Add target_ops argument to to_remove_vfork_catchpoint
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void tcomplain (void) ATTRIBUTE_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 static void *return_null (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static target_xfer_partial_ftype default_xfer_partial;
77
78 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
79 ptid_t ptid);
80
81 static int find_default_can_async_p (struct target_ops *ignore);
82
83 static int find_default_is_async_p (struct target_ops *ignore);
84
85 #include "target-delegates.c"
86
87 static void init_dummy_target (void);
88
89 static struct target_ops debug_target;
90
91 static void debug_to_open (char *, int);
92
93 static void debug_to_prepare_to_store (struct target_ops *self,
94 struct regcache *);
95
96 static void debug_to_files_info (struct target_ops *);
97
98 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
99 struct bp_target_info *);
100
101 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
102 struct bp_target_info *);
103
104 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
105 int, int, int);
106
107 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
108 struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
112 struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_insert_watchpoint (struct target_ops *self,
116 CORE_ADDR, int, int,
117 struct expression *);
118
119 static int debug_to_remove_watchpoint (struct target_ops *self,
120 CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
124
125 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
126 CORE_ADDR, CORE_ADDR, int);
127
128 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
129 CORE_ADDR, int);
130
131 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
132 CORE_ADDR, int, int,
133 struct expression *);
134
135 static void debug_to_terminal_init (struct target_ops *self);
136
137 static void debug_to_terminal_inferior (struct target_ops *self);
138
139 static void debug_to_terminal_ours_for_output (struct target_ops *self);
140
141 static void debug_to_terminal_save_ours (struct target_ops *self);
142
143 static void debug_to_terminal_ours (struct target_ops *self);
144
145 static void debug_to_load (struct target_ops *self, char *, int);
146
147 static int debug_to_can_run (void);
148
149 static void debug_to_stop (ptid_t);
150
151 /* Pointer to array of target architecture structures; the size of the
152 array; the current index into the array; the allocated size of the
153 array. */
154 struct target_ops **target_structs;
155 unsigned target_struct_size;
156 unsigned target_struct_allocsize;
157 #define DEFAULT_ALLOCSIZE 10
158
159 /* The initial current target, so that there is always a semi-valid
160 current target. */
161
162 static struct target_ops dummy_target;
163
164 /* Top of target stack. */
165
166 static struct target_ops *target_stack;
167
168 /* The target structure we are currently using to talk to a process
169 or file or whatever "inferior" we have. */
170
171 struct target_ops current_target;
172
173 /* Command list for target. */
174
175 static struct cmd_list_element *targetlist = NULL;
176
177 /* Nonzero if we should trust readonly sections from the
178 executable when reading memory. */
179
180 static int trust_readonly = 0;
181
182 /* Nonzero if we should show true memory content including
183 memory breakpoint inserted by gdb. */
184
185 static int show_memory_breakpoints = 0;
186
187 /* These globals control whether GDB attempts to perform these
188 operations; they are useful for targets that need to prevent
189 inadvertant disruption, such as in non-stop mode. */
190
191 int may_write_registers = 1;
192
193 int may_write_memory = 1;
194
195 int may_insert_breakpoints = 1;
196
197 int may_insert_tracepoints = 1;
198
199 int may_insert_fast_tracepoints = 1;
200
201 int may_stop = 1;
202
203 /* Non-zero if we want to see trace of target level stuff. */
204
205 static unsigned int targetdebug = 0;
206 static void
207 show_targetdebug (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
211 }
212
213 static void setup_target_debug (void);
214
215 /* The user just typed 'target' without the name of a target. */
216
217 static void
218 target_command (char *arg, int from_tty)
219 {
220 fputs_filtered ("Argument required (target name). Try `help target'\n",
221 gdb_stdout);
222 }
223
224 /* Default target_has_* methods for process_stratum targets. */
225
226 int
227 default_child_has_all_memory (struct target_ops *ops)
228 {
229 /* If no inferior selected, then we can't read memory here. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_memory (struct target_ops *ops)
238 {
239 /* If no inferior selected, then we can't read memory here. */
240 if (ptid_equal (inferior_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246 int
247 default_child_has_stack (struct target_ops *ops)
248 {
249 /* If no inferior selected, there's no stack. */
250 if (ptid_equal (inferior_ptid, null_ptid))
251 return 0;
252
253 return 1;
254 }
255
256 int
257 default_child_has_registers (struct target_ops *ops)
258 {
259 /* Can't read registers from no inferior. */
260 if (ptid_equal (inferior_ptid, null_ptid))
261 return 0;
262
263 return 1;
264 }
265
266 int
267 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
268 {
269 /* If there's no thread selected, then we can't make it run through
270 hoops. */
271 if (ptid_equal (the_ptid, null_ptid))
272 return 0;
273
274 return 1;
275 }
276
277
278 int
279 target_has_all_memory_1 (void)
280 {
281 struct target_ops *t;
282
283 for (t = current_target.beneath; t != NULL; t = t->beneath)
284 if (t->to_has_all_memory (t))
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_memory_1 (void)
292 {
293 struct target_ops *t;
294
295 for (t = current_target.beneath; t != NULL; t = t->beneath)
296 if (t->to_has_memory (t))
297 return 1;
298
299 return 0;
300 }
301
302 int
303 target_has_stack_1 (void)
304 {
305 struct target_ops *t;
306
307 for (t = current_target.beneath; t != NULL; t = t->beneath)
308 if (t->to_has_stack (t))
309 return 1;
310
311 return 0;
312 }
313
314 int
315 target_has_registers_1 (void)
316 {
317 struct target_ops *t;
318
319 for (t = current_target.beneath; t != NULL; t = t->beneath)
320 if (t->to_has_registers (t))
321 return 1;
322
323 return 0;
324 }
325
326 int
327 target_has_execution_1 (ptid_t the_ptid)
328 {
329 struct target_ops *t;
330
331 for (t = current_target.beneath; t != NULL; t = t->beneath)
332 if (t->to_has_execution (t, the_ptid))
333 return 1;
334
335 return 0;
336 }
337
338 int
339 target_has_execution_current (void)
340 {
341 return target_has_execution_1 (inferior_ptid);
342 }
343
344 /* Complete initialization of T. This ensures that various fields in
345 T are set, if needed by the target implementation. */
346
347 void
348 complete_target_initialization (struct target_ops *t)
349 {
350 /* Provide default values for all "must have" methods. */
351 if (t->to_xfer_partial == NULL)
352 t->to_xfer_partial = default_xfer_partial;
353
354 if (t->to_has_all_memory == NULL)
355 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
356
357 if (t->to_has_memory == NULL)
358 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
359
360 if (t->to_has_stack == NULL)
361 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
362
363 if (t->to_has_registers == NULL)
364 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
365
366 if (t->to_has_execution == NULL)
367 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
368
369 install_delegators (t);
370 }
371
372 /* Add possible target architecture T to the list and add a new
373 command 'target T->to_shortname'. Set COMPLETER as the command's
374 completer if not NULL. */
375
376 void
377 add_target_with_completer (struct target_ops *t,
378 completer_ftype *completer)
379 {
380 struct cmd_list_element *c;
381
382 complete_target_initialization (t);
383
384 if (!target_structs)
385 {
386 target_struct_allocsize = DEFAULT_ALLOCSIZE;
387 target_structs = (struct target_ops **) xmalloc
388 (target_struct_allocsize * sizeof (*target_structs));
389 }
390 if (target_struct_size >= target_struct_allocsize)
391 {
392 target_struct_allocsize *= 2;
393 target_structs = (struct target_ops **)
394 xrealloc ((char *) target_structs,
395 target_struct_allocsize * sizeof (*target_structs));
396 }
397 target_structs[target_struct_size++] = t;
398
399 if (targetlist == NULL)
400 add_prefix_cmd ("target", class_run, target_command, _("\
401 Connect to a target machine or process.\n\
402 The first argument is the type or protocol of the target machine.\n\
403 Remaining arguments are interpreted by the target protocol. For more\n\
404 information on the arguments for a particular protocol, type\n\
405 `help target ' followed by the protocol name."),
406 &targetlist, "target ", 0, &cmdlist);
407 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
408 &targetlist);
409 if (completer != NULL)
410 set_cmd_completer (c, completer);
411 }
412
413 /* Add a possible target architecture to the list. */
414
415 void
416 add_target (struct target_ops *t)
417 {
418 add_target_with_completer (t, NULL);
419 }
420
421 /* See target.h. */
422
423 void
424 add_deprecated_target_alias (struct target_ops *t, char *alias)
425 {
426 struct cmd_list_element *c;
427 char *alt;
428
429 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
430 see PR cli/15104. */
431 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
432 alt = xstrprintf ("target %s", t->to_shortname);
433 deprecate_cmd (c, alt);
434 }
435
436 /* Stub functions */
437
438 void
439 target_ignore (void)
440 {
441 }
442
443 void
444 target_kill (void)
445 {
446 struct target_ops *t;
447
448 for (t = current_target.beneath; t != NULL; t = t->beneath)
449 if (t->to_kill != NULL)
450 {
451 if (targetdebug)
452 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
453
454 t->to_kill (t);
455 return;
456 }
457
458 noprocess ();
459 }
460
461 void
462 target_load (char *arg, int from_tty)
463 {
464 target_dcache_invalidate ();
465 (*current_target.to_load) (&current_target, arg, from_tty);
466 }
467
468 void
469 target_create_inferior (char *exec_file, char *args,
470 char **env, int from_tty)
471 {
472 struct target_ops *t;
473
474 for (t = current_target.beneath; t != NULL; t = t->beneath)
475 {
476 if (t->to_create_inferior != NULL)
477 {
478 t->to_create_inferior (t, exec_file, args, env, from_tty);
479 if (targetdebug)
480 fprintf_unfiltered (gdb_stdlog,
481 "target_create_inferior (%s, %s, xxx, %d)\n",
482 exec_file, args, from_tty);
483 return;
484 }
485 }
486
487 internal_error (__FILE__, __LINE__,
488 _("could not find a target to create inferior"));
489 }
490
491 void
492 target_terminal_inferior (void)
493 {
494 /* A background resume (``run&'') should leave GDB in control of the
495 terminal. Use target_can_async_p, not target_is_async_p, since at
496 this point the target is not async yet. However, if sync_execution
497 is not set, we know it will become async prior to resume. */
498 if (target_can_async_p () && !sync_execution)
499 return;
500
501 /* If GDB is resuming the inferior in the foreground, install
502 inferior's terminal modes. */
503 (*current_target.to_terminal_inferior) (&current_target);
504 }
505
506 static int
507 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
508 struct target_ops *t)
509 {
510 errno = EIO; /* Can't read/write this location. */
511 return 0; /* No bytes handled. */
512 }
513
514 static void
515 tcomplain (void)
516 {
517 error (_("You can't do that when your target is `%s'"),
518 current_target.to_shortname);
519 }
520
521 void
522 noprocess (void)
523 {
524 error (_("You can't do that without a process to debug."));
525 }
526
527 static void
528 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
529 {
530 printf_unfiltered (_("No saved terminal information.\n"));
531 }
532
533 /* A default implementation for the to_get_ada_task_ptid target method.
534
535 This function builds the PTID by using both LWP and TID as part of
536 the PTID lwp and tid elements. The pid used is the pid of the
537 inferior_ptid. */
538
539 static ptid_t
540 default_get_ada_task_ptid (long lwp, long tid)
541 {
542 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
543 }
544
545 static enum exec_direction_kind
546 default_execution_direction (void)
547 {
548 if (!target_can_execute_reverse)
549 return EXEC_FORWARD;
550 else if (!target_can_async_p ())
551 return EXEC_FORWARD;
552 else
553 gdb_assert_not_reached ("\
554 to_execution_direction must be implemented for reverse async");
555 }
556
557 /* Go through the target stack from top to bottom, copying over zero
558 entries in current_target, then filling in still empty entries. In
559 effect, we are doing class inheritance through the pushed target
560 vectors.
561
562 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
563 is currently implemented, is that it discards any knowledge of
564 which target an inherited method originally belonged to.
565 Consequently, new new target methods should instead explicitly and
566 locally search the target stack for the target that can handle the
567 request. */
568
569 static void
570 update_current_target (void)
571 {
572 struct target_ops *t;
573
574 /* First, reset current's contents. */
575 memset (&current_target, 0, sizeof (current_target));
576
577 /* Install the delegators. */
578 install_delegators (&current_target);
579
580 #define INHERIT(FIELD, TARGET) \
581 if (!current_target.FIELD) \
582 current_target.FIELD = (TARGET)->FIELD
583
584 for (t = target_stack; t; t = t->beneath)
585 {
586 INHERIT (to_shortname, t);
587 INHERIT (to_longname, t);
588 INHERIT (to_doc, t);
589 /* Do not inherit to_open. */
590 /* Do not inherit to_close. */
591 /* Do not inherit to_attach. */
592 INHERIT (to_post_attach, t);
593 INHERIT (to_attach_no_wait, t);
594 /* Do not inherit to_detach. */
595 /* Do not inherit to_disconnect. */
596 /* Do not inherit to_resume. */
597 /* Do not inherit to_wait. */
598 /* Do not inherit to_fetch_registers. */
599 /* Do not inherit to_store_registers. */
600 INHERIT (to_prepare_to_store, t);
601 INHERIT (deprecated_xfer_memory, t);
602 INHERIT (to_files_info, t);
603 /* Do not inherit to_insert_breakpoint. */
604 /* Do not inherit to_remove_breakpoint. */
605 INHERIT (to_can_use_hw_breakpoint, t);
606 INHERIT (to_insert_hw_breakpoint, t);
607 INHERIT (to_remove_hw_breakpoint, t);
608 /* Do not inherit to_ranged_break_num_registers. */
609 INHERIT (to_insert_watchpoint, t);
610 INHERIT (to_remove_watchpoint, t);
611 /* Do not inherit to_insert_mask_watchpoint. */
612 /* Do not inherit to_remove_mask_watchpoint. */
613 /* Do not inherit to_stopped_data_address. */
614 INHERIT (to_have_steppable_watchpoint, t);
615 INHERIT (to_have_continuable_watchpoint, t);
616 /* Do not inherit to_stopped_by_watchpoint. */
617 INHERIT (to_watchpoint_addr_within_range, t);
618 INHERIT (to_region_ok_for_hw_watchpoint, t);
619 INHERIT (to_can_accel_watchpoint_condition, t);
620 /* Do not inherit to_masked_watch_num_registers. */
621 INHERIT (to_terminal_init, t);
622 INHERIT (to_terminal_inferior, t);
623 INHERIT (to_terminal_ours_for_output, t);
624 INHERIT (to_terminal_ours, t);
625 INHERIT (to_terminal_save_ours, t);
626 INHERIT (to_terminal_info, t);
627 /* Do not inherit to_kill. */
628 INHERIT (to_load, t);
629 /* Do no inherit to_create_inferior. */
630 INHERIT (to_post_startup_inferior, t);
631 INHERIT (to_insert_fork_catchpoint, t);
632 INHERIT (to_remove_fork_catchpoint, t);
633 INHERIT (to_insert_vfork_catchpoint, t);
634 INHERIT (to_remove_vfork_catchpoint, t);
635 /* Do not inherit to_follow_fork. */
636 INHERIT (to_insert_exec_catchpoint, t);
637 INHERIT (to_remove_exec_catchpoint, t);
638 INHERIT (to_set_syscall_catchpoint, t);
639 INHERIT (to_has_exited, t);
640 /* Do not inherit to_mourn_inferior. */
641 INHERIT (to_can_run, t);
642 /* Do not inherit to_pass_signals. */
643 /* Do not inherit to_program_signals. */
644 /* Do not inherit to_thread_alive. */
645 /* Do not inherit to_find_new_threads. */
646 /* Do not inherit to_pid_to_str. */
647 INHERIT (to_extra_thread_info, t);
648 INHERIT (to_thread_name, t);
649 INHERIT (to_stop, t);
650 /* Do not inherit to_xfer_partial. */
651 INHERIT (to_rcmd, t);
652 INHERIT (to_pid_to_exec_file, t);
653 INHERIT (to_log_command, t);
654 INHERIT (to_stratum, t);
655 /* Do not inherit to_has_all_memory. */
656 /* Do not inherit to_has_memory. */
657 /* Do not inherit to_has_stack. */
658 /* Do not inherit to_has_registers. */
659 /* Do not inherit to_has_execution. */
660 INHERIT (to_has_thread_control, t);
661 /* Do not inherit to_can_async_p. */
662 /* Do not inherit to_is_async_p. */
663 /* Do not inherit to_async. */
664 INHERIT (to_find_memory_regions, t);
665 INHERIT (to_make_corefile_notes, t);
666 INHERIT (to_get_bookmark, t);
667 INHERIT (to_goto_bookmark, t);
668 /* Do not inherit to_get_thread_local_address. */
669 INHERIT (to_can_execute_reverse, t);
670 INHERIT (to_execution_direction, t);
671 INHERIT (to_thread_architecture, t);
672 /* Do not inherit to_read_description. */
673 INHERIT (to_get_ada_task_ptid, t);
674 /* Do not inherit to_search_memory. */
675 INHERIT (to_supports_multi_process, t);
676 INHERIT (to_supports_enable_disable_tracepoint, t);
677 INHERIT (to_supports_string_tracing, t);
678 INHERIT (to_trace_init, t);
679 INHERIT (to_download_tracepoint, t);
680 INHERIT (to_can_download_tracepoint, t);
681 INHERIT (to_download_trace_state_variable, t);
682 INHERIT (to_enable_tracepoint, t);
683 INHERIT (to_disable_tracepoint, t);
684 INHERIT (to_trace_set_readonly_regions, t);
685 INHERIT (to_trace_start, t);
686 INHERIT (to_get_trace_status, t);
687 INHERIT (to_get_tracepoint_status, t);
688 INHERIT (to_trace_stop, t);
689 INHERIT (to_trace_find, t);
690 INHERIT (to_get_trace_state_variable_value, t);
691 INHERIT (to_save_trace_data, t);
692 INHERIT (to_upload_tracepoints, t);
693 INHERIT (to_upload_trace_state_variables, t);
694 INHERIT (to_get_raw_trace_data, t);
695 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
696 INHERIT (to_set_disconnected_tracing, t);
697 INHERIT (to_set_circular_trace_buffer, t);
698 INHERIT (to_set_trace_buffer_size, t);
699 INHERIT (to_set_trace_notes, t);
700 INHERIT (to_get_tib_address, t);
701 INHERIT (to_set_permissions, t);
702 INHERIT (to_static_tracepoint_marker_at, t);
703 INHERIT (to_static_tracepoint_markers_by_strid, t);
704 INHERIT (to_traceframe_info, t);
705 INHERIT (to_use_agent, t);
