bfd/
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (int);
110
111 static void debug_to_store_registers (int);
112
113 static void debug_to_prepare_to_store (void);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset current's contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_continuable_watchpoint, t);
417 INHERIT (to_region_ok_for_hw_watchpoint, t);
418 INHERIT (to_terminal_init, t);
419 INHERIT (to_terminal_inferior, t);
420 INHERIT (to_terminal_ours_for_output, t);
421 INHERIT (to_terminal_ours, t);
422 INHERIT (to_terminal_save_ours, t);
423 INHERIT (to_terminal_info, t);
424 INHERIT (to_kill, t);
425 INHERIT (to_load, t);
426 INHERIT (to_lookup_symbol, t);
427 INHERIT (to_create_inferior, t);
428 INHERIT (to_post_startup_inferior, t);
429 INHERIT (to_acknowledge_created_inferior, t);
430 INHERIT (to_insert_fork_catchpoint, t);
431 INHERIT (to_remove_fork_catchpoint, t);
432 INHERIT (to_insert_vfork_catchpoint, t);
433 INHERIT (to_remove_vfork_catchpoint, t);
434 /* Do not inherit to_follow_fork. */
435 INHERIT (to_insert_exec_catchpoint, t);
436 INHERIT (to_remove_exec_catchpoint, t);
437 INHERIT (to_reported_exec_events_per_exec_call, t);
438 INHERIT (to_has_exited, t);
439 INHERIT (to_mourn_inferior, t);
440 INHERIT (to_can_run, t);
441 INHERIT (to_notice_signals, t);
442 INHERIT (to_thread_alive, t);
443 INHERIT (to_find_new_threads, t);
444 INHERIT (to_pid_to_str, t);
445 INHERIT (to_extra_thread_info, t);
446 INHERIT (to_stop, t);
447 /* Do not inherit to_xfer_partial. */
448 INHERIT (to_rcmd, t);
449 INHERIT (to_enable_exception_callback, t);
450 INHERIT (to_get_current_exception_event, t);
451 INHERIT (to_pid_to_exec_file, t);
452 INHERIT (to_stratum, t);
453 INHERIT (to_has_all_memory, t);
454 INHERIT (to_has_memory, t);
455 INHERIT (to_has_stack, t);
456 INHERIT (to_has_registers, t);
457 INHERIT (to_has_execution, t);
458 INHERIT (to_has_thread_control, t);
459 INHERIT (to_sections, t);
460 INHERIT (to_sections_end, t);
461 INHERIT (to_can_async_p, t);
462 INHERIT (to_is_async_p, t);
463 INHERIT (to_async, t);
464 INHERIT (to_async_mask_value, t);
465 INHERIT (to_find_memory_regions, t);
466 INHERIT (to_make_corefile_notes, t);
467 INHERIT (to_get_thread_local_address, t);
468 /* Do not inherit to_read_description. */
469 INHERIT (to_magic, t);
470 /* Do not inherit to_memory_map. */
471 /* Do not inherit to_flash_erase. */
472 /* Do not inherit to_flash_done. */
473 }
474 #undef INHERIT
475
476 /* Clean up a target struct so it no longer has any zero pointers in
477 it. Some entries are defaulted to a method that print an error,
478 others are hard-wired to a standard recursive default. */
479
480 #define de_fault(field, value) \
481 if (!current_target.field) \
482 current_target.field = value
483
484 de_fault (to_open,
485 (void (*) (char *, int))
486 tcomplain);
487 de_fault (to_close,
488 (void (*) (int))
489 target_ignore);
490 de_fault (to_attach,
491 maybe_kill_then_attach);
492 de_fault (to_post_attach,
493 (void (*) (int))
494 target_ignore);
495 de_fault (to_detach,
496 (void (*) (char *, int))
497 target_ignore);
498 de_fault (to_resume,
499 (void (*) (ptid_t, int, enum target_signal))
500 noprocess);
501 de_fault (to_wait,
502 (ptid_t (*) (ptid_t, struct target_waitstatus *))
503 noprocess);
504 de_fault (to_fetch_registers,
505 (void (*) (int))
506 target_ignore);
507 de_fault (to_store_registers,
508 (void (*) (int))
509 noprocess);
510 de_fault (to_prepare_to_store,
511 (void (*) (void))
512 noprocess);
513 de_fault (deprecated_xfer_memory,
514 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
515 nomemory);
516 de_fault (to_files_info,
517 (void (*) (struct target_ops *))
518 target_ignore);
519 de_fault (to_insert_breakpoint,
520 memory_insert_breakpoint);
521 de_fault (to_remove_breakpoint,
522 memory_remove_breakpoint);
523 de_fault (to_can_use_hw_breakpoint,
524 (int (*) (int, int, int))
525 return_zero);
526 de_fault (to_insert_hw_breakpoint,
527 (int (*) (struct bp_target_info *))
528 return_minus_one);
529 de_fault (to_remove_hw_breakpoint,
530 (int (*) (struct bp_target_info *))
531 return_minus_one);
532 de_fault (to_insert_watchpoint,
533 (int (*) (CORE_ADDR, int, int))
534 return_minus_one);
535 de_fault (to_remove_watchpoint,
536 (int (*) (CORE_ADDR, int, int))
537 return_minus_one);
538 de_fault (to_stopped_by_watchpoint,
539 (int (*) (void))
540 return_zero);
541 de_fault (to_stopped_data_address,
542 (int (*) (struct target_ops *, CORE_ADDR *))
543 return_zero);
544 de_fault (to_region_ok_for_hw_watchpoint,
545 default_region_ok_for_hw_watchpoint);
546 de_fault (to_terminal_init,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_inferior,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_ours_for_output,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_ours,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_save_ours,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_info,
562 default_terminal_info);
563 de_fault (to_kill,
564 (void (*) (void))
565 noprocess);
566 de_fault (to_load,
567 (void (*) (char *, int))
568 tcomplain);
569 de_fault (to_lookup_symbol,
570 (int (*) (char *, CORE_ADDR *))
571 nosymbol);
572 de_fault (to_create_inferior,
573 maybe_kill_then_create_inferior);
574 de_fault (to_post_startup_inferior,
575 (void (*) (ptid_t))
576 target_ignore);
577 de_fault (to_acknowledge_created_inferior,
578 (void (*) (int))
579 target_ignore);
580 de_fault (to_insert_fork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_fork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_vfork_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_vfork_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_insert_exec_catchpoint,
593 (void (*) (int))
594 tcomplain);
595 de_fault (to_remove_exec_catchpoint,
596 (int (*) (int))
597 tcomplain);
598 de_fault (to_reported_exec_events_per_exec_call,
599 (int (*) (void))
600 return_one);
601 de_fault (to_has_exited,
602 (int (*) (int, int, int *))
603 return_zero);
604 de_fault (to_mourn_inferior,
605 (void (*) (void))
606 noprocess);
607 de_fault (to_can_run,
608 return_zero);
609 de_fault (to_notice_signals,
610 (void (*) (ptid_t))
611 target_ignore);
612 de_fault (to_thread_alive,
613 (int (*) (ptid_t))
614 return_zero);
615 de_fault (to_find_new_threads,
616 (void (*) (void))
617 target_ignore);
618 de_fault (to_extra_thread_info,
619 (char *(*) (struct thread_info *))
620 return_zero);
621 de_fault (to_stop,
622 (void (*) (void))
623 target_ignore);
624 current_target.to_xfer_partial = current_xfer_partial;
625 de_fault (to_rcmd,
626 (void (*) (char *, struct ui_file *))
627 tcomplain);
628 de_fault (to_enable_exception_callback,
629 (struct symtab_and_line * (*) (enum exception_event_kind, int))
630 nosupport_runtime);
631 de_fault (to_get_current_exception_event,
632 (struct exception_event_record * (*) (void))
633 nosupport_runtime);
634 de_fault (to_pid_to_exec_file,
635 (char *(*) (int))
636 return_zero);
637 de_fault (to_can_async_p,
638 (int (*) (void))
639 return_zero);
640 de_fault (to_is_async_p,
641 (int (*) (void))
642 return_zero);
643 de_fault (to_async,
644 (void (*) (void (*) (enum inferior_event_type, void*), void*))
645 tcomplain);
646 current_target.to_read_description = NULL;
647 #undef de_fault
648
649 /* Finally, position the target-stack beneath the squashed
650 "current_target". That way code looking for a non-inherited
651 target method can quickly and simply find it. */
652 current_target.beneath = target_stack;
653 }
654
655 /* Mark OPS as a running target. This reverses the effect
656 of target_mark_exited. */
657
658 void
659 target_mark_running (struct target_ops *ops)
660 {
661 struct target_ops *t;
662
663 for (t = target_stack; t != NULL; t = t->beneath)
664 if (t == ops)
665 break;
666 if (t == NULL)
667 internal_error (__FILE__, __LINE__,
668 "Attempted to mark unpushed target \"%s\" as running",
669 ops->to_shortname);
670
671 ops->to_has_execution = 1;
672 ops->to_has_all_memory = 1;
673 ops->to_has_memory = 1;
674 ops->to_has_stack = 1;
675 ops->to_has_registers = 1;
676
677 update_current_target ();
678 }
679
680 /* Mark OPS as a non-running target. This reverses the effect
681 of target_mark_running. */
682
683 void
684 target_mark_exited (struct target_ops *ops)
685 {
686 struct target_ops *t;
687
688 for (t = target_stack; t != NULL; t = t->beneath)
689 if (t == ops)
690 break;
691 if (t == NULL)
692 internal_error (__FILE__, __LINE__,
693 "Attempted to mark unpushed target \"%s\" as running",
694 ops->to_shortname);
695
696 ops->to_has_execution = 0;
697 ops->to_has_all_memory = 0;
698 ops->to_has_memory = 0;
699 ops->to_has_stack = 0;
700 ops->to_has_registers = 0;
701
702 update_current_target ();
703 }
704
705 /* Push a new target type into the stack of the existing target accessors,
706 possibly superseding some of the existing accessors.
