convert to_ranged_break_num_registers
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static target_xfer_partial_ftype default_xfer_partial;
76
77 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
78 ptid_t ptid);
79
80 static int dummy_find_memory_regions (struct target_ops *self,
81 find_memory_region_ftype ignore1,
82 void *ignore2);
83
84 static char *dummy_make_corefile_notes (struct target_ops *self,
85 bfd *ignore1, int *ignore2);
86
87 static int find_default_can_async_p (struct target_ops *ignore);
88
89 static int find_default_is_async_p (struct target_ops *ignore);
90
91 static enum exec_direction_kind default_execution_direction
92 (struct target_ops *self);
93
94 #include "target-delegates.c"
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct target_ops *self,
103 struct regcache *);
104
105 static void debug_to_files_info (struct target_ops *);
106
107 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
111 struct bp_target_info *);
112
113 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
114 int, int, int);
115
116 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
117 struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_insert_watchpoint (struct target_ops *self,
125 CORE_ADDR, int, int,
126 struct expression *);
127
128 static int debug_to_remove_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
133
134 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
135 CORE_ADDR, CORE_ADDR, int);
136
137 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
138 CORE_ADDR, int);
139
140 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
141 CORE_ADDR, int, int,
142 struct expression *);
143
144 static void debug_to_terminal_init (struct target_ops *self);
145
146 static void debug_to_terminal_inferior (struct target_ops *self);
147
148 static void debug_to_terminal_ours_for_output (struct target_ops *self);
149
150 static void debug_to_terminal_save_ours (struct target_ops *self);
151
152 static void debug_to_terminal_ours (struct target_ops *self);
153
154 static void debug_to_load (struct target_ops *self, char *, int);
155
156 static int debug_to_can_run (struct target_ops *self);
157
158 static void debug_to_stop (struct target_ops *self, ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_allocsize;
166 #define DEFAULT_ALLOCSIZE 10
167
168 /* The initial current target, so that there is always a semi-valid
169 current target. */
170
171 static struct target_ops dummy_target;
172
173 /* Top of target stack. */
174
175 static struct target_ops *target_stack;
176
177 /* The target structure we are currently using to talk to a process
178 or file or whatever "inferior" we have. */
179
180 struct target_ops current_target;
181
182 /* Command list for target. */
183
184 static struct cmd_list_element *targetlist = NULL;
185
186 /* Nonzero if we should trust readonly sections from the
187 executable when reading memory. */
188
189 static int trust_readonly = 0;
190
191 /* Nonzero if we should show true memory content including
192 memory breakpoint inserted by gdb. */
193
194 static int show_memory_breakpoints = 0;
195
196 /* These globals control whether GDB attempts to perform these
197 operations; they are useful for targets that need to prevent
198 inadvertant disruption, such as in non-stop mode. */
199
200 int may_write_registers = 1;
201
202 int may_write_memory = 1;
203
204 int may_insert_breakpoints = 1;
205
206 int may_insert_tracepoints = 1;
207
208 int may_insert_fast_tracepoints = 1;
209
210 int may_stop = 1;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static unsigned int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 /* The user just typed 'target' without the name of a target. */
225
226 static void
227 target_command (char *arg, int from_tty)
228 {
229 fputs_filtered ("Argument required (target name). Try `help target'\n",
230 gdb_stdout);
231 }
232
233 /* Default target_has_* methods for process_stratum targets. */
234
235 int
236 default_child_has_all_memory (struct target_ops *ops)
237 {
238 /* If no inferior selected, then we can't read memory here. */
239 if (ptid_equal (inferior_ptid, null_ptid))
240 return 0;
241
242 return 1;
243 }
244
245 int
246 default_child_has_memory (struct target_ops *ops)
247 {
248 /* If no inferior selected, then we can't read memory here. */
249 if (ptid_equal (inferior_ptid, null_ptid))
250 return 0;
251
252 return 1;
253 }
254
255 int
256 default_child_has_stack (struct target_ops *ops)
257 {
258 /* If no inferior selected, there's no stack. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263 }
264
265 int
266 default_child_has_registers (struct target_ops *ops)
267 {
268 /* Can't read registers from no inferior. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273 }
274
275 int
276 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
277 {
278 /* If there's no thread selected, then we can't make it run through
279 hoops. */
280 if (ptid_equal (the_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286
287 int
288 target_has_all_memory_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_all_memory (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_memory_1 (void)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_memory (t))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_stack_1 (void)
313 {
314 struct target_ops *t;
315
316 for (t = current_target.beneath; t != NULL; t = t->beneath)
317 if (t->to_has_stack (t))
318 return 1;
319
320 return 0;
321 }
322
323 int
324 target_has_registers_1 (void)
325 {
326 struct target_ops *t;
327
328 for (t = current_target.beneath; t != NULL; t = t->beneath)
329 if (t->to_has_registers (t))
330 return 1;
331
332 return 0;
333 }
334
335 int
336 target_has_execution_1 (ptid_t the_ptid)
337 {
338 struct target_ops *t;
339
340 for (t = current_target.beneath; t != NULL; t = t->beneath)
341 if (t->to_has_execution (t, the_ptid))
342 return 1;
343
344 return 0;
345 }
346
347 int
348 target_has_execution_current (void)
349 {
350 return target_has_execution_1 (inferior_ptid);
351 }
352
353 /* Complete initialization of T. This ensures that various fields in
354 T are set, if needed by the target implementation. */
355
356 void
357 complete_target_initialization (struct target_ops *t)
358 {
359 /* Provide default values for all "must have" methods. */
360 if (t->to_xfer_partial == NULL)
361 t->to_xfer_partial = default_xfer_partial;
362
363 if (t->to_has_all_memory == NULL)
364 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
365
366 if (t->to_has_memory == NULL)
367 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
368
369 if (t->to_has_stack == NULL)
370 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
371
372 if (t->to_has_registers == NULL)
373 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
374
375 if (t->to_has_execution == NULL)
376 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
377
378 install_delegators (t);
379 }
380
381 /* Add possible target architecture T to the list and add a new
382 command 'target T->to_shortname'. Set COMPLETER as the command's
383 completer if not NULL. */
384
385 void
386 add_target_with_completer (struct target_ops *t,
387 completer_ftype *completer)
388 {
389 struct cmd_list_element *c;
390
391 complete_target_initialization (t);
392
393 if (!target_structs)
394 {
395 target_struct_allocsize = DEFAULT_ALLOCSIZE;
396 target_structs = (struct target_ops **) xmalloc
397 (target_struct_allocsize * sizeof (*target_structs));
398 }
399 if (target_struct_size >= target_struct_allocsize)
400 {
401 target_struct_allocsize *= 2;
402 target_structs = (struct target_ops **)
403 xrealloc ((char *) target_structs,
404 target_struct_allocsize * sizeof (*target_structs));
405 }
406 target_structs[target_struct_size++] = t;
407
408 if (targetlist == NULL)
409 add_prefix_cmd ("target", class_run, target_command, _("\
410 Connect to a target machine or process.\n\
411 The first argument is the type or protocol of the target machine.\n\
412 Remaining arguments are interpreted by the target protocol. For more\n\
413 information on the arguments for a particular protocol, type\n\
414 `help target ' followed by the protocol name."),
415 &targetlist, "target ", 0, &cmdlist);
416 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
417 &targetlist);
418 if (completer != NULL)
419 set_cmd_completer (c, completer);
420 }
421
422 /* Add a possible target architecture to the list. */
423
424 void
425 add_target (struct target_ops *t)
426 {
427 add_target_with_completer (t, NULL);
428 }
429
430 /* See target.h. */
431
432 void
433 add_deprecated_target_alias (struct target_ops *t, char *alias)
434 {
435 struct cmd_list_element *c;
436 char *alt;
437
438 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
439 see PR cli/15104. */
440 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
441 alt = xstrprintf ("target %s", t->to_shortname);
442 deprecate_cmd (c, alt);
443 }
444
445 /* Stub functions */
446
447 void
448 target_ignore (void)
449 {
450 }
451
452 void
453 target_kill (void)
454 {
455 struct target_ops *t;
456
457 for (t = current_target.beneath; t != NULL; t = t->beneath)
458 if (t->to_kill != NULL)
459 {
460 if (targetdebug)
461 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
462
463 t->to_kill (t);
464 return;
465 }
466
467 noprocess ();
468 }
469
470 void
471 target_load (char *arg, int from_tty)
472 {
473 target_dcache_invalidate ();
474 (*current_target.to_load) (&current_target, arg, from_tty);
475 }
476
477 void
478 target_create_inferior (char *exec_file, char *args,
479 char **env, int from_tty)
480 {
481 struct target_ops *t;
482
483 for (t = current_target.beneath; t != NULL; t = t->beneath)
484 {
485 if (t->to_create_inferior != NULL)
486 {
487 t->to_create_inferior (t, exec_file, args, env, from_tty);
488 if (targetdebug)
489 fprintf_unfiltered (gdb_stdlog,
490 "target_create_inferior (%s, %s, xxx, %d)\n",
491 exec_file, args, from_tty);
492 return;
493 }
494 }
495
496 internal_error (__FILE__, __LINE__,
497 _("could not find a target to create inferior"));
498 }
499
500 void
501 target_terminal_inferior (void)
502 {
503 /* A background resume (``run&'') should leave GDB in control of the
504 terminal. Use target_can_async_p, not target_is_async_p, since at
505 this point the target is not async yet. However, if sync_execution
506 is not set, we know it will become async prior to resume. */
507 if (target_can_async_p () && !sync_execution)
508 return;
509
510 /* If GDB is resuming the inferior in the foreground, install
511 inferior's terminal modes. */
512 (*current_target.to_terminal_inferior) (&current_target);
513 }
514
515 static int
516 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
517 struct target_ops *t)
518 {
519 errno = EIO; /* Can't read/write this location. */
520 return 0; /* No bytes handled. */
521 }
522
523 static void
524 tcomplain (void)
525 {
526 error (_("You can't do that when your target is `%s'"),
527 current_target.to_shortname);
528 }
529
530 void
531 noprocess (void)
532 {
533 error (_("You can't do that without a process to debug."));
534 }
535
536 static void
537 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
538 {
539 printf_unfiltered (_("No saved terminal information.\n"));
540 }
541
542 /* A default implementation for the to_get_ada_task_ptid target method.
543
544 This function builds the PTID by using both LWP and TID as part of
545 the PTID lwp and tid elements. The pid used is the pid of the
546 inferior_ptid. */
547
548 static ptid_t
549 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
550 {
551 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
552 }
553
554 static enum exec_direction_kind
555 default_execution_direction (struct target_ops *self)
556 {
557 if (!target_can_execute_reverse)
558 return EXEC_FORWARD;
559 else if (!target_can_async_p ())
560 return EXEC_FORWARD;
561 else
562 gdb_assert_not_reached ("\
563 to_execution_direction must be implemented for reverse async");
564 }
565
566 /* Go through the target stack from top to bottom, copying over zero
567 entries in current_target, then filling in still empty entries. In
568 effect, we are doing class inheritance through the pushed target
569 vectors.
570
571 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
572 is currently implemented, is that it discards any knowledge of
573 which target an inherited method originally belonged to.
574 Consequently, new new target methods should instead explicitly and
575 locally search the target stack for the target that can handle the
576 request. */
577
578 static void
579 update_current_target (void)
580 {
581 struct target_ops *t;
582
583 /* First, reset current's contents. */
584 memset (&current_target, 0, sizeof (current_target));
585
586 /* Install the delegators. */
587 install_delegators (&current_target);
588
589 #define INHERIT(FIELD, TARGET) \
590 if (!current_target.FIELD) \
591 current_target.FIELD = (TARGET)->FIELD
592
593 for (t = target_stack; t; t = t->beneath)
594 {
595 INHERIT (to_shortname, t);
596 INHERIT (to_longname, t);
597 INHERIT (to_doc, t);
598 /* Do not inherit to_open. */
599 /* Do not inherit to_close. */
600 /* Do not inherit to_attach. */
601 /* Do not inherit to_post_attach. */
602 INHERIT (to_attach_no_wait, t);
603 /* Do not inherit to_detach. */
604 /* Do not inherit to_disconnect. */
605 /* Do not inherit to_resume. */
606 /* Do not inherit to_wait. */
607 /* Do not inherit to_fetch_registers. */
608 /* Do not inherit to_store_registers. */
609 /* Do not inherit to_prepare_to_store. */
610 INHERIT (deprecated_xfer_memory, t);
611 /* Do not inherit to_files_info. */
612 /* Do not inherit to_insert_breakpoint. */
613 /* Do not inherit to_remove_breakpoint. */
614 /* Do not inherit to_can_use_hw_breakpoint. */
615 /* Do not inherit to_insert_hw_breakpoint. */
616 /* Do not inherit to_remove_hw_breakpoint. */
617 /* Do not inherit to_ranged_break_num_registers. */
618 /* Do not inherit to_insert_watchpoint. */
619 /* Do not inherit to_remove_watchpoint. */
620 /* Do not inherit to_insert_mask_watchpoint. */
621 /* Do not inherit to_remove_mask_watchpoint. */
622 /* Do not inherit to_stopped_data_address. */
623 INHERIT (to_have_steppable_watchpoint, t);
624 INHERIT (to_have_continuable_watchpoint, t);
625 /* Do not inherit to_stopped_by_watchpoint. */
626 /* Do not inherit to_watchpoint_addr_within_range. */
627 /* Do not inherit to_region_ok_for_hw_watchpoint. */
628 /* Do not inherit to_can_accel_watchpoint_condition. */
629 /* Do not inherit to_masked_watch_num_registers. */
630 /* Do not inherit to_terminal_init. */
631 /* Do not inherit to_terminal_inferior. */
632 /* Do not inherit to_terminal_ours_for_output. */
633 /* Do not inherit to_terminal_ours. */
634 /* Do not inherit to_terminal_save_ours. */
635 /* Do not inherit to_terminal_info. */
636 /* Do not inherit to_kill. */
637 /* Do not inherit to_load. */
638 /* Do no inherit to_create_inferior. */
639 /* Do not inherit to_post_startup_inferior. */
640 /* Do not inherit to_insert_fork_catchpoint. */
641 /* Do not inherit to_remove_fork_catchpoint. */
642 /* Do not inherit to_insert_vfork_catchpoint. */
643 /* Do not inherit to_remove_vfork_catchpoint. */
644 /* Do not inherit to_follow_fork. */
645 /* Do not inherit to_insert_exec_catchpoint. */
646 /* Do not inherit to_remove_exec_catchpoint. */
647 /* Do not inherit to_set_syscall_catchpoint. */
648 /* Do not inherit to_has_exited. */
649 /* Do not inherit to_mourn_inferior. */
650 INHERIT (to_can_run, t);
651 /* Do not inherit to_pass_signals. */
652 /* Do not inherit to_program_signals. */
653 /* Do not inherit to_thread_alive. */
654 /* Do not inherit to_find_new_threads. */
655 /* Do not inherit to_pid_to_str. */
656 /* Do not inherit to_extra_thread_info. */
657 /* Do not inherit to_thread_name. */
658 /* Do not inherit to_stop. */
659 /* Do not inherit to_xfer_partial. */
660 /* Do not inherit to_rcmd. */
661 /* Do not inherit to_pid_to_exec_file. */
662 /* Do not inherit to_log_command. */
663 INHERIT (to_stratum, t);
664 /* Do not inherit to_has_all_memory. */
665 /* Do not inherit to_has_memory. */
666 /* Do not inherit to_has_stack. */
667 /* Do not inherit to_has_registers. */
668 /* Do not inherit to_has_execution. */
669 INHERIT (to_has_thread_control, t);
670 /* Do not inherit to_can_async_p. */
671 /* Do not inherit to_is_async_p. */
672 /* Do not inherit to_async. */
673 /* Do not inherit to_find_memory_regions. */
674 /* Do not inherit to_make_corefile_notes. */
675 /* Do not inherit to_get_bookmark. */
676 /* Do not inherit to_goto_bookmark. */
677 /* Do not inherit to_get_thread_local_address. */
678 /* Do not inherit to_can_execute_reverse. */
679 /* Do not inherit to_execution_direction. */
680 /* Do not inherit to_thread_architecture. */
681 /* Do not inherit to_read_description. */
682 /* Do not inherit to_get_ada_task_ptid. */
683 /* Do not inherit to_search_memory. */
684 /* Do not inherit to_supports_multi_process. */
685 /* Do not inherit to_supports_enable_disable_tracepoint. */
686 /* Do not inherit to_supports_string_tracing. */
687 /* Do not inherit to_trace_init. */
688 /* Do not inherit to_download_tracepoint. */
689 /* Do not inherit to_can_download_tracepoint. */
690 /* Do not inherit to_download_trace_state_variable. */
691 /* Do not inherit to_enable_tracepoint. */
692 /* Do not inherit to_disable_tracepoint. */
693 /* Do not inherit to_trace_set_readonly_regions. */
694 /* Do not inherit to_trace_start. */
695 /* Do not inherit to_get_trace_status. */
696 /* Do not inherit to_get_tracepoint_status. */
697 /* Do not inherit to_trace_stop. */
698 /* Do not inherit to_trace_find. */
699 /* Do not inherit to_get_trace_state_variable_value. */
700 /* Do not inherit to_save_trace_data. */
701 /* Do not inherit to_upload_tracepoints. */
702 /* Do not inherit to_upload_trace_state_variables. */
703 /* Do not inherit to_get_raw_trace_data. */
704 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
705 /* Do not inherit to_set_disconnected_tracing. */
706 /* Do not inherit to_set_circular_trace_buffer. */
707 /* Do not inherit to_set_trace_buffer_size. */
708 /* Do not inherit to_set_trace_notes. */
709 /* Do not inherit to_get_tib_address. */
710 /* Do not inherit to_set_permissions. */
711 /* Do not inherit to_static_tracepoint_marker_at. */
712 /* Do not inherit to_static_tracepoint_markers_by_strid. */
713 /* Do not inherit to_traceframe_info. */
714 /* Do not inherit to_use_agent. */
715 /* Do not inherit to_can_use_agent. */
716 /* Do not inherit to_augmented_libraries_svr4_read. */
717 INHERIT (to_magic, t);
718 /* Do not inherit
719 to_supports_evaluation_of_breakpoint_conditions. */
720 /* Do not inherit to_can_run_breakpoint_commands. */
721 /* Do not inherit to_memory_map. */
722 /* Do not inherit to_flash_erase. */
723 /* Do not inherit to_flash_done. */
724 }
725 #undef INHERIT
726
727 /* Clean up a target struct so it no longer has any zero pointers in
728 it. Some entries are defaulted to a method that print an error,
729 others are hard-wired to a standard recursive default. */
730
731 #define de_fault(field, value) \
732 if (!current_target.field) \
733 current_target.field = value
734
735 de_fault (to_open,
736 (void (*) (char *, int))
737 tcomplain);
738 de_fault (to_close,
739 (void (*) (struct target_ops *))
740 target_ignore);
741 de_fault (deprecated_xfer_memory,
742 (int (*) (CORE_ADDR, gdb_byte *, int, int,
743 struct mem_attrib *, struct target_ops *))
744 nomemory);
745 de_fault (to_can_run,
746 (int (*) (struct target_ops *))
747 return_zero);
748 current_target.to_read_description = NULL;
749
750 #undef de_fault
751
752 /* Finally, position the target-stack beneath the squashed
753 "current_target". That way code looking for a non-inherited
754 target method can quickly and simply find it. */
755 current_target.beneath = target_stack;
756
757 if (targetdebug)
758 setup_target_debug ();
759 }
760
761 /* Push a new target type into the stack of the existing target accessors,
762 possibly superseding some of the existing accessors.
