convert to_download_tracepoint
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 /* Do not inherit to_trace_init. */
692 /* Do not inherit to_download_tracepoint. */
693 INHERIT (to_can_download_tracepoint, t);
694 INHERIT (to_download_trace_state_variable, t);
695 INHERIT (to_enable_tracepoint, t);
696 INHERIT (to_disable_tracepoint, t);
697 INHERIT (to_trace_set_readonly_regions, t);
698 INHERIT (to_trace_start, t);
699 INHERIT (to_get_trace_status, t);
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_can_download_tracepoint,
756 (int (*) (struct target_ops *))
757 return_zero);
758 de_fault (to_download_trace_state_variable,
759 (void (*) (struct target_ops *, struct trace_state_variable *))
760 tcomplain);
761 de_fault (to_enable_tracepoint,
762 (void (*) (struct target_ops *, struct bp_location *))
763 tcomplain);
764 de_fault (to_disable_tracepoint,
765 (void (*) (struct target_ops *, struct bp_location *))
766 tcomplain);
767 de_fault (to_trace_set_readonly_regions,
768 (void (*) (struct target_ops *))
769 tcomplain);
770 de_fault (to_trace_start,
771 (void (*) (struct target_ops *))
772 tcomplain);
773 de_fault (to_get_trace_status,
774 (int (*) (struct target_ops *, struct trace_status *))
775 return_minus_one);
776 de_fault (to_get_tracepoint_status,
777 (void (*) (struct target_ops *, struct breakpoint *,
778 struct uploaded_tp *))
779 tcomplain);
780 de_fault (to_trace_stop,
781 (void (*) (struct target_ops *))
782 tcomplain);
783 de_fault (to_trace_find,
784 (int (*) (struct target_ops *,
785 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
786 return_minus_one);
787 de_fault (to_get_trace_state_variable_value,
788 (int (*) (struct target_ops *, int, LONGEST *))
789 return_zero);
790 de_fault (to_save_trace_data,
791 (int (*) (struct target_ops *, const char *))
792 tcomplain);
793 de_fault (to_upload_tracepoints,
794 (int (*) (struct target_ops *, struct uploaded_tp **))
795 return_zero);
796 de_fault (to_upload_trace_state_variables,
797 (int (*) (struct target_ops *, struct uploaded_tsv **))
798 return_zero);
799 de_fault (to_get_raw_trace_data,
800 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
801 tcomplain);
802 de_fault (to_get_min_fast_tracepoint_insn_len,
803 (int (*) (struct target_ops *))
804 return_minus_one);
805 de_fault (to_set_disconnected_tracing,
806 (void (*) (struct target_ops *, int))
807 target_ignore);
808 de_fault (to_set_circular_trace_buffer,
809 (void (*) (struct target_ops *, int))
810 target_ignore);
811 de_fault (to_set_trace_buffer_size,
812 (void (*) (struct target_ops *, LONGEST))
813 target_ignore);
814 de_fault (to_set_trace_notes,
815 (int (*) (struct target_ops *,
816 const char *, const char *, const char *))
817 return_zero);
818 de_fault (to_get_tib_address,
819 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
820 tcomplain);
821 de_fault (to_set_permissions,
822 (void (*) (struct target_ops *))
823 target_ignore);
824 de_fault (to_static_tracepoint_marker_at,
825 (int (*) (struct target_ops *,
826 CORE_ADDR, struct static_tracepoint_marker *))
827 return_zero);
828 de_fault (to_static_tracepoint_markers_by_strid,
829 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
830 const char *))
831 tcomplain);
832 de_fault (to_traceframe_info,
833 (struct traceframe_info * (*) (struct target_ops *))
834 return_null);
835 de_fault (to_supports_evaluation_of_breakpoint_conditions,
836 (int (*) (struct target_ops *))
837 return_zero);
838 de_fault (to_can_run_breakpoint_commands,
839 (int (*) (struct target_ops *))
840 return_zero);
841 de_fault (to_use_agent,
842 (int (*) (struct target_ops *, int))
843 tcomplain);
844 de_fault (to_can_use_agent,
845 (int (*) (struct target_ops *))
846 return_zero);
847 de_fault (to_augmented_libraries_svr4_read,
848 (int (*) (struct target_ops *))
849 return_zero);
850
851 #undef de_fault
852
853 /* Finally, position the target-stack beneath the squashed
854 "current_target". That way code looking for a non-inherited
855 target method can quickly and simply find it. */
856 current_target.beneath = target_stack;
857
858 if (targetdebug)
859 setup_target_debug ();
860 }
861
862 /* Push a new target type into the stack of the existing target accessors,
863 possibly superseding some of the existing accessors.
864
865 Rather than allow an empty stack, we always have the dummy target at
866 the bottom stratum, so we can call the function vectors without
867 checking them. */
868
869 void
870 push_target (struct target_ops *t)
871 {
872 struct target_ops **cur;
873
874 /* Check magic number. If wrong, it probably means someone changed
875 the struct definition, but not all the places that initialize one. */
876 if (t->to_magic != OPS_MAGIC)
877 {
878 fprintf_unfiltered (gdb_stderr,
879 "Magic number of %s target struct wrong\n",
880 t->to_shortname);
881 internal_error (__FILE__, __LINE__,
882 _("failed internal consistency check"));
883 }
884
885 /* Find the proper stratum to install this target in. */
886 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
887 {
888 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
889 break;
890 }
891
892 /* If there's already targets at this stratum, remove them. */
893 /* FIXME: cagney/2003-10-15: I think this should be popping all
894 targets to CUR, and not just those at this stratum level. */
895 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
896 {
897 /* There's already something at this stratum level. Close it,
898 and un-hook it from the stack. */
899 struct target_ops *tmp = (*cur);
900
901 (*cur) = (*cur)->beneath;
902 tmp->beneath = NULL;
903 target_close (tmp);
904 }
905
906 /* We have removed all targets in our stratum, now add the new one. */
907 t->beneath = (*cur);
908 (*cur) = t;
909
910 update_current_target ();
911 }
912
913 /* Remove a target_ops vector from the stack, wherever it may be.
914 Return how many times it was removed (0 or 1). */
915
916 int
917 unpush_target (struct target_ops *t)
918 {
919 struct target_ops **cur;
920 struct target_ops *tmp;
921
922 if (t->to_stratum == dummy_stratum)
923 internal_error (__FILE__, __LINE__,
924 _("Attempt to unpush the dummy target"));
925
926 /* Look for the specified target. Note that we assume that a target
927 can only occur once in the target stack. */
928
929 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
930 {
931 if ((*cur) == t)
932 break;
933 }
934
935 /* If we don't find target_ops, quit. Only open targets should be
936 closed. */
937 if ((*cur) == NULL)
938 return 0;
939
940 /* Unchain the target. */
941 tmp = (*cur);
942 (*cur) = (*cur)->beneath;
943 tmp->beneath = NULL;
944
945 update_current_target ();
946
947 /* Finally close the target. Note we do this after unchaining, so
948 any target method calls from within the target_close
949 implementation don't end up in T anymore. */
950 target_close (t);
951
952 return 1;
953 }
954
955 void
956 pop_all_targets_above (enum strata above_stratum)
957 {
958 while ((int) (current_target.to_stratum) > (int) above_stratum)
959 {
960 if (!unpush_target (target_stack))
961 {
962 fprintf_unfiltered (gdb_stderr,
963 "pop_all_targets couldn't find target %s\n",
964 target_stack->to_shortname);
965 internal_error (__FILE__, __LINE__,
966 _("failed internal consistency check"));
967 break;
968 }
969 }
970 }
971
972 void
973 pop_all_targets (void)
974 {
975 pop_all_targets_above (dummy_stratum);
976 }
977
978 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
979
980 int
981 target_is_pushed (struct target_ops *t)
982 {
983 struct target_ops **cur;
984
985 /* Check magic number. If wrong, it probably means someone changed
986 the struct definition, but not all the places that initialize one. */
987 if (t->to_magic != OPS_MAGIC)
988 {
989 fprintf_unfiltered (gdb_stderr,
990 "Magic number of %s target struct wrong\n",
991 t->to_shortname);
992 internal_error (__FILE__, __LINE__,
993 _("failed internal consistency check"));
994 }
995
996 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
997 if (*cur == t)
998 return 1;
999
1000 return 0;
1001 }
1002
1003 /* Using the objfile specified in OBJFILE, find the address for the
1004 current thread's thread-local storage with offset OFFSET. */
1005 CORE_ADDR
1006 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1007 {
1008 volatile CORE_ADDR addr = 0;
1009 struct target_ops *target;
1010
1011 for (target = current_target.beneath;
1012 target != NULL;
1013 target = target->beneath)
1014 {
1015 if (target->to_get_thread_local_address != NULL)
1016 break;
1017 }
1018
1019 if (target != NULL
1020 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1021 {
1022 ptid_t ptid = inferior_ptid;
1023 volatile struct gdb_exception ex;
1024
1025 TRY_CATCH (ex, RETURN_MASK_ALL)
1026 {
1027 CORE_ADDR lm_addr;
1028
1029 /* Fetch the load module address for this objfile. */
1030 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1031 objfile);
1032 /* If it's 0, throw the appropriate exception. */
1033 if (lm_addr == 0)
1034 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1035 _("TLS load module not found"));
1036
1037 addr = target->to_get_thread_local_address (target, ptid,
1038 lm_addr, offset);
1039 }
1040 /* If an error occurred, print TLS related messages here. Otherwise,
1041 throw the error to some higher catcher. */
1042 if (ex.reason < 0)
1043 {
1044 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1045
1046 switch (ex.error)
1047 {
1048 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1049 error (_("Cannot find thread-local variables "
1050 "in this thread library."));
1051 break;
1052 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1053 if (objfile_is_library)
1054 error (_("Cannot find shared library `%s' in dynamic"
1055 " linker's load module list"), objfile_name (objfile));
1056 else
1057 error (_("Cannot find executable file `%s' in dynamic"
1058 " linker's load module list"), objfile_name (objfile));
1059 break;
1060 case TLS_NOT_ALLOCATED_YET_ERROR:
1061 if (objfile_is_library)
1062 error (_("The inferior has not yet allocated storage for"
1063 " thread-local variables in\n"
1064 "the shared library `%s'\n"
1065 "for %s"),
1066 objfile_name (objfile), target_pid_to_str (ptid));
1067 else
1068 error (_("The inferior has not yet allocated storage for"
1069 " thread-local variables in\n"
1070 "the executable `%s'\n"
1071 "for %s"),
1072 objfile_name (objfile), target_pid_to_str (ptid));
1073 break;
1074 case TLS_GENERIC_ERROR:
1075 if (objfile_is_library)
1076 error (_("Cannot find thread-local storage for %s, "
1077 "shared library %s:\n%s"),
1078 target_pid_to_str (ptid),
1079 objfile_name (objfile), ex.message);
1080 else
1081 error (_("Cannot find thread-local storage for %s, "
1082 "executable file %s:\n%s"),
1083 target_pid_to_str (ptid),
1084 objfile_name (objfile), ex.message);
1085 break;
1086 default:
1087 throw_exception (ex);
1088 break;
1089 }
1090 }
1091 }
1092 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1093 TLS is an ABI-specific thing. But we don't do that yet. */
1094 else
1095 error (_("Cannot find thread-local variables on this target"));
1096
1097 return addr;
1098 }
1099
1100 const char *
1101 target_xfer_status_to_string (enum target_xfer_status err)
1102 {
1103 #define CASE(X) case X: return #X
1104 switch (err)
1105 {
1106 CASE(TARGET_XFER_E_IO);
1107 CASE(TARGET_XFER_E_UNAVAILABLE);
1108 default:
1109 return "<unknown>";
1110 }
1111 #undef CASE
1112 };
1113
1114
1115 #undef MIN
1116 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1117
1118 /* target_read_string -- read a null terminated string, up to LEN bytes,
1119 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1120 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1121 is responsible for freeing it. Return the number of bytes successfully
1122 read. */
1123
1124 int
1125 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1126 {
1127 int tlen, offset, i;
1128 gdb_byte buf[4];
1129 int errcode = 0;
1130 char *buffer;
1131 int buffer_allocated;
1132 char *bufptr;
1133 unsigned int nbytes_read = 0;
1134
1135 gdb_assert (string);
1136
1137 /* Small for testing. */
1138 buffer_allocated = 4;
1139 buffer = xmalloc (buffer_allocated);
1140 bufptr = buffer;
1141
1142 while (len > 0)
1143 {
1144 tlen = MIN (len, 4 - (memaddr & 3));
1145 offset = memaddr & 3;
1146
1147 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1148 if (errcode != 0)
1149 {
1150 /* The transfer request might have crossed the boundary to an
1151 unallocated region of memory. Retry the transfer, requesting
1152 a single byte. */
1153 tlen = 1;
1154 offset = 0;
1155 errcode = target_read_memory (memaddr, buf, 1);
1156 if (errcode != 0)
1157 goto done;
1158 }
1159
1160 if (bufptr - buffer + tlen > buffer_allocated)
1161 {
1162 unsigned int bytes;
1163
1164 bytes = bufptr - buffer;
1165 buffer_allocated *= 2;
1166 buffer = xrealloc (buffer, buffer_allocated);
1167 bufptr = buffer + bytes;
1168 }
1169
1170 for (i = 0; i < tlen; i++)
1171 {
1172 *bufptr++ = buf[i + offset];
1173 if (buf[i + offset] == '\000')
1174 {
1175 nbytes_read += i + 1;
1176 goto done;
1177 }
1178 }
1179
1180 memaddr += tlen;
1181 len -= tlen;
1182 nbytes_read += tlen;
1183 }
1184 done:
1185 *string = buffer;
1186 if (errnop != NULL)
1187 *errnop = errcode;
1188 return nbytes_read;
1189 }
1190
1191 struct target_section_table *
1192 target_get_section_table (struct target_ops *target)
1193 {
1194 struct target_ops *t;
1195
1196 if (targetdebug)
1197 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1198
1199 for (t = target; t != NULL; t = t->beneath)
1200 if (t->to_get_section_table != NULL)
1201 return (*t->to_get_section_table) (t);
1202
1203 return NULL;
1204 }
1205
1206 /* Find a section containing ADDR. */
1207
1208 struct target_section *
1209 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1210 {
1211 struct target_section_table *table = target_get_section_table (target);
1212 struct target_section *secp;
1213
1214 if (table == NULL)
1215 return NULL;
1216
1217 for (secp = table->sections; secp < table->sections_end; secp++)
1218 {
1219 if (addr >= secp->addr && addr < secp->endaddr)
1220 return secp;
1221 }
1222 return NULL;
1223 }
1224
1225 /* Read memory from the live target, even if currently inspecting a
1226 traceframe. The return is the same as that of target_read. */
1227
1228 static enum target_xfer_status
1229 target_read_live_memory (enum target_object object,
1230 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1231 ULONGEST *xfered_len)
1232 {
1233 enum target_xfer_status ret;
1234 struct cleanup *cleanup;
1235
1236 /* Switch momentarily out of tfind mode so to access live memory.
1237 Note that this must not clear global state, such as the frame
1238 cache, which must still remain valid for the previous traceframe.
1239 We may be _building_ the frame cache at this point. */
1240 cleanup = make_cleanup_restore_traceframe_number ();
1241 set_traceframe_number (-1);
1242
1243 ret = target_xfer_partial (current_target.beneath, object, NULL,
1244 myaddr, NULL, memaddr, len, xfered_len);
1245
1246 do_cleanups (cleanup);
1247 return ret;
1248 }
1249
1250 /* Using the set of read-only target sections of OPS, read live
1251 read-only memory. Note that the actual reads start from the
1252 top-most target again.
