139 NULL))
1140 return TARGET_XFER_E_IO;
1141
1142 /* Request the normal memory object from other layers. */
1143 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1144 xfered_len);
1145 }
1146 else
1147 retval = ops->xfer_partial (object, annex, readbuf,
1148 writebuf, offset, len, xfered_len);
1149
1150 if (targetdebug)
1151 {
1152 const unsigned char *myaddr = NULL;
1153
1154 fprintf_unfiltered (gdb_stdlog,
1155 "%s:target_xfer_partial "
1156 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1157 ops->shortname (),
1158 (int) object,
1159 (annex ? annex : "(null)"),
1160 host_address_to_string (readbuf),
1161 host_address_to_string (writebuf),
1162 core_addr_to_string_nz (offset),
1163 pulongest (len), retval,
1164 pulongest (*xfered_len));
1165
1166 if (readbuf)
1167 myaddr = readbuf;
1168 if (writebuf)
1169 myaddr = writebuf;
1170 if (retval == TARGET_XFER_OK && myaddr != NULL)
1171 {
1172 int i;
1173
1174 fputs_unfiltered (", bytes =", gdb_stdlog);
1175 for (i = 0; i < *xfered_len; i++)
1176 {
1177 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1178 {
1179 if (targetdebug < 2 && i > 0)
1180 {
1181 fprintf_unfiltered (gdb_stdlog, " ...");
1182 break;
1183 }
1184 fprintf_unfiltered (gdb_stdlog, "\n");
1185 }
1186
1187 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1188 }
1189 }
1190
1191 fputc_unfiltered ('\n', gdb_stdlog);
1192 }
1193
1194 /* Check implementations of to_xfer_partial update *XFERED_LEN
1195 properly. Do assertion after printing debug messages, so that we
1196 can find more clues on assertion failure from debugging messages. */
1197 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1198 gdb_assert (*xfered_len > 0);
1199
1200 return retval;
1201 }
1202
1203 /* Read LEN bytes of target memory at address MEMADDR, placing the
1204 results in GDB's memory at MYADDR. Returns either 0 for success or
1205 -1 if any error occurs.
1206
1207 If an error occurs, no guarantee is made about the contents of the data at
1208 MYADDR. In particular, the caller should not depend upon partial reads
1209 filling the buffer with good data. There is no way for the caller to know
1210 how much good data might have been transfered anyway. Callers that can
1211 deal with partial reads should call target_read (which will retry until
1212 it makes no progress, and then return how much was transferred). */
1213
1214 int
1215 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1216 {
1217 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1218 myaddr, memaddr, len) == len)
1219 return 0;
1220 else
1221 return -1;
1222 }
1223
1224 /* See target/target.h. */
1225
1226 int
1227 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1228 {
1229 gdb_byte buf[4];
1230 int r;
1231
1232 r = target_read_memory (memaddr, buf, sizeof buf);
1233 if (r != 0)
1234 return r;
1235 *result = extract_unsigned_integer (buf, sizeof buf,
1236 gdbarch_byte_order (target_gdbarch ()));
1237 return 0;
1238 }
1239
1240 /* Like target_read_memory, but specify explicitly that this is a read
1241 from the target's raw memory. That is, this read bypasses the
1242 dcache, breakpoint shadowing, etc. */
1243
1244 int
1245 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1246 {
1247 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1248 myaddr, memaddr, len) == len)
1249 return 0;
1250 else
1251 return -1;
1252 }
1253
1254 /* Like target_read_memory, but specify explicitly that this is a read from
1255 the target's stack. This may trigger different cache behavior. */
1256
1257 int
1258 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1259 {
1260 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1261 myaddr, memaddr, len) == len)
1262 return 0;
1263 else
1264 return -1;
1265 }
1266
1267 /* Like target_read_memory, but specify explicitly that this is a read from
1268 the target's code. This may trigger different cache behavior. */
1269
1270 int
1271 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1272 {
1273 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1274 myaddr, memaddr, len) == len)
1275 return 0;
1276 else
1277 return -1;
1278 }
1279
1280 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1281 Returns either 0 for success or -1 if any error occurs. If an
1282 error occurs, no guarantee is made about how much data got written.
1283 Callers that can deal with partial writes should call
1284 target_write. */
1285
1286 int
1287 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1288 {
1289 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1290 myaddr, memaddr, len) == len)
1291 return 0;
1292 else
1293 return -1;
1294 }
1295
1296 /* Write LEN bytes from MYADDR to target raw memory at address
1297 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1298 If an error occurs, no guarantee is made about how much data got
1299 written. Callers that can deal with partial writes should call
1300 target_write. */
1301
1302 int
1303 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1304 {
1305 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1306 myaddr, memaddr, len) == len)
1307 return 0;
1308 else
1309 return -1;
1310 }
1311
1312 /* Fetch the target's memory map. */
1313
1314 std::vector<mem_region>
1315 target_memory_map (void)
1316 {
1317 std::vector<mem_region> result = current_top_target ()->memory_map ();
1318 if (result.empty ())
1319 return result;
1320
1321 std::sort (result.begin (), result.end ());
1322
1323 /* Check that regions do not overlap. Simultaneously assign
1324 a numbering for the "mem" commands to use to refer to
1325 each region. */
1326 mem_region *last_one = NULL;
1327 for (size_t ix = 0; ix < result.size (); ix++)
1328 {
1329 mem_region *this_one = &result[ix];
1330 this_one->number = ix;
1331
1332 if (last_one != NULL && last_one->hi > this_one->lo)
1333 {
1334 warning (_("Overlapping regions in memory map: ignoring"));
1335 return std::vector<mem_region> ();
1336 }
1337
1338 last_one = this_one;
1339 }
1340
1341 return result;
1342 }
1343
1344 void
1345 target_flash_erase (ULONGEST address, LONGEST length)
1346 {
1347 current_top_target ()->flash_erase (address, length);
1348 }
1349
1350 void
1351 target_flash_done (void)
1352 {
1353 current_top_target ()->flash_done ();
1354 }
1355
1356 static void
1357 show_trust_readonly (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359 {
1360 fprintf_filtered (file,
1361 _("Mode for reading from readonly sections is %s.\n"),
1362 value);
1363 }
1364
1365 /* Target vector read/write partial wrapper functions. */
1366
1367 static enum target_xfer_status
1368 target_read_partial (struct target_ops *ops,
1369 enum target_object object,
1370 const char *annex, gdb_byte *buf,
1371 ULONGEST offset, ULONGEST len,
1372 ULONGEST *xfered_len)
1373 {
1374 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1375 xfered_len);
1376 }
1377
1378 static enum target_xfer_status
1379 target_write_partial (struct target_ops *ops,
1380 enum target_object object,
1381 const char *annex, const gdb_byte *buf,
1382 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1383 {
1384 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1385 xfered_len);
1386 }
1387
1388 /* Wrappers to perform the full transfer. */
1389
1390 /* For docs on target_read see target.h. */
1391
1392 LONGEST
1393 target_read (struct target_ops *ops,
1394 enum target_object object,
1395 const char *annex, gdb_byte *buf,
1396 ULONGEST offset, LONGEST len)
1397 {
1398 LONGEST xfered_total = 0;
1399 int unit_size = 1;
1400
1401 /* If we are reading from a memory object, find the length of an addressable
1402 unit for that architecture. */
1403 if (object == TARGET_OBJECT_MEMORY
1404 || object == TARGET_OBJECT_STACK_MEMORY
1405 || object == TARGET_OBJECT_CODE_MEMORY
1406 || object == TARGET_OBJECT_RAW_MEMORY)
1407 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1408
1409 while (xfered_total < len)
1410 {
1411 ULONGEST xfered_partial;
1412 enum target_xfer_status status;
1413
1414 status = target_read_partial (ops, object, annex,
1415 buf + xfered_total * unit_size,
1416 offset + xfered_total, len - xfered_total,
1417 &xfered_partial);
1418
1419 /* Call an observer, notifying them of the xfer progress? */
1420 if (status == TARGET_XFER_EOF)
1421 return xfered_total;
1422 else if (status == TARGET_XFER_OK)
1423 {
1424 xfered_total += xfered_partial;
1425 QUIT;
1426 }
1427 else
1428 return TARGET_XFER_E_IO;
1429
1430 }
1431 return len;
1432 }
1433
1434 /* Assuming that the entire [begin, end) range of memory cannot be
1435 read, try to read whatever subrange is possible to read.
1436
1437 The function returns, in RESULT, either zero or one memory block.
1438 If there's a readable subrange at the beginning, it is completely
1439 read and returned. Any further readable subrange will not be read.
1440 Otherwise, if there's a readable subrange at the end, it will be
1441 completely read and returned. Any readable subranges before it
1442 (obviously, not starting at the beginning), will be ignored. In
1443 other cases -- either no readable subrange, or readable subrange(s)
1444 that is neither at the beginning, or end, nothing is returned.
1445
1446 The purpose of this function is to handle a read across a boundary
1447 of accessible memory in a case when memory map is not available.
1448 The above restrictions are fine for this case, but will give
1449 incorrect results if the memory is 'patchy'. However, supporting
1450 'patchy' memory would require trying to read every single byte,
1451 and it seems unacceptable solution. Explicit memory map is
1452 recommended for this case -- and target_read_memory_robust will
1453 take care of reading multiple ranges then. */
1454
1455 static void
1456 read_whatever_is_readable (struct target_ops *ops,
1457 const ULONGEST begin, const ULONGEST end,
1458 int unit_size,
1459 std::vector<memory_read_result> *result)
1460 {
1461 ULONGEST current_begin = begin;
1462 ULONGEST current_end = end;
1463 int forward;
1464 ULONGEST xfered_len;
1465
1466 /* If we previously failed to read 1 byte, nothing can be done here. */
1467 if (end - begin <= 1)
1468 return;
1469
1470 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1471
1472 /* Check that either first or the last byte is readable, and give up
1473 if not. This heuristic is meant to permit reading accessible memory
1474 at the boundary of accessible region. */
1475 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1476 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1477 {
1478 forward = 1;
1479 ++current_begin;
1480 }
1481 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1482 buf.get () + (end - begin) - 1, end - 1, 1,
1483 &xfered_len) == TARGET_XFER_OK)
1484 {
1485 forward = 0;
1486 --current_end;
1487 }
1488 else
1489 return;
1490
1491 /* Loop invariant is that the [current_begin, current_end) was previously
1492 found to be not readable as a whole.
