fe7cb08b994763f308396baa3aeaf6949648955b
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The initial current target, so that there is always a semi-valid
110 current target. */
111
112 static struct target_ops *the_dummy_target;
113 static struct target_ops *the_debug_target;
114
115 /* The target stack. */
116
117 static target_stack g_target_stack;
118
119 /* Top of target stack. */
120 /* The target structure we are currently using to talk to a process
121 or file or whatever "inferior" we have. */
122
123 target_ops *
124 current_top_target ()
125 {
126 return g_target_stack.top ();
127 }
128
129 /* Command list for target. */
130
131 static struct cmd_list_element *targetlist = NULL;
132
133 /* Nonzero if we should trust readonly sections from the
134 executable when reading memory. */
135
136 static int trust_readonly = 0;
137
138 /* Nonzero if we should show true memory content including
139 memory breakpoint inserted by gdb. */
140
141 static int show_memory_breakpoints = 0;
142
143 /* These globals control whether GDB attempts to perform these
144 operations; they are useful for targets that need to prevent
145 inadvertant disruption, such as in non-stop mode. */
146
147 int may_write_registers = 1;
148
149 int may_write_memory = 1;
150
151 int may_insert_breakpoints = 1;
152
153 int may_insert_tracepoints = 1;
154
155 int may_insert_fast_tracepoints = 1;
156
157 int may_stop = 1;
158
159 /* Non-zero if we want to see trace of target level stuff. */
160
161 static unsigned int targetdebug = 0;
162
163 static void
164 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
165 {
166 if (targetdebug)
167 push_target (the_debug_target);
168 else
169 unpush_target (the_debug_target);
170 }
171
172 static void
173 show_targetdebug (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
177 }
178
179 /* The user just typed 'target' without the name of a target. */
180
181 static void
182 target_command (const char *arg, int from_tty)
183 {
184 fputs_filtered ("Argument required (target name). Try `help target'\n",
185 gdb_stdout);
186 }
187
188 int
189 target_has_all_memory_1 (void)
190 {
191 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
192 if (t->has_all_memory ())
193 return 1;
194
195 return 0;
196 }
197
198 int
199 target_has_memory_1 (void)
200 {
201 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
202 if (t->has_memory ())
203 return 1;
204
205 return 0;
206 }
207
208 int
209 target_has_stack_1 (void)
210 {
211 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
212 if (t->has_stack ())
213 return 1;
214
215 return 0;
216 }
217
218 int
219 target_has_registers_1 (void)
220 {
221 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
222 if (t->has_registers ())
223 return 1;
224
225 return 0;
226 }
227
228 int
229 target_has_execution_1 (ptid_t the_ptid)
230 {
231 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
232 if (t->has_execution (the_ptid))
233 return 1;
234
235 return 0;
236 }
237
238 int
239 target_has_execution_current (void)
240 {
241 return target_has_execution_1 (inferior_ptid);
242 }
243
244 /* This is used to implement the various target commands. */
245
246 static void
247 open_target (const char *args, int from_tty, struct cmd_list_element *command)
248 {
249 auto *ti = static_cast<target_info *> (get_cmd_context (command));
250 target_open_ftype *func = target_factories[ti];
251
252 if (targetdebug)
253 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
254 ti->shortname);
255
256 func (args, from_tty);
257
258 if (targetdebug)
259 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
260 ti->shortname, args, from_tty);
261 }
262
263 /* See target.h. */
264
265 void
266 add_target (const target_info &t, target_open_ftype *func,
267 completer_ftype *completer)
268 {
269 struct cmd_list_element *c;
270
271 auto &func_slot = target_factories[&t];
272 if (func_slot != nullptr)
273 internal_error (__FILE__, __LINE__,
274 _("target already added (\"%s\")."), t.shortname);
275 func_slot = func;
276
277 if (targetlist == NULL)
278 add_prefix_cmd ("target", class_run, target_command, _("\
279 Connect to a target machine or process.\n\
280 The first argument is the type or protocol of the target machine.\n\
281 Remaining arguments are interpreted by the target protocol. For more\n\
282 information on the arguments for a particular protocol, type\n\
283 `help target ' followed by the protocol name."),
284 &targetlist, "target ", 0, &cmdlist);
285 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
286 set_cmd_context (c, (void *) &t);
287 set_cmd_sfunc (c, open_target);
288 if (completer != NULL)
289 set_cmd_completer (c, completer);
290 }
291
292 /* See target.h. */
293
294 void
295 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
296 {
297 struct cmd_list_element *c;
298 char *alt;
299
300 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
301 see PR cli/15104. */
302 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
303 set_cmd_sfunc (c, open_target);
304 set_cmd_context (c, (void *) &tinfo);
305 alt = xstrprintf ("target %s", tinfo.shortname);
306 deprecate_cmd (c, alt);
307 }
308
309 /* Stub functions */
310
311 void
312 target_kill (void)
313 {
314 current_top_target ()->kill ();
315 }
316
317 void
318 target_load (const char *arg, int from_tty)
319 {
320 target_dcache_invalidate ();
321 current_top_target ()->load (arg, from_tty);
322 }
323
324 /* Define it. */
325
326 target_terminal_state target_terminal::m_terminal_state
327 = target_terminal_state::is_ours;
328
329 /* See target/target.h. */
330
331 void
332 target_terminal::init (void)
333 {
334 current_top_target ()->terminal_init ();
335
336 m_terminal_state = target_terminal_state::is_ours;
337 }
338
339 /* See target/target.h. */
340
341 void
342 target_terminal::inferior (void)
343 {
344 struct ui *ui = current_ui;
345
346 /* A background resume (``run&'') should leave GDB in control of the
347 terminal. */
348 if (ui->prompt_state != PROMPT_BLOCKED)
349 return;
350
351 /* Since we always run the inferior in the main console (unless "set
352 inferior-tty" is in effect), when some UI other than the main one
353 calls target_terminal::inferior, then we leave the main UI's
354 terminal settings as is. */
355 if (ui != main_ui)
356 return;
357
358 /* If GDB is resuming the inferior in the foreground, install
359 inferior's terminal modes. */
360
361 struct inferior *inf = current_inferior ();
362
363 if (inf->terminal_state != target_terminal_state::is_inferior)
364 {
365 current_top_target ()->terminal_inferior ();
366 inf->terminal_state = target_terminal_state::is_inferior;
367 }
368
369 m_terminal_state = target_terminal_state::is_inferior;
370
371 /* If the user hit C-c before, pretend that it was hit right
372 here. */
373 if (check_quit_flag ())
374 target_pass_ctrlc ();
375 }
376
377 /* See target/target.h. */
378
379 void
380 target_terminal::restore_inferior (void)
381 {
382 struct ui *ui = current_ui;
383
384 /* See target_terminal::inferior(). */
385 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
386 return;
387
388 /* Restore the terminal settings of inferiors that were in the
389 foreground but are now ours_for_output due to a temporary
390 target_target::ours_for_output() call. */
391
392 {
393 scoped_restore_current_inferior restore_inferior;
394
395 for (::inferior *inf : all_inferiors ())
396 {
397 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
398 {
399 set_current_inferior (inf);
400 current_top_target ()->terminal_inferior ();
401 inf->terminal_state = target_terminal_state::is_inferior;
402 }
403 }
404 }
405
406 m_terminal_state = target_terminal_state::is_inferior;
407
408 /* If the user hit C-c before, pretend that it was hit right
409 here. */
410 if (check_quit_flag ())
411 target_pass_ctrlc ();
412 }
413
414 /* Switch terminal state to DESIRED_STATE, either is_ours, or
415 is_ours_for_output. */
416
417 static void
418 target_terminal_is_ours_kind (target_terminal_state desired_state)
419 {
420 scoped_restore_current_inferior restore_inferior;
421
422 /* Must do this in two passes. First, have all inferiors save the
423 current terminal settings. Then, after all inferiors have add a
424 chance to safely save the terminal settings, restore GDB's
425 terminal settings. */
426
427 for (inferior *inf : all_inferiors ())
428 {
429 if (inf->terminal_state == target_terminal_state::is_inferior)
430 {
431 set_current_inferior (inf);
432 current_top_target ()->terminal_save_inferior ();
433 }
434 }
435
436 for (inferior *inf : all_inferiors ())
437 {
438 /* Note we don't check is_inferior here like above because we
439 need to handle 'is_ours_for_output -> is_ours' too. Careful
440 to never transition from 'is_ours' to 'is_ours_for_output',
441 though. */
442 if (inf->terminal_state != target_terminal_state::is_ours
443 && inf->terminal_state != desired_state)
444 {
445 set_current_inferior (inf);
446 if (desired_state == target_terminal_state::is_ours)
447 current_top_target ()->terminal_ours ();
448 else if (desired_state == target_terminal_state::is_ours_for_output)
449 current_top_target ()->terminal_ours_for_output ();
450 else
451 gdb_assert_not_reached ("unhandled desired state");
452 inf->terminal_state = desired_state;
453 }
454 }
455 }
456
457 /* See target/target.h. */
458
459 void
460 target_terminal::ours ()
461 {
462 struct ui *ui = current_ui;
463
464 /* See target_terminal::inferior. */
465 if (ui != main_ui)
466 return;
467
468 if (m_terminal_state == target_terminal_state::is_ours)
469 return;
470
471 target_terminal_is_ours_kind (target_terminal_state::is_ours);
472 m_terminal_state = target_terminal_state::is_ours;
473 }
474
475 /* See target/target.h. */
476
477 void
478 target_terminal::ours_for_output ()
479 {
480 struct ui *ui = current_ui;
481
482 /* See target_terminal::inferior. */
483 if (ui != main_ui)
484 return;
485
486 if (!target_terminal::is_inferior ())
487 return;
488
489 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
490 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
491 }
492
493 /* See target/target.h. */
494
495 void
496 target_terminal::info (const char *arg, int from_tty)
497 {
498 current_top_target ()->terminal_info (arg, from_tty);
499 }
500
501 /* See target.h. */
502
503 bool
504 target_supports_terminal_ours (void)
505 {
506 /* This can be called before there is any target, so we must check
507 for nullptr here. */
508 target_ops *top = current_top_target ();
509
510 if (top == nullptr)
511 return false;
512 return top->supports_terminal_ours ();
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_top_target ()->shortname ());
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
542 {
543 return ptid_t (inferior_ptid.pid (), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (struct target_ops *self)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* See target.h. */
559
560 void
561 target_stack::push (target_ops *t)
562 {
563 /* If there's already a target at this stratum, remove it. */
564 strata stratum = t->stratum ();
565
566 if (m_stack[stratum] != NULL)
567 {
568 target_ops *prev = m_stack[stratum];
569 m_stack[stratum] = NULL;
570 target_close (prev);
571 }
572
573 /* Now add the new one. */
574 m_stack[stratum] = t;
575
576 if (m_top < stratum)
577 m_top = stratum;
578 }
579
580 /* See target.h. */
581
582 void
583 push_target (struct target_ops *t)
584 {
585 g_target_stack.push (t);
586 }
587
588 /* See target.h */
589
590 void
591 push_target (target_ops_up &&t)
592 {
593 g_target_stack.push (t.get ());
594 t.release ();
595 }
596
597 /* See target.h. */
598
599 int
600 unpush_target (struct target_ops *t)
601 {
602 return g_target_stack.unpush (t);
603 }
604
605 /* See target.h. */
606
607 bool
608 target_stack::unpush (target_ops *t)
609 {
610 gdb_assert (t != NULL);
611
612 strata stratum = t->stratum ();
613
614 if (stratum == dummy_stratum)
615 internal_error (__FILE__, __LINE__,
616 _("Attempt to unpush the dummy target"));
617
618 /* Look for the specified target. Note that a target can only occur
619 once in the target stack. */
620
621 if (m_stack[stratum] != t)
622 {
623 /* If T wasn't pushed, quit. Only open targets should be
624 closed. */
625 return false;
626 }
627
628 /* Unchain the target. */
629 m_stack[stratum] = NULL;
630
631 if (m_top == stratum)
632 m_top = t->beneath ()->stratum ();
633
634 /* Finally close the target. Note we do this after unchaining, so
635 any target method calls from within the target_close
636 implementation don't end up in T anymore. */
637 target_close (t);
638
639 return true;
640 }
641
642 /* Unpush TARGET and assert that it worked. */
643
644 static void
645 unpush_target_and_assert (struct target_ops *target)
646 {
647 if (!unpush_target (target))
648 {
649 fprintf_unfiltered (gdb_stderr,
650 "pop_all_targets couldn't find target %s\n",
651 target->shortname ());
652 internal_error (__FILE__, __LINE__,
653 _("failed internal consistency check"));
654 }
655 }
656
657 void
658 pop_all_targets_above (enum strata above_stratum)
659 {
660 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
661 unpush_target_and_assert (current_top_target ());
662 }
663
664 /* See target.h. */
665
666 void
667 pop_all_targets_at_and_above (enum strata stratum)
668 {
669 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
670 unpush_target_and_assert (current_top_target ());
671 }
672
673 void
674 pop_all_targets (void)
675 {
676 pop_all_targets_above (dummy_stratum);
677 }
678
679 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
680
681 int
682 target_is_pushed (struct target_ops *t)
683 {
684 return g_target_stack.is_pushed (t);
685 }
686
687 /* Default implementation of to_get_thread_local_address. */
688
689 static void
690 generic_tls_error (void)
691 {
692 throw_error (TLS_GENERIC_ERROR,
693 _("Cannot find thread-local variables on this target"));
694 }
695
696 /* Using the objfile specified in OBJFILE, find the address for the
697 current thread's thread-local storage with offset OFFSET. */
698 CORE_ADDR
699 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
700 {
701 volatile CORE_ADDR addr = 0;
702 struct target_ops *target = current_top_target ();
703
704 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
705 {
706 ptid_t ptid = inferior_ptid;
707
708 TRY
709 {
710 CORE_ADDR lm_addr;
711
712 /* Fetch the load module address for this objfile. */
713 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
714 objfile);
715
716 addr = target->get_thread_local_address (ptid, lm_addr, offset);
717 }
718 /* If an error occurred, print TLS related messages here. Otherwise,
719 throw the error to some higher catcher. */
720 CATCH (ex, RETURN_MASK_ALL)
721 {
722 int objfile_is_library = (objfile->flags & OBJF_SHARED);
723
724 switch (ex.error)
725 {
726 case TLS_NO_LIBRARY_SUPPORT_ERROR:
727 error (_("Cannot find thread-local variables "
728 "in this thread library."));
729 break;
730 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
731 if (objfile_is_library)
732 error (_("Cannot find shared library `%s' in dynamic"
733 " linker's load module list"), objfile_name (objfile));
734 else
735 error (_("Cannot find executable file `%s' in dynamic"
736 " linker's load module list"), objfile_name (objfile));
737 break;
738 case TLS_NOT_ALLOCATED_YET_ERROR:
739 if (objfile_is_library)
740 error (_("The inferior has not yet allocated storage for"
