* target.h (struct target_ops) <to_has_execution>: Add ptid_t
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_index;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* These globals control whether GDB attempts to perform these
198 operations; they are useful for targets that need to prevent
199 inadvertant disruption, such as in non-stop mode. */
200
201 int may_write_registers = 1;
202
203 int may_write_memory = 1;
204
205 int may_insert_breakpoints = 1;
206
207 int may_insert_tracepoints = 1;
208
209 int may_insert_fast_tracepoints = 1;
210
211 int may_stop = 1;
212
213 /* Non-zero if we want to see trace of target level stuff. */
214
215 static int targetdebug = 0;
216 static void
217 show_targetdebug (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
221 }
222
223 static void setup_target_debug (void);
224
225 /* The option sets this. */
226 static int stack_cache_enabled_p_1 = 1;
227 /* And set_stack_cache_enabled_p updates this.
228 The reason for the separation is so that we don't flush the cache for
229 on->on transitions. */
230 static int stack_cache_enabled_p = 1;
231
232 /* This is called *after* the stack-cache has been set.
233 Flush the cache for off->on and on->off transitions.
234 There's no real need to flush the cache for on->off transitions,
235 except cleanliness. */
236
237 static void
238 set_stack_cache_enabled_p (char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
242 target_dcache_invalidate ();
243
244 stack_cache_enabled_p = stack_cache_enabled_p_1;
245 }
246
247 static void
248 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
252 }
253
254 /* Cache of memory operations, to speed up remote access. */
255 static DCACHE *target_dcache;
256
257 /* Invalidate the target dcache. */
258
259 void
260 target_dcache_invalidate (void)
261 {
262 dcache_invalidate (target_dcache);
263 }
264
265 /* The user just typed 'target' without the name of a target. */
266
267 static void
268 target_command (char *arg, int from_tty)
269 {
270 fputs_filtered ("Argument required (target name). Try `help target'\n",
271 gdb_stdout);
272 }
273
274 /* Default target_has_* methods for process_stratum targets. */
275
276 int
277 default_child_has_all_memory (struct target_ops *ops)
278 {
279 /* If no inferior selected, then we can't read memory here. */
280 if (ptid_equal (inferior_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286 int
287 default_child_has_memory (struct target_ops *ops)
288 {
289 /* If no inferior selected, then we can't read memory here. */
290 if (ptid_equal (inferior_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296 int
297 default_child_has_stack (struct target_ops *ops)
298 {
299 /* If no inferior selected, there's no stack. */
300 if (ptid_equal (inferior_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306 int
307 default_child_has_registers (struct target_ops *ops)
308 {
309 /* Can't read registers from no inferior. */
310 if (ptid_equal (inferior_ptid, null_ptid))
311 return 0;
312
313 return 1;
314 }
315
316 int
317 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
318 {
319 /* If there's no thread selected, then we can't make it run through
320 hoops. */
321 if (ptid_equal (the_ptid, null_ptid))
322 return 0;
323
324 return 1;
325 }
326
327
328 int
329 target_has_all_memory_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_all_memory (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_memory_1 (void)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_memory (t))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_stack_1 (void)
354 {
355 struct target_ops *t;
356
357 for (t = current_target.beneath; t != NULL; t = t->beneath)
358 if (t->to_has_stack (t))
359 return 1;
360
361 return 0;
362 }
363
364 int
365 target_has_registers_1 (void)
366 {
367 struct target_ops *t;
368
369 for (t = current_target.beneath; t != NULL; t = t->beneath)
370 if (t->to_has_registers (t))
371 return 1;
372
373 return 0;
374 }
375
376 int
377 target_has_execution_1 (ptid_t the_ptid)
378 {
379 struct target_ops *t;
380
381 for (t = current_target.beneath; t != NULL; t = t->beneath)
382 if (t->to_has_execution (t, the_ptid))
383 return 1;
384
385 return 0;
386 }
387
388 int
389 target_has_execution_current (void)
390 {
391 return target_has_execution_1 (inferior_ptid);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 /* Provide default values for all "must have" methods. */
400 if (t->to_xfer_partial == NULL)
401 t->to_xfer_partial = default_xfer_partial;
402
403 if (t->to_has_all_memory == NULL)
404 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_memory == NULL)
407 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_stack == NULL)
410 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
411
412 if (t->to_has_registers == NULL)
413 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
414
415 if (t->to_has_execution == NULL)
416 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
417
418 if (!target_structs)
419 {
420 target_struct_allocsize = DEFAULT_ALLOCSIZE;
421 target_structs = (struct target_ops **) xmalloc
422 (target_struct_allocsize * sizeof (*target_structs));
423 }
424 if (target_struct_size >= target_struct_allocsize)
425 {
426 target_struct_allocsize *= 2;
427 target_structs = (struct target_ops **)
428 xrealloc ((char *) target_structs,
429 target_struct_allocsize * sizeof (*target_structs));
430 }
431 target_structs[target_struct_size++] = t;
432
433 if (targetlist == NULL)
434 add_prefix_cmd ("target", class_run, target_command, _("\
435 Connect to a target machine or process.\n\
436 The first argument is the type or protocol of the target machine.\n\
437 Remaining arguments are interpreted by the target protocol. For more\n\
438 information on the arguments for a particular protocol, type\n\
439 `help target ' followed by the protocol name."),
440 &targetlist, "target ", 0, &cmdlist);
441 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
442 }
443
444 /* Stub functions */
445
446 void
447 target_ignore (void)
448 {
449 }
450
451 void
452 target_kill (void)
453 {
454 struct target_ops *t;
455
456 for (t = current_target.beneath; t != NULL; t = t->beneath)
457 if (t->to_kill != NULL)
458 {
459 if (targetdebug)
460 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
461
462 t->to_kill (t);
463 return;
464 }
465
466 noprocess ();
467 }
468
469 void
470 target_load (char *arg, int from_tty)
471 {
472 target_dcache_invalidate ();
473 (*current_target.to_load) (arg, from_tty);
474 }
475
476 void
477 target_create_inferior (char *exec_file, char *args,
478 char **env, int from_tty)
479 {
480 struct target_ops *t;
481
482 for (t = current_target.beneath; t != NULL; t = t->beneath)
483 {
484 if (t->to_create_inferior != NULL)
485 {
486 t->to_create_inferior (t, exec_file, args, env, from_tty);
487 if (targetdebug)
488 fprintf_unfiltered (gdb_stdlog,
489 "target_create_inferior (%s, %s, xxx, %d)\n",
490 exec_file, args, from_tty);
491 return;
492 }
493 }
494
495 internal_error (__FILE__, __LINE__,
496 _("could not find a target to create inferior"));
497 }
498
499 void
500 target_terminal_inferior (void)
501 {
502 /* A background resume (``run&'') should leave GDB in control of the
503 terminal. Use target_can_async_p, not target_is_async_p, since at
504 this point the target is not async yet. However, if sync_execution
505 is not set, we know it will become async prior to resume. */
506 if (target_can_async_p () && !sync_execution)
507 return;
508
509 /* If GDB is resuming the inferior in the foreground, install
510 inferior's terminal modes. */
511 (*current_target.to_terminal_inferior) ();
512 }
513
514 static int
515 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
516 struct target_ops *t)
517 {
518 errno = EIO; /* Can't read/write this location. */
519 return 0; /* No bytes handled. */
520 }
521
522 static void
523 tcomplain (void)
524 {
525 error (_("You can't do that when your target is `%s'"),
526 current_target.to_shortname);
527 }
528
529 void
530 noprocess (void)
531 {
532 error (_("You can't do that without a process to debug."));
533 }
534
535 static int
536 nosymbol (char *name, CORE_ADDR *addrp)
537 {
538 return 1; /* Symbol does not exist in target env. */
539 }
540
541 static void
542 default_terminal_info (char *args, int from_tty)
543 {
544 printf_unfiltered (_("No saved terminal information.\n"));
545 }
546
547 /* A default implementation for the to_get_ada_task_ptid target method.
548
549 This function builds the PTID by using both LWP and TID as part of
550 the PTID lwp and tid elements. The pid used is the pid of the
551 inferior_ptid. */
552
553 static ptid_t
554 default_get_ada_task_ptid (long lwp, long tid)
555 {
556 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 INHERIT (to_insert_watchpoint, t);
608 INHERIT (to_remove_watchpoint, t);
609 INHERIT (to_stopped_data_address, t);
610 INHERIT (to_have_steppable_watchpoint, t);
611 INHERIT (to_have_continuable_watchpoint, t);
612 INHERIT (to_stopped_by_watchpoint, t);
613 INHERIT (to_watchpoint_addr_within_range, t);
614 INHERIT (to_region_ok_for_hw_watchpoint, t);
615 INHERIT (to_can_accel_watchpoint_condition, t);
616 INHERIT (to_terminal_init, t);
617 INHERIT (to_terminal_inferior, t);
618 INHERIT (to_terminal_ours_for_output, t);
619 INHERIT (to_terminal_ours, t);
620 INHERIT (to_terminal_save_ours, t);
621 INHERIT (to_terminal_info, t);
622 /* Do not inherit to_kill. */
623 INHERIT (to_load, t);
624 INHERIT (to_lookup_symbol, t);
625 /* Do no inherit to_create_inferior. */
626 INHERIT (to_post_startup_inferior, t);
627 INHERIT (to_insert_fork_catchpoint, t);
628 INHERIT (to_remove_fork_catchpoint, t);
629 INHERIT (to_insert_vfork_catchpoint, t);
630 INHERIT (to_remove_vfork_catchpoint, t);
631 /* Do not inherit to_follow_fork. */
632 INHERIT (to_insert_exec_catchpoint, t);
633 INHERIT (to_remove_exec_catchpoint, t);
634 INHERIT (to_set_syscall_catchpoint, t);
635 INHERIT (to_has_exited, t);
636 /* Do not inherit to_mourn_inferior. */
637 INHERIT (to_can_run, t);
638 INHERIT (to_notice_signals, t);
639 /* Do not inherit to_thread_alive. */
640 /* Do not inherit to_find_new_threads. */
641 /* Do not inherit to_pid_to_str. */
642 INHERIT (to_extra_thread_info, t);
643 INHERIT (to_thread_name, t);
644 INHERIT (to_stop, t);
645 /* Do not inherit to_xfer_partial. */
646 INHERIT (to_rcmd, t);
647 INHERIT (to_pid_to_exec_file, t);
648 INHERIT (to_log_command, t);
649 INHERIT (to_stratum, t);
650 /* Do not inherit to_has_all_memory. */
651 /* Do not inherit to_has_memory. */
652 /* Do not inherit to_has_stack. */
653 /* Do not inherit to_has_registers. */
654 /* Do not inherit to_has_execution. */
655 INHERIT (to_has_thread_control, t);
656 INHERIT (to_can_async_p, t);
657 INHERIT (to_is_async_p, t);
658 INHERIT (to_async, t);
659 INHERIT (to_async_mask, t);
660 INHERIT (to_find_memory_regions, t);
661 INHERIT (to_make_corefile_notes, t);
662 INHERIT (to_get_bookmark, t);
663 INHERIT (to_goto_bookmark, t);
664 /* Do not inherit to_get_thread_local_address. */
665 INHERIT (to_can_execute_reverse, t);
666 INHERIT (to_thread_architecture, t);
667 /* Do not inherit to_read_description. */
668 INHERIT (to_get_ada_task_ptid, t);
669 /* Do not inherit to_search_memory. */
670 INHERIT (to_supports_multi_process, t);
671 INHERIT (to_trace_init, t);
672 INHERIT (to_download_tracepoint, t);
673 INHERIT (to_download_trace_state_variable, t);
674 INHERIT (to_trace_set_readonly_regions, t);
675 INHERIT (to_trace_start, t);
676 INHERIT (to_get_trace_status, t);
677 INHERIT (to_trace_stop, t);
678 INHERIT (to_trace_find, t);
679 INHERIT (to_get_trace_state_variable_value, t);
680 INHERIT (to_save_trace_data, t);
681 INHERIT (to_upload_tracepoints, t);
682 INHERIT (to_upload_trace_state_variables, t);
683 INHERIT (to_get_raw_trace_data, t);
684 INHERIT (to_set_disconnected_tracing, t);
685 INHERIT (to_set_circular_trace_buffer, t);
686 INHERIT (to_get_tib_address, t);
687 INHERIT (to_set_permissions, t);
688 INHERIT (to_static_tracepoint_marker_at, t);
689 INHERIT (to_static_tracepoint_markers_by_strid, t);
690 INHERIT (to_traceframe_info, t);
691 INHERIT (to_magic, t);
692 /* Do not inherit to_memory_map. */
693 /* Do not inherit to_flash_erase. */
694 /* Do not inherit to_flash_done. */
695 }
696 #undef INHERIT
697
698 /* Clean up a target struct so it no longer has any zero pointers in
699 it. Some entries are defaulted to a method that print an error,
700 others are hard-wired to a standard recursive default. */
701
702 #define de_fault(field, value) \
703 if (!current_target.field) \
704 current_target.field = value
705
706 de_fault (to_open,
707 (void (*) (char *, int))
708 tcomplain);
709 de_fault (to_close,
710 (void (*) (int))
711 target_ignore);
712 de_fault (to_post_attach,
713 (void (*) (int))
714 target_ignore);
715 de_fault (to_prepare_to_store,
716 (void (*) (struct regcache *))
717 noprocess);
718 de_fault (deprecated_xfer_memory,
719 (int (*) (CORE_ADDR, gdb_byte *, int, int,
720 struct mem_attrib *, struct target_ops *))
721 nomemory);
722 de_fault (to_files_info,
723 (void (*) (struct target_ops *))
724 target_ignore);
725 de_fault (to_insert_breakpoint,
726 memory_insert_breakpoint);
727 de_fault (to_remove_breakpoint,
728 memory_remove_breakpoint);
729 de_fault (to_can_use_hw_breakpoint,
730 (int (*) (int, int, int))
731 return_zero);
732 de_fault (to_insert_hw_breakpoint,
733 (int (*) (struct gdbarch *, struct bp_target_info *))
734 return_minus_one);
735 de_fault (to_remove_hw_breakpoint,
736 (int (*) (struct gdbarch *, struct bp_target_info *))
737 return_minus_one);
738 de_fault (to_insert_watchpoint,
739 (int (*) (CORE_ADDR, int, int, struct expression *))
740 return_minus_one);
741 de_fault (to_remove_watchpoint,
742 (int (*) (CORE_ADDR, int, int, struct expression *))
743 return_minus_one);
744 de_fault (to_stopped_by_watchpoint,
745 (int (*) (void))
746 return_zero);
747 de_fault (to_stopped_data_address,
748 (int (*) (struct target_ops *, CORE_ADDR *))
749 return_zero);
750 de_fault (to_watchpoint_addr_within_range,
751 default_watchpoint_addr_within_range);
752 de_fault (to_region_ok_for_hw_watchpoint,
753 default_region_ok_for_hw_watchpoint);
754 de_fault (to_can_accel_watchpoint_condition,
755 (int (*) (CORE_ADDR, int, int, struct expression *))
756 return_zero);
757 de_fault (to_terminal_init,
758 (void (*) (void))
759 target_ignore);
760 de_fault (to_terminal_inferior,
761 (void (*) (void))
762 target_ignore);
763 de_fault (to_terminal_ours_for_output,
764 (void (*) (void))
765 target_ignore);
766 de_fault (to_terminal_ours,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_save_ours,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_info,
773 default_terminal_info);
774 de_fault (to_load,