1493
1494 Note loop condition -- if the range has 1 byte, we can't divide the range
1495 so there's no point trying further. */
1496 while (current_end - current_begin > 1)
1497 {
1498 ULONGEST first_half_begin, first_half_end;
1499 ULONGEST second_half_begin, second_half_end;
1500 LONGEST xfer;
1501 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1502
1503 if (forward)
1504 {
1505 first_half_begin = current_begin;
1506 first_half_end = middle;
1507 second_half_begin = middle;
1508 second_half_end = current_end;
1509 }
1510 else
1511 {
1512 first_half_begin = middle;
1513 first_half_end = current_end;
1514 second_half_begin = current_begin;
1515 second_half_end = middle;
1516 }
1517
1518 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1519 buf.get () + (first_half_begin - begin) * unit_size,
1520 first_half_begin,
1521 first_half_end - first_half_begin);
1522
1523 if (xfer == first_half_end - first_half_begin)
1524 {
1525 /* This half reads up fine. So, the error must be in the
1526 other half. */
1527 current_begin = second_half_begin;
1528 current_end = second_half_end;
1529 }
1530 else
1531 {
1532 /* This half is not readable. Because we've tried one byte, we
1533 know some part of this half if actually readable. Go to the next
1534 iteration to divide again and try to read.
1535
1536 We don't handle the other half, because this function only tries
1537 to read a single readable subrange. */
1538 current_begin = first_half_begin;
1539 current_end = first_half_end;
1540 }
1541 }
1542
1543 if (forward)
1544 {
1545 /* The [begin, current_begin) range has been read. */
1546 result->emplace_back (begin, current_end, std::move (buf));
1547 }
1548 else
1549 {
1550 /* The [current_end, end) range has been read. */
1551 LONGEST region_len = end - current_end;
1552
1553 gdb::unique_xmalloc_ptr<gdb_byte> data
1554 ((gdb_byte *) xmalloc (region_len * unit_size));
1555 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1556 region_len * unit_size);
1557 result->emplace_back (current_end, end, std::move (data));
1558 }
1559 }
1560
1561 std::vector<memory_read_result>
1562 read_memory_robust (struct target_ops *ops,
1563 const ULONGEST offset, const LONGEST len)
1564 {
1565 std::vector<memory_read_result> result;
1566 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1567
1568 LONGEST xfered_total = 0;
1569 while (xfered_total < len)
1570 {
1571 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1572 LONGEST region_len;
1573
1574 /* If there is no explicit region, a fake one should be created. */
1575 gdb_assert (region);
1576
1577 if (region->hi == 0)
1578 region_len = len - xfered_total;
1579 else
1580 region_len = region->hi - offset;
1581
1582 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1583 {
1584 /* Cannot read this region. Note that we can end up here only
1585 if the region is explicitly marked inaccessible, or
1586 'inaccessible-by-default' is in effect. */
1587 xfered_total += region_len;
1588 }
1589 else
1590 {
1591 LONGEST to_read = std::min (len - xfered_total, region_len);
1592 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1593 ((gdb_byte *) xmalloc (to_read * unit_size));
1594
1595 LONGEST xfered_partial =
1596 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1597 offset + xfered_total, to_read);
1598 /* Call an observer, notifying them of the xfer progress? */
1599 if (xfered_partial <= 0)
1600 {
1601 /* Got an error reading full chunk. See if maybe we can read
1602 some subrange. */
1603 read_whatever_is_readable (ops, offset + xfered_total,
1604 offset + xfered_total + to_read,
1605 unit_size, &result);
1606 xfered_total += to_read;
1607 }
1608 else
1609 {
1610 result.emplace_back (offset + xfered_total,
1611 offset + xfered_total + xfered_partial,
1612 std::move (buffer));
1613 xfered_total += xfered_partial;
1614 }
1615 QUIT;
1616 }
1617 }
1618
1619 return result;
1620 }
1621
1622
1623 /* An alternative to target_write with progress callbacks. */
1624
1625 LONGEST
1626 target_write_with_progress (struct target_ops *ops,
1627 enum target_object object,
1628 const char *annex, const gdb_byte *buf,
1629 ULONGEST offset, LONGEST len,
1630 void (*progress) (ULONGEST, void *), void *baton)
1631 {
1632 LONGEST xfered_total = 0;
1633 int unit_size = 1;
1634
1635 /* If we are writing to a memory object, find the length of an addressable
1636 unit for that architecture. */
1637 if (object == TARGET_OBJECT_MEMORY
1638 || object == TARGET_OBJECT_STACK_MEMORY
1639 || object == TARGET_OBJECT_CODE_MEMORY
1640 || object == TARGET_OBJECT_RAW_MEMORY)
1641 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1642
1643 /* Give the progress callback a chance to set up. */
1644 if (progress)
1645 (*progress) (0, baton);
1646
1647 while (xfered_total < len)
1648 {
1649 ULONGEST xfered_partial;
1650 enum target_xfer_status status;
1651
1652 status = target_write_partial (ops, object, annex,
1653 buf + xfered_total * unit_size,
1654 offset + xfered_total, len - xfered_total,
1655 &xfered_partial);
1656
1657 if (status != TARGET_XFER_OK)
1658 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1659
1660 if (progress)
1661 (*progress) (xfered_partial, baton);
1662
1663 xfered_total += xfered_partial;
1664 QUIT;
1665 }
1666 return len;
1667 }
1668
1669 /* For docs on target_write see target.h. */
1670
1671 LONGEST
1672 target_write (struct target_ops *ops,
1673 enum target_object object,
1674 const char *annex, const gdb_byte *buf,
1675 ULONGEST offset, LONGEST len)
1676 {
1677 return target_write_with_progress (ops, object, annex, buf, offset, len,
1678 NULL, NULL);
1679 }
1680
1681 /* Help for target_read_alloc and target_read_stralloc. See their comments
1682 for details. */
1683
1684 template <typename T>
1685 gdb::optional<gdb::def_vector<T>>
1686 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1687 const char *annex)
1688 {
1689 gdb::def_vector<T> buf;
1690 size_t buf_pos = 0;
1691 const int chunk = 4096;
1692
1693 /* This function does not have a length parameter; it reads the
1694 entire OBJECT). Also, it doesn't support objects fetched partly
1695 from one target and partly from another (in a different stratum,
1696 e.g. a core file and an executable). Both reasons make it
1697 unsuitable for reading memory. */
1698 gdb_assert (object != TARGET_OBJECT_MEMORY);
1699
1700 /* Start by reading up to 4K at a time. The target will throttle
1701 this number down if necessary. */
1702 while (1)
1703 {
1704 ULONGEST xfered_len;
1705 enum target_xfer_status status;
1706
1707 buf.resize (buf_pos + chunk);
1708
1709 status = target_read_partial (ops, object, annex,
1710 (gdb_byte *) &buf[buf_pos],
1711 buf_pos, chunk,
1712 &xfered_len);
1713
1714 if (status == TARGET_XFER_EOF)
1715 {
1716 /* Read all there was. */
1717 buf.resize (buf_pos);
1718 return buf;
1719 }
1720 else if (status != TARGET_XFER_OK)
1721 {
1722 /* An error occurred. */
1723 return {};
1724 }
1725
1726 buf_pos += xfered_len;
1727
1728 QUIT;
1729 }
1730 }
1731
1732 /* See target.h */
1733
1734 gdb::optional<gdb::byte_vector>
1735 target_read_alloc (struct target_ops *ops, enum target_object object,
1736 const char *annex)
1737 {
1738 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1739 }
1740
1741 /* See target.h. */
1742
1743 gdb::optional<gdb::char_vector>
1744 target_read_stralloc (struct target_ops *ops, enum target_object object,
1745 const char *annex)
1746 {
1747 gdb::optional<gdb::char_vector> buf
1748 = target_read_alloc_1<char> (ops, object, annex);
1749
1750 if (!buf)
1751 return {};
1752
1753 if (buf->empty () || buf->back () != '\0')
1754 buf->push_back ('\0');
1755
1756 /* Check for embedded NUL bytes; but allow trailing NULs. */
1757 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1758 it != buf->end (); it++)
1759 if (*it != '\0')
1760 {
1761 warning (_("target object %d, annex %s, "
1762 "contained unexpected null characters"),
1763 (int) object, annex ? annex : "(none)");
1764 break;
1765 }
1766
1767 return buf;
1768 }
1769
1770 /* Memory transfer methods. */
1771
1772 void
1773 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1774 LONGEST len)
1775 {
1776 /* This method is used to read from an alternate, non-current
1777 target. This read must bypass the overlay support (as symbols
1778 don't match this target), and GDB's internal cache (wrong cache
1779 for this target). */
1780 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1781 != len)
1782 memory_error (TARGET_XFER_E_IO, addr);
1783 }
1784
1785 ULONGEST
1786 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1787 int len, enum bfd_endian byte_order)
1788 {
1789 gdb_byte buf[sizeof (ULONGEST)];
1790
1791 gdb_assert (len <= sizeof (buf));
1792 get_target_memory (ops, addr, buf, len);
1793 return extract_unsigned_integer (buf, len, byte_order);
1794 }
1795
1796 /* See target.h. */
1797
1798 int
1799 target_insert_breakpoint (struct gdbarch *gdbarch,
1800 struct bp_target_info *bp_tgt)
1801 {
1802 if (!may_insert_breakpoints)
1803 {
1804 warning (_("May not insert breakpoints"));
1805 return 1;
1806 }
1807
1808 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1809 }
1810
1811 /* See target.h. */
1812
1813 int
1814 target_remove_breakpoint (struct gdbarch *gdbarch,
1815 struct bp_target_info *bp_tgt,
1816 enum remove_bp_reason reason)
1817 {
1818 /* This is kind of a weird case to handle, but the permission might
1819 have been changed after breakpoints were inserted - in which case
1820 we should just take the user literally and assume that any
1821 breakpoints should be left in place. */
1822 if (!may_insert_breakpoints)
1823 {
1824 warning (_("May not remove breakpoints"));
1825 return 1;
1826 }
1827
1828 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1829 }
1830
1831 static void
1832 info_target_command (const char *args, int from_tty)
1833 {
1834 int has_all_mem = 0;
1835
1836 if (symfile_objfile != NULL)
1837 printf_unfiltered (_("Symbols from \"%s\".\n"),
1838 objfile_name (symfile_objfile));
1839
1840 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1841 {
1842 if (!t->has_memory ())
1843 continue;
1844
1845 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1846 continue;
1847 if (has_all_mem)
1848 printf_unfiltered (_("\tWhile running this, "
1849 "GDB does not access memory from...\n"));
1850 printf_unfiltered ("%s:\n", t->longname ());
1851 t->files_info ();
1852 has_all_mem = t->has_all_memory ();
1853 }
1854 }
1855
1856 /* This function is called before any new inferior is created, e.g.
