convert to_upload_tracepoints
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 /* Do not inherit to_can_download_tracepoint. */
694 /* Do not inherit to_download_trace_state_variable. */
695 /* Do not inherit to_enable_tracepoint. */
696 /* Do not inherit to_disable_tracepoint. */
697 /* Do not inherit to_trace_set_readonly_regions. */
698 /* Do not inherit to_trace_start. */
699 /* Do not inherit to_get_trace_status. */
700 /* Do not inherit to_get_tracepoint_status. */
701 /* Do not inherit to_trace_stop. */
702 /* Do not inherit to_trace_find. */
703 /* Do not inherit to_get_trace_state_variable_value. */
704 /* Do not inherit to_save_trace_data. */
705 /* Do not inherit to_upload_tracepoints. */
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_upload_trace_state_variables,
756 (int (*) (struct target_ops *, struct uploaded_tsv **))
757 return_zero);
758 de_fault (to_get_raw_trace_data,
759 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
760 tcomplain);
761 de_fault (to_get_min_fast_tracepoint_insn_len,
762 (int (*) (struct target_ops *))
763 return_minus_one);
764 de_fault (to_set_disconnected_tracing,
765 (void (*) (struct target_ops *, int))
766 target_ignore);
767 de_fault (to_set_circular_trace_buffer,
768 (void (*) (struct target_ops *, int))
769 target_ignore);
770 de_fault (to_set_trace_buffer_size,
771 (void (*) (struct target_ops *, LONGEST))
772 target_ignore);
773 de_fault (to_set_trace_notes,
774 (int (*) (struct target_ops *,
775 const char *, const char *, const char *))
776 return_zero);
777 de_fault (to_get_tib_address,
778 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
779 tcomplain);
780 de_fault (to_set_permissions,
781 (void (*) (struct target_ops *))
782 target_ignore);
783 de_fault (to_static_tracepoint_marker_at,
784 (int (*) (struct target_ops *,
785 CORE_ADDR, struct static_tracepoint_marker *))
786 return_zero);
787 de_fault (to_static_tracepoint_markers_by_strid,
788 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
789 const char *))
790 tcomplain);
791 de_fault (to_traceframe_info,
792 (struct traceframe_info * (*) (struct target_ops *))
793 return_null);
794 de_fault (to_supports_evaluation_of_breakpoint_conditions,
795 (int (*) (struct target_ops *))
796 return_zero);
797 de_fault (to_can_run_breakpoint_commands,
798 (int (*) (struct target_ops *))
799 return_zero);
800 de_fault (to_use_agent,
801 (int (*) (struct target_ops *, int))
802 tcomplain);
803 de_fault (to_can_use_agent,
804 (int (*) (struct target_ops *))
805 return_zero);
806 de_fault (to_augmented_libraries_svr4_read,
807 (int (*) (struct target_ops *))
808 return_zero);
809
810 #undef de_fault
811
812 /* Finally, position the target-stack beneath the squashed
813 "current_target". That way code looking for a non-inherited
814 target method can quickly and simply find it. */
815 current_target.beneath = target_stack;
816
817 if (targetdebug)
818 setup_target_debug ();
819 }
820
821 /* Push a new target type into the stack of the existing target accessors,
822 possibly superseding some of the existing accessors.
823
824 Rather than allow an empty stack, we always have the dummy target at
825 the bottom stratum, so we can call the function vectors without
826 checking them. */
827
828 void
829 push_target (struct target_ops *t)
830 {
831 struct target_ops **cur;
832
833 /* Check magic number. If wrong, it probably means someone changed
834 the struct definition, but not all the places that initialize one. */
835 if (t->to_magic != OPS_MAGIC)
836 {
837 fprintf_unfiltered (gdb_stderr,
838 "Magic number of %s target struct wrong\n",
839 t->to_shortname);
840 internal_error (__FILE__, __LINE__,
841 _("failed internal consistency check"));
842 }
843
844 /* Find the proper stratum to install this target in. */
845 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
846 {
847 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
848 break;
849 }
850
851 /* If there's already targets at this stratum, remove them. */
852 /* FIXME: cagney/2003-10-15: I think this should be popping all
853 targets to CUR, and not just those at this stratum level. */
854 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
855 {
856 /* There's already something at this stratum level. Close it,
857 and un-hook it from the stack. */
858 struct target_ops *tmp = (*cur);
859
860 (*cur) = (*cur)->beneath;
861 tmp->beneath = NULL;
862 target_close (tmp);
863 }
864
865 /* We have removed all targets in our stratum, now add the new one. */
866 t->beneath = (*cur);
867 (*cur) = t;
868
869 update_current_target ();
870 }
871
872 /* Remove a target_ops vector from the stack, wherever it may be.
873 Return how many times it was removed (0 or 1). */
874
875 int
876 unpush_target (struct target_ops *t)
877 {
878 struct target_ops **cur;
879 struct target_ops *tmp;
880
881 if (t->to_stratum == dummy_stratum)
882 internal_error (__FILE__, __LINE__,
883 _("Attempt to unpush the dummy target"));
884
885 /* Look for the specified target. Note that we assume that a target
886 can only occur once in the target stack. */
887
888 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
889 {
890 if ((*cur) == t)
891 break;
892 }
893
894 /* If we don't find target_ops, quit. Only open targets should be
895 closed. */
896 if ((*cur) == NULL)
897 return 0;
898
899 /* Unchain the target. */
900 tmp = (*cur);
901 (*cur) = (*cur)->beneath;
902 tmp->beneath = NULL;
903
904 update_current_target ();
905
906 /* Finally close the target. Note we do this after unchaining, so
907 any target method calls from within the target_close
908 implementation don't end up in T anymore. */
909 target_close (t);
910
911 return 1;
912 }
913
914 void
915 pop_all_targets_above (enum strata above_stratum)
916 {
917 while ((int) (current_target.to_stratum) > (int) above_stratum)
918 {
919 if (!unpush_target (target_stack))
920 {
921 fprintf_unfiltered (gdb_stderr,
922 "pop_all_targets couldn't find target %s\n",
923 target_stack->to_shortname);
924 internal_error (__FILE__, __LINE__,
925 _("failed internal consistency check"));
926 break;
927 }
928 }
929 }
930
931 void
932 pop_all_targets (void)
933 {
934 pop_all_targets_above (dummy_stratum);
935 }
936
937 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
938
939 int
940 target_is_pushed (struct target_ops *t)
941 {
942 struct target_ops **cur;
943
944 /* Check magic number. If wrong, it probably means someone changed
945 the struct definition, but not all the places that initialize one. */
946 if (t->to_magic != OPS_MAGIC)
947 {
948 fprintf_unfiltered (gdb_stderr,
949 "Magic number of %s target struct wrong\n",
950 t->to_shortname);
951 internal_error (__FILE__, __LINE__,
952 _("failed internal consistency check"));
953 }
954
955 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
956 if (*cur == t)
957 return 1;
958
959 return 0;
960 }
961
962 /* Using the objfile specified in OBJFILE, find the address for the
963 current thread's thread-local storage with offset OFFSET. */
964 CORE_ADDR
965 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
966 {
967 volatile CORE_ADDR addr = 0;
968 struct target_ops *target;
969
970 for (target = current_target.beneath;
971 target != NULL;
972 target = target->beneath)
973 {
974 if (target->to_get_thread_local_address != NULL)
975 break;
976 }
977
978 if (target != NULL
979 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
980 {
981 ptid_t ptid = inferior_ptid;
982 volatile struct gdb_exception ex;
983
984 TRY_CATCH (ex, RETURN_MASK_ALL)
985 {
986 CORE_ADDR lm_addr;
987
988 /* Fetch the load module address for this objfile. */
989 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
990 objfile);
991 /* If it's 0, throw the appropriate exception. */
992 if (lm_addr == 0)
993 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
994 _("TLS load module not found"));
995
996 addr = target->to_get_thread_local_address (target, ptid,
997 lm_addr, offset);
998 }
999 /* If an error occurred, print TLS related messages here. Otherwise,
1000 throw the error to some higher catcher. */
1001 if (ex.reason < 0)
1002 {
1003 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1004
1005 switch (ex.error)
1006 {
1007 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1008 error (_("Cannot find thread-local variables "
1009 "in this thread library."));
1010 break;
1011 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1012 if (objfile_is_library)
1013 error (_("Cannot find shared library `%s' in dynamic"
1014 " linker's load module list"), objfile_name (objfile));
1015 else
1016 error (_("Cannot find executable file `%s' in dynamic"
1017 " linker's load module list"), objfile_name (objfile));
1018 break;
1019 case TLS_NOT_ALLOCATED_YET_ERROR:
1020 if (objfile_is_library)
1021 error (_("The inferior has not yet allocated storage for"
1022 " thread-local variables in\n"
1023 "the shared library `%s'\n"
1024 "for %s"),
1025 objfile_name (objfile), target_pid_to_str (ptid));
1026 else
1027 error (_("The inferior has not yet allocated storage for"
1028 " thread-local variables in\n"
1029 "the executable `%s'\n"
1030 "for %s"),
1031 objfile_name (objfile), target_pid_to_str (ptid));
1032 break;
1033 case TLS_GENERIC_ERROR:
1034 if (objfile_is_library)
1035 error (_("Cannot find thread-local storage for %s, "
1036 "shared library %s:\n%s"),
1037 target_pid_to_str (ptid),
1038 objfile_name (objfile), ex.message);
1039 else
1040 error (_("Cannot find thread-local storage for %s, "
1041 "executable file %s:\n%s"),
1042 target_pid_to_str (ptid),
1043 objfile_name (objfile), ex.message);
1044 break;
1045 default:
1046 throw_exception (ex);
1047 break;
1048 }
1049 }
1050 }
1051 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1052 TLS is an ABI-specific thing. But we don't do that yet. */
1053 else
1054 error (_("Cannot find thread-local variables on this target"));
1055
1056 return addr;
1057 }
1058
1059 const char *
1060 target_xfer_status_to_string (enum target_xfer_status err)
1061 {
1062 #define CASE(X) case X: return #X
1063 switch (err)
1064 {
1065 CASE(TARGET_XFER_E_IO);
1066 CASE(TARGET_XFER_E_UNAVAILABLE);
1067 default:
1068 return "<unknown>";
1069 }
1070 #undef CASE
1071 };
1072
1073
1074 #undef MIN
1075 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1076
1077 /* target_read_string -- read a null terminated string, up to LEN bytes,
1078 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1079 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1080 is responsible for freeing it. Return the number of bytes successfully
1081 read. */
1082
1083 int
1084 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1085 {
1086 int tlen, offset, i;
1087 gdb_byte buf[4];
1088 int errcode = 0;
1089 char *buffer;
1090 int buffer_allocated;
1091 char *bufptr;
1092 unsigned int nbytes_read = 0;
1093
1094 gdb_assert (string);
1095
1096 /* Small for testing. */
1097 buffer_allocated = 4;
1098 buffer = xmalloc (buffer_allocated);
1099 bufptr = buffer;
1100
1101 while (len > 0)
1102 {
1103 tlen = MIN (len, 4 - (memaddr & 3));
1104 offset = memaddr & 3;
1105
1106 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1107 if (errcode != 0)
1108 {
1109 /* The transfer request might have crossed the boundary to an
1110 unallocated region of memory. Retry the transfer, requesting
1111 a single byte. */
1112 tlen = 1;
1113 offset = 0;
1114 errcode = target_read_memory (memaddr, buf, 1);
1115 if (errcode != 0)
1116 goto done;
1117 }
1118
1119 if (bufptr - buffer + tlen > buffer_allocated)
1120 {
1121 unsigned int bytes;
1122
1123 bytes = bufptr - buffer;
1124 buffer_allocated *= 2;
1125 buffer = xrealloc (buffer, buffer_allocated);
1126 bufptr = buffer + bytes;
1127 }
1128
1129 for (i = 0; i < tlen; i++)
1130 {
1131 *bufptr++ = buf[i + offset];
1132 if (buf[i + offset] == '\000')
1133 {
1134 nbytes_read += i + 1;
1135 goto done;
1136 }
1137 }
1138
1139 memaddr += tlen;
1140 len -= tlen;
1141 nbytes_read += tlen;
1142 }
1143 done:
1144 *string = buffer;
1145 if (errnop != NULL)
1146 *errnop = errcode;
1147 return nbytes_read;
1148 }
1149
1150 struct target_section_table *
1151 target_get_section_table (struct target_ops *target)
1152 {
1153 struct target_ops *t;
1154
1155 if (targetdebug)
1156 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1157
1158 for (t = target; t != NULL; t = t->beneath)
1159 if (t->to_get_section_table != NULL)
1160 return (*t->to_get_section_table) (t);
1161
1162 return NULL;
1163 }
1164
1165 /* Find a section containing ADDR. */
1166
1167 struct target_section *
1168 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1169 {
1170 struct target_section_table *table = target_get_section_table (target);
1171 struct target_section *secp;
1172
1173 if (table == NULL)
1174 return NULL;
1175
1176 for (secp = table->sections; secp < table->sections_end; secp++)
1177 {
1178 if (addr >= secp->addr && addr < secp->endaddr)
1179 return secp;
1180 }
1181 return NULL;
1182 }
1183
1184 /* Read memory from the live target, even if currently inspecting a
1185 traceframe. The return is the same as that of target_read. */
1186
1187 static enum target_xfer_status
1188 target_read_live_memory (enum target_object object,
1189 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1190 ULONGEST *xfered_len)
1191 {
1192 enum target_xfer_status ret;
1193 struct cleanup *cleanup;
1194
1195 /* Switch momentarily out of tfind mode so to access live memory.
1196 Note that this must not clear global state, such as the frame
1197 cache, which must still remain valid for the previous traceframe.
1198 We may be _building_ the frame cache at this point. */
1199 cleanup = make_cleanup_restore_traceframe_number ();
1200 set_traceframe_number (-1);
1201
1202 ret = target_xfer_partial (current_target.beneath, object, NULL,
1203 myaddr, NULL, memaddr, len, xfered_len);
1204
1205 do_cleanups (cleanup);
1206 return ret;
1207 }
1208
1209 /* Using the set of read-only target sections of OPS, read live
1210 read-only memory. Note that the actual reads start from the
1211 top-most target again.