775 (void (*) (char *, int))
776 tcomplain);
777 de_fault (to_lookup_symbol,
778 (int (*) (char *, CORE_ADDR *))
779 nosymbol);
780 de_fault (to_post_startup_inferior,
781 (void (*) (ptid_t))
782 target_ignore);
783 de_fault (to_insert_fork_catchpoint,
784 (int (*) (int))
785 return_one);
786 de_fault (to_remove_fork_catchpoint,
787 (int (*) (int))
788 return_one);
789 de_fault (to_insert_vfork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_remove_vfork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_insert_exec_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_remove_exec_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_set_syscall_catchpoint,
802 (int (*) (int, int, int, int, int *))
803 return_one);
804 de_fault (to_has_exited,
805 (int (*) (int, int, int *))
806 return_zero);
807 de_fault (to_can_run,
808 return_zero);
809 de_fault (to_notice_signals,
810 (void (*) (ptid_t))
811 target_ignore);
812 de_fault (to_extra_thread_info,
813 (char *(*) (struct thread_info *))
814 return_zero);
815 de_fault (to_thread_name,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_stop,
819 (void (*) (ptid_t))
820 target_ignore);
821 current_target.to_xfer_partial = current_xfer_partial;
822 de_fault (to_rcmd,
823 (void (*) (char *, struct ui_file *))
824 tcomplain);
825 de_fault (to_pid_to_exec_file,
826 (char *(*) (int))
827 return_zero);
828 de_fault (to_async,
829 (void (*) (void (*) (enum inferior_event_type, void*), void*))
830 tcomplain);
831 de_fault (to_async_mask,
832 (int (*) (int))
833 return_one);
834 de_fault (to_thread_architecture,
835 default_thread_architecture);
836 current_target.to_read_description = NULL;
837 de_fault (to_get_ada_task_ptid,
838 (ptid_t (*) (long, long))
839 default_get_ada_task_ptid);
840 de_fault (to_supports_multi_process,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_trace_init,
844 (void (*) (void))
845 tcomplain);
846 de_fault (to_download_tracepoint,
847 (void (*) (struct breakpoint *))
848 tcomplain);
849 de_fault (to_download_trace_state_variable,
850 (void (*) (struct trace_state_variable *))
851 tcomplain);
852 de_fault (to_trace_set_readonly_regions,
853 (void (*) (void))
854 tcomplain);
855 de_fault (to_trace_start,
856 (void (*) (void))
857 tcomplain);
858 de_fault (to_get_trace_status,
859 (int (*) (struct trace_status *))
860 return_minus_one);
861 de_fault (to_trace_stop,
862 (void (*) (void))
863 tcomplain);
864 de_fault (to_trace_find,
865 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
866 return_minus_one);
867 de_fault (to_get_trace_state_variable_value,
868 (int (*) (int, LONGEST *))
869 return_zero);
870 de_fault (to_save_trace_data,
871 (int (*) (const char *))
872 tcomplain);
873 de_fault (to_upload_tracepoints,
874 (int (*) (struct uploaded_tp **))
875 return_zero);
876 de_fault (to_upload_trace_state_variables,
877 (int (*) (struct uploaded_tsv **))
878 return_zero);
879 de_fault (to_get_raw_trace_data,
880 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
881 tcomplain);
882 de_fault (to_set_disconnected_tracing,
883 (void (*) (int))
884 target_ignore);
885 de_fault (to_set_circular_trace_buffer,
886 (void (*) (int))
887 target_ignore);
888 de_fault (to_get_tib_address,
889 (int (*) (ptid_t, CORE_ADDR *))
890 tcomplain);
891 de_fault (to_set_permissions,
892 (void (*) (void))
893 target_ignore);
894 de_fault (to_static_tracepoint_marker_at,
895 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
896 return_zero);
897 de_fault (to_static_tracepoint_markers_by_strid,
898 (VEC(static_tracepoint_marker_p) * (*) (const char *))
899 tcomplain);
900 de_fault (to_traceframe_info,
901 (struct traceframe_info * (*) (void))
902 tcomplain);
903 #undef de_fault
904
905 /* Finally, position the target-stack beneath the squashed
906 "current_target". That way code looking for a non-inherited
907 target method can quickly and simply find it. */
908 current_target.beneath = target_stack;
909
910 if (targetdebug)
911 setup_target_debug ();
912 }
913
914 /* Push a new target type into the stack of the existing target accessors,
915 possibly superseding some of the existing accessors.
916
917 Rather than allow an empty stack, we always have the dummy target at
918 the bottom stratum, so we can call the function vectors without
919 checking them. */
920
921 void
922 push_target (struct target_ops *t)
923 {
924 struct target_ops **cur;
925
926 /* Check magic number. If wrong, it probably means someone changed
927 the struct definition, but not all the places that initialize one. */
928 if (t->to_magic != OPS_MAGIC)
929 {
930 fprintf_unfiltered (gdb_stderr,
931 "Magic number of %s target struct wrong\n",
932 t->to_shortname);
933 internal_error (__FILE__, __LINE__,
934 _("failed internal consistency check"));
935 }
936
937 /* Find the proper stratum to install this target in. */
938 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
939 {
940 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
941 break;
942 }
943
944 /* If there's already targets at this stratum, remove them. */
945 /* FIXME: cagney/2003-10-15: I think this should be popping all
946 targets to CUR, and not just those at this stratum level. */
947 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
948 {
949 /* There's already something at this stratum level. Close it,
950 and un-hook it from the stack. */
951 struct target_ops *tmp = (*cur);
952
953 (*cur) = (*cur)->beneath;
954 tmp->beneath = NULL;
955 target_close (tmp, 0);
956 }
957
958 /* We have removed all targets in our stratum, now add the new one. */
959 t->beneath = (*cur);
960 (*cur) = t;
961
962 update_current_target ();
963 }
964
965 /* Remove a target_ops vector from the stack, wherever it may be.
966 Return how many times it was removed (0 or 1). */
967
968 int
969 unpush_target (struct target_ops *t)
970 {
971 struct target_ops **cur;
972 struct target_ops *tmp;
973
974 if (t->to_stratum == dummy_stratum)
975 internal_error (__FILE__, __LINE__,
976 _("Attempt to unpush the dummy target"));
977
978 /* Look for the specified target. Note that we assume that a target
979 can only occur once in the target stack. */
980
981 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
982 {
983 if ((*cur) == t)
984 break;
985 }
986
987 if ((*cur) == NULL)
988 return 0; /* Didn't find target_ops, quit now. */
989
990 /* NOTE: cagney/2003-12-06: In '94 the close call was made
991 unconditional by moving it to before the above check that the
992 target was in the target stack (something about "Change the way
993 pushing and popping of targets work to support target overlays
994 and inheritance"). This doesn't make much sense - only open
995 targets should be closed. */
996 target_close (t, 0);
997
998 /* Unchain the target. */
999 tmp = (*cur);
1000 (*cur) = (*cur)->beneath;
1001 tmp->beneath = NULL;
1002
1003 update_current_target ();
1004
1005 return 1;
1006 }
1007
1008 void
1009 pop_target (void)
1010 {
1011 target_close (target_stack, 0); /* Let it clean up. */
1012 if (unpush_target (target_stack) == 1)
1013 return;
1014
1015 fprintf_unfiltered (gdb_stderr,
1016 "pop_target couldn't find target %s\n",
1017 current_target.to_shortname);
1018 internal_error (__FILE__, __LINE__,
1019 _("failed internal consistency check"));
1020 }
1021
1022 void
1023 pop_all_targets_above (enum strata above_stratum, int quitting)
1024 {
1025 while ((int) (current_target.to_stratum) > (int) above_stratum)
1026 {
1027 target_close (target_stack, quitting);
1028 if (!unpush_target (target_stack))
1029 {
1030 fprintf_unfiltered (gdb_stderr,
1031 "pop_all_targets couldn't find target %s\n",
1032 target_stack->to_shortname);
1033 internal_error (__FILE__, __LINE__,
1034 _("failed internal consistency check"));
1035 break;
1036 }
1037 }
1038 }
1039
1040 void
1041 pop_all_targets (int quitting)
1042 {
1043 pop_all_targets_above (dummy_stratum, quitting);
1044 }
1045
1046 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1047
1048 int
1049 target_is_pushed (struct target_ops *t)
1050 {
1051 struct target_ops **cur;
1052
1053 /* Check magic number. If wrong, it probably means someone changed
1054 the struct definition, but not all the places that initialize one. */
1055 if (t->to_magic != OPS_MAGIC)
1056 {
1057 fprintf_unfiltered (gdb_stderr,
1058 "Magic number of %s target struct wrong\n",
1059 t->to_shortname);
1060 internal_error (__FILE__, __LINE__,
1061 _("failed internal consistency check"));
1062 }
1063
1064 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1065 if (*cur == t)
1066 return 1;
1067
1068 return 0;
1069 }
1070
1071 /* Using the objfile specified in OBJFILE, find the address for the
1072 current thread's thread-local storage with offset OFFSET. */
1073 CORE_ADDR
1074 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1075 {
1076 volatile CORE_ADDR addr = 0;
1077 struct target_ops *target;
1078
1079 for (target = current_target.beneath;
1080 target != NULL;
1081 target = target->beneath)
1082 {
1083 if (target->to_get_thread_local_address != NULL)
1084 break;
1085 }
1086
1087 if (target != NULL
1088 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1089 {
1090 ptid_t ptid = inferior_ptid;
1091 volatile struct gdb_exception ex;
1092
1093 TRY_CATCH (ex, RETURN_MASK_ALL)
1094 {
1095 CORE_ADDR lm_addr;
1096
1097 /* Fetch the load module address for this objfile. */
1098 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1099 objfile);
1100 /* If it's 0, throw the appropriate exception. */
1101 if (lm_addr == 0)
1102 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1103 _("TLS load module not found"));
1104
1105 addr = target->to_get_thread_local_address (target, ptid,
1106 lm_addr, offset);
1107 }
1108 /* If an error occurred, print TLS related messages here. Otherwise,
1109 throw the error to some higher catcher. */
1110 if (ex.reason < 0)
1111 {
1112 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1113
1114 switch (ex.error)
1115 {
1116 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1117 error (_("Cannot find thread-local variables "
1118 "in this thread library."));
1119 break;
1120 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1121 if (objfile_is_library)
1122 error (_("Cannot find shared library `%s' in dynamic"
1123 " linker's load module list"), objfile->name);
1124 else
1125 error (_("Cannot find executable file `%s' in dynamic"
1126 " linker's load module list"), objfile->name);
1127 break;
1128 case TLS_NOT_ALLOCATED_YET_ERROR:
1129 if (objfile_is_library)
1130 error (_("The inferior has not yet allocated storage for"
1131 " thread-local variables in\n"
1132 "the shared library `%s'\n"
1133 "for %s"),
1134 objfile->name, target_pid_to_str (ptid));
1135 else
1136 error (_("The inferior has not yet allocated storage for"
1137 " thread-local variables in\n"
1138 "the executable `%s'\n"
1139 "for %s"),
1140 objfile->name, target_pid_to_str (ptid));
1141 break;
1142 case TLS_GENERIC_ERROR:
1143 if (objfile_is_library)
1144 error (_("Cannot find thread-local storage for %s, "
1145 "shared library %s:\n%s"),
1146 target_pid_to_str (ptid),
1147 objfile->name, ex.message);
1148 else
1149 error (_("Cannot find thread-local storage for %s, "
1150 "executable file %s:\n%s"),
1151 target_pid_to_str (ptid),
1152 objfile->name, ex.message);
1153 break;
1154 default:
1155 throw_exception (ex);
1156 break;
1157 }
1158 }
1159 }
1160 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1161 TLS is an ABI-specific thing. But we don't do that yet. */
1162 else
1163 error (_("Cannot find thread-local variables on this target"));
1164
1165 return addr;
1166 }
1167
1168 #undef MIN
1169 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1170
1171 /* target_read_string -- read a null terminated string, up to LEN bytes,
1172 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1173 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1174 is responsible for freeing it. Return the number of bytes successfully
1175 read. */
1176
1177 int
1178 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1179 {
1180 int tlen, origlen, offset, i;
1181 gdb_byte buf[4];
1182 int errcode = 0;
1183 char *buffer;
1184 int buffer_allocated;
1185 char *bufptr;
1186 unsigned int nbytes_read = 0;
1187
1188 gdb_assert (string);
1189
1190 /* Small for testing. */
1191 buffer_allocated = 4;
1192 buffer = xmalloc (buffer_allocated);
1193 bufptr = buffer;
1194
1195 origlen = len;
1196
1197 while (len > 0)
1198 {
1199 tlen = MIN (len, 4 - (memaddr & 3));
1200 offset = memaddr & 3;
1201
1202 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1203 if (errcode != 0)
1204 {
1205 /* The transfer request might have crossed the boundary to an
1206 unallocated region of memory. Retry the transfer, requesting
1207 a single byte. */
1208 tlen = 1;
1209 offset = 0;
1210 errcode = target_read_memory (memaddr, buf, 1);
1211 if (errcode != 0)
1212 goto done;
1213 }
1214
1215 if (bufptr - buffer + tlen > buffer_allocated)
1216 {
1217 unsigned int bytes;
1218
1219 bytes = bufptr - buffer;
1220 buffer_allocated *= 2;
1221 buffer = xrealloc (buffer, buffer_allocated);
1222 bufptr = buffer + bytes;
1223 }
1224
1225 for (i = 0; i < tlen; i++)
1226 {
1227 *bufptr++ = buf[i + offset];
1228 if (buf[i + offset] == '\000')
1229 {
1230 nbytes_read += i + 1;
1231 goto done;
1232 }
1233 }
1234
1235 memaddr += tlen;
1236 len -= tlen;
1237 nbytes_read += tlen;
1238 }
1239 done:
1240 *string = buffer;
1241 if (errnop != NULL)
1242 *errnop = errcode;
1243 return nbytes_read;
1244 }
1245
1246 struct target_section_table *
1247 target_get_section_table (struct target_ops *target)
1248 {
1249 struct target_ops *t;
1250
1251 if (targetdebug)
1252 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1253
1254 for (t = target; t != NULL; t = t->beneath)
1255 if (t->to_get_section_table != NULL)
1256 return (*t->to_get_section_table) (t);
1257
1258 return NULL;
1259 }
1260
1261 /* Find a section containing ADDR. */
1262
1263 struct target_section *
1264 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1265 {
1266 struct target_section_table *table = target_get_section_table (target);
1267 struct target_section *secp;
1268
1269 if (table == NULL)
1270 return NULL;
1271
1272 for (secp = table->sections; secp < table->sections_end; secp++)
1273 {
1274 if (addr >= secp->addr && addr < secp->endaddr)
1275 return secp;
1276 }
1277 return NULL;
1278 }
1279
1280 /* Read memory from the live target, even if currently inspecting a
1281 traceframe. The return is the same as that of target_read. */
1282
1283 static LONGEST
1284 target_read_live_memory (enum target_object object,
1285 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1286 {
1287 int ret;
1288 struct cleanup *cleanup;
1289
1290 /* Switch momentarily out of tfind mode so to access live memory.