1857 by running a program, attaching, or connecting to a target.
1858 It cleans up any state from previous invocations which might
1859 change between runs. This is a subset of what target_preopen
1860 resets (things which might change between targets). */
1861
1862 void
1863 target_pre_inferior (int from_tty)
1864 {
1865 /* Clear out solib state. Otherwise the solib state of the previous
1866 inferior might have survived and is entirely wrong for the new
1867 target. This has been observed on GNU/Linux using glibc 2.3. How
1868 to reproduce:
1869
1870 bash$ ./foo&
1871 [1] 4711
1872 bash$ ./foo&
1873 [1] 4712
1874 bash$ gdb ./foo
1875 [...]
1876 (gdb) attach 4711
1877 (gdb) detach
1878 (gdb) attach 4712
1879 Cannot access memory at address 0xdeadbeef
1880 */
1881
1882 /* In some OSs, the shared library list is the same/global/shared
1883 across inferiors. If code is shared between processes, so are
1884 memory regions and features. */
1885 if (!gdbarch_has_global_solist (target_gdbarch ()))
1886 {
1887 no_shared_libraries (NULL, from_tty);
1888
1889 invalidate_target_mem_regions ();
1890
1891 target_clear_description ();
1892 }
1893
1894 /* attach_flag may be set if the previous process associated with
1895 the inferior was attached to. */
1896 current_inferior ()->attach_flag = 0;
1897
1898 current_inferior ()->highest_thread_num = 0;
1899
1900 agent_capability_invalidate ();
1901 }
1902
1903 /* This is to be called by the open routine before it does
1904 anything. */
1905
1906 void
1907 target_preopen (int from_tty)
1908 {
1909 dont_repeat ();
1910
1911 if (current_inferior ()->pid != 0)
1912 {
1913 if (!from_tty
1914 || !target_has_execution ()
1915 || query (_("A program is being debugged already. Kill it? ")))
1916 {
1917 /* Core inferiors actually should be detached, not
1918 killed. */
1919 if (target_has_execution ())
1920 target_kill ();
1921 else
1922 target_detach (current_inferior (), 0);
1923 }
1924 else
1925 error (_("Program not killed."));
1926 }
1927
1928 /* Calling target_kill may remove the target from the stack. But if
1929 it doesn't (which seems like a win for UDI), remove it now. */
1930 /* Leave the exec target, though. The user may be switching from a
1931 live process to a core of the same program. */
1932 pop_all_targets_above (file_stratum);
1933
1934 target_pre_inferior (from_tty);
1935 }
1936
1937 /* See target.h. */
1938
1939 void
1940 target_detach (inferior *inf, int from_tty)
1941 {
1942 /* After we have detached, we will clear the register cache for this inferior
1943 by calling registers_changed_ptid. We must save the pid_ptid before
1944 detaching, as the target detach method will clear inf->pid. */
1945 ptid_t save_pid_ptid = ptid_t (inf->pid);
1946
1947 /* As long as some to_detach implementations rely on the current_inferior
1948 (either directly, or indirectly, like through target_gdbarch or by
1949 reading memory), INF needs to be the current inferior. When that
1950 requirement will become no longer true, then we can remove this
1951 assertion. */
1952 gdb_assert (inf == current_inferior ());
1953
1954 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1955 /* Don't remove global breakpoints here. They're removed on
1956 disconnection from the target. */
1957 ;
1958 else
1959 /* If we're in breakpoints-always-inserted mode, have to remove
1960 breakpoints before detaching. */
1961 remove_breakpoints_inf (current_inferior ());
1962
1963 prepare_for_detach ();
1964
1965 /* Hold a strong reference because detaching may unpush the
1966 target. */
1967 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1968
1969 current_top_target ()->detach (inf, from_tty);
1970
1971 process_stratum_target *proc_target
1972 = as_process_stratum_target (proc_target_ref.get ());
1973
1974 registers_changed_ptid (proc_target, save_pid_ptid);
1975
1976 /* We have to ensure we have no frame cache left. Normally,
1977 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1978 inferior_ptid matches save_pid_ptid, but in our case, it does not
1979 call it, as inferior_ptid has been reset. */
1980 reinit_frame_cache ();
1981 }
1982
1983 void
1984 target_disconnect (const char *args, int from_tty)
1985 {
1986 /* If we're in breakpoints-always-inserted mode or if breakpoints
1987 are global across processes, we have to remove them before
1988 disconnecting. */
1989 remove_breakpoints ();
1990
1991 current_top_target ()->disconnect (args, from_tty);
1992 }
1993
1994 /* See target/target.h. */
1995
1996 ptid_t
1997 target_wait (ptid_t ptid, struct target_waitstatus *status,
1998 target_wait_flags options)
1999 {
2000 return current_top_target ()->wait (ptid, status, options);
2001 }
2002
2003 /* See target.h. */
2004
2005 ptid_t
2006 default_target_wait (struct target_ops *ops,
2007 ptid_t ptid, struct target_waitstatus *status,
2008 target_wait_flags options)
2009 {
2010 status->kind = TARGET_WAITKIND_IGNORE;
2011 return minus_one_ptid;
2012 }
2013
2014 std::string
2015 target_pid_to_str (ptid_t ptid)
2016 {
2017 return current_top_target ()->pid_to_str (ptid);
2018 }
2019
2020 const char *
2021 target_thread_name (struct thread_info *info)
2022 {
2023 gdb_assert (info->inf == current_inferior ());
2024
2025 return current_top_target ()->thread_name (info);
2026 }
2027
2028 struct thread_info *
2029 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2030 int handle_len,
2031 struct inferior *inf)
2032 {
2033 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2034 handle_len, inf);
2035 }
2036
2037 /* See target.h. */
2038
2039 gdb::byte_vector
2040 target_thread_info_to_thread_handle (struct thread_info *tip)
2041 {
2042 return current_top_target ()->thread_info_to_thread_handle (tip);
2043 }
2044
2045 void
2046 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2047 {
2048 process_stratum_target *curr_target = current_inferior ()->process_target ();
2049
2050 target_dcache_invalidate ();
2051
2052 current_top_target ()->resume (ptid, step, signal);
2053
2054 registers_changed_ptid (curr_target, ptid);
2055 /* We only set the internal executing state here. The user/frontend
2056 running state is set at a higher level. This also clears the
2057 thread's stop_pc as side effect. */
2058 set_executing (curr_target, ptid, true);
2059 clear_inline_frame_state (curr_target, ptid);
2060 }
2061
2062 /* If true, target_commit_resume is a nop. */
2063 static int defer_target_commit_resume;
2064
2065 /* See target.h. */
2066
2067 void
2068 target_commit_resume (void)
2069 {
2070 if (defer_target_commit_resume)
2071 return;
2072
2073 current_top_target ()->commit_resume ();
2074 }
2075
2076 /* See target.h. */
2077
2078 scoped_restore_tmpl<int>
2079 make_scoped_defer_target_commit_resume ()
2080 {
2081 return make_scoped_restore (&defer_target_commit_resume, 1);
2082 }
2083
2084 void
2085 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2086 {
2087 current_top_target ()->pass_signals (pass_signals);
2088 }
2089
2090 void
2091 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2092 {
2093 current_top_target ()->program_signals (program_signals);
2094 }
2095
2096 static bool
2097 default_follow_fork (struct target_ops *self, bool follow_child,
2098 bool detach_fork)
2099 {
2100 /* Some target returned a fork event, but did not know how to follow it. */
2101 internal_error (__FILE__, __LINE__,
2102 _("could not find a target to follow fork"));
2103 }
2104
2105 /* Look through the list of possible targets for a target that can
2106 follow forks. */
2107
2108 bool
2109 target_follow_fork (bool follow_child, bool detach_fork)
2110 {
2111 return current_top_target ()->follow_fork (follow_child, detach_fork);
2112 }
2113
2114 /* Target wrapper for follow exec hook. */
2115
2116 void
2117 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2118 {
2119 current_top_target ()->follow_exec (inf, execd_pathname);
2120 }
2121
2122 static void
2123 default_mourn_inferior (struct target_ops *self)
2124 {
2125 internal_error (__FILE__, __LINE__,
2126 _("could not find a target to follow mourn inferior"));
2127 }
2128
2129 void
2130 target_mourn_inferior (ptid_t ptid)
2131 {
2132 gdb_assert (ptid == inferior_ptid);
2133 current_top_target ()->mourn_inferior ();
2134
2135 /* We no longer need to keep handles on any of the object files.
2136 Make sure to release them to avoid unnecessarily locking any
2137 of them while we're not actually debugging. */
2138 bfd_cache_close_all ();
2139 }
2140
2141 /* Look for a target which can describe architectural features, starting
2142 from TARGET. If we find one, return its description. */
2143
2144 const struct target_desc *
2145 target_read_description (struct target_ops *target)
2146 {
2147 return target->read_description ();
2148 }
2149
2150 /* This implements a basic search of memory, reading target memory and
2151 performing the search here (as opposed to performing the search in on the
2152 target side with, for example, gdbserver). */
2153
2154 int
2155 simple_search_memory (struct target_ops *ops,
2156 CORE_ADDR start_addr, ULONGEST search_space_len,
2157 const gdb_byte *pattern, ULONGEST pattern_len,
2158 CORE_ADDR *found_addrp)
2159 {
2160 /* NOTE: also defined in find.c testcase. */
2161 #define SEARCH_CHUNK_SIZE 16000
2162 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2163 /* Buffer to hold memory contents for searching. */
2164 unsigned search_buf_size;
2165
2166 search_buf_size = chunk_size + pattern_len - 1;
2167
2168 /* No point in trying to allocate a buffer larger than the search space. */
2169 if (search_space_len < search_buf_size)
2170 search_buf_size = search_space_len;
2171
2172 gdb::byte_vector search_buf (search_buf_size);
2173
2174 /* Prime the search buffer. */
2175
2176 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2177 search_buf.data (), start_addr, search_buf_size)
2178 != search_buf_size)
2179 {
2180 warning (_("Unable to access %s bytes of target "
2181 "memory at %s, halting search."),
2182 pulongest (search_buf_size), hex_string (start_addr));
2183 return -1;
2184 }
2185
2186 /* Perform the search.