763
764 Rather than allow an empty stack, we always have the dummy target at
765 the bottom stratum, so we can call the function vectors without
766 checking them. */
767
768 void
769 push_target (struct target_ops *t)
770 {
771 struct target_ops **cur;
772
773 /* Check magic number. If wrong, it probably means someone changed
774 the struct definition, but not all the places that initialize one. */
775 if (t->to_magic != OPS_MAGIC)
776 {
777 fprintf_unfiltered (gdb_stderr,
778 "Magic number of %s target struct wrong\n",
779 t->to_shortname);
780 internal_error (__FILE__, __LINE__,
781 _("failed internal consistency check"));
782 }
783
784 /* Find the proper stratum to install this target in. */
785 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
786 {
787 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
788 break;
789 }
790
791 /* If there's already targets at this stratum, remove them. */
792 /* FIXME: cagney/2003-10-15: I think this should be popping all
793 targets to CUR, and not just those at this stratum level. */
794 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
795 {
796 /* There's already something at this stratum level. Close it,
797 and un-hook it from the stack. */
798 struct target_ops *tmp = (*cur);
799
800 (*cur) = (*cur)->beneath;
801 tmp->beneath = NULL;
802 target_close (tmp);
803 }
804
805 /* We have removed all targets in our stratum, now add the new one. */
806 t->beneath = (*cur);
807 (*cur) = t;
808
809 update_current_target ();
810 }
811
812 /* Remove a target_ops vector from the stack, wherever it may be.
813 Return how many times it was removed (0 or 1). */
814
815 int
816 unpush_target (struct target_ops *t)
817 {
818 struct target_ops **cur;
819 struct target_ops *tmp;
820
821 if (t->to_stratum == dummy_stratum)
822 internal_error (__FILE__, __LINE__,
823 _("Attempt to unpush the dummy target"));
824
825 /* Look for the specified target. Note that we assume that a target
826 can only occur once in the target stack. */
827
828 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
829 {
830 if ((*cur) == t)
831 break;
832 }
833
834 /* If we don't find target_ops, quit. Only open targets should be
835 closed. */
836 if ((*cur) == NULL)
837 return 0;
838
839 /* Unchain the target. */
840 tmp = (*cur);
841 (*cur) = (*cur)->beneath;
842 tmp->beneath = NULL;
843
844 update_current_target ();
845
846 /* Finally close the target. Note we do this after unchaining, so
847 any target method calls from within the target_close
848 implementation don't end up in T anymore. */
849 target_close (t);
850
851 return 1;
852 }
853
854 void
855 pop_all_targets_above (enum strata above_stratum)
856 {
857 while ((int) (current_target.to_stratum) > (int) above_stratum)
858 {
859 if (!unpush_target (target_stack))
860 {
861 fprintf_unfiltered (gdb_stderr,
862 "pop_all_targets couldn't find target %s\n",
863 target_stack->to_shortname);
864 internal_error (__FILE__, __LINE__,
865 _("failed internal consistency check"));
866 break;
867 }
868 }
869 }
870
871 void
872 pop_all_targets (void)
873 {
874 pop_all_targets_above (dummy_stratum);
875 }
876
877 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
878
879 int
880 target_is_pushed (struct target_ops *t)
881 {
882 struct target_ops **cur;
883
884 /* Check magic number. If wrong, it probably means someone changed
885 the struct definition, but not all the places that initialize one. */
886 if (t->to_magic != OPS_MAGIC)
887 {
888 fprintf_unfiltered (gdb_stderr,
889 "Magic number of %s target struct wrong\n",
890 t->to_shortname);
891 internal_error (__FILE__, __LINE__,
892 _("failed internal consistency check"));
893 }
894
895 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
896 if (*cur == t)
897 return 1;
898
899 return 0;
900 }
901
902 /* Using the objfile specified in OBJFILE, find the address for the
903 current thread's thread-local storage with offset OFFSET. */
904 CORE_ADDR
905 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
906 {
907 volatile CORE_ADDR addr = 0;
908 struct target_ops *target;
909
910 for (target = current_target.beneath;
911 target != NULL;
912 target = target->beneath)
913 {
914 if (target->to_get_thread_local_address != NULL)
915 break;
916 }
917
918 if (target != NULL
919 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
920 {
921 ptid_t ptid = inferior_ptid;
922 volatile struct gdb_exception ex;
923
924 TRY_CATCH (ex, RETURN_MASK_ALL)
925 {
926 CORE_ADDR lm_addr;
927
928 /* Fetch the load module address for this objfile. */
929 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
930 objfile);
931 /* If it's 0, throw the appropriate exception. */
932 if (lm_addr == 0)
933 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
934 _("TLS load module not found"));
935
936 addr = target->to_get_thread_local_address (target, ptid,
937 lm_addr, offset);
938 }
939 /* If an error occurred, print TLS related messages here. Otherwise,
940 throw the error to some higher catcher. */
941 if (ex.reason < 0)
942 {
943 int objfile_is_library = (objfile->flags & OBJF_SHARED);
944
945 switch (ex.error)
946 {
947 case TLS_NO_LIBRARY_SUPPORT_ERROR:
948 error (_("Cannot find thread-local variables "
949 "in this thread library."));
950 break;
951 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
952 if (objfile_is_library)
953 error (_("Cannot find shared library `%s' in dynamic"
954 " linker's load module list"), objfile_name (objfile));
955 else
956 error (_("Cannot find executable file `%s' in dynamic"
957 " linker's load module list"), objfile_name (objfile));
958 break;
959 case TLS_NOT_ALLOCATED_YET_ERROR:
960 if (objfile_is_library)
961 error (_("The inferior has not yet allocated storage for"
962 " thread-local variables in\n"
963 "the shared library `%s'\n"
964 "for %s"),
965 objfile_name (objfile), target_pid_to_str (ptid));
966 else
967 error (_("The inferior has not yet allocated storage for"
968 " thread-local variables in\n"
969 "the executable `%s'\n"
970 "for %s"),
971 objfile_name (objfile), target_pid_to_str (ptid));
972 break;
973 case TLS_GENERIC_ERROR:
974 if (objfile_is_library)
975 error (_("Cannot find thread-local storage for %s, "
976 "shared library %s:\n%s"),
977 target_pid_to_str (ptid),
978 objfile_name (objfile), ex.message);
979 else
980 error (_("Cannot find thread-local storage for %s, "
981 "executable file %s:\n%s"),
982 target_pid_to_str (ptid),
983 objfile_name (objfile), ex.message);
984 break;
985 default:
986 throw_exception (ex);
987 break;
988 }
989 }
990 }
991 /* It wouldn't be wrong here to try a gdbarch method, too; finding
992 TLS is an ABI-specific thing. But we don't do that yet. */
993 else
994 error (_("Cannot find thread-local variables on this target"));
995
996 return addr;
997 }
998
999 const char *
1000 target_xfer_status_to_string (enum target_xfer_status err)
1001 {
1002 #define CASE(X) case X: return #X
1003 switch (err)
1004 {
1005 CASE(TARGET_XFER_E_IO);
1006 CASE(TARGET_XFER_E_UNAVAILABLE);
1007 default:
1008 return "<unknown>";
1009 }
1010 #undef CASE
1011 };
1012
1013
1014 #undef MIN
1015 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1016
1017 /* target_read_string -- read a null terminated string, up to LEN bytes,
1018 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1019 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1020 is responsible for freeing it. Return the number of bytes successfully
1021 read. */
1022
1023 int
1024 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1025 {
1026 int tlen, offset, i;
1027 gdb_byte buf[4];
1028 int errcode = 0;
1029 char *buffer;
1030 int buffer_allocated;
1031 char *bufptr;
1032 unsigned int nbytes_read = 0;
1033
1034 gdb_assert (string);
1035
1036 /* Small for testing. */
1037 buffer_allocated = 4;
1038 buffer = xmalloc (buffer_allocated);
1039 bufptr = buffer;
1040
1041 while (len > 0)
1042 {
1043 tlen = MIN (len, 4 - (memaddr & 3));
1044 offset = memaddr & 3;
1045
1046 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1047 if (errcode != 0)
1048 {
1049 /* The transfer request might have crossed the boundary to an
1050 unallocated region of memory. Retry the transfer, requesting
1051 a single byte. */
1052 tlen = 1;
1053 offset = 0;
1054 errcode = target_read_memory (memaddr, buf, 1);
1055 if (errcode != 0)
1056 goto done;
1057 }
1058
1059 if (bufptr - buffer + tlen > buffer_allocated)
1060 {
1061 unsigned int bytes;
1062
1063 bytes = bufptr - buffer;
1064 buffer_allocated *= 2;
1065 buffer = xrealloc (buffer, buffer_allocated);
1066 bufptr = buffer + bytes;
1067 }
1068
1069 for (i = 0; i < tlen; i++)
1070 {
1071 *bufptr++ = buf[i + offset];
1072 if (buf[i + offset] == '\000')
1073 {
1074 nbytes_read += i + 1;
1075 goto done;
1076 }
1077 }
1078
1079 memaddr += tlen;
1080 len -= tlen;
1081 nbytes_read += tlen;
1082 }
1083 done:
1084 *string = buffer;
1085 if (errnop != NULL)
1086 *errnop = errcode;
1087 return nbytes_read;
1088 }
1089
1090 struct target_section_table *
1091 target_get_section_table (struct target_ops *target)
1092 {
1093 struct target_ops *t;
1094
1095 if (targetdebug)
1096 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1097
1098 for (t = target; t != NULL; t = t->beneath)
1099 if (t->to_get_section_table != NULL)
1100 return (*t->to_get_section_table) (t);
1101
1102 return NULL;
1103 }
1104
1105 /* Find a section containing ADDR. */
1106
1107 struct target_section *
1108 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1109 {
1110 struct target_section_table *table = target_get_section_table (target);
1111 struct target_section *secp;
1112
1113 if (table == NULL)
1114 return NULL;
1115
1116 for (secp = table->sections; secp < table->sections_end; secp++)
1117 {
1118 if (addr >= secp->addr && addr < secp->endaddr)
1119 return secp;
1120 }
1121 return NULL;
1122 }
1123
1124 /* Read memory from the live target, even if currently inspecting a
1125 traceframe. The return is the same as that of target_read. */
1126
1127 static enum target_xfer_status
1128 target_read_live_memory (enum target_object object,
1129 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1130 ULONGEST *xfered_len)
1131 {
1132 enum target_xfer_status ret;
1133 struct cleanup *cleanup;
1134
1135 /* Switch momentarily out of tfind mode so to access live memory.
1136 Note that this must not clear global state, such as the frame
1137 cache, which must still remain valid for the previous traceframe.
1138 We may be _building_ the frame cache at this point. */
1139 cleanup = make_cleanup_restore_traceframe_number ();
1140 set_traceframe_number (-1);
1141
1142 ret = target_xfer_partial (current_target.beneath, object, NULL,
1143 myaddr, NULL, memaddr, len, xfered_len);
1144
1145 do_cleanups (cleanup);
1146 return ret;
1147 }
1148
1149 /* Using the set of read-only target sections of OPS, read live
1150 read-only memory. Note that the actual reads start from the
1151 top-most target again.
1152
1153 For interface/parameters/return description see target.h,
1154 to_xfer_partial. */
1155
1156 static enum target_xfer_status
1157 memory_xfer_live_readonly_partial (struct target_ops *ops,
1158 enum target_object object,
1159 gdb_byte *readbuf, ULONGEST memaddr,
1160 ULONGEST len, ULONGEST *xfered_len)
1161 {
1162 struct target_section *secp;
1163 struct target_section_table *table;
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
1169 & SEC_READONLY))
1170 {
1171 struct target_section *p;
1172 ULONGEST memend = memaddr + len;
1173
1174 table = target_get_section_table (ops);
1175
1176 for (p = table->sections; p < table->sections_end; p++)
1177 {
1178 if (memaddr >= p->addr)
1179 {
1180 if (memend <= p->endaddr)
1181 {
1182 /* Entire transfer is within this section. */
1183 return target_read_live_memory (object, memaddr,
1184 readbuf, len, xfered_len);
1185 }
1186 else if (memaddr >= p->endaddr)
1187 {
1188 /* This section ends before the transfer starts. */
1189 continue;
1190 }
1191 else
1192 {
1193 /* This section overlaps the transfer. Just do half. */
1194 len = p->endaddr - memaddr;
1195 return target_read_live_memory (object, memaddr,
1196 readbuf, len, xfered_len);
1197 }
1198 }
1199 }
1200 }
1201
1202 return TARGET_XFER_EOF;
1203 }
1204
1205 /* Read memory from more than one valid target. A core file, for
1206 instance, could have some of memory but delegate other bits to
1207 the target below it. So, we must manually try all targets. */
1208
1209 static enum target_xfer_status
1210 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1211 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1212 ULONGEST *xfered_len)
1213 {
1214 enum target_xfer_status res;
1215
1216 do
1217 {
1218 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1219 readbuf, writebuf, memaddr, len,
1220 xfered_len);
1221 if (res == TARGET_XFER_OK)
1222 break;
1223
1224 /* Stop if the target reports that the memory is not available. */
1225 if (res == TARGET_XFER_E_UNAVAILABLE)
1226 break;
1227
1228 /* We want to continue past core files to executables, but not
1229 past a running target's memory. */
1230 if (ops->to_has_all_memory (ops))
1231 break;
1232
1233 ops = ops->beneath;
1234 }
1235 while (ops != NULL);
1236
1237 return res;
1238 }
1239
1240 /* Perform a partial memory transfer.