1291 Note that this must not clear global state, such as the frame
1292 cache, which must still remain valid for the previous traceframe.
1293 We may be _building_ the frame cache at this point. */
1294 cleanup = make_cleanup_restore_traceframe_number ();
1295 set_traceframe_number (-1);
1296
1297 ret = target_read (current_target.beneath, object, NULL,
1298 myaddr, memaddr, len);
1299
1300 do_cleanups (cleanup);
1301 return ret;
1302 }
1303
1304 /* Using the set of read-only target sections of OPS, read live
1305 read-only memory. Note that the actual reads start from the
1306 top-most target again.
1307
1308 For interface/parameters/return description see target.h,
1309 to_xfer_partial. */
1310
1311 static LONGEST
1312 memory_xfer_live_readonly_partial (struct target_ops *ops,
1313 enum target_object object,
1314 gdb_byte *readbuf, ULONGEST memaddr,
1315 LONGEST len)
1316 {
1317 struct target_section *secp;
1318 struct target_section_table *table;
1319
1320 secp = target_section_by_addr (ops, memaddr);
1321 if (secp != NULL
1322 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1323 & SEC_READONLY))
1324 {
1325 struct target_section *p;
1326 ULONGEST memend = memaddr + len;
1327
1328 table = target_get_section_table (ops);
1329
1330 for (p = table->sections; p < table->sections_end; p++)
1331 {
1332 if (memaddr >= p->addr)
1333 {
1334 if (memend <= p->endaddr)
1335 {
1336 /* Entire transfer is within this section. */
1337 return target_read_live_memory (object, memaddr,
1338 readbuf, len);
1339 }
1340 else if (memaddr >= p->endaddr)
1341 {
1342 /* This section ends before the transfer starts. */
1343 continue;
1344 }
1345 else
1346 {
1347 /* This section overlaps the transfer. Just do half. */
1348 len = p->endaddr - memaddr;
1349 return target_read_live_memory (object, memaddr,
1350 readbuf, len);
1351 }
1352 }
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 /* Perform a partial memory transfer.
1360 For docs see target.h, to_xfer_partial. */
1361
1362 static LONGEST
1363 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1364 void *readbuf, const void *writebuf, ULONGEST memaddr,
1365 LONGEST len)
1366 {
1367 LONGEST res;
1368 int reg_len;
1369 struct mem_region *region;
1370 struct inferior *inf;
1371
1372 /* Zero length requests are ok and require no work. */
1373 if (len == 0)
1374 return 0;
1375
1376 /* For accesses to unmapped overlay sections, read directly from
1377 files. Must do this first, as MEMADDR may need adjustment. */
1378 if (readbuf != NULL && overlay_debugging)
1379 {
1380 struct obj_section *section = find_pc_overlay (memaddr);
1381
1382 if (pc_in_unmapped_range (memaddr, section))
1383 {
1384 struct target_section_table *table
1385 = target_get_section_table (ops);
1386 const char *section_name = section->the_bfd_section->name;
1387
1388 memaddr = overlay_mapped_address (memaddr, section);
1389 return section_table_xfer_memory_partial (readbuf, writebuf,
1390 memaddr, len,
1391 table->sections,
1392 table->sections_end,
1393 section_name);
1394 }
1395 }
1396
1397 /* Try the executable files, if "trust-readonly-sections" is set. */
1398 if (readbuf != NULL && trust_readonly)
1399 {
1400 struct target_section *secp;
1401 struct target_section_table *table;
1402
1403 secp = target_section_by_addr (ops, memaddr);
1404 if (secp != NULL
1405 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1406 & SEC_READONLY))
1407 {
1408 table = target_get_section_table (ops);
1409 return section_table_xfer_memory_partial (readbuf, writebuf,
1410 memaddr, len,
1411 table->sections,
1412 table->sections_end,
1413 NULL);
1414 }
1415 }
1416
1417 /* If reading unavailable memory in the context of traceframes, and
1418 this address falls within a read-only section, fallback to
1419 reading from live memory. */
1420 if (readbuf != NULL && get_traceframe_number () != -1)
1421 {
1422 VEC(mem_range_s) *available;
1423
1424 /* If we fail to get the set of available memory, then the
1425 target does not support querying traceframe info, and so we
1426 attempt reading from the traceframe anyway (assuming the
1427 target implements the old QTro packet then). */
1428 if (traceframe_available_memory (&available, memaddr, len))
1429 {
1430 struct cleanup *old_chain;
1431
1432 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1433
1434 if (VEC_empty (mem_range_s, available)
1435 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1436 {
1437 /* Don't read into the traceframe's available
1438 memory. */
1439 if (!VEC_empty (mem_range_s, available))
1440 {
1441 LONGEST oldlen = len;
1442
1443 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1444 gdb_assert (len <= oldlen);
1445 }
1446
1447 do_cleanups (old_chain);
1448
1449 /* This goes through the topmost target again. */
1450 res = memory_xfer_live_readonly_partial (ops, object,
1451 readbuf, memaddr, len);
1452 if (res > 0)
1453 return res;
1454
1455 /* No use trying further, we know some memory starting
1456 at MEMADDR isn't available. */
1457 return -1;
1458 }
1459
1460 /* Don't try to read more than how much is available, in
1461 case the target implements the deprecated QTro packet to
1462 cater for older GDBs (the target's knowledge of read-only
1463 sections may be outdated by now). */
1464 len = VEC_index (mem_range_s, available, 0)->length;
1465
1466 do_cleanups (old_chain);
1467 }
1468 }
1469
1470 /* Try GDB's internal data cache. */
1471 region = lookup_mem_region (memaddr);
1472 /* region->hi == 0 means there's no upper bound. */
1473 if (memaddr + len < region->hi || region->hi == 0)
1474 reg_len = len;
1475 else
1476 reg_len = region->hi - memaddr;
1477
1478 switch (region->attrib.mode)
1479 {
1480 case MEM_RO:
1481 if (writebuf != NULL)
1482 return -1;
1483 break;
1484
1485 case MEM_WO:
1486 if (readbuf != NULL)
1487 return -1;
1488 break;
1489
1490 case MEM_FLASH:
1491 /* We only support writing to flash during "load" for now. */
1492 if (writebuf != NULL)
1493 error (_("Writing to flash memory forbidden in this context"));
1494 break;
1495
1496 case MEM_NONE:
1497 return -1;
1498 }
1499
1500 if (!ptid_equal (inferior_ptid, null_ptid))
1501 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1502 else
1503 inf = NULL;
1504
1505 if (inf != NULL
1506 /* The dcache reads whole cache lines; that doesn't play well
1507 with reading from a trace buffer, because reading outside of
1508 the collected memory range fails. */
1509 && get_traceframe_number () == -1
1510 && (region->attrib.cache
1511 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1512 {
1513 if (readbuf != NULL)
1514 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1515 reg_len, 0);
1516 else
1517 /* FIXME drow/2006-08-09: If we're going to preserve const
1518 correctness dcache_xfer_memory should take readbuf and
1519 writebuf. */
1520 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1521 (void *) writebuf,
1522 reg_len, 1);
1523 if (res <= 0)
1524 return -1;
1525 else
1526 {
1527 if (readbuf && !show_memory_breakpoints)
1528 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1529 return res;
1530 }
1531 }
1532
1533 /* If none of those methods found the memory we wanted, fall back
1534 to a target partial transfer. Normally a single call to
1535 to_xfer_partial is enough; if it doesn't recognize an object
1536 it will call the to_xfer_partial of the next target down.
1537 But for memory this won't do. Memory is the only target
1538 object which can be read from more than one valid target.
1539 A core file, for instance, could have some of memory but
1540 delegate other bits to the target below it. So, we must
1541 manually try all targets. */
1542
1543 do
1544 {
1545 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1546 readbuf, writebuf, memaddr, reg_len);
1547 if (res > 0)
1548 break;
1549
1550 /* We want to continue past core files to executables, but not
1551 past a running target's memory. */
1552 if (ops->to_has_all_memory (ops))
1553 break;
1554
1555 ops = ops->beneath;
1556 }
1557 while (ops != NULL);
1558
1559 if (res > 0 && readbuf != NULL && !show_memory_breakpoints)
1560 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1561
1562 /* Make sure the cache gets updated no matter what - if we are writing
1563 to the stack. Even if this write is not tagged as such, we still need
1564 to update the cache. */
1565
1566 if (res > 0
1567 && inf != NULL
1568 && writebuf != NULL
1569 && !region->attrib.cache
1570 && stack_cache_enabled_p
1571 && object != TARGET_OBJECT_STACK_MEMORY)
1572 {
1573 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1574 }
1575
1576 /* If we still haven't got anything, return the last error. We
1577 give up. */
1578 return res;
1579 }
1580
1581 static void
1582 restore_show_memory_breakpoints (void *arg)
1583 {
1584 show_memory_breakpoints = (uintptr_t) arg;
1585 }
1586
1587 struct cleanup *
1588 make_show_memory_breakpoints_cleanup (int show)
1589 {
1590 int current = show_memory_breakpoints;
1591
1592 show_memory_breakpoints = show;
1593 return make_cleanup (restore_show_memory_breakpoints,
1594 (void *) (uintptr_t) current);
1595 }
1596
1597 /* For docs see target.h, to_xfer_partial. */
1598
1599 static LONGEST
1600 target_xfer_partial (struct target_ops *ops,
1601 enum target_object object, const char *annex,
1602 void *readbuf, const void *writebuf,
1603 ULONGEST offset, LONGEST len)
1604 {
1605 LONGEST retval;
1606
1607 gdb_assert (ops->to_xfer_partial != NULL);
1608
1609 if (writebuf && !may_write_memory)
1610 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1611 core_addr_to_string_nz (offset), plongest (len));
1612
1613 /* If this is a memory transfer, let the memory-specific code
1614 have a look at it instead. Memory transfers are more
1615 complicated. */
1616 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1617 retval = memory_xfer_partial (ops, object, readbuf,
1618 writebuf, offset, len);
1619 else
1620 {
1621 enum target_object raw_object = object;
1622
1623 /* If this is a raw memory transfer, request the normal
1624 memory object from other layers. */
1625 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1626 raw_object = TARGET_OBJECT_MEMORY;
1627
1628 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1629 writebuf, offset, len);
1630 }
1631
1632 if (targetdebug)
1633 {
1634 const unsigned char *myaddr = NULL;
1635
1636 fprintf_unfiltered (gdb_stdlog,
1637 "%s:target_xfer_partial "
1638 "(%d, %s, %s, %s, %s, %s) = %s",
1639 ops->to_shortname,
1640 (int) object,
1641 (annex ? annex : "(null)"),
1642 host_address_to_string (readbuf),
1643 host_address_to_string (writebuf),
1644 core_addr_to_string_nz (offset),
1645 plongest (len), plongest (retval));
1646
1647 if (readbuf)
1648 myaddr = readbuf;
1649 if (writebuf)
1650 myaddr = writebuf;
1651 if (retval > 0 && myaddr != NULL)
1652 {
1653 int i;
1654
1655 fputs_unfiltered (", bytes =", gdb_stdlog);
1656 for (i = 0; i < retval; i++)
1657 {
1658 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1659 {
1660 if (targetdebug < 2 && i > 0)
1661 {
1662 fprintf_unfiltered (gdb_stdlog, " ...");
1663 break;
1664 }
1665 fprintf_unfiltered (gdb_stdlog, "\n");
1666 }
1667
1668 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1669 }
1670 }
1671
1672 fputc_unfiltered ('\n', gdb_stdlog);
1673 }
1674 return retval;
1675 }
1676
1677 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1678 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1679 if any error occurs.
1680
1681 If an error occurs, no guarantee is made about the contents of the data at
1682 MYADDR. In particular, the caller should not depend upon partial reads
1683 filling the buffer with good data. There is no way for the caller to know
1684 how much good data might have been transfered anyway. Callers that can
1685 deal with partial reads should call target_read (which will retry until
1686 it makes no progress, and then return how much was transferred). */
1687
1688 int
1689 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1690 {
1691 /* Dispatch to the topmost target, not the flattened current_target.
1692 Memory accesses check target->to_has_(all_)memory, and the
1693 flattened target doesn't inherit those. */
1694 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1695 myaddr, memaddr, len) == len)
1696 return 0;
1697 else
1698 return EIO;
1699 }
1700
1701 /* Like target_read_memory, but specify explicitly that this is a read from
1702 the target's stack. This may trigger different cache behavior. */
1703
1704 int
1705 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1706 {
1707 /* Dispatch to the topmost target, not the flattened current_target.