1253
1254 For interface/parameters/return description see target.h,
1255 to_xfer_partial. */
1256
1257 static enum target_xfer_status
1258 memory_xfer_live_readonly_partial (struct target_ops *ops,
1259 enum target_object object,
1260 gdb_byte *readbuf, ULONGEST memaddr,
1261 ULONGEST len, ULONGEST *xfered_len)
1262 {
1263 struct target_section *secp;
1264 struct target_section_table *table;
1265
1266 secp = target_section_by_addr (ops, memaddr);
1267 if (secp != NULL
1268 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1269 secp->the_bfd_section)
1270 & SEC_READONLY))
1271 {
1272 struct target_section *p;
1273 ULONGEST memend = memaddr + len;
1274
1275 table = target_get_section_table (ops);
1276
1277 for (p = table->sections; p < table->sections_end; p++)
1278 {
1279 if (memaddr >= p->addr)
1280 {
1281 if (memend <= p->endaddr)
1282 {
1283 /* Entire transfer is within this section. */
1284 return target_read_live_memory (object, memaddr,
1285 readbuf, len, xfered_len);
1286 }
1287 else if (memaddr >= p->endaddr)
1288 {
1289 /* This section ends before the transfer starts. */
1290 continue;
1291 }
1292 else
1293 {
1294 /* This section overlaps the transfer. Just do half. */
1295 len = p->endaddr - memaddr;
1296 return target_read_live_memory (object, memaddr,
1297 readbuf, len, xfered_len);
1298 }
1299 }
1300 }
1301 }
1302
1303 return TARGET_XFER_EOF;
1304 }
1305
1306 /* Read memory from more than one valid target. A core file, for
1307 instance, could have some of memory but delegate other bits to
1308 the target below it. So, we must manually try all targets. */
1309
1310 static enum target_xfer_status
1311 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1312 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1313 ULONGEST *xfered_len)
1314 {
1315 enum target_xfer_status res;
1316
1317 do
1318 {
1319 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1320 readbuf, writebuf, memaddr, len,
1321 xfered_len);
1322 if (res == TARGET_XFER_OK)
1323 break;
1324
1325 /* Stop if the target reports that the memory is not available. */
1326 if (res == TARGET_XFER_E_UNAVAILABLE)
1327 break;
1328
1329 /* We want to continue past core files to executables, but not
1330 past a running target's memory. */
1331 if (ops->to_has_all_memory (ops))
1332 break;
1333
1334 ops = ops->beneath;
1335 }
1336 while (ops != NULL);
1337
1338 return res;
1339 }
1340
1341 /* Perform a partial memory transfer.
1342 For docs see target.h, to_xfer_partial. */
1343
1344 static enum target_xfer_status
1345 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1346 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1347 ULONGEST len, ULONGEST *xfered_len)
1348 {
1349 enum target_xfer_status res;
1350 int reg_len;
1351 struct mem_region *region;
1352 struct inferior *inf;
1353
1354 /* For accesses to unmapped overlay sections, read directly from
1355 files. Must do this first, as MEMADDR may need adjustment. */
1356 if (readbuf != NULL && overlay_debugging)
1357 {
1358 struct obj_section *section = find_pc_overlay (memaddr);
1359
1360 if (pc_in_unmapped_range (memaddr, section))
1361 {
1362 struct target_section_table *table
1363 = target_get_section_table (ops);
1364 const char *section_name = section->the_bfd_section->name;
1365
1366 memaddr = overlay_mapped_address (memaddr, section);
1367 return section_table_xfer_memory_partial (readbuf, writebuf,
1368 memaddr, len, xfered_len,
1369 table->sections,
1370 table->sections_end,
1371 section_name);
1372 }
1373 }
1374
1375 /* Try the executable files, if "trust-readonly-sections" is set. */
1376 if (readbuf != NULL && trust_readonly)
1377 {
1378 struct target_section *secp;
1379 struct target_section_table *table;
1380
1381 secp = target_section_by_addr (ops, memaddr);
1382 if (secp != NULL
1383 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1384 secp->the_bfd_section)
1385 & SEC_READONLY))
1386 {
1387 table = target_get_section_table (ops);
1388 return section_table_xfer_memory_partial (readbuf, writebuf,
1389 memaddr, len, xfered_len,
1390 table->sections,
1391 table->sections_end,
1392 NULL);
1393 }
1394 }
1395
1396 /* If reading unavailable memory in the context of traceframes, and
1397 this address falls within a read-only section, fallback to
1398 reading from live memory. */
1399 if (readbuf != NULL && get_traceframe_number () != -1)
1400 {
1401 VEC(mem_range_s) *available;
1402
1403 /* If we fail to get the set of available memory, then the
1404 target does not support querying traceframe info, and so we
1405 attempt reading from the traceframe anyway (assuming the
1406 target implements the old QTro packet then). */
1407 if (traceframe_available_memory (&available, memaddr, len))
1408 {
1409 struct cleanup *old_chain;
1410
1411 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1412
1413 if (VEC_empty (mem_range_s, available)
1414 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1415 {
1416 /* Don't read into the traceframe's available
1417 memory. */
1418 if (!VEC_empty (mem_range_s, available))
1419 {
1420 LONGEST oldlen = len;
1421
1422 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1423 gdb_assert (len <= oldlen);
1424 }
1425
1426 do_cleanups (old_chain);
1427
1428 /* This goes through the topmost target again. */
1429 res = memory_xfer_live_readonly_partial (ops, object,
1430 readbuf, memaddr,
1431 len, xfered_len);
1432 if (res == TARGET_XFER_OK)
1433 return TARGET_XFER_OK;
1434 else
1435 {
1436 /* No use trying further, we know some memory starting
1437 at MEMADDR isn't available. */
1438 *xfered_len = len;
1439 return TARGET_XFER_E_UNAVAILABLE;
1440 }
1441 }
1442
1443 /* Don't try to read more than how much is available, in
1444 case the target implements the deprecated QTro packet to
1445 cater for older GDBs (the target's knowledge of read-only
1446 sections may be outdated by now). */
1447 len = VEC_index (mem_range_s, available, 0)->length;
1448
1449 do_cleanups (old_chain);
1450 }
1451 }
1452
1453 /* Try GDB's internal data cache. */
1454 region = lookup_mem_region (memaddr);
1455 /* region->hi == 0 means there's no upper bound. */
1456 if (memaddr + len < region->hi || region->hi == 0)
1457 reg_len = len;
1458 else
1459 reg_len = region->hi - memaddr;
1460
1461 switch (region->attrib.mode)
1462 {
1463 case MEM_RO:
1464 if (writebuf != NULL)
1465 return TARGET_XFER_E_IO;
1466 break;
1467
1468 case MEM_WO:
1469 if (readbuf != NULL)
1470 return TARGET_XFER_E_IO;
1471 break;
1472
1473 case MEM_FLASH:
1474 /* We only support writing to flash during "load" for now. */
1475 if (writebuf != NULL)
1476 error (_("Writing to flash memory forbidden in this context"));
1477 break;
1478
1479 case MEM_NONE:
1480 return TARGET_XFER_E_IO;
1481 }
1482
1483 if (!ptid_equal (inferior_ptid, null_ptid))
1484 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1485 else
1486 inf = NULL;
1487
1488 if (inf != NULL
1489 /* The dcache reads whole cache lines; that doesn't play well
1490 with reading from a trace buffer, because reading outside of
1491 the collected memory range fails. */
1492 && get_traceframe_number () == -1
1493 && (region->attrib.cache
1494 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1495 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1496 {
1497 DCACHE *dcache = target_dcache_get_or_init ();
1498 int l;
1499
1500 if (readbuf != NULL)
1501 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1502 else
1503 /* FIXME drow/2006-08-09: If we're going to preserve const
1504 correctness dcache_xfer_memory should take readbuf and
1505 writebuf. */
1506 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1507 reg_len, 1);
1508 if (l <= 0)
1509 return TARGET_XFER_E_IO;
1510 else
1511 {
1512 *xfered_len = (ULONGEST) l;
1513 return TARGET_XFER_OK;
1514 }
1515 }
1516
1517 /* If none of those methods found the memory we wanted, fall back
1518 to a target partial transfer. Normally a single call to
1519 to_xfer_partial is enough; if it doesn't recognize an object
1520 it will call the to_xfer_partial of the next target down.
1521 But for memory this won't do. Memory is the only target
1522 object which can be read from more than one valid target.
1523 A core file, for instance, could have some of memory but
1524 delegate other bits to the target below it. So, we must
1525 manually try all targets. */
1526
1527 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1528 xfered_len);
1529
1530 /* Make sure the cache gets updated no matter what - if we are writing
1531 to the stack. Even if this write is not tagged as such, we still need
1532 to update the cache. */
1533
1534 if (res == TARGET_XFER_OK
1535 && inf != NULL
1536 && writebuf != NULL
1537 && target_dcache_init_p ()
1538 && !region->attrib.cache
1539 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1540 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1541 {
1542 DCACHE *dcache = target_dcache_get ();
1543
1544 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1545 }
1546
1547 /* If we still haven't got anything, return the last error. We
1548 give up. */
1549 return res;
1550 }
1551
1552 /* Perform a partial memory transfer. For docs see target.h,
1553 to_xfer_partial. */
1554
1555 static enum target_xfer_status
1556 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1557 gdb_byte *readbuf, const gdb_byte *writebuf,
1558 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1559 {
1560 enum target_xfer_status res;
1561
1562 /* Zero length requests are ok and require no work. */
1563 if (len == 0)
1564 return TARGET_XFER_EOF;
1565
1566 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1567 breakpoint insns, thus hiding out from higher layers whether
1568 there are software breakpoints inserted in the code stream. */
1569 if (readbuf != NULL)
1570 {
1571 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1572 xfered_len);
1573
1574 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1575 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1576 }
1577 else
1578 {
1579 void *buf;
1580 struct cleanup *old_chain;
1581
1582 /* A large write request is likely to be partially satisfied
1583 by memory_xfer_partial_1. We will continually malloc
1584 and free a copy of the entire write request for breakpoint
1585 shadow handling even though we only end up writing a small
1586 subset of it. Cap writes to 4KB to mitigate this. */
1587 len = min (4096, len);
1588
1589 buf = xmalloc (len);
1590 old_chain = make_cleanup (xfree, buf);
1591 memcpy (buf, writebuf, len);
1592
1593 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1594 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1595 xfered_len);
1596
1597 do_cleanups (old_chain);
1598 }
1599
1600 return res;
1601 }
1602
1603 static void
1604 restore_show_memory_breakpoints (void *arg)
1605 {
1606 show_memory_breakpoints = (uintptr_t) arg;
1607 }
1608
1609 struct cleanup *
1610 make_show_memory_breakpoints_cleanup (int show)
1611 {
1612 int current = show_memory_breakpoints;
1613
1614 show_memory_breakpoints = show;
1615 return make_cleanup (restore_show_memory_breakpoints,
1616 (void *) (uintptr_t) current);
1617 }
1618
1619 /* For docs see target.h, to_xfer_partial. */
1620
1621 enum target_xfer_status
1622 target_xfer_partial (struct target_ops *ops,
1623 enum target_object object, const char *annex,
1624 gdb_byte *readbuf, const gdb_byte *writebuf,
1625 ULONGEST offset, ULONGEST len,
1626 ULONGEST *xfered_len)
1627 {
1628 enum target_xfer_status retval;
1629
1630 gdb_assert (ops->to_xfer_partial != NULL);
1631
1632 /* Transfer is done when LEN is zero. */
1633 if (len == 0)
1634 return TARGET_XFER_EOF;
1635
1636 if (writebuf && !may_write_memory)
1637 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1638 core_addr_to_string_nz (offset), plongest (len));
1639
1640 *xfered_len = 0;
1641
1642 /* If this is a memory transfer, let the memory-specific code
1643 have a look at it instead. Memory transfers are more
1644 complicated. */
1645 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1646 || object == TARGET_OBJECT_CODE_MEMORY)
1647 retval = memory_xfer_partial (ops, object, readbuf,
1648 writebuf, offset, len, xfered_len);
1649 else if (object == TARGET_OBJECT_RAW_MEMORY)
1650 {
1651 /* Request the normal memory object from other layers. */
1652 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1653 xfered_len);
1654 }
1655 else
1656 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1657 writebuf, offset, len, xfered_len);
1658
1659 if (targetdebug)
1660 {
1661 const unsigned char *myaddr = NULL;
1662
1663 fprintf_unfiltered (gdb_stdlog,
1664 "%s:target_xfer_partial "
1665 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1666 ops->to_shortname,
1667 (int) object,
1668 (annex ? annex : "(null)"),
1669 host_address_to_string (readbuf),
1670 host_address_to_string (writebuf),
1671 core_addr_to_string_nz (offset),
1672 pulongest (len), retval,
1673 pulongest (*xfered_len));
1674
1675 if (readbuf)
1676 myaddr = readbuf;
1677 if (writebuf)
1678 myaddr = writebuf;
1679 if (retval == TARGET_XFER_OK && myaddr != NULL)
1680 {
1681 int i;
1682
1683 fputs_unfiltered (", bytes =", gdb_stdlog);
1684 for (i = 0; i < *xfered_len; i++)
1685 {
1686 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1687 {
1688 if (targetdebug < 2 && i > 0)
1689 {
1690 fprintf_unfiltered (gdb_stdlog, " ...");
1691 break;
1692 }
1693 fprintf_unfiltered (gdb_stdlog, "\n");
1694 }
1695
1696 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1697 }
1698 }
1699
1700 fputc_unfiltered ('\n', gdb_stdlog);
1701 }
1702
1703 /* Check implementations of to_xfer_partial update *XFERED_LEN
1704 properly. Do assertion after printing debug messages, so that we
1705 can find more clues on assertion failure from debugging messages. */
1706 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1707 gdb_assert (*xfered_len > 0);
1708
1709 return retval;
1710 }
1711
1712 /* Read LEN bytes of target memory at address MEMADDR, placing the
1713 results in GDB's memory at MYADDR. Returns either 0 for success or
1714 TARGET_XFER_E_IO if any error occurs.
1715
1716 If an error occurs, no guarantee is made about the contents of the data at
1717 MYADDR. In particular, the caller should not depend upon partial reads
1718 filling the buffer with good data. There is no way for the caller to know
1719 how much good data might have been transfered anyway. Callers that can
1720 deal with partial reads should call target_read (which will retry until
1721 it makes no progress, and then return how much was transferred). */
1722
1723 int
1724 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1725 {
1726 /* Dispatch to the topmost target, not the flattened current_target.