1212
1213 For interface/parameters/return description see target.h,
1214 to_xfer_partial. */
1215
1216 static enum target_xfer_status
1217 memory_xfer_live_readonly_partial (struct target_ops *ops,
1218 enum target_object object,
1219 gdb_byte *readbuf, ULONGEST memaddr,
1220 ULONGEST len, ULONGEST *xfered_len)
1221 {
1222 struct target_section *secp;
1223 struct target_section_table *table;
1224
1225 secp = target_section_by_addr (ops, memaddr);
1226 if (secp != NULL
1227 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1228 secp->the_bfd_section)
1229 & SEC_READONLY))
1230 {
1231 struct target_section *p;
1232 ULONGEST memend = memaddr + len;
1233
1234 table = target_get_section_table (ops);
1235
1236 for (p = table->sections; p < table->sections_end; p++)
1237 {
1238 if (memaddr >= p->addr)
1239 {
1240 if (memend <= p->endaddr)
1241 {
1242 /* Entire transfer is within this section. */
1243 return target_read_live_memory (object, memaddr,
1244 readbuf, len, xfered_len);
1245 }
1246 else if (memaddr >= p->endaddr)
1247 {
1248 /* This section ends before the transfer starts. */
1249 continue;
1250 }
1251 else
1252 {
1253 /* This section overlaps the transfer. Just do half. */
1254 len = p->endaddr - memaddr;
1255 return target_read_live_memory (object, memaddr,
1256 readbuf, len, xfered_len);
1257 }
1258 }
1259 }
1260 }
1261
1262 return TARGET_XFER_EOF;
1263 }
1264
1265 /* Read memory from more than one valid target. A core file, for
1266 instance, could have some of memory but delegate other bits to
1267 the target below it. So, we must manually try all targets. */
1268
1269 static enum target_xfer_status
1270 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1271 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1272 ULONGEST *xfered_len)
1273 {
1274 enum target_xfer_status res;
1275
1276 do
1277 {
1278 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1279 readbuf, writebuf, memaddr, len,
1280 xfered_len);
1281 if (res == TARGET_XFER_OK)
1282 break;
1283
1284 /* Stop if the target reports that the memory is not available. */
1285 if (res == TARGET_XFER_E_UNAVAILABLE)
1286 break;
1287
1288 /* We want to continue past core files to executables, but not
1289 past a running target's memory. */
1290 if (ops->to_has_all_memory (ops))
1291 break;
1292
1293 ops = ops->beneath;
1294 }
1295 while (ops != NULL);
1296
1297 return res;
1298 }
1299
1300 /* Perform a partial memory transfer.
1301 For docs see target.h, to_xfer_partial. */
1302
1303 static enum target_xfer_status
1304 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1305 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1306 ULONGEST len, ULONGEST *xfered_len)
1307 {
1308 enum target_xfer_status res;
1309 int reg_len;
1310 struct mem_region *region;
1311 struct inferior *inf;
1312
1313 /* For accesses to unmapped overlay sections, read directly from
1314 files. Must do this first, as MEMADDR may need adjustment. */
1315 if (readbuf != NULL && overlay_debugging)
1316 {
1317 struct obj_section *section = find_pc_overlay (memaddr);
1318
1319 if (pc_in_unmapped_range (memaddr, section))
1320 {
1321 struct target_section_table *table
1322 = target_get_section_table (ops);
1323 const char *section_name = section->the_bfd_section->name;
1324
1325 memaddr = overlay_mapped_address (memaddr, section);
1326 return section_table_xfer_memory_partial (readbuf, writebuf,
1327 memaddr, len, xfered_len,
1328 table->sections,
1329 table->sections_end,
1330 section_name);
1331 }
1332 }
1333
1334 /* Try the executable files, if "trust-readonly-sections" is set. */
1335 if (readbuf != NULL && trust_readonly)
1336 {
1337 struct target_section *secp;
1338 struct target_section_table *table;
1339
1340 secp = target_section_by_addr (ops, memaddr);
1341 if (secp != NULL
1342 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1343 secp->the_bfd_section)
1344 & SEC_READONLY))
1345 {
1346 table = target_get_section_table (ops);
1347 return section_table_xfer_memory_partial (readbuf, writebuf,
1348 memaddr, len, xfered_len,
1349 table->sections,
1350 table->sections_end,
1351 NULL);
1352 }
1353 }
1354
1355 /* If reading unavailable memory in the context of traceframes, and
1356 this address falls within a read-only section, fallback to
1357 reading from live memory. */
1358 if (readbuf != NULL && get_traceframe_number () != -1)
1359 {
1360 VEC(mem_range_s) *available;
1361
1362 /* If we fail to get the set of available memory, then the
1363 target does not support querying traceframe info, and so we
1364 attempt reading from the traceframe anyway (assuming the
1365 target implements the old QTro packet then). */
1366 if (traceframe_available_memory (&available, memaddr, len))
1367 {
1368 struct cleanup *old_chain;
1369
1370 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1371
1372 if (VEC_empty (mem_range_s, available)
1373 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1374 {
1375 /* Don't read into the traceframe's available
1376 memory. */
1377 if (!VEC_empty (mem_range_s, available))
1378 {
1379 LONGEST oldlen = len;
1380
1381 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1382 gdb_assert (len <= oldlen);
1383 }
1384
1385 do_cleanups (old_chain);
1386
1387 /* This goes through the topmost target again. */
1388 res = memory_xfer_live_readonly_partial (ops, object,
1389 readbuf, memaddr,
1390 len, xfered_len);
1391 if (res == TARGET_XFER_OK)
1392 return TARGET_XFER_OK;
1393 else
1394 {
1395 /* No use trying further, we know some memory starting
1396 at MEMADDR isn't available. */
1397 *xfered_len = len;
1398 return TARGET_XFER_E_UNAVAILABLE;
1399 }
1400 }
1401
1402 /* Don't try to read more than how much is available, in
1403 case the target implements the deprecated QTro packet to
1404 cater for older GDBs (the target's knowledge of read-only
1405 sections may be outdated by now). */
1406 len = VEC_index (mem_range_s, available, 0)->length;
1407
1408 do_cleanups (old_chain);
1409 }
1410 }
1411
1412 /* Try GDB's internal data cache. */
1413 region = lookup_mem_region (memaddr);
1414 /* region->hi == 0 means there's no upper bound. */
1415 if (memaddr + len < region->hi || region->hi == 0)
1416 reg_len = len;
1417 else
1418 reg_len = region->hi - memaddr;
1419
1420 switch (region->attrib.mode)
1421 {
1422 case MEM_RO:
1423 if (writebuf != NULL)
1424 return TARGET_XFER_E_IO;
1425 break;
1426
1427 case MEM_WO:
1428 if (readbuf != NULL)
1429 return TARGET_XFER_E_IO;
1430 break;
1431
1432 case MEM_FLASH:
1433 /* We only support writing to flash during "load" for now. */
1434 if (writebuf != NULL)
1435 error (_("Writing to flash memory forbidden in this context"));
1436 break;
1437
1438 case MEM_NONE:
1439 return TARGET_XFER_E_IO;
1440 }
1441
1442 if (!ptid_equal (inferior_ptid, null_ptid))
1443 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1444 else
1445 inf = NULL;
1446
1447 if (inf != NULL
1448 /* The dcache reads whole cache lines; that doesn't play well
1449 with reading from a trace buffer, because reading outside of
1450 the collected memory range fails. */
1451 && get_traceframe_number () == -1
1452 && (region->attrib.cache
1453 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1454 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1455 {
1456 DCACHE *dcache = target_dcache_get_or_init ();
1457 int l;
1458
1459 if (readbuf != NULL)
1460 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1461 else
1462 /* FIXME drow/2006-08-09: If we're going to preserve const
1463 correctness dcache_xfer_memory should take readbuf and
1464 writebuf. */
1465 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1466 reg_len, 1);
1467 if (l <= 0)
1468 return TARGET_XFER_E_IO;
1469 else
1470 {
1471 *xfered_len = (ULONGEST) l;
1472 return TARGET_XFER_OK;
1473 }
1474 }
1475
1476 /* If none of those methods found the memory we wanted, fall back
1477 to a target partial transfer. Normally a single call to
1478 to_xfer_partial is enough; if it doesn't recognize an object
1479 it will call the to_xfer_partial of the next target down.
1480 But for memory this won't do. Memory is the only target
1481 object which can be read from more than one valid target.
1482 A core file, for instance, could have some of memory but
1483 delegate other bits to the target below it. So, we must
1484 manually try all targets. */
1485
1486 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1487 xfered_len);
1488
1489 /* Make sure the cache gets updated no matter what - if we are writing
1490 to the stack. Even if this write is not tagged as such, we still need
1491 to update the cache. */
1492
1493 if (res == TARGET_XFER_OK
1494 && inf != NULL
1495 && writebuf != NULL
1496 && target_dcache_init_p ()
1497 && !region->attrib.cache
1498 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1499 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1500 {
1501 DCACHE *dcache = target_dcache_get ();
1502
1503 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1504 }
1505
1506 /* If we still haven't got anything, return the last error. We
1507 give up. */
1508 return res;
1509 }
1510
1511 /* Perform a partial memory transfer. For docs see target.h,
1512 to_xfer_partial. */
1513
1514 static enum target_xfer_status
1515 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1516 gdb_byte *readbuf, const gdb_byte *writebuf,
1517 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1518 {
1519 enum target_xfer_status res;
1520
1521 /* Zero length requests are ok and require no work. */
1522 if (len == 0)
1523 return TARGET_XFER_EOF;
1524
1525 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1526 breakpoint insns, thus hiding out from higher layers whether
1527 there are software breakpoints inserted in the code stream. */
1528 if (readbuf != NULL)
1529 {
1530 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1531 xfered_len);
1532
1533 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1534 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1535 }
1536 else
1537 {
1538 void *buf;
1539 struct cleanup *old_chain;
1540
1541 /* A large write request is likely to be partially satisfied
1542 by memory_xfer_partial_1. We will continually malloc
1543 and free a copy of the entire write request for breakpoint
1544 shadow handling even though we only end up writing a small
1545 subset of it. Cap writes to 4KB to mitigate this. */
1546 len = min (4096, len);
1547
1548 buf = xmalloc (len);
1549 old_chain = make_cleanup (xfree, buf);
1550 memcpy (buf, writebuf, len);
1551
1552 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1553 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1554 xfered_len);
1555
1556 do_cleanups (old_chain);
1557 }
1558
1559 return res;
1560 }
1561
1562 static void
1563 restore_show_memory_breakpoints (void *arg)
1564 {
1565 show_memory_breakpoints = (uintptr_t) arg;
1566 }
1567
1568 struct cleanup *
1569 make_show_memory_breakpoints_cleanup (int show)
1570 {
1571 int current = show_memory_breakpoints;
1572
1573 show_memory_breakpoints = show;
1574 return make_cleanup (restore_show_memory_breakpoints,
1575 (void *) (uintptr_t) current);
1576 }
1577
1578 /* For docs see target.h, to_xfer_partial. */
1579
1580 enum target_xfer_status
1581 target_xfer_partial (struct target_ops *ops,
1582 enum target_object object, const char *annex,
1583 gdb_byte *readbuf, const gdb_byte *writebuf,
1584 ULONGEST offset, ULONGEST len,
1585 ULONGEST *xfered_len)
1586 {
1587 enum target_xfer_status retval;
1588
1589 gdb_assert (ops->to_xfer_partial != NULL);
1590
1591 /* Transfer is done when LEN is zero. */
1592 if (len == 0)
1593 return TARGET_XFER_EOF;
1594
1595 if (writebuf && !may_write_memory)
1596 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1597 core_addr_to_string_nz (offset), plongest (len));
1598
1599 *xfered_len = 0;
1600
1601 /* If this is a memory transfer, let the memory-specific code
1602 have a look at it instead. Memory transfers are more
1603 complicated. */
1604 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1605 || object == TARGET_OBJECT_CODE_MEMORY)
1606 retval = memory_xfer_partial (ops, object, readbuf,
1607 writebuf, offset, len, xfered_len);
1608 else if (object == TARGET_OBJECT_RAW_MEMORY)
1609 {
1610 /* Request the normal memory object from other layers. */
1611 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1612 xfered_len);
1613 }
1614 else
1615 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1616 writebuf, offset, len, xfered_len);
1617
1618 if (targetdebug)
1619 {
1620 const unsigned char *myaddr = NULL;
1621
1622 fprintf_unfiltered (gdb_stdlog,
1623 "%s:target_xfer_partial "
1624 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1625 ops->to_shortname,
1626 (int) object,
1627 (annex ? annex : "(null)"),
1628 host_address_to_string (readbuf),
1629 host_address_to_string (writebuf),
1630 core_addr_to_string_nz (offset),
1631 pulongest (len), retval,
1632 pulongest (*xfered_len));
1633
1634 if (readbuf)
1635 myaddr = readbuf;
1636 if (writebuf)
1637 myaddr = writebuf;
1638 if (retval == TARGET_XFER_OK && myaddr != NULL)
1639 {
1640 int i;
1641
1642 fputs_unfiltered (", bytes =", gdb_stdlog);
1643 for (i = 0; i < *xfered_len; i++)
1644 {
1645 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1646 {
1647 if (targetdebug < 2 && i > 0)
1648 {
1649 fprintf_unfiltered (gdb_stdlog, " ...");
1650 break;
1651 }
1652 fprintf_unfiltered (gdb_stdlog, "\n");
1653 }
1654
1655 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1656 }
1657 }
1658
1659 fputc_unfiltered ('\n', gdb_stdlog);
1660 }
1661
1662 /* Check implementations of to_xfer_partial update *XFERED_LEN
1663 properly. Do assertion after printing debug messages, so that we
1664 can find more clues on assertion failure from debugging messages. */
1665 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1666 gdb_assert (*xfered_len > 0);
1667
1668 return retval;
1669 }
1670
1671 /* Read LEN bytes of target memory at address MEMADDR, placing the
1672 results in GDB's memory at MYADDR. Returns either 0 for success or
1673 TARGET_XFER_E_IO if any error occurs.
1674
1675 If an error occurs, no guarantee is made about the contents of the data at
1676 MYADDR. In particular, the caller should not depend upon partial reads
1677 filling the buffer with good data. There is no way for the caller to know
1678 how much good data might have been transfered anyway. Callers that can
1679 deal with partial reads should call target_read (which will retry until
1680 it makes no progress, and then return how much was transferred). */
1681
1682 int
1683 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1684 {
1685 /* Dispatch to the topmost target, not the flattened current_target.