706 INHERIT (to_can_use_agent, t);
707 INHERIT (to_augmented_libraries_svr4_read, t);
708 INHERIT (to_magic, t);
709 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
710 INHERIT (to_can_run_breakpoint_commands, t);
711 /* Do not inherit to_memory_map. */
712 /* Do not inherit to_flash_erase. */
713 /* Do not inherit to_flash_done. */
714 }
715 #undef INHERIT
716
717 /* Clean up a target struct so it no longer has any zero pointers in
718 it. Some entries are defaulted to a method that print an error,
719 others are hard-wired to a standard recursive default. */
720
721 #define de_fault(field, value) \
722 if (!current_target.field) \
723 current_target.field = value
724
725 de_fault (to_open,
726 (void (*) (char *, int))
727 tcomplain);
728 de_fault (to_close,
729 (void (*) (struct target_ops *))
730 target_ignore);
731 de_fault (to_post_attach,
732 (void (*) (struct target_ops *, int))
733 target_ignore);
734 de_fault (to_prepare_to_store,
735 (void (*) (struct target_ops *, struct regcache *))
736 noprocess);
737 de_fault (deprecated_xfer_memory,
738 (int (*) (CORE_ADDR, gdb_byte *, int, int,
739 struct mem_attrib *, struct target_ops *))
740 nomemory);
741 de_fault (to_files_info,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (to_can_use_hw_breakpoint,
745 (int (*) (struct target_ops *, int, int, int))
746 return_zero);
747 de_fault (to_insert_hw_breakpoint,
748 (int (*) (struct target_ops *, struct gdbarch *,
749 struct bp_target_info *))
750 return_minus_one);
751 de_fault (to_remove_hw_breakpoint,
752 (int (*) (struct target_ops *, struct gdbarch *,
753 struct bp_target_info *))
754 return_minus_one);
755 de_fault (to_insert_watchpoint,
756 (int (*) (struct target_ops *, CORE_ADDR, int, int,
757 struct expression *))
758 return_minus_one);
759 de_fault (to_remove_watchpoint,
760 (int (*) (struct target_ops *, CORE_ADDR, int, int,
761 struct expression *))
762 return_minus_one);
763 de_fault (to_watchpoint_addr_within_range,
764 default_watchpoint_addr_within_range);
765 de_fault (to_region_ok_for_hw_watchpoint,
766 default_region_ok_for_hw_watchpoint);
767 de_fault (to_can_accel_watchpoint_condition,
768 (int (*) (struct target_ops *, CORE_ADDR, int, int,
769 struct expression *))
770 return_zero);
771 de_fault (to_terminal_init,
772 (void (*) (struct target_ops *))
773 target_ignore);
774 de_fault (to_terminal_inferior,
775 (void (*) (struct target_ops *))
776 target_ignore);
777 de_fault (to_terminal_ours_for_output,
778 (void (*) (struct target_ops *))
779 target_ignore);
780 de_fault (to_terminal_ours,
781 (void (*) (struct target_ops *))
782 target_ignore);
783 de_fault (to_terminal_save_ours,
784 (void (*) (struct target_ops *))
785 target_ignore);
786 de_fault (to_terminal_info,
787 default_terminal_info);
788 de_fault (to_load,
789 (void (*) (struct target_ops *, char *, int))
790 tcomplain);
791 de_fault (to_post_startup_inferior,
792 (void (*) (struct target_ops *, ptid_t))
793 target_ignore);
794 de_fault (to_insert_fork_catchpoint,
795 (int (*) (struct target_ops *, int))
796 return_one);
797 de_fault (to_remove_fork_catchpoint,
798 (int (*) (struct target_ops *, int))
799 return_one);
800 de_fault (to_insert_vfork_catchpoint,
801 (int (*) (struct target_ops *, int))
802 return_one);
803 de_fault (to_remove_vfork_catchpoint,
804 (int (*) (struct target_ops *, int))
805 return_one);
806 de_fault (to_insert_exec_catchpoint,
807 (int (*) (int))
808 return_one);
809 de_fault (to_remove_exec_catchpoint,
810 (int (*) (int))
811 return_one);
812 de_fault (to_set_syscall_catchpoint,
813 (int (*) (int, int, int, int, int *))
814 return_one);
815 de_fault (to_has_exited,
816 (int (*) (int, int, int *))
817 return_zero);
818 de_fault (to_can_run,
819 return_zero);
820 de_fault (to_extra_thread_info,
821 (char *(*) (struct thread_info *))
822 return_null);
823 de_fault (to_thread_name,
824 (char *(*) (struct thread_info *))
825 return_null);
826 de_fault (to_stop,
827 (void (*) (ptid_t))
828 target_ignore);
829 de_fault (to_rcmd,
830 (void (*) (char *, struct ui_file *))
831 tcomplain);
832 de_fault (to_pid_to_exec_file,
833 (char *(*) (int))
834 return_null);
835 de_fault (to_thread_architecture,
836 default_thread_architecture);
837 current_target.to_read_description = NULL;
838 de_fault (to_get_ada_task_ptid,
839 (ptid_t (*) (long, long))
840 default_get_ada_task_ptid);
841 de_fault (to_supports_multi_process,
842 (int (*) (void))
843 return_zero);
844 de_fault (to_supports_enable_disable_tracepoint,
845 (int (*) (void))
846 return_zero);
847 de_fault (to_supports_string_tracing,
848 (int (*) (void))
849 return_zero);
850 de_fault (to_trace_init,
851 (void (*) (void))
852 tcomplain);
853 de_fault (to_download_tracepoint,
854 (void (*) (struct bp_location *))
855 tcomplain);
856 de_fault (to_can_download_tracepoint,
857 (int (*) (void))
858 return_zero);
859 de_fault (to_download_trace_state_variable,
860 (void (*) (struct trace_state_variable *))
861 tcomplain);
862 de_fault (to_enable_tracepoint,
863 (void (*) (struct bp_location *))
864 tcomplain);
865 de_fault (to_disable_tracepoint,
866 (void (*) (struct bp_location *))
867 tcomplain);
868 de_fault (to_trace_set_readonly_regions,
869 (void (*) (void))
870 tcomplain);
871 de_fault (to_trace_start,
872 (void (*) (void))
873 tcomplain);
874 de_fault (to_get_trace_status,
875 (int (*) (struct trace_status *))
876 return_minus_one);
877 de_fault (to_get_tracepoint_status,
878 (void (*) (struct breakpoint *, struct uploaded_tp *))
879 tcomplain);
880 de_fault (to_trace_stop,
881 (void (*) (void))
882 tcomplain);
883 de_fault (to_trace_find,
884 (int (*) (enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
885 return_minus_one);
886 de_fault (to_get_trace_state_variable_value,
887 (int (*) (int, LONGEST *))
888 return_zero);
889 de_fault (to_save_trace_data,
890 (int (*) (const char *))
891 tcomplain);
892 de_fault (to_upload_tracepoints,
893 (int (*) (struct uploaded_tp **))
894 return_zero);
895 de_fault (to_upload_trace_state_variables,
896 (int (*) (struct uploaded_tsv **))
897 return_zero);
898 de_fault (to_get_raw_trace_data,
899 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
900 tcomplain);
901 de_fault (to_get_min_fast_tracepoint_insn_len,
902 (int (*) (void))
903 return_minus_one);
904 de_fault (to_set_disconnected_tracing,
905 (void (*) (int))
906 target_ignore);
907 de_fault (to_set_circular_trace_buffer,
908 (void (*) (int))
909 target_ignore);
910 de_fault (to_set_trace_buffer_size,
911 (void (*) (LONGEST))
912 target_ignore);
913 de_fault (to_set_trace_notes,
914 (int (*) (const char *, const char *, const char *))
915 return_zero);
916 de_fault (to_get_tib_address,
917 (int (*) (ptid_t, CORE_ADDR *))
918 tcomplain);
919 de_fault (to_set_permissions,
920 (void (*) (void))
921 target_ignore);
922 de_fault (to_static_tracepoint_marker_at,
923 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
924 return_zero);
925 de_fault (to_static_tracepoint_markers_by_strid,
926 (VEC(static_tracepoint_marker_p) * (*) (const char *))
927 tcomplain);
928 de_fault (to_traceframe_info,
929 (struct traceframe_info * (*) (void))
930 return_null);
931 de_fault (to_supports_evaluation_of_breakpoint_conditions,
932 (int (*) (void))
933 return_zero);
934 de_fault (to_can_run_breakpoint_commands,
935 (int (*) (void))
936 return_zero);
937 de_fault (to_use_agent,
938 (int (*) (int))
939 tcomplain);
940 de_fault (to_can_use_agent,
941 (int (*) (void))
942 return_zero);
943 de_fault (to_augmented_libraries_svr4_read,
944 (int (*) (void))
945 return_zero);
946 de_fault (to_execution_direction, default_execution_direction);
947
948 #undef de_fault
949
950 /* Finally, position the target-stack beneath the squashed
951 "current_target". That way code looking for a non-inherited
952 target method can quickly and simply find it. */
953 current_target.beneath = target_stack;
954
955 if (targetdebug)
956 setup_target_debug ();
957 }
958
959 /* Push a new target type into the stack of the existing target accessors,
960 possibly superseding some of the existing accessors.
961
962 Rather than allow an empty stack, we always have the dummy target at
963 the bottom stratum, so we can call the function vectors without
964 checking them. */
965
966 void
967 push_target (struct target_ops *t)
968 {
969 struct target_ops **cur;
970
971 /* Check magic number. If wrong, it probably means someone changed
972 the struct definition, but not all the places that initialize one. */
973 if (t->to_magic != OPS_MAGIC)
974 {
975 fprintf_unfiltered (gdb_stderr,
976 "Magic number of %s target struct wrong\n",
977 t->to_shortname);
978 internal_error (__FILE__, __LINE__,
979 _("failed internal consistency check"));
980 }
981
982 /* Find the proper stratum to install this target in. */
983 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
984 {
985 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
986 break;
987 }
988
989 /* If there's already targets at this stratum, remove them. */
990 /* FIXME: cagney/2003-10-15: I think this should be popping all
991 targets to CUR, and not just those at this stratum level. */
992 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
993 {
994 /* There's already something at this stratum level. Close it,
995 and un-hook it from the stack. */
996 struct target_ops *tmp = (*cur);
997
998 (*cur) = (*cur)->beneath;
999 tmp->beneath = NULL;
1000 target_close (tmp);
1001 }
1002
1003 /* We have removed all targets in our stratum, now add the new one. */
1004 t->beneath = (*cur);
1005 (*cur) = t;
1006
1007 update_current_target ();
1008 }
1009
1010 /* Remove a target_ops vector from the stack, wherever it may be.
1011 Return how many times it was removed (0 or 1). */
1012
1013 int
1014 unpush_target (struct target_ops *t)
1015 {
1016 struct target_ops **cur;
1017 struct target_ops *tmp;
1018
1019 if (t->to_stratum == dummy_stratum)
1020 internal_error (__FILE__, __LINE__,
1021 _("Attempt to unpush the dummy target"));
1022
1023 /* Look for the specified target. Note that we assume that a target
1024 can only occur once in the target stack. */
1025
1026 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1027 {
1028 if ((*cur) == t)
1029 break;
1030 }
1031
1032 /* If we don't find target_ops, quit. Only open targets should be
1033 closed. */
1034 if ((*cur) == NULL)
1035 return 0;
1036
1037 /* Unchain the target. */
1038 tmp = (*cur);
1039 (*cur) = (*cur)->beneath;
1040 tmp->beneath = NULL;
1041
1042 update_current_target ();
1043
1044 /* Finally close the target. Note we do this after unchaining, so
1045 any target method calls from within the target_close
1046 implementation don't end up in T anymore. */
1047 target_close (t);
1048
1049 return 1;
1050 }
1051
1052 void
1053 pop_all_targets_above (enum strata above_stratum)
1054 {
1055 while ((int) (current_target.to_stratum) > (int) above_stratum)
1056 {
1057 if (!unpush_target (target_stack))
1058 {
1059 fprintf_unfiltered (gdb_stderr,
1060 "pop_all_targets couldn't find target %s\n",
1061 target_stack->to_shortname);
1062 internal_error (__FILE__, __LINE__,
1063 _("failed internal consistency check"));
1064 break;
1065 }
1066 }
1067 }
1068
1069 void
1070 pop_all_targets (void)
1071 {
1072 pop_all_targets_above (dummy_stratum);
1073 }
1074
1075 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1076
1077 int
1078 target_is_pushed (struct target_ops *t)
1079 {
1080 struct target_ops **cur;
1081
1082 /* Check magic number. If wrong, it probably means someone changed
1083 the struct definition, but not all the places that initialize one. */
1084 if (t->to_magic != OPS_MAGIC)
1085 {
1086 fprintf_unfiltered (gdb_stderr,
1087 "Magic number of %s target struct wrong\n",
1088 t->to_shortname);
1089 internal_error (__FILE__, __LINE__,
1090 _("failed internal consistency check"));
1091 }
1092
1093 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1094 if (*cur == t)
1095 return 1;
1096
1097 return 0;
1098 }
1099
1100 /* Using the objfile specified in OBJFILE, find the address for the
1101 current thread's thread-local storage with offset OFFSET. */
1102 CORE_ADDR
1103 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1104 {
1105 volatile CORE_ADDR addr = 0;
1106 struct target_ops *target;
1107
1108 for (target = current_target.beneath;
1109 target != NULL;
1110 target = target->beneath)
1111 {
1112 if (target->to_get_thread_local_address != NULL)
1113 break;
1114 }
1115
1116 if (target != NULL
1117 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1118 {
1119 ptid_t ptid = inferior_ptid;
1120 volatile struct gdb_exception ex;
1121
1122 TRY_CATCH (ex, RETURN_MASK_ALL)
1123 {
1124 CORE_ADDR lm_addr;
1125
1126 /* Fetch the load module address for this objfile. */
1127 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1128 objfile);
1129 /* If it's 0, throw the appropriate exception. */
1130 if (lm_addr == 0)
1131 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1132 _("TLS load module not found"));
1133
1134 addr = target->to_get_thread_local_address (target, ptid,
1135 lm_addr, offset);
1136 }
1137 /* If an error occurred, print TLS related messages here. Otherwise,
1138 throw the error to some higher catcher. */
1139 if (ex.reason < 0)
1140 {
1141 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1142
1143 switch (ex.error)
1144 {
1145 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1146 error (_("Cannot find thread-local variables "
1147 "in this thread library."));
1148 break;
1149 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1150 if (objfile_is_library)
1151 error (_("Cannot find shared library `%s' in dynamic"
1152 " linker's load module list"), objfile_name (objfile));
1153 else
1154 error (_("Cannot find executable file `%s' in dynamic"
1155 " linker's load module list"), objfile_name (objfile));
1156 break;
1157 case TLS_NOT_ALLOCATED_YET_ERROR:
1158 if (objfile_is_library)
1159 error (_("The inferior has not yet allocated storage for"
1160 " thread-local variables in\n"
1161 "the shared library `%s'\n"
1162 "for %s"),
1163 objfile_name (objfile), target_pid_to_str (ptid));
1164 else
1165 error (_("The inferior has not yet allocated storage for"
1166 " thread-local variables in\n"
1167 "the executable `%s'\n"
1168 "for %s"),
1169 objfile_name (objfile), target_pid_to_str (ptid));
1170 break;
1171 case TLS_GENERIC_ERROR:
1172 if (objfile_is_library)
1173 error (_("Cannot find thread-local storage for %s, "
1174 "shared library %s:\n%s"),
1175 target_pid_to_str (ptid),
1176 objfile_name (objfile), ex.message);
1177 else
1178 error (_("Cannot find thread-local storage for %s, "
1179 "executable file %s:\n%s"),
1180 target_pid_to_str (ptid),
1181 objfile_name (objfile), ex.message);
1182 break;
1183 default:
1184 throw_exception (ex);
1185 break;
1186 }
1187 }
1188 }
1189 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1190 TLS is an ABI-specific thing. But we don't do that yet. */
1191 else
1192 error (_("Cannot find thread-local variables on this target"));
1193
1194 return addr;
1195 }
1196
1197 const char *
1198 target_xfer_status_to_string (enum target_xfer_status err)
1199 {
1200 #define CASE(X) case X: return #X
1201 switch (err)
1202 {
1203 CASE(TARGET_XFER_E_IO);
1204 CASE(TARGET_XFER_E_UNAVAILABLE);
1205 default:
1206 return "<unknown>";
1207 }
1208 #undef CASE
1209 };
1210
1211
1212 #undef MIN
1213 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1214
1215 /* target_read_string -- read a null terminated string, up to LEN bytes,
1216 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1217 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1218 is responsible for freeing it. Return the number of bytes successfully
1219 read. */
1220
1221 int
1222 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1223 {
1224 int tlen, offset, i;
1225 gdb_byte buf[4];
1226 int errcode = 0;
1227 char *buffer;
1228 int buffer_allocated;
1229 char *bufptr;
1230 unsigned int nbytes_read = 0;
1231
1232 gdb_assert (string);
1233
1234 /* Small for testing. */
1235 buffer_allocated = 4;
1236 buffer = xmalloc (buffer_allocated);
1237 bufptr = buffer;
1238
1239 while (len > 0)
1240 {
1241 tlen = MIN (len, 4 - (memaddr & 3));
1242 offset = memaddr & 3;
1243
1244 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1245 if (errcode != 0)
1246 {
1247 /* The transfer request might have crossed the boundary to an
1248 unallocated region of memory. Retry the transfer, requesting
1249 a single byte. */
1250 tlen = 1;
1251 offset = 0;
1252 errcode = target_read_memory (memaddr, buf, 1);
1253 if (errcode != 0)
1254 goto done;
1255 }
1256
1257 if (bufptr - buffer + tlen > buffer_allocated)
1258 {
1259 unsigned int bytes;
1260
1261 bytes = bufptr - buffer;
1262 buffer_allocated *= 2;
1263 buffer = xrealloc (buffer, buffer_allocated);
1264 bufptr = buffer + bytes;
1265 }
1266
1267 for (i = 0; i < tlen; i++)
1268 {
1269 *bufptr++ = buf[i + offset];
1270 if (buf[i + offset] == '\000')
1271 {
1272 nbytes_read += i + 1;
1273 goto done;
1274 }
1275 }
1276
1277 memaddr += tlen;
1278 len -= tlen;
1279 nbytes_read += tlen;
1280 }
1281 done:
1282 *string = buffer;
1283 if (errnop != NULL)
1284 *errnop = errcode;
1285 return nbytes_read;
1286 }
1287
1288 struct target_section_table *
1289 target_get_section_table (struct target_ops *target)
1290 {
1291 struct target_ops *t;
1292
1293 if (targetdebug)
1294 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1295
1296 for (t = target; t != NULL; t = t->beneath)
1297 if (t->to_get_section_table != NULL)
1298 return (*t->to_get_section_table) (t);
1299
1300 return NULL;
1301 }
1302
1303 /* Find a section containing ADDR. */
1304
1305 struct target_section *
1306 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1307 {
1308 struct target_section_table *table = target_get_section_table (target);
1309 struct target_section *secp;
1310
1311 if (table == NULL)
1312 return NULL;
1313
1314 for (secp = table->sections; secp < table->sections_end; secp++)
1315 {
1316 if (addr >= secp->addr && addr < secp->endaddr)
1317 return secp;
1318 }
1319 return NULL;
1320 }
1321
1322 /* Read memory from the live target, even if currently inspecting a
1323 traceframe. The return is the same as that of target_read. */
1324
1325 static enum target_xfer_status
1326 target_read_live_memory (enum target_object object,
1327 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1328 ULONGEST *xfered_len)
1329 {
1330 enum target_xfer_status ret;
1331 struct cleanup *cleanup;
1332
1333 /* Switch momentarily out of tfind mode so to access live memory.