1241 For docs see target.h, to_xfer_partial. */
1242
1243 static enum target_xfer_status
1244 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1245 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1246 ULONGEST len, ULONGEST *xfered_len)
1247 {
1248 enum target_xfer_status res;
1249 int reg_len;
1250 struct mem_region *region;
1251 struct inferior *inf;
1252
1253 /* For accesses to unmapped overlay sections, read directly from
1254 files. Must do this first, as MEMADDR may need adjustment. */
1255 if (readbuf != NULL && overlay_debugging)
1256 {
1257 struct obj_section *section = find_pc_overlay (memaddr);
1258
1259 if (pc_in_unmapped_range (memaddr, section))
1260 {
1261 struct target_section_table *table
1262 = target_get_section_table (ops);
1263 const char *section_name = section->the_bfd_section->name;
1264
1265 memaddr = overlay_mapped_address (memaddr, section);
1266 return section_table_xfer_memory_partial (readbuf, writebuf,
1267 memaddr, len, xfered_len,
1268 table->sections,
1269 table->sections_end,
1270 section_name);
1271 }
1272 }
1273
1274 /* Try the executable files, if "trust-readonly-sections" is set. */
1275 if (readbuf != NULL && trust_readonly)
1276 {
1277 struct target_section *secp;
1278 struct target_section_table *table;
1279
1280 secp = target_section_by_addr (ops, memaddr);
1281 if (secp != NULL
1282 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1283 secp->the_bfd_section)
1284 & SEC_READONLY))
1285 {
1286 table = target_get_section_table (ops);
1287 return section_table_xfer_memory_partial (readbuf, writebuf,
1288 memaddr, len, xfered_len,
1289 table->sections,
1290 table->sections_end,
1291 NULL);
1292 }
1293 }
1294
1295 /* If reading unavailable memory in the context of traceframes, and
1296 this address falls within a read-only section, fallback to
1297 reading from live memory. */
1298 if (readbuf != NULL && get_traceframe_number () != -1)
1299 {
1300 VEC(mem_range_s) *available;
1301
1302 /* If we fail to get the set of available memory, then the
1303 target does not support querying traceframe info, and so we
1304 attempt reading from the traceframe anyway (assuming the
1305 target implements the old QTro packet then). */
1306 if (traceframe_available_memory (&available, memaddr, len))
1307 {
1308 struct cleanup *old_chain;
1309
1310 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1311
1312 if (VEC_empty (mem_range_s, available)
1313 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1314 {
1315 /* Don't read into the traceframe's available
1316 memory. */
1317 if (!VEC_empty (mem_range_s, available))
1318 {
1319 LONGEST oldlen = len;
1320
1321 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1322 gdb_assert (len <= oldlen);
1323 }
1324
1325 do_cleanups (old_chain);
1326
1327 /* This goes through the topmost target again. */
1328 res = memory_xfer_live_readonly_partial (ops, object,
1329 readbuf, memaddr,
1330 len, xfered_len);
1331 if (res == TARGET_XFER_OK)
1332 return TARGET_XFER_OK;
1333 else
1334 {
1335 /* No use trying further, we know some memory starting
1336 at MEMADDR isn't available. */
1337 *xfered_len = len;
1338 return TARGET_XFER_E_UNAVAILABLE;
1339 }
1340 }
1341
1342 /* Don't try to read more than how much is available, in
1343 case the target implements the deprecated QTro packet to
1344 cater for older GDBs (the target's knowledge of read-only
1345 sections may be outdated by now). */
1346 len = VEC_index (mem_range_s, available, 0)->length;
1347
1348 do_cleanups (old_chain);
1349 }
1350 }
1351
1352 /* Try GDB's internal data cache. */
1353 region = lookup_mem_region (memaddr);
1354 /* region->hi == 0 means there's no upper bound. */
1355 if (memaddr + len < region->hi || region->hi == 0)
1356 reg_len = len;
1357 else
1358 reg_len = region->hi - memaddr;
1359
1360 switch (region->attrib.mode)
1361 {
1362 case MEM_RO:
1363 if (writebuf != NULL)
1364 return TARGET_XFER_E_IO;
1365 break;
1366
1367 case MEM_WO:
1368 if (readbuf != NULL)
1369 return TARGET_XFER_E_IO;
1370 break;
1371
1372 case MEM_FLASH:
1373 /* We only support writing to flash during "load" for now. */
1374 if (writebuf != NULL)
1375 error (_("Writing to flash memory forbidden in this context"));
1376 break;
1377
1378 case MEM_NONE:
1379 return TARGET_XFER_E_IO;
1380 }
1381
1382 if (!ptid_equal (inferior_ptid, null_ptid))
1383 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1384 else
1385 inf = NULL;
1386
1387 if (inf != NULL
1388 /* The dcache reads whole cache lines; that doesn't play well
1389 with reading from a trace buffer, because reading outside of
1390 the collected memory range fails. */
1391 && get_traceframe_number () == -1
1392 && (region->attrib.cache
1393 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1394 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1395 {
1396 DCACHE *dcache = target_dcache_get_or_init ();
1397 int l;
1398
1399 if (readbuf != NULL)
1400 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1401 else
1402 /* FIXME drow/2006-08-09: If we're going to preserve const
1403 correctness dcache_xfer_memory should take readbuf and
1404 writebuf. */
1405 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1406 reg_len, 1);
1407 if (l <= 0)
1408 return TARGET_XFER_E_IO;
1409 else
1410 {
1411 *xfered_len = (ULONGEST) l;
1412 return TARGET_XFER_OK;
1413 }
1414 }
1415
1416 /* If none of those methods found the memory we wanted, fall back
1417 to a target partial transfer. Normally a single call to
1418 to_xfer_partial is enough; if it doesn't recognize an object
1419 it will call the to_xfer_partial of the next target down.
1420 But for memory this won't do. Memory is the only target
1421 object which can be read from more than one valid target.
1422 A core file, for instance, could have some of memory but
1423 delegate other bits to the target below it. So, we must
1424 manually try all targets. */
1425
1426 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1427 xfered_len);
1428
1429 /* Make sure the cache gets updated no matter what - if we are writing
1430 to the stack. Even if this write is not tagged as such, we still need
1431 to update the cache. */
1432
1433 if (res == TARGET_XFER_OK
1434 && inf != NULL
1435 && writebuf != NULL
1436 && target_dcache_init_p ()
1437 && !region->attrib.cache
1438 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1439 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1440 {
1441 DCACHE *dcache = target_dcache_get ();
1442
1443 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1444 }
1445
1446 /* If we still haven't got anything, return the last error. We
1447 give up. */
1448 return res;
1449 }
1450
1451 /* Perform a partial memory transfer. For docs see target.h,
1452 to_xfer_partial. */
1453
1454 static enum target_xfer_status
1455 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1456 gdb_byte *readbuf, const gdb_byte *writebuf,
1457 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1458 {
1459 enum target_xfer_status res;
1460
1461 /* Zero length requests are ok and require no work. */
1462 if (len == 0)
1463 return TARGET_XFER_EOF;
1464
1465 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1466 breakpoint insns, thus hiding out from higher layers whether
1467 there are software breakpoints inserted in the code stream. */
1468 if (readbuf != NULL)
1469 {
1470 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1471 xfered_len);
1472
1473 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1474 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1475 }
1476 else
1477 {
1478 void *buf;
1479 struct cleanup *old_chain;
1480
1481 /* A large write request is likely to be partially satisfied
1482 by memory_xfer_partial_1. We will continually malloc
1483 and free a copy of the entire write request for breakpoint
1484 shadow handling even though we only end up writing a small
1485 subset of it. Cap writes to 4KB to mitigate this. */
1486 len = min (4096, len);
1487
1488 buf = xmalloc (len);
1489 old_chain = make_cleanup (xfree, buf);
1490 memcpy (buf, writebuf, len);
1491
1492 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1493 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1494 xfered_len);
1495
1496 do_cleanups (old_chain);
1497 }
1498
1499 return res;
1500 }
1501
1502 static void
1503 restore_show_memory_breakpoints (void *arg)
1504 {
1505 show_memory_breakpoints = (uintptr_t) arg;
1506 }
1507
1508 struct cleanup *
1509 make_show_memory_breakpoints_cleanup (int show)
1510 {
1511 int current = show_memory_breakpoints;
1512
1513 show_memory_breakpoints = show;
1514 return make_cleanup (restore_show_memory_breakpoints,
1515 (void *) (uintptr_t) current);
1516 }
1517
1518 /* For docs see target.h, to_xfer_partial. */
1519
1520 enum target_xfer_status
1521 target_xfer_partial (struct target_ops *ops,
1522 enum target_object object, const char *annex,
1523 gdb_byte *readbuf, const gdb_byte *writebuf,
1524 ULONGEST offset, ULONGEST len,
1525 ULONGEST *xfered_len)
1526 {
1527 enum target_xfer_status retval;
1528
1529 gdb_assert (ops->to_xfer_partial != NULL);
1530
1531 /* Transfer is done when LEN is zero. */
1532 if (len == 0)
1533 return TARGET_XFER_EOF;
1534
1535 if (writebuf && !may_write_memory)
1536 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1537 core_addr_to_string_nz (offset), plongest (len));
1538
1539 *xfered_len = 0;
1540
1541 /* If this is a memory transfer, let the memory-specific code
1542 have a look at it instead. Memory transfers are more
1543 complicated. */
1544 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1545 || object == TARGET_OBJECT_CODE_MEMORY)
1546 retval = memory_xfer_partial (ops, object, readbuf,
1547 writebuf, offset, len, xfered_len);
1548 else if (object == TARGET_OBJECT_RAW_MEMORY)
1549 {
1550 /* Request the normal memory object from other layers. */
1551 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1552 xfered_len);
1553 }
1554 else
1555 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1556 writebuf, offset, len, xfered_len);
1557
1558 if (targetdebug)
1559 {
1560 const unsigned char *myaddr = NULL;
1561
1562 fprintf_unfiltered (gdb_stdlog,
1563 "%s:target_xfer_partial "
1564 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1565 ops->to_shortname,
1566 (int) object,
1567 (annex ? annex : "(null)"),
1568 host_address_to_string (readbuf),
1569 host_address_to_string (writebuf),
1570 core_addr_to_string_nz (offset),
1571 pulongest (len), retval,
1572 pulongest (*xfered_len));
1573
1574 if (readbuf)
1575 myaddr = readbuf;
1576 if (writebuf)
1577 myaddr = writebuf;
1578 if (retval == TARGET_XFER_OK && myaddr != NULL)
1579 {
1580 int i;
1581
1582 fputs_unfiltered (", bytes =", gdb_stdlog);
1583 for (i = 0; i < *xfered_len; i++)
1584 {
1585 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1586 {
1587 if (targetdebug < 2 && i > 0)
1588 {
1589 fprintf_unfiltered (gdb_stdlog, " ...");
1590 break;
1591 }
1592 fprintf_unfiltered (gdb_stdlog, "\n");
1593 }
1594
1595 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1596 }
1597 }
1598
1599 fputc_unfiltered ('\n', gdb_stdlog);
1600 }
1601
1602 /* Check implementations of to_xfer_partial update *XFERED_LEN
1603 properly. Do assertion after printing debug messages, so that we
1604 can find more clues on assertion failure from debugging messages. */
1605 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1606 gdb_assert (*xfered_len > 0);
1607
1608 return retval;
1609 }
1610
1611 /* Read LEN bytes of target memory at address MEMADDR, placing the
1612 results in GDB's memory at MYADDR. Returns either 0 for success or
1613 TARGET_XFER_E_IO if any error occurs.
1614
1615 If an error occurs, no guarantee is made about the contents of the data at
1616 MYADDR. In particular, the caller should not depend upon partial reads
1617 filling the buffer with good data. There is no way for the caller to know
1618 how much good data might have been transfered anyway. Callers that can
1619 deal with partial reads should call target_read (which will retry until
1620 it makes no progress, and then return how much was transferred). */
1621
1622 int
1623 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1624 {
1625 /* Dispatch to the topmost target, not the flattened current_target.
1626 Memory accesses check target->to_has_(all_)memory, and the
1627 flattened target doesn't inherit those. */
1628 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1629 myaddr, memaddr, len) == len)
1630 return 0;
1631 else
1632 return TARGET_XFER_E_IO;
1633 }
1634
1635 /* Like target_read_memory, but specify explicitly that this is a read
1636 from the target's raw memory. That is, this read bypasses the
1637 dcache, breakpoint shadowing, etc. */
1638
1639 int
1640 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1641 {
1642 /* See comment in target_read_memory about why the request starts at
1643 current_target.beneath. */
1644 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1645 myaddr, memaddr, len) == len)
1646 return 0;
1647 else
1648 return TARGET_XFER_E_IO;
1649 }
1650
1651 /* Like target_read_memory, but specify explicitly that this is a read from
1652 the target's stack. This may trigger different cache behavior. */
1653
1654 int
1655 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1656 {
1657 /* See comment in target_read_memory about why the request starts at
1658 current_target.beneath. */
1659 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1660 myaddr, memaddr, len) == len)
1661 return 0;
1662 else
1663 return TARGET_XFER_E_IO;
1664 }
1665
1666 /* Like target_read_memory, but specify explicitly that this is a read from
1667 the target's code. This may trigger different cache behavior. */
1668
1669 int
1670 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1671 {
1672 /* See comment in target_read_memory about why the request starts at
1673 current_target.beneath. */
1674 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1675 myaddr, memaddr, len) == len)
1676 return 0;
1677 else
1678 return TARGET_XFER_E_IO;
1679 }
1680
1681 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1682 Returns either 0 for success or TARGET_XFER_E_IO if any
1683 error occurs. If an error occurs, no guarantee is made about how
1684 much data got written. Callers that can deal with partial writes
1685 should call target_write. */
1686
1687 int
1688 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1689 {
1690 /* See comment in target_read_memory about why the request starts at
1691 current_target.beneath. */
1692 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1693 myaddr, memaddr, len) == len)
1694 return 0;
1695 else
1696 return TARGET_XFER_E_IO;
1697 }
1698
1699 /* Write LEN bytes from MYADDR to target raw memory at address
1700 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1701 if any error occurs. If an error occurs, no guarantee is made
1702 about how much data got written. Callers that can deal with
1703 partial writes should call target_write. */
1704
1705 int
1706 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1707 {
1708 /* See comment in target_read_memory about why the request starts at
1709 current_target.beneath. */
1710 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1711 myaddr, memaddr, len) == len)
1712 return 0;
1713 else
1714 return TARGET_XFER_E_IO;
1715 }
1716
1717 /* Fetch the target's memory map. */
1718
1719 VEC(mem_region_s) *
1720 target_memory_map (void)
1721 {
1722 VEC(mem_region_s) *result;
1723 struct mem_region *last_one, *this_one;
1724 int ix;
1725 struct target_ops *t;
1726
1727 if (targetdebug)
1728 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1729
1730 for (t = current_target.beneath; t != NULL; t = t->beneath)
1731 if (t->to_memory_map != NULL)
1732 break;
1733
1734 if (t == NULL)
1735 return NULL;
1736
1737 result = t->to_memory_map (t);
1738 if (result == NULL)
1739 return NULL;
1740
1741 qsort (VEC_address (mem_region_s, result),
1742 VEC_length (mem_region_s, result),
1743 sizeof (struct mem_region), mem_region_cmp);
1744
1745 /* Check that regions do not overlap. Simultaneously assign
1746 a numbering for the "mem" commands to use to refer to
1747 each region. */
1748 last_one = NULL;
1749 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1750 {
1751 this_one->number = ix;
1752
1753 if (last_one && last_one->hi > this_one->lo)
1754 {
1755 warning (_("Overlapping regions in memory map: ignoring"));
1756 VEC_free (mem_region_s, result);
1757 return NULL;
1758 }
1759 last_one = this_one;
1760 }
1761
1762 return result;
1763 }
1764
1765 void
1766 target_flash_erase (ULONGEST address, LONGEST length)
1767 {
1768 struct target_ops *t;
1769
1770 for (t = current_target.beneath; t != NULL; t = t->beneath)
1771 if (t->to_flash_erase != NULL)
1772 {
1773 if (targetdebug)
1774 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1775 hex_string (address), phex (length, 0));
1776 t->to_flash_erase (t, address, length);
1777 return;
1778 }
1779
1780 tcomplain ();
1781 }
1782
1783 void
1784 target_flash_done (void)
1785 {
1786 struct target_ops *t;
1787
1788 for (t = current_target.beneath; t != NULL; t = t->beneath)
1789 if (t->to_flash_done != NULL)
1790 {
1791 if (targetdebug)
1792 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1793 t->to_flash_done (t);
1794 return;
1795 }
1796
1797 tcomplain ();
1798 }
1799
1800 static void
1801 show_trust_readonly (struct ui_file *file, int from_tty,
1802 struct cmd_list_element *c, const char *value)
1803 {
1804 fprintf_filtered (file,
1805 _("Mode for reading from readonly sections is %s.\n"),
1806 value);
1807 }
1808
1809 /* More generic transfers. */
1810
1811 static enum target_xfer_status
1812 default_xfer_partial (struct target_ops *ops, enum target_object object,
1813 const char *annex, gdb_byte *readbuf,
1814 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1815 ULONGEST *xfered_len)
1816 {
1817 if (object == TARGET_OBJECT_MEMORY
1818 && ops->deprecated_xfer_memory != NULL)
1819 /* If available, fall back to the target's
1820 "deprecated_xfer_memory" method. */
1821 {
1822 int xfered = -1;
1823
1824 errno = 0;
1825 if (writebuf != NULL)
1826 {
1827 void *buffer = xmalloc (len);
1828 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1829
1830 memcpy (buffer, writebuf, len);
1831 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1832 1/*write*/, NULL, ops);
1833 do_cleanups (cleanup);
1834 }
1835 if (readbuf != NULL)
1836 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1837 0/*read*/, NULL, ops);
1838 if (xfered > 0)
1839 {
1840 *xfered_len = (ULONGEST) xfered;
1841 return TARGET_XFER_E_IO;
1842 }
1843 else if (xfered == 0 && errno == 0)
1844 /* "deprecated_xfer_memory" uses 0, cross checked against
1845 ERRNO as one indication of an error. */
1846 return TARGET_XFER_EOF;
1847 else
1848 return TARGET_XFER_E_IO;
1849 }
1850 else
1851 {
1852 gdb_assert (ops->beneath != NULL);
1853 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1854 readbuf, writebuf, offset, len,
1855 xfered_len);
1856 }
1857 }
1858
1859 /* Target vector read/write partial wrapper functions. */
1860
1861 static enum target_xfer_status
1862 target_read_partial (struct target_ops *ops,
1863 enum target_object object,
1864 const char *annex, gdb_byte *buf,
1865 ULONGEST offset, ULONGEST len,
1866 ULONGEST *xfered_len)
1867 {
1868 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1869 xfered_len);
1870 }
1871
1872 static enum target_xfer_status
1873 target_write_partial (struct target_ops *ops,
1874 enum target_object object,
1875 const char *annex, const gdb_byte *buf,
1876 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1877 {
1878 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1879 xfered_len);
1880 }
1881
1882 /* Wrappers to perform the full transfer. */
1883
1884 /* For docs on target_read see target.h. */
1885
1886 LONGEST
1887 target_read (struct target_ops *ops,
1888 enum target_object object,
1889 const char *annex, gdb_byte *buf,
1890 ULONGEST offset, LONGEST len)
1891 {
1892 LONGEST xfered = 0;
1893
1894 while (xfered < len)
1895 {
1896 ULONGEST xfered_len;
1897 enum target_xfer_status status;
1898
1899 status = target_read_partial (ops, object, annex,
1900 (gdb_byte *) buf + xfered,
1901 offset + xfered, len - xfered,
1902 &xfered_len);
1903
1904 /* Call an observer, notifying them of the xfer progress? */
1905 if (status == TARGET_XFER_EOF)
1906 return xfered;
1907 else if (status == TARGET_XFER_OK)
1908 {
1909 xfered += xfered_len;
1910 QUIT;
1911 }
1912 else
1913 return -1;
1914
1915 }
1916 return len;
1917 }
1918
1919 /* Assuming that the entire [begin, end) range of memory cannot be
1920 read, try to read whatever subrange is possible to read.