2187
2188 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2189 When we've scanned N bytes we copy the trailing bytes to the start and
2190 read in another N bytes. */
2191
2192 while (search_space_len >= pattern_len)
2193 {
2194 gdb_byte *found_ptr;
2195 unsigned nr_search_bytes
2196 = std::min (search_space_len, (ULONGEST) search_buf_size);
2197
2198 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2199 pattern, pattern_len);
2200
2201 if (found_ptr != NULL)
2202 {
2203 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2204
2205 *found_addrp = found_addr;
2206 return 1;
2207 }
2208
2209 /* Not found in this chunk, skip to next chunk. */
2210
2211 /* Don't let search_space_len wrap here, it's unsigned. */
2212 if (search_space_len >= chunk_size)
2213 search_space_len -= chunk_size;
2214 else
2215 search_space_len = 0;
2216
2217 if (search_space_len >= pattern_len)
2218 {
2219 unsigned keep_len = search_buf_size - chunk_size;
2220 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2221 int nr_to_read;
2222
2223 /* Copy the trailing part of the previous iteration to the front
2224 of the buffer for the next iteration. */
2225 gdb_assert (keep_len == pattern_len - 1);
2226 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2227
2228 nr_to_read = std::min (search_space_len - keep_len,
2229 (ULONGEST) chunk_size);
2230
2231 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2232 &search_buf[keep_len], read_addr,
2233 nr_to_read) != nr_to_read)
2234 {
2235 warning (_("Unable to access %s bytes of target "
2236 "memory at %s, halting search."),
2237 plongest (nr_to_read),
2238 hex_string (read_addr));
2239 return -1;
2240 }
2241
2242 start_addr += chunk_size;
2243 }
2244 }
2245
2246 /* Not found. */
2247
2248 return 0;
2249 }
2250
2251 /* Default implementation of memory-searching. */
2252
2253 static int
2254 default_search_memory (struct target_ops *self,
2255 CORE_ADDR start_addr, ULONGEST search_space_len,
2256 const gdb_byte *pattern, ULONGEST pattern_len,
2257 CORE_ADDR *found_addrp)
2258 {
2259 /* Start over from the top of the target stack. */
2260 return simple_search_memory (current_top_target (),
2261 start_addr, search_space_len,
2262 pattern, pattern_len, found_addrp);
2263 }
2264
2265 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2266 sequence of bytes in PATTERN with length PATTERN_LEN.
2267
2268 The result is 1 if found, 0 if not found, and -1 if there was an error
2269 requiring halting of the search (e.g. memory read error).
2270 If the pattern is found the address is recorded in FOUND_ADDRP. */
2271
2272 int
2273 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2274 const gdb_byte *pattern, ULONGEST pattern_len,
2275 CORE_ADDR *found_addrp)
2276 {
2277 return current_top_target ()->search_memory (start_addr, search_space_len,
2278 pattern, pattern_len, found_addrp);
2279 }
2280
2281 /* Look through the currently pushed targets. If none of them will
2282 be able to restart the currently running process, issue an error
2283 message. */
2284
2285 void
2286 target_require_runnable (void)
2287 {
2288 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2289 {
2290 /* If this target knows how to create a new program, then
2291 assume we will still be able to after killing the current
2292 one. Either killing and mourning will not pop T, or else
2293 find_default_run_target will find it again. */
2294 if (t->can_create_inferior ())
2295 return;
2296
2297 /* Do not worry about targets at certain strata that can not
2298 create inferiors. Assume they will be pushed again if
2299 necessary, and continue to the process_stratum. */
2300 if (t->stratum () > process_stratum)
2301 continue;
2302
2303 error (_("The \"%s\" target does not support \"run\". "
2304 "Try \"help target\" or \"continue\"."),
2305 t->shortname ());
2306 }
2307
2308 /* This function is only called if the target is running. In that
2309 case there should have been a process_stratum target and it
2310 should either know how to create inferiors, or not... */
2311 internal_error (__FILE__, __LINE__, _("No targets found"));
2312 }
2313
2314 /* Whether GDB is allowed to fall back to the default run target for
2315 "run", "attach", etc. when no target is connected yet. */
2316 static bool auto_connect_native_target = true;
2317
2318 static void
2319 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2320 struct cmd_list_element *c, const char *value)
2321 {
2322 fprintf_filtered (file,
2323 _("Whether GDB may automatically connect to the "
2324 "native target is %s.\n"),
2325 value);
2326 }
2327
2328 /* A pointer to the target that can respond to "run" or "attach".
2329 Native targets are always singletons and instantiated early at GDB
2330 startup. */
2331 static target_ops *the_native_target;
2332
2333 /* See target.h. */
2334
2335 void
2336 set_native_target (target_ops *target)
2337 {
2338 if (the_native_target != NULL)
2339 internal_error (__FILE__, __LINE__,
2340 _("native target already set (\"%s\")."),
2341 the_native_target->longname ());
2342
2343 the_native_target = target;
2344 }
2345
2346 /* See target.h. */
2347
2348 target_ops *
2349 get_native_target ()
2350 {
2351 return the_native_target;
2352 }
2353
2354 /* Look through the list of possible targets for a target that can
2355 execute a run or attach command without any other data. This is
2356 used to locate the default process stratum.
2357
2358 If DO_MESG is not NULL, the result is always valid (error() is
2359 called for errors); else, return NULL on error. */
2360
2361 static struct target_ops *
2362 find_default_run_target (const char *do_mesg)
2363 {
2364 if (auto_connect_native_target && the_native_target != NULL)
2365 return the_native_target;
2366
2367 if (do_mesg != NULL)
2368 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2369 return NULL;
2370 }
2371
2372 /* See target.h. */
2373
2374 struct target_ops *
2375 find_attach_target (void)
2376 {
2377 /* If a target on the current stack can attach, use it. */
2378 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2379 {
2380 if (t->can_attach ())
2381 return t;
2382 }
2383
2384 /* Otherwise, use the default run target for attaching. */
2385 return find_default_run_target ("attach");
2386 }
2387
2388 /* See target.h. */
2389
2390 struct target_ops *
2391 find_run_target (void)
2392 {
2393 /* If a target on the current stack can run, use it. */
2394 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2395 {
2396 if (t->can_create_inferior ())
2397 return t;
2398 }
2399
2400 /* Otherwise, use the default run target. */
2401 return find_default_run_target ("run");
2402 }
2403
2404 bool
2405 target_ops::info_proc (const char *args, enum info_proc_what what)
2406 {
2407 return false;
2408 }
2409
2410 /* Implement the "info proc" command. */
2411
2412 int
2413 target_info_proc (const char *args, enum info_proc_what what)
2414 {
2415 struct target_ops *t;
2416
2417 /* If we're already connected to something that can get us OS
2418 related data, use it. Otherwise, try using the native
2419 target. */
2420 t = find_target_at (process_stratum);
2421 if (t == NULL)
2422 t = find_default_run_target (NULL);
2423
2424 for (; t != NULL; t = t->beneath ())
2425 {
2426 if (t->info_proc (args, what))
2427 {
2428 if (targetdebug)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "target_info_proc (\"%s\", %d)\n", args, what);
2431
2432 return 1;
2433 }
2434 }
2435
2436 return 0;
2437 }
2438
2439 static int
2440 find_default_supports_disable_randomization (struct target_ops *self)
2441 {
2442 struct target_ops *t;
2443
2444 t = find_default_run_target (NULL);
2445 if (t != NULL)
2446 return t->supports_disable_randomization ();
2447 return 0;
2448 }
2449
2450 int
2451 target_supports_disable_randomization (void)
2452 {
2453 return current_top_target ()->supports_disable_randomization ();
2454 }
2455
2456 /* See target/target.h. */
2457
2458 int
2459 target_supports_multi_process (void)
2460 {
2461 return current_top_target ()->supports_multi_process ();
2462 }
2463
2464 /* See target.h. */
2465
2466 gdb::optional<gdb::char_vector>
2467 target_get_osdata (const char *type)
2468 {
2469 struct target_ops *t;
2470
2471 /* If we're already connected to something that can get us OS
2472 related data, use it. Otherwise, try using the native
2473 target. */
2474 t = find_target_at (process_stratum);
2475 if (t == NULL)
2476 t = find_default_run_target ("get OS data");
2477
2478 if (!t)
2479 return {};
2480
2481 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2482 }
2483
2484 /* Determine the current address space of thread PTID. */
2485
2486 struct address_space *
2487 target_thread_address_space (ptid_t ptid)
2488 {
2489 struct address_space *aspace;
2490
2491 aspace = current_top_target ()->thread_address_space (ptid);
2492 gdb_assert (aspace != NULL);
2493
2494 return aspace;
2495 }
2496
2497 /* See target.h. */
2498
2499 target_ops *
2500 target_ops::beneath () const
2501 {
2502 return current_inferior ()->find_target_beneath (this);
2503 }
2504
2505 void
2506 target_ops::close ()
2507 {
2508 }
2509
2510 bool
2511 target_ops::can_attach ()
2512 {
2513 return 0;
2514 }
2515
2516 void
2517 target_ops::attach (const char *, int)
2518 {
2519 gdb_assert_not_reached ("target_ops::attach called");
2520 }
2521
2522 bool
2523 target_ops::can_create_inferior ()
2524 {
2525 return 0;
2526 }
2527
2528 void
2529 target_ops::create_inferior (const char *, const std::string &,
2530 char **, int)
2531 {
2532 gdb_assert_not_reached ("target_ops::create_inferior called");
2533 }
2534
2535 bool
2536 target_ops::can_run ()
2537 {
2538 return false;
2539 }
2540
2541 int
2542 target_can_run ()
2543 {
2544 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2545 {
2546 if (t->can_run ())
2547 return 1;
2548 }
2549
2550 return 0;
2551 }
2552
2553 /* Target file operations. */
2554
2555 static struct target_ops *
2556 default_fileio_target (void)
2557 {
2558 struct target_ops *t;
2559
2560 /* If we're already connected to something that can perform
2561 file I/O, use it. Otherwise, try using the native target. */
2562 t = find_target_at (process_stratum);
2563 if (t != NULL)
2564 return t;