1708 Memory accesses check target->to_has_(all_)memory, and the
1709 flattened target doesn't inherit those. */
1710
1711 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1712 myaddr, memaddr, len) == len)
1713 return 0;
1714 else
1715 return EIO;
1716 }
1717
1718 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1719 Returns either 0 for success or an errno value if any error occurs.
1720 If an error occurs, no guarantee is made about how much data got written.
1721 Callers that can deal with partial writes should call target_write. */
1722
1723 int
1724 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1725 {
1726 /* Dispatch to the topmost target, not the flattened current_target.
1727 Memory accesses check target->to_has_(all_)memory, and the
1728 flattened target doesn't inherit those. */
1729 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1730 myaddr, memaddr, len) == len)
1731 return 0;
1732 else
1733 return EIO;
1734 }
1735
1736 /* Fetch the target's memory map. */
1737
1738 VEC(mem_region_s) *
1739 target_memory_map (void)
1740 {
1741 VEC(mem_region_s) *result;
1742 struct mem_region *last_one, *this_one;
1743 int ix;
1744 struct target_ops *t;
1745
1746 if (targetdebug)
1747 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1748
1749 for (t = current_target.beneath; t != NULL; t = t->beneath)
1750 if (t->to_memory_map != NULL)
1751 break;
1752
1753 if (t == NULL)
1754 return NULL;
1755
1756 result = t->to_memory_map (t);
1757 if (result == NULL)
1758 return NULL;
1759
1760 qsort (VEC_address (mem_region_s, result),
1761 VEC_length (mem_region_s, result),
1762 sizeof (struct mem_region), mem_region_cmp);
1763
1764 /* Check that regions do not overlap. Simultaneously assign
1765 a numbering for the "mem" commands to use to refer to
1766 each region. */
1767 last_one = NULL;
1768 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1769 {
1770 this_one->number = ix;
1771
1772 if (last_one && last_one->hi > this_one->lo)
1773 {
1774 warning (_("Overlapping regions in memory map: ignoring"));
1775 VEC_free (mem_region_s, result);
1776 return NULL;
1777 }
1778 last_one = this_one;
1779 }
1780
1781 return result;
1782 }
1783
1784 void
1785 target_flash_erase (ULONGEST address, LONGEST length)
1786 {
1787 struct target_ops *t;
1788
1789 for (t = current_target.beneath; t != NULL; t = t->beneath)
1790 if (t->to_flash_erase != NULL)
1791 {
1792 if (targetdebug)
1793 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1794 hex_string (address), phex (length, 0));
1795 t->to_flash_erase (t, address, length);
1796 return;
1797 }
1798
1799 tcomplain ();
1800 }
1801
1802 void
1803 target_flash_done (void)
1804 {
1805 struct target_ops *t;
1806
1807 for (t = current_target.beneath; t != NULL; t = t->beneath)
1808 if (t->to_flash_done != NULL)
1809 {
1810 if (targetdebug)
1811 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1812 t->to_flash_done (t);
1813 return;
1814 }
1815
1816 tcomplain ();
1817 }
1818
1819 static void
1820 show_trust_readonly (struct ui_file *file, int from_tty,
1821 struct cmd_list_element *c, const char *value)
1822 {
1823 fprintf_filtered (file,
1824 _("Mode for reading from readonly sections is %s.\n"),
1825 value);
1826 }
1827
1828 /* More generic transfers. */
1829
1830 static LONGEST
1831 default_xfer_partial (struct target_ops *ops, enum target_object object,
1832 const char *annex, gdb_byte *readbuf,
1833 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1834 {
1835 if (object == TARGET_OBJECT_MEMORY
1836 && ops->deprecated_xfer_memory != NULL)
1837 /* If available, fall back to the target's
1838 "deprecated_xfer_memory" method. */
1839 {
1840 int xfered = -1;
1841
1842 errno = 0;
1843 if (writebuf != NULL)
1844 {
1845 void *buffer = xmalloc (len);
1846 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1847
1848 memcpy (buffer, writebuf, len);
1849 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1850 1/*write*/, NULL, ops);
1851 do_cleanups (cleanup);
1852 }
1853 if (readbuf != NULL)
1854 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1855 0/*read*/, NULL, ops);
1856 if (xfered > 0)
1857 return xfered;
1858 else if (xfered == 0 && errno == 0)
1859 /* "deprecated_xfer_memory" uses 0, cross checked against
1860 ERRNO as one indication of an error. */
1861 return 0;
1862 else
1863 return -1;
1864 }
1865 else if (ops->beneath != NULL)
1866 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1867 readbuf, writebuf, offset, len);
1868 else
1869 return -1;
1870 }
1871
1872 /* The xfer_partial handler for the topmost target. Unlike the default,
1873 it does not need to handle memory specially; it just passes all
1874 requests down the stack. */
1875
1876 static LONGEST
1877 current_xfer_partial (struct target_ops *ops, enum target_object object,
1878 const char *annex, gdb_byte *readbuf,
1879 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1880 {
1881 if (ops->beneath != NULL)
1882 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1883 readbuf, writebuf, offset, len);
1884 else
1885 return -1;
1886 }
1887
1888 /* Target vector read/write partial wrapper functions. */
1889
1890 static LONGEST
1891 target_read_partial (struct target_ops *ops,
1892 enum target_object object,
1893 const char *annex, gdb_byte *buf,
1894 ULONGEST offset, LONGEST len)
1895 {
1896 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1897 }
1898
1899 static LONGEST
1900 target_write_partial (struct target_ops *ops,
1901 enum target_object object,
1902 const char *annex, const gdb_byte *buf,
1903 ULONGEST offset, LONGEST len)
1904 {
1905 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1906 }
1907
1908 /* Wrappers to perform the full transfer. */
1909
1910 /* For docs on target_read see target.h. */
1911
1912 LONGEST
1913 target_read (struct target_ops *ops,
1914 enum target_object object,
1915 const char *annex, gdb_byte *buf,
1916 ULONGEST offset, LONGEST len)
1917 {
1918 LONGEST xfered = 0;
1919
1920 while (xfered < len)
1921 {
1922 LONGEST xfer = target_read_partial (ops, object, annex,
1923 (gdb_byte *) buf + xfered,
1924 offset + xfered, len - xfered);
1925
1926 /* Call an observer, notifying them of the xfer progress? */
1927 if (xfer == 0)
1928 return xfered;
1929 if (xfer < 0)
1930 return -1;
1931 xfered += xfer;
1932 QUIT;
1933 }
1934 return len;
1935 }
1936
1937 /** Assuming that the entire [begin, end) range of memory cannot be read,
1938 try to read whatever subrange is possible to read.
1939
1940 The function results, in RESULT, either zero or one memory block.
1941 If there's a readable subrange at the beginning, it is completely
1942 read and returned. Any further readable subrange will not be read.
1943 Otherwise, if there's a readable subrange at the end, it will be
1944 completely read and returned. Any readable subranges before it (obviously,
1945 not starting at the beginning), will be ignored. In other cases --
1946 either no readable subrange, or readable subrange (s) that is neither
1947 at the beginning, or end, nothing is returned.
1948
1949 The purpose of this function is to handle a read across a boundary of
1950 accessible memory in a case when memory map is not available. The above
1951 restrictions are fine for this case, but will give incorrect results if
1952 the memory is 'patchy'. However, supporting 'patchy' memory would require
1953 trying to read every single byte, and it seems unacceptable solution.
1954 Explicit memory map is recommended for this case -- and
1955 target_read_memory_robust will take care of reading multiple ranges
1956 then. */
1957
1958 static void
1959 read_whatever_is_readable (struct target_ops *ops,
1960 ULONGEST begin, ULONGEST end,
1961 VEC(memory_read_result_s) **result)
1962 {
1963 gdb_byte *buf = xmalloc (end-begin);
1964 ULONGEST current_begin = begin;
1965 ULONGEST current_end = end;
1966 int forward;
1967 memory_read_result_s r;
1968
1969 /* If we previously failed to read 1 byte, nothing can be done here. */
1970 if (end - begin <= 1)
1971 return;
1972
1973 /* Check that either first or the last byte is readable, and give up
1974 if not. This heuristic is meant to permit reading accessible memory
1975 at the boundary of accessible region. */
1976 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1977 buf, begin, 1) == 1)
1978 {
1979 forward = 1;
1980 ++current_begin;
1981 }
1982 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1983 buf + (end-begin) - 1, end - 1, 1) == 1)
1984 {
1985 forward = 0;
1986 --current_end;
1987 }
1988 else
1989 {
1990 return;
1991 }
1992
1993 /* Loop invariant is that the [current_begin, current_end) was previously
1994 found to be not readable as a whole.
1995
1996 Note loop condition -- if the range has 1 byte, we can't divide the range
1997 so there's no point trying further. */
1998 while (current_end - current_begin > 1)
1999 {
2000 ULONGEST first_half_begin, first_half_end;
2001 ULONGEST second_half_begin, second_half_end;
2002 LONGEST xfer;
2003
2004 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2005 if (forward)
2006 {
2007 first_half_begin = current_begin;
2008 first_half_end = middle;
2009 second_half_begin = middle;
2010 second_half_end = current_end;
2011 }
2012 else
2013 {
2014 first_half_begin = middle;
2015 first_half_end = current_end;
2016 second_half_begin = current_begin;
2017 second_half_end = middle;
2018 }
2019
2020 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2021 buf + (first_half_begin - begin),
2022 first_half_begin,
2023 first_half_end - first_half_begin);
2024
2025 if (xfer == first_half_end - first_half_begin)
2026 {
2027 /* This half reads up fine. So, the error must be in the
2028 other half. */
2029 current_begin = second_half_begin;
2030 current_end = second_half_end;
2031 }
2032 else
2033 {
2034 /* This half is not readable. Because we've tried one byte, we
2035 know some part of this half if actually redable. Go to the next
2036 iteration to divide again and try to read.
2037
2038 We don't handle the other half, because this function only tries
2039 to read a single readable subrange. */
2040 current_begin = first_half_begin;
2041 current_end = first_half_end;
2042 }
2043 }
2044
2045 if (forward)
2046 {
2047 /* The [begin, current_begin) range has been read. */
2048 r.begin = begin;
2049 r.end = current_begin;
2050 r.data = buf;
2051 }
2052 else
2053 {
2054 /* The [current_end, end) range has been read. */
2055 LONGEST rlen = end - current_end;
2056 r.data = xmalloc (rlen);
2057 memcpy (r.data, buf + current_end - begin, rlen);
2058 r.begin = current_end;
2059 r.end = end;
2060 xfree (buf);
2061 }
2062 VEC_safe_push(memory_read_result_s, (*result), &r);
2063 }
2064
2065 void
2066 free_memory_read_result_vector (void *x)
2067 {
2068 VEC(memory_read_result_s) *v = x;
2069 memory_read_result_s *current;
2070 int ix;
2071
2072 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2073 {
2074 xfree (current->data);
2075 }
2076 VEC_free (memory_read_result_s, v);
2077 }
2078
2079 VEC(memory_read_result_s) *
2080 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2081 {
2082 VEC(memory_read_result_s) *result = 0;
2083
2084 LONGEST xfered = 0;
2085 while (xfered < len)
2086 {
2087 struct mem_region *region = lookup_mem_region (offset + xfered);
2088 LONGEST rlen;
2089
2090 /* If there is no explicit region, a fake one should be created. */
2091 gdb_assert (region);
2092
2093 if (region->hi == 0)
2094 rlen = len - xfered;
2095 else
2096 rlen = region->hi - offset;
2097
2098 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2099 {
2100 /* Cannot read this region. Note that we can end up here only
2101 if the region is explicitly marked inaccessible, or
2102 'inaccessible-by-default' is in effect. */
2103 xfered += rlen;
2104 }
2105 else
2106 {
2107 LONGEST to_read = min (len - xfered, rlen);
2108 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2109
2110 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2111 (gdb_byte *) buffer,
2112 offset + xfered, to_read);
2113 /* Call an observer, notifying them of the xfer progress? */
2114 if (xfer <= 0)
2115 {
2116 /* Got an error reading full chunk. See if maybe we can read
2117 some subrange. */
2118 xfree (buffer);
2119 read_whatever_is_readable (ops, offset + xfered,
2120 offset + xfered + to_read, &result);
2121 xfered += to_read;
2122 }
2123 else
2124 {
2125 struct memory_read_result r;
2126 r.data = buffer;
2127 r.begin = offset + xfered;
2128 r.end = r.begin + xfer;
2129 VEC_safe_push (memory_read_result_s, result, &r);
2130 xfered += xfer;
2131 }
2132 QUIT;
2133 }
2134 }
2135 return result;
2136 }
2137
2138
2139 /* An alternative to target_write with progress callbacks. */
2140
2141 LONGEST
2142 target_write_with_progress (struct target_ops *ops,
2143 enum target_object object,
2144 const char *annex, const gdb_byte *buf,
2145 ULONGEST offset, LONGEST len,
2146 void (*progress) (ULONGEST, void *), void *baton)
2147 {
2148 LONGEST xfered = 0;
2149
2150 /* Give the progress callback a chance to set up. */
2151 if (progress)
2152 (*progress) (0, baton);
2153
2154 while (xfered < len)
2155 {
2156 LONGEST xfer = target_write_partial (ops, object, annex,
2157 (gdb_byte *) buf + xfered,
2158 offset + xfered, len - xfered);
2159
2160 if (xfer == 0)
2161 return xfered;
2162 if (xfer < 0)
2163 return -1;
2164
2165 if (progress)
2166 (*progress) (xfer, baton);
2167
2168 xfered += xfer;
2169 QUIT;
2170 }
2171 return len;
2172 }
2173
2174 /* For docs on target_write see target.h. */
2175
2176 LONGEST
2177 target_write (struct target_ops *ops,
2178 enum target_object object,
2179 const char *annex, const gdb_byte *buf,
2180 ULONGEST offset, LONGEST len)
2181 {
2182 return target_write_with_progress (ops, object, annex, buf, offset, len,
2183 NULL, NULL);
2184 }
2185
2186 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2187 the size of the transferred data. PADDING additional bytes are
2188 available in *BUF_P. This is a helper function for
2189 target_read_alloc; see the declaration of that function for more
2190 information. */
2191
2192 static LONGEST
2193 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2194 const char *annex, gdb_byte **buf_p, int padding)
2195 {
2196 size_t buf_alloc, buf_pos;
2197 gdb_byte *buf;
2198 LONGEST n;