1334 Note that this must not clear global state, such as the frame
1335 cache, which must still remain valid for the previous traceframe.
1336 We may be _building_ the frame cache at this point. */
1337 cleanup = make_cleanup_restore_traceframe_number ();
1338 set_traceframe_number (-1);
1339
1340 ret = target_xfer_partial (current_target.beneath, object, NULL,
1341 myaddr, NULL, memaddr, len, xfered_len);
1342
1343 do_cleanups (cleanup);
1344 return ret;
1345 }
1346
1347 /* Using the set of read-only target sections of OPS, read live
1348 read-only memory. Note that the actual reads start from the
1349 top-most target again.
1350
1351 For interface/parameters/return description see target.h,
1352 to_xfer_partial. */
1353
1354 static enum target_xfer_status
1355 memory_xfer_live_readonly_partial (struct target_ops *ops,
1356 enum target_object object,
1357 gdb_byte *readbuf, ULONGEST memaddr,
1358 ULONGEST len, ULONGEST *xfered_len)
1359 {
1360 struct target_section *secp;
1361 struct target_section_table *table;
1362
1363 secp = target_section_by_addr (ops, memaddr);
1364 if (secp != NULL
1365 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1366 secp->the_bfd_section)
1367 & SEC_READONLY))
1368 {
1369 struct target_section *p;
1370 ULONGEST memend = memaddr + len;
1371
1372 table = target_get_section_table (ops);
1373
1374 for (p = table->sections; p < table->sections_end; p++)
1375 {
1376 if (memaddr >= p->addr)
1377 {
1378 if (memend <= p->endaddr)
1379 {
1380 /* Entire transfer is within this section. */
1381 return target_read_live_memory (object, memaddr,
1382 readbuf, len, xfered_len);
1383 }
1384 else if (memaddr >= p->endaddr)
1385 {
1386 /* This section ends before the transfer starts. */
1387 continue;
1388 }
1389 else
1390 {
1391 /* This section overlaps the transfer. Just do half. */
1392 len = p->endaddr - memaddr;
1393 return target_read_live_memory (object, memaddr,
1394 readbuf, len, xfered_len);
1395 }
1396 }
1397 }
1398 }
1399
1400 return TARGET_XFER_EOF;
1401 }
1402
1403 /* Read memory from more than one valid target. A core file, for
1404 instance, could have some of memory but delegate other bits to
1405 the target below it. So, we must manually try all targets. */
1406
1407 static enum target_xfer_status
1408 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1409 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1410 ULONGEST *xfered_len)
1411 {
1412 enum target_xfer_status res;
1413
1414 do
1415 {
1416 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1417 readbuf, writebuf, memaddr, len,
1418 xfered_len);
1419 if (res == TARGET_XFER_OK)
1420 break;
1421
1422 /* Stop if the target reports that the memory is not available. */
1423 if (res == TARGET_XFER_E_UNAVAILABLE)
1424 break;
1425
1426 /* We want to continue past core files to executables, but not
1427 past a running target's memory. */
1428 if (ops->to_has_all_memory (ops))
1429 break;
1430
1431 ops = ops->beneath;
1432 }
1433 while (ops != NULL);
1434
1435 return res;
1436 }
1437
1438 /* Perform a partial memory transfer.
1439 For docs see target.h, to_xfer_partial. */
1440
1441 static enum target_xfer_status
1442 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1443 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1444 ULONGEST len, ULONGEST *xfered_len)
1445 {
1446 enum target_xfer_status res;
1447 int reg_len;
1448 struct mem_region *region;
1449 struct inferior *inf;
1450
1451 /* For accesses to unmapped overlay sections, read directly from
1452 files. Must do this first, as MEMADDR may need adjustment. */
1453 if (readbuf != NULL && overlay_debugging)
1454 {
1455 struct obj_section *section = find_pc_overlay (memaddr);
1456
1457 if (pc_in_unmapped_range (memaddr, section))
1458 {
1459 struct target_section_table *table
1460 = target_get_section_table (ops);
1461 const char *section_name = section->the_bfd_section->name;
1462
1463 memaddr = overlay_mapped_address (memaddr, section);
1464 return section_table_xfer_memory_partial (readbuf, writebuf,
1465 memaddr, len, xfered_len,
1466 table->sections,
1467 table->sections_end,
1468 section_name);
1469 }
1470 }
1471
1472 /* Try the executable files, if "trust-readonly-sections" is set. */
1473 if (readbuf != NULL && trust_readonly)
1474 {
1475 struct target_section *secp;
1476 struct target_section_table *table;
1477
1478 secp = target_section_by_addr (ops, memaddr);
1479 if (secp != NULL
1480 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1481 secp->the_bfd_section)
1482 & SEC_READONLY))
1483 {
1484 table = target_get_section_table (ops);
1485 return section_table_xfer_memory_partial (readbuf, writebuf,
1486 memaddr, len, xfered_len,
1487 table->sections,
1488 table->sections_end,
1489 NULL);
1490 }
1491 }
1492
1493 /* If reading unavailable memory in the context of traceframes, and
1494 this address falls within a read-only section, fallback to
1495 reading from live memory. */
1496 if (readbuf != NULL && get_traceframe_number () != -1)
1497 {
1498 VEC(mem_range_s) *available;
1499
1500 /* If we fail to get the set of available memory, then the
1501 target does not support querying traceframe info, and so we
1502 attempt reading from the traceframe anyway (assuming the
1503 target implements the old QTro packet then). */
1504 if (traceframe_available_memory (&available, memaddr, len))
1505 {
1506 struct cleanup *old_chain;
1507
1508 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1509
1510 if (VEC_empty (mem_range_s, available)
1511 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1512 {
1513 /* Don't read into the traceframe's available
1514 memory. */
1515 if (!VEC_empty (mem_range_s, available))
1516 {
1517 LONGEST oldlen = len;
1518
1519 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1520 gdb_assert (len <= oldlen);
1521 }
1522
1523 do_cleanups (old_chain);
1524
1525 /* This goes through the topmost target again. */
1526 res = memory_xfer_live_readonly_partial (ops, object,
1527 readbuf, memaddr,
1528 len, xfered_len);
1529 if (res == TARGET_XFER_OK)
1530 return TARGET_XFER_OK;
1531 else
1532 {
1533 /* No use trying further, we know some memory starting
1534 at MEMADDR isn't available. */
1535 *xfered_len = len;
1536 return TARGET_XFER_E_UNAVAILABLE;
1537 }
1538 }
1539
1540 /* Don't try to read more than how much is available, in
1541 case the target implements the deprecated QTro packet to
1542 cater for older GDBs (the target's knowledge of read-only
1543 sections may be outdated by now). */
1544 len = VEC_index (mem_range_s, available, 0)->length;
1545
1546 do_cleanups (old_chain);
1547 }
1548 }
1549
1550 /* Try GDB's internal data cache. */
1551 region = lookup_mem_region (memaddr);
1552 /* region->hi == 0 means there's no upper bound. */
1553 if (memaddr + len < region->hi || region->hi == 0)
1554 reg_len = len;
1555 else
1556 reg_len = region->hi - memaddr;
1557
1558 switch (region->attrib.mode)
1559 {
1560 case MEM_RO:
1561 if (writebuf != NULL)
1562 return TARGET_XFER_E_IO;
1563 break;
1564
1565 case MEM_WO:
1566 if (readbuf != NULL)
1567 return TARGET_XFER_E_IO;
1568 break;
1569
1570 case MEM_FLASH:
1571 /* We only support writing to flash during "load" for now. */
1572 if (writebuf != NULL)
1573 error (_("Writing to flash memory forbidden in this context"));
1574 break;
1575
1576 case MEM_NONE:
1577 return TARGET_XFER_E_IO;
1578 }
1579
1580 if (!ptid_equal (inferior_ptid, null_ptid))
1581 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1582 else
1583 inf = NULL;
1584
1585 if (inf != NULL
1586 /* The dcache reads whole cache lines; that doesn't play well
1587 with reading from a trace buffer, because reading outside of
1588 the collected memory range fails. */
1589 && get_traceframe_number () == -1
1590 && (region->attrib.cache
1591 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1592 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1593 {
1594 DCACHE *dcache = target_dcache_get_or_init ();
1595 int l;
1596
1597 if (readbuf != NULL)
1598 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1599 else
1600 /* FIXME drow/2006-08-09: If we're going to preserve const
1601 correctness dcache_xfer_memory should take readbuf and
1602 writebuf. */
1603 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1604 reg_len, 1);
1605 if (l <= 0)
1606 return TARGET_XFER_E_IO;
1607 else
1608 {
1609 *xfered_len = (ULONGEST) l;
1610 return TARGET_XFER_OK;
1611 }
1612 }
1613
1614 /* If none of those methods found the memory we wanted, fall back
1615 to a target partial transfer. Normally a single call to
1616 to_xfer_partial is enough; if it doesn't recognize an object
1617 it will call the to_xfer_partial of the next target down.
1618 But for memory this won't do. Memory is the only target
1619 object which can be read from more than one valid target.
1620 A core file, for instance, could have some of memory but
1621 delegate other bits to the target below it. So, we must
1622 manually try all targets. */
1623
1624 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1625 xfered_len);
1626
1627 /* Make sure the cache gets updated no matter what - if we are writing
1628 to the stack. Even if this write is not tagged as such, we still need
1629 to update the cache. */
1630
1631 if (res == TARGET_XFER_OK
1632 && inf != NULL
1633 && writebuf != NULL
1634 && target_dcache_init_p ()
1635 && !region->attrib.cache
1636 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1637 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1638 {
1639 DCACHE *dcache = target_dcache_get ();
1640
1641 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1642 }
1643
1644 /* If we still haven't got anything, return the last error. We
1645 give up. */
1646 return res;
1647 }
1648
1649 /* Perform a partial memory transfer. For docs see target.h,
1650 to_xfer_partial. */
1651
1652 static enum target_xfer_status
1653 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1654 gdb_byte *readbuf, const gdb_byte *writebuf,
1655 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1656 {
1657 enum target_xfer_status res;
1658
1659 /* Zero length requests are ok and require no work. */
1660 if (len == 0)
1661 return TARGET_XFER_EOF;
1662
1663 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1664 breakpoint insns, thus hiding out from higher layers whether
1665 there are software breakpoints inserted in the code stream. */
1666 if (readbuf != NULL)
1667 {
1668 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1669 xfered_len);
1670
1671 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1672 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1673 }
1674 else
1675 {
1676 void *buf;
1677 struct cleanup *old_chain;
1678
1679 /* A large write request is likely to be partially satisfied
1680 by memory_xfer_partial_1. We will continually malloc
1681 and free a copy of the entire write request for breakpoint
1682 shadow handling even though we only end up writing a small
1683 subset of it. Cap writes to 4KB to mitigate this. */
1684 len = min (4096, len);
1685
1686 buf = xmalloc (len);
1687 old_chain = make_cleanup (xfree, buf);
1688 memcpy (buf, writebuf, len);
1689
1690 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1691 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1692 xfered_len);
1693
1694 do_cleanups (old_chain);
1695 }
1696
1697 return res;
1698 }
1699
1700 static void
1701 restore_show_memory_breakpoints (void *arg)
1702 {
1703 show_memory_breakpoints = (uintptr_t) arg;
1704 }
1705
1706 struct cleanup *
1707 make_show_memory_breakpoints_cleanup (int show)
1708 {
1709 int current = show_memory_breakpoints;
1710
1711 show_memory_breakpoints = show;
1712 return make_cleanup (restore_show_memory_breakpoints,
1713 (void *) (uintptr_t) current);
1714 }
1715
1716 /* For docs see target.h, to_xfer_partial. */
1717
1718 enum target_xfer_status
1719 target_xfer_partial (struct target_ops *ops,
1720 enum target_object object, const char *annex,
1721 gdb_byte *readbuf, const gdb_byte *writebuf,
1722 ULONGEST offset, ULONGEST len,
1723 ULONGEST *xfered_len)
1724 {
1725 enum target_xfer_status retval;
1726
1727 gdb_assert (ops->to_xfer_partial != NULL);
1728
1729 /* Transfer is done when LEN is zero. */
1730 if (len == 0)
1731 return TARGET_XFER_EOF;
1732
1733 if (writebuf && !may_write_memory)
1734 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1735 core_addr_to_string_nz (offset), plongest (len));
1736
1737 *xfered_len = 0;
1738
1739 /* If this is a memory transfer, let the memory-specific code
1740 have a look at it instead. Memory transfers are more
1741 complicated. */
1742 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1743 || object == TARGET_OBJECT_CODE_MEMORY)
1744 retval = memory_xfer_partial (ops, object, readbuf,
1745 writebuf, offset, len, xfered_len);
1746 else if (object == TARGET_OBJECT_RAW_MEMORY)
1747 {
1748 /* Request the normal memory object from other layers. */
1749 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1750 xfered_len);
1751 }
1752 else
1753 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1754 writebuf, offset, len, xfered_len);
1755
1756 if (targetdebug)
1757 {
1758 const unsigned char *myaddr = NULL;
1759
1760 fprintf_unfiltered (gdb_stdlog,
1761 "%s:target_xfer_partial "
1762 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1763 ops->to_shortname,
1764 (int) object,
1765 (annex ? annex : "(null)"),
1766 host_address_to_string (readbuf),
1767 host_address_to_string (writebuf),
1768 core_addr_to_string_nz (offset),
1769 pulongest (len), retval,
1770 pulongest (*xfered_len));
1771
1772 if (readbuf)
1773 myaddr = readbuf;
1774 if (writebuf)
1775 myaddr = writebuf;
1776 if (retval == TARGET_XFER_OK && myaddr != NULL)
1777 {
1778 int i;
1779
1780 fputs_unfiltered (", bytes =", gdb_stdlog);
1781 for (i = 0; i < *xfered_len; i++)
1782 {
1783 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1784 {
1785 if (targetdebug < 2 && i > 0)
1786 {
1787 fprintf_unfiltered (gdb_stdlog, " ...");
1788 break;
1789 }
1790 fprintf_unfiltered (gdb_stdlog, "\n");
1791 }
1792
1793 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1794 }
1795 }
1796
1797 fputc_unfiltered ('\n', gdb_stdlog);
1798 }
1799
1800 /* Check implementations of to_xfer_partial update *XFERED_LEN
1801 properly. Do assertion after printing debug messages, so that we
1802 can find more clues on assertion failure from debugging messages. */
1803 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1804 gdb_assert (*xfered_len > 0);
1805
1806 return retval;
1807 }
1808
1809 /* Read LEN bytes of target memory at address MEMADDR, placing the
1810 results in GDB's memory at MYADDR. Returns either 0 for success or
1811 TARGET_XFER_E_IO if any error occurs.
1812
1813 If an error occurs, no guarantee is made about the contents of the data at
1814 MYADDR. In particular, the caller should not depend upon partial reads
1815 filling the buffer with good data. There is no way for the caller to know
1816 how much good data might have been transfered anyway. Callers that can
1817 deal with partial reads should call target_read (which will retry until
1818 it makes no progress, and then return how much was transferred). */
1819
1820 int
1821 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1822 {
1823 /* Dispatch to the topmost target, not the flattened current_target.