707
708 Result is zero if the pushed target ended up on top of the stack,
709 nonzero if at least one target is on top of it.
710
711 Rather than allow an empty stack, we always have the dummy target at
712 the bottom stratum, so we can call the function vectors without
713 checking them. */
714
715 int
716 push_target (struct target_ops *t)
717 {
718 struct target_ops **cur;
719
720 /* Check magic number. If wrong, it probably means someone changed
721 the struct definition, but not all the places that initialize one. */
722 if (t->to_magic != OPS_MAGIC)
723 {
724 fprintf_unfiltered (gdb_stderr,
725 "Magic number of %s target struct wrong\n",
726 t->to_shortname);
727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
728 }
729
730 /* Find the proper stratum to install this target in. */
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
734 break;
735 }
736
737 /* If there's already targets at this stratum, remove them. */
738 /* FIXME: cagney/2003-10-15: I think this should be popping all
739 targets to CUR, and not just those at this stratum level. */
740 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
741 {
742 /* There's already something at this stratum level. Close it,
743 and un-hook it from the stack. */
744 struct target_ops *tmp = (*cur);
745 (*cur) = (*cur)->beneath;
746 tmp->beneath = NULL;
747 target_close (tmp, 0);
748 }
749
750 /* We have removed all targets in our stratum, now add the new one. */
751 t->beneath = (*cur);
752 (*cur) = t;
753
754 update_current_target ();
755
756 if (targetdebug)
757 setup_target_debug ();
758
759 /* Not on top? */
760 return (t != target_stack);
761 }
762
763 /* Remove a target_ops vector from the stack, wherever it may be.
764 Return how many times it was removed (0 or 1). */
765
766 int
767 unpush_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770 struct target_ops *tmp;
771
772 /* Look for the specified target. Note that we assume that a target
773 can only occur once in the target stack. */
774
775 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
776 {
777 if ((*cur) == t)
778 break;
779 }
780
781 if ((*cur) == NULL)
782 return 0; /* Didn't find target_ops, quit now */
783
784 /* NOTE: cagney/2003-12-06: In '94 the close call was made
785 unconditional by moving it to before the above check that the
786 target was in the target stack (something about "Change the way
787 pushing and popping of targets work to support target overlays
788 and inheritance"). This doesn't make much sense - only open
789 targets should be closed. */
790 target_close (t, 0);
791
792 /* Unchain the target */
793 tmp = (*cur);
794 (*cur) = (*cur)->beneath;
795 tmp->beneath = NULL;
796
797 update_current_target ();
798
799 return 1;
800 }
801
802 void
803 pop_target (void)
804 {
805 target_close (&current_target, 0); /* Let it clean up */
806 if (unpush_target (target_stack) == 1)
807 return;
808
809 fprintf_unfiltered (gdb_stderr,
810 "pop_target couldn't find target %s\n",
811 current_target.to_shortname);
812 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
813 }
814
815 /* Using the objfile specified in BATON, find the address for the
816 current thread's thread-local storage with offset OFFSET. */
817 CORE_ADDR
818 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
819 {
820 volatile CORE_ADDR addr = 0;
821
822 if (target_get_thread_local_address_p ()
823 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
824 {
825 ptid_t ptid = inferior_ptid;
826 volatile struct gdb_exception ex;
827
828 TRY_CATCH (ex, RETURN_MASK_ALL)
829 {
830 CORE_ADDR lm_addr;
831
832 /* Fetch the load module address for this objfile. */
833 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
834 objfile);
835 /* If it's 0, throw the appropriate exception. */
836 if (lm_addr == 0)
837 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
838 _("TLS load module not found"));
839
840 addr = target_get_thread_local_address (ptid, lm_addr, offset);
841 }
842 /* If an error occurred, print TLS related messages here. Otherwise,
843 throw the error to some higher catcher. */
844 if (ex.reason < 0)
845 {
846 int objfile_is_library = (objfile->flags & OBJF_SHARED);
847
848 switch (ex.error)
849 {
850 case TLS_NO_LIBRARY_SUPPORT_ERROR:
851 error (_("Cannot find thread-local variables in this thread library."));
852 break;
853 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
854 if (objfile_is_library)
855 error (_("Cannot find shared library `%s' in dynamic"
856 " linker's load module list"), objfile->name);
857 else
858 error (_("Cannot find executable file `%s' in dynamic"
859 " linker's load module list"), objfile->name);
860 break;
861 case TLS_NOT_ALLOCATED_YET_ERROR:
862 if (objfile_is_library)
863 error (_("The inferior has not yet allocated storage for"
864 " thread-local variables in\n"
865 "the shared library `%s'\n"
866 "for %s"),
867 objfile->name, target_pid_to_str (ptid));
868 else
869 error (_("The inferior has not yet allocated storage for"
870 " thread-local variables in\n"
871 "the executable `%s'\n"
872 "for %s"),
873 objfile->name, target_pid_to_str (ptid));
874 break;
875 case TLS_GENERIC_ERROR:
876 if (objfile_is_library)
877 error (_("Cannot find thread-local storage for %s, "
878 "shared library %s:\n%s"),
879 target_pid_to_str (ptid),
880 objfile->name, ex.message);
881 else
882 error (_("Cannot find thread-local storage for %s, "
883 "executable file %s:\n%s"),
884 target_pid_to_str (ptid),
885 objfile->name, ex.message);
886 break;
887 default:
888 throw_exception (ex);
889 break;
890 }
891 }
892 }
893 /* It wouldn't be wrong here to try a gdbarch method, too; finding
894 TLS is an ABI-specific thing. But we don't do that yet. */
895 else
896 error (_("Cannot find thread-local variables on this target"));
897
898 return addr;
899 }
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, origlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = xmalloc (buffer_allocated);
924 bufptr = buffer;
925
926 origlen = len;
927
928 while (len > 0)
929 {
930 tlen = MIN (len, 4 - (memaddr & 3));
931 offset = memaddr & 3;
932
933 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 if (errcode != 0)
935 {
936 /* The transfer request might have crossed the boundary to an
937 unallocated region of memory. Retry the transfer, requesting
938 a single byte. */
939 tlen = 1;
940 offset = 0;
941 errcode = target_read_memory (memaddr, buf, 1);
942 if (errcode != 0)
943 goto done;
944 }
945
946 if (bufptr - buffer + tlen > buffer_allocated)
947 {
948 unsigned int bytes;
949 bytes = bufptr - buffer;
950 buffer_allocated *= 2;
951 buffer = xrealloc (buffer, buffer_allocated);
952 bufptr = buffer + bytes;
953 }
954
955 for (i = 0; i < tlen; i++)
956 {
957 *bufptr++ = buf[i + offset];
958 if (buf[i + offset] == '\000')
959 {
960 nbytes_read += i + 1;
961 goto done;
962 }
963 }
964
965 memaddr += tlen;
966 len -= tlen;
967 nbytes_read += tlen;
968 }
969 done:
970 if (errnop != NULL)
971 *errnop = errcode;
972 if (string != NULL)
973 *string = buffer;
974 return nbytes_read;
975 }
976
977 /* Find a section containing ADDR. */
978 struct section_table *
979 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
980 {
981 struct section_table *secp;
982 for (secp = target->to_sections;
983 secp < target->to_sections_end;
984 secp++)
985 {
986 if (addr >= secp->addr && addr < secp->endaddr)
987 return secp;
988 }
989 return NULL;
990 }
991
992 /* Perform a partial memory transfer. The arguments and return
993 value are just as for target_xfer_partial. */
994
995 static LONGEST
996 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
997 ULONGEST memaddr, LONGEST len)
998 {
999 LONGEST res;
1000 int reg_len;
1001 struct mem_region *region;
1002
1003 /* Zero length requests are ok and require no work. */
1004 if (len == 0)
1005 return 0;
1006
1007 /* Try the executable file, if "trust-readonly-sections" is set. */
1008 if (readbuf != NULL && trust_readonly)
1009 {
1010 struct section_table *secp;
1011
1012 secp = target_section_by_addr (ops, memaddr);
