Move simple_search_memory to gdbsupport/search.cc
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
51 #include "terminal.h"
52 #include <unordered_map>
53 #include "target-connection.h"
54 #include "valprint.h"
55
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
57
58 static void default_terminal_info (struct target_ops *, const char *, int);
59
60 static int default_watchpoint_addr_within_range (struct target_ops *,
61 CORE_ADDR, CORE_ADDR, int);
62
63 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 CORE_ADDR, int);
65
66 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
67
68 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 long lwp, long tid);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
116
117 target_ops *
118 current_top_target ()
119 {
120 return current_inferior ()->top_target ();
121 }
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static bool trust_readonly = false;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
140
141 bool may_write_registers = true;
142
143 bool may_write_memory = true;
144
145 bool may_insert_breakpoints = true;
146
147 bool may_insert_tracepoints = true;
148
149 bool may_insert_fast_tracepoints = true;
150
151 bool may_stop = true;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 int
174 target_has_memory ()
175 {
176 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
177 if (t->has_memory ())
178 return 1;
179
180 return 0;
181 }
182
183 int
184 target_has_stack ()
185 {
186 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
187 if (t->has_stack ())
188 return 1;
189
190 return 0;
191 }
192
193 int
194 target_has_registers ()
195 {
196 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
197 if (t->has_registers ())
198 return 1;
199
200 return 0;
201 }
202
203 bool
204 target_has_execution (inferior *inf)
205 {
206 if (inf == nullptr)
207 inf = current_inferior ();
208
209 for (target_ops *t = inf->top_target ();
210 t != nullptr;
211 t = inf->find_target_beneath (t))
212 if (t->has_execution (inf))
213 return true;
214
215 return false;
216 }
217
218 /* This is used to implement the various target commands. */
219
220 static void
221 open_target (const char *args, int from_tty, struct cmd_list_element *command)
222 {
223 auto *ti = static_cast<target_info *> (get_cmd_context (command));
224 target_open_ftype *func = target_factories[ti];
225
226 if (targetdebug)
227 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
228 ti->shortname);
229
230 func (args, from_tty);
231
232 if (targetdebug)
233 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
234 ti->shortname, args, from_tty);
235 }
236
237 /* See target.h. */
238
239 void
240 add_target (const target_info &t, target_open_ftype *func,
241 completer_ftype *completer)
242 {
243 struct cmd_list_element *c;
244
245 auto &func_slot = target_factories[&t];
246 if (func_slot != nullptr)
247 internal_error (__FILE__, __LINE__,
248 _("target already added (\"%s\")."), t.shortname);
249 func_slot = func;
250
251 if (targetlist == NULL)
252 add_basic_prefix_cmd ("target", class_run, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
260 set_cmd_context (c, (void *) &t);
261 set_cmd_sfunc (c, open_target);
262 if (completer != NULL)
263 set_cmd_completer (c, completer);
264 }
265
266 /* See target.h. */
267
268 void
269 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
270 {
271 struct cmd_list_element *c;
272 char *alt;
273
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
275 see PR cli/15104. */
276 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
277 set_cmd_sfunc (c, open_target);
278 set_cmd_context (c, (void *) &tinfo);
279 alt = xstrprintf ("target %s", tinfo.shortname);
280 deprecate_cmd (c, alt);
281 }
282
283 /* Stub functions */
284
285 void
286 target_kill (void)
287 {
288 current_top_target ()->kill ();
289 }
290
291 void
292 target_load (const char *arg, int from_tty)
293 {
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg, from_tty);
296 }
297
298 /* Define it. */
299
300 target_terminal_state target_terminal::m_terminal_state
301 = target_terminal_state::is_ours;
302
303 /* See target/target.h. */
304
305 void
306 target_terminal::init (void)
307 {
308 current_top_target ()->terminal_init ();
309
310 m_terminal_state = target_terminal_state::is_ours;
311 }
312
313 /* See target/target.h. */
314
315 void
316 target_terminal::inferior (void)
317 {
318 struct ui *ui = current_ui;
319
320 /* A background resume (``run&'') should leave GDB in control of the
321 terminal. */
322 if (ui->prompt_state != PROMPT_BLOCKED)
323 return;
324
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
329 if (ui != main_ui)
330 return;
331
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
334
335 struct inferior *inf = current_inferior ();
336
337 if (inf->terminal_state != target_terminal_state::is_inferior)
338 {
339 current_top_target ()->terminal_inferior ();
340 inf->terminal_state = target_terminal_state::is_inferior;
341 }
342
343 m_terminal_state = target_terminal_state::is_inferior;
344
345 /* If the user hit C-c before, pretend that it was hit right
346 here. */
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
349 }
350
351 /* See target/target.h. */
352
353 void
354 target_terminal::restore_inferior (void)
355 {
356 struct ui *ui = current_ui;
357
358 /* See target_terminal::inferior(). */
359 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
360 return;
361
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
365
366 {
367 scoped_restore_current_inferior restore_inferior;
368
369 for (::inferior *inf : all_inferiors ())
370 {
371 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
372 {
373 set_current_inferior (inf);
374 current_top_target ()->terminal_inferior ();
375 inf->terminal_state = target_terminal_state::is_inferior;
376 }
377 }
378 }
379
380 m_terminal_state = target_terminal_state::is_inferior;
381
382 /* If the user hit C-c before, pretend that it was hit right
383 here. */
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
386 }
387
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
390
391 static void
392 target_terminal_is_ours_kind (target_terminal_state desired_state)
393 {
394 scoped_restore_current_inferior restore_inferior;
395
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
400
401 for (inferior *inf : all_inferiors ())
402 {
403 if (inf->terminal_state == target_terminal_state::is_inferior)
404 {
405 set_current_inferior (inf);
406 current_top_target ()->terminal_save_inferior ();
407 }
408 }
409
410 for (inferior *inf : all_inferiors ())
411 {
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
415 though. */
416 if (inf->terminal_state != target_terminal_state::is_ours
417 && inf->terminal_state != desired_state)
418 {
419 set_current_inferior (inf);
420 if (desired_state == target_terminal_state::is_ours)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state == target_terminal_state::is_ours_for_output)
423 current_top_target ()->terminal_ours_for_output ();
424 else
425 gdb_assert_not_reached ("unhandled desired state");
426 inf->terminal_state = desired_state;
427 }
428 }
429 }
430
431 /* See target/target.h. */
432
433 void
434 target_terminal::ours ()
435 {
436 struct ui *ui = current_ui;
437
438 /* See target_terminal::inferior. */
439 if (ui != main_ui)
440 return;
441
442 if (m_terminal_state == target_terminal_state::is_ours)
443 return;
444
445 target_terminal_is_ours_kind (target_terminal_state::is_ours);
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::ours_for_output ()
453 {
454 struct ui *ui = current_ui;
455
456 /* See target_terminal::inferior. */
457 if (ui != main_ui)
458 return;
459
460 if (!target_terminal::is_inferior ())
461 return;
462
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
464 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
465 }
466
467 /* See target/target.h. */
468
469 void
470 target_terminal::info (const char *arg, int from_tty)
471 {
472 current_top_target ()->terminal_info (arg, from_tty);
473 }
474
475 /* See target.h. */
476
477 bool
478 target_supports_terminal_ours (void)
479 {
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
484 created. */
485 inferior *inf = current_inferior ();
486
487 if (inf == nullptr)
488 return false;
489 return inf->top_target ()->supports_terminal_ours ();
490 }
491
492 static void
493 tcomplain (void)
494 {
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
497 }
498
499 void
500 noprocess (void)
501 {
502 error (_("You can't do that without a process to debug."));
503 }
504
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
507 {
508 printf_unfiltered (_("No saved terminal information.\n"));
509 }
510
511 /* A default implementation for the to_get_ada_task_ptid target method.
512
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
516
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
519 {
520 return ptid_t (inferior_ptid.pid (), lwp, tid);
521 }
522
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
525 {
526 if (!target_can_execute_reverse ())
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
533 }
534
535 /* See target.h. */
536
537 void
538 decref_target (target_ops *t)
539 {
540 t->decref ();
541 if (t->refcount () == 0)
542 {
543 if (t->stratum () == process_stratum)
544 connection_list_remove (as_process_stratum_target (t));
545 target_close (t);
546 }
547 }
548
549 /* See target.h. */
550
551 void
552 target_stack::push (target_ops *t)
553 {
554 t->incref ();
555
556 strata stratum = t->stratum ();
557
558 if (stratum == process_stratum)
559 connection_list_add (as_process_stratum_target (t));
560
561 /* If there's already a target at this stratum, remove it. */
562
563 if (m_stack[stratum] != NULL)
564 unpush (m_stack[stratum]);
565
566 /* Now add the new one. */
567 m_stack[stratum] = t;
568
569 if (m_top < stratum)
570 m_top = stratum;
571 }
572
573 /* See target.h. */
574
575 void
576 push_target (struct target_ops *t)
577 {
578 current_inferior ()->push_target (t);
579 }
580
581 /* See target.h. */
582
583 void
584 push_target (target_ops_up &&t)
585 {
586 current_inferior ()->push_target (t.get ());
587 t.release ();
588 }
589
590 /* See target.h. */
591
592 int
593 unpush_target (struct target_ops *t)
594 {
595 return current_inferior ()->unpush_target (t);
596 }
597
598 /* See target.h. */
599
600 bool
601 target_stack::unpush (target_ops *t)
602 {
603 gdb_assert (t != NULL);
604
605 strata stratum = t->stratum ();
606
607 if (stratum == dummy_stratum)
608 internal_error (__FILE__, __LINE__,
609 _("Attempt to unpush the dummy target"));
610
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
613
614 if (m_stack[stratum] != t)
615 {
616 /* If T wasn't pushed, quit. Only open targets should be
617 closed. */
618 return false;
619 }
620
621 /* Unchain the target. */
622 m_stack[stratum] = NULL;
623
624 if (m_top == stratum)
625 m_top = t->beneath ()->stratum ();
626
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
632 still. */
633 decref_target (t);
634
635 return true;
636 }
637
638 /* Unpush TARGET and assert that it worked. */
639
640 static void
641 unpush_target_and_assert (struct target_ops *target)
642 {
643 if (!unpush_target (target))
644 {
645 fprintf_unfiltered (gdb_stderr,
646 "pop_all_targets couldn't find target %s\n",
647 target->shortname ());
648 internal_error (__FILE__, __LINE__,
649 _("failed internal consistency check"));
650 }
651 }
652
653 void
654 pop_all_targets_above (enum strata above_stratum)
655 {
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
657 unpush_target_and_assert (current_top_target ());
658 }
659
660 /* See target.h. */
661
662 void
663 pop_all_targets_at_and_above (enum strata stratum)
664 {
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
666 unpush_target_and_assert (current_top_target ());
667 }
668
669 void
670 pop_all_targets (void)
671 {
672 pop_all_targets_above (dummy_stratum);
673 }
674
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
677
678 bool
679 target_is_pushed (target_ops *t)
680 {
681 return current_inferior ()->target_is_pushed (t);
682 }
683
684 /* Default implementation of to_get_thread_local_address. */
685
686 static void
687 generic_tls_error (void)
688 {
689 throw_error (TLS_GENERIC_ERROR,
690 _("Cannot find thread-local variables on this target"));
691 }
692
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
695 CORE_ADDR
696 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
697 {
698 volatile CORE_ADDR addr = 0;
699 struct target_ops *target = current_top_target ();
700 struct gdbarch *gdbarch = target_gdbarch ();
701
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
703 {
704 ptid_t ptid = inferior_ptid;
705
706 try
707 {
708 CORE_ADDR lm_addr;
709
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
712 objfile);
713
714 if (gdbarch_get_thread_local_address_p (gdbarch))
715 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
716 offset);
717 else
718 addr = target->get_thread_local_address (ptid, lm_addr, offset);
719 }
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception &ex)
723 {
724 int objfile_is_library = (objfile->flags & OBJF_SHARED);
725
726 switch (ex.error)
727 {
728 case TLS_NO_LIBRARY_SUPPORT_ERROR:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
731 break;
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
733 if (objfile_is_library)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 else
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile));
739 break;
740 case TLS_NOT_ALLOCATED_YET_ERROR:
741 if (objfile_is_library)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
745 "for %s"),
746 objfile_name (objfile),
747 target_pid_to_str (ptid).c_str ());
748 else
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
752 "for %s"),
753 objfile_name (objfile),
754 target_pid_to_str (ptid).c_str ());
755 break;
756 case TLS_GENERIC_ERROR:
757 if (objfile_is_library)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid).c_str (),
761 objfile_name (objfile), ex.what ());
762 else
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid).c_str (),
766 objfile_name (objfile), ex.what ());
767 break;
768 default:
769 throw;
770 break;
771 }
772 }
773 }
774 else
775 error (_("Cannot find thread-local variables on this target"));
776
777 return addr;
778 }
779
780 const char *
781 target_xfer_status_to_string (enum target_xfer_status status)
782 {
783 #define CASE(X) case X: return #X
784 switch (status)
785 {
786 CASE(TARGET_XFER_E_IO);
787 CASE(TARGET_XFER_UNAVAILABLE);
788 default:
789 return "<unknown>";
790 }
791 #undef CASE
792 };
793
794
795 /* See target.h. */
796
797 gdb::unique_xmalloc_ptr<char>
798 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
799 {
800 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
801
802 int ignore;
803 if (bytes_read == nullptr)
804 bytes_read = &ignore;
805
806 /* Note that the endian-ness does not matter here. */
807 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
808 &buffer, bytes_read);
809 if (errcode != 0)
810 return {};
811
812 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
813 }
814
815 struct target_section_table *
816 target_get_section_table (struct target_ops *target)
817 {
818 return target->get_section_table ();
819 }
820
821 /* Find a section containing ADDR. */
822
823 struct target_section *
824 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
825 {
826 struct target_section_table *table = target_get_section_table (target);
827 struct target_section *secp;
828
829 if (table == NULL)
830 return NULL;
831
832 for (secp = table->sections; secp < table->sections_end; secp++)
833 {
834 if (addr >= secp->addr && addr < secp->endaddr)
835 return secp;
836 }
837 return NULL;
838 }
839
840
841 /* Helper for the memory xfer routines. Checks the attributes of the
842 memory region of MEMADDR against the read or write being attempted.
