Make target_read_alloc & al return vectors
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (const char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 target_terminal_state target_terminal::m_terminal_state
437 = target_terminal_state::is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 /* If GDB is resuming the inferior in the foreground, install
469 inferior's terminal modes. */
470
471 struct inferior *inf = current_inferior ();
472
473 if (inf->terminal_state != target_terminal_state::is_inferior)
474 {
475 (*current_target.to_terminal_inferior) (&current_target);
476 inf->terminal_state = target_terminal_state::is_inferior;
477 }
478
479 m_terminal_state = target_terminal_state::is_inferior;
480
481 /* If the user hit C-c before, pretend that it was hit right
482 here. */
483 if (check_quit_flag ())
484 target_pass_ctrlc ();
485 }
486
487 /* See target/target.h. */
488
489 void
490 target_terminal::restore_inferior (void)
491 {
492 struct ui *ui = current_ui;
493
494 /* See target_terminal::inferior(). */
495 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
496 return;
497
498 /* Restore the terminal settings of inferiors that were in the
499 foreground but are now ours_for_output due to a temporary
500 target_target::ours_for_output() call. */
501
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 ALL_INFERIORS (inf)
507 {
508 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
509 {
510 set_current_inferior (inf);
511 (*current_target.to_terminal_inferior) (&current_target);
512 inf->terminal_state = target_terminal_state::is_inferior;
513 }
514 }
515 }
516
517 m_terminal_state = target_terminal_state::is_inferior;
518
519 /* If the user hit C-c before, pretend that it was hit right
520 here. */
521 if (check_quit_flag ())
522 target_pass_ctrlc ();
523 }
524
525 /* Switch terminal state to DESIRED_STATE, either is_ours, or
526 is_ours_for_output. */
527
528 static void
529 target_terminal_is_ours_kind (target_terminal_state desired_state)
530 {
531 scoped_restore_current_inferior restore_inferior;
532 struct inferior *inf;
533
534 /* Must do this in two passes. First, have all inferiors save the
535 current terminal settings. Then, after all inferiors have add a
536 chance to safely save the terminal settings, restore GDB's
537 terminal settings. */
538
539 ALL_INFERIORS (inf)
540 {
541 if (inf->terminal_state == target_terminal_state::is_inferior)
542 {
543 set_current_inferior (inf);
544 (*current_target.to_terminal_save_inferior) (&current_target);
545 }
546 }
547
548 ALL_INFERIORS (inf)
549 {
550 /* Note we don't check is_inferior here like above because we
551 need to handle 'is_ours_for_output -> is_ours' too. Careful
552 to never transition from 'is_ours' to 'is_ours_for_output',
553 though. */
554 if (inf->terminal_state != target_terminal_state::is_ours
555 && inf->terminal_state != desired_state)
556 {
557 set_current_inferior (inf);
558 if (desired_state == target_terminal_state::is_ours)
559 (*current_target.to_terminal_ours) (&current_target);
560 else if (desired_state == target_terminal_state::is_ours_for_output)
561 (*current_target.to_terminal_ours_for_output) (&current_target);
562 else
563 gdb_assert_not_reached ("unhandled desired state");
564 inf->terminal_state = desired_state;
565 }
566 }
567 }
568
569 /* See target/target.h. */
570
571 void
572 target_terminal::ours ()
573 {
574 struct ui *ui = current_ui;
575
576 /* See target_terminal::inferior. */
577 if (ui != main_ui)
578 return;
579
580 if (m_terminal_state == target_terminal_state::is_ours)
581 return;
582
583 target_terminal_is_ours_kind (target_terminal_state::is_ours);
584 m_terminal_state = target_terminal_state::is_ours;
585 }
586
587 /* See target/target.h. */
588
589 void
590 target_terminal::ours_for_output ()
591 {
592 struct ui *ui = current_ui;
593
594 /* See target_terminal::inferior. */
595 if (ui != main_ui)
596 return;
597
598 if (!target_terminal::is_inferior ())
599 return;
600
601 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
602 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
603 }
604
605 /* See target/target.h. */
606
607 void
608 target_terminal::info (const char *arg, int from_tty)
609 {
610 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
611 }
612
613 /* See target.h. */
614
615 int
616 target_supports_terminal_ours (void)
617 {
618 struct target_ops *t;
619
620 for (t = current_target.beneath; t != NULL; t = t->beneath)
621 {
622 if (t->to_terminal_ours != delegate_terminal_ours
623 && t->to_terminal_ours != tdefault_terminal_ours)
624 return 1;
625 }
626
627 return 0;
628 }
629
630 static void
631 tcomplain (void)
632 {
633 error (_("You can't do that when your target is `%s'"),
634 current_target.to_shortname);
635 }
636
637 void
638 noprocess (void)
639 {
640 error (_("You can't do that without a process to debug."));
641 }
642
643 static void
644 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
645 {
646 printf_unfiltered (_("No saved terminal information.\n"));
647 }
648
649 /* A default implementation for the to_get_ada_task_ptid target method.
650
651 This function builds the PTID by using both LWP and TID as part of
652 the PTID lwp and tid elements. The pid used is the pid of the
653 inferior_ptid. */
654
655 static ptid_t
656 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
657 {
658 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
659 }
660
661 static enum exec_direction_kind
662 default_execution_direction (struct target_ops *self)
663 {
664 if (!target_can_execute_reverse)
665 return EXEC_FORWARD;
666 else if (!target_can_async_p ())
667 return EXEC_FORWARD;
668 else
669 gdb_assert_not_reached ("\
670 to_execution_direction must be implemented for reverse async");
671 }
672
673 /* Go through the target stack from top to bottom, copying over zero
674 entries in current_target, then filling in still empty entries. In
675 effect, we are doing class inheritance through the pushed target
676 vectors.
677
678 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
679 is currently implemented, is that it discards any knowledge of
680 which target an inherited method originally belonged to.
681 Consequently, new new target methods should instead explicitly and
682 locally search the target stack for the target that can handle the
683 request. */
684
685 static void
686 update_current_target (void)
687 {
688 struct target_ops *t;
689
690 /* First, reset current's contents. */
691 memset (&current_target, 0, sizeof (current_target));
692
693 /* Install the delegators. */
694 install_delegators (&current_target);
695
696 current_target.to_stratum = target_stack->to_stratum;
697
698 #define INHERIT(FIELD, TARGET) \
699 if (!current_target.FIELD) \
700 current_target.FIELD = (TARGET)->FIELD
701
702 /* Do not add any new INHERITs here. Instead, use the delegation
703 mechanism provided by make-target-delegates. */
704 for (t = target_stack; t; t = t->beneath)
705 {
706 INHERIT (to_shortname, t);
707 INHERIT (to_longname, t);
708 INHERIT (to_attach_no_wait, t);
709 INHERIT (to_have_steppable_watchpoint, t);
710 INHERIT (to_have_continuable_watchpoint, t);
711 INHERIT (to_has_thread_control, t);
712 }
713 #undef INHERIT
714
715 /* Finally, position the target-stack beneath the squashed
716 "current_target". That way code looking for a non-inherited
717 target method can quickly and simply find it. */
718 current_target.beneath = target_stack;
719
720 if (targetdebug)
721 setup_target_debug ();
722 }
723
724 /* Push a new target type into the stack of the existing target accessors,
725 possibly superseding some of the existing accessors.
726
727 Rather than allow an empty stack, we always have the dummy target at
728 the bottom stratum, so we can call the function vectors without
729 checking them. */
730
731 void
732 push_target (struct target_ops *t)
733 {
734 struct target_ops **cur;
735
736 /* Check magic number. If wrong, it probably means someone changed
737 the struct definition, but not all the places that initialize one. */
738 if (t->to_magic != OPS_MAGIC)
739 {
740 fprintf_unfiltered (gdb_stderr,
741 "Magic number of %s target struct wrong\n",
742 t->to_shortname);
743 internal_error (__FILE__, __LINE__,
744 _("failed internal consistency check"));
745 }
746
747 /* Find the proper stratum to install this target in. */
748 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
749 {
750 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
751 break;
752 }
753
754 /* If there's already targets at this stratum, remove them. */
755 /* FIXME: cagney/2003-10-15: I think this should be popping all
756 targets to CUR, and not just those at this stratum level. */
757 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
758 {
759 /* There's already something at this stratum level. Close it,
760 and un-hook it from the stack. */
761 struct target_ops *tmp = (*cur);
762
763 (*cur) = (*cur)->beneath;
764 tmp->beneath = NULL;
765 target_close (tmp);
766 }
767
768 /* We have removed all targets in our stratum, now add the new one. */
769 t->beneath = (*cur);
770 (*cur) = t;
771
772 update_current_target ();
773 }
774
775 /* Remove a target_ops vector from the stack, wherever it may be.
776 Return how many times it was removed (0 or 1). */
777
778 int
779 unpush_target (struct target_ops *t)
780 {
781 struct target_ops **cur;
782 struct target_ops *tmp;
783
784 if (t->to_stratum == dummy_stratum)
785 internal_error (__FILE__, __LINE__,
786 _("Attempt to unpush the dummy target"));
787
788 /* Look for the specified target. Note that we assume that a target
789 can only occur once in the target stack. */
790
791 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
792 {
793 if ((*cur) == t)
794 break;
795 }
796
797 /* If we don't find target_ops, quit. Only open targets should be
798 closed. */
799 if ((*cur) == NULL)
800 return 0;
801
802 /* Unchain the target. */
803 tmp = (*cur);
804 (*cur) = (*cur)->beneath;
805 tmp->beneath = NULL;
806
807 update_current_target ();
808
809 /* Finally close the target. Note we do this after unchaining, so
810 any target method calls from within the target_close
811 implementation don't end up in T anymore. */
812 target_close (t);
813
814 return 1;
815 }
816
817 /* Unpush TARGET and assert that it worked. */
818
819 static void
820 unpush_target_and_assert (struct target_ops *target)
821 {
822 if (!unpush_target (target))
823 {
824 fprintf_unfiltered (gdb_stderr,
825 "pop_all_targets couldn't find target %s\n",
826 target->to_shortname);
827 internal_error (__FILE__, __LINE__,
828 _("failed internal consistency check"));
829 }
830 }
831
832 void
833 pop_all_targets_above (enum strata above_stratum)
834 {
835 while ((int) (current_target.to_stratum) > (int) above_stratum)
836 unpush_target_and_assert (target_stack);
837 }
838
839 /* See target.h. */
840
841 void
842 pop_all_targets_at_and_above (enum strata stratum)
843 {
844 while ((int) (current_target.to_stratum) >= (int) stratum)
845 unpush_target_and_assert (target_stack);
846 }
847
848 void
849 pop_all_targets (void)
850 {
851 pop_all_targets_above (dummy_stratum);
852 }
853
854 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
855
856 int
857 target_is_pushed (struct target_ops *t)
858 {
859 struct target_ops *cur;
860
861 /* Check magic number. If wrong, it probably means someone changed
862 the struct definition, but not all the places that initialize one. */
863 if (t->to_magic != OPS_MAGIC)
864 {
865 fprintf_unfiltered (gdb_stderr,
866 "Magic number of %s target struct wrong\n",
867 t->to_shortname);
868 internal_error (__FILE__, __LINE__,
869 _("failed internal consistency check"));
870 }
871
872 for (cur = target_stack; cur != NULL; cur = cur->beneath)
873 if (cur == t)
874 return 1;
875
876 return 0;
877 }
878
879 /* Default implementation of to_get_thread_local_address. */
880
881 static void
882 generic_tls_error (void)
883 {
884 throw_error (TLS_GENERIC_ERROR,
885 _("Cannot find thread-local variables on this target"));
886 }
887
888 /* Using the objfile specified in OBJFILE, find the address for the
889 current thread's thread-local storage with offset OFFSET. */
890 CORE_ADDR
891 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
892 {
893 volatile CORE_ADDR addr = 0;
894 struct target_ops *target = &current_target;
895
896 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
897 {
898 ptid_t ptid = inferior_ptid;
899
900 TRY
901 {
902 CORE_ADDR lm_addr;
903
904 /* Fetch the load module address for this objfile. */
905 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
906 objfile);
907
908 addr = target->to_get_thread_local_address (target, ptid,
909 lm_addr, offset);
910 }
911 /* If an error occurred, print TLS related messages here. Otherwise,
912 throw the error to some higher catcher. */
913 CATCH (ex, RETURN_MASK_ALL)
914 {
915 int objfile_is_library = (objfile->flags & OBJF_SHARED);
916
917 switch (ex.error)
918 {
919 case TLS_NO_LIBRARY_SUPPORT_ERROR:
920 error (_("Cannot find thread-local variables "
921 "in this thread library."));
922 break;
923 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
924 if (objfile_is_library)
925 error (_("Cannot find shared library `%s' in dynamic"
926 " linker's load module list"), objfile_name (objfile));
927 else
928 error (_("Cannot find executable file `%s' in dynamic"
929 " linker's load module list"), objfile_name (objfile));
930 break;
931 case TLS_NOT_ALLOCATED_YET_ERROR:
932 if (objfile_is_library)
933 error (_("The inferior has not yet allocated storage for"
934 " thread-local variables in\n"
935 "the shared library `%s'\n"
936 "for %s"),
937 objfile_name (objfile), target_pid_to_str (ptid));
938 else
939 error (_("The inferior has not yet allocated storage for"
940 " thread-local variables in\n"
941 "the executable `%s'\n"
942 "for %s"),
943 objfile_name (objfile), target_pid_to_str (ptid));
944 break;
945 case TLS_GENERIC_ERROR:
946 if (objfile_is_library)
947 error (_("Cannot find thread-local storage for %s, "
948 "shared library %s:\n%s"),
949 target_pid_to_str (ptid),
950 objfile_name (objfile), ex.message);
951 else
952 error (_("Cannot find thread-local storage for %s, "
953 "executable file %s:\n%s"),
954 target_pid_to_str (ptid),
955 objfile_name (objfile), ex.message);
956 break;
957 default:
958 throw_exception (ex);
959 break;
960 }
961 }
962 END_CATCH
963 }
964 /* It wouldn't be wrong here to try a gdbarch method, too; finding
965 TLS is an ABI-specific thing. But we don't do that yet. */
966 else
967 error (_("Cannot find thread-local variables on this target"));
968
969 return addr;
970 }
971
972 const char *