1013 if (secp != NULL
1014 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1015 & SEC_READONLY))
1016 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1017 }
1018
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
1031 return -1;
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
1036 return -1;
1037 break;
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
1044
1045 case MEM_NONE:
1046 return -1;
1047 }
1048
1049 if (region->attrib.cache)
1050 {
1051 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1052 memory request will start back at current_target. */
1053 if (readbuf != NULL)
1054 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1055 reg_len, 0);
1056 else
1057 /* FIXME drow/2006-08-09: If we're going to preserve const
1058 correctness dcache_xfer_memory should take readbuf and
1059 writebuf. */
1060 res = dcache_xfer_memory (target_dcache, memaddr,
1061 (void *) writebuf,
1062 reg_len, 1);
1063 if (res <= 0)
1064 return -1;
1065 else
1066 return res;
1067 }
1068
1069 /* If none of those methods found the memory we wanted, fall back
1070 to a target partial transfer. Normally a single call to
1071 to_xfer_partial is enough; if it doesn't recognize an object
1072 it will call the to_xfer_partial of the next target down.
1073 But for memory this won't do. Memory is the only target
1074 object which can be read from more than one valid target.
1075 A core file, for instance, could have some of memory but
1076 delegate other bits to the target below it. So, we must
1077 manually try all targets. */
1078
1079 do
1080 {
1081 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1082 readbuf, writebuf, memaddr, reg_len);
1083 if (res > 0)
1084 return res;
1085
1086 ops = ops->beneath;
1087 }
1088 while (ops != NULL);
1089
1090 /* If we still haven't got anything, return the last error. We
1091 give up. */
1092 return res;
1093 }
1094
1095 static LONGEST
1096 target_xfer_partial (struct target_ops *ops,
1097 enum target_object object, const char *annex,
1098 void *readbuf, const void *writebuf,
1099 ULONGEST offset, LONGEST len)
1100 {
1101 LONGEST retval;
1102
1103 gdb_assert (ops->to_xfer_partial != NULL);
1104
1105 /* If this is a memory transfer, let the memory-specific code
1106 have a look at it instead. Memory transfers are more
1107 complicated. */
1108 if (object == TARGET_OBJECT_MEMORY)
1109 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1110 else
1111 {
1112 enum target_object raw_object = object;
1113
1114 /* If this is a raw memory transfer, request the normal
1115 memory object from other layers. */
1116 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1117 raw_object = TARGET_OBJECT_MEMORY;
1118
1119 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1120 writebuf, offset, len);
1121 }
1122
1123 if (targetdebug)
1124 {
1125 const unsigned char *myaddr = NULL;
1126
1127 fprintf_unfiltered (gdb_stdlog,
1128 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1129 ops->to_shortname,
1130 (int) object,
1131 (annex ? annex : "(null)"),
1132 (long) readbuf, (long) writebuf,
1133 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1134
1135 if (readbuf)
1136 myaddr = readbuf;
1137 if (writebuf)
1138 myaddr = writebuf;
1139 if (retval > 0 && myaddr != NULL)
1140 {
1141 int i;
1142
1143 fputs_unfiltered (", bytes =", gdb_stdlog);
1144 for (i = 0; i < retval; i++)
1145 {
1146 if ((((long) &(myaddr[i])) & 0xf) == 0)
1147 {
1148 if (targetdebug < 2 && i > 0)
1149 {
1150 fprintf_unfiltered (gdb_stdlog, " ...");
1151 break;
1152 }
1153 fprintf_unfiltered (gdb_stdlog, "\n");
1154 }
1155
1156 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1157 }
1158 }
1159
1160 fputc_unfiltered ('\n', gdb_stdlog);
1161 }
1162 return retval;
1163 }
1164
1165 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1166 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1167 if any error occurs.
1168
1169 If an error occurs, no guarantee is made about the contents of the data at
1170 MYADDR. In particular, the caller should not depend upon partial reads
1171 filling the buffer with good data. There is no way for the caller to know
1172 how much good data might have been transfered anyway. Callers that can
1173 deal with partial reads should call target_read (which will retry until
1174 it makes no progress, and then return how much was transferred). */
1175
1176 int
1177 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1178 {
1179 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1180 myaddr, memaddr, len) == len)
1181 return 0;
1182 else
1183 return EIO;
1184 }
1185
1186 int
1187 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1188 {
1189 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1190 myaddr, memaddr, len) == len)
1191 return 0;
1192 else
1193 return EIO;
1194 }
1195
1196 /* Fetch the target's memory map. */
1197
1198 VEC(mem_region_s) *
1199 target_memory_map (void)
1200 {
1201 VEC(mem_region_s) *result;
1202 struct mem_region *last_one, *this_one;
1203 int ix;
1204 struct target_ops *t;
1205
1206 if (targetdebug)
1207 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1208
1209 for (t = current_target.beneath; t != NULL; t = t->beneath)
1210 if (t->to_memory_map != NULL)
1211 break;
1212
1213 if (t == NULL)
1214 return NULL;
1215
1216 result = t->to_memory_map (t);
1217 if (result == NULL)
1218 return NULL;
1219
1220 qsort (VEC_address (mem_region_s, result),
1221 VEC_length (mem_region_s, result),
1222 sizeof (struct mem_region), mem_region_cmp);
1223
1224 /* Check that regions do not overlap. Simultaneously assign
1225 a numbering for the "mem" commands to use to refer to
1226 each region. */
1227 last_one = NULL;
1228 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1229 {
1230 this_one->number = ix;
1231
1232 if (last_one && last_one->hi > this_one->lo)
1233 {
1234 warning (_("Overlapping regions in memory map: ignoring"));
1235 VEC_free (mem_region_s, result);
1236 return NULL;
1237 }
1238 last_one = this_one;
1239 }
1240
1241 return result;
1242 }
1243
1244 void
1245 target_flash_erase (ULONGEST address, LONGEST length)
1246 {
1247 struct target_ops *t;
1248
1249 for (t = current_target.beneath; t != NULL; t = t->beneath)
1250 if (t->to_flash_erase != NULL)
1251 {
1252 if (targetdebug)
1253 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1254 paddr (address), phex (length, 0));
1255 t->to_flash_erase (t, address, length);
1256 return;
1257 }
1258
1259 tcomplain ();
1260 }
1261
1262 void
1263 target_flash_done (void)
1264 {
1265 struct target_ops *t;
1266
1267 for (t = current_target.beneath; t != NULL; t = t->beneath)
1268 if (t->to_flash_done != NULL)
1269 {
1270 if (targetdebug)
1271 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1272 t->to_flash_done (t);
1273 return;
1274 }
1275
1276 tcomplain ();
1277 }
1278
1279 #ifndef target_stopped_data_address_p
1280 int
1281 target_stopped_data_address_p (struct target_ops *target)
1282 {
1283 if (target->to_stopped_data_address
1284 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1285 return 0;
1286 if (target->to_stopped_data_address == debug_to_stopped_data_address
1287 && (debug_target.to_stopped_data_address
1288 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1289 return 0;
1290 return 1;
1291 }
1292 #endif
1293
1294 static void
1295 show_trust_readonly (struct ui_file *file, int from_tty,
1296 struct cmd_list_element *c, const char *value)
1297 {
1298 fprintf_filtered (file, _("\
1299 Mode for reading from readonly sections is %s.\n"),
1300 value);
1301 }
1302
1303 /* More generic transfers. */
1304
1305 static LONGEST
1306 default_xfer_partial (struct target_ops *ops, enum target_object object,
1307 const char *annex, gdb_byte *readbuf,
1308 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1309 {
1310 if (object == TARGET_OBJECT_MEMORY
1311 && ops->deprecated_xfer_memory != NULL)
1312 /* If available, fall back to the target's
1313 "deprecated_xfer_memory" method. */
1314 {
1315 int xfered = -1;
1316 errno = 0;