1824 Memory accesses check target->to_has_(all_)memory, and the
1825 flattened target doesn't inherit those. */
1826 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1827 myaddr, memaddr, len) == len)
1828 return 0;
1829 else
1830 return TARGET_XFER_E_IO;
1831 }
1832
1833 /* Like target_read_memory, but specify explicitly that this is a read
1834 from the target's raw memory. That is, this read bypasses the
1835 dcache, breakpoint shadowing, etc. */
1836
1837 int
1838 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1839 {
1840 /* See comment in target_read_memory about why the request starts at
1841 current_target.beneath. */
1842 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1843 myaddr, memaddr, len) == len)
1844 return 0;
1845 else
1846 return TARGET_XFER_E_IO;
1847 }
1848
1849 /* Like target_read_memory, but specify explicitly that this is a read from
1850 the target's stack. This may trigger different cache behavior. */
1851
1852 int
1853 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1854 {
1855 /* See comment in target_read_memory about why the request starts at
1856 current_target.beneath. */
1857 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1858 myaddr, memaddr, len) == len)
1859 return 0;
1860 else
1861 return TARGET_XFER_E_IO;
1862 }
1863
1864 /* Like target_read_memory, but specify explicitly that this is a read from
1865 the target's code. This may trigger different cache behavior. */
1866
1867 int
1868 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1869 {
1870 /* See comment in target_read_memory about why the request starts at
1871 current_target.beneath. */
1872 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1873 myaddr, memaddr, len) == len)
1874 return 0;
1875 else
1876 return TARGET_XFER_E_IO;
1877 }
1878
1879 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1880 Returns either 0 for success or TARGET_XFER_E_IO if any
1881 error occurs. If an error occurs, no guarantee is made about how
1882 much data got written. Callers that can deal with partial writes
1883 should call target_write. */
1884
1885 int
1886 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1887 {
1888 /* See comment in target_read_memory about why the request starts at
1889 current_target.beneath. */
1890 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1891 myaddr, memaddr, len) == len)
1892 return 0;
1893 else
1894 return TARGET_XFER_E_IO;
1895 }
1896
1897 /* Write LEN bytes from MYADDR to target raw memory at address
1898 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1899 if any error occurs. If an error occurs, no guarantee is made
1900 about how much data got written. Callers that can deal with
1901 partial writes should call target_write. */
1902
1903 int
1904 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1905 {
1906 /* See comment in target_read_memory about why the request starts at
1907 current_target.beneath. */
1908 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1909 myaddr, memaddr, len) == len)
1910 return 0;
1911 else
1912 return TARGET_XFER_E_IO;
1913 }
1914
1915 /* Fetch the target's memory map. */
1916
1917 VEC(mem_region_s) *
1918 target_memory_map (void)
1919 {
1920 VEC(mem_region_s) *result;
1921 struct mem_region *last_one, *this_one;
1922 int ix;
1923 struct target_ops *t;
1924
1925 if (targetdebug)
1926 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1927
1928 for (t = current_target.beneath; t != NULL; t = t->beneath)
1929 if (t->to_memory_map != NULL)
1930 break;
1931
1932 if (t == NULL)
1933 return NULL;
1934
1935 result = t->to_memory_map (t);
1936 if (result == NULL)
1937 return NULL;
1938
1939 qsort (VEC_address (mem_region_s, result),
1940 VEC_length (mem_region_s, result),
1941 sizeof (struct mem_region), mem_region_cmp);
1942
1943 /* Check that regions do not overlap. Simultaneously assign
1944 a numbering for the "mem" commands to use to refer to
1945 each region. */
1946 last_one = NULL;
1947 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1948 {
1949 this_one->number = ix;
1950
1951 if (last_one && last_one->hi > this_one->lo)
1952 {
1953 warning (_("Overlapping regions in memory map: ignoring"));
1954 VEC_free (mem_region_s, result);
1955 return NULL;
1956 }
1957 last_one = this_one;
1958 }
1959
1960 return result;
1961 }
1962
1963 void
1964 target_flash_erase (ULONGEST address, LONGEST length)
1965 {
1966 struct target_ops *t;
1967
1968 for (t = current_target.beneath; t != NULL; t = t->beneath)
1969 if (t->to_flash_erase != NULL)
1970 {
1971 if (targetdebug)
1972 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1973 hex_string (address), phex (length, 0));
1974 t->to_flash_erase (t, address, length);
1975 return;
1976 }
1977
1978 tcomplain ();
1979 }
1980
1981 void
1982 target_flash_done (void)
1983 {
1984 struct target_ops *t;
1985
1986 for (t = current_target.beneath; t != NULL; t = t->beneath)
1987 if (t->to_flash_done != NULL)
1988 {
1989 if (targetdebug)
1990 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1991 t->to_flash_done (t);
1992 return;
1993 }
1994
1995 tcomplain ();
1996 }
1997
1998 static void
1999 show_trust_readonly (struct ui_file *file, int from_tty,
2000 struct cmd_list_element *c, const char *value)
2001 {
2002 fprintf_filtered (file,
2003 _("Mode for reading from readonly sections is %s.\n"),
2004 value);
2005 }
2006
2007 /* More generic transfers. */
2008
2009 static enum target_xfer_status
2010 default_xfer_partial (struct target_ops *ops, enum target_object object,
2011 const char *annex, gdb_byte *readbuf,
2012 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
2013 ULONGEST *xfered_len)
2014 {
2015 if (object == TARGET_OBJECT_MEMORY
2016 && ops->deprecated_xfer_memory != NULL)
2017 /* If available, fall back to the target's
2018 "deprecated_xfer_memory" method. */
2019 {
2020 int xfered = -1;
2021
2022 errno = 0;
2023 if (writebuf != NULL)
2024 {
2025 void *buffer = xmalloc (len);
2026 struct cleanup *cleanup = make_cleanup (xfree, buffer);
2027
2028 memcpy (buffer, writebuf, len);
2029 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
2030 1/*write*/, NULL, ops);
2031 do_cleanups (cleanup);
2032 }
2033 if (readbuf != NULL)
2034 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
2035 0/*read*/, NULL, ops);
2036 if (xfered > 0)
2037 {
2038 *xfered_len = (ULONGEST) xfered;
2039 return TARGET_XFER_E_IO;
2040 }
2041 else if (xfered == 0 && errno == 0)
2042 /* "deprecated_xfer_memory" uses 0, cross checked against
2043 ERRNO as one indication of an error. */
2044 return TARGET_XFER_EOF;
2045 else
2046 return TARGET_XFER_E_IO;
2047 }
2048 else
2049 {
2050 gdb_assert (ops->beneath != NULL);
2051 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
2052 readbuf, writebuf, offset, len,
2053 xfered_len);
2054 }
2055 }
2056
2057 /* Target vector read/write partial wrapper functions. */
2058
2059 static enum target_xfer_status
2060 target_read_partial (struct target_ops *ops,
2061 enum target_object object,
2062 const char *annex, gdb_byte *buf,
2063 ULONGEST offset, ULONGEST len,
2064 ULONGEST *xfered_len)
2065 {
2066 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
2067 xfered_len);
2068 }
2069
2070 static enum target_xfer_status
2071 target_write_partial (struct target_ops *ops,
2072 enum target_object object,
2073 const char *annex, const gdb_byte *buf,
2074 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
2075 {
2076 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
2077 xfered_len);
2078 }
2079
2080 /* Wrappers to perform the full transfer. */
2081
2082 /* For docs on target_read see target.h. */
2083
2084 LONGEST
2085 target_read (struct target_ops *ops,
2086 enum target_object object,
2087 const char *annex, gdb_byte *buf,
2088 ULONGEST offset, LONGEST len)
2089 {
2090 LONGEST xfered = 0;
2091
2092 while (xfered < len)
2093 {
2094 ULONGEST xfered_len;
2095 enum target_xfer_status status;
2096
2097 status = target_read_partial (ops, object, annex,
2098 (gdb_byte *) buf + xfered,
2099 offset + xfered, len - xfered,
2100 &xfered_len);
2101
2102 /* Call an observer, notifying them of the xfer progress? */
2103 if (status == TARGET_XFER_EOF)
2104 return xfered;
2105 else if (status == TARGET_XFER_OK)
2106 {
2107 xfered += xfered_len;
2108 QUIT;
2109 }
2110 else
2111 return -1;
2112
2113 }
2114 return len;
2115 }
2116
2117 /* Assuming that the entire [begin, end) range of memory cannot be
2118 read, try to read whatever subrange is possible to read.
2119
2120 The function returns, in RESULT, either zero or one memory block.
2121 If there's a readable subrange at the beginning, it is completely
2122 read and returned. Any further readable subrange will not be read.
2123 Otherwise, if there's a readable subrange at the end, it will be
2124 completely read and returned. Any readable subranges before it
2125 (obviously, not starting at the beginning), will be ignored. In
2126 other cases -- either no readable subrange, or readable subrange(s)
2127 that is neither at the beginning, or end, nothing is returned.
2128
2129 The purpose of this function is to handle a read across a boundary
2130 of accessible memory in a case when memory map is not available.
2131 The above restrictions are fine for this case, but will give
2132 incorrect results if the memory is 'patchy'. However, supporting
2133 'patchy' memory would require trying to read every single byte,
2134 and it seems unacceptable solution. Explicit memory map is
2135 recommended for this case -- and target_read_memory_robust will
2136 take care of reading multiple ranges then. */
2137
2138 static void
2139 read_whatever_is_readable (struct target_ops *ops,
2140 ULONGEST begin, ULONGEST end,
2141 VEC(memory_read_result_s) **result)
2142 {
2143 gdb_byte *buf = xmalloc (end - begin);
2144 ULONGEST current_begin = begin;
2145 ULONGEST current_end = end;
2146 int forward;
2147 memory_read_result_s r;
2148 ULONGEST xfered_len;
2149
2150 /* If we previously failed to read 1 byte, nothing can be done here. */
2151 if (end - begin <= 1)
2152 {
2153 xfree (buf);
2154 return;
2155 }
2156
2157 /* Check that either first or the last byte is readable, and give up
2158 if not. This heuristic is meant to permit reading accessible memory
2159 at the boundary of accessible region. */
2160 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2161 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2162 {
2163 forward = 1;
2164 ++current_begin;
2165 }
2166 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2167 buf + (end-begin) - 1, end - 1, 1,
2168 &xfered_len) == TARGET_XFER_OK)
2169 {
2170 forward = 0;
2171 --current_end;
2172 }
2173 else
2174 {
2175 xfree (buf);
2176 return;
2177 }
2178
2179 /* Loop invariant is that the [current_begin, current_end) was previously
2180 found to be not readable as a whole.
2181
2182 Note loop condition -- if the range has 1 byte, we can't divide the range
2183 so there's no point trying further. */
2184 while (current_end - current_begin > 1)
2185 {
2186 ULONGEST first_half_begin, first_half_end;
2187 ULONGEST second_half_begin, second_half_end;
2188 LONGEST xfer;
2189 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2190
2191 if (forward)
2192 {
2193 first_half_begin = current_begin;
2194 first_half_end = middle;
2195 second_half_begin = middle;
2196 second_half_end = current_end;
2197 }
2198 else
2199 {
2200 first_half_begin = middle;
2201 first_half_end = current_end;
2202 second_half_begin = current_begin;
2203 second_half_end = middle;
2204 }
2205
2206 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2207 buf + (first_half_begin - begin),
2208 first_half_begin,
2209 first_half_end - first_half_begin);
2210
2211 if (xfer == first_half_end - first_half_begin)
2212 {
2213 /* This half reads up fine. So, the error must be in the
2214 other half. */
2215 current_begin = second_half_begin;
2216 current_end = second_half_end;
2217 }
2218 else
2219 {
2220 /* This half is not readable. Because we've tried one byte, we
2221 know some part of this half if actually redable. Go to the next
2222 iteration to divide again and try to read.
2223
2224 We don't handle the other half, because this function only tries
2225 to read a single readable subrange. */
2226 current_begin = first_half_begin;
2227 current_end = first_half_end;
2228 }
2229 }
2230
2231 if (forward)
2232 {
2233 /* The [begin, current_begin) range has been read. */
2234 r.begin = begin;
2235 r.end = current_begin;
2236 r.data = buf;
2237 }
2238 else
2239 {
2240 /* The [current_end, end) range has been read. */
2241 LONGEST rlen = end - current_end;
2242
2243 r.data = xmalloc (rlen);
2244 memcpy (r.data, buf + current_end - begin, rlen);
2245 r.begin = current_end;
2246 r.end = end;
2247 xfree (buf);
2248 }
2249 VEC_safe_push(memory_read_result_s, (*result), &r);
2250 }
2251
2252 void
2253 free_memory_read_result_vector (void *x)
2254 {
2255 VEC(memory_read_result_s) *v = x;
2256 memory_read_result_s *current;
2257 int ix;
2258
2259 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2260 {
2261 xfree (current->data);
2262 }
2263 VEC_free (memory_read_result_s, v);
2264 }
2265
2266 VEC(memory_read_result_s) *
2267 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2268 {
2269 VEC(memory_read_result_s) *result = 0;
2270
2271 LONGEST xfered = 0;
2272 while (xfered < len)
2273 {
2274 struct mem_region *region = lookup_mem_region (offset + xfered);
2275 LONGEST rlen;
2276
2277 /* If there is no explicit region, a fake one should be created. */
2278 gdb_assert (region);
2279
2280 if (region->hi == 0)
2281 rlen = len - xfered;
2282 else
2283 rlen = region->hi - offset;
2284
2285 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2286 {
2287 /* Cannot read this region. Note that we can end up here only
2288 if the region is explicitly marked inaccessible, or
2289 'inaccessible-by-default' is in effect. */
2290 xfered += rlen;
2291 }
2292 else
2293 {
2294 LONGEST to_read = min (len - xfered, rlen);
2295 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2296
2297 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2298 (gdb_byte *) buffer,
2299 offset + xfered, to_read);
2300 /* Call an observer, notifying them of the xfer progress? */
2301 if (xfer <= 0)
2302 {
2303 /* Got an error reading full chunk. See if maybe we can read
2304 some subrange. */
2305 xfree (buffer);
2306 read_whatever_is_readable (ops, offset + xfered,
2307 offset + xfered + to_read, &result);
2308 xfered += to_read;
2309 }
2310 else
2311 {
2312 struct memory_read_result r;
2313 r.data = buffer;
2314 r.begin = offset + xfered;
2315 r.end = r.begin + xfer;
2316 VEC_safe_push (memory_read_result_s, result, &r);
2317 xfered += xfer;
2318 }
2319 QUIT;
2320 }
2321 }
2322 return result;
2323 }
2324
2325
2326 /* An alternative to target_write with progress callbacks. */
2327
2328 LONGEST
2329 target_write_with_progress (struct target_ops *ops,
2330 enum target_object object,
2331 const char *annex, const gdb_byte *buf,
2332 ULONGEST offset, LONGEST len,
2333 void (*progress) (ULONGEST, void *), void *baton)
2334 {
2335 LONGEST xfered = 0;
2336
2337 /* Give the progress callback a chance to set up. */
2338 if (progress)
2339 (*progress) (0, baton);
2340
2341 while (xfered < len)
2342 {
2343 ULONGEST xfered_len;
2344 enum target_xfer_status status;
2345
2346 status = target_write_partial (ops, object, annex,
2347 (gdb_byte *) buf + xfered,
2348 offset + xfered, len - xfered,
2349 &xfered_len);
2350
2351 if (status == TARGET_XFER_EOF)
2352 return xfered;
2353 if (TARGET_XFER_STATUS_ERROR_P (status))
2354 return -1;
2355
2356 gdb_assert (status == TARGET_XFER_OK);
2357 if (progress)
2358 (*progress) (xfered_len, baton);
2359
2360 xfered += xfered_len;
2361 QUIT;
2362 }
2363 return len;
2364 }
2365
2366 /* For docs on target_write see target.h. */
2367
2368 LONGEST
2369 target_write (struct target_ops *ops,
2370 enum target_object object,
2371 const char *annex, const gdb_byte *buf,
2372 ULONGEST offset, LONGEST len)
2373 {
2374 return target_write_with_progress (ops, object, annex, buf, offset, len,
2375 NULL, NULL);
2376 }
2377
2378 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2379 the size of the transferred data. PADDING additional bytes are
2380 available in *BUF_P. This is a helper function for
2381 target_read_alloc; see the declaration of that function for more
2382 information. */
2383
2384 static LONGEST
2385 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2386 const char *annex, gdb_byte **buf_p, int padding)
2387 {
2388 size_t buf_alloc, buf_pos;
2389 gdb_byte *buf;
2390
2391 /* This function does not have a length parameter; it reads the
2392 entire OBJECT). Also, it doesn't support objects fetched partly
2393 from one target and partly from another (in a different stratum,
2394 e.g. a core file and an executable). Both reasons make it
2395 unsuitable for reading memory. */
2396 gdb_assert (object != TARGET_OBJECT_MEMORY);
2397
2398 /* Start by reading up to 4K at a time. The target will throttle
2399 this number down if necessary. */
2400 buf_alloc = 4096;
2401 buf = xmalloc (buf_alloc);
2402 buf_pos = 0;
2403 while (1)
2404 {
2405 ULONGEST xfered_len;
2406 enum target_xfer_status status;
2407
2408 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2409 buf_pos, buf_alloc - buf_pos - padding,
2410 &xfered_len);
2411
2412 if (status == TARGET_XFER_EOF)
2413 {
2414 /* Read all there was. */
2415 if (buf_pos == 0)
2416 xfree (buf);
2417 else
2418 *buf_p = buf;
2419 return buf_pos;
2420 }
2421 else if (status != TARGET_XFER_OK)
2422 {
2423 /* An error occurred. */
2424 xfree (buf);
2425 return TARGET_XFER_E_IO;
2426 }
2427
2428 buf_pos += xfered_len;
2429
2430 /* If the buffer is filling up, expand it. */
2431 if (buf_alloc < buf_pos * 2)
2432 {
2433 buf_alloc *= 2;
2434 buf = xrealloc (buf, buf_alloc);
2435 }
2436
2437 QUIT;
2438 }
2439 }
2440
2441 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2442 the size of the transferred data. See the declaration in "target.h"
2443 function for more information about the return value. */
2444
2445 LONGEST
2446 target_read_alloc (struct target_ops *ops, enum target_object object,
2447 const char *annex, gdb_byte **buf_p)
2448 {
2449 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2450 }
2451
2452 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2453 returned as a string, allocated using xmalloc. If an error occurs
2454 or the transfer is unsupported, NULL is returned. Empty objects
2455 are returned as allocated but empty strings. A warning is issued
2456 if the result contains any embedded NUL bytes. */
2457
2458 char *
2459 target_read_stralloc (struct target_ops *ops, enum target_object object,
2460 const char *annex)
2461 {
2462 gdb_byte *buffer;
2463 char *bufstr;
2464 LONGEST i, transferred;
2465
2466 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2467 bufstr = (char *) buffer;
2468
2469 if (transferred < 0)
2470 return NULL;
2471
2472 if (transferred == 0)
2473 return xstrdup ("");
2474
2475 bufstr[transferred] = 0;
2476
2477 /* Check for embedded NUL bytes; but allow trailing NULs. */
2478 for (i = strlen (bufstr); i < transferred; i++)
2479 if (bufstr[i] != 0)
2480 {
2481 warning (_("target object %d, annex %s, "
2482 "contained unexpected null characters"),
2483 (int) object, annex ? annex : "(none)");
2484 break;
2485 }
2486
2487 return bufstr;
2488 }
2489
2490 /* Memory transfer methods. */
2491
2492 void
2493 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2494 LONGEST len)
2495 {
2496 /* This method is used to read from an alternate, non-current
2497 target. This read must bypass the overlay support (as symbols
2498 don't match this target), and GDB's internal cache (wrong cache
2499 for this target). */
2500 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2501 != len)
2502 memory_error (TARGET_XFER_E_IO, addr);
2503 }
2504
2505 ULONGEST
2506 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2507 int len, enum bfd_endian byte_order)
2508 {
2509 gdb_byte buf[sizeof (ULONGEST)];
2510
2511 gdb_assert (len <= sizeof (buf));
2512 get_target_memory (ops, addr, buf, len);
2513 return extract_unsigned_integer (buf, len, byte_order);
2514 }
2515
2516 /* See target.h. */
2517
2518 int
2519 target_insert_breakpoint (struct gdbarch *gdbarch,
2520 struct bp_target_info *bp_tgt)
2521 {
2522 if (!may_insert_breakpoints)
2523 {
2524 warning (_("May not insert breakpoints"));
2525 return 1;
2526 }
2527
2528 return current_target.to_insert_breakpoint (&current_target,
2529 gdbarch, bp_tgt);
2530 }
2531
2532 /* See target.h. */
2533
2534 int
2535 target_remove_breakpoint (struct gdbarch *gdbarch,
2536 struct bp_target_info *bp_tgt)
2537 {
2538 /* This is kind of a weird case to handle, but the permission might
2539 have been changed after breakpoints were inserted - in which case
2540 we should just take the user literally and assume that any
2541 breakpoints should be left in place. */
2542 if (!may_insert_breakpoints)
2543 {
2544 warning (_("May not remove breakpoints"));
2545 return 1;
2546 }
2547
2548 return current_target.to_remove_breakpoint (&current_target,
2549 gdbarch, bp_tgt);
2550 }
2551
2552 static void
2553 target_info (char *args, int from_tty)
2554 {
2555 struct target_ops *t;
2556 int has_all_mem = 0;
2557
2558 if (symfile_objfile != NULL)
2559 printf_unfiltered (_("Symbols from \"%s\".\n"),
2560 objfile_name (symfile_objfile));
2561
2562 for (t = target_stack; t != NULL; t = t->beneath)
2563 {
2564 if (!(*t->to_has_memory) (t))
2565 continue;
2566
2567 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2568 continue;
2569 if (has_all_mem)
2570 printf_unfiltered (_("\tWhile running this, "
2571 "GDB does not access memory from...\n"));
2572 printf_unfiltered ("%s:\n", t->to_longname);
2573 (t->to_files_info) (t);
2574 has_all_mem = (*t->to_has_all_memory) (t);
2575 }
2576 }
2577
2578 /* This function is called before any new inferior is created, e.g.
