Introduce class target_stack
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (ptid_equal (inferior_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (ptid_equal (inferior_ptid, null_ptid))
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (ptid_equal (the_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 int
588 target_supports_terminal_ours (void)
589 {
590 return current_top_target ()->supports_terminal_ours ();
591 }
592
593 static void
594 tcomplain (void)
595 {
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
598 }
599
600 void
601 noprocess (void)
602 {
603 error (_("You can't do that without a process to debug."));
604 }
605
606 static void
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
608 {
609 printf_unfiltered (_("No saved terminal information.\n"));
610 }
611
612 /* A default implementation for the to_get_ada_task_ptid target method.
613
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
616 inferior_ptid. */
617
618 static ptid_t
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
620 {
621 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
622 }
623
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
626 {
627 if (!target_can_execute_reverse)
628 return EXEC_FORWARD;
629 else if (!target_can_async_p ())
630 return EXEC_FORWARD;
631 else
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
634 }
635
636 /* See target.h. */
637
638 void
639 target_stack::push (target_ops *t)
640 {
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
643 {
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
646 target_close (prev);
647 }
648
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
651
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
654 }
655
656 /* See target.h. */
657
658 void
659 push_target (struct target_ops *t)
660 {
661 g_target_stack.push (t);
662 }
663
664 /* See target.h. */
665
666 int
667 unpush_target (struct target_ops *t)
668 {
669 return g_target_stack.unpush (t);
670 }
671
672 /* See target.h. */
673
674 bool
675 target_stack::unpush (target_ops *t)
676 {
677 struct target_ops **cur;
678 struct target_ops *tmp;
679
680 if (t->to_stratum == dummy_stratum)
681 internal_error (__FILE__, __LINE__,
682 _("Attempt to unpush the dummy target"));
683
684 gdb_assert (t != NULL);
685
686 /* Look for the specified target. Note that a target can only occur
687 once in the target stack. */
688
689 if (m_stack[t->to_stratum] != t)
690 {
691 /* If T wasn't pushed, quit. Only open targets should be
692 closed. */
693 return false;
694 }
695
696 /* Unchain the target. */
697 m_stack[t->to_stratum] = NULL;
698
699 if (m_top == t->to_stratum)
700 m_top = t->beneath ()->to_stratum;
701
702 /* Finally close the target. Note we do this after unchaining, so
703 any target method calls from within the target_close
704 implementation don't end up in T anymore. */
705 target_close (t);
706
707 return true;
708 }
709
710 /* Unpush TARGET and assert that it worked. */
711
712 static void
713 unpush_target_and_assert (struct target_ops *target)
714 {
715 if (!unpush_target (target))
716 {
717 fprintf_unfiltered (gdb_stderr,
718 "pop_all_targets couldn't find target %s\n",
719 target->shortname ());
720 internal_error (__FILE__, __LINE__,
721 _("failed internal consistency check"));
722 }
723 }
724
725 void
726 pop_all_targets_above (enum strata above_stratum)
727 {
728 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
729 unpush_target_and_assert (current_top_target ());
730 }
731
732 /* See target.h. */
733
734 void
735 pop_all_targets_at_and_above (enum strata stratum)
736 {
737 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
738 unpush_target_and_assert (current_top_target ());
739 }
740
741 void
742 pop_all_targets (void)
743 {
744 pop_all_targets_above (dummy_stratum);
745 }
746
747 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
748
749 int
750 target_is_pushed (struct target_ops *t)
751 {
752 return g_target_stack.is_pushed (t);
753 }
754
755 /* Default implementation of to_get_thread_local_address. */
756
757 static void
758 generic_tls_error (void)
759 {
760 throw_error (TLS_GENERIC_ERROR,
761 _("Cannot find thread-local variables on this target"));
762 }
763
764 /* Using the objfile specified in OBJFILE, find the address for the
765 current thread's thread-local storage with offset OFFSET. */
766 CORE_ADDR
767 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
768 {
769 volatile CORE_ADDR addr = 0;
770 struct target_ops *target = current_top_target ();
771
772 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
773 {
774 ptid_t ptid = inferior_ptid;
775
776 TRY
777 {
778 CORE_ADDR lm_addr;
779
780 /* Fetch the load module address for this objfile. */
781 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
782 objfile);
783
784 addr = target->get_thread_local_address (ptid, lm_addr, offset);