1317 if (writebuf != NULL)
1318 {
1319 void *buffer = xmalloc (len);
1320 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1321 memcpy (buffer, writebuf, len);
1322 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1323 1/*write*/, NULL, ops);
1324 do_cleanups (cleanup);
1325 }
1326 if (readbuf != NULL)
1327 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1328 NULL, ops);
1329 if (xfered > 0)
1330 return xfered;
1331 else if (xfered == 0 && errno == 0)
1332 /* "deprecated_xfer_memory" uses 0, cross checked against
1333 ERRNO as one indication of an error. */
1334 return 0;
1335 else
1336 return -1;
1337 }
1338 else if (ops->beneath != NULL)
1339 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1340 readbuf, writebuf, offset, len);
1341 else
1342 return -1;
1343 }
1344
1345 /* The xfer_partial handler for the topmost target. Unlike the default,
1346 it does not need to handle memory specially; it just passes all
1347 requests down the stack. */
1348
1349 static LONGEST
1350 current_xfer_partial (struct target_ops *ops, enum target_object object,
1351 const char *annex, gdb_byte *readbuf,
1352 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1353 {
1354 if (ops->beneath != NULL)
1355 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1356 readbuf, writebuf, offset, len);
1357 else
1358 return -1;
1359 }
1360
1361 /* Target vector read/write partial wrapper functions.
1362
1363 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1364 (inbuf, outbuf)", instead of separate read/write methods, make life
1365 easier. */
1366
1367 static LONGEST
1368 target_read_partial (struct target_ops *ops,
1369 enum target_object object,
1370 const char *annex, gdb_byte *buf,
1371 ULONGEST offset, LONGEST len)
1372 {
1373 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1374 }
1375
1376 static LONGEST
1377 target_write_partial (struct target_ops *ops,
1378 enum target_object object,
1379 const char *annex, const gdb_byte *buf,
1380 ULONGEST offset, LONGEST len)
1381 {
1382 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1383 }
1384
1385 /* Wrappers to perform the full transfer. */
1386 LONGEST
1387 target_read (struct target_ops *ops,
1388 enum target_object object,
1389 const char *annex, gdb_byte *buf,
1390 ULONGEST offset, LONGEST len)
1391 {
1392 LONGEST xfered = 0;
1393 while (xfered < len)
1394 {
1395 LONGEST xfer = target_read_partial (ops, object, annex,
1396 (gdb_byte *) buf + xfered,
1397 offset + xfered, len - xfered);
1398 /* Call an observer, notifying them of the xfer progress? */
1399 if (xfer == 0)
1400 return xfered;
1401 if (xfer < 0)
1402 return -1;
1403 xfered += xfer;
1404 QUIT;
1405 }
1406 return len;
1407 }
1408
1409 /* An alternative to target_write with progress callbacks. */
1410
1411 LONGEST
1412 target_write_with_progress (struct target_ops *ops,
1413 enum target_object object,
1414 const char *annex, const gdb_byte *buf,
1415 ULONGEST offset, LONGEST len,
1416 void (*progress) (ULONGEST, void *), void *baton)
1417 {
1418 LONGEST xfered = 0;
1419
1420 /* Give the progress callback a chance to set up. */
1421 if (progress)
1422 (*progress) (0, baton);
1423
1424 while (xfered < len)
1425 {
1426 LONGEST xfer = target_write_partial (ops, object, annex,
1427 (gdb_byte *) buf + xfered,
1428 offset + xfered, len - xfered);
1429
1430 if (xfer == 0)
1431 return xfered;
1432 if (xfer < 0)
1433 return -1;
1434
1435 if (progress)
1436 (*progress) (xfer, baton);
1437
1438 xfered += xfer;
1439 QUIT;
1440 }
1441 return len;
1442 }
1443
1444 LONGEST
1445 target_write (struct target_ops *ops,
1446 enum target_object object,
1447 const char *annex, const gdb_byte *buf,
1448 ULONGEST offset, LONGEST len)
1449 {
1450 return target_write_with_progress (ops, object, annex, buf, offset, len,
1451 NULL, NULL);
1452 }
1453
1454 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1455 the size of the transferred data. PADDING additional bytes are
1456 available in *BUF_P. This is a helper function for
1457 target_read_alloc; see the declaration of that function for more
1458 information. */
1459
1460 static LONGEST
1461 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1462 const char *annex, gdb_byte **buf_p, int padding)
1463 {
1464 size_t buf_alloc, buf_pos;
1465 gdb_byte *buf;
1466 LONGEST n;
1467
1468 /* This function does not have a length parameter; it reads the
1469 entire OBJECT). Also, it doesn't support objects fetched partly
1470 from one target and partly from another (in a different stratum,
1471 e.g. a core file and an executable). Both reasons make it
1472 unsuitable for reading memory. */
1473 gdb_assert (object != TARGET_OBJECT_MEMORY);
1474
1475 /* Start by reading up to 4K at a time. The target will throttle
1476 this number down if necessary. */
1477 buf_alloc = 4096;
1478 buf = xmalloc (buf_alloc);
1479 buf_pos = 0;
1480 while (1)
1481 {
1482 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1483 buf_pos, buf_alloc - buf_pos - padding);
1484 if (n < 0)
1485 {
1486 /* An error occurred. */
1487 xfree (buf);
1488 return -1;
1489 }
1490 else if (n == 0)
1491 {
1492 /* Read all there was. */
1493 if (buf_pos == 0)
1494 xfree (buf);
1495 else
1496 *buf_p = buf;
1497 return buf_pos;
1498 }
1499
1500 buf_pos += n;
1501
1502 /* If the buffer is filling up, expand it. */
1503 if (buf_alloc < buf_pos * 2)
1504 {
1505 buf_alloc *= 2;
1506 buf = xrealloc (buf, buf_alloc);
1507 }
1508
1509 QUIT;
1510 }
1511 }
1512
1513 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1514 the size of the transferred data. See the declaration in "target.h"
1515 function for more information about the return value. */
1516
1517 LONGEST
1518 target_read_alloc (struct target_ops *ops, enum target_object object,
1519 const char *annex, gdb_byte **buf_p)
1520 {
1521 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1522 }
1523
1524 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1525 returned as a string, allocated using xmalloc. If an error occurs
1526 or the transfer is unsupported, NULL is returned. Empty objects
1527 are returned as allocated but empty strings. A warning is issued
1528 if the result contains any embedded NUL bytes. */
1529
1530 char *
1531 target_read_stralloc (struct target_ops *ops, enum target_object object,
1532 const char *annex)
1533 {
1534 gdb_byte *buffer;
1535 LONGEST transferred;
1536
1537 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1538
1539 if (transferred < 0)
1540 return NULL;
1541
1542 if (transferred == 0)
1543 return xstrdup ("");
1544
1545 buffer[transferred] = 0;
1546 if (strlen (buffer) < transferred)
1547 warning (_("target object %d, annex %s, "
1548 "contained unexpected null characters"),
1549 (int) object, annex ? annex : "(none)");
1550
1551 return (char *) buffer;
1552 }
1553
1554 /* Memory transfer methods. */
1555
1556 void
1557 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1558 LONGEST len)
1559 {
1560 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1561 != len)
1562 memory_error (EIO, addr);
1563 }
1564
1565 ULONGEST
1566 get_target_memory_unsigned (struct target_ops *ops,
1567 CORE_ADDR addr, int len)
1568 {
1569 gdb_byte buf[sizeof (ULONGEST)];
1570
1571 gdb_assert (len <= sizeof (buf));
1572 get_target_memory (ops, addr, buf, len);
1573 return extract_unsigned_integer (buf, len);
1574 }
1575
1576 static void
1577 target_info (char *args, int from_tty)
1578 {
1579 struct target_ops *t;
1580 int has_all_mem = 0;
1581
1582 if (symfile_objfile != NULL)
1583 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1584
1585 for (t = target_stack; t != NULL; t = t->beneath)
1586 {
1587 if (!t->to_has_memory)
1588 continue;
1589
1590 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1591 continue;
1592 if (has_all_mem)
1593 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1594 printf_unfiltered ("%s:\n", t->to_longname);
1595 (t->to_files_info) (t);
1596 has_all_mem = t->to_has_all_memory;
1597 }
1598 }
1599
1600 /* This function is called before any new inferior is created, e.g.