973 target_xfer_status_to_string (enum target_xfer_status status)
974 {
975 #define CASE(X) case X: return #X
976 switch (status)
977 {
978 CASE(TARGET_XFER_E_IO);
979 CASE(TARGET_XFER_UNAVAILABLE);
980 default:
981 return "<unknown>";
982 }
983 #undef CASE
984 };
985
986
987 #undef MIN
988 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
989
990 /* target_read_string -- read a null terminated string, up to LEN bytes,
991 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
992 Set *STRING to a pointer to malloc'd memory containing the data; the caller
993 is responsible for freeing it. Return the number of bytes successfully
994 read. */
995
996 int
997 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
998 int len, int *errnop)
999 {
1000 int tlen, offset, i;
1001 gdb_byte buf[4];
1002 int errcode = 0;
1003 char *buffer;
1004 int buffer_allocated;
1005 char *bufptr;
1006 unsigned int nbytes_read = 0;
1007
1008 gdb_assert (string);
1009
1010 /* Small for testing. */
1011 buffer_allocated = 4;
1012 buffer = (char *) xmalloc (buffer_allocated);
1013 bufptr = buffer;
1014
1015 while (len > 0)
1016 {
1017 tlen = MIN (len, 4 - (memaddr & 3));
1018 offset = memaddr & 3;
1019
1020 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1021 if (errcode != 0)
1022 {
1023 /* The transfer request might have crossed the boundary to an
1024 unallocated region of memory. Retry the transfer, requesting
1025 a single byte. */
1026 tlen = 1;
1027 offset = 0;
1028 errcode = target_read_memory (memaddr, buf, 1);
1029 if (errcode != 0)
1030 goto done;
1031 }
1032
1033 if (bufptr - buffer + tlen > buffer_allocated)
1034 {
1035 unsigned int bytes;
1036
1037 bytes = bufptr - buffer;
1038 buffer_allocated *= 2;
1039 buffer = (char *) xrealloc (buffer, buffer_allocated);
1040 bufptr = buffer + bytes;
1041 }
1042
1043 for (i = 0; i < tlen; i++)
1044 {
1045 *bufptr++ = buf[i + offset];
1046 if (buf[i + offset] == '\000')
1047 {
1048 nbytes_read += i + 1;
1049 goto done;
1050 }
1051 }
1052
1053 memaddr += tlen;
1054 len -= tlen;
1055 nbytes_read += tlen;
1056 }
1057 done:
1058 string->reset (buffer);
1059 if (errnop != NULL)
1060 *errnop = errcode;
1061 return nbytes_read;
1062 }
1063
1064 struct target_section_table *
1065 target_get_section_table (struct target_ops *target)
1066 {
1067 return (*target->to_get_section_table) (target);
1068 }
1069
1070 /* Find a section containing ADDR. */
1071
1072 struct target_section *
1073 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1074 {
1075 struct target_section_table *table = target_get_section_table (target);
1076 struct target_section *secp;
1077
1078 if (table == NULL)
1079 return NULL;
1080
1081 for (secp = table->sections; secp < table->sections_end; secp++)
1082 {
1083 if (addr >= secp->addr && addr < secp->endaddr)
1084 return secp;
1085 }
1086 return NULL;
1087 }
1088
1089
1090 /* Helper for the memory xfer routines. Checks the attributes of the
1091 memory region of MEMADDR against the read or write being attempted.
1092 If the access is permitted returns true, otherwise returns false.
1093 REGION_P is an optional output parameter. If not-NULL, it is
1094 filled with a pointer to the memory region of MEMADDR. REG_LEN
1095 returns LEN trimmed to the end of the region. This is how much the
1096 caller can continue requesting, if the access is permitted. A
1097 single xfer request must not straddle memory region boundaries. */
1098
1099 static int
1100 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1101 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1102 struct mem_region **region_p)
1103 {
1104 struct mem_region *region;
1105
1106 region = lookup_mem_region (memaddr);
1107
1108 if (region_p != NULL)
1109 *region_p = region;
1110
1111 switch (region->attrib.mode)
1112 {
1113 case MEM_RO:
1114 if (writebuf != NULL)
1115 return 0;
1116 break;
1117
1118 case MEM_WO:
1119 if (readbuf != NULL)
1120 return 0;
1121 break;
1122
1123 case MEM_FLASH:
1124 /* We only support writing to flash during "load" for now. */
1125 if (writebuf != NULL)
1126 error (_("Writing to flash memory forbidden in this context"));
1127 break;
1128
1129 case MEM_NONE:
1130 return 0;
1131 }
1132
1133 /* region->hi == 0 means there's no upper bound. */
1134 if (memaddr + len < region->hi || region->hi == 0)
1135 *reg_len = len;
1136 else
1137 *reg_len = region->hi - memaddr;
1138
1139 return 1;
1140 }
1141
1142 /* Read memory from more than one valid target. A core file, for
1143 instance, could have some of memory but delegate other bits to
1144 the target below it. So, we must manually try all targets. */
1145
1146 enum target_xfer_status
1147 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1148 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1149 ULONGEST *xfered_len)
1150 {
1151 enum target_xfer_status res;
1152
1153 do
1154 {
1155 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1156 readbuf, writebuf, memaddr, len,
1157 xfered_len);
1158 if (res == TARGET_XFER_OK)
1159 break;
1160
1161 /* Stop if the target reports that the memory is not available. */
1162 if (res == TARGET_XFER_UNAVAILABLE)
1163 break;
1164
1165 /* We want to continue past core files to executables, but not
1166 past a running target's memory. */
1167 if (ops->to_has_all_memory (ops))
1168 break;
1169
1170 ops = ops->beneath;
1171 }
1172 while (ops != NULL);
1173
1174 /* The cache works at the raw memory level. Make sure the cache
1175 gets updated with raw contents no matter what kind of memory
1176 object was originally being written. Note we do write-through
1177 first, so that if it fails, we don't write to the cache contents
1178 that never made it to the target. */
1179 if (writebuf != NULL
1180 && !ptid_equal (inferior_ptid, null_ptid)
1181 && target_dcache_init_p ()
1182 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1183 {
1184 DCACHE *dcache = target_dcache_get ();
1185
1186 /* Note that writing to an area of memory which wasn't present
1187 in the cache doesn't cause it to be loaded in. */
1188 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1189 }
1190
1191 return res;
1192 }
1193
1194 /* Perform a partial memory transfer.
1195 For docs see target.h, to_xfer_partial. */
1196
1197 static enum target_xfer_status
1198 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1199 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1200 ULONGEST len, ULONGEST *xfered_len)
1201 {
1202 enum target_xfer_status res;
1203 ULONGEST reg_len;
1204 struct mem_region *region;
1205 struct inferior *inf;
1206
1207 /* For accesses to unmapped overlay sections, read directly from
1208 files. Must do this first, as MEMADDR may need adjustment. */
1209 if (readbuf != NULL && overlay_debugging)
1210 {
1211 struct obj_section *section = find_pc_overlay (memaddr);
1212
1213 if (pc_in_unmapped_range (memaddr, section))
1214 {
1215 struct target_section_table *table
1216 = target_get_section_table (ops);
1217 const char *section_name = section->the_bfd_section->name;
1218
1219 memaddr = overlay_mapped_address (memaddr, section);
1220 return section_table_xfer_memory_partial (readbuf, writebuf,
1221 memaddr, len, xfered_len,
1222 table->sections,
1223 table->sections_end,
1224 section_name);
1225 }
1226 }
1227
1228 /* Try the executable files, if "trust-readonly-sections" is set. */
1229 if (readbuf != NULL && trust_readonly)
1230 {
1231 struct target_section *secp;
1232 struct target_section_table *table;
1233
1234 secp = target_section_by_addr (ops, memaddr);
1235 if (secp != NULL
1236 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1237 secp->the_bfd_section)
1238 & SEC_READONLY))
1239 {
1240 table = target_get_section_table (ops);
1241 return section_table_xfer_memory_partial (readbuf, writebuf,
1242 memaddr, len, xfered_len,
1243 table->sections,
1244 table->sections_end,
1245 NULL);
1246 }
1247 }
1248
1249 /* Try GDB's internal data cache. */
1250
1251 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1252 &region))
1253 return TARGET_XFER_E_IO;
1254
1255 if (!ptid_equal (inferior_ptid, null_ptid))
1256 inf = find_inferior_ptid (inferior_ptid);
1257 else
1258 inf = NULL;
1259
1260 if (inf != NULL
1261 && readbuf != NULL
1262 /* The dcache reads whole cache lines; that doesn't play well
1263 with reading from a trace buffer, because reading outside of
1264 the collected memory range fails. */
1265 && get_traceframe_number () == -1
1266 && (region->attrib.cache
1267 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1268 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1269 {
1270 DCACHE *dcache = target_dcache_get_or_init ();
1271
1272 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1273 reg_len, xfered_len);
1274 }
1275
1276 /* If none of those methods found the memory we wanted, fall back
1277 to a target partial transfer. Normally a single call to
1278 to_xfer_partial is enough; if it doesn't recognize an object
1279 it will call the to_xfer_partial of the next target down.
1280 But for memory this won't do. Memory is the only target
1281 object which can be read from more than one valid target.
1282 A core file, for instance, could have some of memory but
1283 delegate other bits to the target below it. So, we must
1284 manually try all targets. */
1285
1286 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1287 xfered_len);
1288
1289 /* If we still haven't got anything, return the last error. We
1290 give up. */
1291 return res;
1292 }
1293
1294 /* Perform a partial memory transfer. For docs see target.h,
1295 to_xfer_partial. */
1296
1297 static enum target_xfer_status
1298 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1299 gdb_byte *readbuf, const gdb_byte *writebuf,
1300 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1301 {
1302 enum target_xfer_status res;
1303
1304 /* Zero length requests are ok and require no work. */
1305 if (len == 0)
1306 return TARGET_XFER_EOF;
1307
1308 memaddr = address_significant (target_gdbarch (), memaddr);
1309
1310 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1311 breakpoint insns, thus hiding out from higher layers whether
1312 there are software breakpoints inserted in the code stream. */
1313 if (readbuf != NULL)
1314 {
1315 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1316 xfered_len);
1317
1318 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1319 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1320 }
1321 else
1322 {
1323 /* A large write request is likely to be partially satisfied
1324 by memory_xfer_partial_1. We will continually malloc
1325 and free a copy of the entire write request for breakpoint
1326 shadow handling even though we only end up writing a small
1327 subset of it. Cap writes to a limit specified by the target
1328 to mitigate this. */
1329 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1330
1331 gdb::byte_vector buf (writebuf, writebuf + len);
1332 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1333 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1334 xfered_len);
1335 }
1336
1337 return res;
1338 }
1339
1340 scoped_restore_tmpl<int>
1341 make_scoped_restore_show_memory_breakpoints (int show)
1342 {
1343 return make_scoped_restore (&show_memory_breakpoints, show);
1344 }
1345
1346 /* For docs see target.h, to_xfer_partial. */
1347
1348 enum target_xfer_status
1349 target_xfer_partial (struct target_ops *ops,
1350 enum target_object object, const char *annex,
1351 gdb_byte *readbuf, const gdb_byte *writebuf,
1352 ULONGEST offset, ULONGEST len,
1353 ULONGEST *xfered_len)
1354 {
1355 enum target_xfer_status retval;
1356
1357 gdb_assert (ops->to_xfer_partial != NULL);
1358
1359 /* Transfer is done when LEN is zero. */
1360 if (len == 0)
1361 return TARGET_XFER_EOF;
1362
1363 if (writebuf && !may_write_memory)
1364 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1365 core_addr_to_string_nz (offset), plongest (len));
1366
1367 *xfered_len = 0;
1368
1369 /* If this is a memory transfer, let the memory-specific code
1370 have a look at it instead. Memory transfers are more
1371 complicated. */
1372 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1373 || object == TARGET_OBJECT_CODE_MEMORY)
1374 retval = memory_xfer_partial (ops, object, readbuf,
1375 writebuf, offset, len, xfered_len);
1376 else if (object == TARGET_OBJECT_RAW_MEMORY)
1377 {
1378 /* Skip/avoid accessing the target if the memory region
1379 attributes block the access. Check this here instead of in
1380 raw_memory_xfer_partial as otherwise we'd end up checking
1381 this twice in the case of the memory_xfer_partial path is
1382 taken; once before checking the dcache, and another in the
1383 tail call to raw_memory_xfer_partial. */
1384 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1385 NULL))
1386 return TARGET_XFER_E_IO;
1387
1388 /* Request the normal memory object from other layers. */
1389 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1390 xfered_len);
1391 }
1392 else
1393 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1394 writebuf, offset, len, xfered_len);
1395
1396 if (targetdebug)
1397 {
1398 const unsigned char *myaddr = NULL;
1399
1400 fprintf_unfiltered (gdb_stdlog,
1401 "%s:target_xfer_partial "
1402 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1403 ops->to_shortname,
1404 (int) object,
1405 (annex ? annex : "(null)"),
1406 host_address_to_string (readbuf),
1407 host_address_to_string (writebuf),
1408 core_addr_to_string_nz (offset),
1409 pulongest (len), retval,
1410 pulongest (*xfered_len));
1411
1412 if (readbuf)
1413 myaddr = readbuf;
1414 if (writebuf)
1415 myaddr = writebuf;
1416 if (retval == TARGET_XFER_OK && myaddr != NULL)
1417 {
1418 int i;
1419
1420 fputs_unfiltered (", bytes =", gdb_stdlog);
1421 for (i = 0; i < *xfered_len; i++)
1422 {
1423 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1424 {
1425 if (targetdebug < 2 && i > 0)
1426 {
1427 fprintf_unfiltered (gdb_stdlog, " ...");
1428 break;
1429 }
1430 fprintf_unfiltered (gdb_stdlog, "\n");
1431 }
1432
1433 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1434 }
1435 }
1436
1437 fputc_unfiltered ('\n', gdb_stdlog);
1438 }
1439
1440 /* Check implementations of to_xfer_partial update *XFERED_LEN
1441 properly. Do assertion after printing debug messages, so that we
1442 can find more clues on assertion failure from debugging messages. */
1443 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1444 gdb_assert (*xfered_len > 0);
1445
1446 return retval;
1447 }
1448
1449 /* Read LEN bytes of target memory at address MEMADDR, placing the
1450 results in GDB's memory at MYADDR. Returns either 0 for success or
1451 -1 if any error occurs.