741 " thread-local variables in\n"
742 "the shared library `%s'\n"
743 "for %s"),
744 objfile_name (objfile), target_pid_to_str (ptid));
745 else
746 error (_("The inferior has not yet allocated storage for"
747 " thread-local variables in\n"
748 "the executable `%s'\n"
749 "for %s"),
750 objfile_name (objfile), target_pid_to_str (ptid));
751 break;
752 case TLS_GENERIC_ERROR:
753 if (objfile_is_library)
754 error (_("Cannot find thread-local storage for %s, "
755 "shared library %s:\n%s"),
756 target_pid_to_str (ptid),
757 objfile_name (objfile), ex.message);
758 else
759 error (_("Cannot find thread-local storage for %s, "
760 "executable file %s:\n%s"),
761 target_pid_to_str (ptid),
762 objfile_name (objfile), ex.message);
763 break;
764 default:
765 throw_exception (ex);
766 break;
767 }
768 }
769 END_CATCH
770 }
771 /* It wouldn't be wrong here to try a gdbarch method, too; finding
772 TLS is an ABI-specific thing. But we don't do that yet. */
773 else
774 error (_("Cannot find thread-local variables on this target"));
775
776 return addr;
777 }
778
779 const char *
780 target_xfer_status_to_string (enum target_xfer_status status)
781 {
782 #define CASE(X) case X: return #X
783 switch (status)
784 {
785 CASE(TARGET_XFER_E_IO);
786 CASE(TARGET_XFER_UNAVAILABLE);
787 default:
788 return "<unknown>";
789 }
790 #undef CASE
791 };
792
793
794 #undef MIN
795 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
796
797 /* target_read_string -- read a null terminated string, up to LEN bytes,
798 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
799 Set *STRING to a pointer to malloc'd memory containing the data; the caller
800 is responsible for freeing it. Return the number of bytes successfully
801 read. */
802
803 int
804 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
805 int len, int *errnop)
806 {
807 int tlen, offset, i;
808 gdb_byte buf[4];
809 int errcode = 0;
810 char *buffer;
811 int buffer_allocated;
812 char *bufptr;
813 unsigned int nbytes_read = 0;
814
815 gdb_assert (string);
816
817 /* Small for testing. */
818 buffer_allocated = 4;
819 buffer = (char *) xmalloc (buffer_allocated);
820 bufptr = buffer;
821
822 while (len > 0)
823 {
824 tlen = MIN (len, 4 - (memaddr & 3));
825 offset = memaddr & 3;
826
827 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
828 if (errcode != 0)
829 {
830 /* The transfer request might have crossed the boundary to an
831 unallocated region of memory. Retry the transfer, requesting
832 a single byte. */
833 tlen = 1;
834 offset = 0;
835 errcode = target_read_memory (memaddr, buf, 1);
836 if (errcode != 0)
837 goto done;
838 }
839
840 if (bufptr - buffer + tlen > buffer_allocated)
841 {
842 unsigned int bytes;
843
844 bytes = bufptr - buffer;
845 buffer_allocated *= 2;
846 buffer = (char *) xrealloc (buffer, buffer_allocated);
847 bufptr = buffer + bytes;
848 }
849
850 for (i = 0; i < tlen; i++)
851 {
852 *bufptr++ = buf[i + offset];
853 if (buf[i + offset] == '\000')
854 {
855 nbytes_read += i + 1;
856 goto done;
857 }
858 }
859
860 memaddr += tlen;
861 len -= tlen;
862 nbytes_read += tlen;
863 }
864 done:
865 string->reset (buffer);
866 if (errnop != NULL)
867 *errnop = errcode;
868 return nbytes_read;
869 }
870
871 struct target_section_table *
872 target_get_section_table (struct target_ops *target)
873 {
874 return target->get_section_table ();
875 }
876
877 /* Find a section containing ADDR. */
878
879 struct target_section *
880 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
881 {
882 struct target_section_table *table = target_get_section_table (target);
883 struct target_section *secp;
884
885 if (table == NULL)
886 return NULL;
887
888 for (secp = table->sections; secp < table->sections_end; secp++)
889 {
890 if (addr >= secp->addr && addr < secp->endaddr)
891 return secp;
892 }
893 return NULL;
894 }
895
896
897 /* Helper for the memory xfer routines. Checks the attributes of the
898 memory region of MEMADDR against the read or write being attempted.
899 If the access is permitted returns true, otherwise returns false.
900 REGION_P is an optional output parameter. If not-NULL, it is
901 filled with a pointer to the memory region of MEMADDR. REG_LEN
902 returns LEN trimmed to the end of the region. This is how much the
903 caller can continue requesting, if the access is permitted. A
904 single xfer request must not straddle memory region boundaries. */
905
906 static int
907 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
908 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
909 struct mem_region **region_p)
910 {
911 struct mem_region *region;
912
913 region = lookup_mem_region (memaddr);
914
915 if (region_p != NULL)
916 *region_p = region;
917
918 switch (region->attrib.mode)
919 {
920 case MEM_RO:
921 if (writebuf != NULL)
922 return 0;
923 break;
924
925 case MEM_WO:
926 if (readbuf != NULL)
927 return 0;
928 break;
929
930 case MEM_FLASH:
931 /* We only support writing to flash during "load" for now. */
932 if (writebuf != NULL)
933 error (_("Writing to flash memory forbidden in this context"));
934 break;
935
936 case MEM_NONE:
937 return 0;
938 }
939
940 /* region->hi == 0 means there's no upper bound. */
941 if (memaddr + len < region->hi || region->hi == 0)
942 *reg_len = len;
943 else
944 *reg_len = region->hi - memaddr;
945
946 return 1;
947 }
948
949 /* Read memory from more than one valid target. A core file, for
950 instance, could have some of memory but delegate other bits to
951 the target below it. So, we must manually try all targets. */
952
953 enum target_xfer_status
954 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
955 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
956 ULONGEST *xfered_len)
957 {
958 enum target_xfer_status res;
959
960 do
961 {
962 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
963 readbuf, writebuf, memaddr, len,
964 xfered_len);
965 if (res == TARGET_XFER_OK)
966 break;
967
968 /* Stop if the target reports that the memory is not available. */
969 if (res == TARGET_XFER_UNAVAILABLE)
970 break;
971
972 /* We want to continue past core files to executables, but not
973 past a running target's memory. */
974 if (ops->has_all_memory ())
975 break;
976
977 ops = ops->beneath ();
978 }
979 while (ops != NULL);
980
981 /* The cache works at the raw memory level. Make sure the cache
982 gets updated with raw contents no matter what kind of memory
983 object was originally being written. Note we do write-through
984 first, so that if it fails, we don't write to the cache contents
985 that never made it to the target. */
986 if (writebuf != NULL
987 && inferior_ptid != null_ptid
988 && target_dcache_init_p ()
989 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
990 {
991 DCACHE *dcache = target_dcache_get ();
992
993 /* Note that writing to an area of memory which wasn't present
994 in the cache doesn't cause it to be loaded in. */
995 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
996 }
997
998 return res;
999 }
1000
1001 /* Perform a partial memory transfer.
1002 For docs see target.h, to_xfer_partial. */
1003
1004 static enum target_xfer_status
1005 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1006 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1007 ULONGEST len, ULONGEST *xfered_len)
1008 {
1009 enum target_xfer_status res;
1010 ULONGEST reg_len;
1011 struct mem_region *region;
1012 struct inferior *inf;
1013
1014 /* For accesses to unmapped overlay sections, read directly from
1015 files. Must do this first, as MEMADDR may need adjustment. */
1016 if (readbuf != NULL && overlay_debugging)
1017 {
1018 struct obj_section *section = find_pc_overlay (memaddr);
1019
1020 if (pc_in_unmapped_range (memaddr, section))
1021 {
1022 struct target_section_table *table
1023 = target_get_section_table (ops);
1024 const char *section_name = section->the_bfd_section->name;
1025
1026 memaddr = overlay_mapped_address (memaddr, section);
1027 return section_table_xfer_memory_partial (readbuf, writebuf,
1028 memaddr, len, xfered_len,
1029 table->sections,
1030 table->sections_end,
1031 section_name);
1032 }
1033 }
1034
1035 /* Try the executable files, if "trust-readonly-sections" is set. */
1036 if (readbuf != NULL && trust_readonly)
1037 {
1038 struct target_section *secp;
1039 struct target_section_table *table;
1040
1041 secp = target_section_by_addr (ops, memaddr);
1042 if (secp != NULL
1043 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1044 secp->the_bfd_section)
1045 & SEC_READONLY))
1046 {
1047 table = target_get_section_table (ops);
1048 return section_table_xfer_memory_partial (readbuf, writebuf,
1049 memaddr, len, xfered_len,
1050 table->sections,
1051 table->sections_end,
1052 NULL);
1053 }
1054 }
1055
1056 /* Try GDB's internal data cache. */
1057
1058 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1059 &region))
1060 return TARGET_XFER_E_IO;
1061
1062 if (inferior_ptid != null_ptid)
1063 inf = current_inferior ();
1064 else
1065 inf = NULL;
1066
1067 if (inf != NULL
1068 && readbuf != NULL
1069 /* The dcache reads whole cache lines; that doesn't play well
1070 with reading from a trace buffer, because reading outside of
1071 the collected memory range fails. */
1072 && get_traceframe_number () == -1
1073 && (region->attrib.cache
1074 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1075 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1076 {
1077 DCACHE *dcache = target_dcache_get_or_init ();
1078
1079 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1080 reg_len, xfered_len);
1081 }
1082
1083 /* If none of those methods found the memory we wanted, fall back
1084 to a target partial transfer. Normally a single call to
1085 to_xfer_partial is enough; if it doesn't recognize an object
1086 it will call the to_xfer_partial of the next target down.
1087 But for memory this won't do. Memory is the only target
1088 object which can be read from more than one valid target.
1089 A core file, for instance, could have some of memory but
1090 delegate other bits to the target below it. So, we must
1091 manually try all targets. */
1092
1093 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1094 xfered_len);
1095
1096 /* If we still haven't got anything, return the last error. We
1097 give up. */
1098 return res;
1099 }
1100
1101 /* Perform a partial memory transfer. For docs see target.h,
1102 to_xfer_partial. */
1103
1104 static enum target_xfer_status
1105 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1106 gdb_byte *readbuf, const gdb_byte *writebuf,
1107 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1108 {
1109 enum target_xfer_status res;
1110
1111 /* Zero length requests are ok and require no work. */
1112 if (len == 0)
1113 return TARGET_XFER_EOF;
1114
1115 memaddr = address_significant (target_gdbarch (), memaddr);
1116
1117 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1118 breakpoint insns, thus hiding out from higher layers whether
1119 there are software breakpoints inserted in the code stream. */
1120 if (readbuf != NULL)
1121 {
1122 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1123 xfered_len);
1124
1125 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1126 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1127 }
1128 else
1129 {
1130 /* A large write request is likely to be partially satisfied
1131 by memory_xfer_partial_1. We will continually malloc
1132 and free a copy of the entire write request for breakpoint
1133 shadow handling even though we only end up writing a small
1134 subset of it. Cap writes to a limit specified by the target
1135 to mitigate this. */
1136 len = std::min (ops->get_memory_xfer_limit (), len);
1137
1138 gdb::byte_vector buf (writebuf, writebuf + len);
1139 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1140 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1141 xfered_len);
1142 }
1143
1144 return res;
1145 }
1146
1147 scoped_restore_tmpl<int>
1148 make_scoped_restore_show_memory_breakpoints (int show)
1149 {
1150 return make_scoped_restore (&show_memory_breakpoints, show);
1151 }
1152
1153 /* For docs see target.h, to_xfer_partial. */
1154
1155 enum target_xfer_status
1156 target_xfer_partial (struct target_ops *ops,
1157 enum target_object object, const char *annex,
1158 gdb_byte *readbuf, const gdb_byte *writebuf,
1159 ULONGEST offset, ULONGEST len,
1160 ULONGEST *xfered_len)
1161 {
1162 enum target_xfer_status retval;
1163
1164 /* Transfer is done when LEN is zero. */
1165 if (len == 0)
1166 return TARGET_XFER_EOF;
1167
1168 if (writebuf && !may_write_memory)
1169 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1170 core_addr_to_string_nz (offset), plongest (len));
1171
1172 *xfered_len = 0;
1173
1174 /* If this is a memory transfer, let the memory-specific code
1175 have a look at it instead. Memory transfers are more
1176 complicated. */
1177 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1178 || object == TARGET_OBJECT_CODE_MEMORY)
1179 retval = memory_xfer_partial (ops, object, readbuf,
1180 writebuf, offset, len, xfered_len);
1181 else if (object == TARGET_OBJECT_RAW_MEMORY)
1182 {
1183 /* Skip/avoid accessing the target if the memory region
1184 attributes block the access. Check this here instead of in
1185 raw_memory_xfer_partial as otherwise we'd end up checking
1186 this twice in the case of the memory_xfer_partial path is
1187 taken; once before checking the dcache, and another in the
1188 tail call to raw_memory_xfer_partial. */
1189 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1190 NULL))
1191 return TARGET_XFER_E_IO;
1192
1193 /* Request the normal memory object from other layers. */
1194 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1195 xfered_len);
1196 }
1197 else
1198 retval = ops->xfer_partial (object, annex, readbuf,
1199 writebuf, offset, len, xfered_len);
1200
1201 if (targetdebug)
1202 {
1203 const unsigned char *myaddr = NULL;
1204
1205 fprintf_unfiltered (gdb_stdlog,
1206 "%s:target_xfer_partial "
1207 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1208 ops->shortname (),
1209 (int) object,
1210 (annex ? annex : "(null)"),
1211 host_address_to_string (readbuf),
1212 host_address_to_string (writebuf),
1213 core_addr_to_string_nz (offset),
1214 pulongest (len), retval,
1215 pulongest (*xfered_len));
1216
1217 if (readbuf)
1218 myaddr = readbuf;
1219 if (writebuf)
1220 myaddr = writebuf;
1221 if (retval == TARGET_XFER_OK && myaddr != NULL)
1222 {
1223 int i;
1224
1225 fputs_unfiltered (", bytes =", gdb_stdlog);
1226 for (i = 0; i < *xfered_len; i++)
1227 {
1228 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1229 {
1230 if (targetdebug < 2 && i > 0)
1231 {
1232 fprintf_unfiltered (gdb_stdlog, " ...");
1233 break;
1234 }
1235 fprintf_unfiltered (gdb_stdlog, "\n");
1236 }
1237
1238 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1239 }
1240 }
1241
1242 fputc_unfiltered ('\n', gdb_stdlog);
1243 }
1244
1245 /* Check implementations of to_xfer_partial update *XFERED_LEN
1246 properly. Do assertion after printing debug messages, so that we
1247 can find more clues on assertion failure from debugging messages. */
1248 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1249 gdb_assert (*xfered_len > 0);
1250
1251 return retval;
1252 }
1253
1254 /* Read LEN bytes of target memory at address MEMADDR, placing the
1255 results in GDB's memory at MYADDR. Returns either 0 for success or
1256 -1 if any error occurs.