1686 Memory accesses check target->to_has_(all_)memory, and the
1687 flattened target doesn't inherit those. */
1688 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1689 myaddr, memaddr, len) == len)
1690 return 0;
1691 else
1692 return TARGET_XFER_E_IO;
1693 }
1694
1695 /* Like target_read_memory, but specify explicitly that this is a read
1696 from the target's raw memory. That is, this read bypasses the
1697 dcache, breakpoint shadowing, etc. */
1698
1699 int
1700 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1701 {
1702 /* See comment in target_read_memory about why the request starts at
1703 current_target.beneath. */
1704 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1705 myaddr, memaddr, len) == len)
1706 return 0;
1707 else
1708 return TARGET_XFER_E_IO;
1709 }
1710
1711 /* Like target_read_memory, but specify explicitly that this is a read from
1712 the target's stack. This may trigger different cache behavior. */
1713
1714 int
1715 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1716 {
1717 /* See comment in target_read_memory about why the request starts at
1718 current_target.beneath. */
1719 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1720 myaddr, memaddr, len) == len)
1721 return 0;
1722 else
1723 return TARGET_XFER_E_IO;
1724 }
1725
1726 /* Like target_read_memory, but specify explicitly that this is a read from
1727 the target's code. This may trigger different cache behavior. */
1728
1729 int
1730 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1731 {
1732 /* See comment in target_read_memory about why the request starts at
1733 current_target.beneath. */
1734 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1735 myaddr, memaddr, len) == len)
1736 return 0;
1737 else
1738 return TARGET_XFER_E_IO;
1739 }
1740
1741 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1742 Returns either 0 for success or TARGET_XFER_E_IO if any
1743 error occurs. If an error occurs, no guarantee is made about how
1744 much data got written. Callers that can deal with partial writes
1745 should call target_write. */
1746
1747 int
1748 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1749 {
1750 /* See comment in target_read_memory about why the request starts at
1751 current_target.beneath. */
1752 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1753 myaddr, memaddr, len) == len)
1754 return 0;
1755 else
1756 return TARGET_XFER_E_IO;
1757 }
1758
1759 /* Write LEN bytes from MYADDR to target raw memory at address
1760 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1761 if any error occurs. If an error occurs, no guarantee is made
1762 about how much data got written. Callers that can deal with
1763 partial writes should call target_write. */
1764
1765 int
1766 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1767 {
1768 /* See comment in target_read_memory about why the request starts at
1769 current_target.beneath. */
1770 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1771 myaddr, memaddr, len) == len)
1772 return 0;
1773 else
1774 return TARGET_XFER_E_IO;
1775 }
1776
1777 /* Fetch the target's memory map. */
1778
1779 VEC(mem_region_s) *
1780 target_memory_map (void)
1781 {
1782 VEC(mem_region_s) *result;
1783 struct mem_region *last_one, *this_one;
1784 int ix;
1785 struct target_ops *t;
1786
1787 if (targetdebug)
1788 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1789
1790 for (t = current_target.beneath; t != NULL; t = t->beneath)
1791 if (t->to_memory_map != NULL)
1792 break;
1793
1794 if (t == NULL)
1795 return NULL;
1796
1797 result = t->to_memory_map (t);
1798 if (result == NULL)
1799 return NULL;
1800
1801 qsort (VEC_address (mem_region_s, result),
1802 VEC_length (mem_region_s, result),
1803 sizeof (struct mem_region), mem_region_cmp);
1804
1805 /* Check that regions do not overlap. Simultaneously assign
1806 a numbering for the "mem" commands to use to refer to
1807 each region. */
1808 last_one = NULL;
1809 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1810 {
1811 this_one->number = ix;
1812
1813 if (last_one && last_one->hi > this_one->lo)
1814 {
1815 warning (_("Overlapping regions in memory map: ignoring"));
1816 VEC_free (mem_region_s, result);
1817 return NULL;
1818 }
1819 last_one = this_one;
1820 }
1821
1822 return result;
1823 }
1824
1825 void
1826 target_flash_erase (ULONGEST address, LONGEST length)
1827 {
1828 struct target_ops *t;
1829
1830 for (t = current_target.beneath; t != NULL; t = t->beneath)
1831 if (t->to_flash_erase != NULL)
1832 {
1833 if (targetdebug)
1834 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1835 hex_string (address), phex (length, 0));
1836 t->to_flash_erase (t, address, length);
1837 return;
1838 }
1839
1840 tcomplain ();
1841 }
1842
1843 void
1844 target_flash_done (void)
1845 {
1846 struct target_ops *t;
1847
1848 for (t = current_target.beneath; t != NULL; t = t->beneath)
1849 if (t->to_flash_done != NULL)
1850 {
1851 if (targetdebug)
1852 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1853 t->to_flash_done (t);
1854 return;
1855 }
1856
1857 tcomplain ();
1858 }
1859
1860 static void
1861 show_trust_readonly (struct ui_file *file, int from_tty,
1862 struct cmd_list_element *c, const char *value)
1863 {
1864 fprintf_filtered (file,
1865 _("Mode for reading from readonly sections is %s.\n"),
1866 value);
1867 }
1868
1869 /* More generic transfers. */
1870
1871 static enum target_xfer_status
1872 default_xfer_partial (struct target_ops *ops, enum target_object object,
1873 const char *annex, gdb_byte *readbuf,
1874 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1875 ULONGEST *xfered_len)
1876 {
1877 if (object == TARGET_OBJECT_MEMORY
1878 && ops->deprecated_xfer_memory != NULL)
1879 /* If available, fall back to the target's
1880 "deprecated_xfer_memory" method. */
1881 {
1882 int xfered = -1;
1883
1884 errno = 0;
1885 if (writebuf != NULL)
1886 {
1887 void *buffer = xmalloc (len);
1888 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1889
1890 memcpy (buffer, writebuf, len);
1891 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1892 1/*write*/, NULL, ops);
1893 do_cleanups (cleanup);
1894 }
1895 if (readbuf != NULL)
1896 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1897 0/*read*/, NULL, ops);
1898 if (xfered > 0)
1899 {
1900 *xfered_len = (ULONGEST) xfered;
1901 return TARGET_XFER_E_IO;
1902 }
1903 else if (xfered == 0 && errno == 0)
1904 /* "deprecated_xfer_memory" uses 0, cross checked against
1905 ERRNO as one indication of an error. */
1906 return TARGET_XFER_EOF;
1907 else
1908 return TARGET_XFER_E_IO;
1909 }
1910 else
1911 {
1912 gdb_assert (ops->beneath != NULL);
1913 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1914 readbuf, writebuf, offset, len,
1915 xfered_len);
1916 }
1917 }
1918
1919 /* Target vector read/write partial wrapper functions. */
1920
1921 static enum target_xfer_status
1922 target_read_partial (struct target_ops *ops,
1923 enum target_object object,
1924 const char *annex, gdb_byte *buf,
1925 ULONGEST offset, ULONGEST len,
1926 ULONGEST *xfered_len)
1927 {
1928 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1929 xfered_len);
1930 }
1931
1932 static enum target_xfer_status
1933 target_write_partial (struct target_ops *ops,
1934 enum target_object object,
1935 const char *annex, const gdb_byte *buf,
1936 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1937 {
1938 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1939 xfered_len);
1940 }
1941
1942 /* Wrappers to perform the full transfer. */
1943
1944 /* For docs on target_read see target.h. */
1945
1946 LONGEST
1947 target_read (struct target_ops *ops,
1948 enum target_object object,
1949 const char *annex, gdb_byte *buf,
1950 ULONGEST offset, LONGEST len)
1951 {
1952 LONGEST xfered = 0;
1953
1954 while (xfered < len)
1955 {
1956 ULONGEST xfered_len;
1957 enum target_xfer_status status;
1958
1959 status = target_read_partial (ops, object, annex,
1960 (gdb_byte *) buf + xfered,
1961 offset + xfered, len - xfered,
1962 &xfered_len);
1963
1964 /* Call an observer, notifying them of the xfer progress? */
1965 if (status == TARGET_XFER_EOF)
1966 return xfered;
1967 else if (status == TARGET_XFER_OK)
1968 {
1969 xfered += xfered_len;
1970 QUIT;
1971 }
1972 else
1973 return -1;
1974
1975 }
1976 return len;
1977 }
1978
1979 /* Assuming that the entire [begin, end) range of memory cannot be
1980 read, try to read whatever subrange is possible to read.
1981
1982 The function returns, in RESULT, either zero or one memory block.
1983 If there's a readable subrange at the beginning, it is completely
1984 read and returned. Any further readable subrange will not be read.
1985 Otherwise, if there's a readable subrange at the end, it will be
1986 completely read and returned. Any readable subranges before it
1987 (obviously, not starting at the beginning), will be ignored. In
1988 other cases -- either no readable subrange, or readable subrange(s)
1989 that is neither at the beginning, or end, nothing is returned.
1990
1991 The purpose of this function is to handle a read across a boundary
1992 of accessible memory in a case when memory map is not available.
1993 The above restrictions are fine for this case, but will give
1994 incorrect results if the memory is 'patchy'. However, supporting
1995 'patchy' memory would require trying to read every single byte,
1996 and it seems unacceptable solution. Explicit memory map is
1997 recommended for this case -- and target_read_memory_robust will
1998 take care of reading multiple ranges then. */
1999
2000 static void
2001 read_whatever_is_readable (struct target_ops *ops,
2002 ULONGEST begin, ULONGEST end,
2003 VEC(memory_read_result_s) **result)
2004 {
2005 gdb_byte *buf = xmalloc (end - begin);
2006 ULONGEST current_begin = begin;
2007 ULONGEST current_end = end;
2008 int forward;
2009 memory_read_result_s r;
2010 ULONGEST xfered_len;
2011
2012 /* If we previously failed to read 1 byte, nothing can be done here. */
2013 if (end - begin <= 1)
2014 {
2015 xfree (buf);
2016 return;
2017 }
2018
2019 /* Check that either first or the last byte is readable, and give up
2020 if not. This heuristic is meant to permit reading accessible memory
2021 at the boundary of accessible region. */
2022 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2023 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2024 {
2025 forward = 1;
2026 ++current_begin;
2027 }
2028 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2029 buf + (end-begin) - 1, end - 1, 1,
2030 &xfered_len) == TARGET_XFER_OK)
2031 {
2032 forward = 0;
2033 --current_end;
2034 }
2035 else
2036 {
2037 xfree (buf);
2038 return;
2039 }
2040
2041 /* Loop invariant is that the [current_begin, current_end) was previously
2042 found to be not readable as a whole.
2043
2044 Note loop condition -- if the range has 1 byte, we can't divide the range
2045 so there's no point trying further. */
2046 while (current_end - current_begin > 1)
2047 {
2048 ULONGEST first_half_begin, first_half_end;
2049 ULONGEST second_half_begin, second_half_end;
2050 LONGEST xfer;
2051 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2052
2053 if (forward)
2054 {
2055 first_half_begin = current_begin;
2056 first_half_end = middle;
2057 second_half_begin = middle;
2058 second_half_end = current_end;
2059 }
2060 else
2061 {
2062 first_half_begin = middle;
2063 first_half_end = current_end;
2064 second_half_begin = current_begin;
2065 second_half_end = middle;
2066 }
2067
2068 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2069 buf + (first_half_begin - begin),
2070 first_half_begin,
2071 first_half_end - first_half_begin);
2072
2073 if (xfer == first_half_end - first_half_begin)
2074 {
2075 /* This half reads up fine. So, the error must be in the
2076 other half. */
2077 current_begin = second_half_begin;
2078 current_end = second_half_end;
2079 }
2080 else
2081 {
2082 /* This half is not readable. Because we've tried one byte, we
2083 know some part of this half if actually redable. Go to the next
2084 iteration to divide again and try to read.
2085
2086 We don't handle the other half, because this function only tries
2087 to read a single readable subrange. */
2088 current_begin = first_half_begin;
2089 current_end = first_half_end;
2090 }
2091 }
2092
2093 if (forward)
2094 {
2095 /* The [begin, current_begin) range has been read. */
2096 r.begin = begin;
2097 r.end = current_begin;
2098 r.data = buf;
2099 }
2100 else
2101 {
2102 /* The [current_end, end) range has been read. */
2103 LONGEST rlen = end - current_end;
2104
2105 r.data = xmalloc (rlen);
2106 memcpy (r.data, buf + current_end - begin, rlen);
2107 r.begin = current_end;
2108 r.end = end;
2109 xfree (buf);
2110 }
2111 VEC_safe_push(memory_read_result_s, (*result), &r);
2112 }
2113
2114 void
2115 free_memory_read_result_vector (void *x)
2116 {
2117 VEC(memory_read_result_s) *v = x;
2118 memory_read_result_s *current;
2119 int ix;
2120
2121 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2122 {
2123 xfree (current->data);
2124 }
2125 VEC_free (memory_read_result_s, v);
2126 }
2127
2128 VEC(memory_read_result_s) *
2129 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2130 {
2131 VEC(memory_read_result_s) *result = 0;
2132
2133 LONGEST xfered = 0;
2134 while (xfered < len)
2135 {
2136 struct mem_region *region = lookup_mem_region (offset + xfered);
2137 LONGEST rlen;
2138
2139 /* If there is no explicit region, a fake one should be created. */
2140 gdb_assert (region);
2141
2142 if (region->hi == 0)
2143 rlen = len - xfered;
2144 else
2145 rlen = region->hi - offset;
2146
2147 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2148 {
2149 /* Cannot read this region. Note that we can end up here only
2150 if the region is explicitly marked inaccessible, or
2151 'inaccessible-by-default' is in effect. */
2152 xfered += rlen;
2153 }
2154 else
2155 {
2156 LONGEST to_read = min (len - xfered, rlen);
2157 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2158
2159 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2160 (gdb_byte *) buffer,
2161 offset + xfered, to_read);
2162 /* Call an observer, notifying them of the xfer progress? */
2163 if (xfer <= 0)
2164 {
2165 /* Got an error reading full chunk. See if maybe we can read
2166 some subrange. */
2167 xfree (buffer);
2168 read_whatever_is_readable (ops, offset + xfered,
2169 offset + xfered + to_read, &result);
2170 xfered += to_read;
2171 }
2172 else
2173 {
2174 struct memory_read_result r;
2175 r.data = buffer;
2176 r.begin = offset + xfered;
2177 r.end = r.begin + xfer;
2178 VEC_safe_push (memory_read_result_s, result, &r);
2179 xfered += xfer;
2180 }
2181 QUIT;
2182 }
2183 }
2184 return result;
2185 }
2186
2187
2188 /* An alternative to target_write with progress callbacks. */
2189
2190 LONGEST
2191 target_write_with_progress (struct target_ops *ops,
2192 enum target_object object,
2193 const char *annex, const gdb_byte *buf,
2194 ULONGEST offset, LONGEST len,
2195 void (*progress) (ULONGEST, void *), void *baton)
2196 {
2197 LONGEST xfered = 0;
2198
2199 /* Give the progress callback a chance to set up. */
2200 if (progress)
2201 (*progress) (0, baton);
2202
2203 while (xfered < len)
2204 {
2205 ULONGEST xfered_len;
2206 enum target_xfer_status status;
2207
2208 status = target_write_partial (ops, object, annex,
2209 (gdb_byte *) buf + xfered,
2210 offset + xfered, len - xfered,
2211 &xfered_len);
2212
2213 if (status == TARGET_XFER_EOF)
2214 return xfered;
2215 if (TARGET_XFER_STATUS_ERROR_P (status))
2216 return -1;
2217
2218 gdb_assert (status == TARGET_XFER_OK);
2219 if (progress)
2220 (*progress) (xfered_len, baton);
2221
2222 xfered += xfered_len;
2223 QUIT;
2224 }
2225 return len;
2226 }
2227
2228 /* For docs on target_write see target.h. */
2229
2230 LONGEST
2231 target_write (struct target_ops *ops,
2232 enum target_object object,
2233 const char *annex, const gdb_byte *buf,
2234 ULONGEST offset, LONGEST len)
2235 {
2236 return target_write_with_progress (ops, object, annex, buf, offset, len,
2237 NULL, NULL);
2238 }
2239
2240 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2241 the size of the transferred data. PADDING additional bytes are