1452
1453 If an error occurs, no guarantee is made about the contents of the data at
1454 MYADDR. In particular, the caller should not depend upon partial reads
1455 filling the buffer with good data. There is no way for the caller to know
1456 how much good data might have been transfered anyway. Callers that can
1457 deal with partial reads should call target_read (which will retry until
1458 it makes no progress, and then return how much was transferred). */
1459
1460 int
1461 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1462 {
1463 /* Dispatch to the topmost target, not the flattened current_target.
1464 Memory accesses check target->to_has_(all_)memory, and the
1465 flattened target doesn't inherit those. */
1466 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1467 myaddr, memaddr, len) == len)
1468 return 0;
1469 else
1470 return -1;
1471 }
1472
1473 /* See target/target.h. */
1474
1475 int
1476 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1477 {
1478 gdb_byte buf[4];
1479 int r;
1480
1481 r = target_read_memory (memaddr, buf, sizeof buf);
1482 if (r != 0)
1483 return r;
1484 *result = extract_unsigned_integer (buf, sizeof buf,
1485 gdbarch_byte_order (target_gdbarch ()));
1486 return 0;
1487 }
1488
1489 /* Like target_read_memory, but specify explicitly that this is a read
1490 from the target's raw memory. That is, this read bypasses the
1491 dcache, breakpoint shadowing, etc. */
1492
1493 int
1494 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1495 {
1496 /* See comment in target_read_memory about why the request starts at
1497 current_target.beneath. */
1498 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1499 myaddr, memaddr, len) == len)
1500 return 0;
1501 else
1502 return -1;
1503 }
1504
1505 /* Like target_read_memory, but specify explicitly that this is a read from
1506 the target's stack. This may trigger different cache behavior. */
1507
1508 int
1509 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1510 {
1511 /* See comment in target_read_memory about why the request starts at
1512 current_target.beneath. */
1513 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1514 myaddr, memaddr, len) == len)
1515 return 0;
1516 else
1517 return -1;
1518 }
1519
1520 /* Like target_read_memory, but specify explicitly that this is a read from
1521 the target's code. This may trigger different cache behavior. */
1522
1523 int
1524 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1525 {
1526 /* See comment in target_read_memory about why the request starts at
1527 current_target.beneath. */
1528 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return -1;
1533 }
1534
1535 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1536 Returns either 0 for success or -1 if any error occurs. If an
1537 error occurs, no guarantee is made about how much data got written.
1538 Callers that can deal with partial writes should call
1539 target_write. */
1540
1541 int
1542 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544 /* See comment in target_read_memory about why the request starts at
1545 current_target.beneath. */
1546 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1547 myaddr, memaddr, len) == len)
1548 return 0;
1549 else
1550 return -1;
1551 }
1552
1553 /* Write LEN bytes from MYADDR to target raw memory at address
1554 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1555 If an error occurs, no guarantee is made about how much data got
1556 written. Callers that can deal with partial writes should call
1557 target_write. */
1558
1559 int
1560 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1561 {
1562 /* See comment in target_read_memory about why the request starts at
1563 current_target.beneath. */
1564 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1565 myaddr, memaddr, len) == len)
1566 return 0;
1567 else
1568 return -1;
1569 }
1570
1571 /* Fetch the target's memory map. */
1572
1573 std::vector<mem_region>
1574 target_memory_map (void)
1575 {
1576 std::vector<mem_region> result
1577 = current_target.to_memory_map (&current_target);
1578 if (result.empty ())
1579 return result;
1580
1581 std::sort (result.begin (), result.end ());
1582
1583 /* Check that regions do not overlap. Simultaneously assign
1584 a numbering for the "mem" commands to use to refer to
1585 each region. */
1586 mem_region *last_one = NULL;
1587 for (size_t ix = 0; ix < result.size (); ix++)
1588 {
1589 mem_region *this_one = &result[ix];
1590 this_one->number = ix;
1591
1592 if (last_one != NULL && last_one->hi > this_one->lo)
1593 {
1594 warning (_("Overlapping regions in memory map: ignoring"));
1595 return std::vector<mem_region> ();
1596 }
1597
1598 last_one = this_one;
1599 }
1600
1601 return result;
1602 }
1603
1604 void
1605 target_flash_erase (ULONGEST address, LONGEST length)
1606 {
1607 current_target.to_flash_erase (&current_target, address, length);
1608 }
1609
1610 void
1611 target_flash_done (void)
1612 {
1613 current_target.to_flash_done (&current_target);
1614 }
1615
1616 static void
1617 show_trust_readonly (struct ui_file *file, int from_tty,
1618 struct cmd_list_element *c, const char *value)
1619 {
1620 fprintf_filtered (file,
1621 _("Mode for reading from readonly sections is %s.\n"),
1622 value);
1623 }
1624
1625 /* Target vector read/write partial wrapper functions. */
1626
1627 static enum target_xfer_status
1628 target_read_partial (struct target_ops *ops,
1629 enum target_object object,
1630 const char *annex, gdb_byte *buf,
1631 ULONGEST offset, ULONGEST len,
1632 ULONGEST *xfered_len)
1633 {
1634 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1635 xfered_len);
1636 }
1637
1638 static enum target_xfer_status
1639 target_write_partial (struct target_ops *ops,
1640 enum target_object object,
1641 const char *annex, const gdb_byte *buf,
1642 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1643 {
1644 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1645 xfered_len);
1646 }
1647
1648 /* Wrappers to perform the full transfer. */
1649
1650 /* For docs on target_read see target.h. */
1651
1652 LONGEST
1653 target_read (struct target_ops *ops,
1654 enum target_object object,
1655 const char *annex, gdb_byte *buf,
1656 ULONGEST offset, LONGEST len)
1657 {
1658 LONGEST xfered_total = 0;
1659 int unit_size = 1;
1660
1661 /* If we are reading from a memory object, find the length of an addressable
1662 unit for that architecture. */
1663 if (object == TARGET_OBJECT_MEMORY
1664 || object == TARGET_OBJECT_STACK_MEMORY
1665 || object == TARGET_OBJECT_CODE_MEMORY
1666 || object == TARGET_OBJECT_RAW_MEMORY)
1667 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1668
1669 while (xfered_total < len)
1670 {
1671 ULONGEST xfered_partial;
1672 enum target_xfer_status status;
1673
1674 status = target_read_partial (ops, object, annex,
1675 buf + xfered_total * unit_size,
1676 offset + xfered_total, len - xfered_total,
1677 &xfered_partial);
1678
1679 /* Call an observer, notifying them of the xfer progress? */
1680 if (status == TARGET_XFER_EOF)
1681 return xfered_total;
1682 else if (status == TARGET_XFER_OK)
1683 {
1684 xfered_total += xfered_partial;
1685 QUIT;
1686 }
1687 else
1688 return TARGET_XFER_E_IO;
1689
1690 }
1691 return len;
1692 }
1693
1694 /* Assuming that the entire [begin, end) range of memory cannot be
1695 read, try to read whatever subrange is possible to read.
1696
1697 The function returns, in RESULT, either zero or one memory block.
1698 If there's a readable subrange at the beginning, it is completely
1699 read and returned. Any further readable subrange will not be read.
1700 Otherwise, if there's a readable subrange at the end, it will be
1701 completely read and returned. Any readable subranges before it
1702 (obviously, not starting at the beginning), will be ignored. In
1703 other cases -- either no readable subrange, or readable subrange(s)
1704 that is neither at the beginning, or end, nothing is returned.
1705
1706 The purpose of this function is to handle a read across a boundary
1707 of accessible memory in a case when memory map is not available.
1708 The above restrictions are fine for this case, but will give
1709 incorrect results if the memory is 'patchy'. However, supporting
1710 'patchy' memory would require trying to read every single byte,
1711 and it seems unacceptable solution. Explicit memory map is
1712 recommended for this case -- and target_read_memory_robust will
1713 take care of reading multiple ranges then. */
1714
1715 static void
1716 read_whatever_is_readable (struct target_ops *ops,
1717 const ULONGEST begin, const ULONGEST end,
1718 int unit_size,
1719 std::vector<memory_read_result> *result)
1720 {
1721 ULONGEST current_begin = begin;
1722 ULONGEST current_end = end;
1723 int forward;
1724 ULONGEST xfered_len;
1725
1726 /* If we previously failed to read 1 byte, nothing can be done here. */
1727 if (end - begin <= 1)
1728 return;
1729
1730 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1731
1732 /* Check that either first or the last byte is readable, and give up
1733 if not. This heuristic is meant to permit reading accessible memory
1734 at the boundary of accessible region. */
1735 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1736 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1737 {
1738 forward = 1;
1739 ++current_begin;
1740 }
1741 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1742 buf.get () + (end - begin) - 1, end - 1, 1,
1743 &xfered_len) == TARGET_XFER_OK)
1744 {
1745 forward = 0;
1746 --current_end;
1747 }
1748 else
1749 return;
1750
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1753
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1757 {
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1760 LONGEST xfer;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1762
1763 if (forward)
1764 {
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1769 }
1770 else
1771 {
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1776 }
1777
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf.get () + (first_half_begin - begin) * unit_size,
1780 first_half_begin,
1781 first_half_end - first_half_begin);
1782
1783 if (xfer == first_half_end - first_half_begin)
1784 {
1785 /* This half reads up fine. So, the error must be in the
1786 other half. */
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1789 }
1790 else
1791 {
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1795
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1800 }
1801 }
1802
1803 if (forward)
1804 {
1805 /* The [begin, current_begin) range has been read. */
1806 result->emplace_back (begin, current_end, std::move (buf));
1807 }
1808 else
1809 {
1810 /* The [current_end, end) range has been read. */
1811 LONGEST region_len = end - current_end;
1812
1813 gdb::unique_xmalloc_ptr<gdb_byte> data
1814 ((gdb_byte *) xmalloc (region_len * unit_size));
1815 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1816 region_len * unit_size);
1817 result->emplace_back (current_end, end, std::move (data));
1818 }
1819 }
1820
1821 std::vector<memory_read_result>
1822 read_memory_robust (struct target_ops *ops,
1823 const ULONGEST offset, const LONGEST len)
1824 {
1825 std::vector<memory_read_result> result;
1826 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1827
1828 LONGEST xfered_total = 0;
1829 while (xfered_total < len)
1830 {
1831 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1832 LONGEST region_len;
1833
1834 /* If there is no explicit region, a fake one should be created. */
1835 gdb_assert (region);
1836
1837 if (region->hi == 0)
1838 region_len = len - xfered_total;
1839 else
1840 region_len = region->hi - offset;
1841
1842 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1843 {
1844 /* Cannot read this region. Note that we can end up here only
1845 if the region is explicitly marked inaccessible, or
1846 'inaccessible-by-default' is in effect. */
1847 xfered_total += region_len;
1848 }
1849 else
1850 {
1851 LONGEST to_read = std::min (len - xfered_total, region_len);
1852 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1853 ((gdb_byte *) xmalloc (to_read * unit_size));
1854
1855 LONGEST xfered_partial =
1856 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1857 offset + xfered_total, to_read);
1858 /* Call an observer, notifying them of the xfer progress? */
1859 if (xfered_partial <= 0)
1860 {
1861 /* Got an error reading full chunk. See if maybe we can read
1862 some subrange. */
1863 read_whatever_is_readable (ops, offset + xfered_total,
1864 offset + xfered_total + to_read,
1865 unit_size, &result);
1866 xfered_total += to_read;
1867 }
1868 else
1869 {
1870 result.emplace_back (offset + xfered_total,
1871 offset + xfered_total + xfered_partial,
1872 std::move (buffer));
1873 xfered_total += xfered_partial;
1874 }
1875 QUIT;
1876 }
1877 }
1878
1879 return result;
1880 }
1881
1882
1883 /* An alternative to target_write with progress callbacks. */
1884
1885 LONGEST
1886 target_write_with_progress (struct target_ops *ops,
1887 enum target_object object,
1888 const char *annex, const gdb_byte *buf,
1889 ULONGEST offset, LONGEST len,
1890 void (*progress) (ULONGEST, void *), void *baton)
1891 {
1892 LONGEST xfered_total = 0;
1893 int unit_size = 1;
1894
1895 /* If we are writing to a memory object, find the length of an addressable
1896 unit for that architecture. */
1897 if (object == TARGET_OBJECT_MEMORY
1898 || object == TARGET_OBJECT_STACK_MEMORY
1899 || object == TARGET_OBJECT_CODE_MEMORY