1257
1258 If an error occurs, no guarantee is made about the contents of the data at
1259 MYADDR. In particular, the caller should not depend upon partial reads
1260 filling the buffer with good data. There is no way for the caller to know
1261 how much good data might have been transfered anyway. Callers that can
1262 deal with partial reads should call target_read (which will retry until
1263 it makes no progress, and then return how much was transferred). */
1264
1265 int
1266 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1267 {
1268 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1269 myaddr, memaddr, len) == len)
1270 return 0;
1271 else
1272 return -1;
1273 }
1274
1275 /* See target/target.h. */
1276
1277 int
1278 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1279 {
1280 gdb_byte buf[4];
1281 int r;
1282
1283 r = target_read_memory (memaddr, buf, sizeof buf);
1284 if (r != 0)
1285 return r;
1286 *result = extract_unsigned_integer (buf, sizeof buf,
1287 gdbarch_byte_order (target_gdbarch ()));
1288 return 0;
1289 }
1290
1291 /* Like target_read_memory, but specify explicitly that this is a read
1292 from the target's raw memory. That is, this read bypasses the
1293 dcache, breakpoint shadowing, etc. */
1294
1295 int
1296 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1297 {
1298 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1299 myaddr, memaddr, len) == len)
1300 return 0;
1301 else
1302 return -1;
1303 }
1304
1305 /* Like target_read_memory, but specify explicitly that this is a read from
1306 the target's stack. This may trigger different cache behavior. */
1307
1308 int
1309 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1312 myaddr, memaddr, len) == len)
1313 return 0;
1314 else
1315 return -1;
1316 }
1317
1318 /* Like target_read_memory, but specify explicitly that this is a read from
1319 the target's code. This may trigger different cache behavior. */
1320
1321 int
1322 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1323 {
1324 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1325 myaddr, memaddr, len) == len)
1326 return 0;
1327 else
1328 return -1;
1329 }
1330
1331 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1332 Returns either 0 for success or -1 if any error occurs. If an
1333 error occurs, no guarantee is made about how much data got written.
1334 Callers that can deal with partial writes should call
1335 target_write. */
1336
1337 int
1338 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1339 {
1340 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1341 myaddr, memaddr, len) == len)
1342 return 0;
1343 else
1344 return -1;
1345 }
1346
1347 /* Write LEN bytes from MYADDR to target raw memory at address
1348 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1349 If an error occurs, no guarantee is made about how much data got
1350 written. Callers that can deal with partial writes should call
1351 target_write. */
1352
1353 int
1354 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1355 {
1356 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1357 myaddr, memaddr, len) == len)
1358 return 0;
1359 else
1360 return -1;
1361 }
1362
1363 /* Fetch the target's memory map. */
1364
1365 std::vector<mem_region>
1366 target_memory_map (void)
1367 {
1368 std::vector<mem_region> result = current_top_target ()->memory_map ();
1369 if (result.empty ())
1370 return result;
1371
1372 std::sort (result.begin (), result.end ());
1373
1374 /* Check that regions do not overlap. Simultaneously assign
1375 a numbering for the "mem" commands to use to refer to
1376 each region. */
1377 mem_region *last_one = NULL;
1378 for (size_t ix = 0; ix < result.size (); ix++)
1379 {
1380 mem_region *this_one = &result[ix];
1381 this_one->number = ix;
1382
1383 if (last_one != NULL && last_one->hi > this_one->lo)
1384 {
1385 warning (_("Overlapping regions in memory map: ignoring"));
1386 return std::vector<mem_region> ();
1387 }
1388
1389 last_one = this_one;
1390 }
1391
1392 return result;
1393 }
1394
1395 void
1396 target_flash_erase (ULONGEST address, LONGEST length)
1397 {
1398 current_top_target ()->flash_erase (address, length);
1399 }
1400
1401 void
1402 target_flash_done (void)
1403 {
1404 current_top_target ()->flash_done ();
1405 }
1406
1407 static void
1408 show_trust_readonly (struct ui_file *file, int from_tty,
1409 struct cmd_list_element *c, const char *value)
1410 {
1411 fprintf_filtered (file,
1412 _("Mode for reading from readonly sections is %s.\n"),
1413 value);
1414 }
1415
1416 /* Target vector read/write partial wrapper functions. */
1417
1418 static enum target_xfer_status
1419 target_read_partial (struct target_ops *ops,
1420 enum target_object object,
1421 const char *annex, gdb_byte *buf,
1422 ULONGEST offset, ULONGEST len,
1423 ULONGEST *xfered_len)
1424 {
1425 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1426 xfered_len);
1427 }
1428
1429 static enum target_xfer_status
1430 target_write_partial (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, const gdb_byte *buf,
1433 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1434 {
1435 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1436 xfered_len);
1437 }
1438
1439 /* Wrappers to perform the full transfer. */
1440
1441 /* For docs on target_read see target.h. */
1442
1443 LONGEST
1444 target_read (struct target_ops *ops,
1445 enum target_object object,
1446 const char *annex, gdb_byte *buf,
1447 ULONGEST offset, LONGEST len)
1448 {
1449 LONGEST xfered_total = 0;
1450 int unit_size = 1;
1451
1452 /* If we are reading from a memory object, find the length of an addressable
1453 unit for that architecture. */
1454 if (object == TARGET_OBJECT_MEMORY
1455 || object == TARGET_OBJECT_STACK_MEMORY
1456 || object == TARGET_OBJECT_CODE_MEMORY
1457 || object == TARGET_OBJECT_RAW_MEMORY)
1458 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1459
1460 while (xfered_total < len)
1461 {
1462 ULONGEST xfered_partial;
1463 enum target_xfer_status status;
1464
1465 status = target_read_partial (ops, object, annex,
1466 buf + xfered_total * unit_size,
1467 offset + xfered_total, len - xfered_total,
1468 &xfered_partial);
1469
1470 /* Call an observer, notifying them of the xfer progress? */
1471 if (status == TARGET_XFER_EOF)
1472 return xfered_total;
1473 else if (status == TARGET_XFER_OK)
1474 {
1475 xfered_total += xfered_partial;
1476 QUIT;
1477 }
1478 else
1479 return TARGET_XFER_E_IO;
1480
1481 }
1482 return len;
1483 }
1484
1485 /* Assuming that the entire [begin, end) range of memory cannot be
1486 read, try to read whatever subrange is possible to read.
1487
1488 The function returns, in RESULT, either zero or one memory block.
1489 If there's a readable subrange at the beginning, it is completely
1490 read and returned. Any further readable subrange will not be read.
1491 Otherwise, if there's a readable subrange at the end, it will be
1492 completely read and returned. Any readable subranges before it
1493 (obviously, not starting at the beginning), will be ignored. In
1494 other cases -- either no readable subrange, or readable subrange(s)
1495 that is neither at the beginning, or end, nothing is returned.
1496
1497 The purpose of this function is to handle a read across a boundary
1498 of accessible memory in a case when memory map is not available.
1499 The above restrictions are fine for this case, but will give
1500 incorrect results if the memory is 'patchy'. However, supporting
1501 'patchy' memory would require trying to read every single byte,
1502 and it seems unacceptable solution. Explicit memory map is
1503 recommended for this case -- and target_read_memory_robust will
1504 take care of reading multiple ranges then. */
1505
1506 static void
1507 read_whatever_is_readable (struct target_ops *ops,
1508 const ULONGEST begin, const ULONGEST end,
1509 int unit_size,
1510 std::vector<memory_read_result> *result)
1511 {
1512 ULONGEST current_begin = begin;
1513 ULONGEST current_end = end;
1514 int forward;
1515 ULONGEST xfered_len;
1516
1517 /* If we previously failed to read 1 byte, nothing can be done here. */
1518 if (end - begin <= 1)
1519 return;
1520
1521 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1522
1523 /* Check that either first or the last byte is readable, and give up
1524 if not. This heuristic is meant to permit reading accessible memory
1525 at the boundary of accessible region. */
1526 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1527 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1528 {
1529 forward = 1;
1530 ++current_begin;
1531 }
1532 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1533 buf.get () + (end - begin) - 1, end - 1, 1,
1534 &xfered_len) == TARGET_XFER_OK)
1535 {
1536 forward = 0;
1537 --current_end;
1538 }
1539 else
1540 return;
1541
1542 /* Loop invariant is that the [current_begin, current_end) was previously
1543 found to be not readable as a whole.
1544
1545 Note loop condition -- if the range has 1 byte, we can't divide the range
1546 so there's no point trying further. */
1547 while (current_end - current_begin > 1)
1548 {
1549 ULONGEST first_half_begin, first_half_end;
1550 ULONGEST second_half_begin, second_half_end;
1551 LONGEST xfer;
1552 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1553
1554 if (forward)
1555 {
1556 first_half_begin = current_begin;
1557 first_half_end = middle;
1558 second_half_begin = middle;
1559 second_half_end = current_end;
1560 }
1561 else
1562 {
1563 first_half_begin = middle;
1564 first_half_end = current_end;
1565 second_half_begin = current_begin;
1566 second_half_end = middle;
1567 }
1568
1569 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1570 buf.get () + (first_half_begin - begin) * unit_size,
1571 first_half_begin,
1572 first_half_end - first_half_begin);
1573
1574 if (xfer == first_half_end - first_half_begin)
1575 {
1576 /* This half reads up fine. So, the error must be in the
1577 other half. */
1578 current_begin = second_half_begin;
1579 current_end = second_half_end;
1580 }
1581 else
1582 {
1583 /* This half is not readable. Because we've tried one byte, we
1584 know some part of this half if actually readable. Go to the next
1585 iteration to divide again and try to read.