2579 by running a program, attaching, or connecting to a target.
2580 It cleans up any state from previous invocations which might
2581 change between runs. This is a subset of what target_preopen
2582 resets (things which might change between targets). */
2583
2584 void
2585 target_pre_inferior (int from_tty)
2586 {
2587 /* Clear out solib state. Otherwise the solib state of the previous
2588 inferior might have survived and is entirely wrong for the new
2589 target. This has been observed on GNU/Linux using glibc 2.3. How
2590 to reproduce:
2591
2592 bash$ ./foo&
2593 [1] 4711
2594 bash$ ./foo&
2595 [1] 4712
2596 bash$ gdb ./foo
2597 [...]
2598 (gdb) attach 4711
2599 (gdb) detach
2600 (gdb) attach 4712
2601 Cannot access memory at address 0xdeadbeef
2602 */
2603
2604 /* In some OSs, the shared library list is the same/global/shared
2605 across inferiors. If code is shared between processes, so are
2606 memory regions and features. */
2607 if (!gdbarch_has_global_solist (target_gdbarch ()))
2608 {
2609 no_shared_libraries (NULL, from_tty);
2610
2611 invalidate_target_mem_regions ();
2612
2613 target_clear_description ();
2614 }
2615
2616 agent_capability_invalidate ();
2617 }
2618
2619 /* Callback for iterate_over_inferiors. Gets rid of the given
2620 inferior. */
2621
2622 static int
2623 dispose_inferior (struct inferior *inf, void *args)
2624 {
2625 struct thread_info *thread;
2626
2627 thread = any_thread_of_process (inf->pid);
2628 if (thread)
2629 {
2630 switch_to_thread (thread->ptid);
2631
2632 /* Core inferiors actually should be detached, not killed. */
2633 if (target_has_execution)
2634 target_kill ();
2635 else
2636 target_detach (NULL, 0);
2637 }
2638
2639 return 0;
2640 }
2641
2642 /* This is to be called by the open routine before it does
2643 anything. */
2644
2645 void
2646 target_preopen (int from_tty)
2647 {
2648 dont_repeat ();
2649
2650 if (have_inferiors ())
2651 {
2652 if (!from_tty
2653 || !have_live_inferiors ()
2654 || query (_("A program is being debugged already. Kill it? ")))
2655 iterate_over_inferiors (dispose_inferior, NULL);
2656 else
2657 error (_("Program not killed."));
2658 }
2659
2660 /* Calling target_kill may remove the target from the stack. But if
2661 it doesn't (which seems like a win for UDI), remove it now. */
2662 /* Leave the exec target, though. The user may be switching from a
2663 live process to a core of the same program. */
2664 pop_all_targets_above (file_stratum);
2665
2666 target_pre_inferior (from_tty);
2667 }
2668
2669 /* Detach a target after doing deferred register stores. */
2670
2671 void
2672 target_detach (const char *args, int from_tty)
2673 {
2674 struct target_ops* t;
2675
2676 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2677 /* Don't remove global breakpoints here. They're removed on
2678 disconnection from the target. */
2679 ;
2680 else
2681 /* If we're in breakpoints-always-inserted mode, have to remove
2682 them before detaching. */
2683 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2684
2685 prepare_for_detach ();
2686
2687 for (t = current_target.beneath; t != NULL; t = t->beneath)
2688 {
2689 if (t->to_detach != NULL)
2690 {
2691 t->to_detach (t, args, from_tty);
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2694 args, from_tty);
2695 return;
2696 }
2697 }
2698
2699 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2700 }
2701
2702 void
2703 target_disconnect (char *args, int from_tty)
2704 {
2705 struct target_ops *t;
2706
2707 /* If we're in breakpoints-always-inserted mode or if breakpoints
2708 are global across processes, we have to remove them before
2709 disconnecting. */
2710 remove_breakpoints ();
2711
2712 for (t = current_target.beneath; t != NULL; t = t->beneath)
2713 if (t->to_disconnect != NULL)
2714 {
2715 if (targetdebug)
2716 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2717 args, from_tty);
2718 t->to_disconnect (t, args, from_tty);
2719 return;
2720 }
2721
2722 tcomplain ();
2723 }
2724
2725 ptid_t
2726 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2727 {
2728 struct target_ops *t;
2729 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2730 status, options);
2731
2732 if (targetdebug)
2733 {
2734 char *status_string;
2735 char *options_string;
2736
2737 status_string = target_waitstatus_to_string (status);
2738 options_string = target_options_to_string (options);
2739 fprintf_unfiltered (gdb_stdlog,
2740 "target_wait (%d, status, options={%s})"
2741 " = %d, %s\n",
2742 ptid_get_pid (ptid), options_string,
2743 ptid_get_pid (retval), status_string);
2744 xfree (status_string);
2745 xfree (options_string);
2746 }
2747
2748 return retval;
2749 }
2750
2751 char *
2752 target_pid_to_str (ptid_t ptid)
2753 {
2754 struct target_ops *t;
2755
2756 for (t = current_target.beneath; t != NULL; t = t->beneath)
2757 {
2758 if (t->to_pid_to_str != NULL)
2759 return (*t->to_pid_to_str) (t, ptid);
2760 }
2761
2762 return normal_pid_to_str (ptid);
2763 }
2764
2765 char *
2766 target_thread_name (struct thread_info *info)
2767 {
2768 struct target_ops *t;
2769
2770 for (t = current_target.beneath; t != NULL; t = t->beneath)
2771 {
2772 if (t->to_thread_name != NULL)
2773 return (*t->to_thread_name) (info);
2774 }
2775
2776 return NULL;
2777 }
2778
2779 void
2780 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2781 {
2782 struct target_ops *t;
2783
2784 target_dcache_invalidate ();
2785
2786 current_target.to_resume (&current_target, ptid, step, signal);
2787 if (targetdebug)
2788 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2789 ptid_get_pid (ptid),
2790 step ? "step" : "continue",
2791 gdb_signal_to_name (signal));
2792
2793 registers_changed_ptid (ptid);
2794 set_executing (ptid, 1);
2795 set_running (ptid, 1);
2796 clear_inline_frame_state (ptid);
2797 }
2798
2799 void
2800 target_pass_signals (int numsigs, unsigned char *pass_signals)
2801 {
2802 struct target_ops *t;
2803
2804 for (t = current_target.beneath; t != NULL; t = t->beneath)
2805 {
2806 if (t->to_pass_signals != NULL)
2807 {
2808 if (targetdebug)
2809 {
2810 int i;
2811
2812 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2813 numsigs);
2814
2815 for (i = 0; i < numsigs; i++)
2816 if (pass_signals[i])
2817 fprintf_unfiltered (gdb_stdlog, " %s",
2818 gdb_signal_to_name (i));
2819
2820 fprintf_unfiltered (gdb_stdlog, " })\n");
2821 }
2822
2823 (*t->to_pass_signals) (numsigs, pass_signals);
2824 return;
2825 }
2826 }
2827 }
2828
2829 void
2830 target_program_signals (int numsigs, unsigned char *program_signals)
2831 {
2832 struct target_ops *t;
2833
2834 for (t = current_target.beneath; t != NULL; t = t->beneath)
2835 {
2836 if (t->to_program_signals != NULL)
2837 {
2838 if (targetdebug)
2839 {
2840 int i;
2841
2842 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2843 numsigs);
2844
2845 for (i = 0; i < numsigs; i++)
2846 if (program_signals[i])
2847 fprintf_unfiltered (gdb_stdlog, " %s",
2848 gdb_signal_to_name (i));
2849
2850 fprintf_unfiltered (gdb_stdlog, " })\n");
2851 }
2852
2853 (*t->to_program_signals) (numsigs, program_signals);
2854 return;
2855 }
2856 }
2857 }
2858
2859 /* Look through the list of possible targets for a target that can
2860 follow forks. */
2861
2862 int
2863 target_follow_fork (int follow_child, int detach_fork)
2864 {
2865 struct target_ops *t;
2866
2867 for (t = current_target.beneath; t != NULL; t = t->beneath)
2868 {
2869 if (t->to_follow_fork != NULL)
2870 {
2871 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2872
2873 if (targetdebug)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "target_follow_fork (%d, %d) = %d\n",
2876 follow_child, detach_fork, retval);
2877 return retval;
2878 }
2879 }
2880
2881 /* Some target returned a fork event, but did not know how to follow it. */
2882 internal_error (__FILE__, __LINE__,
2883 _("could not find a target to follow fork"));
2884 }
2885
2886 void
2887 target_mourn_inferior (void)
2888 {
2889 struct target_ops *t;
2890
2891 for (t = current_target.beneath; t != NULL; t = t->beneath)
2892 {
2893 if (t->to_mourn_inferior != NULL)
2894 {
2895 t->to_mourn_inferior (t);
2896 if (targetdebug)
2897 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2898
2899 /* We no longer need to keep handles on any of the object files.
2900 Make sure to release them to avoid unnecessarily locking any
2901 of them while we're not actually debugging. */
2902 bfd_cache_close_all ();
2903
2904 return;
2905 }
2906 }
2907
2908 internal_error (__FILE__, __LINE__,
2909 _("could not find a target to follow mourn inferior"));
2910 }
2911
2912 /* Look for a target which can describe architectural features, starting
2913 from TARGET. If we find one, return its description. */
2914
2915 const struct target_desc *
2916 target_read_description (struct target_ops *target)
2917 {
2918 struct target_ops *t;
2919
2920 for (t = target; t != NULL; t = t->beneath)
2921 if (t->to_read_description != NULL)
2922 {
2923 const struct target_desc *tdesc;
2924
2925 tdesc = t->to_read_description (t);
2926 if (tdesc)
2927 return tdesc;
2928 }
2929
2930 return NULL;
2931 }
2932
2933 /* The default implementation of to_search_memory.
2934 This implements a basic search of memory, reading target memory and
2935 performing the search here (as opposed to performing the search in on the
2936 target side with, for example, gdbserver). */
2937
2938 int
2939 simple_search_memory (struct target_ops *ops,
2940 CORE_ADDR start_addr, ULONGEST search_space_len,
2941 const gdb_byte *pattern, ULONGEST pattern_len,
2942 CORE_ADDR *found_addrp)
2943 {
2944 /* NOTE: also defined in find.c testcase. */
2945 #define SEARCH_CHUNK_SIZE 16000
2946 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2947 /* Buffer to hold memory contents for searching. */
2948 gdb_byte *search_buf;
2949 unsigned search_buf_size;
2950 struct cleanup *old_cleanups;
2951
2952 search_buf_size = chunk_size + pattern_len - 1;
2953
2954 /* No point in trying to allocate a buffer larger than the search space. */
2955 if (search_space_len < search_buf_size)
2956 search_buf_size = search_space_len;
2957
2958 search_buf = malloc (search_buf_size);
2959 if (search_buf == NULL)
2960 error (_("Unable to allocate memory to perform the search."));
2961 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2962
2963 /* Prime the search buffer. */
2964
2965 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2966 search_buf, start_addr, search_buf_size) != search_buf_size)
2967 {
2968 warning (_("Unable to access %s bytes of target "
2969 "memory at %s, halting search."),
2970 pulongest (search_buf_size), hex_string (start_addr));
2971 do_cleanups (old_cleanups);
2972 return -1;
2973 }
2974
2975 /* Perform the search.
2976
2977 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2978 When we've scanned N bytes we copy the trailing bytes to the start and
2979 read in another N bytes. */
2980
2981 while (search_space_len >= pattern_len)
2982 {
2983 gdb_byte *found_ptr;
2984 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2985
2986 found_ptr = memmem (search_buf, nr_search_bytes,
2987 pattern, pattern_len);
2988
2989 if (found_ptr != NULL)
2990 {
2991 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2992
2993 *found_addrp = found_addr;
2994 do_cleanups (old_cleanups);
2995 return 1;
2996 }
2997
2998 /* Not found in this chunk, skip to next chunk. */
2999
3000 /* Don't let search_space_len wrap here, it's unsigned. */
3001 if (search_space_len >= chunk_size)
3002 search_space_len -= chunk_size;
3003 else
3004 search_space_len = 0;
3005
3006 if (search_space_len >= pattern_len)
3007 {
3008 unsigned keep_len = search_buf_size - chunk_size;
3009 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
3010 int nr_to_read;
3011
3012 /* Copy the trailing part of the previous iteration to the front
3013 of the buffer for the next iteration. */
3014 gdb_assert (keep_len == pattern_len - 1);
3015 memcpy (search_buf, search_buf + chunk_size, keep_len);
3016
3017 nr_to_read = min (search_space_len - keep_len, chunk_size);
3018
3019 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
3020 search_buf + keep_len, read_addr,
3021 nr_to_read) != nr_to_read)
3022 {
3023 warning (_("Unable to access %s bytes of target "
3024 "memory at %s, halting search."),
3025 plongest (nr_to_read),
3026 hex_string (read_addr));
3027 do_cleanups (old_cleanups);
3028 return -1;
3029 }
3030
3031 start_addr += chunk_size;
3032 }
3033 }
3034
3035 /* Not found. */
3036
3037 do_cleanups (old_cleanups);
3038 return 0;
3039 }
3040
3041 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
3042 sequence of bytes in PATTERN with length PATTERN_LEN.
3043
3044 The result is 1 if found, 0 if not found, and -1 if there was an error
3045 requiring halting of the search (e.g. memory read error).
3046 If the pattern is found the address is recorded in FOUND_ADDRP. */
3047
3048 int
3049 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
3050 const gdb_byte *pattern, ULONGEST pattern_len,
3051 CORE_ADDR *found_addrp)
3052 {
3053 struct target_ops *t;
3054 int found;
3055
3056 /* We don't use INHERIT to set current_target.to_search_memory,
3057 so we have to scan the target stack and handle targetdebug
3058 ourselves. */
3059
3060 if (targetdebug)
3061 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
3062 hex_string (start_addr));
3063
3064 for (t = current_target.beneath; t != NULL; t = t->beneath)
3065 if (t->to_search_memory != NULL)
3066 break;
3067
3068 if (t != NULL)
3069 {
3070 found = t->to_search_memory (t, start_addr, search_space_len,
3071 pattern, pattern_len, found_addrp);
3072 }
3073 else
3074 {
3075 /* If a special version of to_search_memory isn't available, use the
3076 simple version. */
3077 found = simple_search_memory (current_target.beneath,
3078 start_addr, search_space_len,
3079 pattern, pattern_len, found_addrp);
3080 }
3081
3082 if (targetdebug)
3083 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
3084
3085 return found;
3086 }
3087
3088 /* Look through the currently pushed targets. If none of them will
3089 be able to restart the currently running process, issue an error
3090 message. */
3091
3092 void
3093 target_require_runnable (void)
3094 {
3095 struct target_ops *t;
3096
3097 for (t = target_stack; t != NULL; t = t->beneath)
3098 {
3099 /* If this target knows how to create a new program, then
3100 assume we will still be able to after killing the current
3101 one. Either killing and mourning will not pop T, or else
3102 find_default_run_target will find it again. */
3103 if (t->to_create_inferior != NULL)
3104 return;
3105
3106 /* Do not worry about thread_stratum targets that can not
3107 create inferiors. Assume they will be pushed again if
3108 necessary, and continue to the process_stratum. */
3109 if (t->to_stratum == thread_stratum
3110 || t->to_stratum == arch_stratum)
3111 continue;
3112
3113 error (_("The \"%s\" target does not support \"run\". "
3114 "Try \"help target\" or \"continue\"."),
3115 t->to_shortname);
3116 }
3117
3118 /* This function is only called if the target is running. In that
3119 case there should have been a process_stratum target and it
3120 should either know how to create inferiors, or not... */
3121 internal_error (__FILE__, __LINE__, _("No targets found"));
3122 }
3123
3124 /* Look through the list of possible targets for a target that can
3125 execute a run or attach command without any other data. This is
3126 used to locate the default process stratum.