1727 Memory accesses check target->to_has_(all_)memory, and the
1728 flattened target doesn't inherit those. */
1729 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1730 myaddr, memaddr, len) == len)
1731 return 0;
1732 else
1733 return TARGET_XFER_E_IO;
1734 }
1735
1736 /* Like target_read_memory, but specify explicitly that this is a read
1737 from the target's raw memory. That is, this read bypasses the
1738 dcache, breakpoint shadowing, etc. */
1739
1740 int
1741 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1742 {
1743 /* See comment in target_read_memory about why the request starts at
1744 current_target.beneath. */
1745 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1746 myaddr, memaddr, len) == len)
1747 return 0;
1748 else
1749 return TARGET_XFER_E_IO;
1750 }
1751
1752 /* Like target_read_memory, but specify explicitly that this is a read from
1753 the target's stack. This may trigger different cache behavior. */
1754
1755 int
1756 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1757 {
1758 /* See comment in target_read_memory about why the request starts at
1759 current_target.beneath. */
1760 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1761 myaddr, memaddr, len) == len)
1762 return 0;
1763 else
1764 return TARGET_XFER_E_IO;
1765 }
1766
1767 /* Like target_read_memory, but specify explicitly that this is a read from
1768 the target's code. This may trigger different cache behavior. */
1769
1770 int
1771 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1772 {
1773 /* See comment in target_read_memory about why the request starts at
1774 current_target.beneath. */
1775 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1776 myaddr, memaddr, len) == len)
1777 return 0;
1778 else
1779 return TARGET_XFER_E_IO;
1780 }
1781
1782 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1783 Returns either 0 for success or TARGET_XFER_E_IO if any
1784 error occurs. If an error occurs, no guarantee is made about how
1785 much data got written. Callers that can deal with partial writes
1786 should call target_write. */
1787
1788 int
1789 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1790 {
1791 /* See comment in target_read_memory about why the request starts at
1792 current_target.beneath. */
1793 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1794 myaddr, memaddr, len) == len)
1795 return 0;
1796 else
1797 return TARGET_XFER_E_IO;
1798 }
1799
1800 /* Write LEN bytes from MYADDR to target raw memory at address
1801 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1802 if any error occurs. If an error occurs, no guarantee is made
1803 about how much data got written. Callers that can deal with
1804 partial writes should call target_write. */
1805
1806 int
1807 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1808 {
1809 /* See comment in target_read_memory about why the request starts at
1810 current_target.beneath. */
1811 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1812 myaddr, memaddr, len) == len)
1813 return 0;
1814 else
1815 return TARGET_XFER_E_IO;
1816 }
1817
1818 /* Fetch the target's memory map. */
1819
1820 VEC(mem_region_s) *
1821 target_memory_map (void)
1822 {
1823 VEC(mem_region_s) *result;
1824 struct mem_region *last_one, *this_one;
1825 int ix;
1826 struct target_ops *t;
1827
1828 if (targetdebug)
1829 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1830
1831 for (t = current_target.beneath; t != NULL; t = t->beneath)
1832 if (t->to_memory_map != NULL)
1833 break;
1834
1835 if (t == NULL)
1836 return NULL;
1837
1838 result = t->to_memory_map (t);
1839 if (result == NULL)
1840 return NULL;
1841
1842 qsort (VEC_address (mem_region_s, result),
1843 VEC_length (mem_region_s, result),
1844 sizeof (struct mem_region), mem_region_cmp);
1845
1846 /* Check that regions do not overlap. Simultaneously assign
1847 a numbering for the "mem" commands to use to refer to
1848 each region. */
1849 last_one = NULL;
1850 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1851 {
1852 this_one->number = ix;
1853
1854 if (last_one && last_one->hi > this_one->lo)
1855 {
1856 warning (_("Overlapping regions in memory map: ignoring"));
1857 VEC_free (mem_region_s, result);
1858 return NULL;
1859 }
1860 last_one = this_one;
1861 }
1862
1863 return result;
1864 }
1865
1866 void
1867 target_flash_erase (ULONGEST address, LONGEST length)
1868 {
1869 struct target_ops *t;
1870
1871 for (t = current_target.beneath; t != NULL; t = t->beneath)
1872 if (t->to_flash_erase != NULL)
1873 {
1874 if (targetdebug)
1875 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1876 hex_string (address), phex (length, 0));
1877 t->to_flash_erase (t, address, length);
1878 return;
1879 }
1880
1881 tcomplain ();
1882 }
1883
1884 void
1885 target_flash_done (void)
1886 {
1887 struct target_ops *t;
1888
1889 for (t = current_target.beneath; t != NULL; t = t->beneath)
1890 if (t->to_flash_done != NULL)
1891 {
1892 if (targetdebug)
1893 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1894 t->to_flash_done (t);
1895 return;
1896 }
1897
1898 tcomplain ();
1899 }
1900
1901 static void
1902 show_trust_readonly (struct ui_file *file, int from_tty,
1903 struct cmd_list_element *c, const char *value)
1904 {
1905 fprintf_filtered (file,
1906 _("Mode for reading from readonly sections is %s.\n"),
1907 value);
1908 }
1909
1910 /* More generic transfers. */
1911
1912 static enum target_xfer_status
1913 default_xfer_partial (struct target_ops *ops, enum target_object object,
1914 const char *annex, gdb_byte *readbuf,
1915 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1916 ULONGEST *xfered_len)
1917 {
1918 if (object == TARGET_OBJECT_MEMORY
1919 && ops->deprecated_xfer_memory != NULL)
1920 /* If available, fall back to the target's
1921 "deprecated_xfer_memory" method. */
1922 {
1923 int xfered = -1;
1924
1925 errno = 0;
1926 if (writebuf != NULL)
1927 {
1928 void *buffer = xmalloc (len);
1929 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1930
1931 memcpy (buffer, writebuf, len);
1932 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1933 1/*write*/, NULL, ops);
1934 do_cleanups (cleanup);
1935 }
1936 if (readbuf != NULL)
1937 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1938 0/*read*/, NULL, ops);
1939 if (xfered > 0)
1940 {
1941 *xfered_len = (ULONGEST) xfered;
1942 return TARGET_XFER_E_IO;
1943 }
1944 else if (xfered == 0 && errno == 0)
1945 /* "deprecated_xfer_memory" uses 0, cross checked against
1946 ERRNO as one indication of an error. */
1947 return TARGET_XFER_EOF;
1948 else
1949 return TARGET_XFER_E_IO;
1950 }
1951 else
1952 {
1953 gdb_assert (ops->beneath != NULL);
1954 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1955 readbuf, writebuf, offset, len,
1956 xfered_len);
1957 }
1958 }
1959
1960 /* Target vector read/write partial wrapper functions. */
1961
1962 static enum target_xfer_status
1963 target_read_partial (struct target_ops *ops,
1964 enum target_object object,
1965 const char *annex, gdb_byte *buf,
1966 ULONGEST offset, ULONGEST len,
1967 ULONGEST *xfered_len)
1968 {
1969 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1970 xfered_len);
1971 }
1972
1973 static enum target_xfer_status
1974 target_write_partial (struct target_ops *ops,
1975 enum target_object object,
1976 const char *annex, const gdb_byte *buf,
1977 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1978 {
1979 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1980 xfered_len);
1981 }
1982
1983 /* Wrappers to perform the full transfer. */
1984
1985 /* For docs on target_read see target.h. */
1986
1987 LONGEST
1988 target_read (struct target_ops *ops,
1989 enum target_object object,
1990 const char *annex, gdb_byte *buf,
1991 ULONGEST offset, LONGEST len)
1992 {
1993 LONGEST xfered = 0;
1994
1995 while (xfered < len)
1996 {
1997 ULONGEST xfered_len;
1998 enum target_xfer_status status;
1999
2000 status = target_read_partial (ops, object, annex,
2001 (gdb_byte *) buf + xfered,
2002 offset + xfered, len - xfered,
2003 &xfered_len);
2004
2005 /* Call an observer, notifying them of the xfer progress? */
2006 if (status == TARGET_XFER_EOF)
2007 return xfered;
2008 else if (status == TARGET_XFER_OK)
2009 {
2010 xfered += xfered_len;
2011 QUIT;
2012 }
2013 else
2014 return -1;
2015
2016 }
2017 return len;
2018 }
2019
2020 /* Assuming that the entire [begin, end) range of memory cannot be
2021 read, try to read whatever subrange is possible to read.
2022
2023 The function returns, in RESULT, either zero or one memory block.
2024 If there's a readable subrange at the beginning, it is completely
2025 read and returned. Any further readable subrange will not be read.
2026 Otherwise, if there's a readable subrange at the end, it will be
2027 completely read and returned. Any readable subranges before it
2028 (obviously, not starting at the beginning), will be ignored. In
2029 other cases -- either no readable subrange, or readable subrange(s)
2030 that is neither at the beginning, or end, nothing is returned.
2031
2032 The purpose of this function is to handle a read across a boundary
2033 of accessible memory in a case when memory map is not available.
2034 The above restrictions are fine for this case, but will give
2035 incorrect results if the memory is 'patchy'. However, supporting
2036 'patchy' memory would require trying to read every single byte,
2037 and it seems unacceptable solution. Explicit memory map is
2038 recommended for this case -- and target_read_memory_robust will
2039 take care of reading multiple ranges then. */
2040
2041 static void
2042 read_whatever_is_readable (struct target_ops *ops,
2043 ULONGEST begin, ULONGEST end,
2044 VEC(memory_read_result_s) **result)
2045 {
2046 gdb_byte *buf = xmalloc (end - begin);
2047 ULONGEST current_begin = begin;
2048 ULONGEST current_end = end;
2049 int forward;
2050 memory_read_result_s r;
2051 ULONGEST xfered_len;
2052
2053 /* If we previously failed to read 1 byte, nothing can be done here. */
2054 if (end - begin <= 1)
2055 {
2056 xfree (buf);
2057 return;
2058 }
2059
2060 /* Check that either first or the last byte is readable, and give up
2061 if not. This heuristic is meant to permit reading accessible memory
2062 at the boundary of accessible region. */
2063 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2064 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2065 {
2066 forward = 1;
2067 ++current_begin;
2068 }
2069 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2070 buf + (end-begin) - 1, end - 1, 1,
2071 &xfered_len) == TARGET_XFER_OK)
2072 {
2073 forward = 0;
2074 --current_end;
2075 }
2076 else
2077 {
2078 xfree (buf);
2079 return;
2080 }
2081
2082 /* Loop invariant is that the [current_begin, current_end) was previously
2083 found to be not readable as a whole.
2084
2085 Note loop condition -- if the range has 1 byte, we can't divide the range
2086 so there's no point trying further. */
2087 while (current_end - current_begin > 1)
2088 {
2089 ULONGEST first_half_begin, first_half_end;
2090 ULONGEST second_half_begin, second_half_end;
2091 LONGEST xfer;
2092 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2093
2094 if (forward)
2095 {
2096 first_half_begin = current_begin;
2097 first_half_end = middle;
2098 second_half_begin = middle;
2099 second_half_end = current_end;
2100 }
2101 else
2102 {
2103 first_half_begin = middle;
2104 first_half_end = current_end;
2105 second_half_begin = current_begin;
2106 second_half_end = middle;
2107 }
2108
2109 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2110 buf + (first_half_begin - begin),
2111 first_half_begin,
2112 first_half_end - first_half_begin);
2113
2114 if (xfer == first_half_end - first_half_begin)
2115 {
2116 /* This half reads up fine. So, the error must be in the
2117 other half. */
2118 current_begin = second_half_begin;
2119 current_end = second_half_end;
2120 }
2121 else
2122 {
2123 /* This half is not readable. Because we've tried one byte, we
2124 know some part of this half if actually redable. Go to the next
2125 iteration to divide again and try to read.
2126
2127 We don't handle the other half, because this function only tries
2128 to read a single readable subrange. */
2129 current_begin = first_half_begin;
2130 current_end = first_half_end;
2131 }
2132 }
2133
2134 if (forward)
2135 {
2136 /* The [begin, current_begin) range has been read. */
2137 r.begin = begin;
2138 r.end = current_begin;
2139 r.data = buf;
2140 }
2141 else
2142 {
2143 /* The [current_end, end) range has been read. */
2144 LONGEST rlen = end - current_end;
2145
2146 r.data = xmalloc (rlen);
2147 memcpy (r.data, buf + current_end - begin, rlen);
2148 r.begin = current_end;
2149 r.end = end;
2150 xfree (buf);
2151 }
2152 VEC_safe_push(memory_read_result_s, (*result), &r);
2153 }
2154
2155 void
2156 free_memory_read_result_vector (void *x)
2157 {
2158 VEC(memory_read_result_s) *v = x;
2159 memory_read_result_s *current;
2160 int ix;
2161
2162 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2163 {
2164 xfree (current->data);
2165 }
2166 VEC_free (memory_read_result_s, v);
2167 }
2168
2169 VEC(memory_read_result_s) *
2170 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2171 {
2172 VEC(memory_read_result_s) *result = 0;
2173
2174 LONGEST xfered = 0;
2175 while (xfered < len)
2176 {
2177 struct mem_region *region = lookup_mem_region (offset + xfered);
2178 LONGEST rlen;
2179
2180 /* If there is no explicit region, a fake one should be created. */
2181 gdb_assert (region);
2182
2183 if (region->hi == 0)
2184 rlen = len - xfered;
2185 else
2186 rlen = region->hi - offset;
2187
2188 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2189 {
2190 /* Cannot read this region. Note that we can end up here only
2191 if the region is explicitly marked inaccessible, or
2192 'inaccessible-by-default' is in effect. */
2193 xfered += rlen;
2194 }
2195 else
2196 {
2197 LONGEST to_read = min (len - xfered, rlen);
2198 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2199
2200 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2201 (gdb_byte *) buffer,
2202 offset + xfered, to_read);
2203 /* Call an observer, notifying them of the xfer progress? */
2204 if (xfer <= 0)
2205 {
2206 /* Got an error reading full chunk. See if maybe we can read
2207 some subrange. */
2208 xfree (buffer);
2209 read_whatever_is_readable (ops, offset + xfered,
2210 offset + xfered + to_read, &result);
2211 xfered += to_read;
2212 }
2213 else
2214 {
2215 struct memory_read_result r;
2216 r.data = buffer;
2217 r.begin = offset + xfered;
2218 r.end = r.begin + xfer;
2219 VEC_safe_push (memory_read_result_s, result, &r);
2220 xfered += xfer;
2221 }
2222 QUIT;
2223 }
2224 }
2225 return result;
2226 }
2227
2228
2229 /* An alternative to target_write with progress callbacks. */
2230
2231 LONGEST
2232 target_write_with_progress (struct target_ops *ops,
2233 enum target_object object,
2234 const char *annex, const gdb_byte *buf,
2235 ULONGEST offset, LONGEST len,
2236 void (*progress) (ULONGEST, void *), void *baton)
2237 {
2238 LONGEST xfered = 0;
2239
2240 /* Give the progress callback a chance to set up. */
2241 if (progress)
2242 (*progress) (0, baton);
2243
2244 while (xfered < len)
2245 {
2246 ULONGEST xfered_len;
2247 enum target_xfer_status status;
2248
2249 status = target_write_partial (ops, object, annex,
2250 (gdb_byte *) buf + xfered,