2242 available in *BUF_P. This is a helper function for
2243 target_read_alloc; see the declaration of that function for more
2244 information. */
2245
2246 static LONGEST
2247 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2248 const char *annex, gdb_byte **buf_p, int padding)
2249 {
2250 size_t buf_alloc, buf_pos;
2251 gdb_byte *buf;
2252
2253 /* This function does not have a length parameter; it reads the
2254 entire OBJECT). Also, it doesn't support objects fetched partly
2255 from one target and partly from another (in a different stratum,
2256 e.g. a core file and an executable). Both reasons make it
2257 unsuitable for reading memory. */
2258 gdb_assert (object != TARGET_OBJECT_MEMORY);
2259
2260 /* Start by reading up to 4K at a time. The target will throttle
2261 this number down if necessary. */
2262 buf_alloc = 4096;
2263 buf = xmalloc (buf_alloc);
2264 buf_pos = 0;
2265 while (1)
2266 {
2267 ULONGEST xfered_len;
2268 enum target_xfer_status status;
2269
2270 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2271 buf_pos, buf_alloc - buf_pos - padding,
2272 &xfered_len);
2273
2274 if (status == TARGET_XFER_EOF)
2275 {
2276 /* Read all there was. */
2277 if (buf_pos == 0)
2278 xfree (buf);
2279 else
2280 *buf_p = buf;
2281 return buf_pos;
2282 }
2283 else if (status != TARGET_XFER_OK)
2284 {
2285 /* An error occurred. */
2286 xfree (buf);
2287 return TARGET_XFER_E_IO;
2288 }
2289
2290 buf_pos += xfered_len;
2291
2292 /* If the buffer is filling up, expand it. */
2293 if (buf_alloc < buf_pos * 2)
2294 {
2295 buf_alloc *= 2;
2296 buf = xrealloc (buf, buf_alloc);
2297 }
2298
2299 QUIT;
2300 }
2301 }
2302
2303 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2304 the size of the transferred data. See the declaration in "target.h"
2305 function for more information about the return value. */
2306
2307 LONGEST
2308 target_read_alloc (struct target_ops *ops, enum target_object object,
2309 const char *annex, gdb_byte **buf_p)
2310 {
2311 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2312 }
2313
2314 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2315 returned as a string, allocated using xmalloc. If an error occurs
2316 or the transfer is unsupported, NULL is returned. Empty objects
2317 are returned as allocated but empty strings. A warning is issued
2318 if the result contains any embedded NUL bytes. */
2319
2320 char *
2321 target_read_stralloc (struct target_ops *ops, enum target_object object,
2322 const char *annex)
2323 {
2324 gdb_byte *buffer;
2325 char *bufstr;
2326 LONGEST i, transferred;
2327
2328 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2329 bufstr = (char *) buffer;
2330
2331 if (transferred < 0)
2332 return NULL;
2333
2334 if (transferred == 0)
2335 return xstrdup ("");
2336
2337 bufstr[transferred] = 0;
2338
2339 /* Check for embedded NUL bytes; but allow trailing NULs. */
2340 for (i = strlen (bufstr); i < transferred; i++)
2341 if (bufstr[i] != 0)
2342 {
2343 warning (_("target object %d, annex %s, "
2344 "contained unexpected null characters"),
2345 (int) object, annex ? annex : "(none)");
2346 break;
2347 }
2348
2349 return bufstr;
2350 }
2351
2352 /* Memory transfer methods. */
2353
2354 void
2355 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2356 LONGEST len)
2357 {
2358 /* This method is used to read from an alternate, non-current
2359 target. This read must bypass the overlay support (as symbols
2360 don't match this target), and GDB's internal cache (wrong cache
2361 for this target). */
2362 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2363 != len)
2364 memory_error (TARGET_XFER_E_IO, addr);
2365 }
2366
2367 ULONGEST
2368 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2369 int len, enum bfd_endian byte_order)
2370 {
2371 gdb_byte buf[sizeof (ULONGEST)];
2372
2373 gdb_assert (len <= sizeof (buf));
2374 get_target_memory (ops, addr, buf, len);
2375 return extract_unsigned_integer (buf, len, byte_order);
2376 }
2377
2378 /* See target.h. */
2379
2380 int
2381 target_insert_breakpoint (struct gdbarch *gdbarch,
2382 struct bp_target_info *bp_tgt)
2383 {
2384 if (!may_insert_breakpoints)
2385 {
2386 warning (_("May not insert breakpoints"));
2387 return 1;
2388 }
2389
2390 return current_target.to_insert_breakpoint (&current_target,
2391 gdbarch, bp_tgt);
2392 }
2393
2394 /* See target.h. */
2395
2396 int
2397 target_remove_breakpoint (struct gdbarch *gdbarch,
2398 struct bp_target_info *bp_tgt)
2399 {
2400 /* This is kind of a weird case to handle, but the permission might
2401 have been changed after breakpoints were inserted - in which case
2402 we should just take the user literally and assume that any
2403 breakpoints should be left in place. */
2404 if (!may_insert_breakpoints)
2405 {
2406 warning (_("May not remove breakpoints"));
2407 return 1;
2408 }
2409
2410 return current_target.to_remove_breakpoint (&current_target,
2411 gdbarch, bp_tgt);
2412 }
2413
2414 static void
2415 target_info (char *args, int from_tty)
2416 {
2417 struct target_ops *t;
2418 int has_all_mem = 0;
2419
2420 if (symfile_objfile != NULL)
2421 printf_unfiltered (_("Symbols from \"%s\".\n"),
2422 objfile_name (symfile_objfile));
2423
2424 for (t = target_stack; t != NULL; t = t->beneath)
2425 {
2426 if (!(*t->to_has_memory) (t))
2427 continue;
2428
2429 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2430 continue;
2431 if (has_all_mem)
2432 printf_unfiltered (_("\tWhile running this, "
2433 "GDB does not access memory from...\n"));
2434 printf_unfiltered ("%s:\n", t->to_longname);
2435 (t->to_files_info) (t);
2436 has_all_mem = (*t->to_has_all_memory) (t);
2437 }
2438 }
2439
2440 /* This function is called before any new inferior is created, e.g.
2441 by running a program, attaching, or connecting to a target.
2442 It cleans up any state from previous invocations which might
2443 change between runs. This is a subset of what target_preopen
2444 resets (things which might change between targets). */
2445
2446 void
2447 target_pre_inferior (int from_tty)
2448 {
2449 /* Clear out solib state. Otherwise the solib state of the previous
2450 inferior might have survived and is entirely wrong for the new
2451 target. This has been observed on GNU/Linux using glibc 2.3. How
2452 to reproduce:
2453
2454 bash$ ./foo&
2455 [1] 4711
2456 bash$ ./foo&
2457 [1] 4712
2458 bash$ gdb ./foo
2459 [...]
2460 (gdb) attach 4711
2461 (gdb) detach
2462 (gdb) attach 4712
2463 Cannot access memory at address 0xdeadbeef
2464 */
2465
2466 /* In some OSs, the shared library list is the same/global/shared
2467 across inferiors. If code is shared between processes, so are
2468 memory regions and features. */
2469 if (!gdbarch_has_global_solist (target_gdbarch ()))
2470 {
2471 no_shared_libraries (NULL, from_tty);
2472
2473 invalidate_target_mem_regions ();
2474
2475 target_clear_description ();
2476 }
2477
2478 agent_capability_invalidate ();
2479 }
2480
2481 /* Callback for iterate_over_inferiors. Gets rid of the given
2482 inferior. */
2483
2484 static int
2485 dispose_inferior (struct inferior *inf, void *args)
2486 {
2487 struct thread_info *thread;
2488
2489 thread = any_thread_of_process (inf->pid);
2490 if (thread)
2491 {
2492 switch_to_thread (thread->ptid);
2493
2494 /* Core inferiors actually should be detached, not killed. */
2495 if (target_has_execution)
2496 target_kill ();
2497 else
2498 target_detach (NULL, 0);
2499 }
2500
2501 return 0;
2502 }
2503
2504 /* This is to be called by the open routine before it does
2505 anything. */
2506
2507 void
2508 target_preopen (int from_tty)
2509 {
2510 dont_repeat ();
2511
2512 if (have_inferiors ())
2513 {
2514 if (!from_tty
2515 || !have_live_inferiors ()
2516 || query (_("A program is being debugged already. Kill it? ")))
2517 iterate_over_inferiors (dispose_inferior, NULL);
2518 else
2519 error (_("Program not killed."));
2520 }
2521
2522 /* Calling target_kill may remove the target from the stack. But if
2523 it doesn't (which seems like a win for UDI), remove it now. */
2524 /* Leave the exec target, though. The user may be switching from a
2525 live process to a core of the same program. */
2526 pop_all_targets_above (file_stratum);
2527
2528 target_pre_inferior (from_tty);
2529 }
2530
2531 /* Detach a target after doing deferred register stores. */
2532
2533 void
2534 target_detach (const char *args, int from_tty)
2535 {
2536 struct target_ops* t;
2537
2538 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2539 /* Don't remove global breakpoints here. They're removed on
2540 disconnection from the target. */
2541 ;
2542 else
2543 /* If we're in breakpoints-always-inserted mode, have to remove
2544 them before detaching. */
2545 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2546
2547 prepare_for_detach ();
2548
2549 current_target.to_detach (&current_target, args, from_tty);
2550 if (targetdebug)
2551 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2552 args, from_tty);
2553 }
2554
2555 void
2556 target_disconnect (char *args, int from_tty)
2557 {
2558 struct target_ops *t;
2559
2560 /* If we're in breakpoints-always-inserted mode or if breakpoints
2561 are global across processes, we have to remove them before
2562 disconnecting. */
2563 remove_breakpoints ();
2564
2565 for (t = current_target.beneath; t != NULL; t = t->beneath)
2566 if (t->to_disconnect != NULL)
2567 {
2568 if (targetdebug)
2569 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2570 args, from_tty);
2571 t->to_disconnect (t, args, from_tty);
2572 return;
2573 }
2574
2575 tcomplain ();
2576 }
2577
2578 ptid_t
2579 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2580 {
2581 struct target_ops *t;
2582 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2583 status, options);
2584
2585 if (targetdebug)
2586 {
2587 char *status_string;
2588 char *options_string;
2589
2590 status_string = target_waitstatus_to_string (status);
2591 options_string = target_options_to_string (options);
2592 fprintf_unfiltered (gdb_stdlog,
2593 "target_wait (%d, status, options={%s})"
2594 " = %d, %s\n",
2595 ptid_get_pid (ptid), options_string,
2596 ptid_get_pid (retval), status_string);
2597 xfree (status_string);
2598 xfree (options_string);
2599 }
2600
2601 return retval;
2602 }
2603
2604 char *
2605 target_pid_to_str (ptid_t ptid)
2606 {
2607 struct target_ops *t;
2608
2609 for (t = current_target.beneath; t != NULL; t = t->beneath)
2610 {
2611 if (t->to_pid_to_str != NULL)
2612 return (*t->to_pid_to_str) (t, ptid);
2613 }
2614
2615 return normal_pid_to_str (ptid);
2616 }
2617
2618 char *
2619 target_thread_name (struct thread_info *info)
2620 {
2621 return current_target.to_thread_name (&current_target, info);
2622 }
2623
2624 void
2625 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2626 {
2627 struct target_ops *t;
2628
2629 target_dcache_invalidate ();
2630
2631 current_target.to_resume (&current_target, ptid, step, signal);
2632 if (targetdebug)
2633 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2634 ptid_get_pid (ptid),
2635 step ? "step" : "continue",
2636 gdb_signal_to_name (signal));
2637
2638 registers_changed_ptid (ptid);
2639 set_executing (ptid, 1);
2640 set_running (ptid, 1);
2641 clear_inline_frame_state (ptid);
2642 }
2643
2644 void
2645 target_pass_signals (int numsigs, unsigned char *pass_signals)
2646 {
2647 struct target_ops *t;
2648
2649 for (t = current_target.beneath; t != NULL; t = t->beneath)
2650 {
2651 if (t->to_pass_signals != NULL)
2652 {
2653 if (targetdebug)
2654 {
2655 int i;
2656
2657 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2658 numsigs);
2659
2660 for (i = 0; i < numsigs; i++)
2661 if (pass_signals[i])
2662 fprintf_unfiltered (gdb_stdlog, " %s",
2663 gdb_signal_to_name (i));
2664
2665 fprintf_unfiltered (gdb_stdlog, " })\n");
2666 }
2667
2668 (*t->to_pass_signals) (t, numsigs, pass_signals);
2669 return;
2670 }
2671 }
2672 }
2673
2674 void
2675 target_program_signals (int numsigs, unsigned char *program_signals)
2676 {
2677 struct target_ops *t;
2678
2679 for (t = current_target.beneath; t != NULL; t = t->beneath)
2680 {
2681 if (t->to_program_signals != NULL)
2682 {
2683 if (targetdebug)
2684 {
2685 int i;
2686
2687 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2688 numsigs);
2689
2690 for (i = 0; i < numsigs; i++)
2691 if (program_signals[i])
2692 fprintf_unfiltered (gdb_stdlog, " %s",
2693 gdb_signal_to_name (i));
2694
2695 fprintf_unfiltered (gdb_stdlog, " })\n");
2696 }
2697
2698 (*t->to_program_signals) (t, numsigs, program_signals);
2699 return;
2700 }
2701 }
2702 }
2703
2704 /* Look through the list of possible targets for a target that can
2705 follow forks. */
2706
2707 int
2708 target_follow_fork (int follow_child, int detach_fork)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = current_target.beneath; t != NULL; t = t->beneath)
2713 {
2714 if (t->to_follow_fork != NULL)
2715 {
2716 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2717
2718 if (targetdebug)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "target_follow_fork (%d, %d) = %d\n",
2721 follow_child, detach_fork, retval);
2722 return retval;
2723 }
2724 }
2725
2726 /* Some target returned a fork event, but did not know how to follow it. */
2727 internal_error (__FILE__, __LINE__,
2728 _("could not find a target to follow fork"));
2729 }
2730
2731 void
2732 target_mourn_inferior (void)
2733 {
2734 struct target_ops *t;
2735
2736 for (t = current_target.beneath; t != NULL; t = t->beneath)
2737 {
2738 if (t->to_mourn_inferior != NULL)
2739 {
2740 t->to_mourn_inferior (t);
2741 if (targetdebug)
2742 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2743
2744 /* We no longer need to keep handles on any of the object files.
2745 Make sure to release them to avoid unnecessarily locking any
2746 of them while we're not actually debugging. */
2747 bfd_cache_close_all ();
2748
2749 return;
2750 }
2751 }
2752
2753 internal_error (__FILE__, __LINE__,
2754 _("could not find a target to follow mourn inferior"));
2755 }
2756
2757 /* Look for a target which can describe architectural features, starting
2758 from TARGET. If we find one, return its description. */
2759
2760 const struct target_desc *
2761 target_read_description (struct target_ops *target)
2762 {
2763 struct target_ops *t;
2764
2765 for (t = target; t != NULL; t = t->beneath)
2766 if (t->to_read_description != NULL)
2767 {
2768 const struct target_desc *tdesc;
2769
2770 tdesc = t->to_read_description (t);
2771 if (tdesc)
2772 return tdesc;
2773 }
2774
2775 return NULL;
2776 }
2777
2778 /* The default implementation of to_search_memory.
2779 This implements a basic search of memory, reading target memory and
2780 performing the search here (as opposed to performing the search in on the
2781 target side with, for example, gdbserver). */
2782
2783 int
2784 simple_search_memory (struct target_ops *ops,
2785 CORE_ADDR start_addr, ULONGEST search_space_len,
2786 const gdb_byte *pattern, ULONGEST pattern_len,
2787 CORE_ADDR *found_addrp)
2788 {
2789 /* NOTE: also defined in find.c testcase. */
2790 #define SEARCH_CHUNK_SIZE 16000
2791 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2792 /* Buffer to hold memory contents for searching. */
2793 gdb_byte *search_buf;
2794 unsigned search_buf_size;
2795 struct cleanup *old_cleanups;
2796
2797 search_buf_size = chunk_size + pattern_len - 1;
2798
2799 /* No point in trying to allocate a buffer larger than the search space. */
2800 if (search_space_len < search_buf_size)
2801 search_buf_size = search_space_len;
2802
2803 search_buf = malloc (search_buf_size);
2804 if (search_buf == NULL)
2805 error (_("Unable to allocate memory to perform the search."));
2806 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2807
2808 /* Prime the search buffer. */
2809
2810 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2811 search_buf, start_addr, search_buf_size) != search_buf_size)
2812 {
2813 warning (_("Unable to access %s bytes of target "
2814 "memory at %s, halting search."),
2815 pulongest (search_buf_size), hex_string (start_addr));
2816 do_cleanups (old_cleanups);
2817 return -1;
2818 }
2819
2820 /* Perform the search.