1601 by running a program, attaching, or connecting to a target.
1602 It cleans up any state from previous invocations which might
1603 change between runs. This is a subset of what target_preopen
1604 resets (things which might change between targets). */
1605
1606 void
1607 target_pre_inferior (int from_tty)
1608 {
1609 invalidate_target_mem_regions ();
1610
1611 target_clear_description ();
1612 }
1613
1614 /* This is to be called by the open routine before it does
1615 anything. */
1616
1617 void
1618 target_preopen (int from_tty)
1619 {
1620 dont_repeat ();
1621
1622 if (target_has_execution)
1623 {
1624 if (!from_tty
1625 || query (_("A program is being debugged already. Kill it? ")))
1626 target_kill ();
1627 else
1628 error (_("Program not killed."));
1629 }
1630
1631 /* Calling target_kill may remove the target from the stack. But if
1632 it doesn't (which seems like a win for UDI), remove it now. */
1633
1634 if (target_has_execution)
1635 pop_target ();
1636
1637 target_pre_inferior (from_tty);
1638 }
1639
1640 /* Detach a target after doing deferred register stores. */
1641
1642 void
1643 target_detach (char *args, int from_tty)
1644 {
1645 (current_target.to_detach) (args, from_tty);
1646 }
1647
1648 void
1649 target_disconnect (char *args, int from_tty)
1650 {
1651 struct target_ops *t;
1652
1653 for (t = current_target.beneath; t != NULL; t = t->beneath)
1654 if (t->to_disconnect != NULL)
1655 {
1656 if (targetdebug)
1657 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1658 args, from_tty);
1659 t->to_disconnect (t, args, from_tty);
1660 return;
1661 }
1662
1663 tcomplain ();
1664 }
1665
1666 int
1667 target_async_mask (int mask)
1668 {
1669 int saved_async_masked_status = target_async_mask_value;
1670 target_async_mask_value = mask;
1671 return saved_async_masked_status;
1672 }
1673
1674 /* Look through the list of possible targets for a target that can
1675 follow forks. */
1676
1677 int
1678 target_follow_fork (int follow_child)
1679 {
1680 struct target_ops *t;
1681
1682 for (t = current_target.beneath; t != NULL; t = t->beneath)
1683 {
1684 if (t->to_follow_fork != NULL)
1685 {
1686 int retval = t->to_follow_fork (t, follow_child);
1687 if (targetdebug)
1688 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1689 follow_child, retval);
1690 return retval;
1691 }
1692 }
1693
1694 /* Some target returned a fork event, but did not know how to follow it. */
1695 internal_error (__FILE__, __LINE__,
1696 "could not find a target to follow fork");
1697 }
1698
1699 /* Look for a target which can describe architectural features, starting
1700 from TARGET. If we find one, return its description. */
1701
1702 const struct target_desc *
1703 target_read_description (struct target_ops *target)
1704 {
1705 struct target_ops *t;
1706
1707 for (t = target; t != NULL; t = t->beneath)
1708 if (t->to_read_description != NULL)
1709 {
1710 const struct target_desc *tdesc;
1711
1712 tdesc = t->to_read_description (t);
1713 if (tdesc)
1714 return tdesc;
1715 }
1716
1717 return NULL;
1718 }
1719
1720 /* Look through the list of possible targets for a target that can
1721 execute a run or attach command without any other data. This is
1722 used to locate the default process stratum.
1723
1724 Result is always valid (error() is called for errors). */
1725
1726 static struct target_ops *
1727 find_default_run_target (char *do_mesg)
1728 {
1729 struct target_ops **t;
1730 struct target_ops *runable = NULL;
1731 int count;
1732
1733 count = 0;
1734
1735 for (t = target_structs; t < target_structs + target_struct_size;
1736 ++t)
1737 {
1738 if ((*t)->to_can_run && target_can_run (*t))
1739 {
1740 runable = *t;
1741 ++count;
1742 }
1743 }
1744
1745 if (count != 1)
1746 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1747
1748 return runable;
1749 }
1750
1751 void
1752 find_default_attach (char *args, int from_tty)
1753 {
1754 struct target_ops *t;
1755
1756 t = find_default_run_target ("attach");
1757 (t->to_attach) (args, from_tty);
1758 return;
1759 }
1760
1761 void
1762 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1763 int from_tty)
1764 {
1765 struct target_ops *t;
1766
1767 t = find_default_run_target ("run");
1768 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1769 return;
1770 }
1771
1772 static int
1773 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1774 {
1775 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1776 }
1777
1778 static int
1779 return_zero (void)
1780 {
1781 return 0;
1782 }
1783
1784 static int
1785 return_one (void)
1786 {
1787 return 1;
1788 }
1789
1790 static int
1791 return_minus_one (void)
1792 {
1793 return -1;
1794 }
1795
1796 /*
1797 * Resize the to_sections pointer. Also make sure that anyone that
1798 * was holding on to an old value of it gets updated.
1799 * Returns the old size.
1800 */
1801
1802 int
1803 target_resize_to_sections (struct target_ops *target, int num_added)
1804 {
1805 struct target_ops **t;
1806 struct section_table *old_value;
1807 int old_count;
1808
1809 old_value = target->to_sections;
1810
1811 if (target->to_sections)
1812 {
1813 old_count = target->to_sections_end - target->to_sections;
1814 target->to_sections = (struct section_table *)
1815 xrealloc ((char *) target->to_sections,
1816 (sizeof (struct section_table)) * (num_added + old_count));
1817 }
1818 else
1819 {
1820 old_count = 0;
1821 target->to_sections = (struct section_table *)
1822 xmalloc ((sizeof (struct section_table)) * num_added);
1823 }
1824 target->to_sections_end = target->to_sections + (num_added + old_count);
1825
1826 /* Check to see if anyone else was pointing to this structure.
1827 If old_value was null, then no one was. */
1828
1829 if (old_value)
1830 {
1831 for (t = target_structs; t < target_structs + target_struct_size;
1832 ++t)
1833 {
1834 if ((*t)->to_sections == old_value)
1835 {
1836 (*t)->to_sections = target->to_sections;
1837 (*t)->to_sections_end = target->to_sections_end;
1838 }
1839 }
1840 /* There is a flattened view of the target stack in current_target,
1841 so its to_sections pointer might also need updating. */
1842 if (current_target.to_sections == old_value)
1843 {
1844 current_target.to_sections = target->to_sections;
1845 current_target.to_sections_end = target->to_sections_end;
1846 }
1847 }
1848
1849 return old_count;
1850
1851 }
1852
1853 /* Remove all target sections taken from ABFD.