2251 offset + xfered, len - xfered,
2252 &xfered_len);
2253
2254 if (status == TARGET_XFER_EOF)
2255 return xfered;
2256 if (TARGET_XFER_STATUS_ERROR_P (status))
2257 return -1;
2258
2259 gdb_assert (status == TARGET_XFER_OK);
2260 if (progress)
2261 (*progress) (xfered_len, baton);
2262
2263 xfered += xfered_len;
2264 QUIT;
2265 }
2266 return len;
2267 }
2268
2269 /* For docs on target_write see target.h. */
2270
2271 LONGEST
2272 target_write (struct target_ops *ops,
2273 enum target_object object,
2274 const char *annex, const gdb_byte *buf,
2275 ULONGEST offset, LONGEST len)
2276 {
2277 return target_write_with_progress (ops, object, annex, buf, offset, len,
2278 NULL, NULL);
2279 }
2280
2281 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2282 the size of the transferred data. PADDING additional bytes are
2283 available in *BUF_P. This is a helper function for
2284 target_read_alloc; see the declaration of that function for more
2285 information. */
2286
2287 static LONGEST
2288 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2289 const char *annex, gdb_byte **buf_p, int padding)
2290 {
2291 size_t buf_alloc, buf_pos;
2292 gdb_byte *buf;
2293
2294 /* This function does not have a length parameter; it reads the
2295 entire OBJECT). Also, it doesn't support objects fetched partly
2296 from one target and partly from another (in a different stratum,
2297 e.g. a core file and an executable). Both reasons make it
2298 unsuitable for reading memory. */
2299 gdb_assert (object != TARGET_OBJECT_MEMORY);
2300
2301 /* Start by reading up to 4K at a time. The target will throttle
2302 this number down if necessary. */
2303 buf_alloc = 4096;
2304 buf = xmalloc (buf_alloc);
2305 buf_pos = 0;
2306 while (1)
2307 {
2308 ULONGEST xfered_len;
2309 enum target_xfer_status status;
2310
2311 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2312 buf_pos, buf_alloc - buf_pos - padding,
2313 &xfered_len);
2314
2315 if (status == TARGET_XFER_EOF)
2316 {
2317 /* Read all there was. */
2318 if (buf_pos == 0)
2319 xfree (buf);
2320 else
2321 *buf_p = buf;
2322 return buf_pos;
2323 }
2324 else if (status != TARGET_XFER_OK)
2325 {
2326 /* An error occurred. */
2327 xfree (buf);
2328 return TARGET_XFER_E_IO;
2329 }
2330
2331 buf_pos += xfered_len;
2332
2333 /* If the buffer is filling up, expand it. */
2334 if (buf_alloc < buf_pos * 2)
2335 {
2336 buf_alloc *= 2;
2337 buf = xrealloc (buf, buf_alloc);
2338 }
2339
2340 QUIT;
2341 }
2342 }
2343
2344 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2345 the size of the transferred data. See the declaration in "target.h"
2346 function for more information about the return value. */
2347
2348 LONGEST
2349 target_read_alloc (struct target_ops *ops, enum target_object object,
2350 const char *annex, gdb_byte **buf_p)
2351 {
2352 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2353 }
2354
2355 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2356 returned as a string, allocated using xmalloc. If an error occurs
2357 or the transfer is unsupported, NULL is returned. Empty objects
2358 are returned as allocated but empty strings. A warning is issued
2359 if the result contains any embedded NUL bytes. */
2360
2361 char *
2362 target_read_stralloc (struct target_ops *ops, enum target_object object,
2363 const char *annex)
2364 {
2365 gdb_byte *buffer;
2366 char *bufstr;
2367 LONGEST i, transferred;
2368
2369 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2370 bufstr = (char *) buffer;
2371
2372 if (transferred < 0)
2373 return NULL;
2374
2375 if (transferred == 0)
2376 return xstrdup ("");
2377
2378 bufstr[transferred] = 0;
2379
2380 /* Check for embedded NUL bytes; but allow trailing NULs. */
2381 for (i = strlen (bufstr); i < transferred; i++)
2382 if (bufstr[i] != 0)
2383 {
2384 warning (_("target object %d, annex %s, "
2385 "contained unexpected null characters"),
2386 (int) object, annex ? annex : "(none)");
2387 break;
2388 }
2389
2390 return bufstr;
2391 }
2392
2393 /* Memory transfer methods. */
2394
2395 void
2396 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2397 LONGEST len)
2398 {
2399 /* This method is used to read from an alternate, non-current
2400 target. This read must bypass the overlay support (as symbols
2401 don't match this target), and GDB's internal cache (wrong cache
2402 for this target). */
2403 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2404 != len)
2405 memory_error (TARGET_XFER_E_IO, addr);
2406 }
2407
2408 ULONGEST
2409 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2410 int len, enum bfd_endian byte_order)
2411 {
2412 gdb_byte buf[sizeof (ULONGEST)];
2413
2414 gdb_assert (len <= sizeof (buf));
2415 get_target_memory (ops, addr, buf, len);
2416 return extract_unsigned_integer (buf, len, byte_order);
2417 }
2418
2419 /* See target.h. */
2420
2421 int
2422 target_insert_breakpoint (struct gdbarch *gdbarch,
2423 struct bp_target_info *bp_tgt)
2424 {
2425 if (!may_insert_breakpoints)
2426 {
2427 warning (_("May not insert breakpoints"));
2428 return 1;
2429 }
2430
2431 return current_target.to_insert_breakpoint (&current_target,
2432 gdbarch, bp_tgt);
2433 }
2434
2435 /* See target.h. */
2436
2437 int
2438 target_remove_breakpoint (struct gdbarch *gdbarch,
2439 struct bp_target_info *bp_tgt)
2440 {
2441 /* This is kind of a weird case to handle, but the permission might
2442 have been changed after breakpoints were inserted - in which case
2443 we should just take the user literally and assume that any
2444 breakpoints should be left in place. */
2445 if (!may_insert_breakpoints)
2446 {
2447 warning (_("May not remove breakpoints"));
2448 return 1;
2449 }
2450
2451 return current_target.to_remove_breakpoint (&current_target,
2452 gdbarch, bp_tgt);
2453 }
2454
2455 static void
2456 target_info (char *args, int from_tty)
2457 {
2458 struct target_ops *t;
2459 int has_all_mem = 0;
2460
2461 if (symfile_objfile != NULL)
2462 printf_unfiltered (_("Symbols from \"%s\".\n"),
2463 objfile_name (symfile_objfile));
2464
2465 for (t = target_stack; t != NULL; t = t->beneath)
2466 {
2467 if (!(*t->to_has_memory) (t))
2468 continue;
2469
2470 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2471 continue;
2472 if (has_all_mem)
2473 printf_unfiltered (_("\tWhile running this, "
2474 "GDB does not access memory from...\n"));
2475 printf_unfiltered ("%s:\n", t->to_longname);
2476 (t->to_files_info) (t);
2477 has_all_mem = (*t->to_has_all_memory) (t);
2478 }
2479 }
2480
2481 /* This function is called before any new inferior is created, e.g.
2482 by running a program, attaching, or connecting to a target.
2483 It cleans up any state from previous invocations which might
2484 change between runs. This is a subset of what target_preopen
2485 resets (things which might change between targets). */
2486
2487 void
2488 target_pre_inferior (int from_tty)
2489 {
2490 /* Clear out solib state. Otherwise the solib state of the previous
2491 inferior might have survived and is entirely wrong for the new
2492 target. This has been observed on GNU/Linux using glibc 2.3. How
2493 to reproduce:
2494
2495 bash$ ./foo&
2496 [1] 4711
2497 bash$ ./foo&
2498 [1] 4712
2499 bash$ gdb ./foo
2500 [...]
2501 (gdb) attach 4711
2502 (gdb) detach
2503 (gdb) attach 4712
2504 Cannot access memory at address 0xdeadbeef
2505 */
2506
2507 /* In some OSs, the shared library list is the same/global/shared
2508 across inferiors. If code is shared between processes, so are
2509 memory regions and features. */
2510 if (!gdbarch_has_global_solist (target_gdbarch ()))
2511 {
2512 no_shared_libraries (NULL, from_tty);
2513
2514 invalidate_target_mem_regions ();
2515
2516 target_clear_description ();
2517 }
2518
2519 agent_capability_invalidate ();
2520 }
2521
2522 /* Callback for iterate_over_inferiors. Gets rid of the given
2523 inferior. */
2524
2525 static int
2526 dispose_inferior (struct inferior *inf, void *args)
2527 {
2528 struct thread_info *thread;
2529
2530 thread = any_thread_of_process (inf->pid);
2531 if (thread)
2532 {
2533 switch_to_thread (thread->ptid);
2534
2535 /* Core inferiors actually should be detached, not killed. */
2536 if (target_has_execution)
2537 target_kill ();
2538 else
2539 target_detach (NULL, 0);
2540 }
2541
2542 return 0;
2543 }
2544
2545 /* This is to be called by the open routine before it does
2546 anything. */
2547
2548 void
2549 target_preopen (int from_tty)
2550 {
2551 dont_repeat ();
2552
2553 if (have_inferiors ())
2554 {
2555 if (!from_tty
2556 || !have_live_inferiors ()
2557 || query (_("A program is being debugged already. Kill it? ")))
2558 iterate_over_inferiors (dispose_inferior, NULL);
2559 else
2560 error (_("Program not killed."));
2561 }
2562
2563 /* Calling target_kill may remove the target from the stack. But if
2564 it doesn't (which seems like a win for UDI), remove it now. */
2565 /* Leave the exec target, though. The user may be switching from a
2566 live process to a core of the same program. */
2567 pop_all_targets_above (file_stratum);
2568
2569 target_pre_inferior (from_tty);
2570 }
2571
2572 /* Detach a target after doing deferred register stores. */
2573
2574 void
2575 target_detach (const char *args, int from_tty)
2576 {
2577 struct target_ops* t;
2578
2579 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2580 /* Don't remove global breakpoints here. They're removed on
2581 disconnection from the target. */
2582 ;
2583 else
2584 /* If we're in breakpoints-always-inserted mode, have to remove
2585 them before detaching. */
2586 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2587
2588 prepare_for_detach ();
2589
2590 current_target.to_detach (&current_target, args, from_tty);
2591 if (targetdebug)
2592 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2593 args, from_tty);
2594 }
2595
2596 void
2597 target_disconnect (char *args, int from_tty)
2598 {
2599 struct target_ops *t;
2600
2601 /* If we're in breakpoints-always-inserted mode or if breakpoints
2602 are global across processes, we have to remove them before
2603 disconnecting. */
2604 remove_breakpoints ();
2605
2606 for (t = current_target.beneath; t != NULL; t = t->beneath)
2607 if (t->to_disconnect != NULL)
2608 {
2609 if (targetdebug)
2610 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2611 args, from_tty);
2612 t->to_disconnect (t, args, from_tty);
2613 return;
2614 }
2615
2616 tcomplain ();
2617 }
2618
2619 ptid_t
2620 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2621 {
2622 struct target_ops *t;
2623 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2624 status, options);
2625
2626 if (targetdebug)
2627 {
2628 char *status_string;
2629 char *options_string;
2630
2631 status_string = target_waitstatus_to_string (status);
2632 options_string = target_options_to_string (options);
2633 fprintf_unfiltered (gdb_stdlog,
2634 "target_wait (%d, status, options={%s})"
2635 " = %d, %s\n",
2636 ptid_get_pid (ptid), options_string,
2637 ptid_get_pid (retval), status_string);
2638 xfree (status_string);
2639 xfree (options_string);
2640 }
2641
2642 return retval;
2643 }
2644
2645 char *
2646 target_pid_to_str (ptid_t ptid)
2647 {
2648 struct target_ops *t;
2649
2650 for (t = current_target.beneath; t != NULL; t = t->beneath)
2651 {
2652 if (t->to_pid_to_str != NULL)
2653 return (*t->to_pid_to_str) (t, ptid);
2654 }
2655
2656 return normal_pid_to_str (ptid);
2657 }
2658
2659 char *
2660 target_thread_name (struct thread_info *info)
2661 {
2662 return current_target.to_thread_name (&current_target, info);
2663 }
2664
2665 void
2666 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2667 {
2668 struct target_ops *t;
2669
2670 target_dcache_invalidate ();
2671
2672 current_target.to_resume (&current_target, ptid, step, signal);
2673 if (targetdebug)
2674 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2675 ptid_get_pid (ptid),
2676 step ? "step" : "continue",
2677 gdb_signal_to_name (signal));
2678
2679 registers_changed_ptid (ptid);
2680 set_executing (ptid, 1);
2681 set_running (ptid, 1);
2682 clear_inline_frame_state (ptid);
2683 }
2684
2685 void
2686 target_pass_signals (int numsigs, unsigned char *pass_signals)
2687 {
2688 struct target_ops *t;
2689
2690 for (t = current_target.beneath; t != NULL; t = t->beneath)
2691 {
2692 if (t->to_pass_signals != NULL)
2693 {
2694 if (targetdebug)
2695 {
2696 int i;
2697
2698 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2699 numsigs);
2700
2701 for (i = 0; i < numsigs; i++)
2702 if (pass_signals[i])
2703 fprintf_unfiltered (gdb_stdlog, " %s",
2704 gdb_signal_to_name (i));
2705
2706 fprintf_unfiltered (gdb_stdlog, " })\n");
2707 }
2708
2709 (*t->to_pass_signals) (t, numsigs, pass_signals);
2710 return;
2711 }
2712 }
2713 }
2714
2715 void
2716 target_program_signals (int numsigs, unsigned char *program_signals)
2717 {
2718 struct target_ops *t;
2719
2720 for (t = current_target.beneath; t != NULL; t = t->beneath)
2721 {
2722 if (t->to_program_signals != NULL)
2723 {
2724 if (targetdebug)
2725 {
2726 int i;
2727
2728 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2729 numsigs);
2730
2731 for (i = 0; i < numsigs; i++)
2732 if (program_signals[i])
2733 fprintf_unfiltered (gdb_stdlog, " %s",
2734 gdb_signal_to_name (i));
2735
2736 fprintf_unfiltered (gdb_stdlog, " })\n");
2737 }
2738
2739 (*t->to_program_signals) (t, numsigs, program_signals);
2740 return;
2741 }
2742 }
2743 }
2744
2745 /* Look through the list of possible targets for a target that can
2746 follow forks. */
2747
2748 int
2749 target_follow_fork (int follow_child, int detach_fork)
2750 {
2751 struct target_ops *t;
2752
2753 for (t = current_target.beneath; t != NULL; t = t->beneath)
2754 {
2755 if (t->to_follow_fork != NULL)
2756 {
2757 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2758
2759 if (targetdebug)
2760 fprintf_unfiltered (gdb_stdlog,
2761 "target_follow_fork (%d, %d) = %d\n",
2762 follow_child, detach_fork, retval);
2763 return retval;
2764 }
2765 }
2766
2767 /* Some target returned a fork event, but did not know how to follow it. */
2768 internal_error (__FILE__, __LINE__,
2769 _("could not find a target to follow fork"));
2770 }
2771
2772 void
2773 target_mourn_inferior (void)
2774 {
2775 struct target_ops *t;
2776
2777 for (t = current_target.beneath; t != NULL; t = t->beneath)
2778 {
2779 if (t->to_mourn_inferior != NULL)
2780 {
2781 t->to_mourn_inferior (t);
2782 if (targetdebug)
2783 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2784
2785 /* We no longer need to keep handles on any of the object files.
2786 Make sure to release them to avoid unnecessarily locking any
2787 of them while we're not actually debugging. */
2788 bfd_cache_close_all ();
2789
2790 return;
2791 }
2792 }
2793
2794 internal_error (__FILE__, __LINE__,
2795 _("could not find a target to follow mourn inferior"));
2796 }
2797
2798 /* Look for a target which can describe architectural features, starting
2799 from TARGET. If we find one, return its description. */
2800
2801 const struct target_desc *
2802 target_read_description (struct target_ops *target)
2803 {
2804 struct target_ops *t;
2805
2806 for (t = target; t != NULL; t = t->beneath)
2807 if (t->to_read_description != NULL)
2808 {
2809 const struct target_desc *tdesc;
2810
2811 tdesc = t->to_read_description (t);
2812 if (tdesc)
2813 return tdesc;
2814 }
2815
2816 return NULL;
2817 }
2818
2819 /* The default implementation of to_search_memory.