2821
2822 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2823 When we've scanned N bytes we copy the trailing bytes to the start and
2824 read in another N bytes. */
2825
2826 while (search_space_len >= pattern_len)
2827 {
2828 gdb_byte *found_ptr;
2829 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2830
2831 found_ptr = memmem (search_buf, nr_search_bytes,
2832 pattern, pattern_len);
2833
2834 if (found_ptr != NULL)
2835 {
2836 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2837
2838 *found_addrp = found_addr;
2839 do_cleanups (old_cleanups);
2840 return 1;
2841 }
2842
2843 /* Not found in this chunk, skip to next chunk. */
2844
2845 /* Don't let search_space_len wrap here, it's unsigned. */
2846 if (search_space_len >= chunk_size)
2847 search_space_len -= chunk_size;
2848 else
2849 search_space_len = 0;
2850
2851 if (search_space_len >= pattern_len)
2852 {
2853 unsigned keep_len = search_buf_size - chunk_size;
2854 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2855 int nr_to_read;
2856
2857 /* Copy the trailing part of the previous iteration to the front
2858 of the buffer for the next iteration. */
2859 gdb_assert (keep_len == pattern_len - 1);
2860 memcpy (search_buf, search_buf + chunk_size, keep_len);
2861
2862 nr_to_read = min (search_space_len - keep_len, chunk_size);
2863
2864 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2865 search_buf + keep_len, read_addr,
2866 nr_to_read) != nr_to_read)
2867 {
2868 warning (_("Unable to access %s bytes of target "
2869 "memory at %s, halting search."),
2870 plongest (nr_to_read),
2871 hex_string (read_addr));
2872 do_cleanups (old_cleanups);
2873 return -1;
2874 }
2875
2876 start_addr += chunk_size;
2877 }
2878 }
2879
2880 /* Not found. */
2881
2882 do_cleanups (old_cleanups);
2883 return 0;
2884 }
2885
2886 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2887 sequence of bytes in PATTERN with length PATTERN_LEN.
2888
2889 The result is 1 if found, 0 if not found, and -1 if there was an error
2890 requiring halting of the search (e.g. memory read error).
2891 If the pattern is found the address is recorded in FOUND_ADDRP. */
2892
2893 int
2894 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2895 const gdb_byte *pattern, ULONGEST pattern_len,
2896 CORE_ADDR *found_addrp)
2897 {
2898 struct target_ops *t;
2899 int found;
2900
2901 /* We don't use INHERIT to set current_target.to_search_memory,
2902 so we have to scan the target stack and handle targetdebug
2903 ourselves. */
2904
2905 if (targetdebug)
2906 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2907 hex_string (start_addr));
2908
2909 for (t = current_target.beneath; t != NULL; t = t->beneath)
2910 if (t->to_search_memory != NULL)
2911 break;
2912
2913 if (t != NULL)
2914 {
2915 found = t->to_search_memory (t, start_addr, search_space_len,
2916 pattern, pattern_len, found_addrp);
2917 }
2918 else
2919 {
2920 /* If a special version of to_search_memory isn't available, use the
2921 simple version. */
2922 found = simple_search_memory (current_target.beneath,
2923 start_addr, search_space_len,
2924 pattern, pattern_len, found_addrp);
2925 }
2926
2927 if (targetdebug)
2928 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2929
2930 return found;
2931 }
2932
2933 /* Look through the currently pushed targets. If none of them will
2934 be able to restart the currently running process, issue an error
2935 message. */
2936
2937 void
2938 target_require_runnable (void)
2939 {
2940 struct target_ops *t;
2941
2942 for (t = target_stack; t != NULL; t = t->beneath)
2943 {
2944 /* If this target knows how to create a new program, then
2945 assume we will still be able to after killing the current
2946 one. Either killing and mourning will not pop T, or else
2947 find_default_run_target will find it again. */
2948 if (t->to_create_inferior != NULL)
2949 return;
2950
2951 /* Do not worry about thread_stratum targets that can not
2952 create inferiors. Assume they will be pushed again if
2953 necessary, and continue to the process_stratum. */
2954 if (t->to_stratum == thread_stratum
2955 || t->to_stratum == arch_stratum)
2956 continue;
2957
2958 error (_("The \"%s\" target does not support \"run\". "
2959 "Try \"help target\" or \"continue\"."),
2960 t->to_shortname);
2961 }
2962
2963 /* This function is only called if the target is running. In that
2964 case there should have been a process_stratum target and it
2965 should either know how to create inferiors, or not... */
2966 internal_error (__FILE__, __LINE__, _("No targets found"));
2967 }
2968
2969 /* Look through the list of possible targets for a target that can
2970 execute a run or attach command without any other data. This is
2971 used to locate the default process stratum.
2972
2973 If DO_MESG is not NULL, the result is always valid (error() is
2974 called for errors); else, return NULL on error. */
2975
2976 static struct target_ops *
2977 find_default_run_target (char *do_mesg)
2978 {
2979 struct target_ops **t;
2980 struct target_ops *runable = NULL;
2981 int count;
2982
2983 count = 0;
2984
2985 for (t = target_structs; t < target_structs + target_struct_size;
2986 ++t)
2987 {
2988 if ((*t)->to_can_run && target_can_run (*t))
2989 {
2990 runable = *t;
2991 ++count;
2992 }
2993 }
2994
2995 if (count != 1)
2996 {
2997 if (do_mesg)
2998 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2999 else
3000 return NULL;
3001 }
3002
3003 return runable;
3004 }
3005
3006 void
3007 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3008 {
3009 struct target_ops *t;
3010
3011 t = find_default_run_target ("attach");
3012 (t->to_attach) (t, args, from_tty);
3013 return;
3014 }
3015
3016 void
3017 find_default_create_inferior (struct target_ops *ops,
3018 char *exec_file, char *allargs, char **env,
3019 int from_tty)
3020 {
3021 struct target_ops *t;
3022
3023 t = find_default_run_target ("run");
3024 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3025 return;
3026 }
3027
3028 static int
3029 find_default_can_async_p (struct target_ops *ignore)
3030 {
3031 struct target_ops *t;
3032
3033 /* This may be called before the target is pushed on the stack;
3034 look for the default process stratum. If there's none, gdb isn't
3035 configured with a native debugger, and target remote isn't
3036 connected yet. */
3037 t = find_default_run_target (NULL);
3038 if (t && t->to_can_async_p != delegate_can_async_p)
3039 return (t->to_can_async_p) (t);
3040 return 0;
3041 }
3042
3043 static int
3044 find_default_is_async_p (struct target_ops *ignore)
3045 {
3046 struct target_ops *t;
3047
3048 /* This may be called before the target is pushed on the stack;
3049 look for the default process stratum. If there's none, gdb isn't
3050 configured with a native debugger, and target remote isn't
3051 connected yet. */
3052 t = find_default_run_target (NULL);
3053 if (t && t->to_is_async_p != delegate_is_async_p)
3054 return (t->to_is_async_p) (t);
3055 return 0;
3056 }
3057
3058 static int
3059 find_default_supports_non_stop (struct target_ops *self)
3060 {
3061 struct target_ops *t;
3062
3063 t = find_default_run_target (NULL);
3064 if (t && t->to_supports_non_stop)
3065 return (t->to_supports_non_stop) (t);
3066 return 0;
3067 }
3068
3069 int
3070 target_supports_non_stop (void)
3071 {
3072 struct target_ops *t;
3073
3074 for (t = &current_target; t != NULL; t = t->beneath)
3075 if (t->to_supports_non_stop)
3076 return t->to_supports_non_stop (t);
3077
3078 return 0;
3079 }
3080
3081 /* Implement the "info proc" command. */
3082
3083 int
3084 target_info_proc (char *args, enum info_proc_what what)
3085 {
3086 struct target_ops *t;
3087
3088 /* If we're already connected to something that can get us OS
3089 related data, use it. Otherwise, try using the native
3090 target. */
3091 if (current_target.to_stratum >= process_stratum)
3092 t = current_target.beneath;
3093 else
3094 t = find_default_run_target (NULL);
3095
3096 for (; t != NULL; t = t->beneath)
3097 {
3098 if (t->to_info_proc != NULL)
3099 {
3100 t->to_info_proc (t, args, what);
3101
3102 if (targetdebug)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "target_info_proc (\"%s\", %d)\n", args, what);
3105
3106 return 1;
3107 }
3108 }
3109
3110 return 0;
3111 }
3112
3113 static int
3114 find_default_supports_disable_randomization (struct target_ops *self)
3115 {
3116 struct target_ops *t;
3117
3118 t = find_default_run_target (NULL);
3119 if (t && t->to_supports_disable_randomization)
3120 return (t->to_supports_disable_randomization) (t);
3121 return 0;
3122 }
3123
3124 int
3125 target_supports_disable_randomization (void)
3126 {
3127 struct target_ops *t;
3128
3129 for (t = &current_target; t != NULL; t = t->beneath)
3130 if (t->to_supports_disable_randomization)
3131 return t->to_supports_disable_randomization (t);
3132
3133 return 0;
3134 }
3135
3136 char *
3137 target_get_osdata (const char *type)
3138 {
3139 struct target_ops *t;
3140
3141 /* If we're already connected to something that can get us OS
3142 related data, use it. Otherwise, try using the native
3143 target. */
3144 if (current_target.to_stratum >= process_stratum)
3145 t = current_target.beneath;
3146 else
3147 t = find_default_run_target ("get OS data");
3148
3149 if (!t)
3150 return NULL;
3151
3152 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3153 }
3154
3155 /* Determine the current address space of thread PTID. */
3156
3157 struct address_space *
3158 target_thread_address_space (ptid_t ptid)
3159 {
3160 struct address_space *aspace;
3161 struct inferior *inf;
3162 struct target_ops *t;
3163
3164 for (t = current_target.beneath; t != NULL; t = t->beneath)
3165 {
3166 if (t->to_thread_address_space != NULL)
3167 {
3168 aspace = t->to_thread_address_space (t, ptid);
3169 gdb_assert (aspace);
3170
3171 if (targetdebug)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "target_thread_address_space (%s) = %d\n",
3174 target_pid_to_str (ptid),
3175 address_space_num (aspace));
3176 return aspace;
3177 }
3178 }
3179
3180 /* Fall-back to the "main" address space of the inferior. */
3181 inf = find_inferior_pid (ptid_get_pid (ptid));
3182
3183 if (inf == NULL || inf->aspace == NULL)
3184 internal_error (__FILE__, __LINE__,
3185 _("Can't determine the current "
3186 "address space of thread %s\n"),
3187 target_pid_to_str (ptid));
3188
3189 return inf->aspace;
3190 }
3191
3192
3193 /* Target file operations. */
3194
3195 static struct target_ops *
3196 default_fileio_target (void)
3197 {
3198 /* If we're already connected to something that can perform
3199 file I/O, use it. Otherwise, try using the native target. */
3200 if (current_target.to_stratum >= process_stratum)
3201 return current_target.beneath;
3202 else
3203 return find_default_run_target ("file I/O");
3204 }
3205
3206 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3207 target file descriptor, or -1 if an error occurs (and set
3208 *TARGET_ERRNO). */
3209 int
3210 target_fileio_open (const char *filename, int flags, int mode,
3211 int *target_errno)
3212 {
3213 struct target_ops *t;
3214
3215 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3216 {
3217 if (t->to_fileio_open != NULL)
3218 {
3219 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3220
3221 if (targetdebug)
3222 fprintf_unfiltered (gdb_stdlog,
3223 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3224 filename, flags, mode,
3225 fd, fd != -1 ? 0 : *target_errno);
3226 return fd;
3227 }
3228 }
3229
3230 *target_errno = FILEIO_ENOSYS;
3231 return -1;
3232 }
3233
3234 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3235 Return the number of bytes written, or -1 if an error occurs
3236 (and set *TARGET_ERRNO). */
3237 int
3238 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3239 ULONGEST offset, int *target_errno)
3240 {
3241 struct target_ops *t;
3242
3243 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3244 {
3245 if (t->to_fileio_pwrite != NULL)
3246 {
3247 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3248 target_errno);
3249
3250 if (targetdebug)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "target_fileio_pwrite (%d,...,%d,%s) "
3253 "= %d (%d)\n",
3254 fd, len, pulongest (offset),
3255 ret, ret != -1 ? 0 : *target_errno);
3256 return ret;
3257 }
3258 }
3259
3260 *target_errno = FILEIO_ENOSYS;
3261 return -1;
3262 }
3263
3264 /* Read up to LEN bytes FD on the target into READ_BUF.