1586
1587 We don't handle the other half, because this function only tries
1588 to read a single readable subrange. */
1589 current_begin = first_half_begin;
1590 current_end = first_half_end;
1591 }
1592 }
1593
1594 if (forward)
1595 {
1596 /* The [begin, current_begin) range has been read. */
1597 result->emplace_back (begin, current_end, std::move (buf));
1598 }
1599 else
1600 {
1601 /* The [current_end, end) range has been read. */
1602 LONGEST region_len = end - current_end;
1603
1604 gdb::unique_xmalloc_ptr<gdb_byte> data
1605 ((gdb_byte *) xmalloc (region_len * unit_size));
1606 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1607 region_len * unit_size);
1608 result->emplace_back (current_end, end, std::move (data));
1609 }
1610 }
1611
1612 std::vector<memory_read_result>
1613 read_memory_robust (struct target_ops *ops,
1614 const ULONGEST offset, const LONGEST len)
1615 {
1616 std::vector<memory_read_result> result;
1617 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1618
1619 LONGEST xfered_total = 0;
1620 while (xfered_total < len)
1621 {
1622 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1623 LONGEST region_len;
1624
1625 /* If there is no explicit region, a fake one should be created. */
1626 gdb_assert (region);
1627
1628 if (region->hi == 0)
1629 region_len = len - xfered_total;
1630 else
1631 region_len = region->hi - offset;
1632
1633 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1634 {
1635 /* Cannot read this region. Note that we can end up here only
1636 if the region is explicitly marked inaccessible, or
1637 'inaccessible-by-default' is in effect. */
1638 xfered_total += region_len;
1639 }
1640 else
1641 {
1642 LONGEST to_read = std::min (len - xfered_total, region_len);
1643 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1644 ((gdb_byte *) xmalloc (to_read * unit_size));
1645
1646 LONGEST xfered_partial =
1647 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1648 offset + xfered_total, to_read);
1649 /* Call an observer, notifying them of the xfer progress? */
1650 if (xfered_partial <= 0)
1651 {
1652 /* Got an error reading full chunk. See if maybe we can read
1653 some subrange. */
1654 read_whatever_is_readable (ops, offset + xfered_total,
1655 offset + xfered_total + to_read,
1656 unit_size, &result);
1657 xfered_total += to_read;
1658 }
1659 else
1660 {
1661 result.emplace_back (offset + xfered_total,
1662 offset + xfered_total + xfered_partial,
1663 std::move (buffer));
1664 xfered_total += xfered_partial;
1665 }
1666 QUIT;
1667 }
1668 }
1669
1670 return result;
1671 }
1672
1673
1674 /* An alternative to target_write with progress callbacks. */
1675
1676 LONGEST
1677 target_write_with_progress (struct target_ops *ops,
1678 enum target_object object,
1679 const char *annex, const gdb_byte *buf,
1680 ULONGEST offset, LONGEST len,
1681 void (*progress) (ULONGEST, void *), void *baton)
1682 {
1683 LONGEST xfered_total = 0;
1684 int unit_size = 1;
1685
1686 /* If we are writing to a memory object, find the length of an addressable
1687 unit for that architecture. */
1688 if (object == TARGET_OBJECT_MEMORY
1689 || object == TARGET_OBJECT_STACK_MEMORY
1690 || object == TARGET_OBJECT_CODE_MEMORY
1691 || object == TARGET_OBJECT_RAW_MEMORY)
1692 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1693
1694 /* Give the progress callback a chance to set up. */
1695 if (progress)
1696 (*progress) (0, baton);
1697
1698 while (xfered_total < len)
1699 {
1700 ULONGEST xfered_partial;
1701 enum target_xfer_status status;
1702
1703 status = target_write_partial (ops, object, annex,
1704 buf + xfered_total * unit_size,
1705 offset + xfered_total, len - xfered_total,
1706 &xfered_partial);
1707
1708 if (status != TARGET_XFER_OK)
1709 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1710
1711 if (progress)
1712 (*progress) (xfered_partial, baton);
1713
1714 xfered_total += xfered_partial;
1715 QUIT;
1716 }
1717 return len;
1718 }
1719
1720 /* For docs on target_write see target.h. */
1721
1722 LONGEST
1723 target_write (struct target_ops *ops,
1724 enum target_object object,
1725 const char *annex, const gdb_byte *buf,
1726 ULONGEST offset, LONGEST len)
1727 {
1728 return target_write_with_progress (ops, object, annex, buf, offset, len,
1729 NULL, NULL);
1730 }
1731
1732 /* Help for target_read_alloc and target_read_stralloc. See their comments
1733 for details. */
1734
1735 template <typename T>
1736 gdb::optional<gdb::def_vector<T>>
1737 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1738 const char *annex)
1739 {
1740 gdb::def_vector<T> buf;
1741 size_t buf_pos = 0;
1742 const int chunk = 4096;
1743
1744 /* This function does not have a length parameter; it reads the
1745 entire OBJECT). Also, it doesn't support objects fetched partly
1746 from one target and partly from another (in a different stratum,
1747 e.g. a core file and an executable). Both reasons make it
1748 unsuitable for reading memory. */
1749 gdb_assert (object != TARGET_OBJECT_MEMORY);
1750
1751 /* Start by reading up to 4K at a time. The target will throttle
1752 this number down if necessary. */
1753 while (1)
1754 {
1755 ULONGEST xfered_len;
1756 enum target_xfer_status status;
1757
1758 buf.resize (buf_pos + chunk);
1759
1760 status = target_read_partial (ops, object, annex,
1761 (gdb_byte *) &buf[buf_pos],
1762 buf_pos, chunk,
1763 &xfered_len);
1764
1765 if (status == TARGET_XFER_EOF)
1766 {
1767 /* Read all there was. */
1768 buf.resize (buf_pos);
1769 return buf;
1770 }
1771 else if (status != TARGET_XFER_OK)
1772 {
1773 /* An error occurred. */
1774 return {};
1775 }
1776
1777 buf_pos += xfered_len;
1778
1779 QUIT;
1780 }
1781 }
1782
1783 /* See target.h */
1784
1785 gdb::optional<gdb::byte_vector>
1786 target_read_alloc (struct target_ops *ops, enum target_object object,
1787 const char *annex)
1788 {
1789 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1790 }
1791
1792 /* See target.h. */
1793
1794 gdb::optional<gdb::char_vector>
1795 target_read_stralloc (struct target_ops *ops, enum target_object object,
1796 const char *annex)
1797 {
1798 gdb::optional<gdb::char_vector> buf
1799 = target_read_alloc_1<char> (ops, object, annex);
1800
1801 if (!buf)
1802 return {};
1803
1804 if (buf->empty () || buf->back () != '\0')
1805 buf->push_back ('\0');
1806
1807 /* Check for embedded NUL bytes; but allow trailing NULs. */
1808 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1809 it != buf->end (); it++)
1810 if (*it != '\0')
1811 {
1812 warning (_("target object %d, annex %s, "
1813 "contained unexpected null characters"),
1814 (int) object, annex ? annex : "(none)");
1815 break;
1816 }
1817
1818 return buf;
1819 }
1820
1821 /* Memory transfer methods. */
1822
1823 void
1824 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1825 LONGEST len)
1826 {
1827 /* This method is used to read from an alternate, non-current
1828 target. This read must bypass the overlay support (as symbols
1829 don't match this target), and GDB's internal cache (wrong cache
1830 for this target). */
1831 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1832 != len)
1833 memory_error (TARGET_XFER_E_IO, addr);
1834 }
1835
1836 ULONGEST
1837 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1838 int len, enum bfd_endian byte_order)
1839 {
1840 gdb_byte buf[sizeof (ULONGEST)];
1841
1842 gdb_assert (len <= sizeof (buf));
1843 get_target_memory (ops, addr, buf, len);
1844 return extract_unsigned_integer (buf, len, byte_order);
1845 }
1846
1847 /* See target.h. */
1848
1849 int
1850 target_insert_breakpoint (struct gdbarch *gdbarch,
1851 struct bp_target_info *bp_tgt)
1852 {
1853 if (!may_insert_breakpoints)
1854 {
1855 warning (_("May not insert breakpoints"));
1856 return 1;
1857 }
1858
1859 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1860 }
1861
1862 /* See target.h. */
1863
1864 int
1865 target_remove_breakpoint (struct gdbarch *gdbarch,
1866 struct bp_target_info *bp_tgt,
1867 enum remove_bp_reason reason)
1868 {
1869 /* This is kind of a weird case to handle, but the permission might
1870 have been changed after breakpoints were inserted - in which case
1871 we should just take the user literally and assume that any
1872 breakpoints should be left in place. */
1873 if (!may_insert_breakpoints)
1874 {
1875 warning (_("May not remove breakpoints"));
1876 return 1;
1877 }
1878
1879 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1880 }
1881
1882 static void
1883 info_target_command (const char *args, int from_tty)
1884 {
1885 int has_all_mem = 0;
1886
1887 if (symfile_objfile != NULL)
1888 printf_unfiltered (_("Symbols from \"%s\".\n"),
1889 objfile_name (symfile_objfile));
1890
1891 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1892 {
1893 if (!t->has_memory ())
1894 continue;
1895
1896 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1897 continue;
1898 if (has_all_mem)
1899 printf_unfiltered (_("\tWhile running this, "
1900 "GDB does not access memory from...\n"));
1901 printf_unfiltered ("%s:\n", t->longname ());
1902 t->files_info ();
1903 has_all_mem = t->has_all_memory ();
1904 }
1905 }
1906
1907 /* This function is called before any new inferior is created, e.g.
1908 by running a program, attaching, or connecting to a target.
1909 It cleans up any state from previous invocations which might
1910 change between runs. This is a subset of what target_preopen
1911 resets (things which might change between targets). */
1912
1913 void
1914 target_pre_inferior (int from_tty)
1915 {
1916 /* Clear out solib state. Otherwise the solib state of the previous
1917 inferior might have survived and is entirely wrong for the new
1918 target. This has been observed on GNU/Linux using glibc 2.3. How
1919 to reproduce:
1920
1921 bash$ ./foo&
1922 [1] 4711
1923 bash$ ./foo&
1924 [1] 4712
1925 bash$ gdb ./foo
1926 [...]
1927 (gdb) attach 4711
1928 (gdb) detach
1929 (gdb) attach 4712
1930 Cannot access memory at address 0xdeadbeef
1931 */
1932
1933 /* In some OSs, the shared library list is the same/global/shared
1934 across inferiors. If code is shared between processes, so are
1935 memory regions and features. */
1936 if (!gdbarch_has_global_solist (target_gdbarch ()))
1937 {
1938 no_shared_libraries (NULL, from_tty);
1939
1940 invalidate_target_mem_regions ();
1941
1942 target_clear_description ();
1943 }
1944
1945 /* attach_flag may be set if the previous process associated with
1946 the inferior was attached to. */
1947 current_inferior ()->attach_flag = 0;
1948
1949 current_inferior ()->highest_thread_num = 0;
1950
1951 agent_capability_invalidate ();
1952 }
1953
1954 /* Callback for iterate_over_inferiors. Gets rid of the given
1955 inferior. */
1956
1957 static int
1958 dispose_inferior (struct inferior *inf, void *args)
1959 {
1960 /* Not all killed inferiors can, or will ever be, removed from the
1961 inferior list. Killed inferiors clearly don't need to be killed
1962 again, so, we're done. */
1963 if (inf->pid == 0)
1964 return 0;
1965
1966 thread_info *thread = any_thread_of_inferior (inf);
1967 if (thread != NULL)
1968 {
1969 switch_to_thread (thread);
1970
1971 /* Core inferiors actually should be detached, not killed. */
1972 if (target_has_execution)
1973 target_kill ();
1974 else
1975 target_detach (inf, 0);
1976 }
1977
1978 return 0;
1979 }
1980
1981 /* This is to be called by the open routine before it does
1982 anything. */
1983
1984 void
1985 target_preopen (int from_tty)
1986 {
1987 dont_repeat ();
1988
1989 if (have_inferiors ())
1990 {
1991 if (!from_tty
1992 || !have_live_inferiors ()
1993 || query (_("A program is being debugged already. Kill it? ")))
1994 iterate_over_inferiors (dispose_inferior, NULL);
1995 else
1996 error (_("Program not killed."));
1997 }
1998
1999 /* Calling target_kill may remove the target from the stack. But if
2000 it doesn't (which seems like a win for UDI), remove it now. */
2001 /* Leave the exec target, though. The user may be switching from a
2002 live process to a core of the same program. */
2003 pop_all_targets_above (file_stratum);
2004
2005 target_pre_inferior (from_tty);
2006 }
2007
2008 /* See target.h. */
2009
2010 void
2011 target_detach (inferior *inf, int from_tty)
2012 {
2013 /* As long as some to_detach implementations rely on the current_inferior
2014 (either directly, or indirectly, like through target_gdbarch or by
2015 reading memory), INF needs to be the current inferior. When that
2016 requirement will become no longer true, then we can remove this
2017 assertion. */
2018 gdb_assert (inf == current_inferior ());
2019
2020 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2021 /* Don't remove global breakpoints here. They're removed on
2022 disconnection from the target. */
2023 ;
2024 else
2025 /* If we're in breakpoints-always-inserted mode, have to remove
2026 breakpoints before detaching. */
2027 remove_breakpoints_inf (current_inferior ());
2028
2029 prepare_for_detach ();
2030
2031 current_top_target ()->detach (inf, from_tty);
2032
2033 /* After we have detached, clear the register cache for this inferior. */
2034 ptid_t pid_ptid = ptid_t (inf->pid);
2035
2036 registers_changed_ptid (pid_ptid);
2037
2038 /* We have to ensure we have no frame cache left. Normally,
2039 registers_changed_ptid (pid_ptid) calls reinit_frame_cache when
2040 inferior_ptid matches pid_ptid, but in our case, it does not
2041 call it, as inferior_ptid has been reset. */
2042 reinit_frame_cache ();
2043 }
2044
2045 void
2046 target_disconnect (const char *args, int from_tty)
2047 {
2048 /* If we're in breakpoints-always-inserted mode or if breakpoints
2049 are global across processes, we have to remove them before
2050 disconnecting. */
2051 remove_breakpoints ();
2052
2053 current_top_target ()->disconnect (args, from_tty);
2054 }
2055
2056 /* See target/target.h. */
2057
2058 ptid_t
2059 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2060 {
2061 return current_top_target ()->wait (ptid, status, options);
2062 }
2063
2064 /* See target.h. */
2065
2066 ptid_t
2067 default_target_wait (struct target_ops *ops,
2068 ptid_t ptid, struct target_waitstatus *status,
2069 int options)
2070 {
2071 status->kind = TARGET_WAITKIND_IGNORE;
2072 return minus_one_ptid;
2073 }
2074
2075 const char *
2076 target_pid_to_str (ptid_t ptid)
2077 {
2078 return current_top_target ()->pid_to_str (ptid);
2079 }
2080
2081 const char *
2082 target_thread_name (struct thread_info *info)
2083 {
2084 return current_top_target ()->thread_name (info);
2085 }
2086
2087 struct thread_info *
2088 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2089 int handle_len,
2090 struct inferior *inf)
2091 {
2092 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2093 handle_len, inf);
2094 }
2095
2096 void
2097 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2098 {
2099 target_dcache_invalidate ();
2100
2101 current_top_target ()->resume (ptid, step, signal);
2102
2103 registers_changed_ptid (ptid);
2104 /* We only set the internal executing state here. The user/frontend
2105 running state is set at a higher level. This also clears the
2106 thread's stop_pc as side effect. */
2107 set_executing (ptid, 1);
2108 clear_inline_frame_state (ptid);
2109 }
2110
2111 /* If true, target_commit_resume is a nop. */
2112 static int defer_target_commit_resume;
2113
2114 /* See target.h. */
2115
2116 void
2117 target_commit_resume (void)
2118 {
2119 if (defer_target_commit_resume)
2120 return;
2121
2122 current_top_target ()->commit_resume ();
2123 }
2124
2125 /* See target.h. */
2126
2127 scoped_restore_tmpl<int>
2128 make_scoped_defer_target_commit_resume ()
2129 {
2130 return make_scoped_restore (&defer_target_commit_resume, 1);
2131 }
2132
2133 void
2134 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2135 {
2136 current_top_target ()->pass_signals (pass_signals);
2137 }
2138
2139 void
2140 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2141 {
2142 current_top_target ()->program_signals (program_signals);
2143 }
2144
2145 static int
2146 default_follow_fork (struct target_ops *self, int follow_child,
2147 int detach_fork)
2148 {
2149 /* Some target returned a fork event, but did not know how to follow it. */
2150 internal_error (__FILE__, __LINE__,
2151 _("could not find a target to follow fork"));
2152 }
2153
2154 /* Look through the list of possible targets for a target that can
2155 follow forks. */
2156
2157 int
2158 target_follow_fork (int follow_child, int detach_fork)
2159 {
2160 return current_top_target ()->follow_fork (follow_child, detach_fork);
2161 }
2162
2163 /* Target wrapper for follow exec hook. */
2164
2165 void
2166 target_follow_exec (struct inferior *inf, char *execd_pathname)
2167 {
2168 current_top_target ()->follow_exec (inf, execd_pathname);
2169 }
2170
2171 static void
2172 default_mourn_inferior (struct target_ops *self)
2173 {
2174 internal_error (__FILE__, __LINE__,
2175 _("could not find a target to follow mourn inferior"));
2176 }
2177
2178 void
2179 target_mourn_inferior (ptid_t ptid)
2180 {
2181 gdb_assert (ptid == inferior_ptid);
2182 current_top_target ()->mourn_inferior ();
2183
2184 /* We no longer need to keep handles on any of the object files.