1921
1922 The function returns, in RESULT, either zero or one memory block.
1923 If there's a readable subrange at the beginning, it is completely
1924 read and returned. Any further readable subrange will not be read.
1925 Otherwise, if there's a readable subrange at the end, it will be
1926 completely read and returned. Any readable subranges before it
1927 (obviously, not starting at the beginning), will be ignored. In
1928 other cases -- either no readable subrange, or readable subrange(s)
1929 that is neither at the beginning, or end, nothing is returned.
1930
1931 The purpose of this function is to handle a read across a boundary
1932 of accessible memory in a case when memory map is not available.
1933 The above restrictions are fine for this case, but will give
1934 incorrect results if the memory is 'patchy'. However, supporting
1935 'patchy' memory would require trying to read every single byte,
1936 and it seems unacceptable solution. Explicit memory map is
1937 recommended for this case -- and target_read_memory_robust will
1938 take care of reading multiple ranges then. */
1939
1940 static void
1941 read_whatever_is_readable (struct target_ops *ops,
1942 ULONGEST begin, ULONGEST end,
1943 VEC(memory_read_result_s) **result)
1944 {
1945 gdb_byte *buf = xmalloc (end - begin);
1946 ULONGEST current_begin = begin;
1947 ULONGEST current_end = end;
1948 int forward;
1949 memory_read_result_s r;
1950 ULONGEST xfered_len;
1951
1952 /* If we previously failed to read 1 byte, nothing can be done here. */
1953 if (end - begin <= 1)
1954 {
1955 xfree (buf);
1956 return;
1957 }
1958
1959 /* Check that either first or the last byte is readable, and give up
1960 if not. This heuristic is meant to permit reading accessible memory
1961 at the boundary of accessible region. */
1962 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1963 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1964 {
1965 forward = 1;
1966 ++current_begin;
1967 }
1968 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1969 buf + (end-begin) - 1, end - 1, 1,
1970 &xfered_len) == TARGET_XFER_OK)
1971 {
1972 forward = 0;
1973 --current_end;
1974 }
1975 else
1976 {
1977 xfree (buf);
1978 return;
1979 }
1980
1981 /* Loop invariant is that the [current_begin, current_end) was previously
1982 found to be not readable as a whole.
1983
1984 Note loop condition -- if the range has 1 byte, we can't divide the range
1985 so there's no point trying further. */
1986 while (current_end - current_begin > 1)
1987 {
1988 ULONGEST first_half_begin, first_half_end;
1989 ULONGEST second_half_begin, second_half_end;
1990 LONGEST xfer;
1991 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1992
1993 if (forward)
1994 {
1995 first_half_begin = current_begin;
1996 first_half_end = middle;
1997 second_half_begin = middle;
1998 second_half_end = current_end;
1999 }
2000 else
2001 {
2002 first_half_begin = middle;
2003 first_half_end = current_end;
2004 second_half_begin = current_begin;
2005 second_half_end = middle;
2006 }
2007
2008 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2009 buf + (first_half_begin - begin),
2010 first_half_begin,
2011 first_half_end - first_half_begin);
2012
2013 if (xfer == first_half_end - first_half_begin)
2014 {
2015 /* This half reads up fine. So, the error must be in the
2016 other half. */
2017 current_begin = second_half_begin;
2018 current_end = second_half_end;
2019 }
2020 else
2021 {
2022 /* This half is not readable. Because we've tried one byte, we
2023 know some part of this half if actually redable. Go to the next
2024 iteration to divide again and try to read.
2025
2026 We don't handle the other half, because this function only tries
2027 to read a single readable subrange. */
2028 current_begin = first_half_begin;
2029 current_end = first_half_end;
2030 }
2031 }
2032
2033 if (forward)
2034 {
2035 /* The [begin, current_begin) range has been read. */
2036 r.begin = begin;
2037 r.end = current_begin;
2038 r.data = buf;
2039 }
2040 else
2041 {
2042 /* The [current_end, end) range has been read. */
2043 LONGEST rlen = end - current_end;
2044
2045 r.data = xmalloc (rlen);
2046 memcpy (r.data, buf + current_end - begin, rlen);
2047 r.begin = current_end;
2048 r.end = end;
2049 xfree (buf);
2050 }
2051 VEC_safe_push(memory_read_result_s, (*result), &r);
2052 }
2053
2054 void
2055 free_memory_read_result_vector (void *x)
2056 {
2057 VEC(memory_read_result_s) *v = x;
2058 memory_read_result_s *current;
2059 int ix;
2060
2061 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2062 {
2063 xfree (current->data);
2064 }
2065 VEC_free (memory_read_result_s, v);
2066 }
2067
2068 VEC(memory_read_result_s) *
2069 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2070 {
2071 VEC(memory_read_result_s) *result = 0;
2072
2073 LONGEST xfered = 0;
2074 while (xfered < len)
2075 {
2076 struct mem_region *region = lookup_mem_region (offset + xfered);
2077 LONGEST rlen;
2078
2079 /* If there is no explicit region, a fake one should be created. */
2080 gdb_assert (region);
2081
2082 if (region->hi == 0)
2083 rlen = len - xfered;
2084 else
2085 rlen = region->hi - offset;
2086
2087 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2088 {
2089 /* Cannot read this region. Note that we can end up here only
2090 if the region is explicitly marked inaccessible, or
2091 'inaccessible-by-default' is in effect. */
2092 xfered += rlen;
2093 }
2094 else
2095 {
2096 LONGEST to_read = min (len - xfered, rlen);
2097 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2098
2099 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2100 (gdb_byte *) buffer,
2101 offset + xfered, to_read);
2102 /* Call an observer, notifying them of the xfer progress? */
2103 if (xfer <= 0)
2104 {
2105 /* Got an error reading full chunk. See if maybe we can read
2106 some subrange. */
2107 xfree (buffer);
2108 read_whatever_is_readable (ops, offset + xfered,
2109 offset + xfered + to_read, &result);
2110 xfered += to_read;
2111 }
2112 else
2113 {
2114 struct memory_read_result r;
2115 r.data = buffer;
2116 r.begin = offset + xfered;
2117 r.end = r.begin + xfer;
2118 VEC_safe_push (memory_read_result_s, result, &r);
2119 xfered += xfer;
2120 }
2121 QUIT;
2122 }
2123 }
2124 return result;
2125 }
2126
2127
2128 /* An alternative to target_write with progress callbacks. */
2129
2130 LONGEST
2131 target_write_with_progress (struct target_ops *ops,
2132 enum target_object object,
2133 const char *annex, const gdb_byte *buf,
2134 ULONGEST offset, LONGEST len,
2135 void (*progress) (ULONGEST, void *), void *baton)
2136 {
2137 LONGEST xfered = 0;
2138
2139 /* Give the progress callback a chance to set up. */
2140 if (progress)
2141 (*progress) (0, baton);
2142
2143 while (xfered < len)
2144 {
2145 ULONGEST xfered_len;
2146 enum target_xfer_status status;
2147
2148 status = target_write_partial (ops, object, annex,
2149 (gdb_byte *) buf + xfered,
2150 offset + xfered, len - xfered,
2151 &xfered_len);
2152
2153 if (status == TARGET_XFER_EOF)
2154 return xfered;
2155 if (TARGET_XFER_STATUS_ERROR_P (status))
2156 return -1;
2157
2158 gdb_assert (status == TARGET_XFER_OK);
2159 if (progress)
2160 (*progress) (xfered_len, baton);
2161
2162 xfered += xfered_len;
2163 QUIT;
2164 }
2165 return len;
2166 }
2167
2168 /* For docs on target_write see target.h. */
2169
2170 LONGEST
2171 target_write (struct target_ops *ops,
2172 enum target_object object,
2173 const char *annex, const gdb_byte *buf,
2174 ULONGEST offset, LONGEST len)
2175 {
2176 return target_write_with_progress (ops, object, annex, buf, offset, len,
2177 NULL, NULL);
2178 }
2179
2180 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2181 the size of the transferred data. PADDING additional bytes are
2182 available in *BUF_P. This is a helper function for
2183 target_read_alloc; see the declaration of that function for more
2184 information. */
2185
2186 static LONGEST
2187 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2188 const char *annex, gdb_byte **buf_p, int padding)
2189 {
2190 size_t buf_alloc, buf_pos;
2191 gdb_byte *buf;
2192
2193 /* This function does not have a length parameter; it reads the
2194 entire OBJECT). Also, it doesn't support objects fetched partly
2195 from one target and partly from another (in a different stratum,
2196 e.g. a core file and an executable). Both reasons make it
2197 unsuitable for reading memory. */
2198 gdb_assert (object != TARGET_OBJECT_MEMORY);
2199
2200 /* Start by reading up to 4K at a time. The target will throttle
2201 this number down if necessary. */
2202 buf_alloc = 4096;
2203 buf = xmalloc (buf_alloc);
2204 buf_pos = 0;
2205 while (1)
2206 {
2207 ULONGEST xfered_len;
2208 enum target_xfer_status status;
2209
2210 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2211 buf_pos, buf_alloc - buf_pos - padding,
2212 &xfered_len);
2213
2214 if (status == TARGET_XFER_EOF)
2215 {
2216 /* Read all there was. */
2217 if (buf_pos == 0)
2218 xfree (buf);
2219 else
2220 *buf_p = buf;
2221 return buf_pos;
2222 }
2223 else if (status != TARGET_XFER_OK)
2224 {
2225 /* An error occurred. */
2226 xfree (buf);
2227 return TARGET_XFER_E_IO;
2228 }
2229
2230 buf_pos += xfered_len;
2231
2232 /* If the buffer is filling up, expand it. */
2233 if (buf_alloc < buf_pos * 2)
2234 {
2235 buf_alloc *= 2;
2236 buf = xrealloc (buf, buf_alloc);
2237 }
2238
2239 QUIT;
2240 }
2241 }
2242
2243 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2244 the size of the transferred data. See the declaration in "target.h"
2245 function for more information about the return value. */
2246
2247 LONGEST
2248 target_read_alloc (struct target_ops *ops, enum target_object object,
2249 const char *annex, gdb_byte **buf_p)
2250 {
2251 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2252 }
2253
2254 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2255 returned as a string, allocated using xmalloc. If an error occurs
2256 or the transfer is unsupported, NULL is returned. Empty objects
2257 are returned as allocated but empty strings. A warning is issued
2258 if the result contains any embedded NUL bytes. */
2259
2260 char *
2261 target_read_stralloc (struct target_ops *ops, enum target_object object,
2262 const char *annex)
2263 {
2264 gdb_byte *buffer;
2265 char *bufstr;
2266 LONGEST i, transferred;
2267
2268 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2269 bufstr = (char *) buffer;
2270
2271 if (transferred < 0)
2272 return NULL;
2273
2274 if (transferred == 0)
2275 return xstrdup ("");
2276
2277 bufstr[transferred] = 0;
2278
2279 /* Check for embedded NUL bytes; but allow trailing NULs. */
2280 for (i = strlen (bufstr); i < transferred; i++)
2281 if (bufstr[i] != 0)
2282 {
2283 warning (_("target object %d, annex %s, "
2284 "contained unexpected null characters"),
2285 (int) object, annex ? annex : "(none)");
2286 break;
2287 }
2288
2289 return bufstr;
2290 }
2291
2292 /* Memory transfer methods. */
2293
2294 void
2295 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2296 LONGEST len)
2297 {
2298 /* This method is used to read from an alternate, non-current
2299 target. This read must bypass the overlay support (as symbols
2300 don't match this target), and GDB's internal cache (wrong cache
2301 for this target). */
2302 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2303 != len)
2304 memory_error (TARGET_XFER_E_IO, addr);
2305 }
2306
2307 ULONGEST
2308 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2309 int len, enum bfd_endian byte_order)
2310 {
2311 gdb_byte buf[sizeof (ULONGEST)];
2312
2313 gdb_assert (len <= sizeof (buf));
2314 get_target_memory (ops, addr, buf, len);
2315 return extract_unsigned_integer (buf, len, byte_order);
2316 }
2317
2318 /* See target.h. */
2319
2320 int
2321 target_insert_breakpoint (struct gdbarch *gdbarch,
2322 struct bp_target_info *bp_tgt)
2323 {
2324 if (!may_insert_breakpoints)
2325 {
2326 warning (_("May not insert breakpoints"));
2327 return 1;
2328 }
2329
2330 return current_target.to_insert_breakpoint (&current_target,
2331 gdbarch, bp_tgt);
2332 }
2333
2334 /* See target.h. */
2335
2336 int
2337 target_remove_breakpoint (struct gdbarch *gdbarch,
2338 struct bp_target_info *bp_tgt)
2339 {
2340 /* This is kind of a weird case to handle, but the permission might
2341 have been changed after breakpoints were inserted - in which case
2342 we should just take the user literally and assume that any
2343 breakpoints should be left in place. */
2344 if (!may_insert_breakpoints)
2345 {
2346 warning (_("May not remove breakpoints"));
2347 return 1;
2348 }
2349
2350 return current_target.to_remove_breakpoint (&current_target,
2351 gdbarch, bp_tgt);
2352 }
2353
2354 static void
2355 target_info (char *args, int from_tty)
2356 {
2357 struct target_ops *t;
2358 int has_all_mem = 0;
2359
2360 if (symfile_objfile != NULL)
2361 printf_unfiltered (_("Symbols from \"%s\".\n"),
2362 objfile_name (symfile_objfile));
2363
2364 for (t = target_stack; t != NULL; t = t->beneath)
2365 {
2366 if (!(*t->to_has_memory) (t))
2367 continue;
2368
2369 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2370 continue;
2371 if (has_all_mem)
2372 printf_unfiltered (_("\tWhile running this, "
2373 "GDB does not access memory from...\n"));
2374 printf_unfiltered ("%s:\n", t->to_longname);
2375 (t->to_files_info) (t);
2376 has_all_mem = (*t->to_has_all_memory) (t);
2377 }
2378 }
2379
2380 /* This function is called before any new inferior is created, e.g.
2381 by running a program, attaching, or connecting to a target.
2382 It cleans up any state from previous invocations which might
2383 change between runs. This is a subset of what target_preopen
2384 resets (things which might change between targets). */
2385
2386 void
2387 target_pre_inferior (int from_tty)
2388 {
2389 /* Clear out solib state. Otherwise the solib state of the previous
2390 inferior might have survived and is entirely wrong for the new
2391 target. This has been observed on GNU/Linux using glibc 2.3. How
2392 to reproduce:
2393
2394 bash$ ./foo&
2395 [1] 4711
2396 bash$ ./foo&
2397 [1] 4712
2398 bash$ gdb ./foo
2399 [...]