2199
2200 /* This function does not have a length parameter; it reads the
2201 entire OBJECT). Also, it doesn't support objects fetched partly
2202 from one target and partly from another (in a different stratum,
2203 e.g. a core file and an executable). Both reasons make it
2204 unsuitable for reading memory. */
2205 gdb_assert (object != TARGET_OBJECT_MEMORY);
2206
2207 /* Start by reading up to 4K at a time. The target will throttle
2208 this number down if necessary. */
2209 buf_alloc = 4096;
2210 buf = xmalloc (buf_alloc);
2211 buf_pos = 0;
2212 while (1)
2213 {
2214 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2215 buf_pos, buf_alloc - buf_pos - padding);
2216 if (n < 0)
2217 {
2218 /* An error occurred. */
2219 xfree (buf);
2220 return -1;
2221 }
2222 else if (n == 0)
2223 {
2224 /* Read all there was. */
2225 if (buf_pos == 0)
2226 xfree (buf);
2227 else
2228 *buf_p = buf;
2229 return buf_pos;
2230 }
2231
2232 buf_pos += n;
2233
2234 /* If the buffer is filling up, expand it. */
2235 if (buf_alloc < buf_pos * 2)
2236 {
2237 buf_alloc *= 2;
2238 buf = xrealloc (buf, buf_alloc);
2239 }
2240
2241 QUIT;
2242 }
2243 }
2244
2245 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2246 the size of the transferred data. See the declaration in "target.h"
2247 function for more information about the return value. */
2248
2249 LONGEST
2250 target_read_alloc (struct target_ops *ops, enum target_object object,
2251 const char *annex, gdb_byte **buf_p)
2252 {
2253 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2254 }
2255
2256 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2257 returned as a string, allocated using xmalloc. If an error occurs
2258 or the transfer is unsupported, NULL is returned. Empty objects
2259 are returned as allocated but empty strings. A warning is issued
2260 if the result contains any embedded NUL bytes. */
2261
2262 char *
2263 target_read_stralloc (struct target_ops *ops, enum target_object object,
2264 const char *annex)
2265 {
2266 gdb_byte *buffer;
2267 LONGEST transferred;
2268
2269 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2270
2271 if (transferred < 0)
2272 return NULL;
2273
2274 if (transferred == 0)
2275 return xstrdup ("");
2276
2277 buffer[transferred] = 0;
2278 if (strlen (buffer) < transferred)
2279 warning (_("target object %d, annex %s, "
2280 "contained unexpected null characters"),
2281 (int) object, annex ? annex : "(none)");
2282
2283 return (char *) buffer;
2284 }
2285
2286 /* Memory transfer methods. */
2287
2288 void
2289 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2290 LONGEST len)
2291 {
2292 /* This method is used to read from an alternate, non-current
2293 target. This read must bypass the overlay support (as symbols
2294 don't match this target), and GDB's internal cache (wrong cache
2295 for this target). */
2296 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2297 != len)
2298 memory_error (EIO, addr);
2299 }
2300
2301 ULONGEST
2302 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2303 int len, enum bfd_endian byte_order)
2304 {
2305 gdb_byte buf[sizeof (ULONGEST)];
2306
2307 gdb_assert (len <= sizeof (buf));
2308 get_target_memory (ops, addr, buf, len);
2309 return extract_unsigned_integer (buf, len, byte_order);
2310 }
2311
2312 int
2313 target_insert_breakpoint (struct gdbarch *gdbarch,
2314 struct bp_target_info *bp_tgt)
2315 {
2316 if (!may_insert_breakpoints)
2317 {
2318 warning (_("May not insert breakpoints"));
2319 return 1;
2320 }
2321
2322 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2323 }
2324
2325 int
2326 target_remove_breakpoint (struct gdbarch *gdbarch,
2327 struct bp_target_info *bp_tgt)
2328 {
2329 /* This is kind of a weird case to handle, but the permission might
2330 have been changed after breakpoints were inserted - in which case
2331 we should just take the user literally and assume that any
2332 breakpoints should be left in place. */
2333 if (!may_insert_breakpoints)
2334 {
2335 warning (_("May not remove breakpoints"));
2336 return 1;
2337 }
2338
2339 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2340 }
2341
2342 static void
2343 target_info (char *args, int from_tty)
2344 {
2345 struct target_ops *t;
2346 int has_all_mem = 0;
2347
2348 if (symfile_objfile != NULL)
2349 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2350
2351 for (t = target_stack; t != NULL; t = t->beneath)
2352 {
2353 if (!(*t->to_has_memory) (t))
2354 continue;
2355
2356 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2357 continue;
2358 if (has_all_mem)
2359 printf_unfiltered (_("\tWhile running this, "
2360 "GDB does not access memory from...\n"));
2361 printf_unfiltered ("%s:\n", t->to_longname);
2362 (t->to_files_info) (t);
2363 has_all_mem = (*t->to_has_all_memory) (t);
2364 }
2365 }
2366
2367 /* This function is called before any new inferior is created, e.g.
2368 by running a program, attaching, or connecting to a target.
2369 It cleans up any state from previous invocations which might
2370 change between runs. This is a subset of what target_preopen
2371 resets (things which might change between targets). */
2372
2373 void
2374 target_pre_inferior (int from_tty)
2375 {
2376 /* Clear out solib state. Otherwise the solib state of the previous
2377 inferior might have survived and is entirely wrong for the new
2378 target. This has been observed on GNU/Linux using glibc 2.3. How
2379 to reproduce:
2380
2381 bash$ ./foo&
2382 [1] 4711
2383 bash$ ./foo&
2384 [1] 4712
2385 bash$ gdb ./foo
2386 [...]
2387 (gdb) attach 4711
2388 (gdb) detach
2389 (gdb) attach 4712
2390 Cannot access memory at address 0xdeadbeef
2391 */
2392
2393 /* In some OSs, the shared library list is the same/global/shared
2394 across inferiors. If code is shared between processes, so are
2395 memory regions and features. */
2396 if (!gdbarch_has_global_solist (target_gdbarch))
2397 {
2398 no_shared_libraries (NULL, from_tty);
2399
2400 invalidate_target_mem_regions ();
2401
2402 target_clear_description ();
2403 }
2404 }
2405
2406 /* Callback for iterate_over_inferiors. Gets rid of the given
2407 inferior. */
2408
2409 static int
2410 dispose_inferior (struct inferior *inf, void *args)
2411 {
2412 struct thread_info *thread;
2413
2414 thread = any_thread_of_process (inf->pid);
2415 if (thread)
2416 {
2417 switch_to_thread (thread->ptid);
2418
2419 /* Core inferiors actually should be detached, not killed. */
2420 if (target_has_execution)
2421 target_kill ();
2422 else
2423 target_detach (NULL, 0);
2424 }
2425
2426 return 0;
2427 }
2428
2429 /* This is to be called by the open routine before it does
2430 anything. */
2431
2432 void
2433 target_preopen (int from_tty)
2434 {
2435 dont_repeat ();
2436
2437 if (have_inferiors ())
2438 {
2439 if (!from_tty
2440 || !have_live_inferiors ()
2441 || query (_("A program is being debugged already. Kill it? ")))
2442 iterate_over_inferiors (dispose_inferior, NULL);
2443 else
2444 error (_("Program not killed."));
2445 }
2446
2447 /* Calling target_kill may remove the target from the stack. But if
2448 it doesn't (which seems like a win for UDI), remove it now. */
2449 /* Leave the exec target, though. The user may be switching from a
2450 live process to a core of the same program. */
2451 pop_all_targets_above (file_stratum, 0);
2452
2453 target_pre_inferior (from_tty);
2454 }
2455
2456 /* Detach a target after doing deferred register stores. */
2457
2458 void
2459 target_detach (char *args, int from_tty)
2460 {
2461 struct target_ops* t;
2462
2463 if (gdbarch_has_global_breakpoints (target_gdbarch))
2464 /* Don't remove global breakpoints here. They're removed on
2465 disconnection from the target. */
2466 ;
2467 else
2468 /* If we're in breakpoints-always-inserted mode, have to remove
2469 them before detaching. */
2470 remove_breakpoints_pid (PIDGET (inferior_ptid));
2471
2472 prepare_for_detach ();
2473
2474 for (t = current_target.beneath; t != NULL; t = t->beneath)
2475 {
2476 if (t->to_detach != NULL)
2477 {
2478 t->to_detach (t, args, from_tty);
2479 if (targetdebug)
2480 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2481 args, from_tty);
2482 return;
2483 }
2484 }
2485
2486 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2487 }
2488
2489 void
2490 target_disconnect (char *args, int from_tty)
2491 {
2492 struct target_ops *t;
2493
2494 /* If we're in breakpoints-always-inserted mode or if breakpoints
2495 are global across processes, we have to remove them before
2496 disconnecting. */
2497 remove_breakpoints ();
2498
2499 for (t = current_target.beneath; t != NULL; t = t->beneath)
2500 if (t->to_disconnect != NULL)
2501 {
2502 if (targetdebug)
2503 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2504 args, from_tty);
2505 t->to_disconnect (t, args, from_tty);
2506 return;
2507 }
2508
2509 tcomplain ();
2510 }
2511
2512 ptid_t
2513 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2514 {
2515 struct target_ops *t;
2516
2517 for (t = current_target.beneath; t != NULL; t = t->beneath)
2518 {
2519 if (t->to_wait != NULL)
2520 {
2521 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2522
2523 if (targetdebug)
2524 {
2525 char *status_string;
2526
2527 status_string = target_waitstatus_to_string (status);
2528 fprintf_unfiltered (gdb_stdlog,
2529 "target_wait (%d, status) = %d, %s\n",
2530 PIDGET (ptid), PIDGET (retval),
2531 status_string);
2532 xfree (status_string);
2533 }
2534
2535 return retval;
2536 }
2537 }
2538
2539 noprocess ();
2540 }
2541
2542 char *
2543 target_pid_to_str (ptid_t ptid)
2544 {
2545 struct target_ops *t;
2546
2547 for (t = current_target.beneath; t != NULL; t = t->beneath)
2548 {
2549 if (t->to_pid_to_str != NULL)
2550 return (*t->to_pid_to_str) (t, ptid);
2551 }
2552
2553 return normal_pid_to_str (ptid);
2554 }
2555
2556 char *
2557 target_thread_name (struct thread_info *info)
2558 {
2559 struct target_ops *t;
2560
2561 for (t = current_target.beneath; t != NULL; t = t->beneath)
2562 {
2563 if (t->to_thread_name != NULL)
2564 return (*t->to_thread_name) (info);
2565 }
2566
2567 return NULL;
2568 }
2569
2570 void
2571 target_resume (ptid_t ptid, int step, enum target_signal signal)
2572 {
2573 struct target_ops *t;
2574
2575 target_dcache_invalidate ();
2576
2577 for (t = current_target.beneath; t != NULL; t = t->beneath)
2578 {
2579 if (t->to_resume != NULL)
2580 {
2581 t->to_resume (t, ptid, step, signal);
2582 if (targetdebug)
2583 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2584 PIDGET (ptid),
2585 step ? "step" : "continue",
2586 target_signal_to_name (signal));
2587
2588 registers_changed_ptid (ptid);
2589 set_executing (ptid, 1);
2590 set_running (ptid, 1);
2591 clear_inline_frame_state (ptid);
2592 return;
2593 }
2594 }
2595
2596 noprocess ();
2597 }
2598 /* Look through the list of possible targets for a target that can
2599 follow forks. */
2600
2601 int
2602 target_follow_fork (int follow_child)
2603 {
2604 struct target_ops *t;
2605
2606 for (t = current_target.beneath; t != NULL; t = t->beneath)
2607 {
2608 if (t->to_follow_fork != NULL)
2609 {
2610 int retval = t->to_follow_fork (t, follow_child);
2611
2612 if (targetdebug)
2613 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2614 follow_child, retval);
2615 return retval;
2616 }
2617 }
2618
2619 /* Some target returned a fork event, but did not know how to follow it. */
2620 internal_error (__FILE__, __LINE__,
2621 _("could not find a target to follow fork"));
2622 }
2623
2624 void
2625 target_mourn_inferior (void)
2626 {
2627 struct target_ops *t;
2628
2629 for (t = current_target.beneath; t != NULL; t = t->beneath)
2630 {
2631 if (t->to_mourn_inferior != NULL)
2632 {
2633 t->to_mourn_inferior (t);
2634 if (targetdebug)
2635 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2636
2637 /* We no longer need to keep handles on any of the object files.
2638 Make sure to release them to avoid unnecessarily locking any
2639 of them while we're not actually debugging. */
2640 bfd_cache_close_all ();
2641
2642 return;
2643 }
2644 }
2645
2646 internal_error (__FILE__, __LINE__,
2647 _("could not find a target to follow mourn inferior"));
2648 }
2649
2650 /* Look for a target which can describe architectural features, starting
2651 from TARGET. If we find one, return its description. */
2652
2653 const struct target_desc *
2654 target_read_description (struct target_ops *target)
2655 {
2656 struct target_ops *t;
2657
2658 for (t = target; t != NULL; t = t->beneath)
2659 if (t->to_read_description != NULL)
2660 {
2661 const struct target_desc *tdesc;
2662
2663 tdesc = t->to_read_description (t);
2664 if (tdesc)
2665 return tdesc;
2666 }
2667
2668 return NULL;
2669 }
2670
2671 /* The default implementation of to_search_memory.
2672 This implements a basic search of memory, reading target memory and
2673 performing the search here (as opposed to performing the search in on the
2674 target side with, for example, gdbserver). */
2675
2676 int
2677 simple_search_memory (struct target_ops *ops,
2678 CORE_ADDR start_addr, ULONGEST search_space_len,
2679 const gdb_byte *pattern, ULONGEST pattern_len,
2680 CORE_ADDR *found_addrp)
2681 {
2682 /* NOTE: also defined in find.c testcase. */
2683 #define SEARCH_CHUNK_SIZE 16000
2684 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2685 /* Buffer to hold memory contents for searching. */
2686 gdb_byte *search_buf;
2687 unsigned search_buf_size;
2688 struct cleanup *old_cleanups;
2689
2690 search_buf_size = chunk_size + pattern_len - 1;
2691
2692 /* No point in trying to allocate a buffer larger than the search space. */
2693 if (search_space_len < search_buf_size)
2694 search_buf_size = search_space_len;
2695
2696 search_buf = malloc (search_buf_size);
2697 if (search_buf == NULL)
2698 error (_("Unable to allocate memory to perform the search."));
2699 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2700
2701 /* Prime the search buffer. */
2702
2703 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2704 search_buf, start_addr, search_buf_size) != search_buf_size)
2705 {
2706 warning (_("Unable to access target memory at %s, halting search."),
2707 hex_string (start_addr));
2708 do_cleanups (old_cleanups);
2709 return -1;
2710 }
2711
2712 /* Perform the search.