843 If the access is permitted returns true, otherwise returns false.
844 REGION_P is an optional output parameter. If not-NULL, it is
845 filled with a pointer to the memory region of MEMADDR. REG_LEN
846 returns LEN trimmed to the end of the region. This is how much the
847 caller can continue requesting, if the access is permitted. A
848 single xfer request must not straddle memory region boundaries. */
849
850 static int
851 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
852 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
853 struct mem_region **region_p)
854 {
855 struct mem_region *region;
856
857 region = lookup_mem_region (memaddr);
858
859 if (region_p != NULL)
860 *region_p = region;
861
862 switch (region->attrib.mode)
863 {
864 case MEM_RO:
865 if (writebuf != NULL)
866 return 0;
867 break;
868
869 case MEM_WO:
870 if (readbuf != NULL)
871 return 0;
872 break;
873
874 case MEM_FLASH:
875 /* We only support writing to flash during "load" for now. */
876 if (writebuf != NULL)
877 error (_("Writing to flash memory forbidden in this context"));
878 break;
879
880 case MEM_NONE:
881 return 0;
882 }
883
884 /* region->hi == 0 means there's no upper bound. */
885 if (memaddr + len < region->hi || region->hi == 0)
886 *reg_len = len;
887 else
888 *reg_len = region->hi - memaddr;
889
890 return 1;
891 }
892
893 /* Read memory from more than one valid target. A core file, for
894 instance, could have some of memory but delegate other bits to
895 the target below it. So, we must manually try all targets. */
896
897 enum target_xfer_status
898 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
899 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
900 ULONGEST *xfered_len)
901 {
902 enum target_xfer_status res;
903
904 do
905 {
906 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
907 readbuf, writebuf, memaddr, len,
908 xfered_len);
909 if (res == TARGET_XFER_OK)
910 break;
911
912 /* Stop if the target reports that the memory is not available. */
913 if (res == TARGET_XFER_UNAVAILABLE)
914 break;
915
916 /* Don't continue past targets which have all the memory.
917 At one time, this code was necessary to read data from
918 executables / shared libraries when data for the requested
919 addresses weren't available in the core file. But now the
920 core target handles this case itself. */
921 if (ops->has_all_memory ())
922 break;
923
924 ops = ops->beneath ();
925 }
926 while (ops != NULL);
927
928 /* The cache works at the raw memory level. Make sure the cache
929 gets updated with raw contents no matter what kind of memory
930 object was originally being written. Note we do write-through
931 first, so that if it fails, we don't write to the cache contents
932 that never made it to the target. */
933 if (writebuf != NULL
934 && inferior_ptid != null_ptid
935 && target_dcache_init_p ()
936 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
937 {
938 DCACHE *dcache = target_dcache_get ();
939
940 /* Note that writing to an area of memory which wasn't present
941 in the cache doesn't cause it to be loaded in. */
942 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
943 }
944
945 return res;
946 }
947
948 /* Perform a partial memory transfer.
949 For docs see target.h, to_xfer_partial. */
950
951 static enum target_xfer_status
952 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
953 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
954 ULONGEST len, ULONGEST *xfered_len)
955 {
956 enum target_xfer_status res;
957 ULONGEST reg_len;
958 struct mem_region *region;
959 struct inferior *inf;
960
961 /* For accesses to unmapped overlay sections, read directly from
962 files. Must do this first, as MEMADDR may need adjustment. */
963 if (readbuf != NULL && overlay_debugging)
964 {
965 struct obj_section *section = find_pc_overlay (memaddr);
966
967 if (pc_in_unmapped_range (memaddr, section))
968 {
969 struct target_section_table *table
970 = target_get_section_table (ops);
971 const char *section_name = section->the_bfd_section->name;
972
973 memaddr = overlay_mapped_address (memaddr, section);
974
975 auto match_cb = [=] (const struct target_section *s)
976 {
977 return (strcmp (section_name, s->the_bfd_section->name) == 0);
978 };
979
980 return section_table_xfer_memory_partial (readbuf, writebuf,
981 memaddr, len, xfered_len,
982 table->sections,
983 table->sections_end,
984 match_cb);
985 }
986 }
987
988 /* Try the executable files, if "trust-readonly-sections" is set. */
989 if (readbuf != NULL && trust_readonly)
990 {
991 struct target_section *secp;
992 struct target_section_table *table;
993
994 secp = target_section_by_addr (ops, memaddr);
995 if (secp != NULL
996 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
997 {
998 table = target_get_section_table (ops);
999 return section_table_xfer_memory_partial (readbuf, writebuf,
1000 memaddr, len, xfered_len,
1001 table->sections,
1002 table->sections_end);
1003 }
1004 }
1005
1006 /* Try GDB's internal data cache. */
1007
1008 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1009 &region))
1010 return TARGET_XFER_E_IO;
1011
1012 if (inferior_ptid != null_ptid)
1013 inf = current_inferior ();
1014 else
1015 inf = NULL;
1016
1017 if (inf != NULL
1018 && readbuf != NULL
1019 /* The dcache reads whole cache lines; that doesn't play well
1020 with reading from a trace buffer, because reading outside of
1021 the collected memory range fails. */
1022 && get_traceframe_number () == -1
1023 && (region->attrib.cache
1024 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1025 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1026 {
1027 DCACHE *dcache = target_dcache_get_or_init ();
1028
1029 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1030 reg_len, xfered_len);
1031 }
1032
1033 /* If none of those methods found the memory we wanted, fall back
1034 to a target partial transfer. Normally a single call to
1035 to_xfer_partial is enough; if it doesn't recognize an object
1036 it will call the to_xfer_partial of the next target down.
1037 But for memory this won't do. Memory is the only target
1038 object which can be read from more than one valid target.
1039 A core file, for instance, could have some of memory but
1040 delegate other bits to the target below it. So, we must
1041 manually try all targets. */
1042
1043 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1044 xfered_len);
1045
1046 /* If we still haven't got anything, return the last error. We
1047 give up. */
1048 return res;
1049 }
1050
1051 /* Perform a partial memory transfer. For docs see target.h,
1052 to_xfer_partial. */
1053
1054 static enum target_xfer_status
1055 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1056 gdb_byte *readbuf, const gdb_byte *writebuf,
1057 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1058 {
1059 enum target_xfer_status res;
1060
1061 /* Zero length requests are ok and require no work. */
1062 if (len == 0)
1063 return TARGET_XFER_EOF;
1064
1065 memaddr = address_significant (target_gdbarch (), memaddr);
1066
1067 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1068 breakpoint insns, thus hiding out from higher layers whether
1069 there are software breakpoints inserted in the code stream. */
1070 if (readbuf != NULL)
1071 {
1072 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1073 xfered_len);
1074
1075 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1076 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1077 }
1078 else
1079 {
1080 /* A large write request is likely to be partially satisfied
1081 by memory_xfer_partial_1. We will continually malloc
1082 and free a copy of the entire write request for breakpoint
1083 shadow handling even though we only end up writing a small
1084 subset of it. Cap writes to a limit specified by the target
1085 to mitigate this. */
1086 len = std::min (ops->get_memory_xfer_limit (), len);
1087
1088 gdb::byte_vector buf (writebuf, writebuf + len);
1089 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1090 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1091 xfered_len);
1092 }
1093
1094 return res;
1095 }
1096
1097 scoped_restore_tmpl<int>
1098 make_scoped_restore_show_memory_breakpoints (int show)
1099 {
1100 return make_scoped_restore (&show_memory_breakpoints, show);
1101 }
1102
1103 /* For docs see target.h, to_xfer_partial. */
1104
1105 enum target_xfer_status
1106 target_xfer_partial (struct target_ops *ops,
1107 enum target_object object, const char *annex,
1108 gdb_byte *readbuf, const gdb_byte *writebuf,
1109 ULONGEST offset, ULONGEST len,
1110 ULONGEST *xfered_len)
1111 {
1112 enum target_xfer_status retval;
1113
1114 /* Transfer is done when LEN is zero. */
1115 if (len == 0)
1116 return TARGET_XFER_EOF;
1117
1118 if (writebuf && !may_write_memory)
1119 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1120 core_addr_to_string_nz (offset), plongest (len));
1121
1122 *xfered_len = 0;
1123
1124 /* If this is a memory transfer, let the memory-specific code
1125 have a look at it instead. Memory transfers are more
1126 complicated. */
1127 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1128 || object == TARGET_OBJECT_CODE_MEMORY)
1129 retval = memory_xfer_partial (ops, object, readbuf,
1130 writebuf, offset, len, xfered_len);
1131 else if (object == TARGET_OBJECT_RAW_MEMORY)
1132 {
1133 /* Skip/avoid accessing the target if the memory region
1134 attributes block the access. Check this here instead of in
1135 raw_memory_xfer_partial as otherwise we'd end up checking
1136 this twice in the case of the memory_xfer_partial path is
1137 taken; once before checking the dcache, and another in the
1138 tail call to raw_memory_xfer_partial. */
1139 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1140 NULL))
1141 return TARGET_XFER_E_IO;
1142
1143 /* Request the normal memory object from other layers. */
1144 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1145 xfered_len);
1146 }
1147 else
1148 retval = ops->xfer_partial (object, annex, readbuf,
1149 writebuf, offset, len, xfered_len);
1150
1151 if (targetdebug)
1152 {
1153 const unsigned char *myaddr = NULL;
1154
1155 fprintf_unfiltered (gdb_stdlog,
1156 "%s:target_xfer_partial "
1157 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1158 ops->shortname (),
1159 (int) object,
1160 (annex ? annex : "(null)"),
1161 host_address_to_string (readbuf),
1162 host_address_to_string (writebuf),
1163 core_addr_to_string_nz (offset),
1164 pulongest (len), retval,
1165 pulongest (*xfered_len));
1166
1167 if (readbuf)
1168 myaddr = readbuf;
1169 if (writebuf)
1170 myaddr = writebuf;
1171 if (retval == TARGET_XFER_OK && myaddr != NULL)
1172 {
1173 int i;
1174
1175 fputs_unfiltered (", bytes =", gdb_stdlog);
1176 for (i = 0; i < *xfered_len; i++)
1177 {
1178 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1179 {
1180 if (targetdebug < 2 && i > 0)
1181 {
1182 fprintf_unfiltered (gdb_stdlog, " ...");
1183 break;
1184 }
1185 fprintf_unfiltered (gdb_stdlog, "\n");
1186 }
1187
1188 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1189 }
1190 }
1191
1192 fputc_unfiltered ('\n', gdb_stdlog);
1193 }
1194
1195 /* Check implementations of to_xfer_partial update *XFERED_LEN
1196 properly. Do assertion after printing debug messages, so that we
1197 can find more clues on assertion failure from debugging messages. */
1198 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1199 gdb_assert (*xfered_len > 0);
1200
1201 return retval;
1202 }
1203
1204 /* Read LEN bytes of target memory at address MEMADDR, placing the
1205 results in GDB's memory at MYADDR. Returns either 0 for success or
1206 -1 if any error occurs.