785 }
786 /* If an error occurred, print TLS related messages here. Otherwise,
787 throw the error to some higher catcher. */
788 CATCH (ex, RETURN_MASK_ALL)
789 {
790 int objfile_is_library = (objfile->flags & OBJF_SHARED);
791
792 switch (ex.error)
793 {
794 case TLS_NO_LIBRARY_SUPPORT_ERROR:
795 error (_("Cannot find thread-local variables "
796 "in this thread library."));
797 break;
798 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find shared library `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
802 else
803 error (_("Cannot find executable file `%s' in dynamic"
804 " linker's load module list"), objfile_name (objfile));
805 break;
806 case TLS_NOT_ALLOCATED_YET_ERROR:
807 if (objfile_is_library)
808 error (_("The inferior has not yet allocated storage for"
809 " thread-local variables in\n"
810 "the shared library `%s'\n"
811 "for %s"),
812 objfile_name (objfile), target_pid_to_str (ptid));
813 else
814 error (_("The inferior has not yet allocated storage for"
815 " thread-local variables in\n"
816 "the executable `%s'\n"
817 "for %s"),
818 objfile_name (objfile), target_pid_to_str (ptid));
819 break;
820 case TLS_GENERIC_ERROR:
821 if (objfile_is_library)
822 error (_("Cannot find thread-local storage for %s, "
823 "shared library %s:\n%s"),
824 target_pid_to_str (ptid),
825 objfile_name (objfile), ex.message);
826 else
827 error (_("Cannot find thread-local storage for %s, "
828 "executable file %s:\n%s"),
829 target_pid_to_str (ptid),
830 objfile_name (objfile), ex.message);
831 break;
832 default:
833 throw_exception (ex);
834 break;
835 }
836 }
837 END_CATCH
838 }
839 /* It wouldn't be wrong here to try a gdbarch method, too; finding
840 TLS is an ABI-specific thing. But we don't do that yet. */
841 else
842 error (_("Cannot find thread-local variables on this target"));
843
844 return addr;
845 }
846
847 const char *
848 target_xfer_status_to_string (enum target_xfer_status status)
849 {
850 #define CASE(X) case X: return #X
851 switch (status)
852 {
853 CASE(TARGET_XFER_E_IO);
854 CASE(TARGET_XFER_UNAVAILABLE);
855 default:
856 return "<unknown>";
857 }
858 #undef CASE
859 };
860
861
862 #undef MIN
863 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
864
865 /* target_read_string -- read a null terminated string, up to LEN bytes,
866 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
867 Set *STRING to a pointer to malloc'd memory containing the data; the caller
868 is responsible for freeing it. Return the number of bytes successfully
869 read. */
870
871 int
872 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
873 int len, int *errnop)
874 {
875 int tlen, offset, i;
876 gdb_byte buf[4];
877 int errcode = 0;
878 char *buffer;
879 int buffer_allocated;
880 char *bufptr;
881 unsigned int nbytes_read = 0;
882
883 gdb_assert (string);
884
885 /* Small for testing. */
886 buffer_allocated = 4;
887 buffer = (char *) xmalloc (buffer_allocated);
888 bufptr = buffer;
889
890 while (len > 0)
891 {
892 tlen = MIN (len, 4 - (memaddr & 3));
893 offset = memaddr & 3;
894
895 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
896 if (errcode != 0)
897 {
898 /* The transfer request might have crossed the boundary to an
899 unallocated region of memory. Retry the transfer, requesting
900 a single byte. */
901 tlen = 1;
902 offset = 0;
903 errcode = target_read_memory (memaddr, buf, 1);
904 if (errcode != 0)
905 goto done;
906 }
907
908 if (bufptr - buffer + tlen > buffer_allocated)
909 {
910 unsigned int bytes;
911
912 bytes = bufptr - buffer;
913 buffer_allocated *= 2;
914 buffer = (char *) xrealloc (buffer, buffer_allocated);
915 bufptr = buffer + bytes;
916 }
917
918 for (i = 0; i < tlen; i++)
919 {
920 *bufptr++ = buf[i + offset];
921 if (buf[i + offset] == '\000')
922 {
923 nbytes_read += i + 1;
924 goto done;
925 }
926 }
927
928 memaddr += tlen;
929 len -= tlen;
930 nbytes_read += tlen;
931 }
932 done:
933 string->reset (buffer);
934 if (errnop != NULL)
935 *errnop = errcode;
936 return nbytes_read;
937 }
938
939 struct target_section_table *
940 target_get_section_table (struct target_ops *target)
941 {
942 return target->get_section_table ();
943 }
944
945 /* Find a section containing ADDR. */
946
947 struct target_section *
948 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
949 {
950 struct target_section_table *table = target_get_section_table (target);
951 struct target_section *secp;
952
953 if (table == NULL)
954 return NULL;
955
956 for (secp = table->sections; secp < table->sections_end; secp++)
957 {
958 if (addr >= secp->addr && addr < secp->endaddr)
959 return secp;
960 }
961 return NULL;
962 }
963
964
965 /* Helper for the memory xfer routines. Checks the attributes of the
966 memory region of MEMADDR against the read or write being attempted.