2565 return find_default_run_target ("file I/O");
2566 }
2567
2568 /* File handle for target file operations. */
2569
2570 struct fileio_fh_t
2571 {
2572 /* The target on which this file is open. NULL if the target is
2573 meanwhile closed while the handle is open. */
2574 target_ops *target;
2575
2576 /* The file descriptor on the target. */
2577 int target_fd;
2578
2579 /* Check whether this fileio_fh_t represents a closed file. */
2580 bool is_closed ()
2581 {
2582 return target_fd < 0;
2583 }
2584 };
2585
2586 /* Vector of currently open file handles. The value returned by
2587 target_fileio_open and passed as the FD argument to other
2588 target_fileio_* functions is an index into this vector. This
2589 vector's entries are never freed; instead, files are marked as
2590 closed, and the handle becomes available for reuse. */
2591 static std::vector<fileio_fh_t> fileio_fhandles;
2592
2593 /* Index into fileio_fhandles of the lowest handle that might be
2594 closed. This permits handle reuse without searching the whole
2595 list each time a new file is opened. */
2596 static int lowest_closed_fd;
2597
2598 /* Invalidate the target associated with open handles that were open
2599 on target TARG, since we're about to close (and maybe destroy) the
2600 target. The handles remain open from the client's perspective, but
2601 trying to do anything with them other than closing them will fail
2602 with EIO. */
2603
2604 static void
2605 fileio_handles_invalidate_target (target_ops *targ)
2606 {
2607 for (fileio_fh_t &fh : fileio_fhandles)
2608 if (fh.target == targ)
2609 fh.target = NULL;
2610 }
2611
2612 /* Acquire a target fileio file descriptor. */
2613
2614 static int
2615 acquire_fileio_fd (target_ops *target, int target_fd)
2616 {
2617 /* Search for closed handles to reuse. */
2618 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2619 {
2620 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2621
2622 if (fh.is_closed ())
2623 break;
2624 }
2625
2626 /* Push a new handle if no closed handles were found. */
2627 if (lowest_closed_fd == fileio_fhandles.size ())
2628 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2629 else
2630 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2631
2632 /* Should no longer be marked closed. */
2633 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2634
2635 /* Return its index, and start the next lookup at
2636 the next index. */
2637 return lowest_closed_fd++;
2638 }
2639
2640 /* Release a target fileio file descriptor. */
2641
2642 static void
2643 release_fileio_fd (int fd, fileio_fh_t *fh)
2644 {
2645 fh->target_fd = -1;
2646 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2647 }
2648
2649 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2650
2651 static fileio_fh_t *
2652 fileio_fd_to_fh (int fd)
2653 {
2654 return &fileio_fhandles[fd];
2655 }
2656
2657
2658 /* Default implementations of file i/o methods. We don't want these
2659 to delegate automatically, because we need to know which target
2660 supported the method, in order to call it directly from within
2661 pread/pwrite, etc. */
2662
2663 int
2664 target_ops::fileio_open (struct inferior *inf, const char *filename,
2665 int flags, int mode, int warn_if_slow,
2666 int *target_errno)
2667 {
2668 *target_errno = FILEIO_ENOSYS;
2669 return -1;
2670 }
2671
2672 int
2673 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2674 ULONGEST offset, int *target_errno)
2675 {
2676 *target_errno = FILEIO_ENOSYS;
2677 return -1;
2678 }
2679
2680 int
2681 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2682 ULONGEST offset, int *target_errno)
2683 {
2684 *target_errno = FILEIO_ENOSYS;
2685 return -1;
2686 }
2687
2688 int
2689 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2690 {
2691 *target_errno = FILEIO_ENOSYS;
2692 return -1;
2693 }
2694
2695 int
2696 target_ops::fileio_close (int fd, int *target_errno)
2697 {
2698 *target_errno = FILEIO_ENOSYS;
2699 return -1;
2700 }
2701
2702 int
2703 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2704 int *target_errno)
2705 {
2706 *target_errno = FILEIO_ENOSYS;
2707 return -1;
2708 }
2709
2710 gdb::optional<std::string>
2711 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2712 int *target_errno)
2713 {
2714 *target_errno = FILEIO_ENOSYS;
2715 return {};
2716 }
2717
2718 /* See target.h. */
2719
2720 int
2721 target_fileio_open (struct inferior *inf, const char *filename,
2722 int flags, int mode, bool warn_if_slow, int *target_errno)
2723 {
2724 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2725 {
2726 int fd = t->fileio_open (inf, filename, flags, mode,
2727 warn_if_slow, target_errno);
2728
2729 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2730 continue;
2731
2732 if (fd < 0)
2733 fd = -1;
2734 else
2735 fd = acquire_fileio_fd (t, fd);
2736
2737 if (targetdebug)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2740 " = %d (%d)\n",
2741 inf == NULL ? 0 : inf->num,
2742 filename, flags, mode,
2743 warn_if_slow, fd,
2744 fd != -1 ? 0 : *target_errno);
2745 return fd;
2746 }
2747
2748 *target_errno = FILEIO_ENOSYS;
2749 return -1;
2750 }
2751
2752 /* See target.h. */
2753
2754 int
2755 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2756 ULONGEST offset, int *target_errno)
2757 {
2758 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2759 int ret = -1;
2760
2761 if (fh->is_closed ())
2762 *target_errno = EBADF;
2763 else if (fh->target == NULL)
2764 *target_errno = EIO;
2765 else
2766 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2767 len, offset, target_errno);
2768
2769 if (targetdebug)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "target_fileio_pwrite (%d,...,%d,%s) "
2772 "= %d (%d)\n",
2773 fd, len, pulongest (offset),
2774 ret, ret != -1 ? 0 : *target_errno);
2775 return ret;
2776 }
2777
2778 /* See target.h. */
2779
2780 int
2781 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2782 ULONGEST offset, int *target_errno)
2783 {
2784 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2785 int ret = -1;
2786
2787 if (fh->is_closed ())
2788 *target_errno = EBADF;
2789 else if (fh->target == NULL)
2790 *target_errno = EIO;
2791 else
2792 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2793 len, offset, target_errno);
2794
2795 if (targetdebug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_fileio_pread (%d,...,%d,%s) "
2798 "= %d (%d)\n",
2799 fd, len, pulongest (offset),
2800 ret, ret != -1 ? 0 : *target_errno);
2801 return ret;
2802 }
2803
2804 /* See target.h. */
2805
2806 int
2807 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2808 {
2809 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2810 int ret = -1;
2811
2812 if (fh->is_closed ())
2813 *target_errno = EBADF;
2814 else if (fh->target == NULL)
2815 *target_errno = EIO;
2816 else
2817 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2818
2819 if (targetdebug)
2820 fprintf_unfiltered (gdb_stdlog,
2821 "target_fileio_fstat (%d) = %d (%d)\n",
2822 fd, ret, ret != -1 ? 0 : *target_errno);
2823 return ret;
2824 }
2825
2826 /* See target.h. */
2827
2828 int
2829 target_fileio_close (int fd, int *target_errno)
2830 {
2831 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2832 int ret = -1;
2833
2834 if (fh->is_closed ())
2835 *target_errno = EBADF;
2836 else
2837 {
2838 if (fh->target != NULL)
2839 ret = fh->target->fileio_close (fh->target_fd,
2840 target_errno);
2841 else
2842 ret = 0;
2843 release_fileio_fd (fd, fh);
2844 }
2845
2846 if (targetdebug)
2847 fprintf_unfiltered (gdb_stdlog,
2848 "target_fileio_close (%d) = %d (%d)\n",
2849 fd, ret, ret != -1 ? 0 : *target_errno);
2850 return ret;
2851 }
2852
2853 /* See target.h. */
2854
2855 int
2856 target_fileio_unlink (struct inferior *inf, const char *filename,
2857 int *target_errno)
2858 {
2859 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2860 {
2861 int ret = t->fileio_unlink (inf, filename, target_errno);
2862
2863 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2864 continue;
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_fileio_unlink (%d,%s)"
2869 " = %d (%d)\n",
2870 inf == NULL ? 0 : inf->num, filename,
2871 ret, ret != -1 ? 0 : *target_errno);
2872 return ret;
2873 }
2874
2875 *target_errno = FILEIO_ENOSYS;
2876 return -1;
2877 }
2878
2879 /* See target.h. */
2880
2881 gdb::optional<std::string>
2882 target_fileio_readlink (struct inferior *inf, const char *filename,
2883 int *target_errno)
2884 {
2885 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2886 {
2887 gdb::optional<std::string> ret
2888 = t->fileio_readlink (inf, filename, target_errno);
2889
2890 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2891 continue;
2892
2893 if (targetdebug)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "target_fileio_readlink (%d,%s)"
2896 " = %s (%d)\n",
2897 inf == NULL ? 0 : inf->num,
2898 filename, ret ? ret->c_str () : "(nil)",
2899 ret ? 0 : *target_errno);
2900 return ret;
2901 }
2902
2903 *target_errno = FILEIO_ENOSYS;
2904 return {};
2905 }
2906
2907 /* Like scoped_fd, but specific to target fileio. */
2908
2909 class scoped_target_fd
2910 {
2911 public:
2912 explicit scoped_target_fd (int fd) noexcept
2913 : m_fd (fd)
2914 {
2915 }
2916
2917 ~scoped_target_fd ()
2918 {
2919 if (m_fd >= 0)
2920 {
2921 int target_errno;
2922
2923 target_fileio_close (m_fd, &target_errno);
2924 }
2925 }
2926
2927 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2928
2929 int get () const noexcept
2930 {
2931 return m_fd;
2932 }
2933
2934 private:
2935 int m_fd;
2936 };
2937
2938 /* Read target file FILENAME, in the filesystem as seen by INF. If
2939 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2940 remote targets, the remote stub). Store the result in *BUF_P and
2941 return the size of the transferred data. PADDING additional bytes
2942 are available in *BUF_P. This is a helper function for
2943 target_fileio_read_alloc; see the declaration of that function for
2944 more information. */
2945
2946 static LONGEST
2947 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2948 gdb_byte **buf_p, int padding)
2949 {
2950 size_t buf_alloc, buf_pos;
2951 gdb_byte *buf;
2952 LONGEST n;
2953 int target_errno;
2954