1900 || object == TARGET_OBJECT_RAW_MEMORY)
1901 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1902
1903 /* Give the progress callback a chance to set up. */
1904 if (progress)
1905 (*progress) (0, baton);
1906
1907 while (xfered_total < len)
1908 {
1909 ULONGEST xfered_partial;
1910 enum target_xfer_status status;
1911
1912 status = target_write_partial (ops, object, annex,
1913 buf + xfered_total * unit_size,
1914 offset + xfered_total, len - xfered_total,
1915 &xfered_partial);
1916
1917 if (status != TARGET_XFER_OK)
1918 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1919
1920 if (progress)
1921 (*progress) (xfered_partial, baton);
1922
1923 xfered_total += xfered_partial;
1924 QUIT;
1925 }
1926 return len;
1927 }
1928
1929 /* For docs on target_write see target.h. */
1930
1931 LONGEST
1932 target_write (struct target_ops *ops,
1933 enum target_object object,
1934 const char *annex, const gdb_byte *buf,
1935 ULONGEST offset, LONGEST len)
1936 {
1937 return target_write_with_progress (ops, object, annex, buf, offset, len,
1938 NULL, NULL);
1939 }
1940
1941 /* Help for target_read_alloc and target_read_stralloc. See their comments
1942 for details. */
1943
1944 template <typename T>
1945 gdb::optional<gdb::def_vector<T>>
1946 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1947 const char *annex)
1948 {
1949 gdb::def_vector<T> buf;
1950 size_t buf_pos = 0;
1951 const int chunk = 4096;
1952
1953 /* This function does not have a length parameter; it reads the
1954 entire OBJECT). Also, it doesn't support objects fetched partly
1955 from one target and partly from another (in a different stratum,
1956 e.g. a core file and an executable). Both reasons make it
1957 unsuitable for reading memory. */
1958 gdb_assert (object != TARGET_OBJECT_MEMORY);
1959
1960 /* Start by reading up to 4K at a time. The target will throttle
1961 this number down if necessary. */
1962 while (1)
1963 {
1964 ULONGEST xfered_len;
1965 enum target_xfer_status status;
1966
1967 buf.resize (buf_pos + chunk);
1968
1969 status = target_read_partial (ops, object, annex,
1970 (gdb_byte *) &buf[buf_pos],
1971 buf_pos, chunk,
1972 &xfered_len);
1973
1974 if (status == TARGET_XFER_EOF)
1975 {
1976 /* Read all there was. */
1977 buf.resize (buf_pos);
1978 return buf;
1979 }
1980 else if (status != TARGET_XFER_OK)
1981 {
1982 /* An error occurred. */
1983 return {};
1984 }
1985
1986 buf_pos += xfered_len;
1987
1988 QUIT;
1989 }
1990 }
1991
1992 /* See target.h */
1993
1994 gdb::optional<gdb::byte_vector>
1995 target_read_alloc (struct target_ops *ops, enum target_object object,
1996 const char *annex)
1997 {
1998 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1999 }
2000
2001 /* See target.h. */
2002
2003 gdb::optional<gdb::char_vector>
2004 target_read_stralloc (struct target_ops *ops, enum target_object object,
2005 const char *annex)
2006 {
2007 gdb::optional<gdb::char_vector> buf
2008 = target_read_alloc_1<char> (ops, object, annex);
2009
2010 if (!buf)
2011 return {};
2012
2013 if (buf->back () != '\0')
2014 buf->push_back ('\0');
2015
2016 /* Check for embedded NUL bytes; but allow trailing NULs. */
2017 for (auto it = std::find (buf->begin (), buf->end (), '\0');
2018 it != buf->end (); it++)
2019 if (*it != '\0')
2020 {
2021 warning (_("target object %d, annex %s, "
2022 "contained unexpected null characters"),
2023 (int) object, annex ? annex : "(none)");
2024 break;
2025 }
2026
2027 return buf;
2028 }
2029
2030 /* Memory transfer methods. */
2031
2032 void
2033 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2034 LONGEST len)
2035 {
2036 /* This method is used to read from an alternate, non-current
2037 target. This read must bypass the overlay support (as symbols
2038 don't match this target), and GDB's internal cache (wrong cache
2039 for this target). */
2040 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2041 != len)
2042 memory_error (TARGET_XFER_E_IO, addr);
2043 }
2044
2045 ULONGEST
2046 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2047 int len, enum bfd_endian byte_order)
2048 {
2049 gdb_byte buf[sizeof (ULONGEST)];
2050
2051 gdb_assert (len <= sizeof (buf));
2052 get_target_memory (ops, addr, buf, len);
2053 return extract_unsigned_integer (buf, len, byte_order);
2054 }
2055
2056 /* See target.h. */
2057
2058 int
2059 target_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061 {
2062 if (!may_insert_breakpoints)
2063 {
2064 warning (_("May not insert breakpoints"));
2065 return 1;
2066 }
2067
2068 return current_target.to_insert_breakpoint (&current_target,
2069 gdbarch, bp_tgt);
2070 }
2071
2072 /* See target.h. */
2073
2074 int
2075 target_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt,
2077 enum remove_bp_reason reason)
2078 {
2079 /* This is kind of a weird case to handle, but the permission might
2080 have been changed after breakpoints were inserted - in which case
2081 we should just take the user literally and assume that any
2082 breakpoints should be left in place. */
2083 if (!may_insert_breakpoints)
2084 {
2085 warning (_("May not remove breakpoints"));
2086 return 1;
2087 }
2088
2089 return current_target.to_remove_breakpoint (&current_target,
2090 gdbarch, bp_tgt, reason);
2091 }
2092
2093 static void
2094 info_target_command (const char *args, int from_tty)
2095 {
2096 struct target_ops *t;
2097 int has_all_mem = 0;
2098
2099 if (symfile_objfile != NULL)
2100 printf_unfiltered (_("Symbols from \"%s\".\n"),
2101 objfile_name (symfile_objfile));
2102
2103 for (t = target_stack; t != NULL; t = t->beneath)
2104 {
2105 if (!(*t->to_has_memory) (t))
2106 continue;
2107
2108 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2109 continue;
2110 if (has_all_mem)
2111 printf_unfiltered (_("\tWhile running this, "
2112 "GDB does not access memory from...\n"));
2113 printf_unfiltered ("%s:\n", t->to_longname);
2114 (t->to_files_info) (t);
2115 has_all_mem = (*t->to_has_all_memory) (t);
2116 }
2117 }
2118
2119 /* This function is called before any new inferior is created, e.g.
2120 by running a program, attaching, or connecting to a target.
2121 It cleans up any state from previous invocations which might
2122 change between runs. This is a subset of what target_preopen
2123 resets (things which might change between targets). */
2124
2125 void
2126 target_pre_inferior (int from_tty)
2127 {
2128 /* Clear out solib state. Otherwise the solib state of the previous
2129 inferior might have survived and is entirely wrong for the new
2130 target. This has been observed on GNU/Linux using glibc 2.3. How
2131 to reproduce:
2132
2133 bash$ ./foo&
2134 [1] 4711
2135 bash$ ./foo&
2136 [1] 4712
2137 bash$ gdb ./foo
2138 [...]
2139 (gdb) attach 4711
2140 (gdb) detach
2141 (gdb) attach 4712
2142 Cannot access memory at address 0xdeadbeef
2143 */
2144
2145 /* In some OSs, the shared library list is the same/global/shared
2146 across inferiors. If code is shared between processes, so are
2147 memory regions and features. */
2148 if (!gdbarch_has_global_solist (target_gdbarch ()))
2149 {
2150 no_shared_libraries (NULL, from_tty);
2151
2152 invalidate_target_mem_regions ();
2153
2154 target_clear_description ();
2155 }
2156
2157 /* attach_flag may be set if the previous process associated with
2158 the inferior was attached to. */
2159 current_inferior ()->attach_flag = 0;
2160
2161 current_inferior ()->highest_thread_num = 0;
2162
2163 agent_capability_invalidate ();
2164 }
2165
2166 /* Callback for iterate_over_inferiors. Gets rid of the given
2167 inferior. */
2168
2169 static int
2170 dispose_inferior (struct inferior *inf, void *args)
2171 {
2172 struct thread_info *thread;
2173
2174 thread = any_thread_of_process (inf->pid);
2175 if (thread)
2176 {
2177 switch_to_thread (thread->ptid);
2178
2179 /* Core inferiors actually should be detached, not killed. */
2180 if (target_has_execution)
2181 target_kill ();
2182 else
2183 target_detach (inf, 0);
2184 }
2185
2186 return 0;
2187 }
2188
2189 /* This is to be called by the open routine before it does
2190 anything. */
2191
2192 void
2193 target_preopen (int from_tty)
2194 {
2195 dont_repeat ();
2196
2197 if (have_inferiors ())
2198 {
2199 if (!from_tty
2200 || !have_live_inferiors ()
2201 || query (_("A program is being debugged already. Kill it? ")))
2202 iterate_over_inferiors (dispose_inferior, NULL);
2203 else
2204 error (_("Program not killed."));
2205 }
2206
2207 /* Calling target_kill may remove the target from the stack. But if
2208 it doesn't (which seems like a win for UDI), remove it now. */
2209 /* Leave the exec target, though. The user may be switching from a
2210 live process to a core of the same program. */
2211 pop_all_targets_above (file_stratum);
2212
2213 target_pre_inferior (from_tty);
2214 }
2215
2216 /* See target.h. */
2217
2218 void
2219 target_detach (inferior *inf, int from_tty)
2220 {
2221 /* As long as some to_detach implementations rely on the current_inferior
2222 (either directly, or indirectly, like through target_gdbarch or by
2223 reading memory), INF needs to be the current inferior. When that
2224 requirement will become no longer true, then we can remove this
2225 assertion. */
2226 gdb_assert (inf == current_inferior ());
2227
2228 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2229 /* Don't remove global breakpoints here. They're removed on
2230 disconnection from the target. */
2231 ;
2232 else
2233 /* If we're in breakpoints-always-inserted mode, have to remove
2234 them before detaching. */
2235 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2236
2237 prepare_for_detach ();
2238
2239 current_target.to_detach (&current_target, inf, from_tty);
2240 }
2241
2242 void
2243 target_disconnect (const char *args, int from_tty)
2244 {
2245 /* If we're in breakpoints-always-inserted mode or if breakpoints
2246 are global across processes, we have to remove them before
2247 disconnecting. */
2248 remove_breakpoints ();
2249
2250 current_target.to_disconnect (&current_target, args, from_tty);
2251 }
2252
2253 /* See target/target.h. */
2254
2255 ptid_t
2256 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2257 {
2258 return (current_target.to_wait) (&current_target, ptid, status, options);
2259 }
2260
2261 /* See target.h. */
2262
2263 ptid_t
2264 default_target_wait (struct target_ops *ops,
2265 ptid_t ptid, struct target_waitstatus *status,
2266 int options)
2267 {
2268 status->kind = TARGET_WAITKIND_IGNORE;
2269 return minus_one_ptid;
2270 }
2271
2272 const char *
2273 target_pid_to_str (ptid_t ptid)
2274 {
2275 return (*current_target.to_pid_to_str) (&current_target, ptid);
2276 }
2277
2278 const char *
2279 target_thread_name (struct thread_info *info)
2280 {
2281 return current_target.to_thread_name (&current_target, info);
2282 }
2283
2284 struct thread_info *
2285 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2286 int handle_len,
2287 struct inferior *inf)
2288 {
2289 return current_target.to_thread_handle_to_thread_info
2290 (&current_target, thread_handle, handle_len, inf);
2291 }
2292
2293 void
2294 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2295 {
2296 target_dcache_invalidate ();
2297
2298 current_target.to_resume (&current_target, ptid, step, signal);
2299
2300 registers_changed_ptid (ptid);
2301 /* We only set the internal executing state here. The user/frontend
2302 running state is set at a higher level. */
2303 set_executing (ptid, 1);
2304 clear_inline_frame_state (ptid);
2305 }
2306
2307 /* If true, target_commit_resume is a nop. */
2308 static int defer_target_commit_resume;
2309
2310 /* See target.h. */
2311
2312 void
2313 target_commit_resume (void)
2314 {
2315 if (defer_target_commit_resume)
2316 return;
2317
2318 current_target.to_commit_resume (&current_target);
2319 }
2320
2321 /* See target.h. */
2322
2323 scoped_restore_tmpl<int>
2324 make_scoped_defer_target_commit_resume ()
2325 {
2326 return make_scoped_restore (&defer_target_commit_resume, 1);
2327 }
2328
2329 void
2330 target_pass_signals (int numsigs, unsigned char *pass_signals)
2331 {
2332 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2333 }
2334
2335 void
2336 target_program_signals (int numsigs, unsigned char *program_signals)
2337 {
2338 (*current_target.to_program_signals) (&current_target,
2339 numsigs, program_signals);
2340 }
2341
2342 static int
2343 default_follow_fork (struct target_ops *self, int follow_child,
2344 int detach_fork)
2345 {
2346 /* Some target returned a fork event, but did not know how to follow it. */
2347 internal_error (__FILE__, __LINE__,
2348 _("could not find a target to follow fork"));
2349 }
2350
2351 /* Look through the list of possible targets for a target that can
2352 follow forks. */
2353
2354 int
2355 target_follow_fork (int follow_child, int detach_fork)
2356 {
2357 return current_target.to_follow_fork (&current_target,
2358 follow_child, detach_fork);
2359 }
2360
2361 /* Target wrapper for follow exec hook. */
2362
2363 void
2364 target_follow_exec (struct inferior *inf, char *execd_pathname)
2365 {
2366 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2367 }
2368
2369 static void
2370 default_mourn_inferior (struct target_ops *self)
2371 {
2372 internal_error (__FILE__, __LINE__,
2373 _("could not find a target to follow mourn inferior"));
2374 }
2375
2376 void
2377 target_mourn_inferior (ptid_t ptid)
2378 {
2379 gdb_assert (ptid_equal (ptid, inferior_ptid));
2380 current_target.to_mourn_inferior (&current_target);
2381
2382 /* We no longer need to keep handles on any of the object files.