2820 This implements a basic search of memory, reading target memory and
2821 performing the search here (as opposed to performing the search in on the
2822 target side with, for example, gdbserver). */
2823
2824 int
2825 simple_search_memory (struct target_ops *ops,
2826 CORE_ADDR start_addr, ULONGEST search_space_len,
2827 const gdb_byte *pattern, ULONGEST pattern_len,
2828 CORE_ADDR *found_addrp)
2829 {
2830 /* NOTE: also defined in find.c testcase. */
2831 #define SEARCH_CHUNK_SIZE 16000
2832 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2833 /* Buffer to hold memory contents for searching. */
2834 gdb_byte *search_buf;
2835 unsigned search_buf_size;
2836 struct cleanup *old_cleanups;
2837
2838 search_buf_size = chunk_size + pattern_len - 1;
2839
2840 /* No point in trying to allocate a buffer larger than the search space. */
2841 if (search_space_len < search_buf_size)
2842 search_buf_size = search_space_len;
2843
2844 search_buf = malloc (search_buf_size);
2845 if (search_buf == NULL)
2846 error (_("Unable to allocate memory to perform the search."));
2847 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2848
2849 /* Prime the search buffer. */
2850
2851 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2852 search_buf, start_addr, search_buf_size) != search_buf_size)
2853 {
2854 warning (_("Unable to access %s bytes of target "
2855 "memory at %s, halting search."),
2856 pulongest (search_buf_size), hex_string (start_addr));
2857 do_cleanups (old_cleanups);
2858 return -1;
2859 }
2860
2861 /* Perform the search.
2862
2863 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2864 When we've scanned N bytes we copy the trailing bytes to the start and
2865 read in another N bytes. */
2866
2867 while (search_space_len >= pattern_len)
2868 {
2869 gdb_byte *found_ptr;
2870 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2871
2872 found_ptr = memmem (search_buf, nr_search_bytes,
2873 pattern, pattern_len);
2874
2875 if (found_ptr != NULL)
2876 {
2877 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2878
2879 *found_addrp = found_addr;
2880 do_cleanups (old_cleanups);
2881 return 1;
2882 }
2883
2884 /* Not found in this chunk, skip to next chunk. */
2885
2886 /* Don't let search_space_len wrap here, it's unsigned. */
2887 if (search_space_len >= chunk_size)
2888 search_space_len -= chunk_size;
2889 else
2890 search_space_len = 0;
2891
2892 if (search_space_len >= pattern_len)
2893 {
2894 unsigned keep_len = search_buf_size - chunk_size;
2895 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2896 int nr_to_read;
2897
2898 /* Copy the trailing part of the previous iteration to the front
2899 of the buffer for the next iteration. */
2900 gdb_assert (keep_len == pattern_len - 1);
2901 memcpy (search_buf, search_buf + chunk_size, keep_len);
2902
2903 nr_to_read = min (search_space_len - keep_len, chunk_size);
2904
2905 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2906 search_buf + keep_len, read_addr,
2907 nr_to_read) != nr_to_read)
2908 {
2909 warning (_("Unable to access %s bytes of target "
2910 "memory at %s, halting search."),
2911 plongest (nr_to_read),
2912 hex_string (read_addr));
2913 do_cleanups (old_cleanups);
2914 return -1;
2915 }
2916
2917 start_addr += chunk_size;
2918 }
2919 }
2920
2921 /* Not found. */
2922
2923 do_cleanups (old_cleanups);
2924 return 0;
2925 }
2926
2927 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2928 sequence of bytes in PATTERN with length PATTERN_LEN.
2929
2930 The result is 1 if found, 0 if not found, and -1 if there was an error
2931 requiring halting of the search (e.g. memory read error).
2932 If the pattern is found the address is recorded in FOUND_ADDRP. */
2933
2934 int
2935 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2936 const gdb_byte *pattern, ULONGEST pattern_len,
2937 CORE_ADDR *found_addrp)
2938 {
2939 struct target_ops *t;
2940 int found;
2941
2942 /* We don't use INHERIT to set current_target.to_search_memory,
2943 so we have to scan the target stack and handle targetdebug
2944 ourselves. */
2945
2946 if (targetdebug)
2947 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2948 hex_string (start_addr));
2949
2950 for (t = current_target.beneath; t != NULL; t = t->beneath)
2951 if (t->to_search_memory != NULL)
2952 break;
2953
2954 if (t != NULL)
2955 {
2956 found = t->to_search_memory (t, start_addr, search_space_len,
2957 pattern, pattern_len, found_addrp);
2958 }
2959 else
2960 {
2961 /* If a special version of to_search_memory isn't available, use the
2962 simple version. */
2963 found = simple_search_memory (current_target.beneath,
2964 start_addr, search_space_len,
2965 pattern, pattern_len, found_addrp);
2966 }
2967
2968 if (targetdebug)
2969 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2970
2971 return found;
2972 }
2973
2974 /* Look through the currently pushed targets. If none of them will
2975 be able to restart the currently running process, issue an error
2976 message. */
2977
2978 void
2979 target_require_runnable (void)
2980 {
2981 struct target_ops *t;
2982
2983 for (t = target_stack; t != NULL; t = t->beneath)
2984 {
2985 /* If this target knows how to create a new program, then
2986 assume we will still be able to after killing the current
2987 one. Either killing and mourning will not pop T, or else
2988 find_default_run_target will find it again. */
2989 if (t->to_create_inferior != NULL)
2990 return;
2991
2992 /* Do not worry about thread_stratum targets that can not
2993 create inferiors. Assume they will be pushed again if
2994 necessary, and continue to the process_stratum. */
2995 if (t->to_stratum == thread_stratum
2996 || t->to_stratum == arch_stratum)
2997 continue;
2998
2999 error (_("The \"%s\" target does not support \"run\". "
3000 "Try \"help target\" or \"continue\"."),
3001 t->to_shortname);
3002 }
3003
3004 /* This function is only called if the target is running. In that
3005 case there should have been a process_stratum target and it
3006 should either know how to create inferiors, or not... */
3007 internal_error (__FILE__, __LINE__, _("No targets found"));
3008 }
3009
3010 /* Look through the list of possible targets for a target that can
3011 execute a run or attach command without any other data. This is
3012 used to locate the default process stratum.
3013
3014 If DO_MESG is not NULL, the result is always valid (error() is
3015 called for errors); else, return NULL on error. */
3016
3017 static struct target_ops *
3018 find_default_run_target (char *do_mesg)
3019 {
3020 struct target_ops **t;
3021 struct target_ops *runable = NULL;
3022 int count;
3023
3024 count = 0;
3025
3026 for (t = target_structs; t < target_structs + target_struct_size;
3027 ++t)
3028 {
3029 if ((*t)->to_can_run && target_can_run (*t))
3030 {
3031 runable = *t;
3032 ++count;
3033 }
3034 }
3035
3036 if (count != 1)
3037 {
3038 if (do_mesg)
3039 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3040 else
3041 return NULL;
3042 }
3043
3044 return runable;
3045 }
3046
3047 void
3048 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3049 {
3050 struct target_ops *t;
3051
3052 t = find_default_run_target ("attach");
3053 (t->to_attach) (t, args, from_tty);
3054 return;
3055 }
3056
3057 void
3058 find_default_create_inferior (struct target_ops *ops,
3059 char *exec_file, char *allargs, char **env,
3060 int from_tty)
3061 {
3062 struct target_ops *t;
3063
3064 t = find_default_run_target ("run");
3065 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3066 return;
3067 }
3068
3069 static int
3070 find_default_can_async_p (struct target_ops *ignore)
3071 {
3072 struct target_ops *t;
3073
3074 /* This may be called before the target is pushed on the stack;
3075 look for the default process stratum. If there's none, gdb isn't
3076 configured with a native debugger, and target remote isn't
3077 connected yet. */
3078 t = find_default_run_target (NULL);
3079 if (t && t->to_can_async_p != delegate_can_async_p)
3080 return (t->to_can_async_p) (t);
3081 return 0;
3082 }
3083
3084 static int
3085 find_default_is_async_p (struct target_ops *ignore)
3086 {
3087 struct target_ops *t;
3088
3089 /* This may be called before the target is pushed on the stack;
3090 look for the default process stratum. If there's none, gdb isn't
3091 configured with a native debugger, and target remote isn't
3092 connected yet. */
3093 t = find_default_run_target (NULL);
3094 if (t && t->to_is_async_p != delegate_is_async_p)
3095 return (t->to_is_async_p) (t);
3096 return 0;
3097 }
3098
3099 static int
3100 find_default_supports_non_stop (struct target_ops *self)
3101 {
3102 struct target_ops *t;
3103
3104 t = find_default_run_target (NULL);
3105 if (t && t->to_supports_non_stop)
3106 return (t->to_supports_non_stop) (t);
3107 return 0;
3108 }
3109
3110 int
3111 target_supports_non_stop (void)
3112 {
3113 struct target_ops *t;
3114
3115 for (t = &current_target; t != NULL; t = t->beneath)
3116 if (t->to_supports_non_stop)
3117 return t->to_supports_non_stop (t);
3118
3119 return 0;
3120 }
3121
3122 /* Implement the "info proc" command. */
3123
3124 int
3125 target_info_proc (char *args, enum info_proc_what what)
3126 {
3127 struct target_ops *t;
3128
3129 /* If we're already connected to something that can get us OS
3130 related data, use it. Otherwise, try using the native
3131 target. */
3132 if (current_target.to_stratum >= process_stratum)
3133 t = current_target.beneath;
3134 else
3135 t = find_default_run_target (NULL);
3136
3137 for (; t != NULL; t = t->beneath)
3138 {
3139 if (t->to_info_proc != NULL)
3140 {
3141 t->to_info_proc (t, args, what);
3142
3143 if (targetdebug)
3144 fprintf_unfiltered (gdb_stdlog,
3145 "target_info_proc (\"%s\", %d)\n", args, what);
3146
3147 return 1;
3148 }
3149 }
3150
3151 return 0;
3152 }
3153
3154 static int
3155 find_default_supports_disable_randomization (struct target_ops *self)
3156 {
3157 struct target_ops *t;
3158
3159 t = find_default_run_target (NULL);
3160 if (t && t->to_supports_disable_randomization)
3161 return (t->to_supports_disable_randomization) (t);
3162 return 0;
3163 }
3164
3165 int
3166 target_supports_disable_randomization (void)
3167 {
3168 struct target_ops *t;
3169
3170 for (t = &current_target; t != NULL; t = t->beneath)
3171 if (t->to_supports_disable_randomization)
3172 return t->to_supports_disable_randomization (t);
3173
3174 return 0;
3175 }
3176
3177 char *
3178 target_get_osdata (const char *type)
3179 {
3180 struct target_ops *t;
3181
3182 /* If we're already connected to something that can get us OS
3183 related data, use it. Otherwise, try using the native
3184 target. */
3185 if (current_target.to_stratum >= process_stratum)
3186 t = current_target.beneath;
3187 else
3188 t = find_default_run_target ("get OS data");
3189
3190 if (!t)
3191 return NULL;
3192
3193 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3194 }
3195
3196 /* Determine the current address space of thread PTID. */
3197
3198 struct address_space *
3199 target_thread_address_space (ptid_t ptid)
3200 {
3201 struct address_space *aspace;
3202 struct inferior *inf;
3203 struct target_ops *t;
3204
3205 for (t = current_target.beneath; t != NULL; t = t->beneath)
3206 {
3207 if (t->to_thread_address_space != NULL)
3208 {
3209 aspace = t->to_thread_address_space (t, ptid);
3210 gdb_assert (aspace);
3211
3212 if (targetdebug)
3213 fprintf_unfiltered (gdb_stdlog,
3214 "target_thread_address_space (%s) = %d\n",
3215 target_pid_to_str (ptid),
3216 address_space_num (aspace));
3217 return aspace;
3218 }
3219 }
3220
3221 /* Fall-back to the "main" address space of the inferior. */
3222 inf = find_inferior_pid (ptid_get_pid (ptid));
3223
3224 if (inf == NULL || inf->aspace == NULL)
3225 internal_error (__FILE__, __LINE__,
3226 _("Can't determine the current "
3227 "address space of thread %s\n"),
3228 target_pid_to_str (ptid));
3229
3230 return inf->aspace;
3231 }
3232
3233
3234 /* Target file operations. */
3235
3236 static struct target_ops *
3237 default_fileio_target (void)
3238 {
3239 /* If we're already connected to something that can perform
3240 file I/O, use it. Otherwise, try using the native target. */
3241 if (current_target.to_stratum >= process_stratum)
3242 return current_target.beneath;
3243 else
3244 return find_default_run_target ("file I/O");
3245 }
3246
3247 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3248 target file descriptor, or -1 if an error occurs (and set
3249 *TARGET_ERRNO). */
3250 int
3251 target_fileio_open (const char *filename, int flags, int mode,
3252 int *target_errno)
3253 {
3254 struct target_ops *t;
3255
3256 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3257 {
3258 if (t->to_fileio_open != NULL)
3259 {
3260 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3261
3262 if (targetdebug)
3263 fprintf_unfiltered (gdb_stdlog,
3264 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3265 filename, flags, mode,
3266 fd, fd != -1 ? 0 : *target_errno);
3267 return fd;
3268 }
3269 }
3270
3271 *target_errno = FILEIO_ENOSYS;
3272 return -1;
3273 }
3274
3275 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3276 Return the number of bytes written, or -1 if an error occurs
3277 (and set *TARGET_ERRNO). */
3278 int
3279 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3280 ULONGEST offset, int *target_errno)
3281 {
3282 struct target_ops *t;
3283
3284 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3285 {
3286 if (t->to_fileio_pwrite != NULL)
3287 {
3288 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3289 target_errno);
3290
3291 if (targetdebug)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "target_fileio_pwrite (%d,...,%d,%s) "
3294 "= %d (%d)\n",
3295 fd, len, pulongest (offset),
3296 ret, ret != -1 ? 0 : *target_errno);
3297 return ret;
3298 }
3299 }
3300
3301 *target_errno = FILEIO_ENOSYS;
3302 return -1;
3303 }
3304
3305 /* Read up to LEN bytes FD on the target into READ_BUF.