1207
1208 If an error occurs, no guarantee is made about the contents of the data at
1209 MYADDR. In particular, the caller should not depend upon partial reads
1210 filling the buffer with good data. There is no way for the caller to know
1211 how much good data might have been transfered anyway. Callers that can
1212 deal with partial reads should call target_read (which will retry until
1213 it makes no progress, and then return how much was transferred). */
1214
1215 int
1216 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1217 {
1218 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1219 myaddr, memaddr, len) == len)
1220 return 0;
1221 else
1222 return -1;
1223 }
1224
1225 /* See target/target.h. */
1226
1227 int
1228 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1229 {
1230 gdb_byte buf[4];
1231 int r;
1232
1233 r = target_read_memory (memaddr, buf, sizeof buf);
1234 if (r != 0)
1235 return r;
1236 *result = extract_unsigned_integer (buf, sizeof buf,
1237 gdbarch_byte_order (target_gdbarch ()));
1238 return 0;
1239 }
1240
1241 /* Like target_read_memory, but specify explicitly that this is a read
1242 from the target's raw memory. That is, this read bypasses the
1243 dcache, breakpoint shadowing, etc. */
1244
1245 int
1246 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1247 {
1248 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1249 myaddr, memaddr, len) == len)
1250 return 0;
1251 else
1252 return -1;
1253 }
1254
1255 /* Like target_read_memory, but specify explicitly that this is a read from
1256 the target's stack. This may trigger different cache behavior. */
1257
1258 int
1259 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1260 {
1261 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1262 myaddr, memaddr, len) == len)
1263 return 0;
1264 else
1265 return -1;
1266 }
1267
1268 /* Like target_read_memory, but specify explicitly that this is a read from
1269 the target's code. This may trigger different cache behavior. */
1270
1271 int
1272 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1273 {
1274 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1275 myaddr, memaddr, len) == len)
1276 return 0;
1277 else
1278 return -1;
1279 }
1280
1281 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1282 Returns either 0 for success or -1 if any error occurs. If an
1283 error occurs, no guarantee is made about how much data got written.
1284 Callers that can deal with partial writes should call
1285 target_write. */
1286
1287 int
1288 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1289 {
1290 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1291 myaddr, memaddr, len) == len)
1292 return 0;
1293 else
1294 return -1;
1295 }
1296
1297 /* Write LEN bytes from MYADDR to target raw memory at address
1298 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1299 If an error occurs, no guarantee is made about how much data got
1300 written. Callers that can deal with partial writes should call
1301 target_write. */
1302
1303 int
1304 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1305 {
1306 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1307 myaddr, memaddr, len) == len)
1308 return 0;
1309 else
1310 return -1;
1311 }
1312
1313 /* Fetch the target's memory map. */
1314
1315 std::vector<mem_region>
1316 target_memory_map (void)
1317 {
1318 std::vector<mem_region> result = current_top_target ()->memory_map ();
1319 if (result.empty ())
1320 return result;
1321
1322 std::sort (result.begin (), result.end ());
1323
1324 /* Check that regions do not overlap. Simultaneously assign
1325 a numbering for the "mem" commands to use to refer to
1326 each region. */
1327 mem_region *last_one = NULL;
1328 for (size_t ix = 0; ix < result.size (); ix++)
1329 {
1330 mem_region *this_one = &result[ix];
1331 this_one->number = ix;
1332
1333 if (last_one != NULL && last_one->hi > this_one->lo)
1334 {
1335 warning (_("Overlapping regions in memory map: ignoring"));
1336 return std::vector<mem_region> ();
1337 }
1338
1339 last_one = this_one;
1340 }
1341
1342 return result;
1343 }
1344
1345 void
1346 target_flash_erase (ULONGEST address, LONGEST length)
1347 {
1348 current_top_target ()->flash_erase (address, length);
1349 }
1350
1351 void
1352 target_flash_done (void)
1353 {
1354 current_top_target ()->flash_done ();
1355 }
1356
1357 static void
1358 show_trust_readonly (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1360 {
1361 fprintf_filtered (file,
1362 _("Mode for reading from readonly sections is %s.\n"),
1363 value);
1364 }
1365
1366 /* Target vector read/write partial wrapper functions. */
1367
1368 static enum target_xfer_status
1369 target_read_partial (struct target_ops *ops,
1370 enum target_object object,
1371 const char *annex, gdb_byte *buf,
1372 ULONGEST offset, ULONGEST len,
1373 ULONGEST *xfered_len)
1374 {
1375 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1376 xfered_len);
1377 }
1378
1379 static enum target_xfer_status
1380 target_write_partial (struct target_ops *ops,
1381 enum target_object object,
1382 const char *annex, const gdb_byte *buf,
1383 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1384 {
1385 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1386 xfered_len);
1387 }
1388
1389 /* Wrappers to perform the full transfer. */
1390
1391 /* For docs on target_read see target.h. */
1392
1393 LONGEST
1394 target_read (struct target_ops *ops,
1395 enum target_object object,
1396 const char *annex, gdb_byte *buf,
1397 ULONGEST offset, LONGEST len)
1398 {
1399 LONGEST xfered_total = 0;
1400 int unit_size = 1;
1401
1402 /* If we are reading from a memory object, find the length of an addressable
1403 unit for that architecture. */
1404 if (object == TARGET_OBJECT_MEMORY
1405 || object == TARGET_OBJECT_STACK_MEMORY
1406 || object == TARGET_OBJECT_CODE_MEMORY
1407 || object == TARGET_OBJECT_RAW_MEMORY)
1408 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1409
1410 while (xfered_total < len)
1411 {
1412 ULONGEST xfered_partial;
1413 enum target_xfer_status status;
1414
1415 status = target_read_partial (ops, object, annex,
1416 buf + xfered_total * unit_size,
1417 offset + xfered_total, len - xfered_total,
1418 &xfered_partial);
1419
1420 /* Call an observer, notifying them of the xfer progress? */
1421 if (status == TARGET_XFER_EOF)
1422 return xfered_total;
1423 else if (status == TARGET_XFER_OK)
1424 {
1425 xfered_total += xfered_partial;
1426 QUIT;
1427 }
1428 else
1429 return TARGET_XFER_E_IO;
1430
1431 }
1432 return len;
1433 }
1434
1435 /* Assuming that the entire [begin, end) range of memory cannot be
1436 read, try to read whatever subrange is possible to read.
1437
1438 The function returns, in RESULT, either zero or one memory block.
1439 If there's a readable subrange at the beginning, it is completely
1440 read and returned. Any further readable subrange will not be read.
1441 Otherwise, if there's a readable subrange at the end, it will be
1442 completely read and returned. Any readable subranges before it
1443 (obviously, not starting at the beginning), will be ignored. In
1444 other cases -- either no readable subrange, or readable subrange(s)
1445 that is neither at the beginning, or end, nothing is returned.
1446
1447 The purpose of this function is to handle a read across a boundary
1448 of accessible memory in a case when memory map is not available.
1449 The above restrictions are fine for this case, but will give
1450 incorrect results if the memory is 'patchy'. However, supporting
1451 'patchy' memory would require trying to read every single byte,
1452 and it seems unacceptable solution. Explicit memory map is
1453 recommended for this case -- and target_read_memory_robust will
1454 take care of reading multiple ranges then. */
1455
1456 static void
1457 read_whatever_is_readable (struct target_ops *ops,
1458 const ULONGEST begin, const ULONGEST end,
1459 int unit_size,
1460 std::vector<memory_read_result> *result)
1461 {
1462 ULONGEST current_begin = begin;
1463 ULONGEST current_end = end;
1464 int forward;
1465 ULONGEST xfered_len;
1466
1467 /* If we previously failed to read 1 byte, nothing can be done here. */
1468 if (end - begin <= 1)
1469 return;
1470
1471 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1472
1473 /* Check that either first or the last byte is readable, and give up
1474 if not. This heuristic is meant to permit reading accessible memory
1475 at the boundary of accessible region. */
1476 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1477 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1478 {
1479 forward = 1;
1480 ++current_begin;
1481 }
1482 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1483 buf.get () + (end - begin) - 1, end - 1, 1,
1484 &xfered_len) == TARGET_XFER_OK)
1485 {
1486 forward = 0;
1487 --current_end;
1488 }
1489 else
1490 return;
1491
1492 /* Loop invariant is that the [current_begin, current_end) was previously
1493 found to be not readable as a whole.
1494
1495 Note loop condition -- if the range has 1 byte, we can't divide the range
1496 so there's no point trying further. */
1497 while (current_end - current_begin > 1)
1498 {
1499 ULONGEST first_half_begin, first_half_end;
1500 ULONGEST second_half_begin, second_half_end;
1501 LONGEST xfer;
1502 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1503
1504 if (forward)
1505 {
1506 first_half_begin = current_begin;
1507 first_half_end = middle;
1508 second_half_begin = middle;
1509 second_half_end = current_end;
1510 }
1511 else
1512 {
1513 first_half_begin = middle;
1514 first_half_end = current_end;
1515 second_half_begin = current_begin;
1516 second_half_end = middle;
1517 }
1518
1519 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1520 buf.get () + (first_half_begin - begin) * unit_size,
1521 first_half_begin,
1522 first_half_end - first_half_begin);
1523
1524 if (xfer == first_half_end - first_half_begin)
1525 {
1526 /* This half reads up fine. So, the error must be in the
1527 other half. */
1528 current_begin = second_half_begin;
1529 current_end = second_half_end;
1530 }
1531 else
1532 {
1533 /* This half is not readable. Because we've tried one byte, we
1534 know some part of this half if actually readable. Go to the next
1535 iteration to divide again and try to read.
1536
1537 We don't handle the other half, because this function only tries
1538 to read a single readable subrange. */
1539 current_begin = first_half_begin;
1540 current_end = first_half_end;
1541 }
1542 }
1543
1544 if (forward)
1545 {
1546 /* The [begin, current_begin) range has been read. */
1547 result->emplace_back (begin, current_end, std::move (buf));
1548 }
1549 else
1550 {
1551 /* The [current_end, end) range has been read. */
1552 LONGEST region_len = end - current_end;
1553
1554 gdb::unique_xmalloc_ptr<gdb_byte> data
1555 ((gdb_byte *) xmalloc (region_len * unit_size));
1556 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1557 region_len * unit_size);
1558 result->emplace_back (current_end, end, std::move (data));
1559 }
1560 }
1561
1562 std::vector<memory_read_result>
1563 read_memory_robust (struct target_ops *ops,
1564 const ULONGEST offset, const LONGEST len)
1565 {
1566 std::vector<memory_read_result> result;
1567 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1568
1569 LONGEST xfered_total = 0;
1570 while (xfered_total < len)
1571 {
1572 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1573 LONGEST region_len;
1574
1575 /* If there is no explicit region, a fake one should be created. */
1576 gdb_assert (region);
1577
1578 if (region->hi == 0)
1579 region_len = len - xfered_total;
1580 else
1581 region_len = region->hi - offset;
1582
1583 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1584 {
1585 /* Cannot read this region. Note that we can end up here only
1586 if the region is explicitly marked inaccessible, or
1587 'inaccessible-by-default' is in effect. */
1588 xfered_total += region_len;
1589 }
1590 else
1591 {
1592 LONGEST to_read = std::min (len - xfered_total, region_len);
1593 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1594 ((gdb_byte *) xmalloc (to_read * unit_size));
1595
1596 LONGEST xfered_partial =
1597 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1598 offset + xfered_total, to_read);
1599 /* Call an observer, notifying them of the xfer progress? */
1600 if (xfered_partial <= 0)
1601 {
1602 /* Got an error reading full chunk. See if maybe we can read
1603 some subrange. */
1604 read_whatever_is_readable (ops, offset + xfered_total,
1605 offset + xfered_total + to_read,
1606 unit_size, &result);
1607 xfered_total += to_read;
1608 }
1609 else
1610 {
1611 result.emplace_back (offset + xfered_total,
1612 offset + xfered_total + xfered_partial,
1613 std::move (buffer));
1614 xfered_total += xfered_partial;
1615 }
1616 QUIT;
1617 }
1618 }
1619
1620 return result;
1621 }
1622
1623
1624 /* An alternative to target_write with progress callbacks. */
1625
1626 LONGEST
1627 target_write_with_progress (struct target_ops *ops,
1628 enum target_object object,
1629 const char *annex, const gdb_byte *buf,
1630 ULONGEST offset, LONGEST len,
1631 void (*progress) (ULONGEST, void *), void *baton)
1632 {
1633 LONGEST xfered_total = 0;
1634 int unit_size = 1;
1635
1636 /* If we are writing to a memory object, find the length of an addressable
1637 unit for that architecture. */
1638 if (object == TARGET_OBJECT_MEMORY
1639 || object == TARGET_OBJECT_STACK_MEMORY
1640 || object == TARGET_OBJECT_CODE_MEMORY
1641 || object == TARGET_OBJECT_RAW_MEMORY)
1642 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1643
1644 /* Give the progress callback a chance to set up. */
1645 if (progress)
1646 (*progress) (0, baton);
1647
1648 while (xfered_total < len)
1649 {
1650 ULONGEST xfered_partial;
1651 enum target_xfer_status status;
1652
1653 status = target_write_partial (ops, object, annex,