2383 Make sure to release them to avoid unnecessarily locking any
2384 of them while we're not actually debugging. */
2385 bfd_cache_close_all ();
2386 }
2387
2388 /* Look for a target which can describe architectural features, starting
2389 from TARGET. If we find one, return its description. */
2390
2391 const struct target_desc *
2392 target_read_description (struct target_ops *target)
2393 {
2394 return target->to_read_description (target);
2395 }
2396
2397 /* This implements a basic search of memory, reading target memory and
2398 performing the search here (as opposed to performing the search in on the
2399 target side with, for example, gdbserver). */
2400
2401 int
2402 simple_search_memory (struct target_ops *ops,
2403 CORE_ADDR start_addr, ULONGEST search_space_len,
2404 const gdb_byte *pattern, ULONGEST pattern_len,
2405 CORE_ADDR *found_addrp)
2406 {
2407 /* NOTE: also defined in find.c testcase. */
2408 #define SEARCH_CHUNK_SIZE 16000
2409 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2410 /* Buffer to hold memory contents for searching. */
2411 unsigned search_buf_size;
2412
2413 search_buf_size = chunk_size + pattern_len - 1;
2414
2415 /* No point in trying to allocate a buffer larger than the search space. */
2416 if (search_space_len < search_buf_size)
2417 search_buf_size = search_space_len;
2418
2419 gdb::byte_vector search_buf (search_buf_size);
2420
2421 /* Prime the search buffer. */
2422
2423 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2424 search_buf.data (), start_addr, search_buf_size)
2425 != search_buf_size)
2426 {
2427 warning (_("Unable to access %s bytes of target "
2428 "memory at %s, halting search."),
2429 pulongest (search_buf_size), hex_string (start_addr));
2430 return -1;
2431 }
2432
2433 /* Perform the search.
2434
2435 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2436 When we've scanned N bytes we copy the trailing bytes to the start and
2437 read in another N bytes. */
2438
2439 while (search_space_len >= pattern_len)
2440 {
2441 gdb_byte *found_ptr;
2442 unsigned nr_search_bytes
2443 = std::min (search_space_len, (ULONGEST) search_buf_size);
2444
2445 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2446 pattern, pattern_len);
2447
2448 if (found_ptr != NULL)
2449 {
2450 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2451
2452 *found_addrp = found_addr;
2453 return 1;
2454 }
2455
2456 /* Not found in this chunk, skip to next chunk. */
2457
2458 /* Don't let search_space_len wrap here, it's unsigned. */
2459 if (search_space_len >= chunk_size)
2460 search_space_len -= chunk_size;
2461 else
2462 search_space_len = 0;
2463
2464 if (search_space_len >= pattern_len)
2465 {
2466 unsigned keep_len = search_buf_size - chunk_size;
2467 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2468 int nr_to_read;
2469
2470 /* Copy the trailing part of the previous iteration to the front
2471 of the buffer for the next iteration. */
2472 gdb_assert (keep_len == pattern_len - 1);
2473 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2474
2475 nr_to_read = std::min (search_space_len - keep_len,
2476 (ULONGEST) chunk_size);
2477
2478 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2479 &search_buf[keep_len], read_addr,
2480 nr_to_read) != nr_to_read)
2481 {
2482 warning (_("Unable to access %s bytes of target "
2483 "memory at %s, halting search."),
2484 plongest (nr_to_read),
2485 hex_string (read_addr));
2486 return -1;
2487 }
2488
2489 start_addr += chunk_size;
2490 }
2491 }
2492
2493 /* Not found. */
2494
2495 return 0;
2496 }
2497
2498 /* Default implementation of memory-searching. */
2499
2500 static int
2501 default_search_memory (struct target_ops *self,
2502 CORE_ADDR start_addr, ULONGEST search_space_len,
2503 const gdb_byte *pattern, ULONGEST pattern_len,
2504 CORE_ADDR *found_addrp)
2505 {
2506 /* Start over from the top of the target stack. */
2507 return simple_search_memory (current_target.beneath,
2508 start_addr, search_space_len,
2509 pattern, pattern_len, found_addrp);
2510 }
2511
2512 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2513 sequence of bytes in PATTERN with length PATTERN_LEN.
2514
2515 The result is 1 if found, 0 if not found, and -1 if there was an error
2516 requiring halting of the search (e.g. memory read error).
2517 If the pattern is found the address is recorded in FOUND_ADDRP. */
2518
2519 int
2520 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2521 const gdb_byte *pattern, ULONGEST pattern_len,
2522 CORE_ADDR *found_addrp)
2523 {
2524 return current_target.to_search_memory (&current_target, start_addr,
2525 search_space_len,
2526 pattern, pattern_len, found_addrp);
2527 }
2528
2529 /* Look through the currently pushed targets. If none of them will
2530 be able to restart the currently running process, issue an error
2531 message. */
2532
2533 void
2534 target_require_runnable (void)
2535 {
2536 struct target_ops *t;
2537
2538 for (t = target_stack; t != NULL; t = t->beneath)
2539 {
2540 /* If this target knows how to create a new program, then
2541 assume we will still be able to after killing the current
2542 one. Either killing and mourning will not pop T, or else
2543 find_default_run_target will find it again. */
2544 if (t->to_create_inferior != NULL)
2545 return;
2546
2547 /* Do not worry about targets at certain strata that can not
2548 create inferiors. Assume they will be pushed again if
2549 necessary, and continue to the process_stratum. */
2550 if (t->to_stratum == thread_stratum
2551 || t->to_stratum == record_stratum
2552 || t->to_stratum == arch_stratum)
2553 continue;
2554
2555 error (_("The \"%s\" target does not support \"run\". "
2556 "Try \"help target\" or \"continue\"."),
2557 t->to_shortname);
2558 }
2559
2560 /* This function is only called if the target is running. In that
2561 case there should have been a process_stratum target and it
2562 should either know how to create inferiors, or not... */
2563 internal_error (__FILE__, __LINE__, _("No targets found"));
2564 }
2565
2566 /* Whether GDB is allowed to fall back to the default run target for
2567 "run", "attach", etc. when no target is connected yet. */
2568 static int auto_connect_native_target = 1;
2569
2570 static void
2571 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 fprintf_filtered (file,
2575 _("Whether GDB may automatically connect to the "
2576 "native target is %s.\n"),
2577 value);
2578 }
2579
2580 /* Look through the list of possible targets for a target that can
2581 execute a run or attach command without any other data. This is
2582 used to locate the default process stratum.
2583
2584 If DO_MESG is not NULL, the result is always valid (error() is
2585 called for errors); else, return NULL on error. */
2586
2587 static struct target_ops *
2588 find_default_run_target (const char *do_mesg)
2589 {
2590 struct target_ops *runable = NULL;
2591
2592 if (auto_connect_native_target)
2593 {
2594 struct target_ops *t;
2595 int count = 0;
2596 int i;
2597
2598 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2599 {
2600 if (t->to_can_run != delegate_can_run && target_can_run (t))
2601 {
2602 runable = t;
2603 ++count;
2604 }
2605 }
2606
2607 if (count != 1)
2608 runable = NULL;
2609 }
2610
2611 if (runable == NULL)
2612 {
2613 if (do_mesg)
2614 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2615 else
2616 return NULL;
2617 }
2618
2619 return runable;
2620 }
2621
2622 /* See target.h. */
2623
2624 struct target_ops *
2625 find_attach_target (void)
2626 {
2627 struct target_ops *t;
2628
2629 /* If a target on the current stack can attach, use it. */
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_attach != NULL)
2633 break;
2634 }
2635
2636 /* Otherwise, use the default run target for attaching. */
2637 if (t == NULL)
2638 t = find_default_run_target ("attach");
2639
2640 return t;
2641 }
2642
2643 /* See target.h. */
2644
2645 struct target_ops *
2646 find_run_target (void)
2647 {
2648 struct target_ops *t;
2649
2650 /* If a target on the current stack can attach, use it. */
2651 for (t = current_target.beneath; t != NULL; t = t->beneath)
2652 {
2653 if (t->to_create_inferior != NULL)
2654 break;
2655 }
2656
2657 /* Otherwise, use the default run target. */
2658 if (t == NULL)
2659 t = find_default_run_target ("run");
2660
2661 return t;
2662 }
2663
2664 /* Implement the "info proc" command. */
2665
2666 int
2667 target_info_proc (const char *args, enum info_proc_what what)
2668 {
2669 struct target_ops *t;
2670
2671 /* If we're already connected to something that can get us OS
2672 related data, use it. Otherwise, try using the native
2673 target. */
2674 if (current_target.to_stratum >= process_stratum)
2675 t = current_target.beneath;
2676 else
2677 t = find_default_run_target (NULL);
2678
2679 for (; t != NULL; t = t->beneath)
2680 {
2681 if (t->to_info_proc != NULL)
2682 {
2683 t->to_info_proc (t, args, what);
2684
2685 if (targetdebug)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "target_info_proc (\"%s\", %d)\n", args, what);
2688
2689 return 1;
2690 }
2691 }
2692
2693 return 0;
2694 }
2695
2696 static int
2697 find_default_supports_disable_randomization (struct target_ops *self)
2698 {
2699 struct target_ops *t;
2700
2701 t = find_default_run_target (NULL);
2702 if (t && t->to_supports_disable_randomization)
2703 return (t->to_supports_disable_randomization) (t);
2704 return 0;
2705 }
2706
2707 int
2708 target_supports_disable_randomization (void)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = &current_target; t != NULL; t = t->beneath)
2713 if (t->to_supports_disable_randomization)
2714 return t->to_supports_disable_randomization (t);
2715
2716 return 0;
2717 }
2718
2719 /* See target/target.h. */
2720
2721 int
2722 target_supports_multi_process (void)
2723 {
2724 return (*current_target.to_supports_multi_process) (&current_target);
2725 }
2726
2727 /* See target.h. */
2728
2729 gdb::optional<gdb::char_vector>
2730 target_get_osdata (const char *type)
2731 {
2732 struct target_ops *t;
2733
2734 /* If we're already connected to something that can get us OS
2735 related data, use it. Otherwise, try using the native
2736 target. */
2737 if (current_target.to_stratum >= process_stratum)
2738 t = current_target.beneath;
2739 else
2740 t = find_default_run_target ("get OS data");
2741
2742 if (!t)
2743 return {};
2744
2745 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2746 }
2747
2748 static struct address_space *
2749 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2750 {
2751 struct inferior *inf;
2752
2753 /* Fall-back to the "main" address space of the inferior. */
2754 inf = find_inferior_ptid (ptid);
2755
2756 if (inf == NULL || inf->aspace == NULL)
2757 internal_error (__FILE__, __LINE__,
2758 _("Can't determine the current "
2759 "address space of thread %s\n"),
2760 target_pid_to_str (ptid));
2761
2762 return inf->aspace;
2763 }
2764
2765 /* Determine the current address space of thread PTID. */
2766
2767 struct address_space *
2768 target_thread_address_space (ptid_t ptid)
2769 {
2770 struct address_space *aspace;
2771
2772 aspace = current_target.to_thread_address_space (&current_target, ptid);
2773 gdb_assert (aspace != NULL);
2774
2775 return aspace;
2776 }
2777
2778
2779 /* Target file operations. */
2780
2781 static struct target_ops *
2782 default_fileio_target (void)
2783 {
2784 /* If we're already connected to something that can perform
2785 file I/O, use it. Otherwise, try using the native target. */