2185 Make sure to release them to avoid unnecessarily locking any
2186 of them while we're not actually debugging. */
2187 bfd_cache_close_all ();
2188 }
2189
2190 /* Look for a target which can describe architectural features, starting
2191 from TARGET. If we find one, return its description. */
2192
2193 const struct target_desc *
2194 target_read_description (struct target_ops *target)
2195 {
2196 return target->read_description ();
2197 }
2198
2199 /* This implements a basic search of memory, reading target memory and
2200 performing the search here (as opposed to performing the search in on the
2201 target side with, for example, gdbserver). */
2202
2203 int
2204 simple_search_memory (struct target_ops *ops,
2205 CORE_ADDR start_addr, ULONGEST search_space_len,
2206 const gdb_byte *pattern, ULONGEST pattern_len,
2207 CORE_ADDR *found_addrp)
2208 {
2209 /* NOTE: also defined in find.c testcase. */
2210 #define SEARCH_CHUNK_SIZE 16000
2211 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2212 /* Buffer to hold memory contents for searching. */
2213 unsigned search_buf_size;
2214
2215 search_buf_size = chunk_size + pattern_len - 1;
2216
2217 /* No point in trying to allocate a buffer larger than the search space. */
2218 if (search_space_len < search_buf_size)
2219 search_buf_size = search_space_len;
2220
2221 gdb::byte_vector search_buf (search_buf_size);
2222
2223 /* Prime the search buffer. */
2224
2225 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2226 search_buf.data (), start_addr, search_buf_size)
2227 != search_buf_size)
2228 {
2229 warning (_("Unable to access %s bytes of target "
2230 "memory at %s, halting search."),
2231 pulongest (search_buf_size), hex_string (start_addr));
2232 return -1;
2233 }
2234
2235 /* Perform the search.
2236
2237 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2238 When we've scanned N bytes we copy the trailing bytes to the start and
2239 read in another N bytes. */
2240
2241 while (search_space_len >= pattern_len)
2242 {
2243 gdb_byte *found_ptr;
2244 unsigned nr_search_bytes
2245 = std::min (search_space_len, (ULONGEST) search_buf_size);
2246
2247 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2248 pattern, pattern_len);
2249
2250 if (found_ptr != NULL)
2251 {
2252 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2253
2254 *found_addrp = found_addr;
2255 return 1;
2256 }
2257
2258 /* Not found in this chunk, skip to next chunk. */
2259
2260 /* Don't let search_space_len wrap here, it's unsigned. */
2261 if (search_space_len >= chunk_size)
2262 search_space_len -= chunk_size;
2263 else
2264 search_space_len = 0;
2265
2266 if (search_space_len >= pattern_len)
2267 {
2268 unsigned keep_len = search_buf_size - chunk_size;
2269 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2270 int nr_to_read;
2271
2272 /* Copy the trailing part of the previous iteration to the front
2273 of the buffer for the next iteration. */
2274 gdb_assert (keep_len == pattern_len - 1);
2275 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2276
2277 nr_to_read = std::min (search_space_len - keep_len,
2278 (ULONGEST) chunk_size);
2279
2280 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2281 &search_buf[keep_len], read_addr,
2282 nr_to_read) != nr_to_read)
2283 {
2284 warning (_("Unable to access %s bytes of target "
2285 "memory at %s, halting search."),
2286 plongest (nr_to_read),
2287 hex_string (read_addr));
2288 return -1;
2289 }
2290
2291 start_addr += chunk_size;
2292 }
2293 }
2294
2295 /* Not found. */
2296
2297 return 0;
2298 }
2299
2300 /* Default implementation of memory-searching. */
2301
2302 static int
2303 default_search_memory (struct target_ops *self,
2304 CORE_ADDR start_addr, ULONGEST search_space_len,
2305 const gdb_byte *pattern, ULONGEST pattern_len,
2306 CORE_ADDR *found_addrp)
2307 {
2308 /* Start over from the top of the target stack. */
2309 return simple_search_memory (current_top_target (),
2310 start_addr, search_space_len,
2311 pattern, pattern_len, found_addrp);
2312 }
2313
2314 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2315 sequence of bytes in PATTERN with length PATTERN_LEN.
2316
2317 The result is 1 if found, 0 if not found, and -1 if there was an error
2318 requiring halting of the search (e.g. memory read error).
2319 If the pattern is found the address is recorded in FOUND_ADDRP. */
2320
2321 int
2322 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2323 const gdb_byte *pattern, ULONGEST pattern_len,
2324 CORE_ADDR *found_addrp)
2325 {
2326 return current_top_target ()->search_memory (start_addr, search_space_len,
2327 pattern, pattern_len, found_addrp);
2328 }
2329
2330 /* Look through the currently pushed targets. If none of them will
2331 be able to restart the currently running process, issue an error
2332 message. */
2333
2334 void
2335 target_require_runnable (void)
2336 {
2337 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2338 {
2339 /* If this target knows how to create a new program, then
2340 assume we will still be able to after killing the current
2341 one. Either killing and mourning will not pop T, or else
2342 find_default_run_target will find it again. */
2343 if (t->can_create_inferior ())
2344 return;
2345
2346 /* Do not worry about targets at certain strata that can not
2347 create inferiors. Assume they will be pushed again if
2348 necessary, and continue to the process_stratum. */
2349 if (t->stratum () > process_stratum)
2350 continue;
2351
2352 error (_("The \"%s\" target does not support \"run\". "
2353 "Try \"help target\" or \"continue\"."),
2354 t->shortname ());
2355 }
2356
2357 /* This function is only called if the target is running. In that
2358 case there should have been a process_stratum target and it
2359 should either know how to create inferiors, or not... */
2360 internal_error (__FILE__, __LINE__, _("No targets found"));
2361 }
2362
2363 /* Whether GDB is allowed to fall back to the default run target for
2364 "run", "attach", etc. when no target is connected yet. */
2365 static int auto_connect_native_target = 1;
2366
2367 static void
2368 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2369 struct cmd_list_element *c, const char *value)
2370 {
2371 fprintf_filtered (file,
2372 _("Whether GDB may automatically connect to the "
2373 "native target is %s.\n"),
2374 value);
2375 }
2376
2377 /* A pointer to the target that can respond to "run" or "attach".
2378 Native targets are always singletons and instantiated early at GDB
2379 startup. */
2380 static target_ops *the_native_target;
2381
2382 /* See target.h. */
2383
2384 void
2385 set_native_target (target_ops *target)
2386 {
2387 if (the_native_target != NULL)
2388 internal_error (__FILE__, __LINE__,
2389 _("native target already set (\"%s\")."),
2390 the_native_target->longname ());
2391
2392 the_native_target = target;
2393 }
2394
2395 /* See target.h. */
2396
2397 target_ops *
2398 get_native_target ()
2399 {
2400 return the_native_target;
2401 }
2402
2403 /* Look through the list of possible targets for a target that can
2404 execute a run or attach command without any other data. This is
2405 used to locate the default process stratum.
2406
2407 If DO_MESG is not NULL, the result is always valid (error() is
2408 called for errors); else, return NULL on error. */
2409
2410 static struct target_ops *
2411 find_default_run_target (const char *do_mesg)
2412 {
2413 if (auto_connect_native_target && the_native_target != NULL)
2414 return the_native_target;
2415
2416 if (do_mesg != NULL)
2417 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2418 return NULL;
2419 }
2420
2421 /* See target.h. */
2422
2423 struct target_ops *
2424 find_attach_target (void)
2425 {
2426 /* If a target on the current stack can attach, use it. */
2427 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2428 {
2429 if (t->can_attach ())
2430 return t;
2431 }
2432
2433 /* Otherwise, use the default run target for attaching. */
2434 return find_default_run_target ("attach");
2435 }
2436
2437 /* See target.h. */
2438
2439 struct target_ops *
2440 find_run_target (void)
2441 {
2442 /* If a target on the current stack can run, use it. */
2443 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2444 {
2445 if (t->can_create_inferior ())
2446 return t;
2447 }
2448
2449 /* Otherwise, use the default run target. */
2450 return find_default_run_target ("run");
2451 }
2452
2453 bool
2454 target_ops::info_proc (const char *args, enum info_proc_what what)
2455 {
2456 return false;
2457 }
2458
2459 /* Implement the "info proc" command. */
2460
2461 int
2462 target_info_proc (const char *args, enum info_proc_what what)
2463 {
2464 struct target_ops *t;
2465
2466 /* If we're already connected to something that can get us OS
2467 related data, use it. Otherwise, try using the native
2468 target. */
2469 t = find_target_at (process_stratum);
2470 if (t == NULL)
2471 t = find_default_run_target (NULL);
2472
2473 for (; t != NULL; t = t->beneath ())
2474 {
2475 if (t->info_proc (args, what))
2476 {
2477 if (targetdebug)
2478 fprintf_unfiltered (gdb_stdlog,
2479 "target_info_proc (\"%s\", %d)\n", args, what);
2480
2481 return 1;
2482 }
2483 }
2484
2485 return 0;
2486 }
2487
2488 static int
2489 find_default_supports_disable_randomization (struct target_ops *self)
2490 {
2491 struct target_ops *t;
2492
2493 t = find_default_run_target (NULL);
2494 if (t != NULL)
2495 return t->supports_disable_randomization ();
2496 return 0;
2497 }
2498
2499 int
2500 target_supports_disable_randomization (void)
2501 {
2502 return current_top_target ()->supports_disable_randomization ();
2503 }
2504
2505 /* See target/target.h. */
2506
2507 int
2508 target_supports_multi_process (void)
2509 {
2510 return current_top_target ()->supports_multi_process ();
2511 }
2512
2513 /* See target.h. */
2514
2515 gdb::optional<gdb::char_vector>
2516 target_get_osdata (const char *type)
2517 {
2518 struct target_ops *t;
2519
2520 /* If we're already connected to something that can get us OS
2521 related data, use it. Otherwise, try using the native
2522 target. */
2523 t = find_target_at (process_stratum);
2524 if (t == NULL)
2525 t = find_default_run_target ("get OS data");
2526
2527 if (!t)
2528 return {};
2529
2530 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2531 }
2532
2533
2534 /* Determine the current address space of thread PTID. */
2535
2536 struct address_space *
2537 target_thread_address_space (ptid_t ptid)
2538 {
2539 struct address_space *aspace;
2540
2541 aspace = current_top_target ()->thread_address_space (ptid);
2542 gdb_assert (aspace != NULL);
2543
2544 return aspace;
2545 }
2546
2547 /* See target.h. */
2548
2549 target_ops *
2550 target_ops::beneath () const
2551 {
2552 return g_target_stack.find_beneath (this);
2553 }
2554
2555 void
2556 target_ops::close ()
2557 {
2558 }
2559
2560 bool
2561 target_ops::can_attach ()
2562 {
2563 return 0;
2564 }
2565
2566 void
2567 target_ops::attach (const char *, int)
2568 {
2569 gdb_assert_not_reached ("target_ops::attach called");
2570 }
2571
2572 bool
2573 target_ops::can_create_inferior ()
2574 {
2575 return 0;
2576 }
2577
2578 void
2579 target_ops::create_inferior (const char *, const std::string &,
2580 char **, int)
2581 {
2582 gdb_assert_not_reached ("target_ops::create_inferior called");
2583 }
2584
2585 bool
2586 target_ops::can_run ()
2587 {
2588 return false;
2589 }
2590
2591 int
2592 target_can_run ()
2593 {
2594 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2595 {
2596 if (t->can_run ())
2597 return 1;
2598 }
2599
2600 return 0;
2601 }
2602
2603 /* Target file operations. */
2604
2605 static struct target_ops *
2606 default_fileio_target (void)
2607 {
2608 struct target_ops *t;
2609
2610 /* If we're already connected to something that can perform
2611 file I/O, use it. Otherwise, try using the native target. */
2612 t = find_target_at (process_stratum);
2613 if (t != NULL)
2614 return t;
2615 return find_default_run_target ("file I/O");
2616 }
2617
2618 /* File handle for target file operations. */
2619
2620 struct fileio_fh_t
2621 {
2622 /* The target on which this file is open. NULL if the target is
2623 meanwhile closed while the handle is open. */
2624 target_ops *target;
2625
2626 /* The file descriptor on the target. */
2627 int target_fd;
2628
2629 /* Check whether this fileio_fh_t represents a closed file. */
2630 bool is_closed ()
2631 {
2632 return target_fd < 0;
2633 }
2634 };
2635
2636 /* Vector of currently open file handles. The value returned by
2637 target_fileio_open and passed as the FD argument to other
2638 target_fileio_* functions is an index into this vector. This
2639 vector's entries are never freed; instead, files are marked as
2640 closed, and the handle becomes available for reuse. */
2641 static std::vector<fileio_fh_t> fileio_fhandles;
2642
2643 /* Index into fileio_fhandles of the lowest handle that might be
2644 closed. This permits handle reuse without searching the whole