1654 buf + xfered_total * unit_size,
1655 offset + xfered_total, len - xfered_total,
1656 &xfered_partial);
1657
1658 if (status != TARGET_XFER_OK)
1659 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1660
1661 if (progress)
1662 (*progress) (xfered_partial, baton);
1663
1664 xfered_total += xfered_partial;
1665 QUIT;
1666 }
1667 return len;
1668 }
1669
1670 /* For docs on target_write see target.h. */
1671
1672 LONGEST
1673 target_write (struct target_ops *ops,
1674 enum target_object object,
1675 const char *annex, const gdb_byte *buf,
1676 ULONGEST offset, LONGEST len)
1677 {
1678 return target_write_with_progress (ops, object, annex, buf, offset, len,
1679 NULL, NULL);
1680 }
1681
1682 /* Help for target_read_alloc and target_read_stralloc. See their comments
1683 for details. */
1684
1685 template <typename T>
1686 gdb::optional<gdb::def_vector<T>>
1687 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1688 const char *annex)
1689 {
1690 gdb::def_vector<T> buf;
1691 size_t buf_pos = 0;
1692 const int chunk = 4096;
1693
1694 /* This function does not have a length parameter; it reads the
1695 entire OBJECT). Also, it doesn't support objects fetched partly
1696 from one target and partly from another (in a different stratum,
1697 e.g. a core file and an executable). Both reasons make it
1698 unsuitable for reading memory. */
1699 gdb_assert (object != TARGET_OBJECT_MEMORY);
1700
1701 /* Start by reading up to 4K at a time. The target will throttle
1702 this number down if necessary. */
1703 while (1)
1704 {
1705 ULONGEST xfered_len;
1706 enum target_xfer_status status;
1707
1708 buf.resize (buf_pos + chunk);
1709
1710 status = target_read_partial (ops, object, annex,
1711 (gdb_byte *) &buf[buf_pos],
1712 buf_pos, chunk,
1713 &xfered_len);
1714
1715 if (status == TARGET_XFER_EOF)
1716 {
1717 /* Read all there was. */
1718 buf.resize (buf_pos);
1719 return buf;
1720 }
1721 else if (status != TARGET_XFER_OK)
1722 {
1723 /* An error occurred. */
1724 return {};
1725 }
1726
1727 buf_pos += xfered_len;
1728
1729 QUIT;
1730 }
1731 }
1732
1733 /* See target.h */
1734
1735 gdb::optional<gdb::byte_vector>
1736 target_read_alloc (struct target_ops *ops, enum target_object object,
1737 const char *annex)
1738 {
1739 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1740 }
1741
1742 /* See target.h. */
1743
1744 gdb::optional<gdb::char_vector>
1745 target_read_stralloc (struct target_ops *ops, enum target_object object,
1746 const char *annex)
1747 {
1748 gdb::optional<gdb::char_vector> buf
1749 = target_read_alloc_1<char> (ops, object, annex);
1750
1751 if (!buf)
1752 return {};
1753
1754 if (buf->empty () || buf->back () != '\0')
1755 buf->push_back ('\0');
1756
1757 /* Check for embedded NUL bytes; but allow trailing NULs. */
1758 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1759 it != buf->end (); it++)
1760 if (*it != '\0')
1761 {
1762 warning (_("target object %d, annex %s, "
1763 "contained unexpected null characters"),
1764 (int) object, annex ? annex : "(none)");
1765 break;
1766 }
1767
1768 return buf;
1769 }
1770
1771 /* Memory transfer methods. */
1772
1773 void
1774 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1775 LONGEST len)
1776 {
1777 /* This method is used to read from an alternate, non-current
1778 target. This read must bypass the overlay support (as symbols
1779 don't match this target), and GDB's internal cache (wrong cache
1780 for this target). */
1781 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1782 != len)
1783 memory_error (TARGET_XFER_E_IO, addr);
1784 }
1785
1786 ULONGEST
1787 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1788 int len, enum bfd_endian byte_order)
1789 {
1790 gdb_byte buf[sizeof (ULONGEST)];
1791
1792 gdb_assert (len <= sizeof (buf));
1793 get_target_memory (ops, addr, buf, len);
1794 return extract_unsigned_integer (buf, len, byte_order);
1795 }
1796
1797 /* See target.h. */
1798
1799 int
1800 target_insert_breakpoint (struct gdbarch *gdbarch,
1801 struct bp_target_info *bp_tgt)
1802 {
1803 if (!may_insert_breakpoints)
1804 {
1805 warning (_("May not insert breakpoints"));
1806 return 1;
1807 }
1808
1809 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1810 }
1811
1812 /* See target.h. */
1813
1814 int
1815 target_remove_breakpoint (struct gdbarch *gdbarch,
1816 struct bp_target_info *bp_tgt,
1817 enum remove_bp_reason reason)
1818 {
1819 /* This is kind of a weird case to handle, but the permission might
1820 have been changed after breakpoints were inserted - in which case
1821 we should just take the user literally and assume that any
1822 breakpoints should be left in place. */
1823 if (!may_insert_breakpoints)
1824 {
1825 warning (_("May not remove breakpoints"));
1826 return 1;
1827 }
1828
1829 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1830 }
1831
1832 static void
1833 info_target_command (const char *args, int from_tty)
1834 {
1835 int has_all_mem = 0;
1836
1837 if (symfile_objfile != NULL)
1838 printf_unfiltered (_("Symbols from \"%s\".\n"),
1839 objfile_name (symfile_objfile));
1840
1841 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1842 {
1843 if (!t->has_memory ())
1844 continue;
1845
1846 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1847 continue;
1848 if (has_all_mem)
1849 printf_unfiltered (_("\tWhile running this, "
1850 "GDB does not access memory from...\n"));
1851 printf_unfiltered ("%s:\n", t->longname ());
1852 t->files_info ();
1853 has_all_mem = t->has_all_memory ();
1854 }
1855 }
1856
1857 /* This function is called before any new inferior is created, e.g.
1858 by running a program, attaching, or connecting to a target.
1859 It cleans up any state from previous invocations which might
1860 change between runs. This is a subset of what target_preopen
1861 resets (things which might change between targets). */
1862
1863 void
1864 target_pre_inferior (int from_tty)
1865 {
1866 /* Clear out solib state. Otherwise the solib state of the previous
1867 inferior might have survived and is entirely wrong for the new
1868 target. This has been observed on GNU/Linux using glibc 2.3. How
1869 to reproduce:
1870
1871 bash$ ./foo&
1872 [1] 4711
1873 bash$ ./foo&
1874 [1] 4712
1875 bash$ gdb ./foo
1876 [...]
1877 (gdb) attach 4711
1878 (gdb) detach
1879 (gdb) attach 4712
1880 Cannot access memory at address 0xdeadbeef
1881 */
1882
1883 /* In some OSs, the shared library list is the same/global/shared
1884 across inferiors. If code is shared between processes, so are
1885 memory regions and features. */
1886 if (!gdbarch_has_global_solist (target_gdbarch ()))
1887 {
1888 no_shared_libraries (NULL, from_tty);
1889
1890 invalidate_target_mem_regions ();
1891
1892 target_clear_description ();
1893 }
1894
1895 /* attach_flag may be set if the previous process associated with
1896 the inferior was attached to. */
1897 current_inferior ()->attach_flag = 0;
1898
1899 current_inferior ()->highest_thread_num = 0;
1900
1901 agent_capability_invalidate ();
1902 }
1903
1904 /* This is to be called by the open routine before it does
1905 anything. */
1906
1907 void
1908 target_preopen (int from_tty)
1909 {
1910 dont_repeat ();
1911
1912 if (current_inferior ()->pid != 0)
1913 {
1914 if (!from_tty
1915 || !target_has_execution ()
1916 || query (_("A program is being debugged already. Kill it? ")))
1917 {
1918 /* Core inferiors actually should be detached, not
1919 killed. */
1920 if (target_has_execution ())
1921 target_kill ();
1922 else
1923 target_detach (current_inferior (), 0);
1924 }
1925 else
1926 error (_("Program not killed."));
1927 }
1928
1929 /* Calling target_kill may remove the target from the stack. But if
1930 it doesn't (which seems like a win for UDI), remove it now. */
1931 /* Leave the exec target, though. The user may be switching from a
1932 live process to a core of the same program. */
1933 pop_all_targets_above (file_stratum);
1934
1935 target_pre_inferior (from_tty);
1936 }
1937
1938 /* See target.h. */
1939
1940 void
1941 target_detach (inferior *inf, int from_tty)
1942 {
1943 /* After we have detached, we will clear the register cache for this inferior
1944 by calling registers_changed_ptid. We must save the pid_ptid before
1945 detaching, as the target detach method will clear inf->pid. */
1946 ptid_t save_pid_ptid = ptid_t (inf->pid);
1947
1948 /* As long as some to_detach implementations rely on the current_inferior
1949 (either directly, or indirectly, like through target_gdbarch or by
1950 reading memory), INF needs to be the current inferior. When that
1951 requirement will become no longer true, then we can remove this
1952 assertion. */
1953 gdb_assert (inf == current_inferior ());
1954
1955 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1956 /* Don't remove global breakpoints here. They're removed on
1957 disconnection from the target. */
1958 ;
1959 else
1960 /* If we're in breakpoints-always-inserted mode, have to remove
1961 breakpoints before detaching. */
1962 remove_breakpoints_inf (current_inferior ());
1963
1964 prepare_for_detach ();
1965
1966 /* Hold a strong reference because detaching may unpush the
1967 target. */
1968 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1969
1970 current_top_target ()->detach (inf, from_tty);
1971
1972 process_stratum_target *proc_target
1973 = as_process_stratum_target (proc_target_ref.get ());
1974
1975 registers_changed_ptid (proc_target, save_pid_ptid);
1976
1977 /* We have to ensure we have no frame cache left. Normally,
1978 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1979 inferior_ptid matches save_pid_ptid, but in our case, it does not
1980 call it, as inferior_ptid has been reset. */
1981 reinit_frame_cache ();
1982 }
1983
1984 void
1985 target_disconnect (const char *args, int from_tty)
1986 {
1987 /* If we're in breakpoints-always-inserted mode or if breakpoints
1988 are global across processes, we have to remove them before
1989 disconnecting. */
1990 remove_breakpoints ();
1991
1992 current_top_target ()->disconnect (args, from_tty);
1993 }
1994
1995 /* See target/target.h. */
1996
1997 ptid_t
1998 target_wait (ptid_t ptid, struct target_waitstatus *status,
1999 target_wait_flags options)
2000 {
2001 return current_top_target ()->wait (ptid, status, options);
2002 }
2003
2004 /* See target.h. */
2005
2006 ptid_t
2007 default_target_wait (struct target_ops *ops,
2008 ptid_t ptid, struct target_waitstatus *status,
2009 target_wait_flags options)
2010 {
2011 status->kind = TARGET_WAITKIND_IGNORE;
2012 return minus_one_ptid;
2013 }
2014
2015 std::string
2016 target_pid_to_str (ptid_t ptid)
2017 {
2018 return current_top_target ()->pid_to_str (ptid);
2019 }
2020
2021 const char *
2022 target_thread_name (struct thread_info *info)
2023 {
2024 gdb_assert (info->inf == current_inferior ());
2025
2026 return current_top_target ()->thread_name (info);
2027 }
2028
2029 struct thread_info *
2030 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2031 int handle_len,
2032 struct inferior *inf)
2033 {
2034 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2035 handle_len, inf);
2036 }
2037
2038 /* See target.h. */
2039
2040 gdb::byte_vector
2041 target_thread_info_to_thread_handle (struct thread_info *tip)
2042 {
2043 return current_top_target ()->thread_info_to_thread_handle (tip);
2044 }
2045
2046 void
2047 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2048 {
2049 process_stratum_target *curr_target = current_inferior ()->process_target ();
2050
2051 target_dcache_invalidate ();
2052
2053 current_top_target ()->resume (ptid, step, signal);
2054
2055 registers_changed_ptid (curr_target, ptid);
2056 /* We only set the internal executing state here. The user/frontend
2057 running state is set at a higher level. This also clears the
2058 thread's stop_pc as side effect. */
2059 set_executing (curr_target, ptid, true);
2060 clear_inline_frame_state (curr_target, ptid);
2061 }
2062
2063 /* If true, target_commit_resume is a nop. */
2064 static int defer_target_commit_resume;
2065
2066 /* See target.h. */
2067
2068 void
2069 target_commit_resume (void)
2070 {
2071 if (defer_target_commit_resume)
2072 return;
2073
2074 current_top_target ()->commit_resume ();
2075 }
2076
2077 /* See target.h. */
2078
2079 scoped_restore_tmpl<int>
2080 make_scoped_defer_target_commit_resume ()
2081 {
2082 return make_scoped_restore (&defer_target_commit_resume, 1);
2083 }
2084
2085 void
2086 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2087 {
2088 current_top_target ()->pass_signals (pass_signals);
2089 }
2090
2091 void
2092 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2093 {
2094 current_top_target ()->program_signals (program_signals);
2095 }
2096
2097 static bool
2098 default_follow_fork (struct target_ops *self, bool follow_child,
2099 bool detach_fork)
2100 {
2101 /* Some target returned a fork event, but did not know how to follow it. */
2102 internal_error (__FILE__, __LINE__,
2103 _("could not find a target to follow fork"));
2104 }
2105
2106 /* Look through the list of possible targets for a target that can
2107 follow forks. */
2108
2109 bool
2110 target_follow_fork (bool follow_child, bool detach_fork)
2111 {
2112 return current_top_target ()->follow_fork (follow_child, detach_fork);
2113 }
2114
2115 /* Target wrapper for follow exec hook. */
2116
2117 void
2118 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2119 {
2120 current_top_target ()->follow_exec (inf, execd_pathname);
2121 }
2122
2123 static void
2124 default_mourn_inferior (struct target_ops *self)
2125 {
2126 internal_error (__FILE__, __LINE__,
2127 _("could not find a target to follow mourn inferior"));
2128 }
2129
2130 void
2131 target_mourn_inferior (ptid_t ptid)
2132 {
2133 gdb_assert (ptid == inferior_ptid);
2134 current_top_target ()->mourn_inferior ();
2135
2136 /* We no longer need to keep handles on any of the object files.