3265 Return the number of bytes read, or -1 if an error occurs
3266 (and set *TARGET_ERRNO). */
3267 int
3268 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3269 ULONGEST offset, int *target_errno)
3270 {
3271 struct target_ops *t;
3272
3273 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3274 {
3275 if (t->to_fileio_pread != NULL)
3276 {
3277 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3278 target_errno);
3279
3280 if (targetdebug)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "target_fileio_pread (%d,...,%d,%s) "
3283 "= %d (%d)\n",
3284 fd, len, pulongest (offset),
3285 ret, ret != -1 ? 0 : *target_errno);
3286 return ret;
3287 }
3288 }
3289
3290 *target_errno = FILEIO_ENOSYS;
3291 return -1;
3292 }
3293
3294 /* Close FD on the target. Return 0, or -1 if an error occurs
3295 (and set *TARGET_ERRNO). */
3296 int
3297 target_fileio_close (int fd, int *target_errno)
3298 {
3299 struct target_ops *t;
3300
3301 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3302 {
3303 if (t->to_fileio_close != NULL)
3304 {
3305 int ret = t->to_fileio_close (t, fd, target_errno);
3306
3307 if (targetdebug)
3308 fprintf_unfiltered (gdb_stdlog,
3309 "target_fileio_close (%d) = %d (%d)\n",
3310 fd, ret, ret != -1 ? 0 : *target_errno);
3311 return ret;
3312 }
3313 }
3314
3315 *target_errno = FILEIO_ENOSYS;
3316 return -1;
3317 }
3318
3319 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3320 occurs (and set *TARGET_ERRNO). */
3321 int
3322 target_fileio_unlink (const char *filename, int *target_errno)
3323 {
3324 struct target_ops *t;
3325
3326 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3327 {
3328 if (t->to_fileio_unlink != NULL)
3329 {
3330 int ret = t->to_fileio_unlink (t, filename, target_errno);
3331
3332 if (targetdebug)
3333 fprintf_unfiltered (gdb_stdlog,
3334 "target_fileio_unlink (%s) = %d (%d)\n",
3335 filename, ret, ret != -1 ? 0 : *target_errno);
3336 return ret;
3337 }
3338 }
3339
3340 *target_errno = FILEIO_ENOSYS;
3341 return -1;
3342 }
3343
3344 /* Read value of symbolic link FILENAME on the target. Return a
3345 null-terminated string allocated via xmalloc, or NULL if an error
3346 occurs (and set *TARGET_ERRNO). */
3347 char *
3348 target_fileio_readlink (const char *filename, int *target_errno)
3349 {
3350 struct target_ops *t;
3351
3352 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3353 {
3354 if (t->to_fileio_readlink != NULL)
3355 {
3356 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3357
3358 if (targetdebug)
3359 fprintf_unfiltered (gdb_stdlog,
3360 "target_fileio_readlink (%s) = %s (%d)\n",
3361 filename, ret? ret : "(nil)",
3362 ret? 0 : *target_errno);
3363 return ret;
3364 }
3365 }
3366
3367 *target_errno = FILEIO_ENOSYS;
3368 return NULL;
3369 }
3370
3371 static void
3372 target_fileio_close_cleanup (void *opaque)
3373 {
3374 int fd = *(int *) opaque;
3375 int target_errno;
3376
3377 target_fileio_close (fd, &target_errno);
3378 }
3379
3380 /* Read target file FILENAME. Store the result in *BUF_P and
3381 return the size of the transferred data. PADDING additional bytes are
3382 available in *BUF_P. This is a helper function for
3383 target_fileio_read_alloc; see the declaration of that function for more
3384 information. */
3385
3386 static LONGEST
3387 target_fileio_read_alloc_1 (const char *filename,
3388 gdb_byte **buf_p, int padding)
3389 {
3390 struct cleanup *close_cleanup;
3391 size_t buf_alloc, buf_pos;
3392 gdb_byte *buf;
3393 LONGEST n;
3394 int fd;
3395 int target_errno;
3396
3397 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3398 if (fd == -1)
3399 return -1;
3400
3401 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3402
3403 /* Start by reading up to 4K at a time. The target will throttle
3404 this number down if necessary. */
3405 buf_alloc = 4096;
3406 buf = xmalloc (buf_alloc);
3407 buf_pos = 0;
3408 while (1)
3409 {
3410 n = target_fileio_pread (fd, &buf[buf_pos],
3411 buf_alloc - buf_pos - padding, buf_pos,
3412 &target_errno);
3413 if (n < 0)
3414 {
3415 /* An error occurred. */
3416 do_cleanups (close_cleanup);
3417 xfree (buf);
3418 return -1;
3419 }
3420 else if (n == 0)
3421 {
3422 /* Read all there was. */
3423 do_cleanups (close_cleanup);
3424 if (buf_pos == 0)
3425 xfree (buf);
3426 else
3427 *buf_p = buf;
3428 return buf_pos;
3429 }
3430
3431 buf_pos += n;
3432
3433 /* If the buffer is filling up, expand it. */
3434 if (buf_alloc < buf_pos * 2)
3435 {
3436 buf_alloc *= 2;
3437 buf = xrealloc (buf, buf_alloc);
3438 }
3439
3440 QUIT;
3441 }
3442 }
3443
3444 /* Read target file FILENAME. Store the result in *BUF_P and return
3445 the size of the transferred data. See the declaration in "target.h"
3446 function for more information about the return value. */
3447
3448 LONGEST
3449 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3450 {
3451 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3452 }
3453
3454 /* Read target file FILENAME. The result is NUL-terminated and
3455 returned as a string, allocated using xmalloc. If an error occurs
3456 or the transfer is unsupported, NULL is returned. Empty objects
3457 are returned as allocated but empty strings. A warning is issued
3458 if the result contains any embedded NUL bytes. */
3459
3460 char *
3461 target_fileio_read_stralloc (const char *filename)
3462 {
3463 gdb_byte *buffer;
3464 char *bufstr;
3465 LONGEST i, transferred;
3466
3467 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3468 bufstr = (char *) buffer;
3469
3470 if (transferred < 0)
3471 return NULL;
3472
3473 if (transferred == 0)
3474 return xstrdup ("");
3475
3476 bufstr[transferred] = 0;
3477
3478 /* Check for embedded NUL bytes; but allow trailing NULs. */
3479 for (i = strlen (bufstr); i < transferred; i++)
3480 if (bufstr[i] != 0)
3481 {
3482 warning (_("target file %s "
3483 "contained unexpected null characters"),
3484 filename);
3485 break;
3486 }
3487
3488 return bufstr;
3489 }
3490
3491
3492 static int
3493 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3494 CORE_ADDR addr, int len)
3495 {
3496 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3497 }
3498
3499 static int
3500 default_watchpoint_addr_within_range (struct target_ops *target,
3501 CORE_ADDR addr,
3502 CORE_ADDR start, int length)
3503 {
3504 return addr >= start && addr < start + length;
3505 }
3506
3507 static struct gdbarch *
3508 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3509 {
3510 return target_gdbarch ();
3511 }
3512
3513 static int
3514 return_zero (void)
3515 {
3516 return 0;
3517 }
3518
3519 static int
3520 return_minus_one (void)
3521 {
3522 return -1;
3523 }
3524
3525 static void *
3526 return_null (void)
3527 {
3528 return 0;
3529 }
3530
3531 /*
3532 * Find the next target down the stack from the specified target.
3533 */
3534
3535 struct target_ops *
3536 find_target_beneath (struct target_ops *t)
3537 {
3538 return t->beneath;
3539 }
3540
3541 /* See target.h. */
3542
3543 struct target_ops *
3544 find_target_at (enum strata stratum)
3545 {
3546 struct target_ops *t;
3547
3548 for (t = current_target.beneath; t != NULL; t = t->beneath)
3549 if (t->to_stratum == stratum)
3550 return t;
3551
3552 return NULL;
3553 }
3554
3555 \f
3556 /* The inferior process has died. Long live the inferior! */
3557
3558 void
3559 generic_mourn_inferior (void)
3560 {
3561 ptid_t ptid;
3562
3563 ptid = inferior_ptid;
3564 inferior_ptid = null_ptid;
3565
3566 /* Mark breakpoints uninserted in case something tries to delete a
3567 breakpoint while we delete the inferior's threads (which would
3568 fail, since the inferior is long gone). */
3569 mark_breakpoints_out ();
3570
3571 if (!ptid_equal (ptid, null_ptid))
3572 {
3573 int pid = ptid_get_pid (ptid);
3574 exit_inferior (pid);
3575 }
3576
3577 /* Note this wipes step-resume breakpoints, so needs to be done
3578 after exit_inferior, which ends up referencing the step-resume
3579 breakpoints through clear_thread_inferior_resources. */
3580 breakpoint_init_inferior (inf_exited);
3581
3582 registers_changed ();
3583
3584 reopen_exec_file ();
3585 reinit_frame_cache ();
3586
3587 if (deprecated_detach_hook)
3588 deprecated_detach_hook ();
3589 }
3590 \f
3591 /* Convert a normal process ID to a string. Returns the string in a
3592 static buffer. */
3593
3594 char *
3595 normal_pid_to_str (ptid_t ptid)
3596 {
3597 static char buf[32];
3598
3599 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3600 return buf;
3601 }
3602
3603 static char *
3604 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3605 {
3606 return normal_pid_to_str (ptid);
3607 }
3608
3609 /* Error-catcher for target_find_memory_regions. */
3610 static int
3611 dummy_find_memory_regions (struct target_ops *self,
3612 find_memory_region_ftype ignore1, void *ignore2)
3613 {
3614 error (_("Command not implemented for this target."));
3615 return 0;
3616 }
3617
3618 /* Error-catcher for target_make_corefile_notes. */
3619 static char *
3620 dummy_make_corefile_notes (struct target_ops *self,
3621 bfd *ignore1, int *ignore2)
3622 {
3623 error (_("Command not implemented for this target."));
3624 return NULL;
3625 }
3626
3627 /* Set up the handful of non-empty slots needed by the dummy target
3628 vector. */
3629
3630 static void
3631 init_dummy_target (void)
3632 {
3633 dummy_target.to_shortname = "None";
3634 dummy_target.to_longname = "None";
3635 dummy_target.to_doc = "";
3636 dummy_target.to_create_inferior = find_default_create_inferior;
3637 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3638 dummy_target.to_supports_disable_randomization
3639 = find_default_supports_disable_randomization;
3640 dummy_target.to_pid_to_str = dummy_pid_to_str;
3641 dummy_target.to_stratum = dummy_stratum;
3642 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3643 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3644 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3645 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3646 dummy_target.to_has_execution
3647 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3648 dummy_target.to_magic = OPS_MAGIC;
3649
3650 install_dummy_methods (&dummy_target);
3651 }
3652 \f
3653 static void
3654 debug_to_open (char *args, int from_tty)
3655 {
3656 debug_target.to_open (args, from_tty);
3657
3658 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3659 }
3660
3661 void
3662 target_close (struct target_ops *targ)
3663 {
3664 gdb_assert (!target_is_pushed (targ));
3665
3666 if (targ->to_xclose != NULL)
3667 targ->to_xclose (targ);
3668 else if (targ->to_close != NULL)
3669 targ->to_close (targ);
3670
3671 if (targetdebug)
3672 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3673 }
3674
3675 void
3676 target_attach (char *args, int from_tty)
3677 {
3678 current_target.to_attach (&current_target, args, from_tty);
3679 if (targetdebug)
3680 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3681 args, from_tty);
3682 }
3683
3684 int
3685 target_thread_alive (ptid_t ptid)
3686 {
3687 struct target_ops *t;
3688
3689 for (t = current_target.beneath; t != NULL; t = t->beneath)
3690 {
3691 if (t->to_thread_alive != NULL)
3692 {
3693 int retval;
3694
3695 retval = t->to_thread_alive (t, ptid);
3696 if (targetdebug)
3697 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3698 ptid_get_pid (ptid), retval);
3699
3700 return retval;
3701 }
3702 }
3703
3704 return 0;
3705 }
3706
3707 void
3708 target_find_new_threads (void)
3709 {
3710 struct target_ops *t;
3711
3712 for (t = current_target.beneath; t != NULL; t = t->beneath)
3713 {
3714 if (t->to_find_new_threads != NULL)
3715 {
3716 t->to_find_new_threads (t);
3717 if (targetdebug)
3718 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3719
3720 return;
3721 }
3722 }
3723 }
3724
3725 void
3726 target_stop (ptid_t ptid)
3727 {
3728 if (!may_stop)
3729 {
3730 warning (_("May not interrupt or stop the target, ignoring attempt"));
3731 return;
3732 }
3733
3734 (*current_target.to_stop) (&current_target, ptid);
3735 }
3736
3737 static void
3738 debug_to_post_attach (struct target_ops *self, int pid)
3739 {
3740 debug_target.to_post_attach (&debug_target, pid);
3741
3742 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3743 }
3744
3745 /* Concatenate ELEM to LIST, a comma separate list, and return the
3746 result. The LIST incoming argument is released. */
3747
3748 static char *
3749 str_comma_list_concat_elem (char *list, const char *elem)
3750 {
3751 if (list == NULL)
3752 return xstrdup (elem);
3753 else
3754 return reconcat (list, list, ", ", elem, (char *) NULL);
3755 }
3756
3757 /* Helper for target_options_to_string. If OPT is present in
3758 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3759 Returns the new resulting string. OPT is removed from
3760 TARGET_OPTIONS. */
3761
3762 static char *
3763 do_option (int *target_options, char *ret,
3764 int opt, char *opt_str)
3765 {
3766 if ((*target_options & opt) != 0)
3767 {
3768 ret = str_comma_list_concat_elem (ret, opt_str);
3769 *target_options &= ~opt;
3770 }
3771
3772 return ret;
3773 }
3774
3775 char *
3776 target_options_to_string (int target_options)
3777 {
3778 char *ret = NULL;
3779
3780 #define DO_TARG_OPTION(OPT) \
3781 ret = do_option (&target_options, ret, OPT, #OPT)
3782
3783 DO_TARG_OPTION (TARGET_WNOHANG);
3784
3785 if (target_options != 0)
3786 ret = str_comma_list_concat_elem (ret, "unknown???");
3787
3788 if (ret == NULL)
3789 ret = xstrdup ("");
3790 return ret;
3791 }
3792
3793 static void
3794 debug_print_register (const char * func,
3795 struct regcache *regcache, int regno)
3796 {
3797 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3798
3799 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3800 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3801 && gdbarch_register_name (gdbarch, regno) != NULL
3802 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3803 fprintf_unfiltered (gdb_stdlog, "(%s)",
3804 gdbarch_register_name (gdbarch, regno));
3805 else
3806 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3807 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3808 {
3809 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3810 int i, size = register_size (gdbarch, regno);
3811 gdb_byte buf[MAX_REGISTER_SIZE];
3812
3813 regcache_raw_collect (regcache, regno, buf);
3814 fprintf_unfiltered (gdb_stdlog, " = ");
3815 for (i = 0; i < size; i++)
3816 {
3817 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3818 }
3819 if (size <= sizeof (LONGEST))
3820 {
3821 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3822
3823 fprintf_unfiltered (gdb_stdlog, " %s %s",
3824 core_addr_to_string_nz (val), plongest (val));
3825 }
3826 }
3827 fprintf_unfiltered (gdb_stdlog, "\n");
3828 }
3829
3830 void
3831 target_fetch_registers (struct regcache *regcache, int regno)
3832 {
3833 struct target_ops *t;
3834
3835 for (t = current_target.beneath; t != NULL; t = t->beneath)
3836 {
3837 if (t->to_fetch_registers != NULL)
3838 {
3839 t->to_fetch_registers (t, regcache, regno);
3840 if (targetdebug)
3841 debug_print_register ("target_fetch_registers", regcache, regno);
3842 return;
3843 }
3844 }
3845 }
3846
3847 void
3848 target_store_registers (struct regcache *regcache, int regno)
3849 {
3850 struct target_ops *t;
3851
3852 if (!may_write_registers)
3853 error (_("Writing to registers is not allowed (regno %d)"), regno);
3854
3855 current_target.to_store_registers (&current_target, regcache, regno);
3856 if (targetdebug)
3857 {
3858 debug_print_register ("target_store_registers", regcache, regno);
3859 }
3860 }
3861
3862 int
3863 target_core_of_thread (ptid_t ptid)
3864 {
3865 struct target_ops *t;
3866
3867 for (t = current_target.beneath; t != NULL; t = t->beneath)
3868 {
3869 if (t->to_core_of_thread != NULL)
3870 {
3871 int retval = t->to_core_of_thread (t, ptid);
3872
3873 if (targetdebug)
3874 fprintf_unfiltered (gdb_stdlog,
3875 "target_core_of_thread (%d) = %d\n",
3876 ptid_get_pid (ptid), retval);
3877 return retval;
3878 }
3879 }
3880
3881 return -1;
3882 }
3883
3884 int
3885 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3886 {
3887 struct target_ops *t;
3888
3889 for (t = current_target.beneath; t != NULL; t = t->beneath)
3890 {
3891 if (t->to_verify_memory != NULL)
3892 {
3893 int retval = t->to_verify_memory (t, data, memaddr, size);
3894