2645 list each time a new file is opened. */
2646 static int lowest_closed_fd;
2647
2648 /* Invalidate the target associated with open handles that were open
2649 on target TARG, since we're about to close (and maybe destroy) the
2650 target. The handles remain open from the client's perspective, but
2651 trying to do anything with them other than closing them will fail
2652 with EIO. */
2653
2654 static void
2655 fileio_handles_invalidate_target (target_ops *targ)
2656 {
2657 for (fileio_fh_t &fh : fileio_fhandles)
2658 if (fh.target == targ)
2659 fh.target = NULL;
2660 }
2661
2662 /* Acquire a target fileio file descriptor. */
2663
2664 static int
2665 acquire_fileio_fd (target_ops *target, int target_fd)
2666 {
2667 /* Search for closed handles to reuse. */
2668 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2669 {
2670 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2671
2672 if (fh.is_closed ())
2673 break;
2674 }
2675
2676 /* Push a new handle if no closed handles were found. */
2677 if (lowest_closed_fd == fileio_fhandles.size ())
2678 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2679 else
2680 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2681
2682 /* Should no longer be marked closed. */
2683 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2684
2685 /* Return its index, and start the next lookup at
2686 the next index. */
2687 return lowest_closed_fd++;
2688 }
2689
2690 /* Release a target fileio file descriptor. */
2691
2692 static void
2693 release_fileio_fd (int fd, fileio_fh_t *fh)
2694 {
2695 fh->target_fd = -1;
2696 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2697 }
2698
2699 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2700
2701 static fileio_fh_t *
2702 fileio_fd_to_fh (int fd)
2703 {
2704 return &fileio_fhandles[fd];
2705 }
2706
2707
2708 /* Default implementations of file i/o methods. We don't want these
2709 to delegate automatically, because we need to know which target
2710 supported the method, in order to call it directly from within
2711 pread/pwrite, etc. */
2712
2713 int
2714 target_ops::fileio_open (struct inferior *inf, const char *filename,
2715 int flags, int mode, int warn_if_slow,
2716 int *target_errno)
2717 {
2718 *target_errno = FILEIO_ENOSYS;
2719 return -1;
2720 }
2721
2722 int
2723 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2724 ULONGEST offset, int *target_errno)
2725 {
2726 *target_errno = FILEIO_ENOSYS;
2727 return -1;
2728 }
2729
2730 int
2731 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2732 ULONGEST offset, int *target_errno)
2733 {
2734 *target_errno = FILEIO_ENOSYS;
2735 return -1;
2736 }
2737
2738 int
2739 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2740 {
2741 *target_errno = FILEIO_ENOSYS;
2742 return -1;
2743 }
2744
2745 int
2746 target_ops::fileio_close (int fd, int *target_errno)
2747 {
2748 *target_errno = FILEIO_ENOSYS;
2749 return -1;
2750 }
2751
2752 int
2753 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2754 int *target_errno)
2755 {
2756 *target_errno = FILEIO_ENOSYS;
2757 return -1;
2758 }
2759
2760 gdb::optional<std::string>
2761 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2762 int *target_errno)
2763 {
2764 *target_errno = FILEIO_ENOSYS;
2765 return {};
2766 }
2767
2768 /* Helper for target_fileio_open and
2769 target_fileio_open_warn_if_slow. */
2770
2771 static int
2772 target_fileio_open_1 (struct inferior *inf, const char *filename,
2773 int flags, int mode, int warn_if_slow,
2774 int *target_errno)
2775 {
2776 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2777 {
2778 int fd = t->fileio_open (inf, filename, flags, mode,
2779 warn_if_slow, target_errno);
2780
2781 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2782 continue;
2783
2784 if (fd < 0)
2785 fd = -1;
2786 else
2787 fd = acquire_fileio_fd (t, fd);
2788
2789 if (targetdebug)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2792 " = %d (%d)\n",
2793 inf == NULL ? 0 : inf->num,
2794 filename, flags, mode,
2795 warn_if_slow, fd,
2796 fd != -1 ? 0 : *target_errno);
2797 return fd;
2798 }
2799
2800 *target_errno = FILEIO_ENOSYS;
2801 return -1;
2802 }
2803
2804 /* See target.h. */
2805
2806 int
2807 target_fileio_open (struct inferior *inf, const char *filename,
2808 int flags, int mode, int *target_errno)
2809 {
2810 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2811 target_errno);
2812 }
2813
2814 /* See target.h. */
2815
2816 int
2817 target_fileio_open_warn_if_slow (struct inferior *inf,
2818 const char *filename,
2819 int flags, int mode, int *target_errno)
2820 {
2821 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2822 target_errno);
2823 }
2824
2825 /* See target.h. */
2826
2827 int
2828 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2829 ULONGEST offset, int *target_errno)
2830 {
2831 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2832 int ret = -1;
2833
2834 if (fh->is_closed ())
2835 *target_errno = EBADF;
2836 else if (fh->target == NULL)
2837 *target_errno = EIO;
2838 else
2839 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2840 len, offset, target_errno);
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_pwrite (%d,...,%d,%s) "
2845 "= %d (%d)\n",
2846 fd, len, pulongest (offset),
2847 ret, ret != -1 ? 0 : *target_errno);
2848 return ret;
2849 }
2850
2851 /* See target.h. */
2852
2853 int
2854 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2855 ULONGEST offset, int *target_errno)
2856 {
2857 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2858 int ret = -1;
2859
2860 if (fh->is_closed ())
2861 *target_errno = EBADF;
2862 else if (fh->target == NULL)
2863 *target_errno = EIO;
2864 else
2865 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2866 len, offset, target_errno);
2867
2868 if (targetdebug)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_fileio_pread (%d,...,%d,%s) "
2871 "= %d (%d)\n",
2872 fd, len, pulongest (offset),
2873 ret, ret != -1 ? 0 : *target_errno);
2874 return ret;
2875 }
2876
2877 /* See target.h. */
2878
2879 int
2880 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2881 {
2882 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2883 int ret = -1;
2884
2885 if (fh->is_closed ())
2886 *target_errno = EBADF;
2887 else if (fh->target == NULL)
2888 *target_errno = EIO;
2889 else
2890 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2891
2892 if (targetdebug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "target_fileio_fstat (%d) = %d (%d)\n",
2895 fd, ret, ret != -1 ? 0 : *target_errno);
2896 return ret;
2897 }
2898
2899 /* See target.h. */
2900
2901 int
2902 target_fileio_close (int fd, int *target_errno)
2903 {
2904 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2905 int ret = -1;
2906
2907 if (fh->is_closed ())
2908 *target_errno = EBADF;
2909 else
2910 {
2911 if (fh->target != NULL)
2912 ret = fh->target->fileio_close (fh->target_fd,
2913 target_errno);
2914 else
2915 ret = 0;
2916 release_fileio_fd (fd, fh);
2917 }
2918
2919 if (targetdebug)
2920 fprintf_unfiltered (gdb_stdlog,
2921 "target_fileio_close (%d) = %d (%d)\n",
2922 fd, ret, ret != -1 ? 0 : *target_errno);
2923 return ret;
2924 }
2925
2926 /* See target.h. */
2927
2928 int
2929 target_fileio_unlink (struct inferior *inf, const char *filename,
2930 int *target_errno)
2931 {
2932 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2933 {
2934 int ret = t->fileio_unlink (inf, filename, target_errno);
2935
2936 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2937 continue;
2938
2939 if (targetdebug)
2940 fprintf_unfiltered (gdb_stdlog,
2941 "target_fileio_unlink (%d,%s)"
2942 " = %d (%d)\n",
2943 inf == NULL ? 0 : inf->num, filename,
2944 ret, ret != -1 ? 0 : *target_errno);
2945 return ret;
2946 }
2947
2948 *target_errno = FILEIO_ENOSYS;
2949 return -1;
2950 }
2951
2952 /* See target.h. */
2953
2954 gdb::optional<std::string>
2955 target_fileio_readlink (struct inferior *inf, const char *filename,
2956 int *target_errno)
2957 {
2958 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2959 {
2960 gdb::optional<std::string> ret
2961 = t->fileio_readlink (inf, filename, target_errno);
2962
2963 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2964 continue;
2965
2966 if (targetdebug)
2967 fprintf_unfiltered (gdb_stdlog,
2968 "target_fileio_readlink (%d,%s)"
2969 " = %s (%d)\n",
2970 inf == NULL ? 0 : inf->num,
2971 filename, ret ? ret->c_str () : "(nil)",
2972 ret ? 0 : *target_errno);
2973 return ret;
2974 }
2975
2976 *target_errno = FILEIO_ENOSYS;
2977 return {};
2978 }
2979
2980 /* Like scoped_fd, but specific to target fileio. */
2981
2982 class scoped_target_fd
2983 {
2984 public:
2985 explicit scoped_target_fd (int fd) noexcept
2986 : m_fd (fd)
2987 {
2988 }
2989
2990 ~scoped_target_fd ()
2991 {
2992 if (m_fd >= 0)
2993 {
2994 int target_errno;
2995
2996 target_fileio_close (m_fd, &target_errno);
2997 }
2998 }
2999
3000 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3001
3002 int get () const noexcept
3003 {
3004 return m_fd;
3005 }
3006
3007 private:
3008 int m_fd;
3009 };
3010
3011 /* Read target file FILENAME, in the filesystem as seen by INF. If
3012 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3013 remote targets, the remote stub). Store the result in *BUF_P and
3014 return the size of the transferred data. PADDING additional bytes
3015 are available in *BUF_P. This is a helper function for
3016 target_fileio_read_alloc; see the declaration of that function for
3017 more information. */
3018
3019 static LONGEST
3020 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3021 gdb_byte **buf_p, int padding)
3022 {
3023 size_t buf_alloc, buf_pos;
3024 gdb_byte *buf;
3025 LONGEST n;
3026 int target_errno;
3027
3028 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3029 0700, &target_errno));
3030 if (fd.get () == -1)
3031 return -1;
3032
3033 /* Start by reading up to 4K at a time. The target will throttle
3034 this number down if necessary. */
3035 buf_alloc = 4096;
3036 buf = (gdb_byte *) xmalloc (buf_alloc);
3037 buf_pos = 0;
3038 while (1)
3039 {
3040 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3041 buf_alloc - buf_pos - padding, buf_pos,
3042 &target_errno);
3043 if (n < 0)
3044 {
3045 /* An error occurred. */
3046 xfree (buf);
3047 return -1;
3048 }
3049 else if (n == 0)
3050 {
3051 /* Read all there was. */
3052 if (buf_pos == 0)
3053 xfree (buf);
3054 else
3055 *buf_p = buf;
3056 return buf_pos;
3057 }
3058
3059 buf_pos += n;
3060
3061 /* If the buffer is filling up, expand it. */
3062 if (buf_alloc < buf_pos * 2)
3063 {
3064 buf_alloc *= 2;
3065 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3066 }
3067
3068 QUIT;
3069 }
3070 }
3071
3072 /* See target.h. */
3073
3074 LONGEST
3075 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3076 gdb_byte **buf_p)
3077 {
3078 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3079 }
3080
3081 /* See target.h. */
3082
3083 gdb::unique_xmalloc_ptr<char>
3084 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3085 {
3086 gdb_byte *buffer;
3087 char *bufstr;
3088 LONGEST i, transferred;
3089
3090 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3091 bufstr = (char *) buffer;
3092
3093 if (transferred < 0)
3094 return gdb::unique_xmalloc_ptr<char> (nullptr);
3095
3096 if (transferred == 0)
3097 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3098
3099 bufstr[transferred] = 0;
3100
3101 /* Check for embedded NUL bytes; but allow trailing NULs. */
3102 for (i = strlen (bufstr); i < transferred; i++)
3103 if (bufstr[i] != 0)
3104 {
3105 warning (_("target file %s "
3106 "contained unexpected null characters"),
3107 filename);
3108 break;
3109 }
3110
3111 return gdb::unique_xmalloc_ptr<char> (bufstr);
3112 }
3113
3114
3115 static int
3116 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3117 CORE_ADDR addr, int len)
3118 {
3119 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3120 }
3121
3122 static int
3123 default_watchpoint_addr_within_range (struct target_ops *target,
3124 CORE_ADDR addr,
3125 CORE_ADDR start, int length)
3126 {
3127 return addr >= start && addr < start + length;
3128 }
3129
3130 /* See target.h. */
3131
3132 target_ops *
3133 target_stack::find_beneath (const target_ops *t) const
3134 {
3135 /* Look for a non-empty slot at stratum levels beneath T's. */
3136 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3137 if (m_stack[stratum] != NULL)
3138 return m_stack[stratum];
3139
3140 return NULL;
3141 }
3142
3143 /* See target.h. */
3144
3145 struct target_ops *
3146 find_target_at (enum strata stratum)
3147 {
3148 return g_target_stack.at (stratum);
3149 }
3150
3151 \f
3152
3153 /* See target.h */
3154
3155 void
3156 target_announce_detach (int from_tty)
3157 {
3158 pid_t pid;
3159 const char *exec_file;
3160
3161 if (!from_tty)
3162 return;
3163
3164 exec_file = get_exec_file (0);
3165 if (exec_file == NULL)
3166 exec_file = "";
3167
3168 pid = inferior_ptid.pid ();