967 If the access is permitted returns true, otherwise returns false.
968 REGION_P is an optional output parameter. If not-NULL, it is
969 filled with a pointer to the memory region of MEMADDR. REG_LEN
970 returns LEN trimmed to the end of the region. This is how much the
971 caller can continue requesting, if the access is permitted. A
972 single xfer request must not straddle memory region boundaries. */
973
974 static int
975 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
976 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
977 struct mem_region **region_p)
978 {
979 struct mem_region *region;
980
981 region = lookup_mem_region (memaddr);
982
983 if (region_p != NULL)
984 *region_p = region;
985
986 switch (region->attrib.mode)
987 {
988 case MEM_RO:
989 if (writebuf != NULL)
990 return 0;
991 break;
992
993 case MEM_WO:
994 if (readbuf != NULL)
995 return 0;
996 break;
997
998 case MEM_FLASH:
999 /* We only support writing to flash during "load" for now. */
1000 if (writebuf != NULL)
1001 error (_("Writing to flash memory forbidden in this context"));
1002 break;
1003
1004 case MEM_NONE:
1005 return 0;
1006 }
1007
1008 /* region->hi == 0 means there's no upper bound. */
1009 if (memaddr + len < region->hi || region->hi == 0)
1010 *reg_len = len;
1011 else
1012 *reg_len = region->hi - memaddr;
1013
1014 return 1;
1015 }
1016
1017 /* Read memory from more than one valid target. A core file, for
1018 instance, could have some of memory but delegate other bits to
1019 the target below it. So, we must manually try all targets. */
1020
1021 enum target_xfer_status
1022 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1023 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1024 ULONGEST *xfered_len)
1025 {
1026 enum target_xfer_status res;
1027
1028 do
1029 {
1030 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1031 readbuf, writebuf, memaddr, len,
1032 xfered_len);
1033 if (res == TARGET_XFER_OK)
1034 break;
1035
1036 /* Stop if the target reports that the memory is not available. */
1037 if (res == TARGET_XFER_UNAVAILABLE)
1038 break;
1039
1040 /* We want to continue past core files to executables, but not
1041 past a running target's memory. */
1042 if (ops->has_all_memory ())
1043 break;
1044
1045 ops = ops->beneath ();
1046 }
1047 while (ops != NULL);
1048
1049 /* The cache works at the raw memory level. Make sure the cache
1050 gets updated with raw contents no matter what kind of memory
1051 object was originally being written. Note we do write-through
1052 first, so that if it fails, we don't write to the cache contents
1053 that never made it to the target. */
1054 if (writebuf != NULL
1055 && !ptid_equal (inferior_ptid, null_ptid)
1056 && target_dcache_init_p ()
1057 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1058 {
1059 DCACHE *dcache = target_dcache_get ();
1060
1061 /* Note that writing to an area of memory which wasn't present
1062 in the cache doesn't cause it to be loaded in. */
1063 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1064 }
1065
1066 return res;
1067 }
1068
1069 /* Perform a partial memory transfer.
1070 For docs see target.h, to_xfer_partial. */
1071
1072 static enum target_xfer_status
1073 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1074 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1075 ULONGEST len, ULONGEST *xfered_len)
1076 {
1077 enum target_xfer_status res;
1078 ULONGEST reg_len;
1079 struct mem_region *region;
1080 struct inferior *inf;
1081
1082 /* For accesses to unmapped overlay sections, read directly from
1083 files. Must do this first, as MEMADDR may need adjustment. */
1084 if (readbuf != NULL && overlay_debugging)
1085 {
1086 struct obj_section *section = find_pc_overlay (memaddr);
1087
1088 if (pc_in_unmapped_range (memaddr, section))
1089 {
1090 struct target_section_table *table
1091 = target_get_section_table (ops);
1092 const char *section_name = section->the_bfd_section->name;
1093
1094 memaddr = overlay_mapped_address (memaddr, section);
1095 return section_table_xfer_memory_partial (readbuf, writebuf,
1096 memaddr, len, xfered_len,
1097 table->sections,
1098 table->sections_end,
1099 section_name);
1100 }
1101 }
1102
1103 /* Try the executable files, if "trust-readonly-sections" is set. */
1104 if (readbuf != NULL && trust_readonly)
1105 {
1106 struct target_section *secp;
1107 struct target_section_table *table;
1108
1109 secp = target_section_by_addr (ops, memaddr);
1110 if (secp != NULL
1111 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1112 secp->the_bfd_section)
1113 & SEC_READONLY))
1114 {
1115 table = target_get_section_table (ops);
1116 return section_table_xfer_memory_partial (readbuf, writebuf,
1117 memaddr, len, xfered_len,
1118 table->sections,
1119 table->sections_end,
1120 NULL);
1121 }
1122 }
1123
1124 /* Try GDB's internal data cache. */
1125
1126 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1127 &region))
1128 return TARGET_XFER_E_IO;
1129
1130 if (!ptid_equal (inferior_ptid, null_ptid))
1131 inf = find_inferior_ptid (inferior_ptid);
1132 else
1133 inf = NULL;
1134
1135 if (inf != NULL
1136 && readbuf != NULL
1137 /* The dcache reads whole cache lines; that doesn't play well
1138 with reading from a trace buffer, because reading outside of
1139 the collected memory range fails. */
1140 && get_traceframe_number () == -1
1141 && (region->attrib.cache
1142 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1143 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1144 {
1145 DCACHE *dcache = target_dcache_get_or_init ();
1146
1147 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1148 reg_len, xfered_len);
1149 }
1150
1151 /* If none of those methods found the memory we wanted, fall back
1152 to a target partial transfer. Normally a single call to
1153 to_xfer_partial is enough; if it doesn't recognize an object
1154 it will call the to_xfer_partial of the next target down.