3306 Return the number of bytes read, or -1 if an error occurs
3307 (and set *TARGET_ERRNO). */
3308 int
3309 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3310 ULONGEST offset, int *target_errno)
3311 {
3312 struct target_ops *t;
3313
3314 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3315 {
3316 if (t->to_fileio_pread != NULL)
3317 {
3318 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3319 target_errno);
3320
3321 if (targetdebug)
3322 fprintf_unfiltered (gdb_stdlog,
3323 "target_fileio_pread (%d,...,%d,%s) "
3324 "= %d (%d)\n",
3325 fd, len, pulongest (offset),
3326 ret, ret != -1 ? 0 : *target_errno);
3327 return ret;
3328 }
3329 }
3330
3331 *target_errno = FILEIO_ENOSYS;
3332 return -1;
3333 }
3334
3335 /* Close FD on the target. Return 0, or -1 if an error occurs
3336 (and set *TARGET_ERRNO). */
3337 int
3338 target_fileio_close (int fd, int *target_errno)
3339 {
3340 struct target_ops *t;
3341
3342 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3343 {
3344 if (t->to_fileio_close != NULL)
3345 {
3346 int ret = t->to_fileio_close (t, fd, target_errno);
3347
3348 if (targetdebug)
3349 fprintf_unfiltered (gdb_stdlog,
3350 "target_fileio_close (%d) = %d (%d)\n",
3351 fd, ret, ret != -1 ? 0 : *target_errno);
3352 return ret;
3353 }
3354 }
3355
3356 *target_errno = FILEIO_ENOSYS;
3357 return -1;
3358 }
3359
3360 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3361 occurs (and set *TARGET_ERRNO). */
3362 int
3363 target_fileio_unlink (const char *filename, int *target_errno)
3364 {
3365 struct target_ops *t;
3366
3367 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3368 {
3369 if (t->to_fileio_unlink != NULL)
3370 {
3371 int ret = t->to_fileio_unlink (t, filename, target_errno);
3372
3373 if (targetdebug)
3374 fprintf_unfiltered (gdb_stdlog,
3375 "target_fileio_unlink (%s) = %d (%d)\n",
3376 filename, ret, ret != -1 ? 0 : *target_errno);
3377 return ret;
3378 }
3379 }
3380
3381 *target_errno = FILEIO_ENOSYS;
3382 return -1;
3383 }
3384
3385 /* Read value of symbolic link FILENAME on the target. Return a
3386 null-terminated string allocated via xmalloc, or NULL if an error
3387 occurs (and set *TARGET_ERRNO). */
3388 char *
3389 target_fileio_readlink (const char *filename, int *target_errno)
3390 {
3391 struct target_ops *t;
3392
3393 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3394 {
3395 if (t->to_fileio_readlink != NULL)
3396 {
3397 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3398
3399 if (targetdebug)
3400 fprintf_unfiltered (gdb_stdlog,
3401 "target_fileio_readlink (%s) = %s (%d)\n",
3402 filename, ret? ret : "(nil)",
3403 ret? 0 : *target_errno);
3404 return ret;
3405 }
3406 }
3407
3408 *target_errno = FILEIO_ENOSYS;
3409 return NULL;
3410 }
3411
3412 static void
3413 target_fileio_close_cleanup (void *opaque)
3414 {
3415 int fd = *(int *) opaque;
3416 int target_errno;
3417
3418 target_fileio_close (fd, &target_errno);
3419 }
3420
3421 /* Read target file FILENAME. Store the result in *BUF_P and
3422 return the size of the transferred data. PADDING additional bytes are
3423 available in *BUF_P. This is a helper function for
3424 target_fileio_read_alloc; see the declaration of that function for more
3425 information. */
3426
3427 static LONGEST
3428 target_fileio_read_alloc_1 (const char *filename,
3429 gdb_byte **buf_p, int padding)
3430 {
3431 struct cleanup *close_cleanup;
3432 size_t buf_alloc, buf_pos;
3433 gdb_byte *buf;
3434 LONGEST n;
3435 int fd;
3436 int target_errno;
3437
3438 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3439 if (fd == -1)
3440 return -1;
3441
3442 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3443
3444 /* Start by reading up to 4K at a time. The target will throttle
3445 this number down if necessary. */
3446 buf_alloc = 4096;
3447 buf = xmalloc (buf_alloc);
3448 buf_pos = 0;
3449 while (1)
3450 {
3451 n = target_fileio_pread (fd, &buf[buf_pos],
3452 buf_alloc - buf_pos - padding, buf_pos,
3453 &target_errno);
3454 if (n < 0)
3455 {
3456 /* An error occurred. */
3457 do_cleanups (close_cleanup);
3458 xfree (buf);
3459 return -1;
3460 }
3461 else if (n == 0)
3462 {
3463 /* Read all there was. */
3464 do_cleanups (close_cleanup);
3465 if (buf_pos == 0)
3466 xfree (buf);
3467 else
3468 *buf_p = buf;
3469 return buf_pos;
3470 }
3471
3472 buf_pos += n;
3473
3474 /* If the buffer is filling up, expand it. */
3475 if (buf_alloc < buf_pos * 2)
3476 {
3477 buf_alloc *= 2;
3478 buf = xrealloc (buf, buf_alloc);
3479 }
3480
3481 QUIT;
3482 }
3483 }
3484
3485 /* Read target file FILENAME. Store the result in *BUF_P and return
3486 the size of the transferred data. See the declaration in "target.h"
3487 function for more information about the return value. */
3488
3489 LONGEST
3490 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3491 {
3492 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3493 }
3494
3495 /* Read target file FILENAME. The result is NUL-terminated and
3496 returned as a string, allocated using xmalloc. If an error occurs
3497 or the transfer is unsupported, NULL is returned. Empty objects
3498 are returned as allocated but empty strings. A warning is issued
3499 if the result contains any embedded NUL bytes. */
3500
3501 char *
3502 target_fileio_read_stralloc (const char *filename)
3503 {
3504 gdb_byte *buffer;
3505 char *bufstr;
3506 LONGEST i, transferred;
3507
3508 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3509 bufstr = (char *) buffer;
3510
3511 if (transferred < 0)
3512 return NULL;
3513
3514 if (transferred == 0)
3515 return xstrdup ("");
3516
3517 bufstr[transferred] = 0;
3518
3519 /* Check for embedded NUL bytes; but allow trailing NULs. */
3520 for (i = strlen (bufstr); i < transferred; i++)
3521 if (bufstr[i] != 0)
3522 {
3523 warning (_("target file %s "
3524 "contained unexpected null characters"),
3525 filename);
3526 break;
3527 }
3528
3529 return bufstr;
3530 }
3531
3532
3533 static int
3534 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3535 CORE_ADDR addr, int len)
3536 {
3537 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3538 }
3539
3540 static int
3541 default_watchpoint_addr_within_range (struct target_ops *target,
3542 CORE_ADDR addr,
3543 CORE_ADDR start, int length)
3544 {
3545 return addr >= start && addr < start + length;
3546 }
3547
3548 static struct gdbarch *
3549 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3550 {
3551 return target_gdbarch ();
3552 }
3553
3554 static int
3555 return_zero (void)
3556 {
3557 return 0;
3558 }
3559
3560 static int
3561 return_minus_one (void)
3562 {
3563 return -1;
3564 }
3565
3566 static void *
3567 return_null (void)
3568 {
3569 return 0;
3570 }
3571
3572 /*
3573 * Find the next target down the stack from the specified target.
3574 */
3575
3576 struct target_ops *
3577 find_target_beneath (struct target_ops *t)
3578 {
3579 return t->beneath;
3580 }
3581
3582 /* See target.h. */
3583
3584 struct target_ops *
3585 find_target_at (enum strata stratum)
3586 {
3587 struct target_ops *t;
3588
3589 for (t = current_target.beneath; t != NULL; t = t->beneath)
3590 if (t->to_stratum == stratum)
3591 return t;
3592
3593 return NULL;
3594 }
3595
3596 \f
3597 /* The inferior process has died. Long live the inferior! */
3598
3599 void
3600 generic_mourn_inferior (void)
3601 {
3602 ptid_t ptid;
3603
3604 ptid = inferior_ptid;
3605 inferior_ptid = null_ptid;
3606
3607 /* Mark breakpoints uninserted in case something tries to delete a
3608 breakpoint while we delete the inferior's threads (which would
3609 fail, since the inferior is long gone). */
3610 mark_breakpoints_out ();
3611
3612 if (!ptid_equal (ptid, null_ptid))
3613 {
3614 int pid = ptid_get_pid (ptid);
3615 exit_inferior (pid);
3616 }
3617
3618 /* Note this wipes step-resume breakpoints, so needs to be done
3619 after exit_inferior, which ends up referencing the step-resume
3620 breakpoints through clear_thread_inferior_resources. */
3621 breakpoint_init_inferior (inf_exited);
3622
3623 registers_changed ();
3624
3625 reopen_exec_file ();
3626 reinit_frame_cache ();
3627
3628 if (deprecated_detach_hook)
3629 deprecated_detach_hook ();
3630 }
3631 \f
3632 /* Convert a normal process ID to a string. Returns the string in a
3633 static buffer. */
3634
3635 char *
3636 normal_pid_to_str (ptid_t ptid)
3637 {
3638 static char buf[32];
3639
3640 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3641 return buf;
3642 }
3643
3644 static char *
3645 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3646 {
3647 return normal_pid_to_str (ptid);
3648 }
3649
3650 /* Error-catcher for target_find_memory_regions. */
3651 static int
3652 dummy_find_memory_regions (struct target_ops *self,
3653 find_memory_region_ftype ignore1, void *ignore2)
3654 {
3655 error (_("Command not implemented for this target."));
3656 return 0;
3657 }
3658
3659 /* Error-catcher for target_make_corefile_notes. */
3660 static char *
3661 dummy_make_corefile_notes (struct target_ops *self,
3662 bfd *ignore1, int *ignore2)
3663 {
3664 error (_("Command not implemented for this target."));
3665 return NULL;
3666 }
3667
3668 /* Set up the handful of non-empty slots needed by the dummy target
3669 vector. */
3670
3671 static void
3672 init_dummy_target (void)
3673 {
3674 dummy_target.to_shortname = "None";
3675 dummy_target.to_longname = "None";
3676 dummy_target.to_doc = "";
3677 dummy_target.to_create_inferior = find_default_create_inferior;
3678 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3679 dummy_target.to_supports_disable_randomization
3680 = find_default_supports_disable_randomization;
3681 dummy_target.to_pid_to_str = dummy_pid_to_str;
3682 dummy_target.to_stratum = dummy_stratum;
3683 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3684 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3685 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3686 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3687 dummy_target.to_has_execution
3688 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3689 dummy_target.to_magic = OPS_MAGIC;
3690
3691 install_dummy_methods (&dummy_target);
3692 }
3693 \f
3694 static void
3695 debug_to_open (char *args, int from_tty)
3696 {
3697 debug_target.to_open (args, from_tty);
3698
3699 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3700 }
3701
3702 void
3703 target_close (struct target_ops *targ)
3704 {
3705 gdb_assert (!target_is_pushed (targ));
3706
3707 if (targ->to_xclose != NULL)
3708 targ->to_xclose (targ);
3709 else if (targ->to_close != NULL)
3710 targ->to_close (targ);
3711
3712 if (targetdebug)
3713 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3714 }
3715
3716 void
3717 target_attach (char *args, int from_tty)
3718 {
3719 current_target.to_attach (&current_target, args, from_tty);
3720 if (targetdebug)
3721 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3722 args, from_tty);
3723 }
3724
3725 int
3726 target_thread_alive (ptid_t ptid)
3727 {
3728 struct target_ops *t;
3729
3730 for (t = current_target.beneath; t != NULL; t = t->beneath)
3731 {
3732 if (t->to_thread_alive != NULL)
3733 {
3734 int retval;
3735
3736 retval = t->to_thread_alive (t, ptid);
3737 if (targetdebug)
3738 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3739 ptid_get_pid (ptid), retval);
3740
3741 return retval;
3742 }
3743 }
3744
3745 return 0;
3746 }
3747
3748 void
3749 target_find_new_threads (void)
3750 {
3751 struct target_ops *t;
3752
3753 for (t = current_target.beneath; t != NULL; t = t->beneath)
3754 {
3755 if (t->to_find_new_threads != NULL)
3756 {
3757 t->to_find_new_threads (t);
3758 if (targetdebug)
3759 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3760
3761 return;
3762 }
3763 }
3764 }
3765
3766 void
3767 target_stop (ptid_t ptid)
3768 {
3769 if (!may_stop)
3770 {
3771 warning (_("May not interrupt or stop the target, ignoring attempt"));
3772 return;
3773 }
3774
3775 (*current_target.to_stop) (&current_target, ptid);
3776 }
3777
3778 static void
3779 debug_to_post_attach (struct target_ops *self, int pid)
3780 {
3781 debug_target.to_post_attach (&debug_target, pid);
3782
3783 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3784 }
3785
3786 /* Concatenate ELEM to LIST, a comma separate list, and return the
3787 result. The LIST incoming argument is released. */
3788
3789 static char *
3790 str_comma_list_concat_elem (char *list, const char *elem)
3791 {
3792 if (list == NULL)
3793 return xstrdup (elem);
3794 else
3795 return reconcat (list, list, ", ", elem, (char *) NULL);
3796 }
3797
3798 /* Helper for target_options_to_string. If OPT is present in
3799 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3800 Returns the new resulting string. OPT is removed from
3801 TARGET_OPTIONS. */
3802
3803 static char *
3804 do_option (int *target_options, char *ret,
3805 int opt, char *opt_str)
3806 {
3807 if ((*target_options & opt) != 0)
3808 {
3809 ret = str_comma_list_concat_elem (ret, opt_str);
3810 *target_options &= ~opt;
3811 }
3812
3813 return ret;
3814 }
3815
3816 char *
3817 target_options_to_string (int target_options)
3818 {
3819 char *ret = NULL;
3820
3821 #define DO_TARG_OPTION(OPT) \
3822 ret = do_option (&target_options, ret, OPT, #OPT)
3823
3824 DO_TARG_OPTION (TARGET_WNOHANG);
3825
3826 if (target_options != 0)
3827 ret = str_comma_list_concat_elem (ret, "unknown???");
3828
3829 if (ret == NULL)
3830 ret = xstrdup ("");
3831 return ret;
3832 }
3833
3834 static void
3835 debug_print_register (const char * func,
3836 struct regcache *regcache, int regno)
3837 {
3838 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3839
3840 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3841 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3842 && gdbarch_register_name (gdbarch, regno) != NULL
3843 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3844 fprintf_unfiltered (gdb_stdlog, "(%s)",
3845 gdbarch_register_name (gdbarch, regno));
3846 else
3847 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3848 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3849 {
3850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3851 int i, size = register_size (gdbarch, regno);
3852 gdb_byte buf[MAX_REGISTER_SIZE];
3853
3854 regcache_raw_collect (regcache, regno, buf);
3855 fprintf_unfiltered (gdb_stdlog, " = ");
3856 for (i = 0; i < size; i++)
3857 {
3858 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3859 }
3860 if (size <= sizeof (LONGEST))
3861 {
3862 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3863
3864 fprintf_unfiltered (gdb_stdlog, " %s %s",
3865 core_addr_to_string_nz (val), plongest (val));
3866 }
3867 }
3868 fprintf_unfiltered (gdb_stdlog, "\n");
3869 }
3870
3871 void
3872 target_fetch_registers (struct regcache *regcache, int regno)
3873 {
3874 struct target_ops *t;
3875
3876 for (t = current_target.beneath; t != NULL; t = t->beneath)
3877 {
3878 if (t->to_fetch_registers != NULL)
3879 {
3880 t->to_fetch_registers (t, regcache, regno);
3881 if (targetdebug)
3882 debug_print_register ("target_fetch_registers", regcache, regno);
3883 return;
3884 }
3885 }
3886 }
3887
3888 void
3889 target_store_registers (struct regcache *regcache, int regno)
3890 {
3891 struct target_ops *t;
3892
3893 if (!may_write_registers)
3894 error (_("Writing to registers is not allowed (regno %d)"), regno);
3895
3896 current_target.to_store_registers (&current_target, regcache, regno);
3897 if (targetdebug)
3898 {
3899 debug_print_register ("target_store_registers", regcache, regno);
3900 }
3901 }
3902
3903 int
3904 target_core_of_thread (ptid_t ptid)
3905 {
3906 struct target_ops *t;
3907
3908 for (t = current_target.beneath; t != NULL; t = t->beneath)
3909 {
3910 if (t->to_core_of_thread != NULL)
3911 {
3912 int retval = t->to_core_of_thread (t, ptid);
3913
3914 if (targetdebug)
3915 fprintf_unfiltered (gdb_stdlog,
3916 "target_core_of_thread (%d) = %d\n",
3917 ptid_get_pid (ptid), retval);
3918 return retval;
3919 }
3920 }
3921
3922 return -1;
3923 }
3924
3925 int
3926 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3927 {
3928 struct target_ops *t;
3929
3930 for (t = current_target.beneath; t != NULL; t = t->beneath)
3931 {
3932 if (t->to_verify_memory != NULL)
3933 {
3934 int retval = t->to_verify_memory (t, data, memaddr, size);
3935