3127
3128 If DO_MESG is not NULL, the result is always valid (error() is
3129 called for errors); else, return NULL on error. */
3130
3131 static struct target_ops *
3132 find_default_run_target (char *do_mesg)
3133 {
3134 struct target_ops **t;
3135 struct target_ops *runable = NULL;
3136 int count;
3137
3138 count = 0;
3139
3140 for (t = target_structs; t < target_structs + target_struct_size;
3141 ++t)
3142 {
3143 if ((*t)->to_can_run && target_can_run (*t))
3144 {
3145 runable = *t;
3146 ++count;
3147 }
3148 }
3149
3150 if (count != 1)
3151 {
3152 if (do_mesg)
3153 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3154 else
3155 return NULL;
3156 }
3157
3158 return runable;
3159 }
3160
3161 void
3162 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3163 {
3164 struct target_ops *t;
3165
3166 t = find_default_run_target ("attach");
3167 (t->to_attach) (t, args, from_tty);
3168 return;
3169 }
3170
3171 void
3172 find_default_create_inferior (struct target_ops *ops,
3173 char *exec_file, char *allargs, char **env,
3174 int from_tty)
3175 {
3176 struct target_ops *t;
3177
3178 t = find_default_run_target ("run");
3179 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3180 return;
3181 }
3182
3183 static int
3184 find_default_can_async_p (struct target_ops *ignore)
3185 {
3186 struct target_ops *t;
3187
3188 /* This may be called before the target is pushed on the stack;
3189 look for the default process stratum. If there's none, gdb isn't
3190 configured with a native debugger, and target remote isn't
3191 connected yet. */
3192 t = find_default_run_target (NULL);
3193 if (t && t->to_can_async_p != delegate_can_async_p)
3194 return (t->to_can_async_p) (t);
3195 return 0;
3196 }
3197
3198 static int
3199 find_default_is_async_p (struct target_ops *ignore)
3200 {
3201 struct target_ops *t;
3202
3203 /* This may be called before the target is pushed on the stack;
3204 look for the default process stratum. If there's none, gdb isn't
3205 configured with a native debugger, and target remote isn't
3206 connected yet. */
3207 t = find_default_run_target (NULL);
3208 if (t && t->to_is_async_p != delegate_is_async_p)
3209 return (t->to_is_async_p) (t);
3210 return 0;
3211 }
3212
3213 static int
3214 find_default_supports_non_stop (void)
3215 {
3216 struct target_ops *t;
3217
3218 t = find_default_run_target (NULL);
3219 if (t && t->to_supports_non_stop)
3220 return (t->to_supports_non_stop) ();
3221 return 0;
3222 }
3223
3224 int
3225 target_supports_non_stop (void)
3226 {
3227 struct target_ops *t;
3228
3229 for (t = &current_target; t != NULL; t = t->beneath)
3230 if (t->to_supports_non_stop)
3231 return t->to_supports_non_stop ();
3232
3233 return 0;
3234 }
3235
3236 /* Implement the "info proc" command. */
3237
3238 int
3239 target_info_proc (char *args, enum info_proc_what what)
3240 {
3241 struct target_ops *t;
3242
3243 /* If we're already connected to something that can get us OS
3244 related data, use it. Otherwise, try using the native
3245 target. */
3246 if (current_target.to_stratum >= process_stratum)
3247 t = current_target.beneath;
3248 else
3249 t = find_default_run_target (NULL);
3250
3251 for (; t != NULL; t = t->beneath)
3252 {
3253 if (t->to_info_proc != NULL)
3254 {
3255 t->to_info_proc (t, args, what);
3256
3257 if (targetdebug)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "target_info_proc (\"%s\", %d)\n", args, what);
3260
3261 return 1;
3262 }
3263 }
3264
3265 return 0;
3266 }
3267
3268 static int
3269 find_default_supports_disable_randomization (void)
3270 {
3271 struct target_ops *t;
3272
3273 t = find_default_run_target (NULL);
3274 if (t && t->to_supports_disable_randomization)
3275 return (t->to_supports_disable_randomization) ();
3276 return 0;
3277 }
3278
3279 int
3280 target_supports_disable_randomization (void)
3281 {
3282 struct target_ops *t;
3283
3284 for (t = &current_target; t != NULL; t = t->beneath)
3285 if (t->to_supports_disable_randomization)
3286 return t->to_supports_disable_randomization ();
3287
3288 return 0;
3289 }
3290
3291 char *
3292 target_get_osdata (const char *type)
3293 {
3294 struct target_ops *t;
3295
3296 /* If we're already connected to something that can get us OS
3297 related data, use it. Otherwise, try using the native
3298 target. */
3299 if (current_target.to_stratum >= process_stratum)
3300 t = current_target.beneath;
3301 else
3302 t = find_default_run_target ("get OS data");
3303
3304 if (!t)
3305 return NULL;
3306
3307 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3308 }
3309
3310 /* Determine the current address space of thread PTID. */
3311
3312 struct address_space *
3313 target_thread_address_space (ptid_t ptid)
3314 {
3315 struct address_space *aspace;
3316 struct inferior *inf;
3317 struct target_ops *t;
3318
3319 for (t = current_target.beneath; t != NULL; t = t->beneath)
3320 {
3321 if (t->to_thread_address_space != NULL)
3322 {
3323 aspace = t->to_thread_address_space (t, ptid);
3324 gdb_assert (aspace);
3325
3326 if (targetdebug)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "target_thread_address_space (%s) = %d\n",
3329 target_pid_to_str (ptid),
3330 address_space_num (aspace));
3331 return aspace;
3332 }
3333 }
3334
3335 /* Fall-back to the "main" address space of the inferior. */
3336 inf = find_inferior_pid (ptid_get_pid (ptid));
3337
3338 if (inf == NULL || inf->aspace == NULL)
3339 internal_error (__FILE__, __LINE__,
3340 _("Can't determine the current "
3341 "address space of thread %s\n"),
3342 target_pid_to_str (ptid));
3343
3344 return inf->aspace;
3345 }
3346
3347
3348 /* Target file operations. */
3349
3350 static struct target_ops *
3351 default_fileio_target (void)
3352 {
3353 /* If we're already connected to something that can perform
3354 file I/O, use it. Otherwise, try using the native target. */
3355 if (current_target.to_stratum >= process_stratum)
3356 return current_target.beneath;
3357 else
3358 return find_default_run_target ("file I/O");
3359 }
3360
3361 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3362 target file descriptor, or -1 if an error occurs (and set
3363 *TARGET_ERRNO). */
3364 int
3365 target_fileio_open (const char *filename, int flags, int mode,
3366 int *target_errno)
3367 {
3368 struct target_ops *t;
3369
3370 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3371 {
3372 if (t->to_fileio_open != NULL)
3373 {
3374 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3375
3376 if (targetdebug)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3379 filename, flags, mode,
3380 fd, fd != -1 ? 0 : *target_errno);
3381 return fd;
3382 }
3383 }
3384
3385 *target_errno = FILEIO_ENOSYS;
3386 return -1;
3387 }
3388
3389 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3390 Return the number of bytes written, or -1 if an error occurs
3391 (and set *TARGET_ERRNO). */
3392 int
3393 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3394 ULONGEST offset, int *target_errno)
3395 {
3396 struct target_ops *t;
3397
3398 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3399 {
3400 if (t->to_fileio_pwrite != NULL)
3401 {
3402 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3403 target_errno);
3404
3405 if (targetdebug)
3406 fprintf_unfiltered (gdb_stdlog,
3407 "target_fileio_pwrite (%d,...,%d,%s) "
3408 "= %d (%d)\n",
3409 fd, len, pulongest (offset),
3410 ret, ret != -1 ? 0 : *target_errno);
3411 return ret;
3412 }
3413 }
3414
3415 *target_errno = FILEIO_ENOSYS;
3416 return -1;
3417 }
3418
3419 /* Read up to LEN bytes FD on the target into READ_BUF.
3420 Return the number of bytes read, or -1 if an error occurs
3421 (and set *TARGET_ERRNO). */
3422 int
3423 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3424 ULONGEST offset, int *target_errno)
3425 {
3426 struct target_ops *t;
3427
3428 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3429 {
3430 if (t->to_fileio_pread != NULL)
3431 {
3432 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3433 target_errno);
3434
3435 if (targetdebug)
3436 fprintf_unfiltered (gdb_stdlog,
3437 "target_fileio_pread (%d,...,%d,%s) "
3438 "= %d (%d)\n",
3439 fd, len, pulongest (offset),
3440 ret, ret != -1 ? 0 : *target_errno);
3441 return ret;
3442 }
3443 }
3444
3445 *target_errno = FILEIO_ENOSYS;
3446 return -1;
3447 }
3448
3449 /* Close FD on the target. Return 0, or -1 if an error occurs
3450 (and set *TARGET_ERRNO). */
3451 int
3452 target_fileio_close (int fd, int *target_errno)
3453 {
3454 struct target_ops *t;
3455
3456 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3457 {
3458 if (t->to_fileio_close != NULL)
3459 {
3460 int ret = t->to_fileio_close (fd, target_errno);
3461
3462 if (targetdebug)
3463 fprintf_unfiltered (gdb_stdlog,
3464 "target_fileio_close (%d) = %d (%d)\n",
3465 fd, ret, ret != -1 ? 0 : *target_errno);
3466 return ret;
3467 }
3468 }
3469
3470 *target_errno = FILEIO_ENOSYS;
3471 return -1;
3472 }
3473
3474 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3475 occurs (and set *TARGET_ERRNO). */
3476 int
3477 target_fileio_unlink (const char *filename, int *target_errno)
3478 {
3479 struct target_ops *t;
3480
3481 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3482 {
3483 if (t->to_fileio_unlink != NULL)
3484 {
3485 int ret = t->to_fileio_unlink (filename, target_errno);
3486
3487 if (targetdebug)
3488 fprintf_unfiltered (gdb_stdlog,
3489 "target_fileio_unlink (%s) = %d (%d)\n",
3490 filename, ret, ret != -1 ? 0 : *target_errno);
3491 return ret;
3492 }
3493 }
3494
3495 *target_errno = FILEIO_ENOSYS;
3496 return -1;
3497 }
3498
3499 /* Read value of symbolic link FILENAME on the target. Return a
3500 null-terminated string allocated via xmalloc, or NULL if an error
3501 occurs (and set *TARGET_ERRNO). */
3502 char *
3503 target_fileio_readlink (const char *filename, int *target_errno)
3504 {
3505 struct target_ops *t;
3506
3507 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3508 {
3509 if (t->to_fileio_readlink != NULL)
3510 {
3511 char *ret = t->to_fileio_readlink (filename, target_errno);
3512
3513 if (targetdebug)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "target_fileio_readlink (%s) = %s (%d)\n",
3516 filename, ret? ret : "(nil)",
3517 ret? 0 : *target_errno);
3518 return ret;
3519 }
3520 }
3521
3522 *target_errno = FILEIO_ENOSYS;
3523 return NULL;
3524 }
3525
3526 static void
3527 target_fileio_close_cleanup (void *opaque)
3528 {
3529 int fd = *(int *) opaque;
3530 int target_errno;
3531
3532 target_fileio_close (fd, &target_errno);
3533 }
3534
3535 /* Read target file FILENAME. Store the result in *BUF_P and
3536 return the size of the transferred data. PADDING additional bytes are
3537 available in *BUF_P. This is a helper function for
3538 target_fileio_read_alloc; see the declaration of that function for more
3539 information. */
3540
3541 static LONGEST
3542 target_fileio_read_alloc_1 (const char *filename,
3543 gdb_byte **buf_p, int padding)
3544 {
3545 struct cleanup *close_cleanup;
3546 size_t buf_alloc, buf_pos;
3547 gdb_byte *buf;
3548 LONGEST n;
3549 int fd;
3550 int target_errno;
3551
3552 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3553 if (fd == -1)
3554 return -1;
3555
3556 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3557
3558 /* Start by reading up to 4K at a time. The target will throttle
3559 this number down if necessary. */
3560 buf_alloc = 4096;
3561 buf = xmalloc (buf_alloc);
3562 buf_pos = 0;
3563 while (1)
3564 {
3565 n = target_fileio_pread (fd, &buf[buf_pos],
3566 buf_alloc - buf_pos - padding, buf_pos,
3567 &target_errno);
3568 if (n < 0)
3569 {
3570 /* An error occurred. */
3571 do_cleanups (close_cleanup);
3572 xfree (buf);
3573 return -1;
3574 }
3575 else if (n == 0)
3576 {
3577 /* Read all there was. */
3578 do_cleanups (close_cleanup);
3579 if (buf_pos == 0)
3580 xfree (buf);
3581 else
3582 *buf_p = buf;
3583 return buf_pos;
3584 }
3585
3586 buf_pos += n;
3587
3588 /* If the buffer is filling up, expand it. */
3589 if (buf_alloc < buf_pos * 2)
3590 {
3591 buf_alloc *= 2;
3592 buf = xrealloc (buf, buf_alloc);
3593 }
3594
3595 QUIT;
3596 }
3597 }
3598
3599 /* Read target file FILENAME. Store the result in *BUF_P and return
3600 the size of the transferred data. See the declaration in "target.h"
3601 function for more information about the return value. */
3602
3603 LONGEST
3604 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3605 {
3606 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3607 }
3608
3609 /* Read target file FILENAME. The result is NUL-terminated and
3610 returned as a string, allocated using xmalloc. If an error occurs
3611 or the transfer is unsupported, NULL is returned. Empty objects
3612 are returned as allocated but empty strings. A warning is issued
3613 if the result contains any embedded NUL bytes. */
3614
3615 char *
3616 target_fileio_read_stralloc (const char *filename)
3617 {
3618 gdb_byte *buffer;
3619 char *bufstr;
3620 LONGEST i, transferred;
3621
3622 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3623 bufstr = (char *) buffer;
3624
3625 if (transferred < 0)
3626 return NULL;
3627
3628 if (transferred == 0)
3629 return xstrdup ("");
3630
3631 bufstr[transferred] = 0;
3632
3633 /* Check for embedded NUL bytes; but allow trailing NULs. */
3634 for (i = strlen (bufstr); i < transferred; i++)
3635 if (bufstr[i] != 0)
3636 {
3637 warning (_("target file %s "
3638 "contained unexpected null characters"),
3639 filename);
3640 break;
3641 }
3642
3643 return bufstr;
3644 }
3645
3646
3647 static int
3648 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3649 CORE_ADDR addr, int len)
3650 {
3651 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3652 }
3653
3654 static int
3655 default_watchpoint_addr_within_range (struct target_ops *target,
3656 CORE_ADDR addr,
3657 CORE_ADDR start, int length)
3658 {
3659 return addr >= start && addr < start + length;
3660 }
3661
3662 static struct gdbarch *
3663 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3664 {
3665 return target_gdbarch ();
3666 }
3667
3668 static int
3669 return_zero (void)
3670 {
3671 return 0;
3672 }
3673
3674 static int
3675 return_one (void)
3676 {
3677 return 1;
3678 }
3679
3680 static int
3681 return_minus_one (void)
3682 {
3683 return -1;
3684 }
3685
3686 static void *
3687 return_null (void)
3688 {
3689 return 0;
3690 }
3691
3692 /*
3693 * Find the next target down the stack from the specified target.