1155 But for memory this won't do. Memory is the only target
1156 object which can be read from more than one valid target.
1157 A core file, for instance, could have some of memory but
1158 delegate other bits to the target below it. So, we must
1159 manually try all targets. */
1160
1161 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1162 xfered_len);
1163
1164 /* If we still haven't got anything, return the last error. We
1165 give up. */
1166 return res;
1167 }
1168
1169 /* Perform a partial memory transfer. For docs see target.h,
1170 to_xfer_partial. */
1171
1172 static enum target_xfer_status
1173 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1174 gdb_byte *readbuf, const gdb_byte *writebuf,
1175 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1176 {
1177 enum target_xfer_status res;
1178
1179 /* Zero length requests are ok and require no work. */
1180 if (len == 0)
1181 return TARGET_XFER_EOF;
1182
1183 memaddr = address_significant (target_gdbarch (), memaddr);
1184
1185 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1186 breakpoint insns, thus hiding out from higher layers whether
1187 there are software breakpoints inserted in the code stream. */
1188 if (readbuf != NULL)
1189 {
1190 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1191 xfered_len);
1192
1193 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1194 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1195 }
1196 else
1197 {
1198 /* A large write request is likely to be partially satisfied
1199 by memory_xfer_partial_1. We will continually malloc
1200 and free a copy of the entire write request for breakpoint
1201 shadow handling even though we only end up writing a small
1202 subset of it. Cap writes to a limit specified by the target
1203 to mitigate this. */
1204 len = std::min (ops->get_memory_xfer_limit (), len);
1205
1206 gdb::byte_vector buf (writebuf, writebuf + len);
1207 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1208 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1209 xfered_len);
1210 }
1211
1212 return res;
1213 }
1214
1215 scoped_restore_tmpl<int>
1216 make_scoped_restore_show_memory_breakpoints (int show)
1217 {
1218 return make_scoped_restore (&show_memory_breakpoints, show);
1219 }
1220
1221 /* For docs see target.h, to_xfer_partial. */
1222
1223 enum target_xfer_status
1224 target_xfer_partial (struct target_ops *ops,
1225 enum target_object object, const char *annex,
1226 gdb_byte *readbuf, const gdb_byte *writebuf,
1227 ULONGEST offset, ULONGEST len,
1228 ULONGEST *xfered_len)
1229 {
1230 enum target_xfer_status retval;
1231
1232 /* Transfer is done when LEN is zero. */
1233 if (len == 0)
1234 return TARGET_XFER_EOF;
1235
1236 if (writebuf && !may_write_memory)
1237 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1238 core_addr_to_string_nz (offset), plongest (len));
1239
1240 *xfered_len = 0;
1241
1242 /* If this is a memory transfer, let the memory-specific code
1243 have a look at it instead. Memory transfers are more
1244 complicated. */
1245 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1246 || object == TARGET_OBJECT_CODE_MEMORY)
1247 retval = memory_xfer_partial (ops, object, readbuf,
1248 writebuf, offset, len, xfered_len);
1249 else if (object == TARGET_OBJECT_RAW_MEMORY)
1250 {
1251 /* Skip/avoid accessing the target if the memory region
1252 attributes block the access. Check this here instead of in
1253 raw_memory_xfer_partial as otherwise we'd end up checking
1254 this twice in the case of the memory_xfer_partial path is
1255 taken; once before checking the dcache, and another in the
1256 tail call to raw_memory_xfer_partial. */
1257 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1258 NULL))
1259 return TARGET_XFER_E_IO;
1260
1261 /* Request the normal memory object from other layers. */
1262 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1263 xfered_len);
1264 }
1265 else