2786 if (current_target.to_stratum >= process_stratum)
2787 return current_target.beneath;
2788 else
2789 return find_default_run_target ("file I/O");
2790 }
2791
2792 /* File handle for target file operations. */
2793
2794 typedef struct
2795 {
2796 /* The target on which this file is open. */
2797 struct target_ops *t;
2798
2799 /* The file descriptor on the target. */
2800 int fd;
2801 } fileio_fh_t;
2802
2803 DEF_VEC_O (fileio_fh_t);
2804
2805 /* Vector of currently open file handles. The value returned by
2806 target_fileio_open and passed as the FD argument to other
2807 target_fileio_* functions is an index into this vector. This
2808 vector's entries are never freed; instead, files are marked as
2809 closed, and the handle becomes available for reuse. */
2810 static VEC (fileio_fh_t) *fileio_fhandles;
2811
2812 /* Macro to check whether a fileio_fh_t represents a closed file. */
2813 #define is_closed_fileio_fh(fd) ((fd) < 0)
2814
2815 /* Index into fileio_fhandles of the lowest handle that might be
2816 closed. This permits handle reuse without searching the whole
2817 list each time a new file is opened. */
2818 static int lowest_closed_fd;
2819
2820 /* Acquire a target fileio file descriptor. */
2821
2822 static int
2823 acquire_fileio_fd (struct target_ops *t, int fd)
2824 {
2825 fileio_fh_t *fh;
2826
2827 gdb_assert (!is_closed_fileio_fh (fd));
2828
2829 /* Search for closed handles to reuse. */
2830 for (;
2831 VEC_iterate (fileio_fh_t, fileio_fhandles,
2832 lowest_closed_fd, fh);
2833 lowest_closed_fd++)
2834 if (is_closed_fileio_fh (fh->fd))
2835 break;
2836
2837 /* Push a new handle if no closed handles were found. */
2838 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2839 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2840
2841 /* Fill in the handle. */
2842 fh->t = t;
2843 fh->fd = fd;
2844
2845 /* Return its index, and start the next lookup at
2846 the next index. */
2847 return lowest_closed_fd++;
2848 }
2849
2850 /* Release a target fileio file descriptor. */
2851
2852 static void
2853 release_fileio_fd (int fd, fileio_fh_t *fh)
2854 {
2855 fh->fd = -1;
2856 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2857 }
2858
2859 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2860
2861 #define fileio_fd_to_fh(fd) \
2862 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2863
2864 /* Helper for target_fileio_open and
2865 target_fileio_open_warn_if_slow. */
2866
2867 static int
2868 target_fileio_open_1 (struct inferior *inf, const char *filename,
2869 int flags, int mode, int warn_if_slow,
2870 int *target_errno)
2871 {
2872 struct target_ops *t;
2873
2874 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2875 {
2876 if (t->to_fileio_open != NULL)
2877 {
2878 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2879 warn_if_slow, target_errno);
2880
2881 if (fd < 0)
2882 fd = -1;
2883 else
2884 fd = acquire_fileio_fd (t, fd);
2885
2886 if (targetdebug)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2889 " = %d (%d)\n",
2890 inf == NULL ? 0 : inf->num,
2891 filename, flags, mode,
2892 warn_if_slow, fd,
2893 fd != -1 ? 0 : *target_errno);
2894 return fd;
2895 }
2896 }
2897
2898 *target_errno = FILEIO_ENOSYS;
2899 return -1;
2900 }
2901
2902 /* See target.h. */
2903
2904 int
2905 target_fileio_open (struct inferior *inf, const char *filename,
2906 int flags, int mode, int *target_errno)
2907 {
2908 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2909 target_errno);
2910 }
2911
2912 /* See target.h. */
2913
2914 int
2915 target_fileio_open_warn_if_slow (struct inferior *inf,
2916 const char *filename,
2917 int flags, int mode, int *target_errno)
2918 {
2919 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2920 target_errno);
2921 }
2922
2923 /* See target.h. */
2924
2925 int
2926 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2927 ULONGEST offset, int *target_errno)
2928 {
2929 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2930 int ret = -1;
2931
2932 if (is_closed_fileio_fh (fh->fd))
2933 *target_errno = EBADF;
2934 else
2935 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2936 len, offset, target_errno);
2937
2938 if (targetdebug)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "target_fileio_pwrite (%d,...,%d,%s) "
2941 "= %d (%d)\n",
2942 fd, len, pulongest (offset),
2943 ret, ret != -1 ? 0 : *target_errno);
2944 return ret;
2945 }
2946
2947 /* See target.h. */
2948
2949 int
2950 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2951 ULONGEST offset, int *target_errno)
2952 {
2953 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2954 int ret = -1;
2955
2956 if (is_closed_fileio_fh (fh->fd))
2957 *target_errno = EBADF;
2958 else
2959 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2960 len, offset, target_errno);
2961
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "target_fileio_pread (%d,...,%d,%s) "
2965 "= %d (%d)\n",
2966 fd, len, pulongest (offset),
2967 ret, ret != -1 ? 0 : *target_errno);
2968 return ret;
2969 }
2970
2971 /* See target.h. */
2972
2973 int
2974 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2975 {
2976 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2977 int ret = -1;
2978
2979 if (is_closed_fileio_fh (fh->fd))
2980 *target_errno = EBADF;
2981 else
2982 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_fstat (%d) = %d (%d)\n",
2987 fd, ret, ret != -1 ? 0 : *target_errno);
2988 return ret;
2989 }
2990
2991 /* See target.h. */
2992
2993 int
2994 target_fileio_close (int fd, int *target_errno)
2995 {
2996 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2997 int ret = -1;
2998
2999 if (is_closed_fileio_fh (fh->fd))
3000 *target_errno = EBADF;
3001 else
3002 {
3003 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3004 release_fileio_fd (fd, fh);
3005 }
3006
3007 if (targetdebug)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_fileio_close (%d) = %d (%d)\n",
3010 fd, ret, ret != -1 ? 0 : *target_errno);
3011 return ret;
3012 }
3013
3014 /* See target.h. */
3015
3016 int
3017 target_fileio_unlink (struct inferior *inf, const char *filename,
3018 int *target_errno)
3019 {
3020 struct target_ops *t;
3021
3022 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3023 {
3024 if (t->to_fileio_unlink != NULL)
3025 {
3026 int ret = t->to_fileio_unlink (t, inf, filename,
3027 target_errno);
3028
3029 if (targetdebug)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "target_fileio_unlink (%d,%s)"
3032 " = %d (%d)\n",
3033 inf == NULL ? 0 : inf->num, filename,
3034 ret, ret != -1 ? 0 : *target_errno);
3035 return ret;
3036 }
3037 }
3038
3039 *target_errno = FILEIO_ENOSYS;
3040 return -1;
3041 }
3042
3043 /* See target.h. */
3044
3045 gdb::optional<std::string>
3046 target_fileio_readlink (struct inferior *inf, const char *filename,
3047 int *target_errno)
3048 {
3049 struct target_ops *t;
3050
3051 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3052 {
3053 if (t->to_fileio_readlink != NULL)
3054 {
3055 gdb::optional<std::string> ret
3056 = t->to_fileio_readlink (t, inf, filename, target_errno);
3057
3058 if (targetdebug)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "target_fileio_readlink (%d,%s)"
3061 " = %s (%d)\n",
3062 inf == NULL ? 0 : inf->num,
3063 filename, ret ? ret->c_str () : "(nil)",
3064 ret ? 0 : *target_errno);
3065 return ret;
3066 }
3067 }
3068
3069 *target_errno = FILEIO_ENOSYS;
3070 return {};
3071 }
3072
3073 /* Like scoped_fd, but specific to target fileio. */
3074
3075 class scoped_target_fd
3076 {
3077 public:
3078 explicit scoped_target_fd (int fd) noexcept
3079 : m_fd (fd)
3080 {
3081 }
3082
3083 ~scoped_target_fd ()
3084 {
3085 if (m_fd >= 0)
3086 {
3087 int target_errno;
3088
3089 target_fileio_close (m_fd, &target_errno);
3090 }
3091 }
3092
3093 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3094
3095 int get () const noexcept
3096 {
3097 return m_fd;
3098 }
3099
3100 private:
3101 int m_fd;
3102 };
3103
3104 /* Read target file FILENAME, in the filesystem as seen by INF. If
3105 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3106 remote targets, the remote stub). Store the result in *BUF_P and
3107 return the size of the transferred data. PADDING additional bytes
3108 are available in *BUF_P. This is a helper function for
3109 target_fileio_read_alloc; see the declaration of that function for
3110 more information. */
3111
3112 static LONGEST
3113 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3114 gdb_byte **buf_p, int padding)
3115 {
3116 size_t buf_alloc, buf_pos;
3117 gdb_byte *buf;
3118 LONGEST n;
3119 int target_errno;
3120
3121 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3122 0700, &target_errno));
3123 if (fd.get () == -1)
3124 return -1;
3125
3126 /* Start by reading up to 4K at a time. The target will throttle
3127 this number down if necessary. */
3128 buf_alloc = 4096;
3129 buf = (gdb_byte *) xmalloc (buf_alloc);
3130 buf_pos = 0;
3131 while (1)
3132 {
3133 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3134 buf_alloc - buf_pos - padding, buf_pos,
3135 &target_errno);
3136 if (n < 0)
3137 {
3138 /* An error occurred. */
3139 xfree (buf);
3140 return -1;
3141 }
3142 else if (n == 0)
3143 {
3144 /* Read all there was. */
3145 if (buf_pos == 0)
3146 xfree (buf);
3147 else
3148 *buf_p = buf;
3149 return buf_pos;
3150 }
3151
3152 buf_pos += n;
3153
3154 /* If the buffer is filling up, expand it. */
3155 if (buf_alloc < buf_pos * 2)
3156 {
3157 buf_alloc *= 2;
3158 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3159 }
3160
3161 QUIT;
3162 }
3163 }
3164
3165 /* See target.h. */
3166
3167 LONGEST
3168 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3169 gdb_byte **buf_p)
3170 {
3171 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3172 }
3173
3174 /* See target.h. */
3175
3176 gdb::unique_xmalloc_ptr<char>
3177 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3178 {
3179 gdb_byte *buffer;
3180 char *bufstr;
3181 LONGEST i, transferred;
3182
3183 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3184 bufstr = (char *) buffer;
3185
3186 if (transferred < 0)
3187 return gdb::unique_xmalloc_ptr<char> (nullptr);
3188
3189 if (transferred == 0)
3190 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3191
3192 bufstr[transferred] = 0;
3193
3194 /* Check for embedded NUL bytes; but allow trailing NULs. */
3195 for (i = strlen (bufstr); i < transferred; i++)
3196 if (bufstr[i] != 0)
3197 {
3198 warning (_("target file %s "
3199 "contained unexpected null characters"),
3200 filename);
3201 break;
3202 }
3203
3204 return gdb::unique_xmalloc_ptr<char> (bufstr);
3205 }
3206
3207
3208 static int
3209 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3210 CORE_ADDR addr, int len)
3211 {
3212 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3213 }
3214
3215 static int
3216 default_watchpoint_addr_within_range (struct target_ops *target,
3217 CORE_ADDR addr,
3218 CORE_ADDR start, int length)
3219 {
3220 return addr >= start && addr < start + length;
3221 }
3222
3223 static struct gdbarch *
3224 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3225 {
3226 inferior *inf = find_inferior_ptid (ptid);
3227 gdb_assert (inf != NULL);
3228 return inf->gdbarch;
3229 }
3230
3231 static int
3232 return_zero (struct target_ops *ignore)
3233 {
3234 return 0;
3235 }
3236
3237 static int
3238 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3239 {
3240 return 0;
3241 }
3242
3243 /*
3244 * Find the next target down the stack from the specified target.