2137 Make sure to release them to avoid unnecessarily locking any
2138 of them while we're not actually debugging. */
2139 bfd_cache_close_all ();
2140 }
2141
2142 /* Look for a target which can describe architectural features, starting
2143 from TARGET. If we find one, return its description. */
2144
2145 const struct target_desc *
2146 target_read_description (struct target_ops *target)
2147 {
2148 return target->read_description ();
2149 }
2150
2151
2152 /* Default implementation of memory-searching. */
2153
2154 static int
2155 default_search_memory (struct target_ops *self,
2156 CORE_ADDR start_addr, ULONGEST search_space_len,
2157 const gdb_byte *pattern, ULONGEST pattern_len,
2158 CORE_ADDR *found_addrp)
2159 {
2160 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2161 {
2162 return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
2163 result, addr, len) == len;
2164 };
2165
2166 /* Start over from the top of the target stack. */
2167 return simple_search_memory (read_memory, start_addr, search_space_len,
2168 pattern, pattern_len, found_addrp);
2169 }
2170
2171 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2172 sequence of bytes in PATTERN with length PATTERN_LEN.
2173
2174 The result is 1 if found, 0 if not found, and -1 if there was an error
2175 requiring halting of the search (e.g. memory read error).
2176 If the pattern is found the address is recorded in FOUND_ADDRP. */
2177
2178 int
2179 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2180 const gdb_byte *pattern, ULONGEST pattern_len,
2181 CORE_ADDR *found_addrp)
2182 {
2183 return current_top_target ()->search_memory (start_addr, search_space_len,
2184 pattern, pattern_len, found_addrp);
2185 }
2186
2187 /* Look through the currently pushed targets. If none of them will
2188 be able to restart the currently running process, issue an error
2189 message. */
2190
2191 void
2192 target_require_runnable (void)
2193 {
2194 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2195 {
2196 /* If this target knows how to create a new program, then
2197 assume we will still be able to after killing the current
2198 one. Either killing and mourning will not pop T, or else
2199 find_default_run_target will find it again. */
2200 if (t->can_create_inferior ())
2201 return;
2202
2203 /* Do not worry about targets at certain strata that can not
2204 create inferiors. Assume they will be pushed again if
2205 necessary, and continue to the process_stratum. */
2206 if (t->stratum () > process_stratum)
2207 continue;
2208
2209 error (_("The \"%s\" target does not support \"run\". "
2210 "Try \"help target\" or \"continue\"."),
2211 t->shortname ());
2212 }
2213
2214 /* This function is only called if the target is running. In that
2215 case there should have been a process_stratum target and it
2216 should either know how to create inferiors, or not... */
2217 internal_error (__FILE__, __LINE__, _("No targets found"));
2218 }
2219
2220 /* Whether GDB is allowed to fall back to the default run target for
2221 "run", "attach", etc. when no target is connected yet. */
2222 static bool auto_connect_native_target = true;
2223
2224 static void
2225 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2226 struct cmd_list_element *c, const char *value)
2227 {
2228 fprintf_filtered (file,
2229 _("Whether GDB may automatically connect to the "
2230 "native target is %s.\n"),
2231 value);
2232 }
2233
2234 /* A pointer to the target that can respond to "run" or "attach".
2235 Native targets are always singletons and instantiated early at GDB
2236 startup. */
2237 static target_ops *the_native_target;
2238
2239 /* See target.h. */
2240
2241 void
2242 set_native_target (target_ops *target)
2243 {
2244 if (the_native_target != NULL)
2245 internal_error (__FILE__, __LINE__,
2246 _("native target already set (\"%s\")."),
2247 the_native_target->longname ());
2248
2249 the_native_target = target;
2250 }
2251
2252 /* See target.h. */
2253
2254 target_ops *
2255 get_native_target ()
2256 {
2257 return the_native_target;
2258 }
2259
2260 /* Look through the list of possible targets for a target that can
2261 execute a run or attach command without any other data. This is
2262 used to locate the default process stratum.
2263
2264 If DO_MESG is not NULL, the result is always valid (error() is
2265 called for errors); else, return NULL on error. */
2266
2267 static struct target_ops *
2268 find_default_run_target (const char *do_mesg)
2269 {
2270 if (auto_connect_native_target && the_native_target != NULL)
2271 return the_native_target;
2272
2273 if (do_mesg != NULL)
2274 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2275 return NULL;
2276 }
2277
2278 /* See target.h. */
2279
2280 struct target_ops *
2281 find_attach_target (void)
2282 {
2283 /* If a target on the current stack can attach, use it. */
2284 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2285 {
2286 if (t->can_attach ())
2287 return t;
2288 }
2289
2290 /* Otherwise, use the default run target for attaching. */
2291 return find_default_run_target ("attach");
2292 }
2293
2294 /* See target.h. */
2295
2296 struct target_ops *
2297 find_run_target (void)
2298 {
2299 /* If a target on the current stack can run, use it. */
2300 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2301 {
2302 if (t->can_create_inferior ())
2303 return t;
2304 }
2305
2306 /* Otherwise, use the default run target. */
2307 return find_default_run_target ("run");
2308 }
2309
2310 bool
2311 target_ops::info_proc (const char *args, enum info_proc_what what)
2312 {
2313 return false;
2314 }
2315
2316 /* Implement the "info proc" command. */
2317
2318 int
2319 target_info_proc (const char *args, enum info_proc_what what)
2320 {
2321 struct target_ops *t;
2322
2323 /* If we're already connected to something that can get us OS
2324 related data, use it. Otherwise, try using the native
2325 target. */
2326 t = find_target_at (process_stratum);
2327 if (t == NULL)
2328 t = find_default_run_target (NULL);
2329
2330 for (; t != NULL; t = t->beneath ())
2331 {
2332 if (t->info_proc (args, what))
2333 {
2334 if (targetdebug)
2335 fprintf_unfiltered (gdb_stdlog,
2336 "target_info_proc (\"%s\", %d)\n", args, what);
2337
2338 return 1;
2339 }
2340 }
2341
2342 return 0;
2343 }
2344
2345 static int
2346 find_default_supports_disable_randomization (struct target_ops *self)
2347 {
2348 struct target_ops *t;
2349
2350 t = find_default_run_target (NULL);
2351 if (t != NULL)
2352 return t->supports_disable_randomization ();
2353 return 0;
2354 }
2355
2356 int
2357 target_supports_disable_randomization (void)
2358 {
2359 return current_top_target ()->supports_disable_randomization ();
2360 }
2361
2362 /* See target/target.h. */
2363
2364 int
2365 target_supports_multi_process (void)
2366 {
2367 return current_top_target ()->supports_multi_process ();
2368 }
2369
2370 /* See target.h. */
2371
2372 gdb::optional<gdb::char_vector>
2373 target_get_osdata (const char *type)
2374 {
2375 struct target_ops *t;
2376
2377 /* If we're already connected to something that can get us OS
2378 related data, use it. Otherwise, try using the native
2379 target. */
2380 t = find_target_at (process_stratum);
2381 if (t == NULL)
2382 t = find_default_run_target ("get OS data");
2383
2384 if (!t)
2385 return {};
2386
2387 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2388 }
2389
2390 /* Determine the current address space of thread PTID. */
2391
2392 struct address_space *
2393 target_thread_address_space (ptid_t ptid)
2394 {
2395 struct address_space *aspace;
2396
2397 aspace = current_top_target ()->thread_address_space (ptid);
2398 gdb_assert (aspace != NULL);
2399
2400 return aspace;
2401 }
2402
2403 /* See target.h. */
2404
2405 target_ops *
2406 target_ops::beneath () const
2407 {
2408 return current_inferior ()->find_target_beneath (this);
2409 }
2410
2411 void
2412 target_ops::close ()
2413 {
2414 }
2415
2416 bool
2417 target_ops::can_attach ()
2418 {
2419 return 0;
2420 }
2421
2422 void
2423 target_ops::attach (const char *, int)
2424 {
2425 gdb_assert_not_reached ("target_ops::attach called");
2426 }
2427
2428 bool
2429 target_ops::can_create_inferior ()
2430 {
2431 return 0;
2432 }
2433
2434 void
2435 target_ops::create_inferior (const char *, const std::string &,
2436 char **, int)
2437 {
2438 gdb_assert_not_reached ("target_ops::create_inferior called");
2439 }
2440
2441 bool
2442 target_ops::can_run ()
2443 {
2444 return false;
2445 }
2446
2447 int
2448 target_can_run ()
2449 {
2450 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2451 {
2452 if (t->can_run ())
2453 return 1;
2454 }
2455
2456 return 0;
2457 }
2458
2459 /* Target file operations. */
2460
2461 static struct target_ops *
2462 default_fileio_target (void)
2463 {
2464 struct target_ops *t;
2465
2466 /* If we're already connected to something that can perform
2467 file I/O, use it. Otherwise, try using the native target. */
2468 t = find_target_at (process_stratum);
2469 if (t != NULL)
2470 return t;
2471 return find_default_run_target ("file I/O");
2472 }
2473
2474 /* File handle for target file operations. */
2475
2476 struct fileio_fh_t
2477 {
2478 /* The target on which this file is open. NULL if the target is
2479 meanwhile closed while the handle is open. */
2480 target_ops *target;
2481
2482 /* The file descriptor on the target. */
2483 int target_fd;
2484
2485 /* Check whether this fileio_fh_t represents a closed file. */
2486 bool is_closed ()
2487 {
2488 return target_fd < 0;
2489 }
2490 };
2491
2492 /* Vector of currently open file handles. The value returned by
2493 target_fileio_open and passed as the FD argument to other
2494 target_fileio_* functions is an index into this vector. This
2495 vector's entries are never freed; instead, files are marked as
2496 closed, and the handle becomes available for reuse. */
2497 static std::vector<fileio_fh_t> fileio_fhandles;
2498
2499 /* Index into fileio_fhandles of the lowest handle that might be
2500 closed. This permits handle reuse without searching the whole
2501 list each time a new file is opened. */
2502 static int lowest_closed_fd;
2503
2504 /* Invalidate the target associated with open handles that were open
2505 on target TARG, since we're about to close (and maybe destroy) the
2506 target. The handles remain open from the client's perspective, but
2507 trying to do anything with them other than closing them will fail
2508 with EIO. */
2509
2510 static void
2511 fileio_handles_invalidate_target (target_ops *targ)
2512 {
2513 for (fileio_fh_t &fh : fileio_fhandles)
2514 if (fh.target == targ)
2515 fh.target = NULL;
2516 }
2517
2518 /* Acquire a target fileio file descriptor. */
2519
2520 static int
2521 acquire_fileio_fd (target_ops *target, int target_fd)
2522 {
2523 /* Search for closed handles to reuse. */
2524 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2525 {
2526 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2527
2528 if (fh.is_closed ())
2529 break;
2530 }
2531
2532 /* Push a new handle if no closed handles were found. */
2533 if (lowest_closed_fd == fileio_fhandles.size ())
2534 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2535 else
2536 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2537
2538 /* Should no longer be marked closed. */
2539 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2540
2541 /* Return its index, and start the next lookup at
2542 the next index. */
2543 return lowest_closed_fd++;
2544 }
2545
2546 /* Release a target fileio file descriptor. */
2547
2548 static void
2549 release_fileio_fd (int fd, fileio_fh_t *fh)
2550 {
2551 fh->target_fd = -1;
2552 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2553 }
2554
2555 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2556
2557 static fileio_fh_t *
2558 fileio_fd_to_fh (int fd)
2559 {
2560 return &fileio_fhandles[fd];
2561 }
2562
2563
2564 /* Default implementations of file i/o methods. We don't want these
2565 to delegate automatically, because we need to know which target
2566 supported the method, in order to call it directly from within
2567 pread/pwrite, etc. */
2568
2569 int
2570 target_ops::fileio_open (struct inferior *inf, const char *filename,
2571 int flags, int mode, int warn_if_slow,
2572 int *target_errno)
2573 {
2574 *target_errno = FILEIO_ENOSYS;
2575 return -1;
2576 }
2577
2578 int
2579 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2580 ULONGEST offset, int *target_errno)
2581 {
2582 *target_errno = FILEIO_ENOSYS;