1266 retval = ops->xfer_partial (object, annex, readbuf,
1267 writebuf, offset, len, xfered_len);
1268
1269 if (targetdebug)
1270 {
1271 const unsigned char *myaddr = NULL;
1272
1273 fprintf_unfiltered (gdb_stdlog,
1274 "%s:target_xfer_partial "
1275 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1276 ops->shortname (),
1277 (int) object,
1278 (annex ? annex : "(null)"),
1279 host_address_to_string (readbuf),
1280 host_address_to_string (writebuf),
1281 core_addr_to_string_nz (offset),
1282 pulongest (len), retval,
1283 pulongest (*xfered_len));
1284
1285 if (readbuf)
1286 myaddr = readbuf;
1287 if (writebuf)
1288 myaddr = writebuf;
1289 if (retval == TARGET_XFER_OK && myaddr != NULL)
1290 {
1291 int i;
1292
1293 fputs_unfiltered (", bytes =", gdb_stdlog);
1294 for (i = 0; i < *xfered_len; i++)
1295 {
1296 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1297 {
1298 if (targetdebug < 2 && i > 0)
1299 {
1300 fprintf_unfiltered (gdb_stdlog, " ...");
1301 break;
1302 }
1303 fprintf_unfiltered (gdb_stdlog, "\n");
1304 }
1305
1306 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1307 }
1308 }
1309
1310 fputc_unfiltered ('\n', gdb_stdlog);
1311 }
1312
1313 /* Check implementations of to_xfer_partial update *XFERED_LEN
1314 properly. Do assertion after printing debug messages, so that we
1315 can find more clues on assertion failure from debugging messages. */
1316 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1317 gdb_assert (*xfered_len > 0);
1318
1319 return retval;
1320 }
1321
1322 /* Read LEN bytes of target memory at address MEMADDR, placing the
1323 results in GDB's memory at MYADDR. Returns either 0 for success or
1324 -1 if any error occurs.
1325
1326 If an error occurs, no guarantee is made about the contents of the data at
1327 MYADDR. In particular, the caller should not depend upon partial reads
1328 filling the buffer with good data. There is no way for the caller to know
1329 how much good data might have been transfered anyway. Callers that can
1330 deal with partial reads should call target_read (which will retry until
1331 it makes no progress, and then return how much was transferred). */
1332
1333 int
1334 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1335 {
1336 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return -1;
1341 }
1342
1343 /* See target/target.h. */
1344
1345 int
1346 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1347 {
1348 gdb_byte buf[4];
1349 int r;
1350
1351 r = target_read_memory (memaddr, buf, sizeof buf);
1352 if (r != 0)
1353 return r;
1354 *result = extract_unsigned_integer (buf, sizeof buf,
1355 gdbarch_byte_order (target_gdbarch ()));
1356 return 0;
1357 }
1358
1359 /* Like target_read_memory, but specify explicitly that this is a read
1360 from the target's raw memory. That is, this read bypasses the
1361 dcache, breakpoint shadowing, etc. */
1362
1363 int
1364 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1365 {
1366 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return -1;
1371 }
1372
1373 /* Like target_read_memory, but specify explicitly that this is a read from
1374 the target's stack. This may trigger different cache behavior. */
1375
1376 int
1377 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1378 {
1379 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1381 return 0;
1382 else
1383 return -1;
1384 }
1385
1386 /* Like target_read_memory, but specify explicitly that this is a read from
1387 the target's code. This may trigger different cache behavior. */
1388
1389 int
1390 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1391 {
1392 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1393 myaddr, memaddr, len) == len)
1394 return 0;
1395 else
1396 return -1;
1397 }
1398
1399 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1400 Returns either 0 for success or -1 if any error occurs. If an
1401 error occurs, no guarantee is made about how much data got written.