2400 (gdb) attach 4711
2401 (gdb) detach
2402 (gdb) attach 4712
2403 Cannot access memory at address 0xdeadbeef
2404 */
2405
2406 /* In some OSs, the shared library list is the same/global/shared
2407 across inferiors. If code is shared between processes, so are
2408 memory regions and features. */
2409 if (!gdbarch_has_global_solist (target_gdbarch ()))
2410 {
2411 no_shared_libraries (NULL, from_tty);
2412
2413 invalidate_target_mem_regions ();
2414
2415 target_clear_description ();
2416 }
2417
2418 agent_capability_invalidate ();
2419 }
2420
2421 /* Callback for iterate_over_inferiors. Gets rid of the given
2422 inferior. */
2423
2424 static int
2425 dispose_inferior (struct inferior *inf, void *args)
2426 {
2427 struct thread_info *thread;
2428
2429 thread = any_thread_of_process (inf->pid);
2430 if (thread)
2431 {
2432 switch_to_thread (thread->ptid);
2433
2434 /* Core inferiors actually should be detached, not killed. */
2435 if (target_has_execution)
2436 target_kill ();
2437 else
2438 target_detach (NULL, 0);
2439 }
2440
2441 return 0;
2442 }
2443
2444 /* This is to be called by the open routine before it does
2445 anything. */
2446
2447 void
2448 target_preopen (int from_tty)
2449 {
2450 dont_repeat ();
2451
2452 if (have_inferiors ())
2453 {
2454 if (!from_tty
2455 || !have_live_inferiors ()
2456 || query (_("A program is being debugged already. Kill it? ")))
2457 iterate_over_inferiors (dispose_inferior, NULL);
2458 else
2459 error (_("Program not killed."));
2460 }
2461
2462 /* Calling target_kill may remove the target from the stack. But if
2463 it doesn't (which seems like a win for UDI), remove it now. */
2464 /* Leave the exec target, though. The user may be switching from a
2465 live process to a core of the same program. */
2466 pop_all_targets_above (file_stratum);
2467
2468 target_pre_inferior (from_tty);
2469 }
2470
2471 /* Detach a target after doing deferred register stores. */
2472
2473 void
2474 target_detach (const char *args, int from_tty)
2475 {
2476 struct target_ops* t;
2477
2478 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2479 /* Don't remove global breakpoints here. They're removed on
2480 disconnection from the target. */
2481 ;
2482 else
2483 /* If we're in breakpoints-always-inserted mode, have to remove
2484 them before detaching. */
2485 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2486
2487 prepare_for_detach ();
2488
2489 current_target.to_detach (&current_target, args, from_tty);
2490 if (targetdebug)
2491 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2492 args, from_tty);
2493 }
2494
2495 void
2496 target_disconnect (char *args, int from_tty)
2497 {
2498 struct target_ops *t;
2499
2500 /* If we're in breakpoints-always-inserted mode or if breakpoints
2501 are global across processes, we have to remove them before
2502 disconnecting. */
2503 remove_breakpoints ();
2504
2505 for (t = current_target.beneath; t != NULL; t = t->beneath)
2506 if (t->to_disconnect != NULL)
2507 {
2508 if (targetdebug)
2509 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2510 args, from_tty);
2511 t->to_disconnect (t, args, from_tty);
2512 return;
2513 }
2514
2515 tcomplain ();
2516 }
2517
2518 ptid_t
2519 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2520 {
2521 struct target_ops *t;
2522 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2523 status, options);
2524
2525 if (targetdebug)
2526 {
2527 char *status_string;
2528 char *options_string;
2529
2530 status_string = target_waitstatus_to_string (status);
2531 options_string = target_options_to_string (options);
2532 fprintf_unfiltered (gdb_stdlog,
2533 "target_wait (%d, status, options={%s})"
2534 " = %d, %s\n",
2535 ptid_get_pid (ptid), options_string,
2536 ptid_get_pid (retval), status_string);
2537 xfree (status_string);
2538 xfree (options_string);
2539 }
2540
2541 return retval;
2542 }
2543
2544 char *
2545 target_pid_to_str (ptid_t ptid)
2546 {
2547 struct target_ops *t;
2548
2549 for (t = current_target.beneath; t != NULL; t = t->beneath)
2550 {
2551 if (t->to_pid_to_str != NULL)
2552 return (*t->to_pid_to_str) (t, ptid);
2553 }
2554
2555 return normal_pid_to_str (ptid);
2556 }
2557
2558 char *
2559 target_thread_name (struct thread_info *info)
2560 {
2561 return current_target.to_thread_name (&current_target, info);
2562 }
2563
2564 void
2565 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2566 {
2567 struct target_ops *t;
2568
2569 target_dcache_invalidate ();
2570
2571 current_target.to_resume (&current_target, ptid, step, signal);
2572 if (targetdebug)
2573 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2574 ptid_get_pid (ptid),
2575 step ? "step" : "continue",
2576 gdb_signal_to_name (signal));
2577
2578 registers_changed_ptid (ptid);
2579 set_executing (ptid, 1);
2580 set_running (ptid, 1);
2581 clear_inline_frame_state (ptid);
2582 }
2583
2584 void
2585 target_pass_signals (int numsigs, unsigned char *pass_signals)
2586 {
2587 struct target_ops *t;
2588
2589 for (t = current_target.beneath; t != NULL; t = t->beneath)
2590 {
2591 if (t->to_pass_signals != NULL)
2592 {
2593 if (targetdebug)
2594 {
2595 int i;
2596
2597 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2598 numsigs);
2599
2600 for (i = 0; i < numsigs; i++)
2601 if (pass_signals[i])
2602 fprintf_unfiltered (gdb_stdlog, " %s",
2603 gdb_signal_to_name (i));
2604
2605 fprintf_unfiltered (gdb_stdlog, " })\n");
2606 }
2607
2608 (*t->to_pass_signals) (t, numsigs, pass_signals);
2609 return;
2610 }
2611 }
2612 }
2613
2614 void
2615 target_program_signals (int numsigs, unsigned char *program_signals)
2616 {
2617 struct target_ops *t;
2618
2619 for (t = current_target.beneath; t != NULL; t = t->beneath)
2620 {
2621 if (t->to_program_signals != NULL)
2622 {
2623 if (targetdebug)
2624 {
2625 int i;
2626
2627 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2628 numsigs);
2629
2630 for (i = 0; i < numsigs; i++)
2631 if (program_signals[i])
2632 fprintf_unfiltered (gdb_stdlog, " %s",
2633 gdb_signal_to_name (i));
2634
2635 fprintf_unfiltered (gdb_stdlog, " })\n");
2636 }
2637
2638 (*t->to_program_signals) (t, numsigs, program_signals);
2639 return;
2640 }
2641 }
2642 }
2643
2644 /* Look through the list of possible targets for a target that can
2645 follow forks. */
2646
2647 int
2648 target_follow_fork (int follow_child, int detach_fork)
2649 {
2650 struct target_ops *t;
2651
2652 for (t = current_target.beneath; t != NULL; t = t->beneath)
2653 {
2654 if (t->to_follow_fork != NULL)
2655 {
2656 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2657
2658 if (targetdebug)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "target_follow_fork (%d, %d) = %d\n",
2661 follow_child, detach_fork, retval);
2662 return retval;
2663 }
2664 }
2665
2666 /* Some target returned a fork event, but did not know how to follow it. */
2667 internal_error (__FILE__, __LINE__,
2668 _("could not find a target to follow fork"));
2669 }
2670
2671 void
2672 target_mourn_inferior (void)
2673 {
2674 struct target_ops *t;
2675
2676 for (t = current_target.beneath; t != NULL; t = t->beneath)
2677 {
2678 if (t->to_mourn_inferior != NULL)
2679 {
2680 t->to_mourn_inferior (t);
2681 if (targetdebug)
2682 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2683
2684 /* We no longer need to keep handles on any of the object files.
2685 Make sure to release them to avoid unnecessarily locking any
2686 of them while we're not actually debugging. */
2687 bfd_cache_close_all ();
2688
2689 return;
2690 }
2691 }
2692
2693 internal_error (__FILE__, __LINE__,
2694 _("could not find a target to follow mourn inferior"));
2695 }
2696
2697 /* Look for a target which can describe architectural features, starting
2698 from TARGET. If we find one, return its description. */
2699
2700 const struct target_desc *
2701 target_read_description (struct target_ops *target)
2702 {
2703 struct target_ops *t;
2704
2705 for (t = target; t != NULL; t = t->beneath)
2706 if (t->to_read_description != NULL)
2707 {
2708 const struct target_desc *tdesc;
2709
2710 tdesc = t->to_read_description (t);
2711 if (tdesc)
2712 return tdesc;
2713 }
2714
2715 return NULL;
2716 }
2717
2718 /* The default implementation of to_search_memory.
2719 This implements a basic search of memory, reading target memory and
2720 performing the search here (as opposed to performing the search in on the
2721 target side with, for example, gdbserver). */
2722
2723 int
2724 simple_search_memory (struct target_ops *ops,
2725 CORE_ADDR start_addr, ULONGEST search_space_len,
2726 const gdb_byte *pattern, ULONGEST pattern_len,
2727 CORE_ADDR *found_addrp)
2728 {
2729 /* NOTE: also defined in find.c testcase. */
2730 #define SEARCH_CHUNK_SIZE 16000
2731 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2732 /* Buffer to hold memory contents for searching. */
2733 gdb_byte *search_buf;
2734 unsigned search_buf_size;
2735 struct cleanup *old_cleanups;
2736
2737 search_buf_size = chunk_size + pattern_len - 1;
2738
2739 /* No point in trying to allocate a buffer larger than the search space. */
2740 if (search_space_len < search_buf_size)
2741 search_buf_size = search_space_len;
2742
2743 search_buf = malloc (search_buf_size);
2744 if (search_buf == NULL)
2745 error (_("Unable to allocate memory to perform the search."));
2746 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2747
2748 /* Prime the search buffer. */
2749
2750 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2751 search_buf, start_addr, search_buf_size) != search_buf_size)
2752 {
2753 warning (_("Unable to access %s bytes of target "
2754 "memory at %s, halting search."),
2755 pulongest (search_buf_size), hex_string (start_addr));
2756 do_cleanups (old_cleanups);
2757 return -1;
2758 }
2759
2760 /* Perform the search.
2761
2762 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2763 When we've scanned N bytes we copy the trailing bytes to the start and
2764 read in another N bytes. */
2765
2766 while (search_space_len >= pattern_len)
2767 {
2768 gdb_byte *found_ptr;
2769 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2770
2771 found_ptr = memmem (search_buf, nr_search_bytes,
2772 pattern, pattern_len);
2773
2774 if (found_ptr != NULL)
2775 {
2776 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2777
2778 *found_addrp = found_addr;
2779 do_cleanups (old_cleanups);
2780 return 1;
2781 }
2782
2783 /* Not found in this chunk, skip to next chunk. */
2784
2785 /* Don't let search_space_len wrap here, it's unsigned. */
2786 if (search_space_len >= chunk_size)
2787 search_space_len -= chunk_size;
2788 else
2789 search_space_len = 0;
2790
2791 if (search_space_len >= pattern_len)
2792 {
2793 unsigned keep_len = search_buf_size - chunk_size;
2794 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2795 int nr_to_read;
2796
2797 /* Copy the trailing part of the previous iteration to the front
2798 of the buffer for the next iteration. */
2799 gdb_assert (keep_len == pattern_len - 1);
2800 memcpy (search_buf, search_buf + chunk_size, keep_len);
2801
2802 nr_to_read = min (search_space_len - keep_len, chunk_size);
2803
2804 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2805 search_buf + keep_len, read_addr,
2806 nr_to_read) != nr_to_read)
2807 {
2808 warning (_("Unable to access %s bytes of target "
2809 "memory at %s, halting search."),
2810 plongest (nr_to_read),
2811 hex_string (read_addr));
2812 do_cleanups (old_cleanups);
2813 return -1;
2814 }
2815
2816 start_addr += chunk_size;
2817 }
2818 }
2819
2820 /* Not found. */
2821
2822 do_cleanups (old_cleanups);
2823 return 0;
2824 }
2825
2826 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2827 sequence of bytes in PATTERN with length PATTERN_LEN.
2828
2829 The result is 1 if found, 0 if not found, and -1 if there was an error
2830 requiring halting of the search (e.g. memory read error).
2831 If the pattern is found the address is recorded in FOUND_ADDRP. */
2832
2833 int
2834 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2835 const gdb_byte *pattern, ULONGEST pattern_len,
2836 CORE_ADDR *found_addrp)
2837 {
2838 struct target_ops *t;
2839 int found;
2840
2841 /* We don't use INHERIT to set current_target.to_search_memory,
2842 so we have to scan the target stack and handle targetdebug
2843 ourselves. */
2844
2845 if (targetdebug)
2846 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2847 hex_string (start_addr));
2848
2849 for (t = current_target.beneath; t != NULL; t = t->beneath)
2850 if (t->to_search_memory != NULL)
2851 break;
2852
2853 if (t != NULL)
2854 {
2855 found = t->to_search_memory (t, start_addr, search_space_len,
2856 pattern, pattern_len, found_addrp);
2857 }
2858 else
2859 {
2860 /* If a special version of to_search_memory isn't available, use the
2861 simple version. */
2862 found = simple_search_memory (current_target.beneath,
2863 start_addr, search_space_len,
2864 pattern, pattern_len, found_addrp);
2865 }
2866
2867 if (targetdebug)
2868 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2869
2870 return found;
2871 }
2872
2873 /* Look through the currently pushed targets. If none of them will
2874 be able to restart the currently running process, issue an error
2875 message. */
2876
2877 void
2878 target_require_runnable (void)
2879 {
2880 struct target_ops *t;
2881
2882 for (t = target_stack; t != NULL; t = t->beneath)
2883 {
2884 /* If this target knows how to create a new program, then
2885 assume we will still be able to after killing the current
2886 one. Either killing and mourning will not pop T, or else
2887 find_default_run_target will find it again. */
2888 if (t->to_create_inferior != NULL)
2889 return;
2890
2891 /* Do not worry about thread_stratum targets that can not
2892 create inferiors. Assume they will be pushed again if
2893 necessary, and continue to the process_stratum. */
2894 if (t->to_stratum == thread_stratum
2895 || t->to_stratum == arch_stratum)
2896 continue;
2897
2898 error (_("The \"%s\" target does not support \"run\". "
2899 "Try \"help target\" or \"continue\"."),
2900 t->to_shortname);
2901 }
2902
2903 /* This function is only called if the target is running. In that
2904 case there should have been a process_stratum target and it
2905 should either know how to create inferiors, or not... */
2906 internal_error (__FILE__, __LINE__, _("No targets found"));
2907 }
2908
2909 /* Look through the list of possible targets for a target that can
2910 execute a run or attach command without any other data. This is
2911 used to locate the default process stratum.