3694 */
3695
3696 struct target_ops *
3697 find_target_beneath (struct target_ops *t)
3698 {
3699 return t->beneath;
3700 }
3701
3702 /* See target.h. */
3703
3704 struct target_ops *
3705 find_target_at (enum strata stratum)
3706 {
3707 struct target_ops *t;
3708
3709 for (t = current_target.beneath; t != NULL; t = t->beneath)
3710 if (t->to_stratum == stratum)
3711 return t;
3712
3713 return NULL;
3714 }
3715
3716 \f
3717 /* The inferior process has died. Long live the inferior! */
3718
3719 void
3720 generic_mourn_inferior (void)
3721 {
3722 ptid_t ptid;
3723
3724 ptid = inferior_ptid;
3725 inferior_ptid = null_ptid;
3726
3727 /* Mark breakpoints uninserted in case something tries to delete a
3728 breakpoint while we delete the inferior's threads (which would
3729 fail, since the inferior is long gone). */
3730 mark_breakpoints_out ();
3731
3732 if (!ptid_equal (ptid, null_ptid))
3733 {
3734 int pid = ptid_get_pid (ptid);
3735 exit_inferior (pid);
3736 }
3737
3738 /* Note this wipes step-resume breakpoints, so needs to be done
3739 after exit_inferior, which ends up referencing the step-resume
3740 breakpoints through clear_thread_inferior_resources. */
3741 breakpoint_init_inferior (inf_exited);
3742
3743 registers_changed ();
3744
3745 reopen_exec_file ();
3746 reinit_frame_cache ();
3747
3748 if (deprecated_detach_hook)
3749 deprecated_detach_hook ();
3750 }
3751 \f
3752 /* Convert a normal process ID to a string. Returns the string in a
3753 static buffer. */
3754
3755 char *
3756 normal_pid_to_str (ptid_t ptid)
3757 {
3758 static char buf[32];
3759
3760 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3761 return buf;
3762 }
3763
3764 static char *
3765 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3766 {
3767 return normal_pid_to_str (ptid);
3768 }
3769
3770 /* Error-catcher for target_find_memory_regions. */
3771 static int
3772 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3773 {
3774 error (_("Command not implemented for this target."));
3775 return 0;
3776 }
3777
3778 /* Error-catcher for target_make_corefile_notes. */
3779 static char *
3780 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3781 {
3782 error (_("Command not implemented for this target."));
3783 return NULL;
3784 }
3785
3786 /* Error-catcher for target_get_bookmark. */
3787 static gdb_byte *
3788 dummy_get_bookmark (char *ignore1, int ignore2)
3789 {
3790 tcomplain ();
3791 return NULL;
3792 }
3793
3794 /* Error-catcher for target_goto_bookmark. */
3795 static void
3796 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3797 {
3798 tcomplain ();
3799 }
3800
3801 /* Set up the handful of non-empty slots needed by the dummy target
3802 vector. */
3803
3804 static void
3805 init_dummy_target (void)
3806 {
3807 dummy_target.to_shortname = "None";
3808 dummy_target.to_longname = "None";
3809 dummy_target.to_doc = "";
3810 dummy_target.to_attach = find_default_attach;
3811 dummy_target.to_detach =
3812 (void (*)(struct target_ops *, const char *, int))target_ignore;
3813 dummy_target.to_create_inferior = find_default_create_inferior;
3814 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3815 dummy_target.to_supports_disable_randomization
3816 = find_default_supports_disable_randomization;
3817 dummy_target.to_pid_to_str = dummy_pid_to_str;
3818 dummy_target.to_stratum = dummy_stratum;
3819 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3820 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3821 dummy_target.to_get_bookmark = dummy_get_bookmark;
3822 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3823 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3824 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3825 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3826 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3827 dummy_target.to_has_execution
3828 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3829 dummy_target.to_magic = OPS_MAGIC;
3830
3831 install_dummy_methods (&dummy_target);
3832 }
3833 \f
3834 static void
3835 debug_to_open (char *args, int from_tty)
3836 {
3837 debug_target.to_open (args, from_tty);
3838
3839 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3840 }
3841
3842 void
3843 target_close (struct target_ops *targ)
3844 {
3845 gdb_assert (!target_is_pushed (targ));
3846
3847 if (targ->to_xclose != NULL)
3848 targ->to_xclose (targ);
3849 else if (targ->to_close != NULL)
3850 targ->to_close (targ);
3851
3852 if (targetdebug)
3853 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3854 }
3855
3856 void
3857 target_attach (char *args, int from_tty)
3858 {
3859 struct target_ops *t;
3860
3861 for (t = current_target.beneath; t != NULL; t = t->beneath)
3862 {
3863 if (t->to_attach != NULL)
3864 {
3865 t->to_attach (t, args, from_tty);
3866 if (targetdebug)
3867 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3868 args, from_tty);
3869 return;
3870 }
3871 }
3872
3873 internal_error (__FILE__, __LINE__,
3874 _("could not find a target to attach"));
3875 }
3876
3877 int
3878 target_thread_alive (ptid_t ptid)
3879 {
3880 struct target_ops *t;
3881
3882 for (t = current_target.beneath; t != NULL; t = t->beneath)
3883 {
3884 if (t->to_thread_alive != NULL)
3885 {
3886 int retval;
3887
3888 retval = t->to_thread_alive (t, ptid);
3889 if (targetdebug)
3890 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3891 ptid_get_pid (ptid), retval);
3892
3893 return retval;
3894 }
3895 }
3896
3897 return 0;
3898 }
3899
3900 void
3901 target_find_new_threads (void)
3902 {
3903 struct target_ops *t;
3904
3905 for (t = current_target.beneath; t != NULL; t = t->beneath)
3906 {
3907 if (t->to_find_new_threads != NULL)
3908 {
3909 t->to_find_new_threads (t);
3910 if (targetdebug)
3911 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3912
3913 return;
3914 }
3915 }
3916 }
3917
3918 void
3919 target_stop (ptid_t ptid)
3920 {
3921 if (!may_stop)
3922 {
3923 warning (_("May not interrupt or stop the target, ignoring attempt"));
3924 return;
3925 }
3926
3927 (*current_target.to_stop) (ptid);
3928 }
3929
3930 static void
3931 debug_to_post_attach (struct target_ops *self, int pid)
3932 {
3933 debug_target.to_post_attach (&debug_target, pid);
3934
3935 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3936 }
3937
3938 /* Concatenate ELEM to LIST, a comma separate list, and return the
3939 result. The LIST incoming argument is released. */
3940
3941 static char *
3942 str_comma_list_concat_elem (char *list, const char *elem)
3943 {
3944 if (list == NULL)
3945 return xstrdup (elem);
3946 else
3947 return reconcat (list, list, ", ", elem, (char *) NULL);
3948 }
3949
3950 /* Helper for target_options_to_string. If OPT is present in
3951 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3952 Returns the new resulting string. OPT is removed from
3953 TARGET_OPTIONS. */
3954
3955 static char *
3956 do_option (int *target_options, char *ret,
3957 int opt, char *opt_str)
3958 {
3959 if ((*target_options & opt) != 0)
3960 {
3961 ret = str_comma_list_concat_elem (ret, opt_str);
3962 *target_options &= ~opt;
3963 }
3964
3965 return ret;
3966 }
3967
3968 char *
3969 target_options_to_string (int target_options)
3970 {
3971 char *ret = NULL;
3972
3973 #define DO_TARG_OPTION(OPT) \
3974 ret = do_option (&target_options, ret, OPT, #OPT)
3975
3976 DO_TARG_OPTION (TARGET_WNOHANG);
3977
3978 if (target_options != 0)
3979 ret = str_comma_list_concat_elem (ret, "unknown???");
3980
3981 if (ret == NULL)
3982 ret = xstrdup ("");
3983 return ret;
3984 }
3985
3986 static void
3987 debug_print_register (const char * func,
3988 struct regcache *regcache, int regno)
3989 {
3990 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3991
3992 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3993 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3994 && gdbarch_register_name (gdbarch, regno) != NULL
3995 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3996 fprintf_unfiltered (gdb_stdlog, "(%s)",
3997 gdbarch_register_name (gdbarch, regno));
3998 else
3999 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
4000 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
4001 {
4002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4003 int i, size = register_size (gdbarch, regno);
4004 gdb_byte buf[MAX_REGISTER_SIZE];
4005
4006 regcache_raw_collect (regcache, regno, buf);
4007 fprintf_unfiltered (gdb_stdlog, " = ");
4008 for (i = 0; i < size; i++)
4009 {
4010 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4011 }
4012 if (size <= sizeof (LONGEST))
4013 {
4014 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
4015
4016 fprintf_unfiltered (gdb_stdlog, " %s %s",
4017 core_addr_to_string_nz (val), plongest (val));
4018 }
4019 }
4020 fprintf_unfiltered (gdb_stdlog, "\n");
4021 }
4022
4023 void
4024 target_fetch_registers (struct regcache *regcache, int regno)
4025 {
4026 struct target_ops *t;
4027
4028 for (t = current_target.beneath; t != NULL; t = t->beneath)
4029 {
4030 if (t->to_fetch_registers != NULL)
4031 {
4032 t->to_fetch_registers (t, regcache, regno);
4033 if (targetdebug)
4034 debug_print_register ("target_fetch_registers", regcache, regno);
4035 return;
4036 }
4037 }
4038 }
4039
4040 void
4041 target_store_registers (struct regcache *regcache, int regno)
4042 {
4043 struct target_ops *t;
4044
4045 if (!may_write_registers)
4046 error (_("Writing to registers is not allowed (regno %d)"), regno);
4047
4048 current_target.to_store_registers (&current_target, regcache, regno);
4049 if (targetdebug)
4050 {
4051 debug_print_register ("target_store_registers", regcache, regno);
4052 }
4053 }
4054
4055 int
4056 target_core_of_thread (ptid_t ptid)
4057 {
4058 struct target_ops *t;
4059
4060 for (t = current_target.beneath; t != NULL; t = t->beneath)
4061 {
4062 if (t->to_core_of_thread != NULL)
4063 {
4064 int retval = t->to_core_of_thread (t, ptid);
4065
4066 if (targetdebug)
4067 fprintf_unfiltered (gdb_stdlog,
4068 "target_core_of_thread (%d) = %d\n",
4069 ptid_get_pid (ptid), retval);
4070 return retval;
4071 }
4072 }
4073
4074 return -1;
4075 }
4076
4077 int
4078 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
4079 {
4080 struct target_ops *t;
4081
4082 for (t = current_target.beneath; t != NULL; t = t->beneath)
4083 {
4084 if (t->to_verify_memory != NULL)
4085 {
4086 int retval = t->to_verify_memory (t, data, memaddr, size);
4087
4088 if (targetdebug)
4089 fprintf_unfiltered (gdb_stdlog,
4090 "target_verify_memory (%s, %s) = %d\n",
4091 paddress (target_gdbarch (), memaddr),
4092 pulongest (size),
4093 retval);
4094 return retval;
4095 }
4096 }
4097
4098 tcomplain ();
4099 }
4100
4101 /* The documentation for this function is in its prototype declaration in
4102 target.h. */
4103
4104 int
4105 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4106 {
4107 struct target_ops *t;
4108
4109 for (t = current_target.beneath; t != NULL; t = t->beneath)
4110 if (t->to_insert_mask_watchpoint != NULL)
4111 {
4112 int ret;
4113
4114 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4115
4116 if (targetdebug)
4117 fprintf_unfiltered (gdb_stdlog, "\
4118 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4119 core_addr_to_string (addr),
4120 core_addr_to_string (mask), rw, ret);
4121
4122 return ret;
4123 }
4124
4125 return 1;
4126 }
4127
4128 /* The documentation for this function is in its prototype declaration in
4129 target.h. */
4130
4131 int
4132 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4133 {
4134 struct target_ops *t;
4135
4136 for (t = current_target.beneath; t != NULL; t = t->beneath)
4137 if (t->to_remove_mask_watchpoint != NULL)
4138 {
4139 int ret;
4140
4141 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4142
4143 if (targetdebug)
4144 fprintf_unfiltered (gdb_stdlog, "\
4145 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4146 core_addr_to_string (addr),
4147 core_addr_to_string (mask), rw, ret);
4148
4149 return ret;
4150 }
4151
4152 return 1;
4153 }
4154
4155 /* The documentation for this function is in its prototype declaration
4156 in target.h. */
4157
4158 int
4159 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4160 {
4161 struct target_ops *t;
4162
4163 for (t = current_target.beneath; t != NULL; t = t->beneath)
4164 if (t->to_masked_watch_num_registers != NULL)
4165 return t->to_masked_watch_num_registers (t, addr, mask);
4166
4167 return -1;
4168 }
4169
4170 /* The documentation for this function is in its prototype declaration
4171 in target.h. */
4172
4173 int
4174 target_ranged_break_num_registers (void)
4175 {
4176 struct target_ops *t;
4177
4178 for (t = current_target.beneath; t != NULL; t = t->beneath)
4179 if (t->to_ranged_break_num_registers != NULL)
4180 return t->to_ranged_break_num_registers (t);
4181
4182 return -1;
4183 }
4184
4185 /* See target.h. */
4186
4187 struct btrace_target_info *
4188 target_enable_btrace (ptid_t ptid)
4189 {
4190 struct target_ops *t;
4191
4192 for (t = current_target.beneath; t != NULL; t = t->beneath)
4193 if (t->to_enable_btrace != NULL)
4194 return t->to_enable_btrace (ptid);
4195
4196 tcomplain ();
4197 return NULL;
4198 }
4199
4200 /* See target.h. */
4201
4202 void
4203 target_disable_btrace (struct btrace_target_info *btinfo)
4204 {
4205 struct target_ops *t;
4206
4207 for (t = current_target.beneath; t != NULL; t = t->beneath)
4208 if (t->to_disable_btrace != NULL)
4209 {
4210 t->to_disable_btrace (btinfo);
4211 return;
4212 }
4213
4214 tcomplain ();
4215 }
4216
4217 /* See target.h. */
4218
4219 void
4220 target_teardown_btrace (struct btrace_target_info *btinfo)
4221 {
4222 struct target_ops *t;
4223
4224 for (t = current_target.beneath; t != NULL; t = t->beneath)
4225 if (t->to_teardown_btrace != NULL)
4226 {
4227 t->to_teardown_btrace (btinfo);
4228 return;
4229 }
4230
4231 tcomplain ();
4232 }
4233
4234 /* See target.h. */
4235
4236 enum btrace_error
4237 target_read_btrace (VEC (btrace_block_s) **btrace,
4238 struct btrace_target_info *btinfo,
4239 enum btrace_read_type type)
4240 {
4241 struct target_ops *t;
4242
4243 for (t = current_target.beneath; t != NULL; t = t->beneath)
4244 if (t->to_read_btrace != NULL)
4245 return t->to_read_btrace (btrace, btinfo, type);
4246
4247 tcomplain ();
4248 return BTRACE_ERR_NOT_SUPPORTED;
4249 }
4250
4251 /* See target.h. */
4252
4253 void
4254 target_stop_recording (void)
4255 {
4256 struct target_ops *t;
4257
4258 for (t = current_target.beneath; t != NULL; t = t->beneath)
4259 if (t->to_stop_recording != NULL)
4260 {
4261 t->to_stop_recording ();
4262 return;
4263 }
4264
4265 /* This is optional. */
4266 }
4267
4268 /* See target.h. */
4269
4270 void
4271 target_info_record (void)
4272 {
4273 struct target_ops *t;
4274
4275 for (t = current_target.beneath; t != NULL; t = t->beneath)
4276 if (t->to_info_record != NULL)
4277 {
4278 t->to_info_record ();
4279 return;
4280 }
4281
4282 tcomplain ();
4283 }
4284
4285 /* See target.h. */
4286
4287 void
4288 target_save_record (const char *filename)
4289 {
4290 struct target_ops *t;
4291
4292 for (t = current_target.beneath; t != NULL; t = t->beneath)
4293 if (t->to_save_record != NULL)
4294 {
4295 t->to_save_record (filename);
4296 return;
4297 }
4298
4299 tcomplain ();
4300 }
4301
4302 /* See target.h. */
4303
4304 int
4305 target_supports_delete_record (void)
4306 {
4307 struct target_ops *t;
4308
4309 for (t = current_target.beneath; t != NULL; t = t->beneath)
4310 if (t->to_delete_record != NULL)
4311 return 1;
4312
4313 return 0;
4314 }
4315
4316 /* See target.h. */
4317
4318 void
4319 target_delete_record (void)
4320 {
4321 struct target_ops *t;
4322
4323 for (t = current_target.beneath; t != NULL; t = t->beneath)
4324 if (t->to_delete_record != NULL)
4325 {
4326 t->to_delete_record ();
4327 return;
4328 }
4329
4330 tcomplain ();
4331 }
4332
4333 /* See target.h. */
4334
4335 int
4336 target_record_is_replaying (void)
4337 {
4338 struct target_ops *t;
4339
4340 for (t = current_target.beneath; t != NULL; t = t->beneath)
4341 if (t->to_record_is_replaying != NULL)
4342 return t->to_record_is_replaying ();
4343
4344 return 0;
4345 }
4346
4347 /* See target.h. */
4348
4349 void
4350 target_goto_record_begin (void)
4351 {
4352 struct target_ops *t;
4353
4354 for (t = current_target.beneath; t != NULL; t = t->beneath)
4355 if (t->to_goto_record_begin != NULL)
4356 {
4357 t->to_goto_record_begin ();
4358 return;
4359 }
4360
4361 tcomplain ();
4362 }
4363
4364 /* See target.h. */
4365
4366 void
4367 target_goto_record_end (void)
4368 {
4369 struct target_ops *t;
4370
4371 for (t = current_target.beneath; t != NULL; t = t->beneath)
4372 if (t->to_goto_record_end != NULL)
4373 {
4374 t->to_goto_record_end ();
4375 return;
4376 }
4377
4378 tcomplain ();
4379 }
4380
4381 /* See target.h. */
4382
4383 void
4384 target_goto_record (ULONGEST insn)
4385 {
4386 struct target_ops *t;
4387
4388 for (t = current_target.beneath; t != NULL; t = t->beneath)
4389 if (t->to_goto_record != NULL)
4390 {
4391 t->to_goto_record (insn);
4392 return;
4393 }
4394
4395 tcomplain ();
4396 }
4397
4398 /* See target.h. */
4399
4400 void
4401 target_insn_history (int size, int flags)
4402 {
4403 struct target_ops *t;
4404
4405 for (t = current_target.beneath; t != NULL; t = t->beneath)
4406 if (t->to_insn_history != NULL)
4407 {
4408 t->to_insn_history (size, flags);
4409 return;
4410 }
4411
4412 tcomplain ();
4413 }
4414
4415 /* See target.h. */
4416
4417 void
4418 target_insn_history_from (ULONGEST from, int size, int flags)
4419 {
4420 struct target_ops *t;
4421
4422 for (t = current_target.beneath; t != NULL; t = t->beneath)
4423 if (t->to_insn_history_from != NULL)
4424 {
4425 t->to_insn_history_from (from, size, flags);
4426 return;
4427 }
4428
4429 tcomplain ();
4430 }
4431
4432 /* See target.h. */
4433
4434 void
4435 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4436 {
4437 struct target_ops *t;
4438
4439 for (t = current_target.beneath; t != NULL; t = t->beneath)
4440 if (t->to_insn_history_range != NULL)
4441 {
4442 t->to_insn_history_range (begin, end, flags);
4443 return;
4444 }
4445
4446 tcomplain ();
4447 }
4448
4449 /* See target.h. */
4450
4451 void
4452 target_call_history (int size, int flags)
4453 {
4454 struct target_ops *t;
4455
4456 for (t = current_target.beneath; t != NULL; t = t->beneath)
4457 if (t->to_call_history != NULL)
4458 {
4459 t->to_call_history (size, flags);
4460 return;
4461 }
4462
4463 tcomplain ();
4464 }
4465
4466 /* See target.h. */
4467
4468 void
4469 target_call_history_from (ULONGEST begin, int size, int flags)
4470 {
4471 struct target_ops *t;
4472
4473 for (t = current_target.beneath; t != NULL; t = t->beneath)
4474 if (t->to_call_history_from != NULL)
4475 {
4476 t->to_call_history_from (begin, size, flags);
4477 return;
4478 }
4479
4480 tcomplain ();
4481 }
4482
4483 /* See target.h. */
4484
4485 void
4486 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4487 {
4488 struct target_ops *t;
4489
4490 for (t = current_target.beneath; t != NULL; t = t->beneath)
4491 if (t->to_call_history_range != NULL)
4492 {
4493 t->to_call_history_range (begin, end, flags);
4494 return;
4495 }
4496
4497 tcomplain ();
4498 }
4499
4500 static void
4501 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4502 {
4503 debug_target.to_prepare_to_store (&debug_target, regcache);
4504
4505 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4506 }
4507
4508 /* See target.h. */
4509
4510 const struct frame_unwind *
4511 target_get_unwinder (void)
4512 {
4513 struct target_ops *t;
4514
4515 for (t = current_target.beneath; t != NULL; t = t->beneath)
4516 if (t->to_get_unwinder != NULL)
4517 return t->to_get_unwinder;
4518
4519 return NULL;
4520 }
4521
4522 /* See target.h. */
4523
4524 const struct frame_unwind *
4525 target_get_tailcall_unwinder (void)
4526 {
4527 struct target_ops *t;
4528
4529 for (t = current_target.beneath; t != NULL; t = t->beneath)
4530 if (t->to_get_tailcall_unwinder != NULL)
4531 return t->to_get_tailcall_unwinder;
4532
4533 return NULL;
4534 }
4535
4536 /* See target.h. */
4537
4538 CORE_ADDR
4539 forward_target_decr_pc_after_break (struct target_ops *ops,
4540 struct gdbarch *gdbarch)
4541 {
4542 for (; ops != NULL; ops = ops->beneath)
4543 if (ops->to_decr_pc_after_break != NULL)
4544 return ops->to_decr_pc_after_break (ops, gdbarch);
4545
4546 return gdbarch_decr_pc_after_break (gdbarch);
4547 }
4548
4549 /* See target.h. */
4550
4551 CORE_ADDR
4552 target_decr_pc_after_break (struct gdbarch *gdbarch)
4553 {
4554 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4555 }
4556
4557 static int
4558 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4559 int write, struct mem_attrib *attrib,
4560 struct target_ops *target)
4561 {
4562 int retval;
4563
4564 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4565 attrib, target);
4566
4567 fprintf_unfiltered (gdb_stdlog,
4568 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4569 paddress (target_gdbarch (), memaddr), len,
4570 write ? "write" : "read", retval);
4571
4572 if (retval > 0)
4573 {
4574 int i;
4575
4576 fputs_unfiltered (", bytes =", gdb_stdlog);
4577 for (i = 0; i < retval; i++)
4578 {
4579 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4580 {
4581 if (targetdebug < 2 && i > 0)
4582 {
4583 fprintf_unfiltered (gdb_stdlog, " ...");
4584 break;
4585 }
4586 fprintf_unfiltered (gdb_stdlog, "\n");
4587 }
4588
4589 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4590 }
4591 }
4592