2583 return -1;
2584 }
2585
2586 int
2587 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2588 ULONGEST offset, int *target_errno)
2589 {
2590 *target_errno = FILEIO_ENOSYS;
2591 return -1;
2592 }
2593
2594 int
2595 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2596 {
2597 *target_errno = FILEIO_ENOSYS;
2598 return -1;
2599 }
2600
2601 int
2602 target_ops::fileio_close (int fd, int *target_errno)
2603 {
2604 *target_errno = FILEIO_ENOSYS;
2605 return -1;
2606 }
2607
2608 int
2609 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2610 int *target_errno)
2611 {
2612 *target_errno = FILEIO_ENOSYS;
2613 return -1;
2614 }
2615
2616 gdb::optional<std::string>
2617 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2618 int *target_errno)
2619 {
2620 *target_errno = FILEIO_ENOSYS;
2621 return {};
2622 }
2623
2624 /* See target.h. */
2625
2626 int
2627 target_fileio_open (struct inferior *inf, const char *filename,
2628 int flags, int mode, bool warn_if_slow, int *target_errno)
2629 {
2630 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2631 {
2632 int fd = t->fileio_open (inf, filename, flags, mode,
2633 warn_if_slow, target_errno);
2634
2635 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2636 continue;
2637
2638 if (fd < 0)
2639 fd = -1;
2640 else
2641 fd = acquire_fileio_fd (t, fd);
2642
2643 if (targetdebug)
2644 fprintf_unfiltered (gdb_stdlog,
2645 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2646 " = %d (%d)\n",
2647 inf == NULL ? 0 : inf->num,
2648 filename, flags, mode,
2649 warn_if_slow, fd,
2650 fd != -1 ? 0 : *target_errno);
2651 return fd;
2652 }
2653
2654 *target_errno = FILEIO_ENOSYS;
2655 return -1;
2656 }
2657
2658 /* See target.h. */
2659
2660 int
2661 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2662 ULONGEST offset, int *target_errno)
2663 {
2664 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2665 int ret = -1;
2666
2667 if (fh->is_closed ())
2668 *target_errno = EBADF;
2669 else if (fh->target == NULL)
2670 *target_errno = EIO;
2671 else
2672 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2673 len, offset, target_errno);
2674
2675 if (targetdebug)
2676 fprintf_unfiltered (gdb_stdlog,
2677 "target_fileio_pwrite (%d,...,%d,%s) "
2678 "= %d (%d)\n",
2679 fd, len, pulongest (offset),
2680 ret, ret != -1 ? 0 : *target_errno);
2681 return ret;
2682 }
2683
2684 /* See target.h. */
2685
2686 int
2687 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2688 ULONGEST offset, int *target_errno)
2689 {
2690 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2691 int ret = -1;
2692
2693 if (fh->is_closed ())
2694 *target_errno = EBADF;
2695 else if (fh->target == NULL)
2696 *target_errno = EIO;
2697 else
2698 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2699 len, offset, target_errno);
2700
2701 if (targetdebug)
2702 fprintf_unfiltered (gdb_stdlog,
2703 "target_fileio_pread (%d,...,%d,%s) "
2704 "= %d (%d)\n",
2705 fd, len, pulongest (offset),
2706 ret, ret != -1 ? 0 : *target_errno);
2707 return ret;
2708 }
2709
2710 /* See target.h. */
2711
2712 int
2713 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2714 {
2715 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2716 int ret = -1;
2717
2718 if (fh->is_closed ())
2719 *target_errno = EBADF;
2720 else if (fh->target == NULL)
2721 *target_errno = EIO;
2722 else
2723 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2724
2725 if (targetdebug)
2726 fprintf_unfiltered (gdb_stdlog,
2727 "target_fileio_fstat (%d) = %d (%d)\n",
2728 fd, ret, ret != -1 ? 0 : *target_errno);
2729 return ret;
2730 }
2731
2732 /* See target.h. */
2733
2734 int
2735 target_fileio_close (int fd, int *target_errno)
2736 {
2737 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2738 int ret = -1;
2739
2740 if (fh->is_closed ())
2741 *target_errno = EBADF;
2742 else
2743 {
2744 if (fh->target != NULL)
2745 ret = fh->target->fileio_close (fh->target_fd,
2746 target_errno);
2747 else
2748 ret = 0;
2749 release_fileio_fd (fd, fh);
2750 }
2751
2752 if (targetdebug)
2753 fprintf_unfiltered (gdb_stdlog,
2754 "target_fileio_close (%d) = %d (%d)\n",
2755 fd, ret, ret != -1 ? 0 : *target_errno);
2756 return ret;
2757 }
2758
2759 /* See target.h. */
2760
2761 int
2762 target_fileio_unlink (struct inferior *inf, const char *filename,
2763 int *target_errno)
2764 {
2765 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2766 {
2767 int ret = t->fileio_unlink (inf, filename, target_errno);
2768
2769 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2770 continue;
2771
2772 if (targetdebug)
2773 fprintf_unfiltered (gdb_stdlog,
2774 "target_fileio_unlink (%d,%s)"
2775 " = %d (%d)\n",
2776 inf == NULL ? 0 : inf->num, filename,
2777 ret, ret != -1 ? 0 : *target_errno);
2778 return ret;
2779 }
2780
2781 *target_errno = FILEIO_ENOSYS;
2782 return -1;
2783 }
2784
2785 /* See target.h. */
2786
2787 gdb::optional<std::string>
2788 target_fileio_readlink (struct inferior *inf, const char *filename,
2789 int *target_errno)
2790 {
2791 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2792 {
2793 gdb::optional<std::string> ret
2794 = t->fileio_readlink (inf, filename, target_errno);
2795
2796 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2797 continue;
2798
2799 if (targetdebug)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "target_fileio_readlink (%d,%s)"
2802 " = %s (%d)\n",
2803 inf == NULL ? 0 : inf->num,
2804 filename, ret ? ret->c_str () : "(nil)",
2805 ret ? 0 : *target_errno);
2806 return ret;
2807 }
2808
2809 *target_errno = FILEIO_ENOSYS;
2810 return {};
2811 }
2812
2813 /* Like scoped_fd, but specific to target fileio. */
2814
2815 class scoped_target_fd
2816 {
2817 public:
2818 explicit scoped_target_fd (int fd) noexcept
2819 : m_fd (fd)
2820 {
2821 }
2822
2823 ~scoped_target_fd ()
2824 {
2825 if (m_fd >= 0)
2826 {
2827 int target_errno;
2828
2829 target_fileio_close (m_fd, &target_errno);
2830 }
2831 }
2832
2833 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2834
2835 int get () const noexcept
2836 {
2837 return m_fd;
2838 }
2839
2840 private:
2841 int m_fd;
2842 };
2843
2844 /* Read target file FILENAME, in the filesystem as seen by INF. If
2845 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2846 remote targets, the remote stub). Store the result in *BUF_P and
2847 return the size of the transferred data. PADDING additional bytes
2848 are available in *BUF_P. This is a helper function for
2849 target_fileio_read_alloc; see the declaration of that function for
2850 more information. */
2851
2852 static LONGEST
2853 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2854 gdb_byte **buf_p, int padding)
2855 {
2856 size_t buf_alloc, buf_pos;
2857 gdb_byte *buf;
2858 LONGEST n;
2859 int target_errno;
2860
2861 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2862 0700, false, &target_errno));
2863 if (fd.get () == -1)
2864 return -1;
2865
2866 /* Start by reading up to 4K at a time. The target will throttle
2867 this number down if necessary. */
2868 buf_alloc = 4096;
2869 buf = (gdb_byte *) xmalloc (buf_alloc);
2870 buf_pos = 0;
2871 while (1)
2872 {
2873 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2874 buf_alloc - buf_pos - padding, buf_pos,
2875 &target_errno);
2876 if (n < 0)
2877 {
2878 /* An error occurred. */
2879 xfree (buf);
2880 return -1;
2881 }
2882 else if (n == 0)
2883 {
2884 /* Read all there was. */
2885 if (buf_pos == 0)
2886 xfree (buf);
2887 else
2888 *buf_p = buf;
2889 return buf_pos;
2890 }
2891
2892 buf_pos += n;
2893
2894 /* If the buffer is filling up, expand it. */
2895 if (buf_alloc < buf_pos * 2)
2896 {
2897 buf_alloc *= 2;
2898 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2899 }
2900
2901 QUIT;
2902 }
2903 }
2904
2905 /* See target.h. */
2906
2907 LONGEST
2908 target_fileio_read_alloc (struct inferior *inf, const char *filename,
2909 gdb_byte **buf_p)
2910 {
2911 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
2912 }
2913
2914 /* See target.h. */
2915
2916 gdb::unique_xmalloc_ptr<char>
2917 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
2918 {
2919 gdb_byte *buffer;
2920 char *bufstr;
2921 LONGEST i, transferred;
2922
2923 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
2924 bufstr = (char *) buffer;
2925
2926 if (transferred < 0)
2927 return gdb::unique_xmalloc_ptr<char> (nullptr);
2928
2929 if (transferred == 0)
2930 return make_unique_xstrdup ("");
2931
2932 bufstr[transferred] = 0;
2933
2934 /* Check for embedded NUL bytes; but allow trailing NULs. */
2935 for (i = strlen (bufstr); i < transferred; i++)
2936 if (bufstr[i] != 0)
2937 {
2938 warning (_("target file %s "
2939 "contained unexpected null characters"),
2940 filename);
2941 break;
2942 }
2943
2944 return gdb::unique_xmalloc_ptr<char> (bufstr);
2945 }
2946
2947
2948 static int
2949 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2950 CORE_ADDR addr, int len)
2951 {
2952 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2953 }
2954
2955 static int
2956 default_watchpoint_addr_within_range (struct target_ops *target,
2957 CORE_ADDR addr,
2958 CORE_ADDR start, int length)
2959 {
2960 return addr >= start && addr < start + length;
2961 }
2962
2963 /* See target.h. */
2964
2965 target_ops *
2966 target_stack::find_beneath (const target_ops *t) const
2967 {
2968 /* Look for a non-empty slot at stratum levels beneath T's. */
2969 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
2970 if (m_stack[stratum] != NULL)
2971 return m_stack[stratum];
2972
2973 return NULL;
2974 }
2975
2976 /* See target.h. */
2977
2978 struct target_ops *
2979 find_target_at (enum strata stratum)
2980 {
2981 return current_inferior ()->target_at (stratum);
2982 }
2983
2984 \f
2985
2986 /* See target.h */
2987
2988 void
2989 target_announce_detach (int from_tty)
2990 {
2991 pid_t pid;
2992 const char *exec_file;
2993
2994 if (!from_tty)
2995 return;
2996
2997 exec_file = get_exec_file (0);
2998 if (exec_file == NULL)
2999 exec_file = "";
3000
3001 pid = inferior_ptid.pid ();
3002 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3003 target_pid_to_str (ptid_t (pid)).c_str ());
3004 }
3005
3006 /* The inferior process has died. Long live the inferior! */
3007
3008 void
3009 generic_mourn_inferior (void)
3010 {
3011 inferior *inf = current_inferior ();
3012
3013 switch_to_no_thread ();
3014
3015 /* Mark breakpoints uninserted in case something tries to delete a
3016 breakpoint while we delete the inferior's threads (which would
3017 fail, since the inferior is long gone). */
3018 mark_breakpoints_out ();
3019
3020 if (inf->pid != 0)
3021 exit_inferior (inf);
3022
3023 /* Note this wipes step-resume breakpoints, so needs to be done
3024 after exit_inferior, which ends up referencing the step-resume
3025 breakpoints through clear_thread_inferior_resources. */
3026 breakpoint_init_inferior (inf_exited);
3027
3028 registers_changed ();
3029
3030 reopen_exec_file ();
3031 reinit_frame_cache ();
3032
3033 if (deprecated_detach_hook)
3034 deprecated_detach_hook ();
3035 }
3036 \f
3037 /* Convert a normal process ID to a string. Returns the string in a
3038 static buffer. */
3039
3040 std::string
3041 normal_pid_to_str (ptid_t ptid)
3042 {
3043 return string_printf ("process %d", ptid.pid ());
3044 }
3045
3046 static std::string
3047 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3048 {
3049 return normal_pid_to_str (ptid);
3050 }
3051
3052 /* Error-catcher for target_find_memory_regions. */
3053 static int
3054 dummy_find_memory_regions (struct target_ops *self,
3055 find_memory_region_ftype ignore1, void *ignore2)
3056 {
3057 error (_("Command not implemented for this target."));
3058 return 0;
3059 }
3060
3061 /* Error-catcher for target_make_corefile_notes. */
3062 static char *
3063 dummy_make_corefile_notes (struct target_ops *self,
3064 bfd *ignore1, int *ignore2)
3065 {
3066 error (_("Command not implemented for this target."));
3067 return NULL;
3068 }
3069
3070 #include "target-delegates.c"
3071
3072 /* The initial current target, so that there is always a semi-valid
3073 current target. */
3074
3075 static dummy_target the_dummy_target;
3076
3077 /* See target.h. */
3078
3079 target_ops *
3080 get_dummy_target ()
3081 {
3082 return &the_dummy_target;
3083 }
3084
3085 static const target_info dummy_target_info = {
3086 "None",
3087 N_("None"),
3088 ""
3089 };
3090
3091 strata
3092 dummy_target::stratum () const
3093 {
3094 return dummy_stratum;
3095 }
3096
3097 strata
3098 debug_target::stratum () const
3099 {