2912
2913 If DO_MESG is not NULL, the result is always valid (error() is
2914 called for errors); else, return NULL on error. */
2915
2916 static struct target_ops *
2917 find_default_run_target (char *do_mesg)
2918 {
2919 struct target_ops **t;
2920 struct target_ops *runable = NULL;
2921 int count;
2922
2923 count = 0;
2924
2925 for (t = target_structs; t < target_structs + target_struct_size;
2926 ++t)
2927 {
2928 if ((*t)->to_can_run && target_can_run (*t))
2929 {
2930 runable = *t;
2931 ++count;
2932 }
2933 }
2934
2935 if (count != 1)
2936 {
2937 if (do_mesg)
2938 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2939 else
2940 return NULL;
2941 }
2942
2943 return runable;
2944 }
2945
2946 void
2947 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2948 {
2949 struct target_ops *t;
2950
2951 t = find_default_run_target ("attach");
2952 (t->to_attach) (t, args, from_tty);
2953 return;
2954 }
2955
2956 void
2957 find_default_create_inferior (struct target_ops *ops,
2958 char *exec_file, char *allargs, char **env,
2959 int from_tty)
2960 {
2961 struct target_ops *t;
2962
2963 t = find_default_run_target ("run");
2964 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2965 return;
2966 }
2967
2968 static int
2969 find_default_can_async_p (struct target_ops *ignore)
2970 {
2971 struct target_ops *t;
2972
2973 /* This may be called before the target is pushed on the stack;
2974 look for the default process stratum. If there's none, gdb isn't
2975 configured with a native debugger, and target remote isn't
2976 connected yet. */
2977 t = find_default_run_target (NULL);
2978 if (t && t->to_can_async_p != delegate_can_async_p)
2979 return (t->to_can_async_p) (t);
2980 return 0;
2981 }
2982
2983 static int
2984 find_default_is_async_p (struct target_ops *ignore)
2985 {
2986 struct target_ops *t;
2987
2988 /* This may be called before the target is pushed on the stack;
2989 look for the default process stratum. If there's none, gdb isn't
2990 configured with a native debugger, and target remote isn't
2991 connected yet. */
2992 t = find_default_run_target (NULL);
2993 if (t && t->to_is_async_p != delegate_is_async_p)
2994 return (t->to_is_async_p) (t);
2995 return 0;
2996 }
2997
2998 static int
2999 find_default_supports_non_stop (struct target_ops *self)
3000 {
3001 struct target_ops *t;
3002
3003 t = find_default_run_target (NULL);
3004 if (t && t->to_supports_non_stop)
3005 return (t->to_supports_non_stop) (t);
3006 return 0;
3007 }
3008
3009 int
3010 target_supports_non_stop (void)
3011 {
3012 struct target_ops *t;
3013
3014 for (t = &current_target; t != NULL; t = t->beneath)
3015 if (t->to_supports_non_stop)
3016 return t->to_supports_non_stop (t);
3017
3018 return 0;
3019 }
3020
3021 /* Implement the "info proc" command. */
3022
3023 int
3024 target_info_proc (char *args, enum info_proc_what what)
3025 {
3026 struct target_ops *t;
3027
3028 /* If we're already connected to something that can get us OS
3029 related data, use it. Otherwise, try using the native
3030 target. */
3031 if (current_target.to_stratum >= process_stratum)
3032 t = current_target.beneath;
3033 else
3034 t = find_default_run_target (NULL);
3035
3036 for (; t != NULL; t = t->beneath)
3037 {
3038 if (t->to_info_proc != NULL)
3039 {
3040 t->to_info_proc (t, args, what);
3041
3042 if (targetdebug)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "target_info_proc (\"%s\", %d)\n", args, what);
3045
3046 return 1;
3047 }
3048 }
3049
3050 return 0;
3051 }
3052
3053 static int
3054 find_default_supports_disable_randomization (struct target_ops *self)
3055 {
3056 struct target_ops *t;
3057
3058 t = find_default_run_target (NULL);
3059 if (t && t->to_supports_disable_randomization)
3060 return (t->to_supports_disable_randomization) (t);
3061 return 0;
3062 }
3063
3064 int
3065 target_supports_disable_randomization (void)
3066 {
3067 struct target_ops *t;
3068
3069 for (t = &current_target; t != NULL; t = t->beneath)
3070 if (t->to_supports_disable_randomization)
3071 return t->to_supports_disable_randomization (t);
3072
3073 return 0;
3074 }
3075
3076 char *
3077 target_get_osdata (const char *type)
3078 {
3079 struct target_ops *t;
3080
3081 /* If we're already connected to something that can get us OS
3082 related data, use it. Otherwise, try using the native
3083 target. */
3084 if (current_target.to_stratum >= process_stratum)
3085 t = current_target.beneath;
3086 else
3087 t = find_default_run_target ("get OS data");
3088
3089 if (!t)
3090 return NULL;
3091
3092 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3093 }
3094
3095 /* Determine the current address space of thread PTID. */
3096
3097 struct address_space *
3098 target_thread_address_space (ptid_t ptid)
3099 {
3100 struct address_space *aspace;
3101 struct inferior *inf;
3102 struct target_ops *t;
3103
3104 for (t = current_target.beneath; t != NULL; t = t->beneath)
3105 {
3106 if (t->to_thread_address_space != NULL)
3107 {
3108 aspace = t->to_thread_address_space (t, ptid);
3109 gdb_assert (aspace);
3110
3111 if (targetdebug)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "target_thread_address_space (%s) = %d\n",
3114 target_pid_to_str (ptid),
3115 address_space_num (aspace));
3116 return aspace;
3117 }
3118 }
3119
3120 /* Fall-back to the "main" address space of the inferior. */
3121 inf = find_inferior_pid (ptid_get_pid (ptid));
3122
3123 if (inf == NULL || inf->aspace == NULL)
3124 internal_error (__FILE__, __LINE__,
3125 _("Can't determine the current "
3126 "address space of thread %s\n"),
3127 target_pid_to_str (ptid));
3128
3129 return inf->aspace;
3130 }
3131
3132
3133 /* Target file operations. */
3134
3135 static struct target_ops *
3136 default_fileio_target (void)
3137 {
3138 /* If we're already connected to something that can perform
3139 file I/O, use it. Otherwise, try using the native target. */
3140 if (current_target.to_stratum >= process_stratum)
3141 return current_target.beneath;
3142 else
3143 return find_default_run_target ("file I/O");
3144 }
3145
3146 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3147 target file descriptor, or -1 if an error occurs (and set
3148 *TARGET_ERRNO). */
3149 int
3150 target_fileio_open (const char *filename, int flags, int mode,
3151 int *target_errno)
3152 {
3153 struct target_ops *t;
3154
3155 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3156 {
3157 if (t->to_fileio_open != NULL)
3158 {
3159 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3160
3161 if (targetdebug)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3164 filename, flags, mode,
3165 fd, fd != -1 ? 0 : *target_errno);
3166 return fd;
3167 }
3168 }
3169
3170 *target_errno = FILEIO_ENOSYS;
3171 return -1;
3172 }
3173
3174 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3175 Return the number of bytes written, or -1 if an error occurs
3176 (and set *TARGET_ERRNO). */
3177 int
3178 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3179 ULONGEST offset, int *target_errno)
3180 {
3181 struct target_ops *t;
3182
3183 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3184 {
3185 if (t->to_fileio_pwrite != NULL)
3186 {
3187 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3188 target_errno);
3189
3190 if (targetdebug)
3191 fprintf_unfiltered (gdb_stdlog,
3192 "target_fileio_pwrite (%d,...,%d,%s) "
3193 "= %d (%d)\n",
3194 fd, len, pulongest (offset),
3195 ret, ret != -1 ? 0 : *target_errno);
3196 return ret;
3197 }
3198 }
3199
3200 *target_errno = FILEIO_ENOSYS;
3201 return -1;
3202 }
3203
3204 /* Read up to LEN bytes FD on the target into READ_BUF.
3205 Return the number of bytes read, or -1 if an error occurs
3206 (and set *TARGET_ERRNO). */
3207 int
3208 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3209 ULONGEST offset, int *target_errno)
3210 {
3211 struct target_ops *t;
3212
3213 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3214 {
3215 if (t->to_fileio_pread != NULL)
3216 {
3217 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3218 target_errno);
3219
3220 if (targetdebug)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "target_fileio_pread (%d,...,%d,%s) "
3223 "= %d (%d)\n",
3224 fd, len, pulongest (offset),
3225 ret, ret != -1 ? 0 : *target_errno);
3226 return ret;
3227 }
3228 }
3229
3230 *target_errno = FILEIO_ENOSYS;
3231 return -1;
3232 }
3233
3234 /* Close FD on the target. Return 0, or -1 if an error occurs
3235 (and set *TARGET_ERRNO). */
3236 int
3237 target_fileio_close (int fd, int *target_errno)
3238 {
3239 struct target_ops *t;
3240
3241 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3242 {
3243 if (t->to_fileio_close != NULL)
3244 {
3245 int ret = t->to_fileio_close (t, fd, target_errno);
3246
3247 if (targetdebug)
3248 fprintf_unfiltered (gdb_stdlog,
3249 "target_fileio_close (%d) = %d (%d)\n",
3250 fd, ret, ret != -1 ? 0 : *target_errno);
3251 return ret;
3252 }
3253 }
3254
3255 *target_errno = FILEIO_ENOSYS;
3256 return -1;
3257 }
3258
3259 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3260 occurs (and set *TARGET_ERRNO). */
3261 int
3262 target_fileio_unlink (const char *filename, int *target_errno)
3263 {
3264 struct target_ops *t;
3265
3266 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3267 {
3268 if (t->to_fileio_unlink != NULL)
3269 {
3270 int ret = t->to_fileio_unlink (t, filename, target_errno);
3271
3272 if (targetdebug)
3273 fprintf_unfiltered (gdb_stdlog,
3274 "target_fileio_unlink (%s) = %d (%d)\n",
3275 filename, ret, ret != -1 ? 0 : *target_errno);
3276 return ret;
3277 }
3278 }
3279
3280 *target_errno = FILEIO_ENOSYS;
3281 return -1;
3282 }
3283
3284 /* Read value of symbolic link FILENAME on the target. Return a
3285 null-terminated string allocated via xmalloc, or NULL if an error
3286 occurs (and set *TARGET_ERRNO). */
3287 char *
3288 target_fileio_readlink (const char *filename, int *target_errno)
3289 {
3290 struct target_ops *t;
3291
3292 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3293 {
3294 if (t->to_fileio_readlink != NULL)
3295 {
3296 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3297
3298 if (targetdebug)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "target_fileio_readlink (%s) = %s (%d)\n",
3301 filename, ret? ret : "(nil)",
3302 ret? 0 : *target_errno);
3303 return ret;
3304 }
3305 }
3306
3307 *target_errno = FILEIO_ENOSYS;
3308 return NULL;
3309 }
3310
3311 static void
3312 target_fileio_close_cleanup (void *opaque)
3313 {
3314 int fd = *(int *) opaque;
3315 int target_errno;
3316
3317 target_fileio_close (fd, &target_errno);
3318 }
3319
3320 /* Read target file FILENAME. Store the result in *BUF_P and
3321 return the size of the transferred data. PADDING additional bytes are
3322 available in *BUF_P. This is a helper function for
3323 target_fileio_read_alloc; see the declaration of that function for more
3324 information. */
3325
3326 static LONGEST
3327 target_fileio_read_alloc_1 (const char *filename,
3328 gdb_byte **buf_p, int padding)
3329 {
3330 struct cleanup *close_cleanup;
3331 size_t buf_alloc, buf_pos;
3332 gdb_byte *buf;
3333 LONGEST n;
3334 int fd;
3335 int target_errno;
3336
3337 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3338 if (fd == -1)
3339 return -1;
3340
3341 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3342
3343 /* Start by reading up to 4K at a time. The target will throttle
3344 this number down if necessary. */
3345 buf_alloc = 4096;
3346 buf = xmalloc (buf_alloc);
3347 buf_pos = 0;
3348 while (1)
3349 {
3350 n = target_fileio_pread (fd, &buf[buf_pos],
3351 buf_alloc - buf_pos - padding, buf_pos,
3352 &target_errno);
3353 if (n < 0)
3354 {
3355 /* An error occurred. */
3356 do_cleanups (close_cleanup);
3357 xfree (buf);
3358 return -1;
3359 }
3360 else if (n == 0)
3361 {
3362 /* Read all there was. */
3363 do_cleanups (close_cleanup);
3364 if (buf_pos == 0)
3365 xfree (buf);
3366 else
3367 *buf_p = buf;
3368 return buf_pos;
3369 }
3370
3371 buf_pos += n;
3372
3373 /* If the buffer is filling up, expand it. */
3374 if (buf_alloc < buf_pos * 2)
3375 {
3376 buf_alloc *= 2;
3377 buf = xrealloc (buf, buf_alloc);
3378 }
3379
3380 QUIT;
3381 }
3382 }
3383
3384 /* Read target file FILENAME. Store the result in *BUF_P and return
3385 the size of the transferred data. See the declaration in "target.h"
3386 function for more information about the return value. */
3387
3388 LONGEST
3389 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3390 {
3391 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3392 }
3393
3394 /* Read target file FILENAME. The result is NUL-terminated and
3395 returned as a string, allocated using xmalloc. If an error occurs
3396 or the transfer is unsupported, NULL is returned. Empty objects
3397 are returned as allocated but empty strings. A warning is issued
3398 if the result contains any embedded NUL bytes. */
3399
3400 char *
3401 target_fileio_read_stralloc (const char *filename)
3402 {
3403 gdb_byte *buffer;
3404 char *bufstr;
3405 LONGEST i, transferred;
3406
3407 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3408 bufstr = (char *) buffer;
3409
3410 if (transferred < 0)
3411 return NULL;
3412
3413 if (transferred == 0)
3414 return xstrdup ("");
3415
3416 bufstr[transferred] = 0;
3417
3418 /* Check for embedded NUL bytes; but allow trailing NULs. */
3419 for (i = strlen (bufstr); i < transferred; i++)
3420 if (bufstr[i] != 0)
3421 {
3422 warning (_("target file %s "
3423 "contained unexpected null characters"),
3424 filename);
3425 break;
3426 }
3427
3428 return bufstr;
3429 }
3430
3431
3432 static int
3433 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3434 CORE_ADDR addr, int len)
3435 {
3436 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3437 }
3438
3439 static int
3440 default_watchpoint_addr_within_range (struct target_ops *target,
3441 CORE_ADDR addr,
3442 CORE_ADDR start, int length)
3443 {
3444 return addr >= start && addr < start + length;
3445 }
3446
3447 static struct gdbarch *
3448 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3449 {
3450 return target_gdbarch ();
3451 }
3452
3453 static int
3454 return_zero (void)
3455 {
3456 return 0;
3457 }
3458
3459 /*
3460 * Find the next target down the stack from the specified target.
3461 */
3462
3463 struct target_ops *
3464 find_target_beneath (struct target_ops *t)
3465 {
3466 return t->beneath;
3467 }
3468
3469 /* See target.h. */
3470
3471 struct target_ops *
3472 find_target_at (enum strata stratum)
3473 {
3474 struct target_ops *t;
3475
3476 for (t = current_target.beneath; t != NULL; t = t->beneath)
3477 if (t->to_stratum == stratum)
3478 return t;
3479
3480 return NULL;
3481 }
3482
3483 \f
3484 /* The inferior process has died. Long live the inferior! */
3485
3486 void
3487 generic_mourn_inferior (void)
3488 {
3489 ptid_t ptid;
3490
3491 ptid = inferior_ptid;
3492 inferior_ptid = null_ptid;
3493
3494 /* Mark breakpoints uninserted in case something tries to delete a
3495 breakpoint while we delete the inferior's threads (which would
3496 fail, since the inferior is long gone). */
3497 mark_breakpoints_out ();
3498
3499 if (!ptid_equal (ptid, null_ptid))
3500 {
3501 int pid = ptid_get_pid (ptid);
3502 exit_inferior (pid);
3503 }
3504
3505 /* Note this wipes step-resume breakpoints, so needs to be done
3506 after exit_inferior, which ends up referencing the step-resume
3507 breakpoints through clear_thread_inferior_resources. */
3508 breakpoint_init_inferior (inf_exited);
3509
3510 registers_changed ();
3511
3512 reopen_exec_file ();
3513 reinit_frame_cache ();
3514
3515 if (deprecated_detach_hook)
3516 deprecated_detach_hook ();
3517 }
3518 \f
3519 /* Convert a normal process ID to a string. Returns the string in a
3520 static buffer. */
3521
3522 char *
3523 normal_pid_to_str (ptid_t ptid)
3524 {
3525 static char buf[32];
3526
3527 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3528 return buf;
3529 }
3530
3531 static char *
3532 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3533 {
3534 return normal_pid_to_str (ptid);
3535 }
3536
3537 /* Error-catcher for target_find_memory_regions. */
3538 static int
3539 dummy_find_memory_regions (struct target_ops *self,
3540 find_memory_region_ftype ignore1, void *ignore2)
3541 {
3542 error (_("Command not implemented for this target."));
3543 return 0;
3544 }
3545
3546 /* Error-catcher for target_make_corefile_notes. */
3547 static char *
3548 dummy_make_corefile_notes (struct target_ops *self,
3549 bfd *ignore1, int *ignore2)
3550 {
3551 error (_("Command not implemented for this target."));
3552 return NULL;
3553 }
3554
3555 /* Set up the handful of non-empty slots needed by the dummy target
3556 vector. */
3557
3558 static void
3559 init_dummy_target (void)
3560 {
3561 dummy_target.to_shortname = "None";
3562 dummy_target.to_longname = "None";
3563 dummy_target.to_doc = "";
3564 dummy_target.to_create_inferior = find_default_create_inferior;
3565 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3566 dummy_target.to_supports_disable_randomization
3567 = find_default_supports_disable_randomization;
3568 dummy_target.to_pid_to_str = dummy_pid_to_str;
3569 dummy_target.to_stratum = dummy_stratum;
3570 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3571 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3572 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3573 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3574 dummy_target.to_has_execution
3575 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3576 dummy_target.to_magic = OPS_MAGIC;
3577
3578 install_dummy_methods (&dummy_target);
3579 }
3580 \f
3581 static void
3582 debug_to_open (char *args, int from_tty)
3583 {
3584 debug_target.to_open (args, from_tty);
3585
3586 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3587 }
3588
3589 void
3590 target_close (struct target_ops *targ)
3591 {
3592 gdb_assert (!target_is_pushed (targ));
3593
3594 if (targ->to_xclose != NULL)
3595 targ->to_xclose (targ);
3596 else if (targ->to_close != NULL)
3597 targ->to_close (targ);
3598
3599 if (targetdebug)
3600 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3601 }
3602
3603 void
3604 target_attach (char *args, int from_tty)
3605 {
3606 current_target.to_attach (&current_target, args, from_tty);
3607 if (targetdebug)
3608 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3609 args, from_tty);
3610 }
3611
3612 int
3613 target_thread_alive (ptid_t ptid)
3614 {
3615 struct target_ops *t;
3616
3617 for (t = current_target.beneath; t != NULL; t = t->beneath)
3618 {
3619 if (t->to_thread_alive != NULL)
3620 {
3621 int retval;
3622
3623 retval = t->to_thread_alive (t, ptid);
3624 if (targetdebug)