2713
2714 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2715 When we've scanned N bytes we copy the trailing bytes to the start and
2716 read in another N bytes. */
2717
2718 while (search_space_len >= pattern_len)
2719 {
2720 gdb_byte *found_ptr;
2721 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2722
2723 found_ptr = memmem (search_buf, nr_search_bytes,
2724 pattern, pattern_len);
2725
2726 if (found_ptr != NULL)
2727 {
2728 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2729
2730 *found_addrp = found_addr;
2731 do_cleanups (old_cleanups);
2732 return 1;
2733 }
2734
2735 /* Not found in this chunk, skip to next chunk. */
2736
2737 /* Don't let search_space_len wrap here, it's unsigned. */
2738 if (search_space_len >= chunk_size)
2739 search_space_len -= chunk_size;
2740 else
2741 search_space_len = 0;
2742
2743 if (search_space_len >= pattern_len)
2744 {
2745 unsigned keep_len = search_buf_size - chunk_size;
2746 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2747 int nr_to_read;
2748
2749 /* Copy the trailing part of the previous iteration to the front
2750 of the buffer for the next iteration. */
2751 gdb_assert (keep_len == pattern_len - 1);
2752 memcpy (search_buf, search_buf + chunk_size, keep_len);
2753
2754 nr_to_read = min (search_space_len - keep_len, chunk_size);
2755
2756 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2757 search_buf + keep_len, read_addr,
2758 nr_to_read) != nr_to_read)
2759 {
2760 warning (_("Unable to access target "
2761 "memory at %s, halting search."),
2762 hex_string (read_addr));
2763 do_cleanups (old_cleanups);
2764 return -1;
2765 }
2766
2767 start_addr += chunk_size;
2768 }
2769 }
2770
2771 /* Not found. */
2772
2773 do_cleanups (old_cleanups);
2774 return 0;
2775 }
2776
2777 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2778 sequence of bytes in PATTERN with length PATTERN_LEN.
2779
2780 The result is 1 if found, 0 if not found, and -1 if there was an error
2781 requiring halting of the search (e.g. memory read error).
2782 If the pattern is found the address is recorded in FOUND_ADDRP. */
2783
2784 int
2785 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2786 const gdb_byte *pattern, ULONGEST pattern_len,
2787 CORE_ADDR *found_addrp)
2788 {
2789 struct target_ops *t;
2790 int found;
2791
2792 /* We don't use INHERIT to set current_target.to_search_memory,
2793 so we have to scan the target stack and handle targetdebug
2794 ourselves. */
2795
2796 if (targetdebug)
2797 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2798 hex_string (start_addr));
2799
2800 for (t = current_target.beneath; t != NULL; t = t->beneath)
2801 if (t->to_search_memory != NULL)
2802 break;
2803
2804 if (t != NULL)
2805 {
2806 found = t->to_search_memory (t, start_addr, search_space_len,
2807 pattern, pattern_len, found_addrp);
2808 }
2809 else
2810 {
2811 /* If a special version of to_search_memory isn't available, use the
2812 simple version. */
2813 found = simple_search_memory (current_target.beneath,
2814 start_addr, search_space_len,
2815 pattern, pattern_len, found_addrp);
2816 }
2817
2818 if (targetdebug)
2819 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2820
2821 return found;
2822 }
2823
2824 /* Look through the currently pushed targets. If none of them will
2825 be able to restart the currently running process, issue an error
2826 message. */
2827
2828 void
2829 target_require_runnable (void)
2830 {
2831 struct target_ops *t;
2832
2833 for (t = target_stack; t != NULL; t = t->beneath)
2834 {
2835 /* If this target knows how to create a new program, then
2836 assume we will still be able to after killing the current
2837 one. Either killing and mourning will not pop T, or else
2838 find_default_run_target will find it again. */
2839 if (t->to_create_inferior != NULL)
2840 return;
2841
2842 /* Do not worry about thread_stratum targets that can not
2843 create inferiors. Assume they will be pushed again if
2844 necessary, and continue to the process_stratum. */
2845 if (t->to_stratum == thread_stratum
2846 || t->to_stratum == arch_stratum)
2847 continue;
2848
2849 error (_("The \"%s\" target does not support \"run\". "
2850 "Try \"help target\" or \"continue\"."),
2851 t->to_shortname);
2852 }
2853
2854 /* This function is only called if the target is running. In that
2855 case there should have been a process_stratum target and it
2856 should either know how to create inferiors, or not... */
2857 internal_error (__FILE__, __LINE__, _("No targets found"));
2858 }
2859
2860 /* Look through the list of possible targets for a target that can
2861 execute a run or attach command without any other data. This is
2862 used to locate the default process stratum.
2863
2864 If DO_MESG is not NULL, the result is always valid (error() is
2865 called for errors); else, return NULL on error. */
2866
2867 static struct target_ops *
2868 find_default_run_target (char *do_mesg)
2869 {
2870 struct target_ops **t;
2871 struct target_ops *runable = NULL;
2872 int count;
2873
2874 count = 0;
2875
2876 for (t = target_structs; t < target_structs + target_struct_size;
2877 ++t)
2878 {
2879 if ((*t)->to_can_run && target_can_run (*t))
2880 {
2881 runable = *t;
2882 ++count;
2883 }
2884 }
2885
2886 if (count != 1)
2887 {
2888 if (do_mesg)
2889 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2890 else
2891 return NULL;
2892 }
2893
2894 return runable;
2895 }
2896
2897 void
2898 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2899 {
2900 struct target_ops *t;
2901
2902 t = find_default_run_target ("attach");
2903 (t->to_attach) (t, args, from_tty);
2904 return;
2905 }
2906
2907 void
2908 find_default_create_inferior (struct target_ops *ops,
2909 char *exec_file, char *allargs, char **env,
2910 int from_tty)
2911 {
2912 struct target_ops *t;
2913
2914 t = find_default_run_target ("run");
2915 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2916 return;
2917 }
2918
2919 static int
2920 find_default_can_async_p (void)
2921 {
2922 struct target_ops *t;
2923
2924 /* This may be called before the target is pushed on the stack;
2925 look for the default process stratum. If there's none, gdb isn't
2926 configured with a native debugger, and target remote isn't
2927 connected yet. */
2928 t = find_default_run_target (NULL);
2929 if (t && t->to_can_async_p)
2930 return (t->to_can_async_p) ();
2931 return 0;
2932 }
2933
2934 static int
2935 find_default_is_async_p (void)
2936 {
2937 struct target_ops *t;
2938
2939 /* This may be called before the target is pushed on the stack;
2940 look for the default process stratum. If there's none, gdb isn't
2941 configured with a native debugger, and target remote isn't
2942 connected yet. */
2943 t = find_default_run_target (NULL);
2944 if (t && t->to_is_async_p)
2945 return (t->to_is_async_p) ();
2946 return 0;
2947 }
2948
2949 static int
2950 find_default_supports_non_stop (void)
2951 {
2952 struct target_ops *t;
2953
2954 t = find_default_run_target (NULL);
2955 if (t && t->to_supports_non_stop)
2956 return (t->to_supports_non_stop) ();
2957 return 0;
2958 }
2959
2960 int
2961 target_supports_non_stop (void)
2962 {
2963 struct target_ops *t;
2964
2965 for (t = &current_target; t != NULL; t = t->beneath)
2966 if (t->to_supports_non_stop)
2967 return t->to_supports_non_stop ();
2968
2969 return 0;
2970 }
2971
2972
2973 char *
2974 target_get_osdata (const char *type)
2975 {
2976 struct target_ops *t;
2977
2978 /* If we're already connected to something that can get us OS
2979 related data, use it. Otherwise, try using the native
2980 target. */
2981 if (current_target.to_stratum >= process_stratum)
2982 t = current_target.beneath;
2983 else
2984 t = find_default_run_target ("get OS data");
2985
2986 if (!t)
2987 return NULL;
2988
2989 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2990 }
2991
2992 /* Determine the current address space of thread PTID. */
2993
2994 struct address_space *
2995 target_thread_address_space (ptid_t ptid)
2996 {
2997 struct address_space *aspace;
2998 struct inferior *inf;
2999 struct target_ops *t;
3000
3001 for (t = current_target.beneath; t != NULL; t = t->beneath)
3002 {
3003 if (t->to_thread_address_space != NULL)
3004 {
3005 aspace = t->to_thread_address_space (t, ptid);
3006 gdb_assert (aspace);
3007
3008 if (targetdebug)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "target_thread_address_space (%s) = %d\n",
3011 target_pid_to_str (ptid),
3012 address_space_num (aspace));
3013 return aspace;
3014 }
3015 }
3016
3017 /* Fall-back to the "main" address space of the inferior. */
3018 inf = find_inferior_pid (ptid_get_pid (ptid));
3019
3020 if (inf == NULL || inf->aspace == NULL)
3021 internal_error (__FILE__, __LINE__,
3022 _("Can't determine the current "
3023 "address space of thread %s\n"),
3024 target_pid_to_str (ptid));
3025
3026 return inf->aspace;
3027 }
3028
3029 static int
3030 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3031 {
3032 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3033 }
3034
3035 static int
3036 default_watchpoint_addr_within_range (struct target_ops *target,
3037 CORE_ADDR addr,
3038 CORE_ADDR start, int length)
3039 {
3040 return addr >= start && addr < start + length;
3041 }
3042
3043 static struct gdbarch *
3044 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3045 {
3046 return target_gdbarch;
3047 }
3048
3049 static int
3050 return_zero (void)
3051 {
3052 return 0;
3053 }
3054
3055 static int
3056 return_one (void)
3057 {
3058 return 1;
3059 }
3060
3061 static int
3062 return_minus_one (void)
3063 {
3064 return -1;
3065 }
3066
3067 /* Find a single runnable target in the stack and return it. If for
3068 some reason there is more than one, return NULL. */
3069
3070 struct target_ops *
3071 find_run_target (void)
3072 {
3073 struct target_ops **t;
3074 struct target_ops *runable = NULL;
3075 int count;
3076
3077 count = 0;
3078
3079 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3080 {
3081 if ((*t)->to_can_run && target_can_run (*t))
3082 {
3083 runable = *t;
3084 ++count;
3085 }
3086 }
3087
3088 return (count == 1 ? runable : NULL);
3089 }
3090
3091 /*
3092 * Find the next target down the stack from the specified target.
3093 */
3094
3095 struct target_ops *
3096 find_target_beneath (struct target_ops *t)
3097 {
3098 return t->beneath;
3099 }
3100
3101 \f
3102 /* The inferior process has died. Long live the inferior! */
3103
3104 void
3105 generic_mourn_inferior (void)
3106 {
3107 ptid_t ptid;
3108
3109 ptid = inferior_ptid;
3110 inferior_ptid = null_ptid;
3111
3112 if (!ptid_equal (ptid, null_ptid))
3113 {
3114 int pid = ptid_get_pid (ptid);
3115 exit_inferior (pid);
3116 }
3117
3118 breakpoint_init_inferior (inf_exited);
3119 registers_changed ();
3120
3121 reopen_exec_file ();
3122 reinit_frame_cache ();
3123
3124 if (deprecated_detach_hook)
3125 deprecated_detach_hook ();
3126 }
3127 \f
3128 /* Helper function for child_wait and the derivatives of child_wait.
3129 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3130 translation of that in OURSTATUS. */
3131 void
3132 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3133 {
3134 if (WIFEXITED (hoststatus))
3135 {
3136 ourstatus->kind = TARGET_WAITKIND_EXITED;
3137 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3138 }
3139 else if (!WIFSTOPPED (hoststatus))
3140 {
3141 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3142 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3143 }
3144 else
3145 {
3146 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3147 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3148 }
3149 }
3150 \f
3151 /* Convert a normal process ID to a string. Returns the string in a
3152 static buffer. */
3153
3154 char *
3155 normal_pid_to_str (ptid_t ptid)
3156 {
3157 static char buf[32];
3158
3159 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3160 return buf;
3161 }
3162
3163 static char *
3164 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3165 {
3166 return normal_pid_to_str (ptid);
3167 }
3168
3169 /* Error-catcher for target_find_memory_regions. */
3170 static int
3171 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3172 {
3173 error (_("Command not implemented for this target."));
3174 return 0;
3175 }
3176
3177 /* Error-catcher for target_make_corefile_notes. */
3178 static char *
3179 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3180 {
3181 error (_("Command not implemented for this target."));
3182 return NULL;
3183 }
3184
3185 /* Error-catcher for target_get_bookmark. */
3186 static gdb_byte *
3187 dummy_get_bookmark (char *ignore1, int ignore2)
3188 {
3189 tcomplain ();
3190 return NULL;
3191 }
3192
3193 /* Error-catcher for target_goto_bookmark. */
3194 static void
3195 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3196 {
3197 tcomplain ();
3198 }
3199
3200 /* Set up the handful of non-empty slots needed by the dummy target
3201 vector. */
3202
3203 static void
3204 init_dummy_target (void)
3205 {
3206 dummy_target.to_shortname = "None";
3207 dummy_target.to_longname = "None";
3208 dummy_target.to_doc = "";
3209 dummy_target.to_attach = find_default_attach;
3210 dummy_target.to_detach =
3211 (void (*)(struct target_ops *, char *, int))target_ignore;
3212 dummy_target.to_create_inferior = find_default_create_inferior;
3213 dummy_target.to_can_async_p = find_default_can_async_p;
3214 dummy_target.to_is_async_p = find_default_is_async_p;
3215 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3216 dummy_target.to_pid_to_str = dummy_pid_to_str;
3217 dummy_target.to_stratum = dummy_stratum;
3218 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3219 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3220 dummy_target.to_get_bookmark = dummy_get_bookmark;
3221 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3222 dummy_target.to_xfer_partial = default_xfer_partial;
3223 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3224 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3225 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3226 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3227 dummy_target.to_has_execution
3228 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3229 dummy_target.to_stopped_by_watchpoint = return_zero;
3230 dummy_target.to_stopped_data_address =
3231 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3232 dummy_target.to_magic = OPS_MAGIC;
3233 }
3234 \f
3235 static void
3236 debug_to_open (char *args, int from_tty)
3237 {
3238 debug_target.to_open (args, from_tty);
3239
3240 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3241 }
3242
3243 void
3244 target_close (struct target_ops *targ, int quitting)
3245 {
3246 if (targ->to_xclose != NULL)
3247 targ->to_xclose (targ, quitting);
3248 else if (targ->to_close != NULL)
3249 targ->to_close (quitting);
3250
3251 if (targetdebug)
3252 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3253 }
3254
3255 void
3256 target_attach (char *args, int from_tty)
3257 {
3258 struct target_ops *t;
3259
3260 for (t = current_target.beneath; t != NULL; t = t->beneath)
3261 {
3262 if (t->to_attach != NULL)
3263 {
3264 t->to_attach (t, args, from_tty);
3265 if (targetdebug)
3266 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3267 args, from_tty);
3268 return;
3269 }
3270 }
3271
3272 internal_error (__FILE__, __LINE__,
3273 _("could not find a target to attach"));
3274 }
3275
3276 int
3277 target_thread_alive (ptid_t ptid)
3278 {
3279 struct target_ops *t;
3280
3281 for (t = current_target.beneath; t != NULL; t = t->beneath)
3282 {
3283 if (t->to_thread_alive != NULL)
3284 {
3285 int retval;
3286
3287 retval = t->to_thread_alive (t, ptid);
3288 if (targetdebug)
3289 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3290 PIDGET (ptid), retval);
3291
3292 return retval;
3293 }
3294 }
3295
3296 return 0;
3297 }
3298
3299 void
3300 target_find_new_threads (void)
3301 {
3302 struct target_ops *t;
3303
3304 for (t = current_target.beneath; t != NULL; t = t->beneath)
3305 {
3306 if (t->to_find_new_threads != NULL)
3307 {
3308 t->to_find_new_threads (t);
3309 if (targetdebug)
3310 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3311
3312 return;
3313 }
3314 }
3315 }
3316
3317 void
3318 target_stop (ptid_t ptid)
3319 {
3320 if (!may_stop)
3321 {
3322 warning (_("May not interrupt or stop the target, ignoring attempt"));
3323 return;
3324 }
3325
3326 (*current_target.to_stop) (ptid);
3327 }
3328
3329 static void
3330 debug_to_post_attach (int pid)
3331 {
3332 debug_target.to_post_attach (pid);
3333
3334 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3335 }
3336
3337 /* Return a pretty printed form of target_waitstatus.