3100 return debug_stratum;
3101 }
3102
3103 const target_info &
3104 dummy_target::info () const
3105 {
3106 return dummy_target_info;
3107 }
3108
3109 const target_info &
3110 debug_target::info () const
3111 {
3112 return beneath ()->info ();
3113 }
3114
3115 \f
3116
3117 void
3118 target_close (struct target_ops *targ)
3119 {
3120 gdb_assert (!target_is_pushed (targ));
3121
3122 fileio_handles_invalidate_target (targ);
3123
3124 targ->close ();
3125
3126 if (targetdebug)
3127 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3128 }
3129
3130 int
3131 target_thread_alive (ptid_t ptid)
3132 {
3133 return current_top_target ()->thread_alive (ptid);
3134 }
3135
3136 void
3137 target_update_thread_list (void)
3138 {
3139 current_top_target ()->update_thread_list ();
3140 }
3141
3142 void
3143 target_stop (ptid_t ptid)
3144 {
3145 if (!may_stop)
3146 {
3147 warning (_("May not interrupt or stop the target, ignoring attempt"));
3148 return;
3149 }
3150
3151 current_top_target ()->stop (ptid);
3152 }
3153
3154 void
3155 target_interrupt ()
3156 {
3157 if (!may_stop)
3158 {
3159 warning (_("May not interrupt or stop the target, ignoring attempt"));
3160 return;
3161 }
3162
3163 current_top_target ()->interrupt ();
3164 }
3165
3166 /* See target.h. */
3167
3168 void
3169 target_pass_ctrlc (void)
3170 {
3171 /* Pass the Ctrl-C to the first target that has a thread
3172 running. */
3173 for (inferior *inf : all_inferiors ())
3174 {
3175 target_ops *proc_target = inf->process_target ();
3176 if (proc_target == NULL)
3177 continue;
3178
3179 for (thread_info *thr : inf->non_exited_threads ())
3180 {
3181 /* A thread can be THREAD_STOPPED and executing, while
3182 running an infcall. */
3183 if (thr->state == THREAD_RUNNING || thr->executing)
3184 {
3185 /* We can get here quite deep in target layers. Avoid
3186 switching thread context or anything that would
3187 communicate with the target (e.g., to fetch
3188 registers), or flushing e.g., the frame cache. We
3189 just switch inferior in order to be able to call
3190 through the target_stack. */
3191 scoped_restore_current_inferior restore_inferior;
3192 set_current_inferior (inf);
3193 current_top_target ()->pass_ctrlc ();
3194 return;
3195 }
3196 }
3197 }
3198 }
3199
3200 /* See target.h. */
3201
3202 void
3203 default_target_pass_ctrlc (struct target_ops *ops)
3204 {
3205 target_interrupt ();
3206 }
3207
3208 /* See target/target.h. */
3209
3210 void
3211 target_stop_and_wait (ptid_t ptid)
3212 {
3213 struct target_waitstatus status;
3214 bool was_non_stop = non_stop;
3215
3216 non_stop = true;
3217 target_stop (ptid);
3218
3219 memset (&status, 0, sizeof (status));
3220 target_wait (ptid, &status, 0);
3221
3222 non_stop = was_non_stop;
3223 }
3224
3225 /* See target/target.h. */
3226
3227 void
3228 target_continue_no_signal (ptid_t ptid)
3229 {
3230 target_resume (ptid, 0, GDB_SIGNAL_0);
3231 }
3232
3233 /* See target/target.h. */
3234
3235 void
3236 target_continue (ptid_t ptid, enum gdb_signal signal)
3237 {
3238 target_resume (ptid, 0, signal);
3239 }
3240
3241 /* Concatenate ELEM to LIST, a comma-separated list. */
3242
3243 static void
3244 str_comma_list_concat_elem (std::string *list, const char *elem)
3245 {
3246 if (!list->empty ())
3247 list->append (", ");
3248
3249 list->append (elem);
3250 }
3251
3252 /* Helper for target_options_to_string. If OPT is present in
3253 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3254 OPT is removed from TARGET_OPTIONS. */
3255
3256 static void
3257 do_option (target_wait_flags *target_options, std::string *ret,
3258 target_wait_flag opt, const char *opt_str)
3259 {
3260 if ((*target_options & opt) != 0)
3261 {
3262 str_comma_list_concat_elem (ret, opt_str);
3263 *target_options &= ~opt;
3264 }
3265 }
3266
3267 /* See target.h. */
3268
3269 std::string
3270 target_options_to_string (target_wait_flags target_options)
3271 {
3272 std::string ret;
3273
3274 #define DO_TARG_OPTION(OPT) \
3275 do_option (&target_options, &ret, OPT, #OPT)
3276
3277 DO_TARG_OPTION (TARGET_WNOHANG);
3278
3279 if (target_options != 0)
3280 str_comma_list_concat_elem (&ret, "unknown???");
3281
3282 return ret;
3283 }
3284
3285 void
3286 target_fetch_registers (struct regcache *regcache, int regno)
3287 {
3288 current_top_target ()->fetch_registers (regcache, regno);
3289 if (targetdebug)
3290 regcache->debug_print_register ("target_fetch_registers", regno);
3291 }
3292
3293 void
3294 target_store_registers (struct regcache *regcache, int regno)
3295 {
3296 if (!may_write_registers)
3297 error (_("Writing to registers is not allowed (regno %d)"), regno);
3298
3299 current_top_target ()->store_registers (regcache, regno);
3300 if (targetdebug)
3301 {
3302 regcache->debug_print_register ("target_store_registers", regno);
3303 }
3304 }
3305
3306 int
3307 target_core_of_thread (ptid_t ptid)
3308 {
3309 return current_top_target ()->core_of_thread (ptid);
3310 }
3311
3312 int
3313 simple_verify_memory (struct target_ops *ops,
3314 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3315 {
3316 LONGEST total_xfered = 0;
3317
3318 while (total_xfered < size)
3319 {
3320 ULONGEST xfered_len;
3321 enum target_xfer_status status;
3322 gdb_byte buf[1024];
3323 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3324
3325 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3326 buf, NULL, lma + total_xfered, howmuch,
3327 &xfered_len);
3328 if (status == TARGET_XFER_OK
3329 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3330 {
3331 total_xfered += xfered_len;
3332 QUIT;
3333 }
3334 else
3335 return 0;
3336 }
3337 return 1;
3338 }
3339
3340 /* Default implementation of memory verification. */
3341
3342 static int
3343 default_verify_memory (struct target_ops *self,
3344 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3345 {
3346 /* Start over from the top of the target stack. */
3347 return simple_verify_memory (current_top_target (),
3348 data, memaddr, size);
3349 }
3350
3351 int
3352 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3353 {
3354 return current_top_target ()->verify_memory (data, memaddr, size);
3355 }
3356
3357 /* The documentation for this function is in its prototype declaration in
3358 target.h. */
3359
3360 int
3361 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3362 enum target_hw_bp_type rw)
3363 {
3364 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3365 }
3366
3367 /* The documentation for this function is in its prototype declaration in
3368 target.h. */
3369
3370 int
3371 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3372 enum target_hw_bp_type rw)
3373 {
3374 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3375 }
3376
3377 /* The documentation for this function is in its prototype declaration
3378 in target.h. */
3379
3380 int
3381 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3382 {
3383 return current_top_target ()->masked_watch_num_registers (addr, mask);
3384 }
3385
3386 /* The documentation for this function is in its prototype declaration
3387 in target.h. */
3388
3389 int
3390 target_ranged_break_num_registers (void)
3391 {
3392 return current_top_target ()->ranged_break_num_registers ();
3393 }
3394
3395 /* See target.h. */
3396
3397 struct btrace_target_info *
3398 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3399 {
3400 return current_top_target ()->enable_btrace (ptid, conf);
3401 }
3402
3403 /* See target.h. */
3404
3405 void
3406 target_disable_btrace (struct btrace_target_info *btinfo)
3407 {
3408 current_top_target ()->disable_btrace (btinfo);
3409 }
3410
3411 /* See target.h. */
3412
3413 void
3414 target_teardown_btrace (struct btrace_target_info *btinfo)
3415 {
3416 current_top_target ()->teardown_btrace (btinfo);
3417 }
3418
3419 /* See target.h. */
3420
3421 enum btrace_error
3422 target_read_btrace (struct btrace_data *btrace,
3423 struct btrace_target_info *btinfo,
3424 enum btrace_read_type type)
3425 {
3426 return current_top_target ()->read_btrace (btrace, btinfo, type);
3427 }
3428
3429 /* See target.h. */
3430
3431 const struct btrace_config *
3432 target_btrace_conf (const struct btrace_target_info *btinfo)
3433 {
3434 return current_top_target ()->btrace_conf (btinfo);
3435 }
3436
3437 /* See target.h. */
3438
3439 void
3440 target_stop_recording (void)
3441 {
3442 current_top_target ()->stop_recording ();
3443 }
3444
3445 /* See target.h. */
3446
3447 void
3448 target_save_record (const char *filename)
3449 {
3450 current_top_target ()->save_record (filename);
3451 }
3452
3453 /* See target.h. */
3454
3455 int
3456 target_supports_delete_record ()
3457 {
3458 return current_top_target ()->supports_delete_record ();
3459 }
3460
3461 /* See target.h. */
3462
3463 void
3464 target_delete_record (void)
3465 {
3466 current_top_target ()->delete_record ();
3467 }
3468
3469 /* See target.h. */
3470
3471 enum record_method
3472 target_record_method (ptid_t ptid)
3473 {
3474 return current_top_target ()->record_method (ptid);
3475 }
3476
3477 /* See target.h. */
3478
3479 int
3480 target_record_is_replaying (ptid_t ptid)
3481 {
3482 return current_top_target ()->record_is_replaying (ptid);
3483 }
3484
3485 /* See target.h. */
3486
3487 int
3488 target_record_will_replay (ptid_t ptid, int dir)
3489 {
3490 return current_top_target ()->record_will_replay (ptid, dir);
3491 }
3492
3493 /* See target.h. */
3494
3495 void
3496 target_record_stop_replaying (void)
3497 {
3498 current_top_target ()->record_stop_replaying ();
3499 }
3500
3501 /* See target.h. */
3502
3503 void
3504 target_goto_record_begin (void)
3505 {
3506 current_top_target ()->goto_record_begin ();
3507 }
3508
3509 /* See target.h. */
3510
3511 void
3512 target_goto_record_end (void)
3513 {
3514 current_top_target ()->goto_record_end ();
3515 }
3516
3517 /* See target.h. */
3518
3519 void
3520 target_goto_record (ULONGEST insn)
3521 {
3522 current_top_target ()->goto_record (insn);
3523 }
3524
3525 /* See target.h. */
3526
3527 void
3528 target_insn_history (int size, gdb_disassembly_flags flags)
3529 {
3530 current_top_target ()->insn_history (size, flags);
3531 }
3532
3533 /* See target.h. */
3534
3535 void
3536 target_insn_history_from (ULONGEST from, int size,
3537 gdb_disassembly_flags flags)
3538 {
3539 current_top_target ()->insn_history_from (from, size, flags);
3540 }
3541
3542 /* See target.h. */
3543
3544 void
3545 target_insn_history_range (ULONGEST begin, ULONGEST end,
3546 gdb_disassembly_flags flags)
3547 {
3548 current_top_target ()->insn_history_range (begin, end, flags);
3549 }
3550
3551 /* See target.h. */
3552
3553 void
3554 target_call_history (int size, record_print_flags flags)
3555 {
3556 current_top_target ()->call_history (size, flags);
3557 }
3558
3559 /* See target.h. */
3560
3561 void
3562 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3563 {
3564 current_top_target ()->call_history_from (begin, size, flags);
3565 }
3566
3567 /* See target.h. */
3568
3569 void
3570 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3571 {
3572 current_top_target ()->call_history_range (begin, end, flags);
3573 }
3574
3575 /* See target.h. */
3576
3577 const struct frame_unwind *
3578 target_get_unwinder (void)
3579 {
3580 return current_top_target ()->get_unwinder ();
3581 }
3582
3583 /* See target.h. */
3584
3585 const struct frame_unwind *
3586 target_get_tailcall_unwinder (void)
3587 {
3588 return current_top_target ()->get_tailcall_unwinder ();
3589 }
3590
3591 /* See target.h. */
3592
3593 void
3594 target_prepare_to_generate_core (void)
3595 {
3596 current_top_target ()->prepare_to_generate_core ();
3597 }
3598
3599 /* See target.h. */
3600
3601 void
3602 target_done_generating_core (void)
3603 {
3604 current_top_target ()->done_generating_core ();
3605 }
3606
3607 \f
3608
3609 static char targ_desc[] =
3610 "Names of targets and files being debugged.\nShows the entire \
3611 stack of targets currently in use (including the exec-file,\n\
3612 core-file, and process, if any), as well as the symbol file name.";
3613
3614 static void
3615 default_rcmd (struct target_ops *self, const char *command,
3616 struct ui_file *output)
3617 {
3618 error (_("\"monitor\" command not supported by this target."));
3619 }
3620
3621 static void
3622 do_monitor_command (const char *cmd, int from_tty)
3623 {
3624 target_rcmd (cmd, gdb_stdtarg);
3625 }
3626
3627 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3628 ignored. */
3629
3630 void
3631 flash_erase_command (const char *cmd, int from_tty)
3632 {