3625 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3626 ptid_get_pid (ptid), retval);
3627
3628 return retval;
3629 }
3630 }
3631
3632 return 0;
3633 }
3634
3635 void
3636 target_find_new_threads (void)
3637 {
3638 struct target_ops *t;
3639
3640 for (t = current_target.beneath; t != NULL; t = t->beneath)
3641 {
3642 if (t->to_find_new_threads != NULL)
3643 {
3644 t->to_find_new_threads (t);
3645 if (targetdebug)
3646 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3647
3648 return;
3649 }
3650 }
3651 }
3652
3653 void
3654 target_stop (ptid_t ptid)
3655 {
3656 if (!may_stop)
3657 {
3658 warning (_("May not interrupt or stop the target, ignoring attempt"));
3659 return;
3660 }
3661
3662 (*current_target.to_stop) (&current_target, ptid);
3663 }
3664
3665 static void
3666 debug_to_post_attach (struct target_ops *self, int pid)
3667 {
3668 debug_target.to_post_attach (&debug_target, pid);
3669
3670 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3671 }
3672
3673 /* Concatenate ELEM to LIST, a comma separate list, and return the
3674 result. The LIST incoming argument is released. */
3675
3676 static char *
3677 str_comma_list_concat_elem (char *list, const char *elem)
3678 {
3679 if (list == NULL)
3680 return xstrdup (elem);
3681 else
3682 return reconcat (list, list, ", ", elem, (char *) NULL);
3683 }
3684
3685 /* Helper for target_options_to_string. If OPT is present in
3686 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3687 Returns the new resulting string. OPT is removed from
3688 TARGET_OPTIONS. */
3689
3690 static char *
3691 do_option (int *target_options, char *ret,
3692 int opt, char *opt_str)
3693 {
3694 if ((*target_options & opt) != 0)
3695 {
3696 ret = str_comma_list_concat_elem (ret, opt_str);
3697 *target_options &= ~opt;
3698 }
3699
3700 return ret;
3701 }
3702
3703 char *
3704 target_options_to_string (int target_options)
3705 {
3706 char *ret = NULL;
3707
3708 #define DO_TARG_OPTION(OPT) \
3709 ret = do_option (&target_options, ret, OPT, #OPT)
3710
3711 DO_TARG_OPTION (TARGET_WNOHANG);
3712
3713 if (target_options != 0)
3714 ret = str_comma_list_concat_elem (ret, "unknown???");
3715
3716 if (ret == NULL)
3717 ret = xstrdup ("");
3718 return ret;
3719 }
3720
3721 static void
3722 debug_print_register (const char * func,
3723 struct regcache *regcache, int regno)
3724 {
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726
3727 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3728 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3729 && gdbarch_register_name (gdbarch, regno) != NULL
3730 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3731 fprintf_unfiltered (gdb_stdlog, "(%s)",
3732 gdbarch_register_name (gdbarch, regno));
3733 else
3734 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3735 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3736 {
3737 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3738 int i, size = register_size (gdbarch, regno);
3739 gdb_byte buf[MAX_REGISTER_SIZE];
3740
3741 regcache_raw_collect (regcache, regno, buf);
3742 fprintf_unfiltered (gdb_stdlog, " = ");
3743 for (i = 0; i < size; i++)
3744 {
3745 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3746 }
3747 if (size <= sizeof (LONGEST))
3748 {
3749 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3750
3751 fprintf_unfiltered (gdb_stdlog, " %s %s",
3752 core_addr_to_string_nz (val), plongest (val));
3753 }
3754 }
3755 fprintf_unfiltered (gdb_stdlog, "\n");
3756 }
3757
3758 void
3759 target_fetch_registers (struct regcache *regcache, int regno)
3760 {
3761 current_target.to_fetch_registers (&current_target, regcache, regno);
3762 if (targetdebug)
3763 debug_print_register ("target_fetch_registers", regcache, regno);
3764 }
3765
3766 void
3767 target_store_registers (struct regcache *regcache, int regno)
3768 {
3769 struct target_ops *t;
3770
3771 if (!may_write_registers)
3772 error (_("Writing to registers is not allowed (regno %d)"), regno);
3773
3774 current_target.to_store_registers (&current_target, regcache, regno);
3775 if (targetdebug)
3776 {
3777 debug_print_register ("target_store_registers", regcache, regno);
3778 }
3779 }
3780
3781 int
3782 target_core_of_thread (ptid_t ptid)
3783 {
3784 struct target_ops *t;
3785
3786 for (t = current_target.beneath; t != NULL; t = t->beneath)
3787 {
3788 if (t->to_core_of_thread != NULL)
3789 {
3790 int retval = t->to_core_of_thread (t, ptid);
3791
3792 if (targetdebug)
3793 fprintf_unfiltered (gdb_stdlog,
3794 "target_core_of_thread (%d) = %d\n",
3795 ptid_get_pid (ptid), retval);
3796 return retval;
3797 }
3798 }
3799
3800 return -1;
3801 }
3802
3803 int
3804 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3805 {
3806 struct target_ops *t;
3807
3808 for (t = current_target.beneath; t != NULL; t = t->beneath)
3809 {
3810 if (t->to_verify_memory != NULL)
3811 {
3812 int retval = t->to_verify_memory (t, data, memaddr, size);
3813
3814 if (targetdebug)
3815 fprintf_unfiltered (gdb_stdlog,
3816 "target_verify_memory (%s, %s) = %d\n",
3817 paddress (target_gdbarch (), memaddr),
3818 pulongest (size),
3819 retval);
3820 return retval;
3821 }
3822 }
3823
3824 tcomplain ();
3825 }
3826
3827 /* The documentation for this function is in its prototype declaration in
3828 target.h. */
3829
3830 int
3831 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3832 {
3833 struct target_ops *t;
3834
3835 for (t = current_target.beneath; t != NULL; t = t->beneath)
3836 if (t->to_insert_mask_watchpoint != NULL)
3837 {
3838 int ret;
3839
3840 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3841
3842 if (targetdebug)
3843 fprintf_unfiltered (gdb_stdlog, "\
3844 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3845 core_addr_to_string (addr),
3846 core_addr_to_string (mask), rw, ret);
3847
3848 return ret;
3849 }
3850
3851 return 1;
3852 }
3853
3854 /* The documentation for this function is in its prototype declaration in
3855 target.h. */
3856
3857 int
3858 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3859 {
3860 struct target_ops *t;
3861
3862 for (t = current_target.beneath; t != NULL; t = t->beneath)
3863 if (t->to_remove_mask_watchpoint != NULL)
3864 {
3865 int ret;
3866
3867 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3868
3869 if (targetdebug)
3870 fprintf_unfiltered (gdb_stdlog, "\
3871 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3872 core_addr_to_string (addr),
3873 core_addr_to_string (mask), rw, ret);
3874
3875 return ret;
3876 }
3877
3878 return 1;
3879 }
3880
3881 /* The documentation for this function is in its prototype declaration
3882 in target.h. */
3883
3884 int
3885 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3886 {
3887 struct target_ops *t;
3888
3889 for (t = current_target.beneath; t != NULL; t = t->beneath)
3890 if (t->to_masked_watch_num_registers != NULL)
3891 return t->to_masked_watch_num_registers (t, addr, mask);
3892
3893 return -1;
3894 }
3895
3896 /* The documentation for this function is in its prototype declaration
3897 in target.h. */
3898
3899 int
3900 target_ranged_break_num_registers (void)
3901 {
3902 return current_target.to_ranged_break_num_registers (&current_target);
3903 }
3904
3905 /* See target.h. */
3906
3907 struct btrace_target_info *
3908 target_enable_btrace (ptid_t ptid)
3909 {
3910 struct target_ops *t;
3911
3912 for (t = current_target.beneath; t != NULL; t = t->beneath)
3913 if (t->to_enable_btrace != NULL)
3914 return t->to_enable_btrace (t, ptid);
3915
3916 tcomplain ();
3917 return NULL;
3918 }
3919
3920 /* See target.h. */
3921
3922 void
3923 target_disable_btrace (struct btrace_target_info *btinfo)
3924 {
3925 struct target_ops *t;
3926
3927 for (t = current_target.beneath; t != NULL; t = t->beneath)
3928 if (t->to_disable_btrace != NULL)
3929 {
3930 t->to_disable_btrace (t, btinfo);
3931 return;
3932 }
3933
3934 tcomplain ();
3935 }
3936
3937 /* See target.h. */
3938
3939 void
3940 target_teardown_btrace (struct btrace_target_info *btinfo)
3941 {
3942 struct target_ops *t;
3943
3944 for (t = current_target.beneath; t != NULL; t = t->beneath)
3945 if (t->to_teardown_btrace != NULL)
3946 {
3947 t->to_teardown_btrace (t, btinfo);
3948 return;
3949 }
3950
3951 tcomplain ();
3952 }
3953
3954 /* See target.h. */
3955
3956 enum btrace_error
3957 target_read_btrace (VEC (btrace_block_s) **btrace,
3958 struct btrace_target_info *btinfo,
3959 enum btrace_read_type type)
3960 {
3961 struct target_ops *t;
3962
3963 for (t = current_target.beneath; t != NULL; t = t->beneath)
3964 if (t->to_read_btrace != NULL)
3965 return t->to_read_btrace (t, btrace, btinfo, type);
3966
3967 tcomplain ();
3968 return BTRACE_ERR_NOT_SUPPORTED;
3969 }
3970
3971 /* See target.h. */
3972
3973 void
3974 target_stop_recording (void)
3975 {
3976 struct target_ops *t;
3977
3978 for (t = current_target.beneath; t != NULL; t = t->beneath)
3979 if (t->to_stop_recording != NULL)
3980 {
3981 t->to_stop_recording (t);
3982 return;
3983 }
3984
3985 /* This is optional. */
3986 }
3987
3988 /* See target.h. */
3989
3990 void
3991 target_info_record (void)
3992 {
3993 struct target_ops *t;
3994
3995 for (t = current_target.beneath; t != NULL; t = t->beneath)
3996 if (t->to_info_record != NULL)
3997 {
3998 t->to_info_record (t);
3999 return;
4000 }
4001
4002 tcomplain ();
4003 }
4004
4005 /* See target.h. */
4006
4007 void
4008 target_save_record (const char *filename)
4009 {
4010 struct target_ops *t;
4011
4012 for (t = current_target.beneath; t != NULL; t = t->beneath)
4013 if (t->to_save_record != NULL)
4014 {
4015 t->to_save_record (t, filename);
4016 return;
4017 }
4018
4019 tcomplain ();
4020 }
4021
4022 /* See target.h. */
4023
4024 int
4025 target_supports_delete_record (void)
4026 {
4027 struct target_ops *t;
4028
4029 for (t = current_target.beneath; t != NULL; t = t->beneath)
4030 if (t->to_delete_record != NULL)
4031 return 1;
4032
4033 return 0;
4034 }
4035
4036 /* See target.h. */
4037
4038 void
4039 target_delete_record (void)
4040 {
4041 struct target_ops *t;
4042
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 if (t->to_delete_record != NULL)
4045 {
4046 t->to_delete_record (t);
4047 return;
4048 }
4049
4050 tcomplain ();
4051 }
4052
4053 /* See target.h. */
4054
4055 int
4056 target_record_is_replaying (void)
4057 {
4058 struct target_ops *t;
4059
4060 for (t = current_target.beneath; t != NULL; t = t->beneath)
4061 if (t->to_record_is_replaying != NULL)
4062 return t->to_record_is_replaying (t);
4063
4064 return 0;
4065 }
4066
4067 /* See target.h. */
4068
4069 void
4070 target_goto_record_begin (void)
4071 {
4072 struct target_ops *t;
4073
4074 for (t = current_target.beneath; t != NULL; t = t->beneath)
4075 if (t->to_goto_record_begin != NULL)
4076 {
4077 t->to_goto_record_begin (t);
4078 return;
4079 }
4080
4081 tcomplain ();
4082 }
4083
4084 /* See target.h. */
4085
4086 void
4087 target_goto_record_end (void)
4088 {
4089 struct target_ops *t;
4090
4091 for (t = current_target.beneath; t != NULL; t = t->beneath)
4092 if (t->to_goto_record_end != NULL)
4093 {
4094 t->to_goto_record_end (t);
4095 return;
4096 }
4097
4098 tcomplain ();
4099 }
4100
4101 /* See target.h. */
4102
4103 void
4104 target_goto_record (ULONGEST insn)
4105 {
4106 struct target_ops *t;
4107
4108 for (t = current_target.beneath; t != NULL; t = t->beneath)
4109 if (t->to_goto_record != NULL)
4110 {
4111 t->to_goto_record (t, insn);
4112 return;
4113 }
4114
4115 tcomplain ();
4116 }
4117
4118 /* See target.h. */
4119
4120 void
4121 target_insn_history (int size, int flags)
4122 {
4123 struct target_ops *t;
4124
4125 for (t = current_target.beneath; t != NULL; t = t->beneath)
4126 if (t->to_insn_history != NULL)
4127 {
4128 t->to_insn_history (t, size, flags);
4129 return;
4130 }
4131
4132 tcomplain ();
4133 }
4134
4135 /* See target.h. */
4136
4137 void
4138 target_insn_history_from (ULONGEST from, int size, int flags)
4139 {
4140 struct target_ops *t;
4141
4142 for (t = current_target.beneath; t != NULL; t = t->beneath)
4143 if (t->to_insn_history_from != NULL)
4144 {
4145 t->to_insn_history_from (t, from, size, flags);
4146 return;
4147 }
4148
4149 tcomplain ();
4150 }
4151
4152 /* See target.h. */
4153
4154 void
4155 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4156 {
4157 struct target_ops *t;
4158
4159 for (t = current_target.beneath; t != NULL; t = t->beneath)
4160 if (t->to_insn_history_range != NULL)
4161 {
4162 t->to_insn_history_range (t, begin, end, flags);
4163 return;
4164 }
4165
4166 tcomplain ();
4167 }
4168
4169 /* See target.h. */
4170
4171 void
4172 target_call_history (int size, int flags)
4173 {
4174 struct target_ops *t;
4175
4176 for (t = current_target.beneath; t != NULL; t = t->beneath)
4177 if (t->to_call_history != NULL)
4178 {
4179 t->to_call_history (t, size, flags);
4180 return;
4181 }
4182
4183 tcomplain ();
4184 }
4185
4186 /* See target.h. */
4187
4188 void
4189 target_call_history_from (ULONGEST begin, int size, int flags)
4190 {
4191 struct target_ops *t;
4192
4193 for (t = current_target.beneath; t != NULL; t = t->beneath)
4194 if (t->to_call_history_from != NULL)
4195 {
4196 t->to_call_history_from (t, begin, size, flags);
4197 return;
4198 }
4199
4200 tcomplain ();
4201 }
4202
4203 /* See target.h. */
4204
4205 void
4206 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4207 {
4208 struct target_ops *t;
4209
4210 for (t = current_target.beneath; t != NULL; t = t->beneath)
4211 if (t->to_call_history_range != NULL)
4212 {
4213 t->to_call_history_range (t, begin, end, flags);
4214 return;
4215 }
4216
4217 tcomplain ();
4218 }
4219
4220 static void
4221 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4222 {
4223 debug_target.to_prepare_to_store (&debug_target, regcache);
4224
4225 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4226 }
4227
4228 /* See target.h. */
4229
4230 const struct frame_unwind *
4231 target_get_unwinder (void)
4232 {
4233 struct target_ops *t;
4234
4235 for (t = current_target.beneath; t != NULL; t = t->beneath)
4236 if (t->to_get_unwinder != NULL)
4237 return t->to_get_unwinder;
4238
4239 return NULL;
4240 }
4241
4242 /* See target.h. */
4243
4244 const struct frame_unwind *
4245 target_get_tailcall_unwinder (void)
4246 {
4247 struct target_ops *t;
4248
4249 for (t = current_target.beneath; t != NULL; t = t->beneath)
4250 if (t->to_get_tailcall_unwinder != NULL)
4251 return t->to_get_tailcall_unwinder;
4252
4253 return NULL;
4254 }
4255
4256 /* See target.h. */
4257
4258 CORE_ADDR
4259 forward_target_decr_pc_after_break (struct target_ops *ops,
4260 struct gdbarch *gdbarch)
4261 {
4262 for (; ops != NULL; ops = ops->beneath)
4263 if (ops->to_decr_pc_after_break != NULL)
4264 return ops->to_decr_pc_after_break (ops, gdbarch);
4265
4266 return gdbarch_decr_pc_after_break (gdbarch);
4267 }
4268
4269 /* See target.h. */
4270
4271 CORE_ADDR
4272 target_decr_pc_after_break (struct gdbarch *gdbarch)
4273 {
4274 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4275 }
4276
4277 static int
4278 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4279 int write, struct mem_attrib *attrib,
4280 struct target_ops *target)
4281 {
4282 int retval;
4283
4284 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4285 attrib, target);
4286
4287 fprintf_unfiltered (gdb_stdlog,
4288 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4289 paddress (target_gdbarch (), memaddr), len,
4290 write ? "write" : "read", retval);
4291
4292 if (retval > 0)
4293 {
4294 int i;
4295
4296 fputs_unfiltered (", bytes =", gdb_stdlog);
4297 for (i = 0; i < retval; i++)
4298 {
4299 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4300 {
4301 if (targetdebug < 2 && i > 0)
4302 {
4303 fprintf_unfiltered (gdb_stdlog, " ...");
4304 break;
4305 }
4306 fprintf_unfiltered (gdb_stdlog, "\n");
4307 }
4308
4309 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4310 }
4311 }
4312
4313 fputc_unfiltered ('\n', gdb_stdlog);
4314
4315 return retval;
4316 }
4317
4318 static void
4319 debug_to_files_info (struct target_ops *target)
4320 {
4321 debug_target.to_files_info (target);
4322
4323 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4324 }
4325
4326 static int
4327 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4328 struct bp_target_info *bp_tgt)
4329 {
4330 int retval;
4331
4332 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4333
4334 fprintf_unfiltered (gdb_stdlog,
4335 "target_insert_breakpoint (%s, xxx) = %ld\n",
4336 core_addr_to_string (bp_tgt->placed_address),
4337 (unsigned long) retval);
4338 return retval;
4339 }
4340
4341 static int
4342 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4343 struct bp_target_info *bp_tgt)
4344 {
4345 int retval;
4346
4347 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4348
4349 fprintf_unfiltered (gdb_stdlog,
4350 "target_remove_breakpoint (%s, xxx) = %ld\n",
4351 core_addr_to_string (bp_tgt->placed_address),
4352 (unsigned long) retval);
4353 return retval;
4354 }
4355
4356 static int
4357 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4358 int type, int cnt, int from_tty)
4359 {
4360 int retval;
4361
4362 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4363 type, cnt, from_tty);
4364
4365 fprintf_unfiltered (gdb_stdlog,
4366 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4367 (unsigned long) type,
4368 (unsigned long) cnt,
4369 (unsigned long) from_tty,
4370 (unsigned long) retval);
4371 return retval;
4372 }
4373
4374 static int
4375 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4376 CORE_ADDR addr, int len)
4377 {
4378 CORE_ADDR retval;
4379
4380 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4381 addr, len);
4382
4383 fprintf_unfiltered (gdb_stdlog,
4384 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4385 core_addr_to_string (addr), (unsigned long) len,
4386 core_addr_to_string (retval));
4387 return retval;
4388 }
4389
4390 static int
4391 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4392 CORE_ADDR addr, int len, int rw,
4393 struct expression *cond)
4394 {
4395 int retval;
4396
4397 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4398 addr, len,
4399 rw, cond);
4400
4401 fprintf_unfiltered (gdb_stdlog,
4402 "target_can_accel_watchpoint_condition "
4403 "(%s, %d, %d, %s) = %ld\n",
4404 core_addr_to_string (addr), len, rw,
4405 host_address_to_string (cond), (unsigned long) retval);
4406 return retval;
4407 }
4408
4409 static int
4410 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4411 {
4412 int retval;
4413
4414 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4415
4416 fprintf_unfiltered (gdb_stdlog,
4417 "target_stopped_by_watchpoint () = %ld\n",
4418 (unsigned long) retval);
4419 return retval;