1402 Callers that can deal with partial writes should call
1403 target_write. */
1404
1405 int
1406 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1407 {
1408 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1409 myaddr, memaddr, len) == len)
1410 return 0;
1411 else
1412 return -1;
1413 }
1414
1415 /* Write LEN bytes from MYADDR to target raw memory at address
1416 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1417 If an error occurs, no guarantee is made about how much data got
1418 written. Callers that can deal with partial writes should call
1419 target_write. */
1420
1421 int
1422 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1423 {
1424 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Fetch the target's memory map. */
1432
1433 std::vector<mem_region>
1434 target_memory_map (void)
1435 {
1436 std::vector<mem_region> result = current_top_target ()->memory_map ();
1437 if (result.empty ())
1438 return result;
1439
1440 std::sort (result.begin (), result.end ());
1441
1442 /* Check that regions do not overlap. Simultaneously assign
1443 a numbering for the "mem" commands to use to refer to
1444 each region. */
1445 mem_region *last_one = NULL;
1446 for (size_t ix = 0; ix < result.size (); ix++)
1447 {
1448 mem_region *this_one = &result[ix];
1449 this_one->number = ix;
1450
1451 if (last_one != NULL && last_one->hi > this_one->lo)
1452 {
1453 warning (_("Overlapping regions in memory map: ignoring"));
1454 return std::vector<mem_region> ();
1455 }
1456
1457 last_one = this_one;
1458 }
1459
1460 return result;
1461 }
1462
1463 void
1464 target_flash_erase (ULONGEST address, LONGEST length)
1465 {
1466 current_top_target ()->flash_erase (address, length);
1467 }
1468
1469 void
1470 target_flash_done (void)
1471 {
1472 current_top_target ()->flash_done ();
1473 }
1474
1475 static void
1476 show_trust_readonly (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c, const char *value)
1478 {
1479 fprintf_filtered (file,
1480 _("Mode for reading from readonly sections is %s.\n"),
1481 value);
1482 }
1483
1484 /* Target vector read/write partial wrapper functions. */
1485
1486 static enum target_xfer_status
1487 target_read_partial (struct target_ops *ops,
1488 enum target_object object,
1489 const char *annex, gdb_byte *buf,
1490 ULONGEST offset, ULONGEST len,
1491 ULONGEST *xfered_len)
1492 {
1493 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1494 xfered_len);
1495 }
1496
1497 static enum target_xfer_status
1498 target_write_partial (struct target_ops *ops,
1499 enum target_object object,
1500 const char *annex, const gdb_byte *buf,
1501 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1502 {
1503 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1504 xfered_len);
1505 }
1506
1507 /* Wrappers to perform the full transfer. */
1508
1509 /* For docs on target_read see target.h. */
1510
1511 LONGEST
1512 target_read (struct target_ops *ops,
1513 enum target_object object,
1514 const char *annex, gdb_byte *buf,
1515 ULONGEST offset, LONGEST len)
1516 {
1517 LONGEST xfered_total = 0;
1518 int unit_size = 1;
1519
1520 /* If we are reading from a memory object, find the length of an addressable
1521 unit for that architecture. */
1522 if (object == TARGET_OBJECT_MEMORY
1523 || object == TARGET_OBJECT_STACK_MEMORY
1524 || object == TARGET_OBJECT_CODE_MEMORY
1525 || object == TARGET_OBJECT_RAW_MEMORY)
1526 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1527
1528 while (xfered_total < len)
1529 {
1530 ULONGEST xfered_partial;
1531 enum target_xfer_status status;
1532
1533 status = target_read_partial (ops, object, annex,
1534 buf + xfered_total * unit_size,
1535 offset + xfered_total, len - xfered_total,
1536 &xfered_partial);
1537
1538 /* Call an observer, notifying them of the xfer progress? */
1539 if (status == TARGET_XFER_EOF)
1540 return xfered_total;
1541 else if (status == TARGET_XFER_OK)
1542 {
1543 xfered_total += xfered_partial;
1544 QUIT;
1545 }
1546 else
1547 return TARGET_XFER_E_IO;
1548
1549 }
1550 return len;
1551 }
1552
1553 /* Assuming that the entire [begin, end) range of memory cannot be
1554 read, try to read whatever subrange is possible to read.
1555
1556 The function returns, in RESULT, either zero or one memory block.
1557 If there's a readable subrange at the beginning, it is completely
1558 read and returned. Any further readable subrange will not be read.
1559 Otherwise, if there's a readable subrange at the end, it will be
1560 completely read and returned. Any readable subranges before it
1561 (obviously, not starting at the beginning), will be ignored. In
1562 other cases -- either no readable subrange, or readable subrange(s)
1563 that is neither at the beginning, or end, nothing is returned.
1564
1565 The purpose of this function is to handle a read across a boundary
1566 of accessible memory in a case when memory map is not available.