3895 if (targetdebug)
3896 fprintf_unfiltered (gdb_stdlog,
3897 "target_verify_memory (%s, %s) = %d\n",
3898 paddress (target_gdbarch (), memaddr),
3899 pulongest (size),
3900 retval);
3901 return retval;
3902 }
3903 }
3904
3905 tcomplain ();
3906 }
3907
3908 /* The documentation for this function is in its prototype declaration in
3909 target.h. */
3910
3911 int
3912 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3913 {
3914 struct target_ops *t;
3915
3916 for (t = current_target.beneath; t != NULL; t = t->beneath)
3917 if (t->to_insert_mask_watchpoint != NULL)
3918 {
3919 int ret;
3920
3921 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3922
3923 if (targetdebug)
3924 fprintf_unfiltered (gdb_stdlog, "\
3925 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3926 core_addr_to_string (addr),
3927 core_addr_to_string (mask), rw, ret);
3928
3929 return ret;
3930 }
3931
3932 return 1;
3933 }
3934
3935 /* The documentation for this function is in its prototype declaration in
3936 target.h. */
3937
3938 int
3939 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3940 {
3941 struct target_ops *t;
3942
3943 for (t = current_target.beneath; t != NULL; t = t->beneath)
3944 if (t->to_remove_mask_watchpoint != NULL)
3945 {
3946 int ret;
3947
3948 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3949
3950 if (targetdebug)
3951 fprintf_unfiltered (gdb_stdlog, "\
3952 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3953 core_addr_to_string (addr),
3954 core_addr_to_string (mask), rw, ret);
3955
3956 return ret;
3957 }
3958
3959 return 1;
3960 }
3961
3962 /* The documentation for this function is in its prototype declaration
3963 in target.h. */
3964
3965 int
3966 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3967 {
3968 struct target_ops *t;
3969
3970 for (t = current_target.beneath; t != NULL; t = t->beneath)
3971 if (t->to_masked_watch_num_registers != NULL)
3972 return t->to_masked_watch_num_registers (t, addr, mask);
3973
3974 return -1;
3975 }
3976
3977 /* The documentation for this function is in its prototype declaration
3978 in target.h. */
3979
3980 int
3981 target_ranged_break_num_registers (void)
3982 {
3983 struct target_ops *t;
3984
3985 for (t = current_target.beneath; t != NULL; t = t->beneath)
3986 if (t->to_ranged_break_num_registers != NULL)
3987 return t->to_ranged_break_num_registers (t);
3988
3989 return -1;
3990 }
3991
3992 /* See target.h. */
3993
3994 struct btrace_target_info *
3995 target_enable_btrace (ptid_t ptid)
3996 {
3997 struct target_ops *t;
3998
3999 for (t = current_target.beneath; t != NULL; t = t->beneath)
4000 if (t->to_enable_btrace != NULL)
4001 return t->to_enable_btrace (t, ptid);
4002
4003 tcomplain ();
4004 return NULL;
4005 }
4006
4007 /* See target.h. */
4008
4009 void
4010 target_disable_btrace (struct btrace_target_info *btinfo)
4011 {
4012 struct target_ops *t;
4013
4014 for (t = current_target.beneath; t != NULL; t = t->beneath)
4015 if (t->to_disable_btrace != NULL)
4016 {
4017 t->to_disable_btrace (t, btinfo);
4018 return;
4019 }
4020
4021 tcomplain ();
4022 }
4023
4024 /* See target.h. */
4025
4026 void
4027 target_teardown_btrace (struct btrace_target_info *btinfo)
4028 {
4029 struct target_ops *t;
4030
4031 for (t = current_target.beneath; t != NULL; t = t->beneath)
4032 if (t->to_teardown_btrace != NULL)
4033 {
4034 t->to_teardown_btrace (t, btinfo);
4035 return;
4036 }
4037
4038 tcomplain ();
4039 }
4040
4041 /* See target.h. */
4042
4043 enum btrace_error
4044 target_read_btrace (VEC (btrace_block_s) **btrace,
4045 struct btrace_target_info *btinfo,
4046 enum btrace_read_type type)
4047 {
4048 struct target_ops *t;
4049
4050 for (t = current_target.beneath; t != NULL; t = t->beneath)
4051 if (t->to_read_btrace != NULL)
4052 return t->to_read_btrace (t, btrace, btinfo, type);
4053
4054 tcomplain ();
4055 return BTRACE_ERR_NOT_SUPPORTED;
4056 }
4057
4058 /* See target.h. */
4059
4060 void
4061 target_stop_recording (void)
4062 {
4063 struct target_ops *t;
4064
4065 for (t = current_target.beneath; t != NULL; t = t->beneath)
4066 if (t->to_stop_recording != NULL)
4067 {
4068 t->to_stop_recording (t);
4069 return;
4070 }
4071
4072 /* This is optional. */
4073 }
4074
4075 /* See target.h. */
4076
4077 void
4078 target_info_record (void)
4079 {
4080 struct target_ops *t;
4081
4082 for (t = current_target.beneath; t != NULL; t = t->beneath)
4083 if (t->to_info_record != NULL)
4084 {
4085 t->to_info_record (t);
4086 return;
4087 }
4088
4089 tcomplain ();
4090 }
4091
4092 /* See target.h. */
4093
4094 void
4095 target_save_record (const char *filename)
4096 {
4097 struct target_ops *t;
4098
4099 for (t = current_target.beneath; t != NULL; t = t->beneath)
4100 if (t->to_save_record != NULL)
4101 {
4102 t->to_save_record (t, filename);
4103 return;
4104 }
4105
4106 tcomplain ();
4107 }
4108
4109 /* See target.h. */
4110
4111 int
4112 target_supports_delete_record (void)
4113 {
4114 struct target_ops *t;
4115
4116 for (t = current_target.beneath; t != NULL; t = t->beneath)
4117 if (t->to_delete_record != NULL)
4118 return 1;
4119
4120 return 0;
4121 }
4122
4123 /* See target.h. */
4124
4125 void
4126 target_delete_record (void)
4127 {
4128 struct target_ops *t;
4129
4130 for (t = current_target.beneath; t != NULL; t = t->beneath)
4131 if (t->to_delete_record != NULL)
4132 {
4133 t->to_delete_record (t);
4134 return;
4135 }
4136
4137 tcomplain ();
4138 }
4139
4140 /* See target.h. */
4141
4142 int
4143 target_record_is_replaying (void)
4144 {
4145 struct target_ops *t;
4146
4147 for (t = current_target.beneath; t != NULL; t = t->beneath)
4148 if (t->to_record_is_replaying != NULL)
4149 return t->to_record_is_replaying (t);
4150
4151 return 0;
4152 }
4153
4154 /* See target.h. */
4155
4156 void
4157 target_goto_record_begin (void)
4158 {
4159 struct target_ops *t;
4160
4161 for (t = current_target.beneath; t != NULL; t = t->beneath)
4162 if (t->to_goto_record_begin != NULL)
4163 {
4164 t->to_goto_record_begin (t);
4165 return;
4166 }
4167
4168 tcomplain ();
4169 }
4170
4171 /* See target.h. */
4172
4173 void
4174 target_goto_record_end (void)
4175 {
4176 struct target_ops *t;
4177
4178 for (t = current_target.beneath; t != NULL; t = t->beneath)
4179 if (t->to_goto_record_end != NULL)
4180 {
4181 t->to_goto_record_end (t);
4182 return;
4183 }
4184
4185 tcomplain ();
4186 }
4187
4188 /* See target.h. */
4189
4190 void
4191 target_goto_record (ULONGEST insn)
4192 {
4193 struct target_ops *t;
4194
4195 for (t = current_target.beneath; t != NULL; t = t->beneath)
4196 if (t->to_goto_record != NULL)
4197 {
4198 t->to_goto_record (t, insn);
4199 return;
4200 }
4201
4202 tcomplain ();
4203 }
4204
4205 /* See target.h. */
4206
4207 void
4208 target_insn_history (int size, int flags)
4209 {
4210 struct target_ops *t;
4211
4212 for (t = current_target.beneath; t != NULL; t = t->beneath)
4213 if (t->to_insn_history != NULL)
4214 {
4215 t->to_insn_history (t, size, flags);
4216 return;
4217 }
4218
4219 tcomplain ();
4220 }
4221
4222 /* See target.h. */
4223
4224 void
4225 target_insn_history_from (ULONGEST from, int size, int flags)
4226 {
4227 struct target_ops *t;
4228
4229 for (t = current_target.beneath; t != NULL; t = t->beneath)
4230 if (t->to_insn_history_from != NULL)
4231 {
4232 t->to_insn_history_from (t, from, size, flags);
4233 return;
4234 }
4235
4236 tcomplain ();
4237 }
4238
4239 /* See target.h. */
4240
4241 void
4242 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4243 {
4244 struct target_ops *t;
4245
4246 for (t = current_target.beneath; t != NULL; t = t->beneath)
4247 if (t->to_insn_history_range != NULL)
4248 {
4249 t->to_insn_history_range (t, begin, end, flags);
4250 return;
4251 }
4252
4253 tcomplain ();
4254 }
4255
4256 /* See target.h. */
4257
4258 void
4259 target_call_history (int size, int flags)
4260 {
4261 struct target_ops *t;
4262
4263 for (t = current_target.beneath; t != NULL; t = t->beneath)
4264 if (t->to_call_history != NULL)
4265 {
4266 t->to_call_history (t, size, flags);
4267 return;
4268 }
4269
4270 tcomplain ();
4271 }
4272
4273 /* See target.h. */
4274
4275 void
4276 target_call_history_from (ULONGEST begin, int size, int flags)
4277 {
4278 struct target_ops *t;
4279
4280 for (t = current_target.beneath; t != NULL; t = t->beneath)
4281 if (t->to_call_history_from != NULL)
4282 {
4283 t->to_call_history_from (t, begin, size, flags);
4284 return;
4285 }
4286
4287 tcomplain ();
4288 }
4289
4290 /* See target.h. */
4291
4292 void
4293 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4294 {
4295 struct target_ops *t;
4296
4297 for (t = current_target.beneath; t != NULL; t = t->beneath)
4298 if (t->to_call_history_range != NULL)
4299 {
4300 t->to_call_history_range (t, begin, end, flags);
4301 return;
4302 }
4303
4304 tcomplain ();
4305 }
4306
4307 static void
4308 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4309 {
4310 debug_target.to_prepare_to_store (&debug_target, regcache);
4311
4312 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4313 }
4314
4315 /* See target.h. */
4316
4317 const struct frame_unwind *
4318 target_get_unwinder (void)
4319 {
4320 struct target_ops *t;
4321
4322 for (t = current_target.beneath; t != NULL; t = t->beneath)
4323 if (t->to_get_unwinder != NULL)
4324 return t->to_get_unwinder;
4325
4326 return NULL;
4327 }
4328
4329 /* See target.h. */
4330
4331 const struct frame_unwind *
4332 target_get_tailcall_unwinder (void)
4333 {
4334 struct target_ops *t;
4335
4336 for (t = current_target.beneath; t != NULL; t = t->beneath)
4337 if (t->to_get_tailcall_unwinder != NULL)
4338 return t->to_get_tailcall_unwinder;
4339
4340 return NULL;
4341 }
4342
4343 /* See target.h. */
4344
4345 CORE_ADDR
4346 forward_target_decr_pc_after_break (struct target_ops *ops,
4347 struct gdbarch *gdbarch)
4348 {
4349 for (; ops != NULL; ops = ops->beneath)
4350 if (ops->to_decr_pc_after_break != NULL)
4351 return ops->to_decr_pc_after_break (ops, gdbarch);
4352
4353 return gdbarch_decr_pc_after_break (gdbarch);
4354 }
4355
4356 /* See target.h. */
4357
4358 CORE_ADDR
4359 target_decr_pc_after_break (struct gdbarch *gdbarch)
4360 {
4361 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4362 }
4363
4364 static int
4365 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4366 int write, struct mem_attrib *attrib,
4367 struct target_ops *target)
4368 {
4369 int retval;
4370
4371 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4372 attrib, target);
4373
4374 fprintf_unfiltered (gdb_stdlog,
4375 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4376 paddress (target_gdbarch (), memaddr), len,
4377 write ? "write" : "read", retval);
4378
4379 if (retval > 0)
4380 {
4381 int i;
4382
4383 fputs_unfiltered (", bytes =", gdb_stdlog);
4384 for (i = 0; i < retval; i++)
4385 {
4386 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4387 {
4388 if (targetdebug < 2 && i > 0)
4389 {
4390 fprintf_unfiltered (gdb_stdlog, " ...");
4391 break;
4392 }
4393 fprintf_unfiltered (gdb_stdlog, "\n");
4394 }
4395
4396 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4397 }
4398 }
4399
4400 fputc_unfiltered ('\n', gdb_stdlog);
4401
4402 return retval;
4403 }
4404
4405 static void
4406 debug_to_files_info (struct target_ops *target)
4407 {
4408 debug_target.to_files_info (target);
4409
4410 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4411 }
4412
4413 static int
4414 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4415 struct bp_target_info *bp_tgt)
4416 {
4417 int retval;
4418
4419 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4420
4421 fprintf_unfiltered (gdb_stdlog,
4422 "target_insert_breakpoint (%s, xxx) = %ld\n",
4423 core_addr_to_string (bp_tgt->placed_address),
4424 (unsigned long) retval);
4425 return retval;
4426 }
4427
4428 static int
4429 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4430 struct bp_target_info *bp_tgt)
4431 {
4432 int retval;
4433
4434 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4435
4436 fprintf_unfiltered (gdb_stdlog,
4437 "target_remove_breakpoint (%s, xxx) = %ld\n",
4438 core_addr_to_string (bp_tgt->placed_address),
4439 (unsigned long) retval);
4440 return retval;
4441 }
4442
4443 static int
4444 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4445 int type, int cnt, int from_tty)
4446 {
4447 int retval;
4448
4449 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4450 type, cnt, from_tty);
4451
4452 fprintf_unfiltered (gdb_stdlog,
4453 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4454 (unsigned long) type,
4455 (unsigned long) cnt,
4456 (unsigned long) from_tty,
4457 (unsigned long) retval);
4458 return retval;
4459 }
4460
4461 static int
4462 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4463 CORE_ADDR addr, int len)
4464 {
4465 CORE_ADDR retval;
4466
4467 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4468 addr, len);
4469
4470 fprintf_unfiltered (gdb_stdlog,
4471 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4472 core_addr_to_string (addr), (unsigned long) len,
4473 core_addr_to_string (retval));
4474 return retval;
4475 }
4476
4477 static int
4478 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4479 CORE_ADDR addr, int len, int rw,
4480 struct expression *cond)
4481 {
4482 int retval;
4483
4484 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4485 addr, len,
4486 rw, cond);
4487
4488 fprintf_unfiltered (gdb_stdlog,
4489 "target_can_accel_watchpoint_condition "
4490 "(%s, %d, %d, %s) = %ld\n",
4491 core_addr_to_string (addr), len, rw,
4492 host_address_to_string (cond), (unsigned long) retval);
4493 return retval;
4494 }
4495
4496 static int
4497 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4498 {
4499 int retval;
4500
4501 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4502
4503 fprintf_unfiltered (gdb_stdlog,
4504 "target_stopped_by_watchpoint () = %ld\n",
4505 (unsigned long) retval);
4506 return retval;
4507 }
4508
4509 static int
4510 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4511 {
4512 int retval;
4513
4514 retval = debug_target.to_stopped_data_address (target, addr);
4515
4516 fprintf_unfiltered (gdb_stdlog,
4517 "target_stopped_data_address ([%s]) = %ld\n",
4518 core_addr_to_string (*addr),
4519 (unsigned long)retval);
4520 return retval;
4521 }
4522
4523 static int
4524 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4525 CORE_ADDR addr,
4526 CORE_ADDR start, int length)
4527 {
4528 int retval;
4529
4530 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4531 start, length);
4532
4533 fprintf_filtered (gdb_stdlog,
4534 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4535 core_addr_to_string (addr), core_addr_to_string (start),
4536 length, retval);
4537 return retval;
4538 }
4539
4540 static int
4541 debug_to_insert_hw_breakpoint (struct target_ops *self,
4542 struct gdbarch *gdbarch,
4543 struct bp_target_info *bp_tgt)
4544 {
4545 int retval;
4546
4547 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4548 gdbarch, bp_tgt);
4549
4550 fprintf_unfiltered (gdb_stdlog,
4551 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4552 core_addr_to_string (bp_tgt->placed_address),
4553 (unsigned long) retval);
4554 return retval;
4555 }
4556
4557 static int
4558 debug_to_remove_hw_breakpoint (struct target_ops *self,
4559 struct gdbarch *gdbarch,
4560 struct bp_target_info *bp_tgt)
4561 {
4562 int retval;
4563
4564 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4565 gdbarch, bp_tgt);
4566
4567 fprintf_unfiltered (gdb_stdlog,
4568 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4569 core_addr_to_string (bp_tgt->placed_address),
4570 (unsigned long) retval);
4571 return retval;
4572 }
4573
4574 static int
4575 debug_to_insert_watchpoint (struct target_ops *self,
4576 CORE_ADDR addr, int len, int type,
4577 struct expression *cond)
4578 {
4579 int retval;
4580
4581 retval = debug_target.to_insert_watchpoint (&debug_target,
4582 addr, len, type, cond);
4583
4584 fprintf_unfiltered (gdb_stdlog,
4585 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4586 core_addr_to_string (addr), len, type,
4587 host_address_to_string (cond), (unsigned long) retval);
4588 return retval;
4589 }
4590
4591 static int
4592 debug_to_remove_watchpoint (struct target_ops *self,
4593 CORE_ADDR addr, int len, int type,