3245 */
3246
3247 struct target_ops *
3248 find_target_beneath (struct target_ops *t)
3249 {
3250 return t->beneath;
3251 }
3252
3253 /* See target.h. */
3254
3255 struct target_ops *
3256 find_target_at (enum strata stratum)
3257 {
3258 struct target_ops *t;
3259
3260 for (t = current_target.beneath; t != NULL; t = t->beneath)
3261 if (t->to_stratum == stratum)
3262 return t;
3263
3264 return NULL;
3265 }
3266
3267 \f
3268
3269 /* See target.h */
3270
3271 void
3272 target_announce_detach (int from_tty)
3273 {
3274 pid_t pid;
3275 const char *exec_file;
3276
3277 if (!from_tty)
3278 return;
3279
3280 exec_file = get_exec_file (0);
3281 if (exec_file == NULL)
3282 exec_file = "";
3283
3284 pid = ptid_get_pid (inferior_ptid);
3285 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3286 target_pid_to_str (pid_to_ptid (pid)));
3287 gdb_flush (gdb_stdout);
3288 }
3289
3290 /* The inferior process has died. Long live the inferior! */
3291
3292 void
3293 generic_mourn_inferior (void)
3294 {
3295 ptid_t ptid;
3296
3297 ptid = inferior_ptid;
3298 inferior_ptid = null_ptid;
3299
3300 /* Mark breakpoints uninserted in case something tries to delete a
3301 breakpoint while we delete the inferior's threads (which would
3302 fail, since the inferior is long gone). */
3303 mark_breakpoints_out ();
3304
3305 if (!ptid_equal (ptid, null_ptid))
3306 {
3307 int pid = ptid_get_pid (ptid);
3308 exit_inferior (pid);
3309 }
3310
3311 /* Note this wipes step-resume breakpoints, so needs to be done
3312 after exit_inferior, which ends up referencing the step-resume
3313 breakpoints through clear_thread_inferior_resources. */
3314 breakpoint_init_inferior (inf_exited);
3315
3316 registers_changed ();
3317
3318 reopen_exec_file ();
3319 reinit_frame_cache ();
3320
3321 if (deprecated_detach_hook)
3322 deprecated_detach_hook ();
3323 }
3324 \f
3325 /* Convert a normal process ID to a string. Returns the string in a
3326 static buffer. */
3327
3328 const char *
3329 normal_pid_to_str (ptid_t ptid)
3330 {
3331 static char buf[32];
3332
3333 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3334 return buf;
3335 }
3336
3337 static const char *
3338 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3339 {
3340 return normal_pid_to_str (ptid);
3341 }
3342
3343 /* Error-catcher for target_find_memory_regions. */
3344 static int
3345 dummy_find_memory_regions (struct target_ops *self,
3346 find_memory_region_ftype ignore1, void *ignore2)
3347 {
3348 error (_("Command not implemented for this target."));
3349 return 0;
3350 }
3351
3352 /* Error-catcher for target_make_corefile_notes. */
3353 static char *
3354 dummy_make_corefile_notes (struct target_ops *self,
3355 bfd *ignore1, int *ignore2)
3356 {
3357 error (_("Command not implemented for this target."));
3358 return NULL;
3359 }
3360
3361 /* Set up the handful of non-empty slots needed by the dummy target
3362 vector. */
3363
3364 static void
3365 init_dummy_target (void)
3366 {
3367 dummy_target.to_shortname = "None";
3368 dummy_target.to_longname = "None";
3369 dummy_target.to_doc = "";
3370 dummy_target.to_supports_disable_randomization
3371 = find_default_supports_disable_randomization;
3372 dummy_target.to_stratum = dummy_stratum;
3373 dummy_target.to_has_all_memory = return_zero;
3374 dummy_target.to_has_memory = return_zero;
3375 dummy_target.to_has_stack = return_zero;
3376 dummy_target.to_has_registers = return_zero;
3377 dummy_target.to_has_execution = return_zero_has_execution;
3378 dummy_target.to_magic = OPS_MAGIC;
3379
3380 install_dummy_methods (&dummy_target);
3381 }
3382 \f
3383
3384 void
3385 target_close (struct target_ops *targ)
3386 {
3387 gdb_assert (!target_is_pushed (targ));
3388
3389 if (targ->to_xclose != NULL)
3390 targ->to_xclose (targ);
3391 else if (targ->to_close != NULL)
3392 targ->to_close (targ);
3393
3394 if (targetdebug)
3395 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3396 }
3397
3398 int
3399 target_thread_alive (ptid_t ptid)
3400 {
3401 return current_target.to_thread_alive (&current_target, ptid);
3402 }
3403
3404 void
3405 target_update_thread_list (void)
3406 {
3407 current_target.to_update_thread_list (&current_target);
3408 }
3409
3410 void
3411 target_stop (ptid_t ptid)
3412 {
3413 if (!may_stop)
3414 {
3415 warning (_("May not interrupt or stop the target, ignoring attempt"));
3416 return;
3417 }
3418
3419 (*current_target.to_stop) (&current_target, ptid);
3420 }
3421
3422 void
3423 target_interrupt ()
3424 {
3425 if (!may_stop)
3426 {
3427 warning (_("May not interrupt or stop the target, ignoring attempt"));
3428 return;
3429 }
3430
3431 (*current_target.to_interrupt) (&current_target);
3432 }
3433
3434 /* See target.h. */
3435
3436 void
3437 target_pass_ctrlc (void)
3438 {
3439 (*current_target.to_pass_ctrlc) (&current_target);
3440 }
3441
3442 /* See target.h. */
3443
3444 void
3445 default_target_pass_ctrlc (struct target_ops *ops)
3446 {
3447 target_interrupt ();
3448 }
3449
3450 /* See target/target.h. */
3451
3452 void
3453 target_stop_and_wait (ptid_t ptid)
3454 {
3455 struct target_waitstatus status;
3456 int was_non_stop = non_stop;
3457
3458 non_stop = 1;
3459 target_stop (ptid);
3460
3461 memset (&status, 0, sizeof (status));
3462 target_wait (ptid, &status, 0);
3463
3464 non_stop = was_non_stop;
3465 }
3466
3467 /* See target/target.h. */
3468
3469 void
3470 target_continue_no_signal (ptid_t ptid)
3471 {
3472 target_resume (ptid, 0, GDB_SIGNAL_0);
3473 }
3474
3475 /* See target/target.h. */
3476
3477 void
3478 target_continue (ptid_t ptid, enum gdb_signal signal)
3479 {
3480 target_resume (ptid, 0, signal);
3481 }
3482
3483 /* Concatenate ELEM to LIST, a comma separate list, and return the
3484 result. The LIST incoming argument is released. */
3485
3486 static char *
3487 str_comma_list_concat_elem (char *list, const char *elem)
3488 {
3489 if (list == NULL)
3490 return xstrdup (elem);
3491 else
3492 return reconcat (list, list, ", ", elem, (char *) NULL);
3493 }
3494
3495 /* Helper for target_options_to_string. If OPT is present in
3496 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3497 Returns the new resulting string. OPT is removed from
3498 TARGET_OPTIONS. */
3499
3500 static char *
3501 do_option (int *target_options, char *ret,
3502 int opt, const char *opt_str)
3503 {
3504 if ((*target_options & opt) != 0)
3505 {
3506 ret = str_comma_list_concat_elem (ret, opt_str);
3507 *target_options &= ~opt;
3508 }
3509
3510 return ret;
3511 }
3512
3513 char *
3514 target_options_to_string (int target_options)
3515 {
3516 char *ret = NULL;
3517
3518 #define DO_TARG_OPTION(OPT) \
3519 ret = do_option (&target_options, ret, OPT, #OPT)
3520
3521 DO_TARG_OPTION (TARGET_WNOHANG);
3522
3523 if (target_options != 0)
3524 ret = str_comma_list_concat_elem (ret, "unknown???");
3525
3526 if (ret == NULL)
3527 ret = xstrdup ("");
3528 return ret;
3529 }
3530
3531 void
3532 target_fetch_registers (struct regcache *regcache, int regno)
3533 {
3534 current_target.to_fetch_registers (&current_target, regcache, regno);
3535 if (targetdebug)
3536 regcache->debug_print_register ("target_fetch_registers", regno);
3537 }
3538
3539 void
3540 target_store_registers (struct regcache *regcache, int regno)
3541 {
3542 if (!may_write_registers)
3543 error (_("Writing to registers is not allowed (regno %d)"), regno);
3544
3545 current_target.to_store_registers (&current_target, regcache, regno);
3546 if (targetdebug)
3547 {
3548 regcache->debug_print_register ("target_store_registers", regno);
3549 }
3550 }
3551
3552 int
3553 target_core_of_thread (ptid_t ptid)
3554 {
3555 return current_target.to_core_of_thread (&current_target, ptid);
3556 }
3557
3558 int
3559 simple_verify_memory (struct target_ops *ops,
3560 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3561 {
3562 LONGEST total_xfered = 0;
3563
3564 while (total_xfered < size)
3565 {
3566 ULONGEST xfered_len;
3567 enum target_xfer_status status;
3568 gdb_byte buf[1024];
3569 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3570
3571 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3572 buf, NULL, lma + total_xfered, howmuch,
3573 &xfered_len);
3574 if (status == TARGET_XFER_OK
3575 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3576 {
3577 total_xfered += xfered_len;
3578 QUIT;
3579 }
3580 else
3581 return 0;
3582 }
3583 return 1;
3584 }
3585
3586 /* Default implementation of memory verification. */
3587
3588 static int
3589 default_verify_memory (struct target_ops *self,
3590 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3591 {
3592 /* Start over from the top of the target stack. */
3593 return simple_verify_memory (current_target.beneath,
3594 data, memaddr, size);
3595 }
3596
3597 int
3598 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3599 {
3600 return current_target.to_verify_memory (&current_target,
3601 data, memaddr, size);
3602 }
3603
3604 /* The documentation for this function is in its prototype declaration in
3605 target.h. */
3606
3607 int
3608 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3609 enum target_hw_bp_type rw)
3610 {
3611 return current_target.to_insert_mask_watchpoint (&current_target,
3612 addr, mask, rw);
3613 }
3614
3615 /* The documentation for this function is in its prototype declaration in
3616 target.h. */
3617
3618 int
3619 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3620 enum target_hw_bp_type rw)
3621 {
3622 return current_target.to_remove_mask_watchpoint (&current_target,
3623 addr, mask, rw);
3624 }
3625
3626 /* The documentation for this function is in its prototype declaration
3627 in target.h. */
3628
3629 int
3630 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3631 {
3632 return current_target.to_masked_watch_num_registers (&current_target,
3633 addr, mask);
3634 }
3635
3636 /* The documentation for this function is in its prototype declaration
3637 in target.h. */
3638
3639 int
3640 target_ranged_break_num_registers (void)
3641 {
3642 return current_target.to_ranged_break_num_registers (&current_target);
3643 }
3644
3645 /* See target.h. */
3646
3647 struct btrace_target_info *
3648 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3649 {
3650 return current_target.to_enable_btrace (&current_target, ptid, conf);
3651 }
3652
3653 /* See target.h. */
3654
3655 void
3656 target_disable_btrace (struct btrace_target_info *btinfo)
3657 {
3658 current_target.to_disable_btrace (&current_target, btinfo);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_teardown_btrace (struct btrace_target_info *btinfo)
3665 {
3666 current_target.to_teardown_btrace (&current_target, btinfo);
3667 }
3668
3669 /* See target.h. */
3670
3671 enum btrace_error
3672 target_read_btrace (struct btrace_data *btrace,
3673 struct btrace_target_info *btinfo,
3674 enum btrace_read_type type)
3675 {
3676 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3677 }
3678
3679 /* See target.h. */
3680
3681 const struct btrace_config *
3682 target_btrace_conf (const struct btrace_target_info *btinfo)
3683 {
3684 return current_target.to_btrace_conf (&current_target, btinfo);
3685 }
3686
3687 /* See target.h. */
3688
3689 void
3690 target_stop_recording (void)
3691 {
3692 current_target.to_stop_recording (&current_target);
3693 }
3694
3695 /* See target.h. */
3696
3697 void
3698 target_save_record (const char *filename)
3699 {
3700 current_target.to_save_record (&current_target, filename);
3701 }
3702
3703 /* See target.h. */
3704
3705 int
3706 target_supports_delete_record (void)
3707 {
3708 struct target_ops *t;
3709
3710 for (t = current_target.beneath; t != NULL; t = t->beneath)
3711 if (t->to_delete_record != delegate_delete_record
3712 && t->to_delete_record != tdefault_delete_record)
3713 return 1;
3714
3715 return 0;
3716 }
3717
3718 /* See target.h. */
3719
3720 void
3721 target_delete_record (void)
3722 {
3723 current_target.to_delete_record (&current_target);
3724 }
3725
3726 /* See target.h. */
3727
3728 enum record_method
3729 target_record_method (ptid_t ptid)
3730 {
3731 return current_target.to_record_method (&current_target, ptid);
3732 }
3733
3734 /* See target.h. */
3735
3736 int
3737 target_record_is_replaying (ptid_t ptid)
3738 {
3739 return current_target.to_record_is_replaying (&current_target, ptid);
3740 }
3741
3742 /* See target.h. */
3743
3744 int
3745 target_record_will_replay (ptid_t ptid, int dir)
3746 {
3747 return current_target.to_record_will_replay (&current_target, ptid, dir);
3748 }
3749
3750 /* See target.h. */
3751
3752 void
3753 target_record_stop_replaying (void)
3754 {
3755 current_target.to_record_stop_replaying (&current_target);
3756 }
3757
3758 /* See target.h. */
3759
3760 void
3761 target_goto_record_begin (void)
3762 {
3763 current_target.to_goto_record_begin (&current_target);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_goto_record_end (void)
3770 {
3771 current_target.to_goto_record_end (&current_target);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_goto_record (ULONGEST insn)
3778 {
3779 current_target.to_goto_record (&current_target, insn);
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_insn_history (int size, gdb_disassembly_flags flags)
3786 {
3787 current_target.to_insn_history (&current_target, size, flags);
3788 }
3789
3790 /* See target.h. */
3791
3792 void
3793 target_insn_history_from (ULONGEST from, int size,
3794 gdb_disassembly_flags flags)
3795 {
3796 current_target.to_insn_history_from (&current_target, from, size, flags);
3797 }
3798
3799 /* See target.h. */
3800
3801 void
3802 target_insn_history_range (ULONGEST begin, ULONGEST end,
3803 gdb_disassembly_flags flags)
3804 {
3805 current_target.to_insn_history_range (&current_target, begin, end, flags);
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_call_history (int size, record_print_flags flags)
3812 {
3813 current_target.to_call_history (&current_target, size, flags);
3814 }
3815
3816 /* See target.h. */
3817
3818 void
3819 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3820 {
3821 current_target.to_call_history_from (&current_target, begin, size, flags);
3822 }
3823
3824 /* See target.h. */
3825
3826 void
3827 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3828 {
3829 current_target.to_call_history_range (&current_target, begin, end, flags);
3830 }
3831
3832 /* See target.h. */
3833
3834 const struct frame_unwind *
3835 target_get_unwinder (void)
3836 {
3837 return current_target.to_get_unwinder (&current_target);
3838 }
3839
3840 /* See target.h. */
3841
3842 const struct frame_unwind *