3169 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3170 target_pid_to_str (ptid_t (pid)));
3171 }
3172
3173 /* The inferior process has died. Long live the inferior! */
3174
3175 void
3176 generic_mourn_inferior (void)
3177 {
3178 inferior *inf = current_inferior ();
3179
3180 inferior_ptid = null_ptid;
3181
3182 /* Mark breakpoints uninserted in case something tries to delete a
3183 breakpoint while we delete the inferior's threads (which would
3184 fail, since the inferior is long gone). */
3185 mark_breakpoints_out ();
3186
3187 if (inf->pid != 0)
3188 exit_inferior (inf);
3189
3190 /* Note this wipes step-resume breakpoints, so needs to be done
3191 after exit_inferior, which ends up referencing the step-resume
3192 breakpoints through clear_thread_inferior_resources. */
3193 breakpoint_init_inferior (inf_exited);
3194
3195 registers_changed ();
3196
3197 reopen_exec_file ();
3198 reinit_frame_cache ();
3199
3200 if (deprecated_detach_hook)
3201 deprecated_detach_hook ();
3202 }
3203 \f
3204 /* Convert a normal process ID to a string. Returns the string in a
3205 static buffer. */
3206
3207 const char *
3208 normal_pid_to_str (ptid_t ptid)
3209 {
3210 static char buf[32];
3211
3212 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3213 return buf;
3214 }
3215
3216 static const char *
3217 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3218 {
3219 return normal_pid_to_str (ptid);
3220 }
3221
3222 /* Error-catcher for target_find_memory_regions. */
3223 static int
3224 dummy_find_memory_regions (struct target_ops *self,
3225 find_memory_region_ftype ignore1, void *ignore2)
3226 {
3227 error (_("Command not implemented for this target."));
3228 return 0;
3229 }
3230
3231 /* Error-catcher for target_make_corefile_notes. */
3232 static char *
3233 dummy_make_corefile_notes (struct target_ops *self,
3234 bfd *ignore1, int *ignore2)
3235 {
3236 error (_("Command not implemented for this target."));
3237 return NULL;
3238 }
3239
3240 #include "target-delegates.c"
3241
3242
3243 static const target_info dummy_target_info = {
3244 "None",
3245 N_("None"),
3246 ""
3247 };
3248
3249 strata
3250 dummy_target::stratum () const
3251 {
3252 return dummy_stratum;
3253 }
3254
3255 strata
3256 debug_target::stratum () const
3257 {
3258 return debug_stratum;
3259 }
3260
3261 const target_info &
3262 dummy_target::info () const
3263 {
3264 return dummy_target_info;
3265 }
3266
3267 const target_info &
3268 debug_target::info () const
3269 {
3270 return beneath ()->info ();
3271 }
3272
3273 \f
3274
3275 void
3276 target_close (struct target_ops *targ)
3277 {
3278 gdb_assert (!target_is_pushed (targ));
3279
3280 fileio_handles_invalidate_target (targ);
3281
3282 targ->close ();
3283
3284 if (targetdebug)
3285 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3286 }
3287
3288 int
3289 target_thread_alive (ptid_t ptid)
3290 {
3291 return current_top_target ()->thread_alive (ptid);
3292 }
3293
3294 void
3295 target_update_thread_list (void)
3296 {
3297 current_top_target ()->update_thread_list ();
3298 }
3299
3300 void
3301 target_stop (ptid_t ptid)
3302 {
3303 if (!may_stop)
3304 {
3305 warning (_("May not interrupt or stop the target, ignoring attempt"));
3306 return;
3307 }
3308
3309 current_top_target ()->stop (ptid);
3310 }
3311
3312 void
3313 target_interrupt ()
3314 {
3315 if (!may_stop)
3316 {
3317 warning (_("May not interrupt or stop the target, ignoring attempt"));
3318 return;
3319 }
3320
3321 current_top_target ()->interrupt ();
3322 }
3323
3324 /* See target.h. */
3325
3326 void
3327 target_pass_ctrlc (void)
3328 {
3329 current_top_target ()->pass_ctrlc ();
3330 }
3331
3332 /* See target.h. */
3333
3334 void
3335 default_target_pass_ctrlc (struct target_ops *ops)
3336 {
3337 target_interrupt ();
3338 }
3339
3340 /* See target/target.h. */
3341
3342 void
3343 target_stop_and_wait (ptid_t ptid)
3344 {
3345 struct target_waitstatus status;
3346 int was_non_stop = non_stop;
3347
3348 non_stop = 1;
3349 target_stop (ptid);
3350
3351 memset (&status, 0, sizeof (status));
3352 target_wait (ptid, &status, 0);
3353
3354 non_stop = was_non_stop;
3355 }
3356
3357 /* See target/target.h. */
3358
3359 void
3360 target_continue_no_signal (ptid_t ptid)
3361 {
3362 target_resume (ptid, 0, GDB_SIGNAL_0);
3363 }
3364
3365 /* See target/target.h. */
3366
3367 void
3368 target_continue (ptid_t ptid, enum gdb_signal signal)
3369 {
3370 target_resume (ptid, 0, signal);
3371 }
3372
3373 /* Concatenate ELEM to LIST, a comma-separated list. */
3374
3375 static void
3376 str_comma_list_concat_elem (std::string *list, const char *elem)
3377 {
3378 if (!list->empty ())
3379 list->append (", ");
3380
3381 list->append (elem);
3382 }
3383
3384 /* Helper for target_options_to_string. If OPT is present in
3385 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3386 OPT is removed from TARGET_OPTIONS. */
3387
3388 static void
3389 do_option (int *target_options, std::string *ret,
3390 int opt, const char *opt_str)
3391 {
3392 if ((*target_options & opt) != 0)
3393 {
3394 str_comma_list_concat_elem (ret, opt_str);
3395 *target_options &= ~opt;
3396 }
3397 }
3398
3399 /* See target.h. */
3400
3401 std::string
3402 target_options_to_string (int target_options)
3403 {
3404 std::string ret;
3405
3406 #define DO_TARG_OPTION(OPT) \
3407 do_option (&target_options, &ret, OPT, #OPT)
3408
3409 DO_TARG_OPTION (TARGET_WNOHANG);
3410
3411 if (target_options != 0)
3412 str_comma_list_concat_elem (&ret, "unknown???");
3413
3414 return ret;
3415 }
3416
3417 void
3418 target_fetch_registers (struct regcache *regcache, int regno)
3419 {
3420 current_top_target ()->fetch_registers (regcache, regno);
3421 if (targetdebug)
3422 regcache->debug_print_register ("target_fetch_registers", regno);
3423 }
3424
3425 void
3426 target_store_registers (struct regcache *regcache, int regno)
3427 {
3428 if (!may_write_registers)
3429 error (_("Writing to registers is not allowed (regno %d)"), regno);
3430
3431 current_top_target ()->store_registers (regcache, regno);
3432 if (targetdebug)
3433 {
3434 regcache->debug_print_register ("target_store_registers", regno);
3435 }
3436 }
3437
3438 int
3439 target_core_of_thread (ptid_t ptid)
3440 {
3441 return current_top_target ()->core_of_thread (ptid);
3442 }
3443
3444 int
3445 simple_verify_memory (struct target_ops *ops,
3446 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3447 {
3448 LONGEST total_xfered = 0;
3449
3450 while (total_xfered < size)
3451 {
3452 ULONGEST xfered_len;
3453 enum target_xfer_status status;
3454 gdb_byte buf[1024];
3455 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3456
3457 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3458 buf, NULL, lma + total_xfered, howmuch,
3459 &xfered_len);
3460 if (status == TARGET_XFER_OK
3461 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3462 {
3463 total_xfered += xfered_len;
3464 QUIT;
3465 }
3466 else
3467 return 0;
3468 }
3469 return 1;
3470 }
3471
3472 /* Default implementation of memory verification. */
3473
3474 static int
3475 default_verify_memory (struct target_ops *self,
3476 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3477 {
3478 /* Start over from the top of the target stack. */
3479 return simple_verify_memory (current_top_target (),
3480 data, memaddr, size);
3481 }
3482
3483 int
3484 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3485 {
3486 return current_top_target ()->verify_memory (data, memaddr, size);
3487 }
3488
3489 /* The documentation for this function is in its prototype declaration in
3490 target.h. */
3491
3492 int
3493 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3494 enum target_hw_bp_type rw)
3495 {
3496 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3497 }
3498
3499 /* The documentation for this function is in its prototype declaration in
3500 target.h. */
3501
3502 int
3503 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3504 enum target_hw_bp_type rw)
3505 {
3506 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3507 }
3508
3509 /* The documentation for this function is in its prototype declaration
3510 in target.h. */
3511
3512 int
3513 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3514 {
3515 return current_top_target ()->masked_watch_num_registers (addr, mask);
3516 }
3517
3518 /* The documentation for this function is in its prototype declaration
3519 in target.h. */
3520
3521 int
3522 target_ranged_break_num_registers (void)
3523 {
3524 return current_top_target ()->ranged_break_num_registers ();
3525 }
3526
3527 /* See target.h. */
3528
3529 struct btrace_target_info *
3530 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3531 {
3532 return current_top_target ()->enable_btrace (ptid, conf);
3533 }
3534
3535 /* See target.h. */
3536
3537 void
3538 target_disable_btrace (struct btrace_target_info *btinfo)
3539 {
3540 current_top_target ()->disable_btrace (btinfo);
3541 }
3542
3543 /* See target.h. */
3544
3545 void
3546 target_teardown_btrace (struct btrace_target_info *btinfo)
3547 {
3548 current_top_target ()->teardown_btrace (btinfo);
3549 }
3550
3551 /* See target.h. */
3552
3553 enum btrace_error
3554 target_read_btrace (struct btrace_data *btrace,
3555 struct btrace_target_info *btinfo,
3556 enum btrace_read_type type)
3557 {
3558 return current_top_target ()->read_btrace (btrace, btinfo, type);
3559 }
3560
3561 /* See target.h. */
3562
3563 const struct btrace_config *
3564 target_btrace_conf (const struct btrace_target_info *btinfo)
3565 {
3566 return current_top_target ()->btrace_conf (btinfo);
3567 }
3568
3569 /* See target.h. */
3570
3571 void
3572 target_stop_recording (void)
3573 {
3574 current_top_target ()->stop_recording ();
3575 }
3576
3577 /* See target.h. */
3578
3579 void
3580 target_save_record (const char *filename)
3581 {
3582 current_top_target ()->save_record (filename);
3583 }
3584
3585 /* See target.h. */
3586
3587 int
3588 target_supports_delete_record ()
3589 {
3590 return current_top_target ()->supports_delete_record ();
3591 }
3592
3593 /* See target.h. */
3594
3595 void
3596 target_delete_record (void)
3597 {
3598 current_top_target ()->delete_record ();
3599 }
3600
3601 /* See target.h. */
3602
3603 enum record_method
3604 target_record_method (ptid_t ptid)
3605 {
3606 return current_top_target ()->record_method (ptid);
3607 }
3608
3609 /* See target.h. */
3610
3611 int
3612 target_record_is_replaying (ptid_t ptid)
3613 {
3614 return current_top_target ()->record_is_replaying (ptid);
3615 }
3616
3617 /* See target.h. */
3618
3619 int
3620 target_record_will_replay (ptid_t ptid, int dir)
3621 {
3622 return current_top_target ()->record_will_replay (ptid, dir);
3623 }
3624
3625 /* See target.h. */
3626
3627 void
3628 target_record_stop_replaying (void)
3629 {
3630 current_top_target ()->record_stop_replaying ();
3631 }
3632
3633 /* See target.h. */
3634
3635 void
3636 target_goto_record_begin (void)
3637 {
3638 current_top_target ()->goto_record_begin ();
3639 }
3640
3641 /* See target.h. */
3642
3643 void
3644 target_goto_record_end (void)
3645 {
3646 current_top_target ()->goto_record_end ();
3647 }
3648
3649 /* See target.h. */
3650
3651 void
3652 target_goto_record (ULONGEST insn)
3653 {
3654 current_top_target ()->goto_record (insn);
3655 }
3656
3657 /* See target.h. */
3658
3659 void
3660 target_insn_history (int size, gdb_disassembly_flags flags)
3661 {
3662 current_top_target ()->insn_history (size, flags);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_insn_history_from (ULONGEST from, int size,
3669 gdb_disassembly_flags flags)
3670 {
3671 current_top_target ()->insn_history_from (from, size, flags);
3672 }
3673
3674 /* See target.h. */
3675
3676 void
3677 target_insn_history_range (ULONGEST begin, ULONGEST end,
3678 gdb_disassembly_flags flags)
3679 {
3680 current_top_target ()->insn_history_range (begin, end, flags);
3681 }
3682
3683 /* See target.h. */
3684
3685 void
3686 target_call_history (int size, record_print_flags flags)
3687 {
3688 current_top_target ()->call_history (size, flags);
3689 }
3690
3691 /* See target.h. */
3692
3693 void
3694 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3695 {
3696 current_top_target ()->call_history_from (begin, size, flags);
3697 }
3698
3699 /* See target.h. */
3700
3701 void
3702 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3703 {
3704 current_top_target ()->call_history_range (begin, end, flags);
3705 }
3706
3707 /* See target.h. */
3708
3709 const struct frame_unwind *
3710 target_get_unwinder (void)
3711 {
3712 return current_top_target ()->get_unwinder ();
3713 }
3714
3715 /* See target.h. */
3716
3717 const struct frame_unwind *
3718 target_get_tailcall_unwinder (void)
3719 {
3720 return current_top_target ()->get_tailcall_unwinder ();
3721 }
3722
3723 /* See target.h. */
3724
3725 void
3726 target_prepare_to_generate_core (void)
3727 {
3728 current_top_target ()->prepare_to_generate_core ();
3729 }
3730
3731 /* See target.h. */
3732
3733 void
3734 target_done_generating_core (void)