1854
1855 Scan the current target stack for targets whose section tables
1856 refer to sections from BFD, and remove those sections. We use this
1857 when we notice that the inferior has unloaded a shared object, for
1858 example. */
1859 void
1860 remove_target_sections (bfd *abfd)
1861 {
1862 struct target_ops **t;
1863
1864 for (t = target_structs; t < target_structs + target_struct_size; t++)
1865 {
1866 struct section_table *src, *dest;
1867
1868 dest = (*t)->to_sections;
1869 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1870 if (src->bfd != abfd)
1871 {
1872 /* Keep this section. */
1873 if (dest < src) *dest = *src;
1874 dest++;
1875 }
1876
1877 /* If we've dropped any sections, resize the section table. */
1878 if (dest < src)
1879 target_resize_to_sections (*t, dest - src);
1880 }
1881 }
1882
1883
1884
1885
1886 /* Find a single runnable target in the stack and return it. If for
1887 some reason there is more than one, return NULL. */
1888
1889 struct target_ops *
1890 find_run_target (void)
1891 {
1892 struct target_ops **t;
1893 struct target_ops *runable = NULL;
1894 int count;
1895
1896 count = 0;
1897
1898 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1899 {
1900 if ((*t)->to_can_run && target_can_run (*t))
1901 {
1902 runable = *t;
1903 ++count;
1904 }
1905 }
1906
1907 return (count == 1 ? runable : NULL);
1908 }
1909
1910 /* Find a single core_stratum target in the list of targets and return it.
1911 If for some reason there is more than one, return NULL. */
1912
1913 struct target_ops *
1914 find_core_target (void)
1915 {
1916 struct target_ops **t;
1917 struct target_ops *runable = NULL;
1918 int count;
1919
1920 count = 0;
1921
1922 for (t = target_structs; t < target_structs + target_struct_size;
1923 ++t)
1924 {
1925 if ((*t)->to_stratum == core_stratum)
1926 {
1927 runable = *t;
1928 ++count;
1929 }
1930 }
1931
1932 return (count == 1 ? runable : NULL);
1933 }
1934
1935 /*
1936 * Find the next target down the stack from the specified target.
1937 */
1938
1939 struct target_ops *
1940 find_target_beneath (struct target_ops *t)
1941 {
1942 return t->beneath;
1943 }
1944
1945 \f
1946 /* The inferior process has died. Long live the inferior! */
1947
1948 void
1949 generic_mourn_inferior (void)
1950 {
1951 extern int show_breakpoint_hit_counts;
1952
1953 inferior_ptid = null_ptid;
1954 attach_flag = 0;
1955 breakpoint_init_inferior (inf_exited);
1956 registers_changed ();
1957
1958 reopen_exec_file ();
1959 reinit_frame_cache ();
1960
1961 /* It is confusing to the user for ignore counts to stick around
1962 from previous runs of the inferior. So clear them. */
1963 /* However, it is more confusing for the ignore counts to disappear when
1964 using hit counts. So don't clear them if we're counting hits. */
1965 if (!show_breakpoint_hit_counts)
1966 breakpoint_clear_ignore_counts ();
1967
1968 if (deprecated_detach_hook)
1969 deprecated_detach_hook ();
1970 }
1971 \f
1972 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1973 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1974 translation of that in OURSTATUS. */
1975 void
1976 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1977 {
1978 #ifdef CHILD_SPECIAL_WAITSTATUS
1979 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1980 if it wants to deal with hoststatus. */
1981 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1982 return;
1983 #endif
1984
1985 if (WIFEXITED (hoststatus))
1986 {
1987 ourstatus->kind = TARGET_WAITKIND_EXITED;
1988 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1989 }
1990 else if (!WIFSTOPPED (hoststatus))
1991 {
1992 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1993 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1994 }
1995 else
1996 {
1997 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1998 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1999 }
2000 }
2001 \f
2002 /* Returns zero to leave the inferior alone, one to interrupt it. */
2003 int (*target_activity_function) (void);
2004 int target_activity_fd;
2005 \f
2006 /* Convert a normal process ID to a string. Returns the string in a
2007 static buffer. */
2008
2009 char *
2010 normal_pid_to_str (ptid_t ptid)
2011 {
2012 static char buf[32];
2013
2014 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2015 return buf;
2016 }
2017
2018 /* Error-catcher for target_find_memory_regions */
2019 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2020 {
2021 error (_("No target."));
2022 return 0;
2023 }
2024
2025 /* Error-catcher for target_make_corefile_notes */
2026 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2027 {
2028 error (_("No target."));
2029 return NULL;
2030 }
2031
2032 /* Set up the handful of non-empty slots needed by the dummy target
2033 vector. */
2034
2035 static void
2036 init_dummy_target (void)
2037 {
2038 dummy_target.to_shortname = "None";
2039 dummy_target.to_longname = "None";
2040 dummy_target.to_doc = "";
2041 dummy_target.to_attach = find_default_attach;
2042 dummy_target.to_create_inferior = find_default_create_inferior;
2043 dummy_target.to_pid_to_str = normal_pid_to_str;
2044 dummy_target.to_stratum = dummy_stratum;
2045 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2046 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2047 dummy_target.to_xfer_partial = default_xfer_partial;
2048 dummy_target.to_magic = OPS_MAGIC;
2049 }
2050 \f
2051 static void
2052 debug_to_open (char *args, int from_tty)
2053 {
2054 debug_target.to_open (args, from_tty);
2055
2056 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2057 }
2058
2059 static void
2060 debug_to_close (int quitting)
2061 {
2062 target_close (&debug_target, quitting);
2063 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2064 }
2065
2066 void
2067 target_close (struct target_ops *targ, int quitting)
2068 {
2069 if (targ->to_xclose != NULL)
2070 targ->to_xclose (targ, quitting);
2071 else if (targ->to_close != NULL)
2072 targ->to_close (quitting);
2073 }
2074
2075 static void
2076 debug_to_attach (char *args, int from_tty)
2077 {
2078 debug_target.to_attach (args, from_tty);
2079
2080 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2081 }
2082
2083
2084 static void
2085 debug_to_post_attach (int pid)
2086 {
2087 debug_target.to_post_attach (pid);
2088
2089 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2090 }
2091
2092 static void
2093 debug_to_detach (char *args, int from_tty)
2094 {
2095 debug_target.to_detach (args, from_tty);
2096
2097 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2098 }
2099
2100 static void
2101 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2102 {
2103 debug_target.to_resume (ptid, step, siggnal);
2104
2105 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2106 step ? "step" : "continue",
2107 target_signal_to_name (siggnal));
2108 }
2109
2110 static ptid_t
2111 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2112 {
2113 ptid_t retval;
2114
2115 retval = debug_target.to_wait (ptid, status);
2116
2117 fprintf_unfiltered (gdb_stdlog,
2118 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2119 PIDGET (retval));
2120 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2121 switch (status->kind)
2122 {
2123 case TARGET_WAITKIND_EXITED:
2124 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2125 status->value.integer);
2126 break;
2127 case TARGET_WAITKIND_STOPPED:
2128 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2129 target_signal_to_name (status->value.sig));
2130 break;
2131 case TARGET_WAITKIND_SIGNALLED:
2132 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2133 target_signal_to_name (status->value.sig));
2134 break;
2135 case TARGET_WAITKIND_LOADED:
2136 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2137 break;
2138 case TARGET_WAITKIND_FORKED:
2139 fprintf_unfiltered (gdb_stdlog, "forked\n");
2140 break;
2141 case TARGET_WAITKIND_VFORKED:
2142 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2143 break;
2144 case TARGET_WAITKIND_EXECD:
2145 fprintf_unfiltered (gdb_stdlog, "execd\n");
2146 break;
2147 case TARGET_WAITKIND_SPURIOUS:
2148 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2149 break;
2150 default:
2151 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2152 break;
2153 }
2154
2155 return retval;
2156 }
2157
2158 static void
2159 debug_print_register (const char * func, int regno)
2160 {
2161 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2162 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
2163 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
2164 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
2165 else
2166 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2167 if (regno >= 0)
2168 {
2169 int i;
2170 unsigned char buf[MAX_REGISTER_SIZE];
2171 deprecated_read_register_gen (regno, buf);
2172 fprintf_unfiltered (gdb_stdlog, " = ");
2173 for (i = 0; i < register_size (current_gdbarch, regno); i++)
2174 {
2175 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2176 }
2177 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
2178 {