2955 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2956 0700, false, &target_errno));
2957 if (fd.get () == -1)
2958 return -1;
2959
2960 /* Start by reading up to 4K at a time. The target will throttle
2961 this number down if necessary. */
2962 buf_alloc = 4096;
2963 buf = (gdb_byte *) xmalloc (buf_alloc);
2964 buf_pos = 0;
2965 while (1)
2966 {
2967 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2968 buf_alloc - buf_pos - padding, buf_pos,
2969 &target_errno);
2970 if (n < 0)
2971 {
2972 /* An error occurred. */
2973 xfree (buf);
2974 return -1;
2975 }
2976 else if (n == 0)
2977 {
2978 /* Read all there was. */
2979 if (buf_pos == 0)
2980 xfree (buf);
2981 else
2982 *buf_p = buf;
2983 return buf_pos;
2984 }
2985
2986 buf_pos += n;
2987
2988 /* If the buffer is filling up, expand it. */
2989 if (buf_alloc < buf_pos * 2)
2990 {
2991 buf_alloc *= 2;
2992 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2993 }
2994
2995 QUIT;
2996 }
2997 }
2998
2999 /* See target.h. */
3000
3001 LONGEST
3002 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3003 gdb_byte **buf_p)
3004 {
3005 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3006 }
3007
3008 /* See target.h. */
3009
3010 gdb::unique_xmalloc_ptr<char>
3011 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3012 {
3013 gdb_byte *buffer;
3014 char *bufstr;
3015 LONGEST i, transferred;
3016
3017 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3018 bufstr = (char *) buffer;
3019
3020 if (transferred < 0)
3021 return gdb::unique_xmalloc_ptr<char> (nullptr);
3022
3023 if (transferred == 0)
3024 return make_unique_xstrdup ("");
3025
3026 bufstr[transferred] = 0;
3027
3028 /* Check for embedded NUL bytes; but allow trailing NULs. */
3029 for (i = strlen (bufstr); i < transferred; i++)
3030 if (bufstr[i] != 0)
3031 {
3032 warning (_("target file %s "
3033 "contained unexpected null characters"),
3034 filename);
3035 break;
3036 }
3037
3038 return gdb::unique_xmalloc_ptr<char> (bufstr);
3039 }
3040
3041
3042 static int
3043 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3044 CORE_ADDR addr, int len)
3045 {
3046 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3047 }
3048
3049 static int
3050 default_watchpoint_addr_within_range (struct target_ops *target,
3051 CORE_ADDR addr,
3052 CORE_ADDR start, int length)
3053 {
3054 return addr >= start && addr < start + length;
3055 }
3056
3057 /* See target.h. */
3058
3059 target_ops *
3060 target_stack::find_beneath (const target_ops *t) const
3061 {
3062 /* Look for a non-empty slot at stratum levels beneath T's. */
3063 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3064 if (m_stack[stratum] != NULL)
3065 return m_stack[stratum];
3066
3067 return NULL;
3068 }
3069
3070 /* See target.h. */
3071
3072 struct target_ops *
3073 find_target_at (enum strata stratum)
3074 {
3075 return current_inferior ()->target_at (stratum);
3076 }
3077
3078 \f
3079
3080 /* See target.h */
3081
3082 void
3083 target_announce_detach (int from_tty)
3084 {
3085 pid_t pid;
3086 const char *exec_file;
3087
3088 if (!from_tty)
3089 return;
3090
3091 exec_file = get_exec_file (0);
3092 if (exec_file == NULL)
3093 exec_file = "";
3094
3095 pid = inferior_ptid.pid ();
3096 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3097 target_pid_to_str (ptid_t (pid)).c_str ());
3098 }
3099
3100 /* The inferior process has died. Long live the inferior! */
3101
3102 void
3103 generic_mourn_inferior (void)
3104 {
3105 inferior *inf = current_inferior ();
3106
3107 switch_to_no_thread ();
3108
3109 /* Mark breakpoints uninserted in case something tries to delete a
3110 breakpoint while we delete the inferior's threads (which would
3111 fail, since the inferior is long gone). */
3112 mark_breakpoints_out ();
3113
3114 if (inf->pid != 0)
3115 exit_inferior (inf);
3116
3117 /* Note this wipes step-resume breakpoints, so needs to be done
3118 after exit_inferior, which ends up referencing the step-resume
3119 breakpoints through clear_thread_inferior_resources. */
3120 breakpoint_init_inferior (inf_exited);
3121
3122 registers_changed ();
3123
3124 reopen_exec_file ();
3125 reinit_frame_cache ();
3126
3127 if (deprecated_detach_hook)
3128 deprecated_detach_hook ();
3129 }
3130 \f
3131 /* Convert a normal process ID to a string. Returns the string in a
3132 static buffer. */
3133
3134 std::string
3135 normal_pid_to_str (ptid_t ptid)
3136 {
3137 return string_printf ("process %d", ptid.pid ());
3138 }
3139
3140 static std::string
3141 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3142 {
3143 return normal_pid_to_str (ptid);
3144 }
3145
3146 /* Error-catcher for target_find_memory_regions. */
3147 static int
3148 dummy_find_memory_regions (struct target_ops *self,
3149 find_memory_region_ftype ignore1, void *ignore2)
3150 {
3151 error (_("Command not implemented for this target."));
3152 return 0;
3153 }
3154
3155 /* Error-catcher for target_make_corefile_notes. */
3156 static char *
3157 dummy_make_corefile_notes (struct target_ops *self,
3158 bfd *ignore1, int *ignore2)
3159 {
3160 error (_("Command not implemented for this target."));
3161 return NULL;
3162 }
3163
3164 #include "target-delegates.c"
3165
3166 /* The initial current target, so that there is always a semi-valid
3167 current target. */
3168
3169 static dummy_target the_dummy_target;
3170
3171 /* See target.h. */
3172
3173 target_ops *
3174 get_dummy_target ()
3175 {
3176 return &the_dummy_target;
3177 }
3178
3179 static const target_info dummy_target_info = {
3180 "None",
3181 N_("None"),
3182 ""
3183 };
3184
3185 strata
3186 dummy_target::stratum () const
3187 {
3188 return dummy_stratum;
3189 }
3190
3191 strata
3192 debug_target::stratum () const
3193 {
3194 return debug_stratum;
3195 }
3196
3197 const target_info &
3198 dummy_target::info () const
3199 {
3200 return dummy_target_info;
3201 }
3202
3203 const target_info &
3204 debug_target::info () const
3205 {
3206 return beneath ()->info ();
3207 }
3208
3209 \f
3210
3211 void
3212 target_close (struct target_ops *targ)
3213 {
3214 gdb_assert (!target_is_pushed (targ));
3215
3216 fileio_handles_invalidate_target (targ);
3217
3218 targ->close ();
3219
3220 if (targetdebug)
3221 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3222 }
3223
3224 int
3225 target_thread_alive (ptid_t ptid)
3226 {
3227 return current_top_target ()->thread_alive (ptid);
3228 }
3229
3230 void
3231 target_update_thread_list (void)
3232 {
3233 current_top_target ()->update_thread_list ();
3234 }
3235
3236 void
3237 target_stop (ptid_t ptid)
3238 {
3239 if (!may_stop)
3240 {
3241 warning (_("May not interrupt or stop the target, ignoring attempt"));
3242 return;
3243 }
3244
3245 current_top_target ()->stop (ptid);
3246 }
3247
3248 void
3249 target_interrupt ()
3250 {
3251 if (!may_stop)
3252 {
3253 warning (_("May not interrupt or stop the target, ignoring attempt"));
3254 return;
3255 }
3256
3257 current_top_target ()->interrupt ();
3258 }
3259
3260 /* See target.h. */
3261
3262 void
3263 target_pass_ctrlc (void)
3264 {
3265 /* Pass the Ctrl-C to the first target that has a thread
3266 running. */
3267 for (inferior *inf : all_inferiors ())
3268 {
3269 target_ops *proc_target = inf->process_target ();
3270 if (proc_target == NULL)
3271 continue;
3272
3273 for (thread_info *thr : inf->non_exited_threads ())
3274 {
3275 /* A thread can be THREAD_STOPPED and executing, while
3276 running an infcall. */
3277 if (thr->state == THREAD_RUNNING || thr->executing)
3278 {
3279 /* We can get here quite deep in target layers. Avoid
3280 switching thread context or anything that would
3281 communicate with the target (e.g., to fetch
3282 registers), or flushing e.g., the frame cache. We
3283 just switch inferior in order to be able to call
3284 through the target_stack. */
3285 scoped_restore_current_inferior restore_inferior;
3286 set_current_inferior (inf);
3287 current_top_target ()->pass_ctrlc ();
3288 return;
3289 }
3290 }
3291 }
3292 }
3293
3294 /* See target.h. */
3295
3296 void
3297 default_target_pass_ctrlc (struct target_ops *ops)
3298 {
3299 target_interrupt ();
3300 }
3301
3302 /* See target/target.h. */
3303
3304 void
3305 target_stop_and_wait (ptid_t ptid)
3306 {
3307 struct target_waitstatus status;
3308 bool was_non_stop = non_stop;
3309
3310 non_stop = true;
3311 target_stop (ptid);
3312
3313 memset (&status, 0, sizeof (status));
3314 target_wait (ptid, &status, 0);
3315
3316 non_stop = was_non_stop;
3317 }
3318
3319 /* See target/target.h. */
3320
3321 void
3322 target_continue_no_signal (ptid_t ptid)
3323 {
3324 target_resume (ptid, 0, GDB_SIGNAL_0);
3325 }
3326
3327 /* See target/target.h. */
3328
3329 void
3330 target_continue (ptid_t ptid, enum gdb_signal signal)
3331 {
3332 target_resume (ptid, 0, signal);
3333 }
3334
3335 /* Concatenate ELEM to LIST, a comma-separated list. */
3336
3337 static void
3338 str_comma_list_concat_elem (std::string *list, const char *elem)
3339 {
3340 if (!list->empty ())
3341 list->append (", ");
3342
3343 list->append (elem);
3344 }
3345
3346 /* Helper for target_options_to_string. If OPT is present in
3347 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3348 OPT is removed from TARGET_OPTIONS. */
3349
3350 static void
3351 do_option (target_wait_flags *target_options, std::string *ret,
3352 target_wait_flag opt, const char *opt_str)
3353 {
3354 if ((*target_options & opt) != 0)
3355 {
3356 str_comma_list_concat_elem (ret, opt_str);
3357 *target_options &= ~opt;
3358 }
3359 }
3360
3361 /* See target.h. */
3362
3363 std::string
3364 target_options_to_string (target_wait_flags target_options)
3365 {
3366 std::string ret;
3367
3368 #define DO_TARG_OPTION(OPT) \
3369 do_option (&target_options, &ret, OPT, #OPT)
3370
3371 DO_TARG_OPTION (TARGET_WNOHANG);
3372
3373 if (target_options != 0)
3374 str_comma_list_concat_elem (&ret, "unknown???");
3375
3376 return ret;
3377 }
3378
3379 void
3380 target_fetch_registers (struct regcache *regcache, int regno)
3381 {
3382 current_top_target ()->fetch_registers (regcache, regno);
3383 if (targetdebug)
3384 regcache->debug_print_register ("target_fetch_registers", regno);
3385 }
3386
3387 void
3388 target_store_registers (struct regcache *regcache, int regno)
3389 {