3735 {
3736 current_top_target ()->done_generating_core ();
3737 }
3738
3739 \f
3740
3741 static char targ_desc[] =
3742 "Names of targets and files being debugged.\nShows the entire \
3743 stack of targets currently in use (including the exec-file,\n\
3744 core-file, and process, if any), as well as the symbol file name.";
3745
3746 static void
3747 default_rcmd (struct target_ops *self, const char *command,
3748 struct ui_file *output)
3749 {
3750 error (_("\"monitor\" command not supported by this target."));
3751 }
3752
3753 static void
3754 do_monitor_command (const char *cmd, int from_tty)
3755 {
3756 target_rcmd (cmd, gdb_stdtarg);
3757 }
3758
3759 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3760 ignored. */
3761
3762 void
3763 flash_erase_command (const char *cmd, int from_tty)
3764 {
3765 /* Used to communicate termination of flash operations to the target. */
3766 bool found_flash_region = false;
3767 struct gdbarch *gdbarch = target_gdbarch ();
3768
3769 std::vector<mem_region> mem_regions = target_memory_map ();
3770
3771 /* Iterate over all memory regions. */
3772 for (const mem_region &m : mem_regions)
3773 {
3774 /* Is this a flash memory region? */
3775 if (m.attrib.mode == MEM_FLASH)
3776 {
3777 found_flash_region = true;
3778 target_flash_erase (m.lo, m.hi - m.lo);
3779
3780 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3781
3782 current_uiout->message (_("Erasing flash memory region at address "));
3783 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3784 current_uiout->message (", size = ");
3785 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3786 current_uiout->message ("\n");
3787 }
3788 }
3789
3790 /* Did we do any flash operations? If so, we need to finalize them. */
3791 if (found_flash_region)
3792 target_flash_done ();
3793 else
3794 current_uiout->message (_("No flash memory regions found.\n"));
3795 }
3796
3797 /* Print the name of each layers of our target stack. */
3798
3799 static void
3800 maintenance_print_target_stack (const char *cmd, int from_tty)
3801 {
3802 printf_filtered (_("The current target stack is:\n"));
3803
3804 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3805 {
3806 if (t->stratum () == debug_stratum)
3807 continue;
3808 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3809 }
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_async (int enable)
3816 {
3817 infrun_async (enable);
3818 current_top_target ()->async (enable);
3819 }
3820
3821 /* See target.h. */
3822
3823 void
3824 target_thread_events (int enable)
3825 {
3826 current_top_target ()->thread_events (enable);
3827 }
3828
3829 /* Controls if targets can report that they can/are async. This is
3830 just for maintainers to use when debugging gdb. */
3831 int target_async_permitted = 1;
3832
3833 /* The set command writes to this variable. If the inferior is
3834 executing, target_async_permitted is *not* updated. */
3835 static int target_async_permitted_1 = 1;
3836
3837 static void
3838 maint_set_target_async_command (const char *args, int from_tty,
3839 struct cmd_list_element *c)
3840 {
3841 if (have_live_inferiors ())
3842 {
3843 target_async_permitted_1 = target_async_permitted;
3844 error (_("Cannot change this setting while the inferior is running."));
3845 }
3846
3847 target_async_permitted = target_async_permitted_1;
3848 }
3849
3850 static void
3851 maint_show_target_async_command (struct ui_file *file, int from_tty,
3852 struct cmd_list_element *c,
3853 const char *value)
3854 {
3855 fprintf_filtered (file,
3856 _("Controlling the inferior in "
3857 "asynchronous mode is %s.\n"), value);
3858 }
3859
3860 /* Return true if the target operates in non-stop mode even with "set
3861 non-stop off". */
3862
3863 static int
3864 target_always_non_stop_p (void)
3865 {
3866 return current_top_target ()->always_non_stop_p ();
3867 }
3868
3869 /* See target.h. */
3870
3871 int
3872 target_is_non_stop_p (void)
3873 {
3874 return (non_stop
3875 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3876 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3877 && target_always_non_stop_p ()));
3878 }
3879
3880 /* Controls if targets can report that they always run in non-stop
3881 mode. This is just for maintainers to use when debugging gdb. */
3882 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3883
3884 /* The set command writes to this variable. If the inferior is
3885 executing, target_non_stop_enabled is *not* updated. */
3886 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3887
3888 /* Implementation of "maint set target-non-stop". */
3889
3890 static void
3891 maint_set_target_non_stop_command (const char *args, int from_tty,
3892 struct cmd_list_element *c)
3893 {
3894 if (have_live_inferiors ())
3895 {
3896 target_non_stop_enabled_1 = target_non_stop_enabled;
3897 error (_("Cannot change this setting while the inferior is running."));
3898 }
3899
3900 target_non_stop_enabled = target_non_stop_enabled_1;
3901 }
3902
3903 /* Implementation of "maint show target-non-stop". */
3904
3905 static void
3906 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3907 struct cmd_list_element *c,
3908 const char *value)
3909 {
3910 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3911 fprintf_filtered (file,
3912 _("Whether the target is always in non-stop mode "
3913 "is %s (currently %s).\n"), value,
3914 target_always_non_stop_p () ? "on" : "off");
3915 else
3916 fprintf_filtered (file,
3917 _("Whether the target is always in non-stop mode "
3918 "is %s.\n"), value);
3919 }
3920
3921 /* Temporary copies of permission settings. */
3922
3923 static int may_write_registers_1 = 1;
3924 static int may_write_memory_1 = 1;
3925 static int may_insert_breakpoints_1 = 1;
3926 static int may_insert_tracepoints_1 = 1;
3927 static int may_insert_fast_tracepoints_1 = 1;
3928 static int may_stop_1 = 1;
3929
3930 /* Make the user-set values match the real values again. */
3931
3932 void
3933 update_target_permissions (void)
3934 {
3935 may_write_registers_1 = may_write_registers;
3936 may_write_memory_1 = may_write_memory;
3937 may_insert_breakpoints_1 = may_insert_breakpoints;
3938 may_insert_tracepoints_1 = may_insert_tracepoints;
3939 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3940 may_stop_1 = may_stop;
3941 }
3942
3943 /* The one function handles (most of) the permission flags in the same
3944 way. */
3945
3946 static void
3947 set_target_permissions (const char *args, int from_tty,
3948 struct cmd_list_element *c)
3949 {
3950 if (target_has_execution)
3951 {
3952 update_target_permissions ();
3953 error (_("Cannot change this setting while the inferior is running."));
3954 }
3955
3956 /* Make the real values match the user-changed values. */
3957 may_write_registers = may_write_registers_1;
3958 may_insert_breakpoints = may_insert_breakpoints_1;
3959 may_insert_tracepoints = may_insert_tracepoints_1;
3960 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3961 may_stop = may_stop_1;
3962 update_observer_mode ();
3963 }
3964
3965 /* Set memory write permission independently of observer mode. */
3966
3967 static void
3968 set_write_memory_permission (const char *args, int from_tty,
3969 struct cmd_list_element *c)
3970 {
3971 /* Make the real values match the user-changed values. */
3972 may_write_memory = may_write_memory_1;
3973 update_observer_mode ();
3974 }
3975
3976 void
3977 initialize_targets (void)
3978 {
3979 the_dummy_target = new dummy_target ();
3980 push_target (the_dummy_target);
3981
3982 the_debug_target = new debug_target ();
3983
3984 add_info ("target", info_target_command, targ_desc);
3985 add_info ("files", info_target_command, targ_desc);
3986
3987 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3988 Set target debugging."), _("\
3989 Show target debugging."), _("\
3990 When non-zero, target debugging is enabled. Higher numbers are more\n\
3991 verbose."),
3992 set_targetdebug,
3993 show_targetdebug,
3994 &setdebuglist, &showdebuglist);
3995
3996 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3997 &trust_readonly, _("\
3998 Set mode for reading from readonly sections."), _("\
3999 Show mode for reading from readonly sections."), _("\
4000 When this mode is on, memory reads from readonly sections (such as .text)\n\
4001 will be read from the object file instead of from the target. This will\n\
4002 result in significant performance improvement for remote targets."),
4003 NULL,
4004 show_trust_readonly,
4005 &setlist, &showlist);
4006
4007 add_com ("monitor", class_obscure, do_monitor_command,
4008 _("Send a command to the remote monitor (remote targets only)."));
4009
4010 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4011 _("Print the name of each layer of the internal target stack."),
4012 &maintenanceprintlist);
4013
4014 add_setshow_boolean_cmd ("target-async", no_class,
4015 &target_async_permitted_1, _("\
4016 Set whether gdb controls the inferior in asynchronous mode."), _("\
4017 Show whether gdb controls the inferior in asynchronous mode."), _("\
4018 Tells gdb whether to control the inferior in asynchronous mode."),
4019 maint_set_target_async_command,
4020 maint_show_target_async_command,
4021 &maintenance_set_cmdlist,
4022 &maintenance_show_cmdlist);
4023
4024 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4025 &target_non_stop_enabled_1, _("\
4026 Set whether gdb always controls the inferior in non-stop mode."), _("\
4027 Show whether gdb always controls the inferior in non-stop mode."), _("\
4028 Tells gdb whether to control the inferior in non-stop mode."),
4029 maint_set_target_non_stop_command,
4030 maint_show_target_non_stop_command,
4031 &maintenance_set_cmdlist,
4032 &maintenance_show_cmdlist);
4033
4034 add_setshow_boolean_cmd ("may-write-registers", class_support,
4035 &may_write_registers_1, _("\
4036 Set permission to write into registers."), _("\
4037 Show permission to write into registers."), _("\
4038 When this permission is on, GDB may write into the target's registers.\n\
4039 Otherwise, any sort of write attempt will result in an error."),
4040 set_target_permissions, NULL,
4041 &setlist, &showlist);
4042
4043 add_setshow_boolean_cmd ("may-write-memory", class_support,
4044 &may_write_memory_1, _("\
4045 Set permission to write into target memory."), _("\
4046 Show permission to write into target memory."), _("\
4047 When this permission is on, GDB may write into the target's memory.\n\
4048 Otherwise, any sort of write attempt will result in an error."),
4049 set_write_memory_permission, NULL,
4050 &setlist, &showlist);
4051
4052 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4053 &may_insert_breakpoints_1, _("\
4054 Set permission to insert breakpoints in the target."), _("\
4055 Show permission to insert breakpoints in the target."), _("\
4056 When this permission is on, GDB may insert breakpoints in the program.\n\
4057 Otherwise, any sort of insertion attempt will result in an error."),
4058 set_target_permissions, NULL,
4059 &setlist, &showlist);
4060
4061 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4062 &may_insert_tracepoints_1, _("\
4063 Set permission to insert tracepoints in the target."), _("\
4064 Show permission to insert tracepoints in the target."), _("\
4065 When this permission is on, GDB may insert tracepoints in the program.\n\
4066 Otherwise, any sort of insertion attempt will result in an error."),
4067 set_target_permissions, NULL,
4068 &setlist, &showlist);
4069
4070 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4071 &may_insert_fast_tracepoints_1, _("\
4072 Set permission to insert fast tracepoints in the target."), _("\
4073 Show permission to insert fast tracepoints in the target."), _("\
4074 When this permission is on, GDB may insert fast tracepoints.\n\
4075 Otherwise, any sort of insertion attempt will result in an error."),
4076 set_target_permissions, NULL,
4077 &setlist, &showlist);
4078
4079 add_setshow_boolean_cmd ("may-interrupt", class_support,
4080 &may_stop_1, _("\
4081 Set permission to interrupt or signal the target."), _("\
4082 Show permission to interrupt or signal the target."), _("\
4083 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4084 Otherwise, any attempt to interrupt or stop will be ignored."),
4085 set_target_permissions, NULL,
4086 &setlist, &showlist);
4087
4088 add_com ("flash-erase", no_class, flash_erase_command,
4089 _("Erase all flash memory regions."));
4090
4091 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4092 &auto_connect_native_target, _("\
4093 Set whether GDB may automatically connect to the native target."), _("\
4094 Show whether GDB may automatically connect to the native target."), _("\
4095 When on, and GDB is not connected to a target yet, GDB\n\
4096 attempts \"run\" and other commands with the native target."),
4097 NULL, show_auto_connect_native_target,
4098 &setlist, &showlist);
4099 }
This page took 0.114041 seconds and 4 git commands to generate.