1567 The above restrictions are fine for this case, but will give
1568 incorrect results if the memory is 'patchy'. However, supporting
1569 'patchy' memory would require trying to read every single byte,
1570 and it seems unacceptable solution. Explicit memory map is
1571 recommended for this case -- and target_read_memory_robust will
1572 take care of reading multiple ranges then. */
1573
1574 static void
1575 read_whatever_is_readable (struct target_ops *ops,
1576 const ULONGEST begin, const ULONGEST end,
1577 int unit_size,
1578 std::vector<memory_read_result> *result)
1579 {
1580 ULONGEST current_begin = begin;
1581 ULONGEST current_end = end;
1582 int forward;
1583 ULONGEST xfered_len;
1584
1585 /* If we previously failed to read 1 byte, nothing can be done here. */
1586 if (end - begin <= 1)
1587 return;
1588
1589 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1590
1591 /* Check that either first or the last byte is readable, and give up
1592 if not. This heuristic is meant to permit reading accessible memory
1593 at the boundary of accessible region. */
1594 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1595 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1596 {
1597 forward = 1;
1598 ++current_begin;
1599 }
1600 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1601 buf.get () + (end - begin) - 1, end - 1, 1,
1602 &xfered_len) == TARGET_XFER_OK)
1603 {
1604 forward = 0;
1605 --current_end;
1606 }
1607 else
1608 return;
1609
1610 /* Loop invariant is that the [current_begin, current_end) was previously
1611 found to be not readable as a whole.
1612
1613 Note loop condition -- if the range has 1 byte, we can't divide the range
1614 so there's no point trying further. */
1615 while (current_end - current_begin > 1)
1616 {
1617 ULONGEST first_half_begin, first_half_end;
1618 ULONGEST second_half_begin, second_half_end;
1619 LONGEST xfer;
1620 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1621
1622 if (forward)
1623 {
1624 first_half_begin = current_begin;
1625 first_half_end = middle;
1626 second_half_begin = middle;
1627 second_half_end = current_end;
1628 }
1629 else
1630 {
1631 first_half_begin = middle;
1632 first_half_end = current_end;
1633 second_half_begin = current_begin;
1634 second_half_end = middle;
1635 }
1636
1637 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1638 buf.get () + (first_half_begin - begin) * unit_size,
1639 first_half_begin,
1640 first_half_end - first_half_begin);
1641
1642 if (xfer == first_half_end - first_half_begin)
1643 {
1644 /* This half reads up fine. So, the error must be in the
1645 other half. */
1646 current_begin = second_half_begin;
1647 current_end = second_half_end;
1648 }
1649 else
1650 {
1651 /* This half is not readable. Because we've tried one byte, we
1652 know some part of this half if actually readable. Go to the next
1653 iteration to divide again and try to read.
1654
1655 We don't handle the other half, because this function only tries
1656 to read a single readable subrange. */
1657 current_begin = first_half_begin;
1658 current_end = first_half_end;
1659 }
1660 }
1661
1662 if (forward)
1663 {
1664 /* The [begin, current_begin) range has been read. */
1665 result->emplace_back (begin, current_end, std::move (buf));
1666 }
1667 else
1668 {
1669 /* The [current_end, end) range has been read. */
1670 LONGEST region_len = end - current_end;
1671
1672 gdb::unique_xmalloc_ptr<gdb_byte> data
1673 ((gdb_byte *) xmalloc (region_len * unit_size));
1674 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1675 region_len * unit_size);
1676 result->emplace_back (current_end, end, std::move (data));
1677 }
1678 }
1679
1680 std::vector<memory_read_result>
1681 read_memory_robust (struct target_ops *ops,
1682 const ULONGEST offset, const LONGEST len)
1683 {
1684 std::vector<memory_read_result> result;
1685 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1686
1687 LONGEST xfered_total = 0;
1688 while (xfered_total < len)
1689 {
1690 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1691 LONGEST region_len;
1692
1693 /* If there is no explicit region, a fake one should be created. */
1694 gdb_assert (region);
1695
1696 if (region->hi == 0)
1697 region_len = len - xfered_total;
1698 else
1699 region_len = region->hi - offset;
1700
1701 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1702 {
1703 /* Cannot read this region. Note that we can end up here only
1704 if the region is explicitly marked inaccessible, or
1705 'inaccessible-by-default' is in effect. */
1706 xfered_total += region_len;
1707 }
1708 else
1709 {
1710 LONGEST to_read = std::min (len - xfered_total, region_len);
1711 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1712 ((gdb_byte *) xmalloc (to_read * unit_size));
1713
1714 LONGEST xfered_partial =