3338 Space for the result is malloc'd, caller must free. */
3339
3340 char *
3341 target_waitstatus_to_string (const struct target_waitstatus *ws)
3342 {
3343 const char *kind_str = "status->kind = ";
3344
3345 switch (ws->kind)
3346 {
3347 case TARGET_WAITKIND_EXITED:
3348 return xstrprintf ("%sexited, status = %d",
3349 kind_str, ws->value.integer);
3350 case TARGET_WAITKIND_STOPPED:
3351 return xstrprintf ("%sstopped, signal = %s",
3352 kind_str, target_signal_to_name (ws->value.sig));
3353 case TARGET_WAITKIND_SIGNALLED:
3354 return xstrprintf ("%ssignalled, signal = %s",
3355 kind_str, target_signal_to_name (ws->value.sig));
3356 case TARGET_WAITKIND_LOADED:
3357 return xstrprintf ("%sloaded", kind_str);
3358 case TARGET_WAITKIND_FORKED:
3359 return xstrprintf ("%sforked", kind_str);
3360 case TARGET_WAITKIND_VFORKED:
3361 return xstrprintf ("%svforked", kind_str);
3362 case TARGET_WAITKIND_EXECD:
3363 return xstrprintf ("%sexecd", kind_str);
3364 case TARGET_WAITKIND_SYSCALL_ENTRY:
3365 return xstrprintf ("%sentered syscall", kind_str);
3366 case TARGET_WAITKIND_SYSCALL_RETURN:
3367 return xstrprintf ("%sexited syscall", kind_str);
3368 case TARGET_WAITKIND_SPURIOUS:
3369 return xstrprintf ("%sspurious", kind_str);
3370 case TARGET_WAITKIND_IGNORE:
3371 return xstrprintf ("%signore", kind_str);
3372 case TARGET_WAITKIND_NO_HISTORY:
3373 return xstrprintf ("%sno-history", kind_str);
3374 default:
3375 return xstrprintf ("%sunknown???", kind_str);
3376 }
3377 }
3378
3379 static void
3380 debug_print_register (const char * func,
3381 struct regcache *regcache, int regno)
3382 {
3383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3384
3385 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3386 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3387 && gdbarch_register_name (gdbarch, regno) != NULL
3388 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3389 fprintf_unfiltered (gdb_stdlog, "(%s)",
3390 gdbarch_register_name (gdbarch, regno));
3391 else
3392 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3393 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3394 {
3395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3396 int i, size = register_size (gdbarch, regno);
3397 unsigned char buf[MAX_REGISTER_SIZE];
3398
3399 regcache_raw_collect (regcache, regno, buf);
3400 fprintf_unfiltered (gdb_stdlog, " = ");
3401 for (i = 0; i < size; i++)
3402 {
3403 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3404 }
3405 if (size <= sizeof (LONGEST))
3406 {
3407 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3408
3409 fprintf_unfiltered (gdb_stdlog, " %s %s",
3410 core_addr_to_string_nz (val), plongest (val));
3411 }
3412 }
3413 fprintf_unfiltered (gdb_stdlog, "\n");
3414 }
3415
3416 void
3417 target_fetch_registers (struct regcache *regcache, int regno)
3418 {
3419 struct target_ops *t;
3420
3421 for (t = current_target.beneath; t != NULL; t = t->beneath)
3422 {
3423 if (t->to_fetch_registers != NULL)
3424 {
3425 t->to_fetch_registers (t, regcache, regno);
3426 if (targetdebug)
3427 debug_print_register ("target_fetch_registers", regcache, regno);
3428 return;
3429 }
3430 }
3431 }
3432
3433 void
3434 target_store_registers (struct regcache *regcache, int regno)
3435 {
3436 struct target_ops *t;
3437
3438 if (!may_write_registers)
3439 error (_("Writing to registers is not allowed (regno %d)"), regno);
3440
3441 for (t = current_target.beneath; t != NULL; t = t->beneath)
3442 {
3443 if (t->to_store_registers != NULL)
3444 {
3445 t->to_store_registers (t, regcache, regno);
3446 if (targetdebug)
3447 {
3448 debug_print_register ("target_store_registers", regcache, regno);
3449 }
3450 return;
3451 }
3452 }
3453
3454 noprocess ();
3455 }
3456
3457 int
3458 target_core_of_thread (ptid_t ptid)
3459 {
3460 struct target_ops *t;
3461
3462 for (t = current_target.beneath; t != NULL; t = t->beneath)
3463 {
3464 if (t->to_core_of_thread != NULL)
3465 {
3466 int retval = t->to_core_of_thread (t, ptid);
3467
3468 if (targetdebug)
3469 fprintf_unfiltered (gdb_stdlog,
3470 "target_core_of_thread (%d) = %d\n",
3471 PIDGET (ptid), retval);
3472 return retval;
3473 }
3474 }
3475
3476 return -1;
3477 }
3478
3479 int
3480 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3481 {
3482 struct target_ops *t;
3483
3484 for (t = current_target.beneath; t != NULL; t = t->beneath)
3485 {
3486 if (t->to_verify_memory != NULL)
3487 {
3488 int retval = t->to_verify_memory (t, data, memaddr, size);
3489
3490 if (targetdebug)
3491 fprintf_unfiltered (gdb_stdlog,
3492 "target_verify_memory (%s, %s) = %d\n",
3493 paddress (target_gdbarch, memaddr),
3494 pulongest (size),
3495 retval);
3496 return retval;
3497 }
3498 }
3499
3500 tcomplain ();
3501 }
3502
3503 static void
3504 debug_to_prepare_to_store (struct regcache *regcache)
3505 {
3506 debug_target.to_prepare_to_store (regcache);
3507
3508 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3509 }
3510
3511 static int
3512 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3513 int write, struct mem_attrib *attrib,
3514 struct target_ops *target)
3515 {
3516 int retval;
3517
3518 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3519 attrib, target);
3520
3521 fprintf_unfiltered (gdb_stdlog,
3522 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3523 paddress (target_gdbarch, memaddr), len,
3524 write ? "write" : "read", retval);
3525
3526 if (retval > 0)
3527 {
3528 int i;
3529
3530 fputs_unfiltered (", bytes =", gdb_stdlog);
3531 for (i = 0; i < retval; i++)
3532 {
3533 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3534 {
3535 if (targetdebug < 2 && i > 0)
3536 {
3537 fprintf_unfiltered (gdb_stdlog, " ...");
3538 break;
3539 }
3540 fprintf_unfiltered (gdb_stdlog, "\n");
3541 }
3542
3543 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3544 }
3545 }
3546
3547 fputc_unfiltered ('\n', gdb_stdlog);
3548
3549 return retval;
3550 }
3551
3552 static void
3553 debug_to_files_info (struct target_ops *target)
3554 {
3555 debug_target.to_files_info (target);
3556
3557 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3558 }
3559
3560 static int
3561 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3562 struct bp_target_info *bp_tgt)
3563 {
3564 int retval;
3565
3566 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3567
3568 fprintf_unfiltered (gdb_stdlog,
3569 "target_insert_breakpoint (%s, xxx) = %ld\n",
3570 core_addr_to_string (bp_tgt->placed_address),
3571 (unsigned long) retval);
3572 return retval;
3573 }
3574
3575 static int
3576 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3577 struct bp_target_info *bp_tgt)
3578 {
3579 int retval;
3580
3581 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3582
3583 fprintf_unfiltered (gdb_stdlog,
3584 "target_remove_breakpoint (%s, xxx) = %ld\n",
3585 core_addr_to_string (bp_tgt->placed_address),
3586 (unsigned long) retval);
3587 return retval;
3588 }
3589
3590 static int
3591 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3592 {
3593 int retval;
3594
3595 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3596
3597 fprintf_unfiltered (gdb_stdlog,
3598 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3599 (unsigned long) type,
3600 (unsigned long) cnt,
3601 (unsigned long) from_tty,
3602 (unsigned long) retval);
3603 return retval;
3604 }
3605
3606 static int
3607 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3608 {
3609 CORE_ADDR retval;
3610
3611 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3612
3613 fprintf_unfiltered (gdb_stdlog,
3614 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3615 core_addr_to_string (addr), (unsigned long) len,
3616 core_addr_to_string (retval));
3617 return retval;
3618 }
3619
3620 static int
3621 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3622 struct expression *cond)
3623 {
3624 int retval;
3625
3626 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3627 rw, cond);
3628
3629 fprintf_unfiltered (gdb_stdlog,
3630 "target_can_accel_watchpoint_condition "
3631 "(%s, %d, %d, %s) = %ld\n",
3632 core_addr_to_string (addr), len, rw,
3633 host_address_to_string (cond), (unsigned long) retval);
3634 return retval;
3635 }
3636
3637 static int
3638 debug_to_stopped_by_watchpoint (void)
3639 {
3640 int retval;
3641
3642 retval = debug_target.to_stopped_by_watchpoint ();
3643
3644 fprintf_unfiltered (gdb_stdlog,
3645 "target_stopped_by_watchpoint () = %ld\n",
3646 (unsigned long) retval);
3647 return retval;
3648 }
3649
3650 static int
3651 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3652 {
3653 int retval;
3654
3655 retval = debug_target.to_stopped_data_address (target, addr);
3656
3657 fprintf_unfiltered (gdb_stdlog,
3658 "target_stopped_data_address ([%s]) = %ld\n",
3659 core_addr_to_string (*addr),
3660 (unsigned long)retval);
3661 return retval;
3662 }
3663
3664 static int
3665 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3666 CORE_ADDR addr,
3667 CORE_ADDR start, int length)
3668 {
3669 int retval;
3670
3671 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3672 start, length);
3673
3674 fprintf_filtered (gdb_stdlog,
3675 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3676 core_addr_to_string (addr), core_addr_to_string (start),
3677 length, retval);
3678 return retval;
3679 }
3680
3681 static int
3682 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3683 struct bp_target_info *bp_tgt)
3684 {
3685 int retval;
3686
3687 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3688
3689 fprintf_unfiltered (gdb_stdlog,
3690 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3691 core_addr_to_string (bp_tgt->placed_address),
3692 (unsigned long) retval);
3693 return retval;
3694 }
3695
3696 static int
3697 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3698 struct bp_target_info *bp_tgt)
3699 {
3700 int retval;
3701
3702 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3703
3704 fprintf_unfiltered (gdb_stdlog,
3705 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3706 core_addr_to_string (bp_tgt->placed_address),
3707 (unsigned long) retval);
3708 return retval;
3709 }
3710
3711 static int
3712 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3713 struct expression *cond)
3714 {
3715 int retval;
3716
3717 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3718
3719 fprintf_unfiltered (gdb_stdlog,
3720 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3721 core_addr_to_string (addr), len, type,
3722 host_address_to_string (cond), (unsigned long) retval);
3723 return retval;
3724 }
3725
3726 static int
3727 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3728 struct expression *cond)
3729 {
3730 int retval;
3731
3732 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3733
3734 fprintf_unfiltered (gdb_stdlog,
3735 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3736 core_addr_to_string (addr), len, type,
3737 host_address_to_string (cond), (unsigned long) retval);
3738 return retval;
3739 }
3740
3741 static void
3742 debug_to_terminal_init (void)
3743 {
3744 debug_target.to_terminal_init ();
3745
3746 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3747 }
3748
3749 static void
3750 debug_to_terminal_inferior (void)
3751 {
3752 debug_target.to_terminal_inferior ();
3753
3754 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3755 }
3756
3757 static void
3758 debug_to_terminal_ours_for_output (void)
3759 {
3760 debug_target.to_terminal_ours_for_output ();
3761
3762 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3763 }
3764
3765 static void
3766 debug_to_terminal_ours (void)
3767 {
3768 debug_target.to_terminal_ours ();
3769
3770 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3771 }
3772
3773 static void
3774 debug_to_terminal_save_ours (void)
3775 {
3776 debug_target.to_terminal_save_ours ();
3777
3778 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3779 }
3780
3781 static void
3782 debug_to_terminal_info (char *arg, int from_tty)
3783 {
3784 debug_target.to_terminal_info (arg, from_tty);
3785
3786 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3787 from_tty);
3788 }
3789
3790 static void
3791 debug_to_load (char *args, int from_tty)
3792 {
3793 debug_target.to_load (args, from_tty);
3794
3795 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3796 }
3797
3798 static int
3799 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3800 {
3801 int retval;
3802
3803 retval = debug_target.to_lookup_symbol (name, addrp);
3804
3805 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3806
3807 return retval;
3808 }
3809
3810 static void
3811 debug_to_post_startup_inferior (ptid_t ptid)
3812 {
3813 debug_target.to_post_startup_inferior (ptid);
3814
3815 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3816 PIDGET (ptid));
3817 }
3818
3819 static int
3820 debug_to_insert_fork_catchpoint (int pid)
3821 {
3822 int retval;
3823
3824 retval = debug_target.to_insert_fork_catchpoint (pid);
3825
3826 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3827 pid, retval);
3828
3829 return retval;
3830 }
3831
3832 static int
3833 debug_to_remove_fork_catchpoint (int pid)
3834 {
3835 int retval;
3836
3837 retval = debug_target.to_remove_fork_catchpoint (pid);
3838
3839 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3840 pid, retval);
3841
3842 return retval;
3843 }
3844
3845 static int
3846 debug_to_insert_vfork_catchpoint (int pid)
3847 {
3848 int retval;
3849
3850 retval = debug_target.to_insert_vfork_catchpoint (pid);
3851
3852 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3853 pid, retval);
3854
3855 return retval;
3856 }
3857
3858 static int
3859 debug_to_remove_vfork_catchpoint (int pid)
3860 {
3861 int retval;
3862
3863 retval = debug_target.to_remove_vfork_catchpoint (pid);
3864
3865 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3866 pid, retval);
3867