2179 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2180 paddr_nz (read_register (regno)),
2181 paddr_d (read_register (regno)));
2182 }
2183 }
2184 fprintf_unfiltered (gdb_stdlog, "\n");
2185 }
2186
2187 static void
2188 debug_to_fetch_registers (int regno)
2189 {
2190 debug_target.to_fetch_registers (regno);
2191 debug_print_register ("target_fetch_registers", regno);
2192 }
2193
2194 static void
2195 debug_to_store_registers (int regno)
2196 {
2197 debug_target.to_store_registers (regno);
2198 debug_print_register ("target_store_registers", regno);
2199 fprintf_unfiltered (gdb_stdlog, "\n");
2200 }
2201
2202 static void
2203 debug_to_prepare_to_store (void)
2204 {
2205 debug_target.to_prepare_to_store ();
2206
2207 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2208 }
2209
2210 static int
2211 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2212 int write, struct mem_attrib *attrib,
2213 struct target_ops *target)
2214 {
2215 int retval;
2216
2217 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2218 attrib, target);
2219
2220 fprintf_unfiltered (gdb_stdlog,
2221 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2222 (unsigned int) memaddr, /* possable truncate long long */
2223 len, write ? "write" : "read", retval);
2224
2225 if (retval > 0)
2226 {
2227 int i;
2228
2229 fputs_unfiltered (", bytes =", gdb_stdlog);
2230 for (i = 0; i < retval; i++)
2231 {
2232 if ((((long) &(myaddr[i])) & 0xf) == 0)
2233 {
2234 if (targetdebug < 2 && i > 0)
2235 {
2236 fprintf_unfiltered (gdb_stdlog, " ...");
2237 break;
2238 }
2239 fprintf_unfiltered (gdb_stdlog, "\n");
2240 }
2241
2242 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2243 }
2244 }
2245
2246 fputc_unfiltered ('\n', gdb_stdlog);
2247
2248 return retval;
2249 }
2250
2251 static void
2252 debug_to_files_info (struct target_ops *target)
2253 {
2254 debug_target.to_files_info (target);
2255
2256 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2257 }
2258
2259 static int
2260 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2261 {
2262 int retval;
2263
2264 retval = debug_target.to_insert_breakpoint (bp_tgt);
2265
2266 fprintf_unfiltered (gdb_stdlog,
2267 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2268 (unsigned long) bp_tgt->placed_address,
2269 (unsigned long) retval);
2270 return retval;
2271 }
2272
2273 static int
2274 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2275 {
2276 int retval;
2277
2278 retval = debug_target.to_remove_breakpoint (bp_tgt);
2279
2280 fprintf_unfiltered (gdb_stdlog,
2281 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2282 (unsigned long) bp_tgt->placed_address,
2283 (unsigned long) retval);
2284 return retval;
2285 }
2286
2287 static int
2288 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2289 {
2290 int retval;
2291
2292 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2293
2294 fprintf_unfiltered (gdb_stdlog,
2295 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2296 (unsigned long) type,
2297 (unsigned long) cnt,
2298 (unsigned long) from_tty,
2299 (unsigned long) retval);
2300 return retval;
2301 }
2302
2303 static int
2304 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2305 {
2306 CORE_ADDR retval;
2307
2308 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2309
2310 fprintf_unfiltered (gdb_stdlog,
2311 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2312 (unsigned long) addr,
2313 (unsigned long) len,
2314 (unsigned long) retval);
2315 return retval;
2316 }
2317
2318 static int
2319 debug_to_stopped_by_watchpoint (void)
2320 {
2321 int retval;
2322
2323 retval = debug_target.to_stopped_by_watchpoint ();
2324
2325 fprintf_unfiltered (gdb_stdlog,
2326 "STOPPED_BY_WATCHPOINT () = %ld\n",
2327 (unsigned long) retval);
2328 return retval;
2329 }
2330
2331 static int
2332 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2333 {
2334 int retval;
2335
2336 retval = debug_target.to_stopped_data_address (target, addr);
2337
2338 fprintf_unfiltered (gdb_stdlog,
2339 "target_stopped_data_address ([0x%lx]) = %ld\n",
2340 (unsigned long)*addr,
2341 (unsigned long)retval);
2342 return retval;
2343 }
2344
2345 static int
2346 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2347 {
2348 int retval;
2349
2350 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2351
2352 fprintf_unfiltered (gdb_stdlog,
2353 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2354 (unsigned long) bp_tgt->placed_address,
2355 (unsigned long) retval);
2356 return retval;
2357 }
2358
2359 static int
2360 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2361 {
2362 int retval;
2363
2364 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2365
2366 fprintf_unfiltered (gdb_stdlog,
2367 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2368 (unsigned long) bp_tgt->placed_address,
2369 (unsigned long) retval);
2370 return retval;
2371 }
2372
2373 static int
2374 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2375 {
2376 int retval;
2377
2378 retval = debug_target.to_insert_watchpoint (addr, len, type);
2379
2380 fprintf_unfiltered (gdb_stdlog,
2381 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2382 (unsigned long) addr, len, type, (unsigned long) retval);
2383 return retval;
2384 }
2385
2386 static int
2387 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2388 {
2389 int retval;
2390
2391 retval = debug_target.to_remove_watchpoint (addr, len, type);
2392
2393 fprintf_unfiltered (gdb_stdlog,
2394 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2395 (unsigned long) addr, len, type, (unsigned long) retval);
2396 return retval;
2397 }
2398
2399 static void
2400 debug_to_terminal_init (void)
2401 {
2402 debug_target.to_terminal_init ();
2403
2404 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2405 }
2406
2407 static void
2408 debug_to_terminal_inferior (void)
2409 {
2410 debug_target.to_terminal_inferior ();
2411
2412 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2413 }
2414
2415 static void
2416 debug_to_terminal_ours_for_output (void)
2417 {
2418 debug_target.to_terminal_ours_for_output ();
2419
2420 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2421 }
2422
2423 static void
2424 debug_to_terminal_ours (void)
2425 {
2426 debug_target.to_terminal_ours ();
2427
2428 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2429 }
2430
2431 static void
2432 debug_to_terminal_save_ours (void)
2433 {
2434 debug_target.to_terminal_save_ours ();
2435
2436 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2437 }
2438
2439 static void
2440 debug_to_terminal_info (char *arg, int from_tty)
2441 {
2442 debug_target.to_terminal_info (arg, from_tty);
2443
2444 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2445 from_tty);
2446 }
2447
2448 static void
2449 debug_to_kill (void)
2450 {
2451 debug_target.to_kill ();
2452
2453 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2454 }
2455
2456 static void
2457 debug_to_load (char *args, int from_tty)
2458 {
2459 debug_target.to_load (args, from_tty);
2460
2461 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2462 }
2463
2464 static int
2465 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2466 {
2467 int retval;
2468
2469 retval = debug_target.to_lookup_symbol (name, addrp);
2470
2471 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2472
2473 return retval;
2474 }
2475
2476 static void
2477 debug_to_create_inferior (char *exec_file, char *args, char **env,
2478 int from_tty)
2479 {
2480 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2481
2482 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2483 exec_file, args, from_tty);
2484 }
2485
2486 static void
2487 debug_to_post_startup_inferior (ptid_t ptid)
2488 {
2489 debug_target.to_post_startup_inferior (ptid);
2490
2491 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2492 PIDGET (ptid));
2493 }
2494
2495 static void
2496 debug_to_acknowledge_created_inferior (int pid)
2497 {
2498 debug_target.to_acknowledge_created_inferior (pid);
2499
2500 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2501 pid);
2502 }
2503
2504 static void
2505 debug_to_insert_fork_catchpoint (int pid)
2506 {
2507 debug_target.to_insert_fork_catchpoint (pid);
2508
2509 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2510 pid);
2511 }
2512
2513 static int
2514 debug_to_remove_fork_catchpoint (int pid)
2515 {
2516 int retval;
2517
2518 retval = debug_target.to_remove_fork_catchpoint (pid);
2519
2520 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2521 pid, retval);
2522
2523 return retval;
2524 }
2525
2526 static void
2527 debug_to_insert_vfork_catchpoint (int pid)
2528 {
2529 debug_target.to_insert_vfork_catchpoint (pid);
2530
2531 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2532 pid);
2533 }
2534
2535 static int
2536 debug_to_remove_vfork_catchpoint (int pid)
2537 {
2538 int retval;
2539
2540 retval = debug_target.to_remove_vfork_catchpoint (pid);
2541
2542 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2543 pid, retval);
2544
2545 return retval;
2546 }
2547
2548 static void
2549 debug_to_insert_exec_catchpoint (int pid)