3390 if (!may_write_registers)
3391 error (_("Writing to registers is not allowed (regno %d)"), regno);
3392
3393 current_top_target ()->store_registers (regcache, regno);
3394 if (targetdebug)
3395 {
3396 regcache->debug_print_register ("target_store_registers", regno);
3397 }
3398 }
3399
3400 int
3401 target_core_of_thread (ptid_t ptid)
3402 {
3403 return current_top_target ()->core_of_thread (ptid);
3404 }
3405
3406 int
3407 simple_verify_memory (struct target_ops *ops,
3408 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3409 {
3410 LONGEST total_xfered = 0;
3411
3412 while (total_xfered < size)
3413 {
3414 ULONGEST xfered_len;
3415 enum target_xfer_status status;
3416 gdb_byte buf[1024];
3417 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3418
3419 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3420 buf, NULL, lma + total_xfered, howmuch,
3421 &xfered_len);
3422 if (status == TARGET_XFER_OK
3423 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3424 {
3425 total_xfered += xfered_len;
3426 QUIT;
3427 }
3428 else
3429 return 0;
3430 }
3431 return 1;
3432 }
3433
3434 /* Default implementation of memory verification. */
3435
3436 static int
3437 default_verify_memory (struct target_ops *self,
3438 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3439 {
3440 /* Start over from the top of the target stack. */
3441 return simple_verify_memory (current_top_target (),
3442 data, memaddr, size);
3443 }
3444
3445 int
3446 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3447 {
3448 return current_top_target ()->verify_memory (data, memaddr, size);
3449 }
3450
3451 /* The documentation for this function is in its prototype declaration in
3452 target.h. */
3453
3454 int
3455 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3456 enum target_hw_bp_type rw)
3457 {
3458 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3459 }
3460
3461 /* The documentation for this function is in its prototype declaration in
3462 target.h. */
3463
3464 int
3465 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3466 enum target_hw_bp_type rw)
3467 {
3468 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3469 }
3470
3471 /* The documentation for this function is in its prototype declaration
3472 in target.h. */
3473
3474 int
3475 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3476 {
3477 return current_top_target ()->masked_watch_num_registers (addr, mask);
3478 }
3479
3480 /* The documentation for this function is in its prototype declaration
3481 in target.h. */
3482
3483 int
3484 target_ranged_break_num_registers (void)
3485 {
3486 return current_top_target ()->ranged_break_num_registers ();
3487 }
3488
3489 /* See target.h. */
3490
3491 struct btrace_target_info *
3492 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3493 {
3494 return current_top_target ()->enable_btrace (ptid, conf);
3495 }
3496
3497 /* See target.h. */
3498
3499 void
3500 target_disable_btrace (struct btrace_target_info *btinfo)
3501 {
3502 current_top_target ()->disable_btrace (btinfo);
3503 }
3504
3505 /* See target.h. */
3506
3507 void
3508 target_teardown_btrace (struct btrace_target_info *btinfo)
3509 {
3510 current_top_target ()->teardown_btrace (btinfo);
3511 }
3512
3513 /* See target.h. */
3514
3515 enum btrace_error
3516 target_read_btrace (struct btrace_data *btrace,
3517 struct btrace_target_info *btinfo,
3518 enum btrace_read_type type)
3519 {
3520 return current_top_target ()->read_btrace (btrace, btinfo, type);
3521 }
3522
3523 /* See target.h. */
3524
3525 const struct btrace_config *
3526 target_btrace_conf (const struct btrace_target_info *btinfo)
3527 {
3528 return current_top_target ()->btrace_conf (btinfo);
3529 }
3530
3531 /* See target.h. */
3532
3533 void
3534 target_stop_recording (void)
3535 {
3536 current_top_target ()->stop_recording ();
3537 }
3538
3539 /* See target.h. */
3540
3541 void
3542 target_save_record (const char *filename)
3543 {
3544 current_top_target ()->save_record (filename);
3545 }
3546
3547 /* See target.h. */
3548
3549 int
3550 target_supports_delete_record ()
3551 {
3552 return current_top_target ()->supports_delete_record ();
3553 }
3554
3555 /* See target.h. */
3556
3557 void
3558 target_delete_record (void)
3559 {
3560 current_top_target ()->delete_record ();
3561 }
3562
3563 /* See target.h. */
3564
3565 enum record_method
3566 target_record_method (ptid_t ptid)
3567 {
3568 return current_top_target ()->record_method (ptid);
3569 }
3570
3571 /* See target.h. */
3572
3573 int
3574 target_record_is_replaying (ptid_t ptid)
3575 {
3576 return current_top_target ()->record_is_replaying (ptid);
3577 }
3578
3579 /* See target.h. */
3580
3581 int
3582 target_record_will_replay (ptid_t ptid, int dir)
3583 {
3584 return current_top_target ()->record_will_replay (ptid, dir);
3585 }
3586
3587 /* See target.h. */
3588
3589 void
3590 target_record_stop_replaying (void)
3591 {
3592 current_top_target ()->record_stop_replaying ();
3593 }
3594
3595 /* See target.h. */
3596
3597 void
3598 target_goto_record_begin (void)
3599 {
3600 current_top_target ()->goto_record_begin ();
3601 }
3602
3603 /* See target.h. */
3604
3605 void
3606 target_goto_record_end (void)
3607 {
3608 current_top_target ()->goto_record_end ();
3609 }
3610
3611 /* See target.h. */
3612
3613 void
3614 target_goto_record (ULONGEST insn)
3615 {
3616 current_top_target ()->goto_record (insn);
3617 }
3618
3619 /* See target.h. */
3620
3621 void
3622 target_insn_history (int size, gdb_disassembly_flags flags)
3623 {
3624 current_top_target ()->insn_history (size, flags);
3625 }
3626
3627 /* See target.h. */
3628
3629 void
3630 target_insn_history_from (ULONGEST from, int size,
3631 gdb_disassembly_flags flags)
3632 {
3633 current_top_target ()->insn_history_from (from, size, flags);
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_insn_history_range (ULONGEST begin, ULONGEST end,
3640 gdb_disassembly_flags flags)
3641 {
3642 current_top_target ()->insn_history_range (begin, end, flags);
3643 }
3644
3645 /* See target.h. */
3646
3647 void
3648 target_call_history (int size, record_print_flags flags)
3649 {
3650 current_top_target ()->call_history (size, flags);
3651 }
3652
3653 /* See target.h. */
3654
3655 void
3656 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3657 {
3658 current_top_target ()->call_history_from (begin, size, flags);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3665 {
3666 current_top_target ()->call_history_range (begin, end, flags);
3667 }
3668
3669 /* See target.h. */
3670
3671 const struct frame_unwind *
3672 target_get_unwinder (void)
3673 {
3674 return current_top_target ()->get_unwinder ();
3675 }
3676
3677 /* See target.h. */
3678
3679 const struct frame_unwind *
3680 target_get_tailcall_unwinder (void)
3681 {
3682 return current_top_target ()->get_tailcall_unwinder ();
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_prepare_to_generate_core (void)
3689 {
3690 current_top_target ()->prepare_to_generate_core ();
3691 }
3692
3693 /* See target.h. */
3694
3695 void
3696 target_done_generating_core (void)
3697 {
3698 current_top_target ()->done_generating_core ();
3699 }
3700
3701 \f
3702
3703 static char targ_desc[] =
3704 "Names of targets and files being debugged.\nShows the entire \
3705 stack of targets currently in use (including the exec-file,\n\
3706 core-file, and process, if any), as well as the symbol file name.";
3707
3708 static void
3709 default_rcmd (struct target_ops *self, const char *command,
3710 struct ui_file *output)
3711 {
3712 error (_("\"monitor\" command not supported by this target."));
3713 }
3714
3715 static void
3716 do_monitor_command (const char *cmd, int from_tty)
3717 {
3718 target_rcmd (cmd, gdb_stdtarg);
3719 }
3720
3721 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3722 ignored. */
3723
3724 void
3725 flash_erase_command (const char *cmd, int from_tty)
3726 {
3727 /* Used to communicate termination of flash operations to the target. */
3728 bool found_flash_region = false;
3729 struct gdbarch *gdbarch = target_gdbarch ();
3730
3731 std::vector<mem_region> mem_regions = target_memory_map ();
3732
3733 /* Iterate over all memory regions. */
3734 for (const mem_region &m : mem_regions)
3735 {
3736 /* Is this a flash memory region? */
3737 if (m.attrib.mode == MEM_FLASH)
3738 {
3739 found_flash_region = true;
3740 target_flash_erase (m.lo, m.hi - m.lo);
3741
3742 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3743
3744 current_uiout->message (_("Erasing flash memory region at address "));
3745 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3746 current_uiout->message (", size = ");
3747 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3748 current_uiout->message ("\n");
3749 }
3750 }
3751
3752 /* Did we do any flash operations? If so, we need to finalize them. */
3753 if (found_flash_region)
3754 target_flash_done ();
3755 else
3756 current_uiout->message (_("No flash memory regions found.\n"));
3757 }
3758
3759 /* Print the name of each layers of our target stack. */
3760
3761 static void
3762 maintenance_print_target_stack (const char *cmd, int from_tty)
3763 {
3764 printf_filtered (_("The current target stack is:\n"));
3765
3766 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3767 {
3768 if (t->stratum () == debug_stratum)
3769 continue;
3770 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3771 }
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_async (int enable)
3778 {
3779 infrun_async (enable);
3780 current_top_target ()->async (enable);
3781 }
3782
3783 /* See target.h. */
3784
3785 void
3786 target_thread_events (int enable)
3787 {
3788 current_top_target ()->thread_events (enable);
3789 }
3790
3791 /* Controls if targets can report that they can/are async. This is
3792 just for maintainers to use when debugging gdb. */
3793 bool target_async_permitted = true;
3794
3795 /* The set command writes to this variable. If the inferior is
3796 executing, target_async_permitted is *not* updated. */
3797 static bool target_async_permitted_1 = true;
3798
3799 static void
3800 maint_set_target_async_command (const char *args, int from_tty,
3801 struct cmd_list_element *c)
3802 {