3633 /* Used to communicate termination of flash operations to the target. */
3634 bool found_flash_region = false;
3635 struct gdbarch *gdbarch = target_gdbarch ();
3636
3637 std::vector<mem_region> mem_regions = target_memory_map ();
3638
3639 /* Iterate over all memory regions. */
3640 for (const mem_region &m : mem_regions)
3641 {
3642 /* Is this a flash memory region? */
3643 if (m.attrib.mode == MEM_FLASH)
3644 {
3645 found_flash_region = true;
3646 target_flash_erase (m.lo, m.hi - m.lo);
3647
3648 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3649
3650 current_uiout->message (_("Erasing flash memory region at address "));
3651 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3652 current_uiout->message (", size = ");
3653 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3654 current_uiout->message ("\n");
3655 }
3656 }
3657
3658 /* Did we do any flash operations? If so, we need to finalize them. */
3659 if (found_flash_region)
3660 target_flash_done ();
3661 else
3662 current_uiout->message (_("No flash memory regions found.\n"));
3663 }
3664
3665 /* Print the name of each layers of our target stack. */
3666
3667 static void
3668 maintenance_print_target_stack (const char *cmd, int from_tty)
3669 {
3670 printf_filtered (_("The current target stack is:\n"));
3671
3672 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3673 {
3674 if (t->stratum () == debug_stratum)
3675 continue;
3676 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3677 }
3678 }
3679
3680 /* See target.h. */
3681
3682 void
3683 target_async (int enable)
3684 {
3685 infrun_async (enable);
3686 current_top_target ()->async (enable);
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_thread_events (int enable)
3693 {
3694 current_top_target ()->thread_events (enable);
3695 }
3696
3697 /* Controls if targets can report that they can/are async. This is
3698 just for maintainers to use when debugging gdb. */
3699 bool target_async_permitted = true;
3700
3701 /* The set command writes to this variable. If the inferior is
3702 executing, target_async_permitted is *not* updated. */
3703 static bool target_async_permitted_1 = true;
3704
3705 static void
3706 maint_set_target_async_command (const char *args, int from_tty,
3707 struct cmd_list_element *c)
3708 {
3709 if (have_live_inferiors ())
3710 {
3711 target_async_permitted_1 = target_async_permitted;
3712 error (_("Cannot change this setting while the inferior is running."));
3713 }
3714
3715 target_async_permitted = target_async_permitted_1;
3716 }
3717
3718 static void
3719 maint_show_target_async_command (struct ui_file *file, int from_tty,
3720 struct cmd_list_element *c,
3721 const char *value)
3722 {
3723 fprintf_filtered (file,
3724 _("Controlling the inferior in "
3725 "asynchronous mode is %s.\n"), value);
3726 }
3727
3728 /* Return true if the target operates in non-stop mode even with "set
3729 non-stop off". */
3730
3731 static int
3732 target_always_non_stop_p (void)
3733 {
3734 return current_top_target ()->always_non_stop_p ();
3735 }
3736
3737 /* See target.h. */
3738
3739 int
3740 target_is_non_stop_p (void)
3741 {
3742 return (non_stop
3743 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3744 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3745 && target_always_non_stop_p ()));
3746 }
3747
3748 /* See target.h. */
3749
3750 bool
3751 exists_non_stop_target ()
3752 {
3753 if (target_is_non_stop_p ())
3754 return true;
3755
3756 scoped_restore_current_thread restore_thread;
3757
3758 for (inferior *inf : all_inferiors ())
3759 {
3760 switch_to_inferior_no_thread (inf);
3761 if (target_is_non_stop_p ())
3762 return true;
3763 }
3764
3765 return false;
3766 }
3767
3768 /* Controls if targets can report that they always run in non-stop
3769 mode. This is just for maintainers to use when debugging gdb. */
3770 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3771
3772 /* The set command writes to this variable. If the inferior is
3773 executing, target_non_stop_enabled is *not* updated. */
3774 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3775
3776 /* Implementation of "maint set target-non-stop". */
3777
3778 static void
3779 maint_set_target_non_stop_command (const char *args, int from_tty,
3780 struct cmd_list_element *c)
3781 {
3782 if (have_live_inferiors ())
3783 {
3784 target_non_stop_enabled_1 = target_non_stop_enabled;
3785 error (_("Cannot change this setting while the inferior is running."));
3786 }
3787
3788 target_non_stop_enabled = target_non_stop_enabled_1;
3789 }
3790
3791 /* Implementation of "maint show target-non-stop". */
3792
3793 static void
3794 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3795 struct cmd_list_element *c,
3796 const char *value)
3797 {
3798 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3799 fprintf_filtered (file,
3800 _("Whether the target is always in non-stop mode "
3801 "is %s (currently %s).\n"), value,
3802 target_always_non_stop_p () ? "on" : "off");
3803 else
3804 fprintf_filtered (file,
3805 _("Whether the target is always in non-stop mode "
3806 "is %s.\n"), value);
3807 }
3808
3809 /* Temporary copies of permission settings. */
3810
3811 static bool may_write_registers_1 = true;
3812 static bool may_write_memory_1 = true;
3813 static bool may_insert_breakpoints_1 = true;
3814 static bool may_insert_tracepoints_1 = true;
3815 static bool may_insert_fast_tracepoints_1 = true;
3816 static bool may_stop_1 = true;
3817
3818 /* Make the user-set values match the real values again. */
3819
3820 void
3821 update_target_permissions (void)
3822 {
3823 may_write_registers_1 = may_write_registers;
3824 may_write_memory_1 = may_write_memory;
3825 may_insert_breakpoints_1 = may_insert_breakpoints;
3826 may_insert_tracepoints_1 = may_insert_tracepoints;
3827 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3828 may_stop_1 = may_stop;
3829 }
3830
3831 /* The one function handles (most of) the permission flags in the same
3832 way. */
3833
3834 static void
3835 set_target_permissions (const char *args, int from_tty,
3836 struct cmd_list_element *c)
3837 {
3838 if (target_has_execution ())
3839 {
3840 update_target_permissions ();
3841 error (_("Cannot change this setting while the inferior is running."));
3842 }
3843
3844 /* Make the real values match the user-changed values. */
3845 may_write_registers = may_write_registers_1;
3846 may_insert_breakpoints = may_insert_breakpoints_1;
3847 may_insert_tracepoints = may_insert_tracepoints_1;
3848 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3849 may_stop = may_stop_1;
3850 update_observer_mode ();
3851 }
3852
3853 /* Set memory write permission independently of observer mode. */
3854
3855 static void
3856 set_write_memory_permission (const char *args, int from_tty,
3857 struct cmd_list_element *c)
3858 {
3859 /* Make the real values match the user-changed values. */
3860 may_write_memory = may_write_memory_1;
3861 update_observer_mode ();
3862 }
3863
3864 void _initialize_target ();
3865
3866 void
3867 _initialize_target ()
3868 {
3869 the_debug_target = new debug_target ();
3870
3871 add_info ("target", info_target_command, targ_desc);
3872 add_info ("files", info_target_command, targ_desc);
3873
3874 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3875 Set target debugging."), _("\
3876 Show target debugging."), _("\
3877 When non-zero, target debugging is enabled. Higher numbers are more\n\
3878 verbose."),
3879 set_targetdebug,
3880 show_targetdebug,
3881 &setdebuglist, &showdebuglist);
3882
3883 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3884 &trust_readonly, _("\
3885 Set mode for reading from readonly sections."), _("\
3886 Show mode for reading from readonly sections."), _("\
3887 When this mode is on, memory reads from readonly sections (such as .text)\n\
3888 will be read from the object file instead of from the target. This will\n\
3889 result in significant performance improvement for remote targets."),
3890 NULL,
3891 show_trust_readonly,
3892 &setlist, &showlist);
3893
3894 add_com ("monitor", class_obscure, do_monitor_command,
3895 _("Send a command to the remote monitor (remote targets only)."));
3896
3897 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3898 _("Print the name of each layer of the internal target stack."),
3899 &maintenanceprintlist);
3900
3901 add_setshow_boolean_cmd ("target-async", no_class,
3902 &target_async_permitted_1, _("\
3903 Set whether gdb controls the inferior in asynchronous mode."), _("\
3904 Show whether gdb controls the inferior in asynchronous mode."), _("\
3905 Tells gdb whether to control the inferior in asynchronous mode."),
3906 maint_set_target_async_command,
3907 maint_show_target_async_command,
3908 &maintenance_set_cmdlist,
3909 &maintenance_show_cmdlist);
3910
3911 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
3912 &target_non_stop_enabled_1, _("\
3913 Set whether gdb always controls the inferior in non-stop mode."), _("\
3914 Show whether gdb always controls the inferior in non-stop mode."), _("\
3915 Tells gdb whether to control the inferior in non-stop mode."),
3916 maint_set_target_non_stop_command,
3917 maint_show_target_non_stop_command,
3918 &maintenance_set_cmdlist,
3919 &maintenance_show_cmdlist);
3920
3921 add_setshow_boolean_cmd ("may-write-registers", class_support,
3922 &may_write_registers_1, _("\
3923 Set permission to write into registers."), _("\
3924 Show permission to write into registers."), _("\
3925 When this permission is on, GDB may write into the target's registers.\n\
3926 Otherwise, any sort of write attempt will result in an error."),
3927 set_target_permissions, NULL,
3928 &setlist, &showlist);
3929
3930 add_setshow_boolean_cmd ("may-write-memory", class_support,
3931 &may_write_memory_1, _("\
3932 Set permission to write into target memory."), _("\
3933 Show permission to write into target memory."), _("\
3934 When this permission is on, GDB may write into the target's memory.\n\
3935 Otherwise, any sort of write attempt will result in an error."),
3936 set_write_memory_permission, NULL,
3937 &setlist, &showlist);
3938
3939 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3940 &may_insert_breakpoints_1, _("\
3941 Set permission to insert breakpoints in the target."), _("\
3942 Show permission to insert breakpoints in the target."), _("\
3943 When this permission is on, GDB may insert breakpoints in the program.\n\
3944 Otherwise, any sort of insertion attempt will result in an error."),
3945 set_target_permissions, NULL,
3946 &setlist, &showlist);
3947
3948 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3949 &may_insert_tracepoints_1, _("\
3950 Set permission to insert tracepoints in the target."), _("\
3951 Show permission to insert tracepoints in the target."), _("\
3952 When this permission is on, GDB may insert tracepoints in the program.\n\
3953 Otherwise, any sort of insertion attempt will result in an error."),
3954 set_target_permissions, NULL,
3955 &setlist, &showlist);
3956
3957 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3958 &may_insert_fast_tracepoints_1, _("\
3959 Set permission to insert fast tracepoints in the target."), _("\
3960 Show permission to insert fast tracepoints in the target."), _("\
3961 When this permission is on, GDB may insert fast tracepoints.\n\
3962 Otherwise, any sort of insertion attempt will result in an error."),
3963 set_target_permissions, NULL,
3964 &setlist, &showlist);
3965
3966 add_setshow_boolean_cmd ("may-interrupt", class_support,
3967 &may_stop_1, _("\
3968 Set permission to interrupt or signal the target."), _("\
3969 Show permission to interrupt or signal the target."), _("\
3970 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3971 Otherwise, any attempt to interrupt or stop will be ignored."),
3972 set_target_permissions, NULL,
3973 &setlist, &showlist);
3974
3975 add_com ("flash-erase", no_class, flash_erase_command,
3976 _("Erase all flash memory regions."));
3977
3978 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3979 &auto_connect_native_target, _("\
3980 Set whether GDB may automatically connect to the native target."), _("\
3981 Show whether GDB may automatically connect to the native target."), _("\
3982 When on, and GDB is not connected to a target yet, GDB\n\
3983 attempts \"run\" and other commands with the native target."),
3984 NULL, show_auto_connect_native_target,
3985 &setlist, &showlist);
3986 }
This page took 0.110901 seconds and 5 git commands to generate.