2550 {
2551 debug_target.to_insert_exec_catchpoint (pid);
2552
2553 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2554 pid);
2555 }
2556
2557 static int
2558 debug_to_remove_exec_catchpoint (int pid)
2559 {
2560 int retval;
2561
2562 retval = debug_target.to_remove_exec_catchpoint (pid);
2563
2564 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2565 pid, retval);
2566
2567 return retval;
2568 }
2569
2570 static int
2571 debug_to_reported_exec_events_per_exec_call (void)
2572 {
2573 int reported_exec_events;
2574
2575 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2576
2577 fprintf_unfiltered (gdb_stdlog,
2578 "target_reported_exec_events_per_exec_call () = %d\n",
2579 reported_exec_events);
2580
2581 return reported_exec_events;
2582 }
2583
2584 static int
2585 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2586 {
2587 int has_exited;
2588
2589 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2590
2591 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2592 pid, wait_status, *exit_status, has_exited);
2593
2594 return has_exited;
2595 }
2596
2597 static void
2598 debug_to_mourn_inferior (void)
2599 {
2600 debug_target.to_mourn_inferior ();
2601
2602 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2603 }
2604
2605 static int
2606 debug_to_can_run (void)
2607 {
2608 int retval;
2609
2610 retval = debug_target.to_can_run ();
2611
2612 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2613
2614 return retval;
2615 }
2616
2617 static void
2618 debug_to_notice_signals (ptid_t ptid)
2619 {
2620 debug_target.to_notice_signals (ptid);
2621
2622 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2623 PIDGET (ptid));
2624 }
2625
2626 static int
2627 debug_to_thread_alive (ptid_t ptid)
2628 {
2629 int retval;
2630
2631 retval = debug_target.to_thread_alive (ptid);
2632
2633 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2634 PIDGET (ptid), retval);
2635
2636 return retval;
2637 }
2638
2639 static void
2640 debug_to_find_new_threads (void)
2641 {
2642 debug_target.to_find_new_threads ();
2643
2644 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2645 }
2646
2647 static void
2648 debug_to_stop (void)
2649 {
2650 debug_target.to_stop ();
2651
2652 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2653 }
2654
2655 static void
2656 debug_to_rcmd (char *command,
2657 struct ui_file *outbuf)
2658 {
2659 debug_target.to_rcmd (command, outbuf);
2660 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2661 }
2662
2663 static struct symtab_and_line *
2664 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2665 {
2666 struct symtab_and_line *result;
2667 result = debug_target.to_enable_exception_callback (kind, enable);
2668 fprintf_unfiltered (gdb_stdlog,
2669 "target get_exception_callback_sal (%d, %d)\n",
2670 kind, enable);
2671 return result;
2672 }
2673
2674 static struct exception_event_record *
2675 debug_to_get_current_exception_event (void)
2676 {
2677 struct exception_event_record *result;
2678 result = debug_target.to_get_current_exception_event ();
2679 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2680 return result;
2681 }
2682
2683 static char *
2684 debug_to_pid_to_exec_file (int pid)
2685 {
2686 char *exec_file;
2687
2688 exec_file = debug_target.to_pid_to_exec_file (pid);
2689
2690 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2691 pid, exec_file);
2692
2693 return exec_file;
2694 }
2695
2696 static void
2697 setup_target_debug (void)
2698 {
2699 memcpy (&debug_target, &current_target, sizeof debug_target);
2700
2701 current_target.to_open = debug_to_open;
2702 current_target.to_close = debug_to_close;
2703 current_target.to_attach = debug_to_attach;
2704 current_target.to_post_attach = debug_to_post_attach;
2705 current_target.to_detach = debug_to_detach;
2706 current_target.to_resume = debug_to_resume;
2707 current_target.to_wait = debug_to_wait;
2708 current_target.to_fetch_registers = debug_to_fetch_registers;
2709 current_target.to_store_registers = debug_to_store_registers;
2710 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2711 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2712 current_target.to_files_info = debug_to_files_info;
2713 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2714 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2715 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2716 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2717 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2718 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2719 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2720 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2721 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2722 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2723 current_target.to_terminal_init = debug_to_terminal_init;
2724 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2725 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2726 current_target.to_terminal_ours = debug_to_terminal_ours;
2727 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2728 current_target.to_terminal_info = debug_to_terminal_info;
2729 current_target.to_kill = debug_to_kill;
2730 current_target.to_load = debug_to_load;
2731 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2732 current_target.to_create_inferior = debug_to_create_inferior;
2733 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2734 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2735 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2736 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2737 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2738 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2739 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2740 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2741 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2742 current_target.to_has_exited = debug_to_has_exited;
2743 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2744 current_target.to_can_run = debug_to_can_run;
2745 current_target.to_notice_signals = debug_to_notice_signals;
2746 current_target.to_thread_alive = debug_to_thread_alive;
2747 current_target.to_find_new_threads = debug_to_find_new_threads;
2748 current_target.to_stop = debug_to_stop;
2749 current_target.to_rcmd = debug_to_rcmd;
2750 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2751 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2752 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2753 }
2754 \f
2755
2756 static char targ_desc[] =
2757 "Names of targets and files being debugged.\n\
2758 Shows the entire stack of targets currently in use (including the exec-file,\n\
2759 core-file, and process, if any), as well as the symbol file name.";
2760
2761 static void
2762 do_monitor_command (char *cmd,
2763 int from_tty)
2764 {
2765 if ((current_target.to_rcmd
2766 == (void (*) (char *, struct ui_file *)) tcomplain)
2767 || (current_target.to_rcmd == debug_to_rcmd
2768 && (debug_target.to_rcmd
2769 == (void (*) (char *, struct ui_file *)) tcomplain)))
2770 error (_("\"monitor\" command not supported by this target."));
2771 target_rcmd (cmd, gdb_stdtarg);
2772 }
2773
2774 /* Print the name of each layers of our target stack. */
2775
2776 static void
2777 maintenance_print_target_stack (char *cmd, int from_tty)
2778 {
2779 struct target_ops *t;
2780
2781 printf_filtered (_("The current target stack is:\n"));
2782
2783 for (t = target_stack; t != NULL; t = t->beneath)
2784 {
2785 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2786 }
2787 }
2788
2789 void
2790 initialize_targets (void)
2791 {
2792 init_dummy_target ();
2793 push_target (&dummy_target);
2794
2795 add_info ("target", target_info, targ_desc);
2796 add_info ("files", target_info, targ_desc);
2797
2798 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2799 Set target debugging."), _("\
2800 Show target debugging."), _("\
2801 When non-zero, target debugging is enabled. Higher numbers are more\n\
2802 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2803 command."),
2804 NULL,
2805 show_targetdebug,
2806 &setdebuglist, &showdebuglist);
2807
2808 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2809 &trust_readonly, _("\
2810 Set mode for reading from readonly sections."), _("\
2811 Show mode for reading from readonly sections."), _("\
2812 When this mode is on, memory reads from readonly sections (such as .text)\n\
2813 will be read from the object file instead of from the target. This will\n\
2814 result in significant performance improvement for remote targets."),
2815 NULL,
2816 show_trust_readonly,
2817 &setlist, &showlist);
2818
2819 add_com ("monitor", class_obscure, do_monitor_command,
2820 _("Send a command to the remote monitor (remote targets only)."));
2821
2822 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2823 _("Print the name of each layer of the internal target stack."),
2824 &maintenanceprintlist);
2825
2826 target_dcache = dcache_init ();
2827 }
This page took 0.124283 seconds and 4 git commands to generate.