4594 struct expression *cond)
4595 {
4596 int retval;
4597
4598 retval = debug_target.to_remove_watchpoint (&debug_target,
4599 addr, len, type, cond);
4600
4601 fprintf_unfiltered (gdb_stdlog,
4602 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4603 core_addr_to_string (addr), len, type,
4604 host_address_to_string (cond), (unsigned long) retval);
4605 return retval;
4606 }
4607
4608 static void
4609 debug_to_terminal_init (struct target_ops *self)
4610 {
4611 debug_target.to_terminal_init (&debug_target);
4612
4613 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4614 }
4615
4616 static void
4617 debug_to_terminal_inferior (struct target_ops *self)
4618 {
4619 debug_target.to_terminal_inferior (&debug_target);
4620
4621 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4622 }
4623
4624 static void
4625 debug_to_terminal_ours_for_output (struct target_ops *self)
4626 {
4627 debug_target.to_terminal_ours_for_output (&debug_target);
4628
4629 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4630 }
4631
4632 static void
4633 debug_to_terminal_ours (struct target_ops *self)
4634 {
4635 debug_target.to_terminal_ours (&debug_target);
4636
4637 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4638 }
4639
4640 static void
4641 debug_to_terminal_save_ours (struct target_ops *self)
4642 {
4643 debug_target.to_terminal_save_ours (&debug_target);
4644
4645 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4646 }
4647
4648 static void
4649 debug_to_terminal_info (struct target_ops *self,
4650 const char *arg, int from_tty)
4651 {
4652 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4653
4654 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4655 from_tty);
4656 }
4657
4658 static void
4659 debug_to_load (struct target_ops *self, char *args, int from_tty)
4660 {
4661 debug_target.to_load (&debug_target, args, from_tty);
4662
4663 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4664 }
4665
4666 static void
4667 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4668 {
4669 debug_target.to_post_startup_inferior (&debug_target, ptid);
4670
4671 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4672 ptid_get_pid (ptid));
4673 }
4674
4675 static int
4676 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4677 {
4678 int retval;
4679
4680 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4681
4682 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4683 pid, retval);
4684
4685 return retval;
4686 }
4687
4688 static int
4689 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4690 {
4691 int retval;
4692
4693 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4694
4695 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4696 pid, retval);
4697
4698 return retval;
4699 }
4700
4701 static int
4702 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4703 {
4704 int retval;
4705
4706 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4707
4708 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4709 pid, retval);
4710
4711 return retval;
4712 }
4713
4714 static int
4715 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4716 {
4717 int retval;
4718
4719 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4720
4721 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4722 pid, retval);
4723
4724 return retval;
4725 }
4726
4727 static int
4728 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4729 {
4730 int retval;
4731
4732 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4733
4734 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4735 pid, retval);
4736
4737 return retval;
4738 }
4739
4740 static int
4741 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4742 {
4743 int retval;
4744
4745 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4746
4747 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4748 pid, retval);
4749
4750 return retval;
4751 }
4752
4753 static int
4754 debug_to_has_exited (struct target_ops *self,
4755 int pid, int wait_status, int *exit_status)
4756 {
4757 int has_exited;
4758
4759 has_exited = debug_target.to_has_exited (&debug_target,
4760 pid, wait_status, exit_status);
4761
4762 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4763 pid, wait_status, *exit_status, has_exited);
4764
4765 return has_exited;
4766 }
4767
4768 static int
4769 debug_to_can_run (struct target_ops *self)
4770 {
4771 int retval;
4772
4773 retval = debug_target.to_can_run (&debug_target);
4774
4775 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4776
4777 return retval;
4778 }
4779
4780 static struct gdbarch *
4781 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4782 {
4783 struct gdbarch *retval;
4784
4785 retval = debug_target.to_thread_architecture (ops, ptid);
4786
4787 fprintf_unfiltered (gdb_stdlog,
4788 "target_thread_architecture (%s) = %s [%s]\n",
4789 target_pid_to_str (ptid),
4790 host_address_to_string (retval),
4791 gdbarch_bfd_arch_info (retval)->printable_name);
4792 return retval;
4793 }
4794
4795 static void
4796 debug_to_stop (struct target_ops *self, ptid_t ptid)
4797 {
4798 debug_target.to_stop (&debug_target, ptid);
4799
4800 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4801 target_pid_to_str (ptid));
4802 }
4803
4804 static void
4805 debug_to_rcmd (struct target_ops *self, char *command,
4806 struct ui_file *outbuf)
4807 {
4808 debug_target.to_rcmd (&debug_target, command, outbuf);
4809 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4810 }
4811
4812 static char *
4813 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4814 {
4815 char *exec_file;
4816
4817 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4818
4819 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4820 pid, exec_file);
4821
4822 return exec_file;
4823 }
4824
4825 static void
4826 setup_target_debug (void)
4827 {
4828 memcpy (&debug_target, &current_target, sizeof debug_target);
4829
4830 current_target.to_open = debug_to_open;
4831 current_target.to_post_attach = debug_to_post_attach;
4832 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4833 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4834 current_target.to_files_info = debug_to_files_info;
4835 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4836 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4837 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4838 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4839 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4840 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4841 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4842 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4843 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4844 current_target.to_watchpoint_addr_within_range
4845 = debug_to_watchpoint_addr_within_range;
4846 current_target.to_region_ok_for_hw_watchpoint
4847 = debug_to_region_ok_for_hw_watchpoint;
4848 current_target.to_can_accel_watchpoint_condition
4849 = debug_to_can_accel_watchpoint_condition;
4850 current_target.to_terminal_init = debug_to_terminal_init;
4851 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4852 current_target.to_terminal_ours_for_output
4853 = debug_to_terminal_ours_for_output;
4854 current_target.to_terminal_ours = debug_to_terminal_ours;
4855 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4856 current_target.to_terminal_info = debug_to_terminal_info;
4857 current_target.to_load = debug_to_load;
4858 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4859 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4860 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4861 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4862 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4863 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4864 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4865 current_target.to_has_exited = debug_to_has_exited;
4866 current_target.to_can_run = debug_to_can_run;
4867 current_target.to_stop = debug_to_stop;
4868 current_target.to_rcmd = debug_to_rcmd;
4869 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4870 current_target.to_thread_architecture = debug_to_thread_architecture;
4871 }
4872 \f
4873
4874 static char targ_desc[] =
4875 "Names of targets and files being debugged.\nShows the entire \
4876 stack of targets currently in use (including the exec-file,\n\
4877 core-file, and process, if any), as well as the symbol file name.";
4878
4879 static void
4880 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4881 {
4882 error (_("\"monitor\" command not supported by this target."));
4883 }
4884
4885 static void
4886 do_monitor_command (char *cmd,
4887 int from_tty)
4888 {
4889 target_rcmd (cmd, gdb_stdtarg);
4890 }
4891
4892 /* Print the name of each layers of our target stack. */
4893
4894 static void
4895 maintenance_print_target_stack (char *cmd, int from_tty)
4896 {
4897 struct target_ops *t;
4898
4899 printf_filtered (_("The current target stack is:\n"));
4900
4901 for (t = target_stack; t != NULL; t = t->beneath)
4902 {
4903 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4904 }
4905 }
4906
4907 /* Controls if async mode is permitted. */
4908 int target_async_permitted = 0;
4909
4910 /* The set command writes to this variable. If the inferior is
4911 executing, target_async_permitted is *not* updated. */
4912 static int target_async_permitted_1 = 0;
4913
4914 static void
4915 set_target_async_command (char *args, int from_tty,
4916 struct cmd_list_element *c)
4917 {
4918 if (have_live_inferiors ())
4919 {
4920 target_async_permitted_1 = target_async_permitted;
4921 error (_("Cannot change this setting while the inferior is running."));
4922 }
4923
4924 target_async_permitted = target_async_permitted_1;
4925 }
4926
4927 static void
4928 show_target_async_command (struct ui_file *file, int from_tty,
4929 struct cmd_list_element *c,
4930 const char *value)
4931 {
4932 fprintf_filtered (file,
4933 _("Controlling the inferior in "
4934 "asynchronous mode is %s.\n"), value);
4935 }
4936
4937 /* Temporary copies of permission settings. */
4938
4939 static int may_write_registers_1 = 1;
4940 static int may_write_memory_1 = 1;
4941 static int may_insert_breakpoints_1 = 1;
4942 static int may_insert_tracepoints_1 = 1;
4943 static int may_insert_fast_tracepoints_1 = 1;
4944 static int may_stop_1 = 1;
4945
4946 /* Make the user-set values match the real values again. */
4947
4948 void
4949 update_target_permissions (void)
4950 {
4951 may_write_registers_1 = may_write_registers;
4952 may_write_memory_1 = may_write_memory;
4953 may_insert_breakpoints_1 = may_insert_breakpoints;
4954 may_insert_tracepoints_1 = may_insert_tracepoints;
4955 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4956 may_stop_1 = may_stop;
4957 }
4958
4959 /* The one function handles (most of) the permission flags in the same
4960 way. */
4961
4962 static void
4963 set_target_permissions (char *args, int from_tty,
4964 struct cmd_list_element *c)
4965 {
4966 if (target_has_execution)
4967 {
4968 update_target_permissions ();
4969 error (_("Cannot change this setting while the inferior is running."));
4970 }
4971
4972 /* Make the real values match the user-changed values. */
4973 may_write_registers = may_write_registers_1;
4974 may_insert_breakpoints = may_insert_breakpoints_1;
4975 may_insert_tracepoints = may_insert_tracepoints_1;
4976 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4977 may_stop = may_stop_1;
4978 update_observer_mode ();
4979 }
4980
4981 /* Set memory write permission independently of observer mode. */
4982
4983 static void
4984 set_write_memory_permission (char *args, int from_tty,
4985 struct cmd_list_element *c)
4986 {
4987 /* Make the real values match the user-changed values. */
4988 may_write_memory = may_write_memory_1;
4989 update_observer_mode ();
4990 }
4991
4992
4993 void
4994 initialize_targets (void)
4995 {
4996 init_dummy_target ();
4997 push_target (&dummy_target);
4998
4999 add_info ("target", target_info, targ_desc);
5000 add_info ("files", target_info, targ_desc);
5001
5002 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5003 Set target debugging."), _("\
5004 Show target debugging."), _("\
5005 When non-zero, target debugging is enabled. Higher numbers are more\n\
5006 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5007 command."),
5008 NULL,
5009 show_targetdebug,
5010 &setdebuglist, &showdebuglist);
5011
5012 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5013 &trust_readonly, _("\
5014 Set mode for reading from readonly sections."), _("\
5015 Show mode for reading from readonly sections."), _("\
5016 When this mode is on, memory reads from readonly sections (such as .text)\n\
5017 will be read from the object file instead of from the target. This will\n\
5018 result in significant performance improvement for remote targets."),
5019 NULL,
5020 show_trust_readonly,
5021 &setlist, &showlist);
5022
5023 add_com ("monitor", class_obscure, do_monitor_command,
5024 _("Send a command to the remote monitor (remote targets only)."));
5025
5026 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5027 _("Print the name of each layer of the internal target stack."),
5028 &maintenanceprintlist);
5029
5030 add_setshow_boolean_cmd ("target-async", no_class,
5031 &target_async_permitted_1, _("\
5032 Set whether gdb controls the inferior in asynchronous mode."), _("\
5033 Show whether gdb controls the inferior in asynchronous mode."), _("\
5034 Tells gdb whether to control the inferior in asynchronous mode."),
5035 set_target_async_command,
5036 show_target_async_command,
5037 &setlist,
5038 &showlist);
5039
5040 add_setshow_boolean_cmd ("may-write-registers", class_support,
5041 &may_write_registers_1, _("\
5042 Set permission to write into registers."), _("\
5043 Show permission to write into registers."), _("\
5044 When this permission is on, GDB may write into the target's registers.\n\
5045 Otherwise, any sort of write attempt will result in an error."),
5046 set_target_permissions, NULL,
5047 &setlist, &showlist);
5048
5049 add_setshow_boolean_cmd ("may-write-memory", class_support,
5050 &may_write_memory_1, _("\
5051 Set permission to write into target memory."), _("\
5052 Show permission to write into target memory."), _("\
5053 When this permission is on, GDB may write into the target's memory.\n\
5054 Otherwise, any sort of write attempt will result in an error."),
5055 set_write_memory_permission, NULL,
5056 &setlist, &showlist);
5057
5058 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5059 &may_insert_breakpoints_1, _("\
5060 Set permission to insert breakpoints in the target."), _("\
5061 Show permission to insert breakpoints in the target."), _("\
5062 When this permission is on, GDB may insert breakpoints in the program.\n\
5063 Otherwise, any sort of insertion attempt will result in an error."),
5064 set_target_permissions, NULL,
5065 &setlist, &showlist);
5066
5067 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5068 &may_insert_tracepoints_1, _("\
5069 Set permission to insert tracepoints in the target."), _("\
5070 Show permission to insert tracepoints in the target."), _("\
5071 When this permission is on, GDB may insert tracepoints in the program.\n\
5072 Otherwise, any sort of insertion attempt will result in an error."),
5073 set_target_permissions, NULL,
5074 &setlist, &showlist);
5075
5076 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5077 &may_insert_fast_tracepoints_1, _("\
5078 Set permission to insert fast tracepoints in the target."), _("\
5079 Show permission to insert fast tracepoints in the target."), _("\
5080 When this permission is on, GDB may insert fast tracepoints.\n\
5081 Otherwise, any sort of insertion attempt will result in an error."),
5082 set_target_permissions, NULL,
5083 &setlist, &showlist);
5084
5085 add_setshow_boolean_cmd ("may-interrupt", class_support,
5086 &may_stop_1, _("\
5087 Set permission to interrupt or signal the target."), _("\
5088 Show permission to interrupt or signal the target."), _("\
5089 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5090 Otherwise, any attempt to interrupt or stop will be ignored."),
5091 set_target_permissions, NULL,
5092 &setlist, &showlist);
5093 }
This page took 0.130942 seconds and 5 git commands to generate.