3868 return retval;
3869 }
3870
3871 static int
3872 debug_to_insert_exec_catchpoint (int pid)
3873 {
3874 int retval;
3875
3876 retval = debug_target.to_insert_exec_catchpoint (pid);
3877
3878 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3879 pid, retval);
3880
3881 return retval;
3882 }
3883
3884 static int
3885 debug_to_remove_exec_catchpoint (int pid)
3886 {
3887 int retval;
3888
3889 retval = debug_target.to_remove_exec_catchpoint (pid);
3890
3891 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3892 pid, retval);
3893
3894 return retval;
3895 }
3896
3897 static int
3898 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3899 {
3900 int has_exited;
3901
3902 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3903
3904 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3905 pid, wait_status, *exit_status, has_exited);
3906
3907 return has_exited;
3908 }
3909
3910 static int
3911 debug_to_can_run (void)
3912 {
3913 int retval;
3914
3915 retval = debug_target.to_can_run ();
3916
3917 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3918
3919 return retval;
3920 }
3921
3922 static void
3923 debug_to_notice_signals (ptid_t ptid)
3924 {
3925 debug_target.to_notice_signals (ptid);
3926
3927 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3928 PIDGET (ptid));
3929 }
3930
3931 static struct gdbarch *
3932 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3933 {
3934 struct gdbarch *retval;
3935
3936 retval = debug_target.to_thread_architecture (ops, ptid);
3937
3938 fprintf_unfiltered (gdb_stdlog,
3939 "target_thread_architecture (%s) = %s [%s]\n",
3940 target_pid_to_str (ptid),
3941 host_address_to_string (retval),
3942 gdbarch_bfd_arch_info (retval)->printable_name);
3943 return retval;
3944 }
3945
3946 static void
3947 debug_to_stop (ptid_t ptid)
3948 {
3949 debug_target.to_stop (ptid);
3950
3951 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3952 target_pid_to_str (ptid));
3953 }
3954
3955 static void
3956 debug_to_rcmd (char *command,
3957 struct ui_file *outbuf)
3958 {
3959 debug_target.to_rcmd (command, outbuf);
3960 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3961 }
3962
3963 static char *
3964 debug_to_pid_to_exec_file (int pid)
3965 {
3966 char *exec_file;
3967
3968 exec_file = debug_target.to_pid_to_exec_file (pid);
3969
3970 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3971 pid, exec_file);
3972
3973 return exec_file;
3974 }
3975
3976 static void
3977 setup_target_debug (void)
3978 {
3979 memcpy (&debug_target, &current_target, sizeof debug_target);
3980
3981 current_target.to_open = debug_to_open;
3982 current_target.to_post_attach = debug_to_post_attach;
3983 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3984 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3985 current_target.to_files_info = debug_to_files_info;
3986 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3987 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3988 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3989 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3990 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3991 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3992 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3993 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3994 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3995 current_target.to_watchpoint_addr_within_range
3996 = debug_to_watchpoint_addr_within_range;
3997 current_target.to_region_ok_for_hw_watchpoint
3998 = debug_to_region_ok_for_hw_watchpoint;
3999 current_target.to_can_accel_watchpoint_condition
4000 = debug_to_can_accel_watchpoint_condition;
4001 current_target.to_terminal_init = debug_to_terminal_init;
4002 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4003 current_target.to_terminal_ours_for_output
4004 = debug_to_terminal_ours_for_output;
4005 current_target.to_terminal_ours = debug_to_terminal_ours;
4006 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4007 current_target.to_terminal_info = debug_to_terminal_info;
4008 current_target.to_load = debug_to_load;
4009 current_target.to_lookup_symbol = debug_to_lookup_symbol;
4010 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4011 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4012 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4013 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4014 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4015 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4016 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4017 current_target.to_has_exited = debug_to_has_exited;
4018 current_target.to_can_run = debug_to_can_run;
4019 current_target.to_notice_signals = debug_to_notice_signals;
4020 current_target.to_stop = debug_to_stop;
4021 current_target.to_rcmd = debug_to_rcmd;
4022 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4023 current_target.to_thread_architecture = debug_to_thread_architecture;
4024 }
4025 \f
4026
4027 static char targ_desc[] =
4028 "Names of targets and files being debugged.\nShows the entire \
4029 stack of targets currently in use (including the exec-file,\n\
4030 core-file, and process, if any), as well as the symbol file name.";
4031
4032 static void
4033 do_monitor_command (char *cmd,
4034 int from_tty)
4035 {
4036 if ((current_target.to_rcmd
4037 == (void (*) (char *, struct ui_file *)) tcomplain)
4038 || (current_target.to_rcmd == debug_to_rcmd
4039 && (debug_target.to_rcmd
4040 == (void (*) (char *, struct ui_file *)) tcomplain)))
4041 error (_("\"monitor\" command not supported by this target."));
4042 target_rcmd (cmd, gdb_stdtarg);
4043 }
4044
4045 /* Print the name of each layers of our target stack. */
4046
4047 static void
4048 maintenance_print_target_stack (char *cmd, int from_tty)
4049 {
4050 struct target_ops *t;
4051
4052 printf_filtered (_("The current target stack is:\n"));
4053
4054 for (t = target_stack; t != NULL; t = t->beneath)
4055 {
4056 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4057 }
4058 }
4059
4060 /* Controls if async mode is permitted. */
4061 int target_async_permitted = 0;
4062
4063 /* The set command writes to this variable. If the inferior is
4064 executing, linux_nat_async_permitted is *not* updated. */
4065 static int target_async_permitted_1 = 0;
4066
4067 static void
4068 set_maintenance_target_async_permitted (char *args, int from_tty,
4069 struct cmd_list_element *c)
4070 {
4071 if (have_live_inferiors ())
4072 {
4073 target_async_permitted_1 = target_async_permitted;
4074 error (_("Cannot change this setting while the inferior is running."));
4075 }
4076
4077 target_async_permitted = target_async_permitted_1;
4078 }
4079
4080 static void
4081 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4082 struct cmd_list_element *c,
4083 const char *value)
4084 {
4085 fprintf_filtered (file,
4086 _("Controlling the inferior in "
4087 "asynchronous mode is %s.\n"), value);
4088 }
4089
4090 /* Temporary copies of permission settings. */
4091
4092 static int may_write_registers_1 = 1;
4093 static int may_write_memory_1 = 1;
4094 static int may_insert_breakpoints_1 = 1;
4095 static int may_insert_tracepoints_1 = 1;
4096 static int may_insert_fast_tracepoints_1 = 1;
4097 static int may_stop_1 = 1;
4098
4099 /* Make the user-set values match the real values again. */
4100
4101 void
4102 update_target_permissions (void)
4103 {
4104 may_write_registers_1 = may_write_registers;
4105 may_write_memory_1 = may_write_memory;
4106 may_insert_breakpoints_1 = may_insert_breakpoints;
4107 may_insert_tracepoints_1 = may_insert_tracepoints;
4108 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4109 may_stop_1 = may_stop;
4110 }
4111
4112 /* The one function handles (most of) the permission flags in the same
4113 way. */
4114
4115 static void
4116 set_target_permissions (char *args, int from_tty,
4117 struct cmd_list_element *c)
4118 {
4119 if (target_has_execution)
4120 {
4121 update_target_permissions ();
4122 error (_("Cannot change this setting while the inferior is running."));
4123 }
4124
4125 /* Make the real values match the user-changed values. */
4126 may_write_registers = may_write_registers_1;
4127 may_insert_breakpoints = may_insert_breakpoints_1;
4128 may_insert_tracepoints = may_insert_tracepoints_1;
4129 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4130 may_stop = may_stop_1;
4131 update_observer_mode ();
4132 }
4133
4134 /* Set memory write permission independently of observer mode. */
4135
4136 static void
4137 set_write_memory_permission (char *args, int from_tty,
4138 struct cmd_list_element *c)
4139 {
4140 /* Make the real values match the user-changed values. */
4141 may_write_memory = may_write_memory_1;
4142 update_observer_mode ();
4143 }
4144
4145
4146 void
4147 initialize_targets (void)
4148 {
4149 init_dummy_target ();
4150 push_target (&dummy_target);
4151
4152 add_info ("target", target_info, targ_desc);
4153 add_info ("files", target_info, targ_desc);
4154
4155 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4156 Set target debugging."), _("\
4157 Show target debugging."), _("\
4158 When non-zero, target debugging is enabled. Higher numbers are more\n\
4159 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4160 command."),
4161 NULL,
4162 show_targetdebug,
4163 &setdebuglist, &showdebuglist);
4164
4165 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4166 &trust_readonly, _("\
4167 Set mode for reading from readonly sections."), _("\
4168 Show mode for reading from readonly sections."), _("\
4169 When this mode is on, memory reads from readonly sections (such as .text)\n\
4170 will be read from the object file instead of from the target. This will\n\
4171 result in significant performance improvement for remote targets."),
4172 NULL,
4173 show_trust_readonly,
4174 &setlist, &showlist);
4175
4176 add_com ("monitor", class_obscure, do_monitor_command,
4177 _("Send a command to the remote monitor (remote targets only)."));
4178
4179 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4180 _("Print the name of each layer of the internal target stack."),
4181 &maintenanceprintlist);
4182
4183 add_setshow_boolean_cmd ("target-async", no_class,
4184 &target_async_permitted_1, _("\
4185 Set whether gdb controls the inferior in asynchronous mode."), _("\
4186 Show whether gdb controls the inferior in asynchronous mode."), _("\
4187 Tells gdb whether to control the inferior in asynchronous mode."),
4188 set_maintenance_target_async_permitted,
4189 show_maintenance_target_async_permitted,
4190 &setlist,
4191 &showlist);
4192
4193 add_setshow_boolean_cmd ("stack-cache", class_support,
4194 &stack_cache_enabled_p_1, _("\
4195 Set cache use for stack access."), _("\
4196 Show cache use for stack access."), _("\
4197 When on, use the data cache for all stack access, regardless of any\n\
4198 configured memory regions. This improves remote performance significantly.\n\
4199 By default, caching for stack access is on."),
4200 set_stack_cache_enabled_p,
4201 show_stack_cache_enabled_p,
4202 &setlist, &showlist);
4203
4204 add_setshow_boolean_cmd ("may-write-registers", class_support,
4205 &may_write_registers_1, _("\
4206 Set permission to write into registers."), _("\
4207 Show permission to write into registers."), _("\
4208 When this permission is on, GDB may write into the target's registers.\n\
4209 Otherwise, any sort of write attempt will result in an error."),
4210 set_target_permissions, NULL,
4211 &setlist, &showlist);
4212
4213 add_setshow_boolean_cmd ("may-write-memory", class_support,
4214 &may_write_memory_1, _("\
4215 Set permission to write into target memory."), _("\
4216 Show permission to write into target memory."), _("\
4217 When this permission is on, GDB may write into the target's memory.\n\
4218 Otherwise, any sort of write attempt will result in an error."),
4219 set_write_memory_permission, NULL,
4220 &setlist, &showlist);
4221
4222 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4223 &may_insert_breakpoints_1, _("\
4224 Set permission to insert breakpoints in the target."), _("\
4225 Show permission to insert breakpoints in the target."), _("\
4226 When this permission is on, GDB may insert breakpoints in the program.\n\
4227 Otherwise, any sort of insertion attempt will result in an error."),
4228 set_target_permissions, NULL,
4229 &setlist, &showlist);
4230
4231 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4232 &may_insert_tracepoints_1, _("\
4233 Set permission to insert tracepoints in the target."), _("\
4234 Show permission to insert tracepoints in the target."), _("\
4235 When this permission is on, GDB may insert tracepoints in the program.\n\
4236 Otherwise, any sort of insertion attempt will result in an error."),
4237 set_target_permissions, NULL,
4238 &setlist, &showlist);
4239
4240 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4241 &may_insert_fast_tracepoints_1, _("\
4242 Set permission to insert fast tracepoints in the target."), _("\
4243 Show permission to insert fast tracepoints in the target."), _("\
4244 When this permission is on, GDB may insert fast tracepoints.\n\
4245 Otherwise, any sort of insertion attempt will result in an error."),
4246 set_target_permissions, NULL,
4247 &setlist, &showlist);
4248
4249 add_setshow_boolean_cmd ("may-interrupt", class_support,
4250 &may_stop_1, _("\
4251 Set permission to interrupt or signal the target."), _("\
4252 Show permission to interrupt or signal the target."), _("\
4253 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4254 Otherwise, any attempt to interrupt or stop will be ignored."),
4255 set_target_permissions, NULL,
4256 &setlist, &showlist);
4257
4258
4259 target_dcache = dcache_init ();
4260 }
This page took 0.137844 seconds and 4 git commands to generate.