4420 }
4421
4422 static int
4423 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4424 {
4425 int retval;
4426
4427 retval = debug_target.to_stopped_data_address (target, addr);
4428
4429 fprintf_unfiltered (gdb_stdlog,
4430 "target_stopped_data_address ([%s]) = %ld\n",
4431 core_addr_to_string (*addr),
4432 (unsigned long)retval);
4433 return retval;
4434 }
4435
4436 static int
4437 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4438 CORE_ADDR addr,
4439 CORE_ADDR start, int length)
4440 {
4441 int retval;
4442
4443 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4444 start, length);
4445
4446 fprintf_filtered (gdb_stdlog,
4447 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4448 core_addr_to_string (addr), core_addr_to_string (start),
4449 length, retval);
4450 return retval;
4451 }
4452
4453 static int
4454 debug_to_insert_hw_breakpoint (struct target_ops *self,
4455 struct gdbarch *gdbarch,
4456 struct bp_target_info *bp_tgt)
4457 {
4458 int retval;
4459
4460 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4461 gdbarch, bp_tgt);
4462
4463 fprintf_unfiltered (gdb_stdlog,
4464 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4465 core_addr_to_string (bp_tgt->placed_address),
4466 (unsigned long) retval);
4467 return retval;
4468 }
4469
4470 static int
4471 debug_to_remove_hw_breakpoint (struct target_ops *self,
4472 struct gdbarch *gdbarch,
4473 struct bp_target_info *bp_tgt)
4474 {
4475 int retval;
4476
4477 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4478 gdbarch, bp_tgt);
4479
4480 fprintf_unfiltered (gdb_stdlog,
4481 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4482 core_addr_to_string (bp_tgt->placed_address),
4483 (unsigned long) retval);
4484 return retval;
4485 }
4486
4487 static int
4488 debug_to_insert_watchpoint (struct target_ops *self,
4489 CORE_ADDR addr, int len, int type,
4490 struct expression *cond)
4491 {
4492 int retval;
4493
4494 retval = debug_target.to_insert_watchpoint (&debug_target,
4495 addr, len, type, cond);
4496
4497 fprintf_unfiltered (gdb_stdlog,
4498 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4499 core_addr_to_string (addr), len, type,
4500 host_address_to_string (cond), (unsigned long) retval);
4501 return retval;
4502 }
4503
4504 static int
4505 debug_to_remove_watchpoint (struct target_ops *self,
4506 CORE_ADDR addr, int len, int type,
4507 struct expression *cond)
4508 {
4509 int retval;
4510
4511 retval = debug_target.to_remove_watchpoint (&debug_target,
4512 addr, len, type, cond);
4513
4514 fprintf_unfiltered (gdb_stdlog,
4515 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4516 core_addr_to_string (addr), len, type,
4517 host_address_to_string (cond), (unsigned long) retval);
4518 return retval;
4519 }
4520
4521 static void
4522 debug_to_terminal_init (struct target_ops *self)
4523 {
4524 debug_target.to_terminal_init (&debug_target);
4525
4526 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4527 }
4528
4529 static void
4530 debug_to_terminal_inferior (struct target_ops *self)
4531 {
4532 debug_target.to_terminal_inferior (&debug_target);
4533
4534 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4535 }
4536
4537 static void
4538 debug_to_terminal_ours_for_output (struct target_ops *self)
4539 {
4540 debug_target.to_terminal_ours_for_output (&debug_target);
4541
4542 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4543 }
4544
4545 static void
4546 debug_to_terminal_ours (struct target_ops *self)
4547 {
4548 debug_target.to_terminal_ours (&debug_target);
4549
4550 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4551 }
4552
4553 static void
4554 debug_to_terminal_save_ours (struct target_ops *self)
4555 {
4556 debug_target.to_terminal_save_ours (&debug_target);
4557
4558 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4559 }
4560
4561 static void
4562 debug_to_terminal_info (struct target_ops *self,
4563 const char *arg, int from_tty)
4564 {
4565 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4566
4567 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4568 from_tty);
4569 }
4570
4571 static void
4572 debug_to_load (struct target_ops *self, char *args, int from_tty)
4573 {
4574 debug_target.to_load (&debug_target, args, from_tty);
4575
4576 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4577 }
4578
4579 static void
4580 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4581 {
4582 debug_target.to_post_startup_inferior (&debug_target, ptid);
4583
4584 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4585 ptid_get_pid (ptid));
4586 }
4587
4588 static int
4589 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4590 {
4591 int retval;
4592
4593 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4594
4595 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4596 pid, retval);
4597
4598 return retval;
4599 }
4600
4601 static int
4602 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4603 {
4604 int retval;
4605
4606 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4607
4608 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4609 pid, retval);
4610
4611 return retval;
4612 }
4613
4614 static int
4615 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4616 {
4617 int retval;
4618
4619 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4620
4621 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4622 pid, retval);
4623
4624 return retval;
4625 }
4626
4627 static int
4628 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4629 {
4630 int retval;
4631
4632 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4633
4634 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4635 pid, retval);
4636
4637 return retval;
4638 }
4639
4640 static int
4641 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4642 {
4643 int retval;
4644
4645 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4646
4647 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4648 pid, retval);
4649
4650 return retval;
4651 }
4652
4653 static int
4654 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4655 {
4656 int retval;
4657
4658 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4659
4660 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4661 pid, retval);
4662
4663 return retval;
4664 }
4665
4666 static int
4667 debug_to_has_exited (struct target_ops *self,
4668 int pid, int wait_status, int *exit_status)
4669 {
4670 int has_exited;
4671
4672 has_exited = debug_target.to_has_exited (&debug_target,
4673 pid, wait_status, exit_status);
4674
4675 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4676 pid, wait_status, *exit_status, has_exited);
4677
4678 return has_exited;
4679 }
4680
4681 static int
4682 debug_to_can_run (struct target_ops *self)
4683 {
4684 int retval;
4685
4686 retval = debug_target.to_can_run (&debug_target);
4687
4688 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4689
4690 return retval;
4691 }
4692
4693 static struct gdbarch *
4694 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4695 {
4696 struct gdbarch *retval;
4697
4698 retval = debug_target.to_thread_architecture (ops, ptid);
4699
4700 fprintf_unfiltered (gdb_stdlog,
4701 "target_thread_architecture (%s) = %s [%s]\n",
4702 target_pid_to_str (ptid),
4703 host_address_to_string (retval),
4704 gdbarch_bfd_arch_info (retval)->printable_name);
4705 return retval;
4706 }
4707
4708 static void
4709 debug_to_stop (struct target_ops *self, ptid_t ptid)
4710 {
4711 debug_target.to_stop (&debug_target, ptid);
4712
4713 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4714 target_pid_to_str (ptid));
4715 }
4716
4717 static void
4718 debug_to_rcmd (struct target_ops *self, char *command,
4719 struct ui_file *outbuf)
4720 {
4721 debug_target.to_rcmd (&debug_target, command, outbuf);
4722 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4723 }
4724
4725 static char *
4726 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4727 {
4728 char *exec_file;
4729
4730 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4731
4732 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4733 pid, exec_file);
4734
4735 return exec_file;
4736 }
4737
4738 static void
4739 setup_target_debug (void)
4740 {
4741 memcpy (&debug_target, &current_target, sizeof debug_target);
4742
4743 current_target.to_open = debug_to_open;
4744 current_target.to_post_attach = debug_to_post_attach;
4745 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4746 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4747 current_target.to_files_info = debug_to_files_info;
4748 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4749 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4750 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4751 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4752 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4753 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4754 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4755 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4756 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4757 current_target.to_watchpoint_addr_within_range
4758 = debug_to_watchpoint_addr_within_range;
4759 current_target.to_region_ok_for_hw_watchpoint
4760 = debug_to_region_ok_for_hw_watchpoint;
4761 current_target.to_can_accel_watchpoint_condition
4762 = debug_to_can_accel_watchpoint_condition;
4763 current_target.to_terminal_init = debug_to_terminal_init;
4764 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4765 current_target.to_terminal_ours_for_output
4766 = debug_to_terminal_ours_for_output;
4767 current_target.to_terminal_ours = debug_to_terminal_ours;
4768 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4769 current_target.to_terminal_info = debug_to_terminal_info;
4770 current_target.to_load = debug_to_load;
4771 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4772 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4773 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4774 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4775 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4776 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4777 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4778 current_target.to_has_exited = debug_to_has_exited;
4779 current_target.to_can_run = debug_to_can_run;
4780 current_target.to_stop = debug_to_stop;
4781 current_target.to_rcmd = debug_to_rcmd;
4782 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4783 current_target.to_thread_architecture = debug_to_thread_architecture;
4784 }
4785 \f
4786
4787 static char targ_desc[] =
4788 "Names of targets and files being debugged.\nShows the entire \
4789 stack of targets currently in use (including the exec-file,\n\
4790 core-file, and process, if any), as well as the symbol file name.";
4791
4792 static void
4793 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4794 {
4795 error (_("\"monitor\" command not supported by this target."));
4796 }
4797
4798 static void
4799 do_monitor_command (char *cmd,
4800 int from_tty)
4801 {
4802 target_rcmd (cmd, gdb_stdtarg);
4803 }
4804
4805 /* Print the name of each layers of our target stack. */
4806
4807 static void
4808 maintenance_print_target_stack (char *cmd, int from_tty)
4809 {
4810 struct target_ops *t;
4811
4812 printf_filtered (_("The current target stack is:\n"));
4813
4814 for (t = target_stack; t != NULL; t = t->beneath)
4815 {
4816 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4817 }
4818 }
4819
4820 /* Controls if async mode is permitted. */
4821 int target_async_permitted = 0;
4822
4823 /* The set command writes to this variable. If the inferior is
4824 executing, target_async_permitted is *not* updated. */
4825 static int target_async_permitted_1 = 0;
4826
4827 static void
4828 set_target_async_command (char *args, int from_tty,
4829 struct cmd_list_element *c)
4830 {
4831 if (have_live_inferiors ())
4832 {
4833 target_async_permitted_1 = target_async_permitted;
4834 error (_("Cannot change this setting while the inferior is running."));
4835 }
4836
4837 target_async_permitted = target_async_permitted_1;
4838 }
4839
4840 static void
4841 show_target_async_command (struct ui_file *file, int from_tty,
4842 struct cmd_list_element *c,
4843 const char *value)
4844 {
4845 fprintf_filtered (file,
4846 _("Controlling the inferior in "
4847 "asynchronous mode is %s.\n"), value);
4848 }
4849
4850 /* Temporary copies of permission settings. */
4851
4852 static int may_write_registers_1 = 1;
4853 static int may_write_memory_1 = 1;
4854 static int may_insert_breakpoints_1 = 1;
4855 static int may_insert_tracepoints_1 = 1;
4856 static int may_insert_fast_tracepoints_1 = 1;
4857 static int may_stop_1 = 1;
4858
4859 /* Make the user-set values match the real values again. */
4860
4861 void
4862 update_target_permissions (void)
4863 {
4864 may_write_registers_1 = may_write_registers;
4865 may_write_memory_1 = may_write_memory;
4866 may_insert_breakpoints_1 = may_insert_breakpoints;
4867 may_insert_tracepoints_1 = may_insert_tracepoints;
4868 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4869 may_stop_1 = may_stop;
4870 }
4871
4872 /* The one function handles (most of) the permission flags in the same
4873 way. */
4874
4875 static void
4876 set_target_permissions (char *args, int from_tty,
4877 struct cmd_list_element *c)
4878 {
4879 if (target_has_execution)
4880 {
4881 update_target_permissions ();
4882 error (_("Cannot change this setting while the inferior is running."));
4883 }
4884
4885 /* Make the real values match the user-changed values. */
4886 may_write_registers = may_write_registers_1;
4887 may_insert_breakpoints = may_insert_breakpoints_1;
4888 may_insert_tracepoints = may_insert_tracepoints_1;
4889 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4890 may_stop = may_stop_1;
4891 update_observer_mode ();
4892 }
4893
4894 /* Set memory write permission independently of observer mode. */
4895
4896 static void
4897 set_write_memory_permission (char *args, int from_tty,
4898 struct cmd_list_element *c)
4899 {
4900 /* Make the real values match the user-changed values. */
4901 may_write_memory = may_write_memory_1;
4902 update_observer_mode ();
4903 }
4904
4905
4906 void
4907 initialize_targets (void)
4908 {
4909 init_dummy_target ();
4910 push_target (&dummy_target);
4911
4912 add_info ("target", target_info, targ_desc);
4913 add_info ("files", target_info, targ_desc);
4914
4915 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4916 Set target debugging."), _("\
4917 Show target debugging."), _("\
4918 When non-zero, target debugging is enabled. Higher numbers are more\n\
4919 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4920 command."),
4921 NULL,
4922 show_targetdebug,
4923 &setdebuglist, &showdebuglist);
4924
4925 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4926 &trust_readonly, _("\
4927 Set mode for reading from readonly sections."), _("\
4928 Show mode for reading from readonly sections."), _("\
4929 When this mode is on, memory reads from readonly sections (such as .text)\n\
4930 will be read from the object file instead of from the target. This will\n\
4931 result in significant performance improvement for remote targets."),
4932 NULL,
4933 show_trust_readonly,
4934 &setlist, &showlist);
4935
4936 add_com ("monitor", class_obscure, do_monitor_command,
4937 _("Send a command to the remote monitor (remote targets only)."));
4938
4939 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4940 _("Print the name of each layer of the internal target stack."),
4941 &maintenanceprintlist);
4942
4943 add_setshow_boolean_cmd ("target-async", no_class,
4944 &target_async_permitted_1, _("\
4945 Set whether gdb controls the inferior in asynchronous mode."), _("\
4946 Show whether gdb controls the inferior in asynchronous mode."), _("\
4947 Tells gdb whether to control the inferior in asynchronous mode."),
4948 set_target_async_command,
4949 show_target_async_command,
4950 &setlist,
4951 &showlist);
4952
4953 add_setshow_boolean_cmd ("may-write-registers", class_support,
4954 &may_write_registers_1, _("\
4955 Set permission to write into registers."), _("\
4956 Show permission to write into registers."), _("\
4957 When this permission is on, GDB may write into the target's registers.\n\
4958 Otherwise, any sort of write attempt will result in an error."),
4959 set_target_permissions, NULL,
4960 &setlist, &showlist);
4961
4962 add_setshow_boolean_cmd ("may-write-memory", class_support,
4963 &may_write_memory_1, _("\
4964 Set permission to write into target memory."), _("\
4965 Show permission to write into target memory."), _("\
4966 When this permission is on, GDB may write into the target's memory.\n\
4967 Otherwise, any sort of write attempt will result in an error."),
4968 set_write_memory_permission, NULL,
4969 &setlist, &showlist);
4970
4971 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4972 &may_insert_breakpoints_1, _("\
4973 Set permission to insert breakpoints in the target."), _("\
4974 Show permission to insert breakpoints in the target."), _("\
4975 When this permission is on, GDB may insert breakpoints in the program.\n\
4976 Otherwise, any sort of insertion attempt will result in an error."),
4977 set_target_permissions, NULL,
4978 &setlist, &showlist);
4979
4980 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4981 &may_insert_tracepoints_1, _("\
4982 Set permission to insert tracepoints in the target."), _("\
4983 Show permission to insert tracepoints in the target."), _("\
4984 When this permission is on, GDB may insert tracepoints in the program.\n\
4985 Otherwise, any sort of insertion attempt will result in an error."),
4986 set_target_permissions, NULL,
4987 &setlist, &showlist);
4988
4989 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4990 &may_insert_fast_tracepoints_1, _("\
4991 Set permission to insert fast tracepoints in the target."), _("\
4992 Show permission to insert fast tracepoints in the target."), _("\
4993 When this permission is on, GDB may insert fast tracepoints.\n\
4994 Otherwise, any sort of insertion attempt will result in an error."),
4995 set_target_permissions, NULL,
4996 &setlist, &showlist);
4997
4998 add_setshow_boolean_cmd ("may-interrupt", class_support,
4999 &may_stop_1, _("\
5000 Set permission to interrupt or signal the target."), _("\
5001 Show permission to interrupt or signal the target."), _("\
5002 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5003 Otherwise, any attempt to interrupt or stop will be ignored."),
5004 set_target_permissions, NULL,
5005 &setlist, &showlist);
5006 }
This page took 0.139167 seconds and 5 git commands to generate.