3936 if (targetdebug)
3937 fprintf_unfiltered (gdb_stdlog,
3938 "target_verify_memory (%s, %s) = %d\n",
3939 paddress (target_gdbarch (), memaddr),
3940 pulongest (size),
3941 retval);
3942 return retval;
3943 }
3944 }
3945
3946 tcomplain ();
3947 }
3948
3949 /* The documentation for this function is in its prototype declaration in
3950 target.h. */
3951
3952 int
3953 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3954 {
3955 struct target_ops *t;
3956
3957 for (t = current_target.beneath; t != NULL; t = t->beneath)
3958 if (t->to_insert_mask_watchpoint != NULL)
3959 {
3960 int ret;
3961
3962 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3963
3964 if (targetdebug)
3965 fprintf_unfiltered (gdb_stdlog, "\
3966 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3967 core_addr_to_string (addr),
3968 core_addr_to_string (mask), rw, ret);
3969
3970 return ret;
3971 }
3972
3973 return 1;
3974 }
3975
3976 /* The documentation for this function is in its prototype declaration in
3977 target.h. */
3978
3979 int
3980 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3981 {
3982 struct target_ops *t;
3983
3984 for (t = current_target.beneath; t != NULL; t = t->beneath)
3985 if (t->to_remove_mask_watchpoint != NULL)
3986 {
3987 int ret;
3988
3989 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3990
3991 if (targetdebug)
3992 fprintf_unfiltered (gdb_stdlog, "\
3993 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3994 core_addr_to_string (addr),
3995 core_addr_to_string (mask), rw, ret);
3996
3997 return ret;
3998 }
3999
4000 return 1;
4001 }
4002
4003 /* The documentation for this function is in its prototype declaration
4004 in target.h. */
4005
4006 int
4007 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4008 {
4009 struct target_ops *t;
4010
4011 for (t = current_target.beneath; t != NULL; t = t->beneath)
4012 if (t->to_masked_watch_num_registers != NULL)
4013 return t->to_masked_watch_num_registers (t, addr, mask);
4014
4015 return -1;
4016 }
4017
4018 /* The documentation for this function is in its prototype declaration
4019 in target.h. */
4020
4021 int
4022 target_ranged_break_num_registers (void)
4023 {
4024 struct target_ops *t;
4025
4026 for (t = current_target.beneath; t != NULL; t = t->beneath)
4027 if (t->to_ranged_break_num_registers != NULL)
4028 return t->to_ranged_break_num_registers (t);
4029
4030 return -1;
4031 }
4032
4033 /* See target.h. */
4034
4035 struct btrace_target_info *
4036 target_enable_btrace (ptid_t ptid)
4037 {
4038 struct target_ops *t;
4039
4040 for (t = current_target.beneath; t != NULL; t = t->beneath)
4041 if (t->to_enable_btrace != NULL)
4042 return t->to_enable_btrace (t, ptid);
4043
4044 tcomplain ();
4045 return NULL;
4046 }
4047
4048 /* See target.h. */
4049
4050 void
4051 target_disable_btrace (struct btrace_target_info *btinfo)
4052 {
4053 struct target_ops *t;
4054
4055 for (t = current_target.beneath; t != NULL; t = t->beneath)
4056 if (t->to_disable_btrace != NULL)
4057 {
4058 t->to_disable_btrace (t, btinfo);
4059 return;
4060 }
4061
4062 tcomplain ();
4063 }
4064
4065 /* See target.h. */
4066
4067 void
4068 target_teardown_btrace (struct btrace_target_info *btinfo)
4069 {
4070 struct target_ops *t;
4071
4072 for (t = current_target.beneath; t != NULL; t = t->beneath)
4073 if (t->to_teardown_btrace != NULL)
4074 {
4075 t->to_teardown_btrace (t, btinfo);
4076 return;
4077 }
4078
4079 tcomplain ();
4080 }
4081
4082 /* See target.h. */
4083
4084 enum btrace_error
4085 target_read_btrace (VEC (btrace_block_s) **btrace,
4086 struct btrace_target_info *btinfo,
4087 enum btrace_read_type type)
4088 {
4089 struct target_ops *t;
4090
4091 for (t = current_target.beneath; t != NULL; t = t->beneath)
4092 if (t->to_read_btrace != NULL)
4093 return t->to_read_btrace (t, btrace, btinfo, type);
4094
4095 tcomplain ();
4096 return BTRACE_ERR_NOT_SUPPORTED;
4097 }
4098
4099 /* See target.h. */
4100
4101 void
4102 target_stop_recording (void)
4103 {
4104 struct target_ops *t;
4105
4106 for (t = current_target.beneath; t != NULL; t = t->beneath)
4107 if (t->to_stop_recording != NULL)
4108 {
4109 t->to_stop_recording (t);
4110 return;
4111 }
4112
4113 /* This is optional. */
4114 }
4115
4116 /* See target.h. */
4117
4118 void
4119 target_info_record (void)
4120 {
4121 struct target_ops *t;
4122
4123 for (t = current_target.beneath; t != NULL; t = t->beneath)
4124 if (t->to_info_record != NULL)
4125 {
4126 t->to_info_record (t);
4127 return;
4128 }
4129
4130 tcomplain ();
4131 }
4132
4133 /* See target.h. */
4134
4135 void
4136 target_save_record (const char *filename)
4137 {
4138 struct target_ops *t;
4139
4140 for (t = current_target.beneath; t != NULL; t = t->beneath)
4141 if (t->to_save_record != NULL)
4142 {
4143 t->to_save_record (t, filename);
4144 return;
4145 }
4146
4147 tcomplain ();
4148 }
4149
4150 /* See target.h. */
4151
4152 int
4153 target_supports_delete_record (void)
4154 {
4155 struct target_ops *t;
4156
4157 for (t = current_target.beneath; t != NULL; t = t->beneath)
4158 if (t->to_delete_record != NULL)
4159 return 1;
4160
4161 return 0;
4162 }
4163
4164 /* See target.h. */
4165
4166 void
4167 target_delete_record (void)
4168 {
4169 struct target_ops *t;
4170
4171 for (t = current_target.beneath; t != NULL; t = t->beneath)
4172 if (t->to_delete_record != NULL)
4173 {
4174 t->to_delete_record (t);
4175 return;
4176 }
4177
4178 tcomplain ();
4179 }
4180
4181 /* See target.h. */
4182
4183 int
4184 target_record_is_replaying (void)
4185 {
4186 struct target_ops *t;
4187
4188 for (t = current_target.beneath; t != NULL; t = t->beneath)
4189 if (t->to_record_is_replaying != NULL)
4190 return t->to_record_is_replaying (t);
4191
4192 return 0;
4193 }
4194
4195 /* See target.h. */
4196
4197 void
4198 target_goto_record_begin (void)
4199 {
4200 struct target_ops *t;
4201
4202 for (t = current_target.beneath; t != NULL; t = t->beneath)
4203 if (t->to_goto_record_begin != NULL)
4204 {
4205 t->to_goto_record_begin (t);
4206 return;
4207 }
4208
4209 tcomplain ();
4210 }
4211
4212 /* See target.h. */
4213
4214 void
4215 target_goto_record_end (void)
4216 {
4217 struct target_ops *t;
4218
4219 for (t = current_target.beneath; t != NULL; t = t->beneath)
4220 if (t->to_goto_record_end != NULL)
4221 {
4222 t->to_goto_record_end (t);
4223 return;
4224 }
4225
4226 tcomplain ();
4227 }
4228
4229 /* See target.h. */
4230
4231 void
4232 target_goto_record (ULONGEST insn)
4233 {
4234 struct target_ops *t;
4235
4236 for (t = current_target.beneath; t != NULL; t = t->beneath)
4237 if (t->to_goto_record != NULL)
4238 {
4239 t->to_goto_record (t, insn);
4240 return;
4241 }
4242
4243 tcomplain ();
4244 }
4245
4246 /* See target.h. */
4247
4248 void
4249 target_insn_history (int size, int flags)
4250 {
4251 struct target_ops *t;
4252
4253 for (t = current_target.beneath; t != NULL; t = t->beneath)
4254 if (t->to_insn_history != NULL)
4255 {
4256 t->to_insn_history (t, size, flags);
4257 return;
4258 }
4259
4260 tcomplain ();
4261 }
4262
4263 /* See target.h. */
4264
4265 void
4266 target_insn_history_from (ULONGEST from, int size, int flags)
4267 {
4268 struct target_ops *t;
4269
4270 for (t = current_target.beneath; t != NULL; t = t->beneath)
4271 if (t->to_insn_history_from != NULL)
4272 {
4273 t->to_insn_history_from (t, from, size, flags);
4274 return;
4275 }
4276
4277 tcomplain ();
4278 }
4279
4280 /* See target.h. */
4281
4282 void
4283 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4284 {
4285 struct target_ops *t;
4286
4287 for (t = current_target.beneath; t != NULL; t = t->beneath)
4288 if (t->to_insn_history_range != NULL)
4289 {
4290 t->to_insn_history_range (t, begin, end, flags);
4291 return;
4292 }
4293
4294 tcomplain ();
4295 }
4296
4297 /* See target.h. */
4298
4299 void
4300 target_call_history (int size, int flags)
4301 {
4302 struct target_ops *t;
4303
4304 for (t = current_target.beneath; t != NULL; t = t->beneath)
4305 if (t->to_call_history != NULL)
4306 {
4307 t->to_call_history (t, size, flags);
4308 return;
4309 }
4310
4311 tcomplain ();
4312 }
4313
4314 /* See target.h. */
4315
4316 void
4317 target_call_history_from (ULONGEST begin, int size, int flags)
4318 {
4319 struct target_ops *t;
4320
4321 for (t = current_target.beneath; t != NULL; t = t->beneath)
4322 if (t->to_call_history_from != NULL)
4323 {
4324 t->to_call_history_from (t, begin, size, flags);
4325 return;
4326 }
4327
4328 tcomplain ();
4329 }
4330
4331 /* See target.h. */
4332
4333 void
4334 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4335 {
4336 struct target_ops *t;
4337
4338 for (t = current_target.beneath; t != NULL; t = t->beneath)
4339 if (t->to_call_history_range != NULL)
4340 {
4341 t->to_call_history_range (t, begin, end, flags);
4342 return;
4343 }
4344
4345 tcomplain ();
4346 }
4347
4348 static void
4349 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4350 {
4351 debug_target.to_prepare_to_store (&debug_target, regcache);
4352
4353 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4354 }
4355
4356 /* See target.h. */
4357
4358 const struct frame_unwind *
4359 target_get_unwinder (void)
4360 {
4361 struct target_ops *t;
4362
4363 for (t = current_target.beneath; t != NULL; t = t->beneath)
4364 if (t->to_get_unwinder != NULL)
4365 return t->to_get_unwinder;
4366
4367 return NULL;
4368 }
4369
4370 /* See target.h. */
4371
4372 const struct frame_unwind *
4373 target_get_tailcall_unwinder (void)
4374 {
4375 struct target_ops *t;
4376
4377 for (t = current_target.beneath; t != NULL; t = t->beneath)
4378 if (t->to_get_tailcall_unwinder != NULL)
4379 return t->to_get_tailcall_unwinder;
4380
4381 return NULL;
4382 }
4383
4384 /* See target.h. */
4385
4386 CORE_ADDR
4387 forward_target_decr_pc_after_break (struct target_ops *ops,
4388 struct gdbarch *gdbarch)
4389 {
4390 for (; ops != NULL; ops = ops->beneath)
4391 if (ops->to_decr_pc_after_break != NULL)
4392 return ops->to_decr_pc_after_break (ops, gdbarch);
4393
4394 return gdbarch_decr_pc_after_break (gdbarch);
4395 }
4396
4397 /* See target.h. */
4398
4399 CORE_ADDR
4400 target_decr_pc_after_break (struct gdbarch *gdbarch)
4401 {
4402 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4403 }
4404
4405 static int
4406 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4407 int write, struct mem_attrib *attrib,
4408 struct target_ops *target)
4409 {
4410 int retval;
4411
4412 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4413 attrib, target);
4414
4415 fprintf_unfiltered (gdb_stdlog,
4416 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4417 paddress (target_gdbarch (), memaddr), len,
4418 write ? "write" : "read", retval);
4419
4420 if (retval > 0)
4421 {
4422 int i;
4423
4424 fputs_unfiltered (", bytes =", gdb_stdlog);
4425 for (i = 0; i < retval; i++)
4426 {
4427 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4428 {
4429 if (targetdebug < 2 && i > 0)
4430 {
4431 fprintf_unfiltered (gdb_stdlog, " ...");
4432 break;
4433 }
4434 fprintf_unfiltered (gdb_stdlog, "\n");
4435 }
4436
4437 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4438 }
4439 }
4440
4441 fputc_unfiltered ('\n', gdb_stdlog);
4442
4443 return retval;
4444 }
4445
4446 static void
4447 debug_to_files_info (struct target_ops *target)
4448 {
4449 debug_target.to_files_info (target);
4450
4451 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4452 }
4453
4454 static int
4455 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4456 struct bp_target_info *bp_tgt)
4457 {
4458 int retval;
4459
4460 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4461
4462 fprintf_unfiltered (gdb_stdlog,
4463 "target_insert_breakpoint (%s, xxx) = %ld\n",
4464 core_addr_to_string (bp_tgt->placed_address),
4465 (unsigned long) retval);
4466 return retval;
4467 }
4468
4469 static int
4470 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4471 struct bp_target_info *bp_tgt)
4472 {
4473 int retval;
4474
4475 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4476
4477 fprintf_unfiltered (gdb_stdlog,
4478 "target_remove_breakpoint (%s, xxx) = %ld\n",
4479 core_addr_to_string (bp_tgt->placed_address),
4480 (unsigned long) retval);
4481 return retval;
4482 }
4483
4484 static int
4485 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4486 int type, int cnt, int from_tty)
4487 {
4488 int retval;
4489
4490 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4491 type, cnt, from_tty);
4492
4493 fprintf_unfiltered (gdb_stdlog,
4494 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4495 (unsigned long) type,
4496 (unsigned long) cnt,
4497 (unsigned long) from_tty,
4498 (unsigned long) retval);
4499 return retval;
4500 }
4501
4502 static int
4503 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4504 CORE_ADDR addr, int len)
4505 {
4506 CORE_ADDR retval;
4507
4508 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4509 addr, len);
4510
4511 fprintf_unfiltered (gdb_stdlog,
4512 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4513 core_addr_to_string (addr), (unsigned long) len,
4514 core_addr_to_string (retval));
4515 return retval;
4516 }
4517
4518 static int
4519 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4520 CORE_ADDR addr, int len, int rw,
4521 struct expression *cond)
4522 {
4523 int retval;
4524
4525 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4526 addr, len,
4527 rw, cond);
4528
4529 fprintf_unfiltered (gdb_stdlog,
4530 "target_can_accel_watchpoint_condition "
4531 "(%s, %d, %d, %s) = %ld\n",
4532 core_addr_to_string (addr), len, rw,
4533 host_address_to_string (cond), (unsigned long) retval);
4534 return retval;
4535 }
4536
4537 static int
4538 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4539 {
4540 int retval;
4541
4542 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4543
4544 fprintf_unfiltered (gdb_stdlog,
4545 "target_stopped_by_watchpoint () = %ld\n",
4546 (unsigned long) retval);
4547 return retval;
4548 }
4549
4550 static int
4551 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4552 {
4553 int retval;
4554
4555 retval = debug_target.to_stopped_data_address (target, addr);
4556
4557 fprintf_unfiltered (gdb_stdlog,
4558 "target_stopped_data_address ([%s]) = %ld\n",
4559 core_addr_to_string (*addr),
4560 (unsigned long)retval);
4561 return retval;
4562 }
4563
4564 static int
4565 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4566 CORE_ADDR addr,
4567 CORE_ADDR start, int length)
4568 {
4569 int retval;
4570
4571 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4572 start, length);
4573
4574 fprintf_filtered (gdb_stdlog,
4575 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4576 core_addr_to_string (addr), core_addr_to_string (start),
4577 length, retval);
4578 return retval;
4579 }
4580
4581 static int
4582 debug_to_insert_hw_breakpoint (struct target_ops *self,
4583 struct gdbarch *gdbarch,
4584 struct bp_target_info *bp_tgt)
4585 {
4586 int retval;
4587
4588 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4589 gdbarch, bp_tgt);
4590
4591 fprintf_unfiltered (gdb_stdlog,
4592 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4593 core_addr_to_string (bp_tgt->placed_address),
4594 (unsigned long) retval);
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_remove_hw_breakpoint (struct target_ops *self,
4600 struct gdbarch *gdbarch,
4601 struct bp_target_info *bp_tgt)
4602 {
4603 int retval;
4604
4605 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4606 gdbarch, bp_tgt);
4607
4608 fprintf_unfiltered (gdb_stdlog,
4609 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4610 core_addr_to_string (bp_tgt->placed_address),
4611 (unsigned long) retval);
4612 return retval;
4613 }
4614
4615 static int
4616 debug_to_insert_watchpoint (struct target_ops *self,
4617 CORE_ADDR addr, int len, int type,
4618 struct expression *cond)
4619 {
4620 int retval;
4621
4622 retval = debug_target.to_insert_watchpoint (&debug_target,
4623 addr, len, type, cond);
4624
4625 fprintf_unfiltered (gdb_stdlog,
4626 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4627 core_addr_to_string (addr), len, type,
4628 host_address_to_string (cond), (unsigned long) retval);
4629 return retval;
4630 }
4631
4632 static int
4633 debug_to_remove_watchpoint (struct target_ops *self,
4634 CORE_ADDR addr, int len, int type,