4593 fputc_unfiltered ('\n', gdb_stdlog);
4594
4595 return retval;
4596 }
4597
4598 static void
4599 debug_to_files_info (struct target_ops *target)
4600 {
4601 debug_target.to_files_info (target);
4602
4603 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4604 }
4605
4606 static int
4607 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4608 struct bp_target_info *bp_tgt)
4609 {
4610 int retval;
4611
4612 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4613
4614 fprintf_unfiltered (gdb_stdlog,
4615 "target_insert_breakpoint (%s, xxx) = %ld\n",
4616 core_addr_to_string (bp_tgt->placed_address),
4617 (unsigned long) retval);
4618 return retval;
4619 }
4620
4621 static int
4622 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4623 struct bp_target_info *bp_tgt)
4624 {
4625 int retval;
4626
4627 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4628
4629 fprintf_unfiltered (gdb_stdlog,
4630 "target_remove_breakpoint (%s, xxx) = %ld\n",
4631 core_addr_to_string (bp_tgt->placed_address),
4632 (unsigned long) retval);
4633 return retval;
4634 }
4635
4636 static int
4637 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4638 int type, int cnt, int from_tty)
4639 {
4640 int retval;
4641
4642 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4643 type, cnt, from_tty);
4644
4645 fprintf_unfiltered (gdb_stdlog,
4646 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4647 (unsigned long) type,
4648 (unsigned long) cnt,
4649 (unsigned long) from_tty,
4650 (unsigned long) retval);
4651 return retval;
4652 }
4653
4654 static int
4655 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4656 CORE_ADDR addr, int len)
4657 {
4658 CORE_ADDR retval;
4659
4660 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4661 addr, len);
4662
4663 fprintf_unfiltered (gdb_stdlog,
4664 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4665 core_addr_to_string (addr), (unsigned long) len,
4666 core_addr_to_string (retval));
4667 return retval;
4668 }
4669
4670 static int
4671 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4672 CORE_ADDR addr, int len, int rw,
4673 struct expression *cond)
4674 {
4675 int retval;
4676
4677 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4678 addr, len,
4679 rw, cond);
4680
4681 fprintf_unfiltered (gdb_stdlog,
4682 "target_can_accel_watchpoint_condition "
4683 "(%s, %d, %d, %s) = %ld\n",
4684 core_addr_to_string (addr), len, rw,
4685 host_address_to_string (cond), (unsigned long) retval);
4686 return retval;
4687 }
4688
4689 static int
4690 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4691 {
4692 int retval;
4693
4694 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4695
4696 fprintf_unfiltered (gdb_stdlog,
4697 "target_stopped_by_watchpoint () = %ld\n",
4698 (unsigned long) retval);
4699 return retval;
4700 }
4701
4702 static int
4703 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4704 {
4705 int retval;
4706
4707 retval = debug_target.to_stopped_data_address (target, addr);
4708
4709 fprintf_unfiltered (gdb_stdlog,
4710 "target_stopped_data_address ([%s]) = %ld\n",
4711 core_addr_to_string (*addr),
4712 (unsigned long)retval);
4713 return retval;
4714 }
4715
4716 static int
4717 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4718 CORE_ADDR addr,
4719 CORE_ADDR start, int length)
4720 {
4721 int retval;
4722
4723 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4724 start, length);
4725
4726 fprintf_filtered (gdb_stdlog,
4727 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4728 core_addr_to_string (addr), core_addr_to_string (start),
4729 length, retval);
4730 return retval;
4731 }
4732
4733 static int
4734 debug_to_insert_hw_breakpoint (struct target_ops *self,
4735 struct gdbarch *gdbarch,
4736 struct bp_target_info *bp_tgt)
4737 {
4738 int retval;
4739
4740 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4741 gdbarch, bp_tgt);
4742
4743 fprintf_unfiltered (gdb_stdlog,
4744 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4745 core_addr_to_string (bp_tgt->placed_address),
4746 (unsigned long) retval);
4747 return retval;
4748 }
4749
4750 static int
4751 debug_to_remove_hw_breakpoint (struct target_ops *self,
4752 struct gdbarch *gdbarch,
4753 struct bp_target_info *bp_tgt)
4754 {
4755 int retval;
4756
4757 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4758 gdbarch, bp_tgt);
4759
4760 fprintf_unfiltered (gdb_stdlog,
4761 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4762 core_addr_to_string (bp_tgt->placed_address),
4763 (unsigned long) retval);
4764 return retval;
4765 }
4766
4767 static int
4768 debug_to_insert_watchpoint (struct target_ops *self,
4769 CORE_ADDR addr, int len, int type,
4770 struct expression *cond)
4771 {
4772 int retval;
4773
4774 retval = debug_target.to_insert_watchpoint (&debug_target,
4775 addr, len, type, cond);
4776
4777 fprintf_unfiltered (gdb_stdlog,
4778 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4779 core_addr_to_string (addr), len, type,
4780 host_address_to_string (cond), (unsigned long) retval);
4781 return retval;
4782 }
4783
4784 static int
4785 debug_to_remove_watchpoint (struct target_ops *self,
4786 CORE_ADDR addr, int len, int type,
4787 struct expression *cond)
4788 {
4789 int retval;
4790
4791 retval = debug_target.to_remove_watchpoint (&debug_target,
4792 addr, len, type, cond);
4793
4794 fprintf_unfiltered (gdb_stdlog,
4795 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4796 core_addr_to_string (addr), len, type,
4797 host_address_to_string (cond), (unsigned long) retval);
4798 return retval;
4799 }
4800
4801 static void
4802 debug_to_terminal_init (struct target_ops *self)
4803 {
4804 debug_target.to_terminal_init (&debug_target);
4805
4806 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4807 }
4808
4809 static void
4810 debug_to_terminal_inferior (struct target_ops *self)
4811 {
4812 debug_target.to_terminal_inferior (&debug_target);
4813
4814 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4815 }
4816
4817 static void
4818 debug_to_terminal_ours_for_output (struct target_ops *self)
4819 {
4820 debug_target.to_terminal_ours_for_output (&debug_target);
4821
4822 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4823 }
4824
4825 static void
4826 debug_to_terminal_ours (struct target_ops *self)
4827 {
4828 debug_target.to_terminal_ours (&debug_target);
4829
4830 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4831 }
4832
4833 static void
4834 debug_to_terminal_save_ours (struct target_ops *self)
4835 {
4836 debug_target.to_terminal_save_ours (&debug_target);
4837
4838 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4839 }
4840
4841 static void
4842 debug_to_terminal_info (struct target_ops *self,
4843 const char *arg, int from_tty)
4844 {
4845 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4846
4847 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4848 from_tty);
4849 }
4850
4851 static void
4852 debug_to_load (struct target_ops *self, char *args, int from_tty)
4853 {
4854 debug_target.to_load (&debug_target, args, from_tty);
4855
4856 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4857 }
4858
4859 static void
4860 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4861 {
4862 debug_target.to_post_startup_inferior (&debug_target, ptid);
4863
4864 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4865 ptid_get_pid (ptid));
4866 }
4867
4868 static int
4869 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4870 {
4871 int retval;
4872
4873 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4874
4875 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4876 pid, retval);
4877
4878 return retval;
4879 }
4880
4881 static int
4882 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4883 {
4884 int retval;
4885
4886 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4887
4888 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4889 pid, retval);
4890
4891 return retval;
4892 }
4893
4894 static int
4895 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4896 {
4897 int retval;
4898
4899 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4900
4901 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4902 pid, retval);
4903
4904 return retval;
4905 }
4906
4907 static int
4908 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4909 {
4910 int retval;
4911
4912 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4913
4914 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4915 pid, retval);
4916
4917 return retval;
4918 }
4919
4920 static int
4921 debug_to_insert_exec_catchpoint (int pid)
4922 {
4923 int retval;
4924
4925 retval = debug_target.to_insert_exec_catchpoint (pid);
4926
4927 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4928 pid, retval);
4929
4930 return retval;
4931 }
4932
4933 static int
4934 debug_to_remove_exec_catchpoint (int pid)
4935 {
4936 int retval;
4937
4938 retval = debug_target.to_remove_exec_catchpoint (pid);
4939
4940 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4941 pid, retval);
4942
4943 return retval;
4944 }
4945
4946 static int
4947 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4948 {
4949 int has_exited;
4950
4951 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4952
4953 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4954 pid, wait_status, *exit_status, has_exited);
4955
4956 return has_exited;
4957 }
4958
4959 static int
4960 debug_to_can_run (void)
4961 {
4962 int retval;
4963
4964 retval = debug_target.to_can_run ();
4965
4966 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4967
4968 return retval;
4969 }
4970
4971 static struct gdbarch *
4972 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4973 {
4974 struct gdbarch *retval;
4975
4976 retval = debug_target.to_thread_architecture (ops, ptid);
4977
4978 fprintf_unfiltered (gdb_stdlog,
4979 "target_thread_architecture (%s) = %s [%s]\n",
4980 target_pid_to_str (ptid),
4981 host_address_to_string (retval),
4982 gdbarch_bfd_arch_info (retval)->printable_name);
4983 return retval;
4984 }
4985
4986 static void
4987 debug_to_stop (ptid_t ptid)
4988 {
4989 debug_target.to_stop (ptid);
4990
4991 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4992 target_pid_to_str (ptid));
4993 }
4994
4995 static void
4996 debug_to_rcmd (char *command,
4997 struct ui_file *outbuf)
4998 {
4999 debug_target.to_rcmd (command, outbuf);
5000 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
5001 }
5002
5003 static char *
5004 debug_to_pid_to_exec_file (int pid)
5005 {
5006 char *exec_file;
5007
5008 exec_file = debug_target.to_pid_to_exec_file (pid);
5009
5010 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
5011 pid, exec_file);
5012
5013 return exec_file;
5014 }
5015
5016 static void
5017 setup_target_debug (void)
5018 {
5019 memcpy (&debug_target, &current_target, sizeof debug_target);
5020
5021 current_target.to_open = debug_to_open;
5022 current_target.to_post_attach = debug_to_post_attach;
5023 current_target.to_prepare_to_store = debug_to_prepare_to_store;
5024 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
5025 current_target.to_files_info = debug_to_files_info;
5026 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
5027 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
5028 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
5029 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
5030 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
5031 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
5032 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
5033 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
5034 current_target.to_stopped_data_address = debug_to_stopped_data_address;
5035 current_target.to_watchpoint_addr_within_range
5036 = debug_to_watchpoint_addr_within_range;
5037 current_target.to_region_ok_for_hw_watchpoint
5038 = debug_to_region_ok_for_hw_watchpoint;
5039 current_target.to_can_accel_watchpoint_condition
5040 = debug_to_can_accel_watchpoint_condition;
5041 current_target.to_terminal_init = debug_to_terminal_init;
5042 current_target.to_terminal_inferior = debug_to_terminal_inferior;
5043 current_target.to_terminal_ours_for_output
5044 = debug_to_terminal_ours_for_output;
5045 current_target.to_terminal_ours = debug_to_terminal_ours;
5046 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
5047 current_target.to_terminal_info = debug_to_terminal_info;
5048 current_target.to_load = debug_to_load;
5049 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
5050 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
5051 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
5052 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
5053 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
5054 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
5055 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
5056 current_target.to_has_exited = debug_to_has_exited;
5057 current_target.to_can_run = debug_to_can_run;
5058 current_target.to_stop = debug_to_stop;
5059 current_target.to_rcmd = debug_to_rcmd;
5060 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
5061 current_target.to_thread_architecture = debug_to_thread_architecture;
5062 }
5063 \f
5064
5065 static char targ_desc[] =
5066 "Names of targets and files being debugged.\nShows the entire \
5067 stack of targets currently in use (including the exec-file,\n\
5068 core-file, and process, if any), as well as the symbol file name.";
5069
5070 static void
5071 do_monitor_command (char *cmd,
5072 int from_tty)
5073 {
5074 if ((current_target.to_rcmd
5075 == (void (*) (char *, struct ui_file *)) tcomplain)
5076 || (current_target.to_rcmd == debug_to_rcmd
5077 && (debug_target.to_rcmd
5078 == (void (*) (char *, struct ui_file *)) tcomplain)))
5079 error (_("\"monitor\" command not supported by this target."));
5080 target_rcmd (cmd, gdb_stdtarg);
5081 }
5082
5083 /* Print the name of each layers of our target stack. */
5084
5085 static void
5086 maintenance_print_target_stack (char *cmd, int from_tty)
5087 {
5088 struct target_ops *t;
5089
5090 printf_filtered (_("The current target stack is:\n"));
5091
5092 for (t = target_stack; t != NULL; t = t->beneath)
5093 {
5094 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
5095 }
5096 }
5097
5098 /* Controls if async mode is permitted. */
5099 int target_async_permitted = 0;
5100
5101 /* The set command writes to this variable. If the inferior is
5102 executing, target_async_permitted is *not* updated. */
5103 static int target_async_permitted_1 = 0;
5104
5105 static void
5106 set_target_async_command (char *args, int from_tty,
5107 struct cmd_list_element *c)
5108 {
5109 if (have_live_inferiors ())
5110 {
5111 target_async_permitted_1 = target_async_permitted;
5112 error (_("Cannot change this setting while the inferior is running."));
5113 }
5114
5115 target_async_permitted = target_async_permitted_1;
5116 }
5117
5118 static void
5119 show_target_async_command (struct ui_file *file, int from_tty,
5120 struct cmd_list_element *c,
5121 const char *value)
5122 {
5123 fprintf_filtered (file,
5124 _("Controlling the inferior in "
5125 "asynchronous mode is %s.\n"), value);
5126 }
5127
5128 /* Temporary copies of permission settings. */
5129
5130 static int may_write_registers_1 = 1;
5131 static int may_write_memory_1 = 1;
5132 static int may_insert_breakpoints_1 = 1;
5133 static int may_insert_tracepoints_1 = 1;
5134 static int may_insert_fast_tracepoints_1 = 1;
5135 static int may_stop_1 = 1;
5136
5137 /* Make the user-set values match the real values again. */
5138
5139 void
5140 update_target_permissions (void)
5141 {
5142 may_write_registers_1 = may_write_registers;
5143 may_write_memory_1 = may_write_memory;
5144 may_insert_breakpoints_1 = may_insert_breakpoints;
5145 may_insert_tracepoints_1 = may_insert_tracepoints;
5146 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5147 may_stop_1 = may_stop;
5148 }
5149
5150 /* The one function handles (most of) the permission flags in the same
5151 way. */
5152
5153 static void
5154 set_target_permissions (char *args, int from_tty,
5155 struct cmd_list_element *c)
5156 {
5157 if (target_has_execution)
5158 {
5159 update_target_permissions ();
5160 error (_("Cannot change this setting while the inferior is running."));
5161 }
5162
5163 /* Make the real values match the user-changed values. */
5164 may_write_registers = may_write_registers_1;
5165 may_insert_breakpoints = may_insert_breakpoints_1;
5166 may_insert_tracepoints = may_insert_tracepoints_1;
5167 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5168 may_stop = may_stop_1;
5169 update_observer_mode ();
5170 }
5171
5172 /* Set memory write permission independently of observer mode. */
5173
5174 static void
5175 set_write_memory_permission (char *args, int from_tty,
5176 struct cmd_list_element *c)
5177 {
5178 /* Make the real values match the user-changed values. */
5179 may_write_memory = may_write_memory_1;
5180 update_observer_mode ();
5181 }
5182
5183
5184 void
5185 initialize_targets (void)
5186 {
5187 init_dummy_target ();
5188 push_target (&dummy_target);
5189
5190 add_info ("target", target_info, targ_desc);
5191 add_info ("files", target_info, targ_desc);
5192
5193 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5194 Set target debugging."), _("\
5195 Show target debugging."), _("\
5196 When non-zero, target debugging is enabled. Higher numbers are more\n\
5197 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5198 command."),
5199 NULL,
5200 show_targetdebug,
5201 &setdebuglist, &showdebuglist);
5202
5203 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5204 &trust_readonly, _("\
5205 Set mode for reading from readonly sections."), _("\
5206 Show mode for reading from readonly sections."), _("\
5207 When this mode is on, memory reads from readonly sections (such as .text)\n\
5208 will be read from the object file instead of from the target. This will\n\
5209 result in significant performance improvement for remote targets."),
5210 NULL,
5211 show_trust_readonly,
5212 &setlist, &showlist);
5213
5214 add_com ("monitor", class_obscure, do_monitor_command,
5215 _("Send a command to the remote monitor (remote targets only)."));
5216
5217 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5218 _("Print the name of each layer of the internal target stack."),
5219 &maintenanceprintlist);
5220
5221 add_setshow_boolean_cmd ("target-async", no_class,
5222 &target_async_permitted_1, _("\
5223 Set whether gdb controls the inferior in asynchronous mode."), _("\
5224 Show whether gdb controls the inferior in asynchronous mode."), _("\
5225 Tells gdb whether to control the inferior in asynchronous mode."),
5226 set_target_async_command,
5227 show_target_async_command,
5228 &setlist,
5229 &showlist);
5230
5231 add_setshow_boolean_cmd ("may-write-registers", class_support,
5232 &may_write_registers_1, _("\
5233 Set permission to write into registers."), _("\
5234 Show permission to write into registers."), _("\
5235 When this permission is on, GDB may write into the target's registers.\n\
5236 Otherwise, any sort of write attempt will result in an error."),
5237 set_target_permissions, NULL,
5238 &setlist, &showlist);
5239
5240 add_setshow_boolean_cmd ("may-write-memory", class_support,
5241 &may_write_memory_1, _("\
5242 Set permission to write into target memory."), _("\
5243 Show permission to write into target memory."), _("\
5244 When this permission is on, GDB may write into the target's memory.\n\
5245 Otherwise, any sort of write attempt will result in an error."),
5246 set_write_memory_permission, NULL,
5247 &setlist, &showlist);
5248
5249 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5250 &may_insert_breakpoints_1, _("\
5251 Set permission to insert breakpoints in the target."), _("\
5252 Show permission to insert breakpoints in the target."), _("\
5253 When this permission is on, GDB may insert breakpoints in the program.\n\
5254 Otherwise, any sort of insertion attempt will result in an error."),
5255 set_target_permissions, NULL,
5256 &setlist, &showlist);
5257
5258 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5259 &may_insert_tracepoints_1, _("\
5260 Set permission to insert tracepoints in the target."), _("\
5261 Show permission to insert tracepoints in the target."), _("\
5262 When this permission is on, GDB may insert tracepoints in the program.\n\
5263 Otherwise, any sort of insertion attempt will result in an error."),
5264 set_target_permissions, NULL,
5265 &setlist, &showlist);
5266
5267 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5268 &may_insert_fast_tracepoints_1, _("\
5269 Set permission to insert fast tracepoints in the target."), _("\
5270 Show permission to insert fast tracepoints in the target."), _("\
5271 When this permission is on, GDB may insert fast tracepoints.\n\
5272 Otherwise, any sort of insertion attempt will result in an error."),
5273 set_target_permissions, NULL,
5274 &setlist, &showlist);
5275
5276 add_setshow_boolean_cmd ("may-interrupt", class_support,
5277 &may_stop_1, _("\
5278 Set permission to interrupt or signal the target."), _("\
5279 Show permission to interrupt or signal the target."), _("\
5280 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5281 Otherwise, any attempt to interrupt or stop will be ignored."),
5282 set_target_permissions, NULL,
5283 &setlist, &showlist);
5284 }
This page took 0.147747 seconds and 4 git commands to generate.