3843 target_get_tailcall_unwinder (void)
3844 {
3845 return current_target.to_get_tailcall_unwinder (&current_target);
3846 }
3847
3848 /* See target.h. */
3849
3850 void
3851 target_prepare_to_generate_core (void)
3852 {
3853 current_target.to_prepare_to_generate_core (&current_target);
3854 }
3855
3856 /* See target.h. */
3857
3858 void
3859 target_done_generating_core (void)
3860 {
3861 current_target.to_done_generating_core (&current_target);
3862 }
3863
3864 static void
3865 setup_target_debug (void)
3866 {
3867 memcpy (&debug_target, &current_target, sizeof debug_target);
3868
3869 init_debug_target (&current_target);
3870 }
3871 \f
3872
3873 static char targ_desc[] =
3874 "Names of targets and files being debugged.\nShows the entire \
3875 stack of targets currently in use (including the exec-file,\n\
3876 core-file, and process, if any), as well as the symbol file name.";
3877
3878 static void
3879 default_rcmd (struct target_ops *self, const char *command,
3880 struct ui_file *output)
3881 {
3882 error (_("\"monitor\" command not supported by this target."));
3883 }
3884
3885 static void
3886 do_monitor_command (const char *cmd, int from_tty)
3887 {
3888 target_rcmd (cmd, gdb_stdtarg);
3889 }
3890
3891 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3892 ignored. */
3893
3894 void
3895 flash_erase_command (const char *cmd, int from_tty)
3896 {
3897 /* Used to communicate termination of flash operations to the target. */
3898 bool found_flash_region = false;
3899 struct gdbarch *gdbarch = target_gdbarch ();
3900
3901 std::vector<mem_region> mem_regions = target_memory_map ();
3902
3903 /* Iterate over all memory regions. */
3904 for (const mem_region &m : mem_regions)
3905 {
3906 /* Is this a flash memory region? */
3907 if (m.attrib.mode == MEM_FLASH)
3908 {
3909 found_flash_region = true;
3910 target_flash_erase (m.lo, m.hi - m.lo);
3911
3912 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3913
3914 current_uiout->message (_("Erasing flash memory region at address "));
3915 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3916 current_uiout->message (", size = ");
3917 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3918 current_uiout->message ("\n");
3919 }
3920 }
3921
3922 /* Did we do any flash operations? If so, we need to finalize them. */
3923 if (found_flash_region)
3924 target_flash_done ();
3925 else
3926 current_uiout->message (_("No flash memory regions found.\n"));
3927 }
3928
3929 /* Print the name of each layers of our target stack. */
3930
3931 static void
3932 maintenance_print_target_stack (const char *cmd, int from_tty)
3933 {
3934 struct target_ops *t;
3935
3936 printf_filtered (_("The current target stack is:\n"));
3937
3938 for (t = target_stack; t != NULL; t = t->beneath)
3939 {
3940 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3941 }
3942 }
3943
3944 /* See target.h. */
3945
3946 void
3947 target_async (int enable)
3948 {
3949 infrun_async (enable);
3950 current_target.to_async (&current_target, enable);
3951 }
3952
3953 /* See target.h. */
3954
3955 void
3956 target_thread_events (int enable)
3957 {
3958 current_target.to_thread_events (&current_target, enable);
3959 }
3960
3961 /* Controls if targets can report that they can/are async. This is
3962 just for maintainers to use when debugging gdb. */
3963 int target_async_permitted = 1;
3964
3965 /* The set command writes to this variable. If the inferior is
3966 executing, target_async_permitted is *not* updated. */
3967 static int target_async_permitted_1 = 1;
3968
3969 static void
3970 maint_set_target_async_command (const char *args, int from_tty,
3971 struct cmd_list_element *c)
3972 {
3973 if (have_live_inferiors ())
3974 {
3975 target_async_permitted_1 = target_async_permitted;
3976 error (_("Cannot change this setting while the inferior is running."));
3977 }
3978
3979 target_async_permitted = target_async_permitted_1;
3980 }
3981
3982 static void
3983 maint_show_target_async_command (struct ui_file *file, int from_tty,
3984 struct cmd_list_element *c,
3985 const char *value)
3986 {
3987 fprintf_filtered (file,
3988 _("Controlling the inferior in "
3989 "asynchronous mode is %s.\n"), value);
3990 }
3991
3992 /* Return true if the target operates in non-stop mode even with "set
3993 non-stop off". */
3994
3995 static int
3996 target_always_non_stop_p (void)
3997 {
3998 return current_target.to_always_non_stop_p (&current_target);
3999 }
4000
4001 /* See target.h. */
4002
4003 int
4004 target_is_non_stop_p (void)
4005 {
4006 return (non_stop
4007 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4008 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4009 && target_always_non_stop_p ()));
4010 }
4011
4012 /* Controls if targets can report that they always run in non-stop
4013 mode. This is just for maintainers to use when debugging gdb. */
4014 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4015
4016 /* The set command writes to this variable. If the inferior is
4017 executing, target_non_stop_enabled is *not* updated. */
4018 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4019
4020 /* Implementation of "maint set target-non-stop". */
4021
4022 static void
4023 maint_set_target_non_stop_command (const char *args, int from_tty,
4024 struct cmd_list_element *c)
4025 {
4026 if (have_live_inferiors ())
4027 {
4028 target_non_stop_enabled_1 = target_non_stop_enabled;
4029 error (_("Cannot change this setting while the inferior is running."));
4030 }
4031
4032 target_non_stop_enabled = target_non_stop_enabled_1;
4033 }
4034
4035 /* Implementation of "maint show target-non-stop". */
4036
4037 static void
4038 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4039 struct cmd_list_element *c,
4040 const char *value)
4041 {
4042 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4043 fprintf_filtered (file,
4044 _("Whether the target is always in non-stop mode "
4045 "is %s (currently %s).\n"), value,
4046 target_always_non_stop_p () ? "on" : "off");
4047 else
4048 fprintf_filtered (file,
4049 _("Whether the target is always in non-stop mode "
4050 "is %s.\n"), value);
4051 }
4052
4053 /* Temporary copies of permission settings. */
4054
4055 static int may_write_registers_1 = 1;
4056 static int may_write_memory_1 = 1;
4057 static int may_insert_breakpoints_1 = 1;
4058 static int may_insert_tracepoints_1 = 1;
4059 static int may_insert_fast_tracepoints_1 = 1;
4060 static int may_stop_1 = 1;
4061
4062 /* Make the user-set values match the real values again. */
4063
4064 void
4065 update_target_permissions (void)
4066 {
4067 may_write_registers_1 = may_write_registers;
4068 may_write_memory_1 = may_write_memory;
4069 may_insert_breakpoints_1 = may_insert_breakpoints;
4070 may_insert_tracepoints_1 = may_insert_tracepoints;
4071 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4072 may_stop_1 = may_stop;
4073 }
4074
4075 /* The one function handles (most of) the permission flags in the same
4076 way. */
4077
4078 static void
4079 set_target_permissions (const char *args, int from_tty,
4080 struct cmd_list_element *c)
4081 {
4082 if (target_has_execution)
4083 {
4084 update_target_permissions ();
4085 error (_("Cannot change this setting while the inferior is running."));
4086 }
4087
4088 /* Make the real values match the user-changed values. */
4089 may_write_registers = may_write_registers_1;
4090 may_insert_breakpoints = may_insert_breakpoints_1;
4091 may_insert_tracepoints = may_insert_tracepoints_1;
4092 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4093 may_stop = may_stop_1;
4094 update_observer_mode ();
4095 }
4096
4097 /* Set memory write permission independently of observer mode. */
4098
4099 static void
4100 set_write_memory_permission (const char *args, int from_tty,
4101 struct cmd_list_element *c)
4102 {
4103 /* Make the real values match the user-changed values. */
4104 may_write_memory = may_write_memory_1;
4105 update_observer_mode ();
4106 }
4107
4108 #if GDB_SELF_TEST
4109 namespace selftests {
4110
4111 static int
4112 test_target_has_registers (target_ops *self)
4113 {
4114 return 1;
4115 }
4116
4117 static int
4118 test_target_has_stack (target_ops *self)
4119 {
4120 return 1;
4121 }
4122
4123 static int
4124 test_target_has_memory (target_ops *self)
4125 {
4126 return 1;
4127 }
4128
4129 static void
4130 test_target_prepare_to_store (target_ops *self, regcache *regs)
4131 {
4132 }
4133
4134 static void
4135 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4136 {
4137 }
4138
4139 test_target_ops::test_target_ops ()
4140 : target_ops {}
4141 {
4142 to_magic = OPS_MAGIC;
4143 to_stratum = process_stratum;
4144 to_has_memory = test_target_has_memory;
4145 to_has_stack = test_target_has_stack;
4146 to_has_registers = test_target_has_registers;
4147 to_prepare_to_store = test_target_prepare_to_store;
4148 to_store_registers = test_target_store_registers;
4149
4150 complete_target_initialization (this);
4151 }
4152
4153 } // namespace selftests
4154 #endif /* GDB_SELF_TEST */
4155
4156 void
4157 initialize_targets (void)
4158 {
4159 init_dummy_target ();
4160 push_target (&dummy_target);
4161
4162 add_info ("target", info_target_command, targ_desc);
4163 add_info ("files", info_target_command, targ_desc);
4164
4165 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4166 Set target debugging."), _("\
4167 Show target debugging."), _("\
4168 When non-zero, target debugging is enabled. Higher numbers are more\n\
4169 verbose."),
4170 set_targetdebug,
4171 show_targetdebug,
4172 &setdebuglist, &showdebuglist);
4173
4174 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4175 &trust_readonly, _("\
4176 Set mode for reading from readonly sections."), _("\
4177 Show mode for reading from readonly sections."), _("\
4178 When this mode is on, memory reads from readonly sections (such as .text)\n\
4179 will be read from the object file instead of from the target. This will\n\
4180 result in significant performance improvement for remote targets."),
4181 NULL,
4182 show_trust_readonly,
4183 &setlist, &showlist);
4184
4185 add_com ("monitor", class_obscure, do_monitor_command,
4186 _("Send a command to the remote monitor (remote targets only)."));
4187
4188 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4189 _("Print the name of each layer of the internal target stack."),
4190 &maintenanceprintlist);
4191
4192 add_setshow_boolean_cmd ("target-async", no_class,
4193 &target_async_permitted_1, _("\
4194 Set whether gdb controls the inferior in asynchronous mode."), _("\
4195 Show whether gdb controls the inferior in asynchronous mode."), _("\
4196 Tells gdb whether to control the inferior in asynchronous mode."),
4197 maint_set_target_async_command,
4198 maint_show_target_async_command,
4199 &maintenance_set_cmdlist,
4200 &maintenance_show_cmdlist);
4201
4202 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4203 &target_non_stop_enabled_1, _("\
4204 Set whether gdb always controls the inferior in non-stop mode."), _("\
4205 Show whether gdb always controls the inferior in non-stop mode."), _("\
4206 Tells gdb whether to control the inferior in non-stop mode."),
4207 maint_set_target_non_stop_command,
4208 maint_show_target_non_stop_command,
4209 &maintenance_set_cmdlist,
4210 &maintenance_show_cmdlist);
4211
4212 add_setshow_boolean_cmd ("may-write-registers", class_support,
4213 &may_write_registers_1, _("\
4214 Set permission to write into registers."), _("\
4215 Show permission to write into registers."), _("\
4216 When this permission is on, GDB may write into the target's registers.\n\
4217 Otherwise, any sort of write attempt will result in an error."),
4218 set_target_permissions, NULL,
4219 &setlist, &showlist);
4220
4221 add_setshow_boolean_cmd ("may-write-memory", class_support,
4222 &may_write_memory_1, _("\
4223 Set permission to write into target memory."), _("\
4224 Show permission to write into target memory."), _("\
4225 When this permission is on, GDB may write into the target's memory.\n\
4226 Otherwise, any sort of write attempt will result in an error."),
4227 set_write_memory_permission, NULL,
4228 &setlist, &showlist);
4229
4230 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4231 &may_insert_breakpoints_1, _("\
4232 Set permission to insert breakpoints in the target."), _("\
4233 Show permission to insert breakpoints in the target."), _("\
4234 When this permission is on, GDB may insert breakpoints in the program.\n\
4235 Otherwise, any sort of insertion attempt will result in an error."),
4236 set_target_permissions, NULL,
4237 &setlist, &showlist);
4238
4239 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4240 &may_insert_tracepoints_1, _("\
4241 Set permission to insert tracepoints in the target."), _("\
4242 Show permission to insert tracepoints in the target."), _("\
4243 When this permission is on, GDB may insert tracepoints in the program.\n\
4244 Otherwise, any sort of insertion attempt will result in an error."),
4245 set_target_permissions, NULL,
4246 &setlist, &showlist);
4247
4248 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4249 &may_insert_fast_tracepoints_1, _("\
4250 Set permission to insert fast tracepoints in the target."), _("\
4251 Show permission to insert fast tracepoints in the target."), _("\
4252 When this permission is on, GDB may insert fast tracepoints.\n\
4253 Otherwise, any sort of insertion attempt will result in an error."),
4254 set_target_permissions, NULL,
4255 &setlist, &showlist);
4256
4257 add_setshow_boolean_cmd ("may-interrupt", class_support,
4258 &may_stop_1, _("\
4259 Set permission to interrupt or signal the target."), _("\
4260 Show permission to interrupt or signal the target."), _("\
4261 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4262 Otherwise, any attempt to interrupt or stop will be ignored."),
4263 set_target_permissions, NULL,
4264 &setlist, &showlist);
4265
4266 add_com ("flash-erase", no_class, flash_erase_command,
4267 _("Erase all flash memory regions."));
4268
4269 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4270 &auto_connect_native_target, _("\
4271 Set whether GDB may automatically connect to the native target."), _("\
4272 Show whether GDB may automatically connect to the native target."), _("\
4273 When on, and GDB is not connected to a target yet, GDB\n\
4274 attempts \"run\" and other commands with the native target."),
4275 NULL, show_auto_connect_native_target,
4276 &setlist, &showlist);
4277 }
This page took 0.112848 seconds and 5 git commands to generate.