4635 struct expression *cond)
4636 {
4637 int retval;
4638
4639 retval = debug_target.to_remove_watchpoint (&debug_target,
4640 addr, len, type, cond);
4641
4642 fprintf_unfiltered (gdb_stdlog,
4643 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4644 core_addr_to_string (addr), len, type,
4645 host_address_to_string (cond), (unsigned long) retval);
4646 return retval;
4647 }
4648
4649 static void
4650 debug_to_terminal_init (struct target_ops *self)
4651 {
4652 debug_target.to_terminal_init (&debug_target);
4653
4654 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4655 }
4656
4657 static void
4658 debug_to_terminal_inferior (struct target_ops *self)
4659 {
4660 debug_target.to_terminal_inferior (&debug_target);
4661
4662 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4663 }
4664
4665 static void
4666 debug_to_terminal_ours_for_output (struct target_ops *self)
4667 {
4668 debug_target.to_terminal_ours_for_output (&debug_target);
4669
4670 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4671 }
4672
4673 static void
4674 debug_to_terminal_ours (struct target_ops *self)
4675 {
4676 debug_target.to_terminal_ours (&debug_target);
4677
4678 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4679 }
4680
4681 static void
4682 debug_to_terminal_save_ours (struct target_ops *self)
4683 {
4684 debug_target.to_terminal_save_ours (&debug_target);
4685
4686 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4687 }
4688
4689 static void
4690 debug_to_terminal_info (struct target_ops *self,
4691 const char *arg, int from_tty)
4692 {
4693 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4694
4695 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4696 from_tty);
4697 }
4698
4699 static void
4700 debug_to_load (struct target_ops *self, char *args, int from_tty)
4701 {
4702 debug_target.to_load (&debug_target, args, from_tty);
4703
4704 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4705 }
4706
4707 static void
4708 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4709 {
4710 debug_target.to_post_startup_inferior (&debug_target, ptid);
4711
4712 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4713 ptid_get_pid (ptid));
4714 }
4715
4716 static int
4717 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4718 {
4719 int retval;
4720
4721 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4722
4723 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4724 pid, retval);
4725
4726 return retval;
4727 }
4728
4729 static int
4730 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4731 {
4732 int retval;
4733
4734 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4735
4736 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4737 pid, retval);
4738
4739 return retval;
4740 }
4741
4742 static int
4743 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4744 {
4745 int retval;
4746
4747 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4748
4749 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4750 pid, retval);
4751
4752 return retval;
4753 }
4754
4755 static int
4756 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4757 {
4758 int retval;
4759
4760 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4761
4762 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4763 pid, retval);
4764
4765 return retval;
4766 }
4767
4768 static int
4769 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4770 {
4771 int retval;
4772
4773 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4774
4775 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4776 pid, retval);
4777
4778 return retval;
4779 }
4780
4781 static int
4782 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4783 {
4784 int retval;
4785
4786 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4787
4788 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4789 pid, retval);
4790
4791 return retval;
4792 }
4793
4794 static int
4795 debug_to_has_exited (struct target_ops *self,
4796 int pid, int wait_status, int *exit_status)
4797 {
4798 int has_exited;
4799
4800 has_exited = debug_target.to_has_exited (&debug_target,
4801 pid, wait_status, exit_status);
4802
4803 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4804 pid, wait_status, *exit_status, has_exited);
4805
4806 return has_exited;
4807 }
4808
4809 static int
4810 debug_to_can_run (struct target_ops *self)
4811 {
4812 int retval;
4813
4814 retval = debug_target.to_can_run (&debug_target);
4815
4816 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4817
4818 return retval;
4819 }
4820
4821 static struct gdbarch *
4822 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4823 {
4824 struct gdbarch *retval;
4825
4826 retval = debug_target.to_thread_architecture (ops, ptid);
4827
4828 fprintf_unfiltered (gdb_stdlog,
4829 "target_thread_architecture (%s) = %s [%s]\n",
4830 target_pid_to_str (ptid),
4831 host_address_to_string (retval),
4832 gdbarch_bfd_arch_info (retval)->printable_name);
4833 return retval;
4834 }
4835
4836 static void
4837 debug_to_stop (struct target_ops *self, ptid_t ptid)
4838 {
4839 debug_target.to_stop (&debug_target, ptid);
4840
4841 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4842 target_pid_to_str (ptid));
4843 }
4844
4845 static void
4846 debug_to_rcmd (struct target_ops *self, char *command,
4847 struct ui_file *outbuf)
4848 {
4849 debug_target.to_rcmd (&debug_target, command, outbuf);
4850 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4851 }
4852
4853 static char *
4854 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4855 {
4856 char *exec_file;
4857
4858 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4859
4860 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4861 pid, exec_file);
4862
4863 return exec_file;
4864 }
4865
4866 static void
4867 setup_target_debug (void)
4868 {
4869 memcpy (&debug_target, &current_target, sizeof debug_target);
4870
4871 current_target.to_open = debug_to_open;
4872 current_target.to_post_attach = debug_to_post_attach;
4873 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4874 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4875 current_target.to_files_info = debug_to_files_info;
4876 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4877 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4878 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4879 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4880 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4881 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4882 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4883 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4884 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4885 current_target.to_watchpoint_addr_within_range
4886 = debug_to_watchpoint_addr_within_range;
4887 current_target.to_region_ok_for_hw_watchpoint
4888 = debug_to_region_ok_for_hw_watchpoint;
4889 current_target.to_can_accel_watchpoint_condition
4890 = debug_to_can_accel_watchpoint_condition;
4891 current_target.to_terminal_init = debug_to_terminal_init;
4892 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4893 current_target.to_terminal_ours_for_output
4894 = debug_to_terminal_ours_for_output;
4895 current_target.to_terminal_ours = debug_to_terminal_ours;
4896 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4897 current_target.to_terminal_info = debug_to_terminal_info;
4898 current_target.to_load = debug_to_load;
4899 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4900 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4901 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4902 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4903 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4904 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4905 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4906 current_target.to_has_exited = debug_to_has_exited;
4907 current_target.to_can_run = debug_to_can_run;
4908 current_target.to_stop = debug_to_stop;
4909 current_target.to_rcmd = debug_to_rcmd;
4910 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4911 current_target.to_thread_architecture = debug_to_thread_architecture;
4912 }
4913 \f
4914
4915 static char targ_desc[] =
4916 "Names of targets and files being debugged.\nShows the entire \
4917 stack of targets currently in use (including the exec-file,\n\
4918 core-file, and process, if any), as well as the symbol file name.";
4919
4920 static void
4921 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4922 {
4923 error (_("\"monitor\" command not supported by this target."));
4924 }
4925
4926 static void
4927 do_monitor_command (char *cmd,
4928 int from_tty)
4929 {
4930 target_rcmd (cmd, gdb_stdtarg);
4931 }
4932
4933 /* Print the name of each layers of our target stack. */
4934
4935 static void
4936 maintenance_print_target_stack (char *cmd, int from_tty)
4937 {
4938 struct target_ops *t;
4939
4940 printf_filtered (_("The current target stack is:\n"));
4941
4942 for (t = target_stack; t != NULL; t = t->beneath)
4943 {
4944 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4945 }
4946 }
4947
4948 /* Controls if async mode is permitted. */
4949 int target_async_permitted = 0;
4950
4951 /* The set command writes to this variable. If the inferior is
4952 executing, target_async_permitted is *not* updated. */
4953 static int target_async_permitted_1 = 0;
4954
4955 static void
4956 set_target_async_command (char *args, int from_tty,
4957 struct cmd_list_element *c)
4958 {
4959 if (have_live_inferiors ())
4960 {
4961 target_async_permitted_1 = target_async_permitted;
4962 error (_("Cannot change this setting while the inferior is running."));
4963 }
4964
4965 target_async_permitted = target_async_permitted_1;
4966 }
4967
4968 static void
4969 show_target_async_command (struct ui_file *file, int from_tty,
4970 struct cmd_list_element *c,
4971 const char *value)
4972 {
4973 fprintf_filtered (file,
4974 _("Controlling the inferior in "
4975 "asynchronous mode is %s.\n"), value);
4976 }
4977
4978 /* Temporary copies of permission settings. */
4979
4980 static int may_write_registers_1 = 1;
4981 static int may_write_memory_1 = 1;
4982 static int may_insert_breakpoints_1 = 1;
4983 static int may_insert_tracepoints_1 = 1;
4984 static int may_insert_fast_tracepoints_1 = 1;
4985 static int may_stop_1 = 1;
4986
4987 /* Make the user-set values match the real values again. */
4988
4989 void
4990 update_target_permissions (void)
4991 {
4992 may_write_registers_1 = may_write_registers;
4993 may_write_memory_1 = may_write_memory;
4994 may_insert_breakpoints_1 = may_insert_breakpoints;
4995 may_insert_tracepoints_1 = may_insert_tracepoints;
4996 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4997 may_stop_1 = may_stop;
4998 }
4999
5000 /* The one function handles (most of) the permission flags in the same
5001 way. */
5002
5003 static void
5004 set_target_permissions (char *args, int from_tty,
5005 struct cmd_list_element *c)
5006 {
5007 if (target_has_execution)
5008 {
5009 update_target_permissions ();
5010 error (_("Cannot change this setting while the inferior is running."));
5011 }
5012
5013 /* Make the real values match the user-changed values. */
5014 may_write_registers = may_write_registers_1;
5015 may_insert_breakpoints = may_insert_breakpoints_1;
5016 may_insert_tracepoints = may_insert_tracepoints_1;
5017 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5018 may_stop = may_stop_1;
5019 update_observer_mode ();
5020 }
5021
5022 /* Set memory write permission independently of observer mode. */
5023
5024 static void
5025 set_write_memory_permission (char *args, int from_tty,
5026 struct cmd_list_element *c)
5027 {
5028 /* Make the real values match the user-changed values. */
5029 may_write_memory = may_write_memory_1;
5030 update_observer_mode ();
5031 }
5032
5033
5034 void
5035 initialize_targets (void)
5036 {
5037 init_dummy_target ();
5038 push_target (&dummy_target);
5039
5040 add_info ("target", target_info, targ_desc);
5041 add_info ("files", target_info, targ_desc);
5042
5043 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5044 Set target debugging."), _("\
5045 Show target debugging."), _("\
5046 When non-zero, target debugging is enabled. Higher numbers are more\n\
5047 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5048 command."),
5049 NULL,
5050 show_targetdebug,
5051 &setdebuglist, &showdebuglist);
5052
5053 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5054 &trust_readonly, _("\
5055 Set mode for reading from readonly sections."), _("\
5056 Show mode for reading from readonly sections."), _("\
5057 When this mode is on, memory reads from readonly sections (such as .text)\n\
5058 will be read from the object file instead of from the target. This will\n\
5059 result in significant performance improvement for remote targets."),
5060 NULL,
5061 show_trust_readonly,
5062 &setlist, &showlist);
5063
5064 add_com ("monitor", class_obscure, do_monitor_command,
5065 _("Send a command to the remote monitor (remote targets only)."));
5066
5067 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5068 _("Print the name of each layer of the internal target stack."),
5069 &maintenanceprintlist);
5070
5071 add_setshow_boolean_cmd ("target-async", no_class,
5072 &target_async_permitted_1, _("\
5073 Set whether gdb controls the inferior in asynchronous mode."), _("\
5074 Show whether gdb controls the inferior in asynchronous mode."), _("\
5075 Tells gdb whether to control the inferior in asynchronous mode."),
5076 set_target_async_command,
5077 show_target_async_command,
5078 &setlist,
5079 &showlist);
5080
5081 add_setshow_boolean_cmd ("may-write-registers", class_support,
5082 &may_write_registers_1, _("\
5083 Set permission to write into registers."), _("\
5084 Show permission to write into registers."), _("\
5085 When this permission is on, GDB may write into the target's registers.\n\
5086 Otherwise, any sort of write attempt will result in an error."),
5087 set_target_permissions, NULL,
5088 &setlist, &showlist);
5089
5090 add_setshow_boolean_cmd ("may-write-memory", class_support,
5091 &may_write_memory_1, _("\
5092 Set permission to write into target memory."), _("\
5093 Show permission to write into target memory."), _("\
5094 When this permission is on, GDB may write into the target's memory.\n\
5095 Otherwise, any sort of write attempt will result in an error."),
5096 set_write_memory_permission, NULL,
5097 &setlist, &showlist);
5098
5099 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5100 &may_insert_breakpoints_1, _("\
5101 Set permission to insert breakpoints in the target."), _("\
5102 Show permission to insert breakpoints in the target."), _("\
5103 When this permission is on, GDB may insert breakpoints in the program.\n\
5104 Otherwise, any sort of insertion attempt will result in an error."),
5105 set_target_permissions, NULL,
5106 &setlist, &showlist);
5107
5108 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5109 &may_insert_tracepoints_1, _("\
5110 Set permission to insert tracepoints in the target."), _("\
5111 Show permission to insert tracepoints in the target."), _("\
5112 When this permission is on, GDB may insert tracepoints in the program.\n\
5113 Otherwise, any sort of insertion attempt will result in an error."),
5114 set_target_permissions, NULL,
5115 &setlist, &showlist);
5116
5117 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5118 &may_insert_fast_tracepoints_1, _("\
5119 Set permission to insert fast tracepoints in the target."), _("\
5120 Show permission to insert fast tracepoints in the target."), _("\
5121 When this permission is on, GDB may insert fast tracepoints.\n\
5122 Otherwise, any sort of insertion attempt will result in an error."),
5123 set_target_permissions, NULL,
5124 &setlist, &showlist);
5125
5126 add_setshow_boolean_cmd ("may-interrupt", class_support,
5127 &may_stop_1, _("\
5128 Set permission to interrupt or signal the target."), _("\
5129 Show permission to interrupt or signal the target."), _("\
5130 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5131 Otherwise, any attempt to interrupt or stop will be ignored."),
5132 set_target_permissions, NULL,
5133 &setlist, &showlist);
5134 }
This page took 0.128634 seconds and 5 git commands to generate.