3803 if (have_live_inferiors ())
3804 {
3805 target_async_permitted_1 = target_async_permitted;
3806 error (_("Cannot change this setting while the inferior is running."));
3807 }
3808
3809 target_async_permitted = target_async_permitted_1;
3810 }
3811
3812 static void
3813 maint_show_target_async_command (struct ui_file *file, int from_tty,
3814 struct cmd_list_element *c,
3815 const char *value)
3816 {
3817 fprintf_filtered (file,
3818 _("Controlling the inferior in "
3819 "asynchronous mode is %s.\n"), value);
3820 }
3821
3822 /* Return true if the target operates in non-stop mode even with "set
3823 non-stop off". */
3824
3825 static int
3826 target_always_non_stop_p (void)
3827 {
3828 return current_top_target ()->always_non_stop_p ();
3829 }
3830
3831 /* See target.h. */
3832
3833 int
3834 target_is_non_stop_p (void)
3835 {
3836 return (non_stop
3837 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3838 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3839 && target_always_non_stop_p ()));
3840 }
3841
3842 /* See target.h. */
3843
3844 bool
3845 exists_non_stop_target ()
3846 {
3847 if (target_is_non_stop_p ())
3848 return true;
3849
3850 scoped_restore_current_thread restore_thread;
3851
3852 for (inferior *inf : all_inferiors ())
3853 {
3854 switch_to_inferior_no_thread (inf);
3855 if (target_is_non_stop_p ())
3856 return true;
3857 }
3858
3859 return false;
3860 }
3861
3862 /* Controls if targets can report that they always run in non-stop
3863 mode. This is just for maintainers to use when debugging gdb. */
3864 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3865
3866 /* The set command writes to this variable. If the inferior is
3867 executing, target_non_stop_enabled is *not* updated. */
3868 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3869
3870 /* Implementation of "maint set target-non-stop". */
3871
3872 static void
3873 maint_set_target_non_stop_command (const char *args, int from_tty,
3874 struct cmd_list_element *c)
3875 {
3876 if (have_live_inferiors ())
3877 {
3878 target_non_stop_enabled_1 = target_non_stop_enabled;
3879 error (_("Cannot change this setting while the inferior is running."));
3880 }
3881
3882 target_non_stop_enabled = target_non_stop_enabled_1;
3883 }
3884
3885 /* Implementation of "maint show target-non-stop". */
3886
3887 static void
3888 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3889 struct cmd_list_element *c,
3890 const char *value)
3891 {
3892 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3893 fprintf_filtered (file,
3894 _("Whether the target is always in non-stop mode "
3895 "is %s (currently %s).\n"), value,
3896 target_always_non_stop_p () ? "on" : "off");
3897 else
3898 fprintf_filtered (file,
3899 _("Whether the target is always in non-stop mode "
3900 "is %s.\n"), value);
3901 }
3902
3903 /* Temporary copies of permission settings. */
3904
3905 static bool may_write_registers_1 = true;
3906 static bool may_write_memory_1 = true;
3907 static bool may_insert_breakpoints_1 = true;
3908 static bool may_insert_tracepoints_1 = true;
3909 static bool may_insert_fast_tracepoints_1 = true;
3910 static bool may_stop_1 = true;
3911
3912 /* Make the user-set values match the real values again. */
3913
3914 void
3915 update_target_permissions (void)
3916 {
3917 may_write_registers_1 = may_write_registers;
3918 may_write_memory_1 = may_write_memory;
3919 may_insert_breakpoints_1 = may_insert_breakpoints;
3920 may_insert_tracepoints_1 = may_insert_tracepoints;
3921 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3922 may_stop_1 = may_stop;
3923 }
3924
3925 /* The one function handles (most of) the permission flags in the same
3926 way. */
3927
3928 static void
3929 set_target_permissions (const char *args, int from_tty,
3930 struct cmd_list_element *c)
3931 {
3932 if (target_has_execution ())
3933 {
3934 update_target_permissions ();
3935 error (_("Cannot change this setting while the inferior is running."));
3936 }
3937
3938 /* Make the real values match the user-changed values. */
3939 may_write_registers = may_write_registers_1;
3940 may_insert_breakpoints = may_insert_breakpoints_1;
3941 may_insert_tracepoints = may_insert_tracepoints_1;
3942 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3943 may_stop = may_stop_1;
3944 update_observer_mode ();
3945 }
3946
3947 /* Set memory write permission independently of observer mode. */
3948
3949 static void
3950 set_write_memory_permission (const char *args, int from_tty,
3951 struct cmd_list_element *c)
3952 {
3953 /* Make the real values match the user-changed values. */
3954 may_write_memory = may_write_memory_1;
3955 update_observer_mode ();
3956 }
3957
3958 void _initialize_target ();
3959
3960 void
3961 _initialize_target ()
3962 {
3963 the_debug_target = new debug_target ();
3964
3965 add_info ("target", info_target_command, targ_desc);
3966 add_info ("files", info_target_command, targ_desc);
3967
3968 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3969 Set target debugging."), _("\
3970 Show target debugging."), _("\
3971 When non-zero, target debugging is enabled. Higher numbers are more\n\
3972 verbose."),
3973 set_targetdebug,
3974 show_targetdebug,
3975 &setdebuglist, &showdebuglist);
3976
3977 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3978 &trust_readonly, _("\
3979 Set mode for reading from readonly sections."), _("\
3980 Show mode for reading from readonly sections."), _("\
3981 When this mode is on, memory reads from readonly sections (such as .text)\n\
3982 will be read from the object file instead of from the target. This will\n\
3983 result in significant performance improvement for remote targets."),
3984 NULL,
3985 show_trust_readonly,
3986 &setlist, &showlist);
3987
3988 add_com ("monitor", class_obscure, do_monitor_command,
3989 _("Send a command to the remote monitor (remote targets only)."));
3990
3991 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3992 _("Print the name of each layer of the internal target stack."),
3993 &maintenanceprintlist);
3994
3995 add_setshow_boolean_cmd ("target-async", no_class,
3996 &target_async_permitted_1, _("\
3997 Set whether gdb controls the inferior in asynchronous mode."), _("\
3998 Show whether gdb controls the inferior in asynchronous mode."), _("\
3999 Tells gdb whether to control the inferior in asynchronous mode."),
4000 maint_set_target_async_command,
4001 maint_show_target_async_command,
4002 &maintenance_set_cmdlist,
4003 &maintenance_show_cmdlist);
4004
4005 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4006 &target_non_stop_enabled_1, _("\
4007 Set whether gdb always controls the inferior in non-stop mode."), _("\
4008 Show whether gdb always controls the inferior in non-stop mode."), _("\
4009 Tells gdb whether to control the inferior in non-stop mode."),
4010 maint_set_target_non_stop_command,
4011 maint_show_target_non_stop_command,
4012 &maintenance_set_cmdlist,
4013 &maintenance_show_cmdlist);
4014
4015 add_setshow_boolean_cmd ("may-write-registers", class_support,
4016 &may_write_registers_1, _("\
4017 Set permission to write into registers."), _("\
4018 Show permission to write into registers."), _("\
4019 When this permission is on, GDB may write into the target's registers.\n\
4020 Otherwise, any sort of write attempt will result in an error."),
4021 set_target_permissions, NULL,
4022 &setlist, &showlist);
4023
4024 add_setshow_boolean_cmd ("may-write-memory", class_support,
4025 &may_write_memory_1, _("\
4026 Set permission to write into target memory."), _("\
4027 Show permission to write into target memory."), _("\
4028 When this permission is on, GDB may write into the target's memory.\n\
4029 Otherwise, any sort of write attempt will result in an error."),
4030 set_write_memory_permission, NULL,
4031 &setlist, &showlist);
4032
4033 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4034 &may_insert_breakpoints_1, _("\
4035 Set permission to insert breakpoints in the target."), _("\
4036 Show permission to insert breakpoints in the target."), _("\
4037 When this permission is on, GDB may insert breakpoints in the program.\n\
4038 Otherwise, any sort of insertion attempt will result in an error."),
4039 set_target_permissions, NULL,
4040 &setlist, &showlist);
4041
4042 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4043 &may_insert_tracepoints_1, _("\
4044 Set permission to insert tracepoints in the target."), _("\
4045 Show permission to insert tracepoints in the target."), _("\
4046 When this permission is on, GDB may insert tracepoints in the program.\n\
4047 Otherwise, any sort of insertion attempt will result in an error."),
4048 set_target_permissions, NULL,
4049 &setlist, &showlist);
4050
4051 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4052 &may_insert_fast_tracepoints_1, _("\
4053 Set permission to insert fast tracepoints in the target."), _("\
4054 Show permission to insert fast tracepoints in the target."), _("\
4055 When this permission is on, GDB may insert fast tracepoints.\n\
4056 Otherwise, any sort of insertion attempt will result in an error."),
4057 set_target_permissions, NULL,
4058 &setlist, &showlist);
4059
4060 add_setshow_boolean_cmd ("may-interrupt", class_support,
4061 &may_stop_1, _("\
4062 Set permission to interrupt or signal the target."), _("\
4063 Show permission to interrupt or signal the target."), _("\
4064 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4065 Otherwise, any attempt to interrupt or stop will be ignored."),
4066 set_target_permissions, NULL,
4067 &setlist, &showlist);
4068
4069 add_com ("flash-erase", no_class, flash_erase_command,
4070 _("Erase all flash memory regions."));
4071
4072 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4073 &auto_connect_native_target, _("\
4074 Set whether GDB may automatically connect to the native target."), _("\
4075 Show whether GDB may automatically connect to the native target."), _("\
4076 When on, and GDB is not connected to a target yet, GDB\n\
4077 attempts \"run\" and other commands with the native target."),
4078 NULL, show_auto_connect_native_target,
4079 &setlist, &showlist);
4080 }
This page took 0.118084 seconds and 4 git commands to generate.