1715 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1716 offset + xfered_total, to_read);
1717 /* Call an observer, notifying them of the xfer progress? */
1718 if (xfered_partial <= 0)
1719 {
1720 /* Got an error reading full chunk. See if maybe we can read
1721 some subrange. */
1722 read_whatever_is_readable (ops, offset + xfered_total,
1723 offset + xfered_total + to_read,
1724 unit_size, &result);
1725 xfered_total += to_read;
1726 }
1727 else
1728 {
1729 result.emplace_back (offset + xfered_total,
1730 offset + xfered_total + xfered_partial,
1731 std::move (buffer));
1732 xfered_total += xfered_partial;
1733 }
1734 QUIT;
1735 }
1736 }
1737
1738 return result;
1739 }
1740
1741
1742 /* An alternative to target_write with progress callbacks. */
1743
1744 LONGEST
1745 target_write_with_progress (struct target_ops *ops,
1746 enum target_object object,
1747 const char *annex, const gdb_byte *buf,
1748 ULONGEST offset, LONGEST len,
1749 void (*progress) (ULONGEST, void *), void *baton)
1750 {
1751 LONGEST xfered_total = 0;
1752 int unit_size = 1;
1753
1754 /* If we are writing to a memory object, find the length of an addressable
1755 unit for that architecture. */
1756 if (object == TARGET_OBJECT_MEMORY
1757 || object == TARGET_OBJECT_STACK_MEMORY
1758 || object == TARGET_OBJECT_CODE_MEMORY
1759 || object == TARGET_OBJECT_RAW_MEMORY)
1760 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1761
1762 /* Give the progress callback a chance to set up. */
1763 if (progress)
1764 (*progress) (0, baton);
1765
1766 while (xfered_total < len)
1767 {
1768 ULONGEST xfered_partial;
1769 enum target_xfer_status status;
1770
1771 status = target_write_partial (ops, object, annex,
1772 buf + xfered_total * unit_size,
1773 offset + xfered_total, len - xfered_total,
1774 &xfered_partial);
1775
1776 if (status != TARGET_XFER_OK)
1777 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1778
1779 if (progress)
1780 (*progress) (xfered_partial, baton);
1781
1782 xfered_total += xfered_partial;
1783 QUIT;
1784 }
1785 return len;
1786 }
1787
1788 /* For docs on target_write see target.h. */
1789
1790 LONGEST
1791 target_write (struct target_ops *ops,
1792 enum target_object object,
1793 const char *annex, const gdb_byte *buf,
1794 ULONGEST offset, LONGEST len)
1795 {
1796 return target_write_with_progress (ops, object, annex, buf, offset, len,
1797 NULL, NULL);
1798 }
1799
1800 /* Help for target_read_alloc and target_read_stralloc. See their comments
1801 for details. */
1802
1803 template <typename T>
1804 gdb::optional<gdb::def_vector<T>>
1805 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1806 const char *annex)
1807 {
1808 gdb::def_vector<T> buf;
1809 size_t buf_pos = 0;
1810 const int chunk = 4096;
1811
1812 /* This function does not have a length parameter; it reads the
1813 entire OBJECT). Also, it doesn't support objects fetched partly
1814 from one target and partly from another (in a different stratum,
1815 e.g. a core file and an executable). Both reasons make it
1816 unsuitable for reading memory. */
1817 gdb_assert (object != TARGET_OBJECT_MEMORY);
1818
1819 /* Start by reading up to 4K at a time. The target will throttle
1820 this number down if necessary. */
1821 while (1)
1822 {
1823 ULONGEST xfered_len;
1824 enum target_xfer_status status;
1825
1826 buf.resize (buf_pos + chunk);
1827
1828 status = target_read_partial (ops, object, annex,
1829 (gdb_byte *) &buf[buf_pos],
1830 buf_pos, chunk,
1831 &xfered_len);
1832
1833 if (status == TARGET_XFER_EOF)
1834 {
1835 /* Read all there was. */
1836 buf.resize (buf_pos);
1837 return buf;
1838 }
1839 else if (status != TARGET_XFER_OK)
1840 {
1841 /* An error occurred. */
1842 return {};
1843 }
1844
1845 buf_pos += xfered_len;
1846
1847 QUIT;
1848 }
1849 }
1850
1851 /* See target.h */
1852
1853 gdb::optional<gdb::byte_vector>
1854 target_read_alloc (struct target_ops *ops, enum target_object object,
1855 const char *annex)
1856 {
1857 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1858 }
1859
1860 /* See target.h. */
1861
1862 gdb::optional<gdb::char_vector>
1863 target_read_stralloc (struct target_ops *ops, enum target_object object,
1864 const char *annex)
1865 {
1866 gdb::optional<gdb::char_vector> buf
1867 = target_read_alloc_1<char> (ops, object, annex);
1868
1869 if (!buf)
1870 return {};
1871
1872 if (buf->back () != '\0')
1873 buf->push_back ('\0');
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1877 it != buf->end (); it++)
1878 if (*it != '\0')
1879 {
1880 warning (_("target object %d, annex %s, "
1881 "contained unexpected null characters"),
1882 (int) object, annex ? annex : "(none)");
1883 break;
1884 }
1885
1886 return buf;
1887 }
1888
1889 /* Memory transfer methods. */
1890
1891 void
1892 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1893 LONGEST len)
1894 {
1895 /* This method is used to read from an alternate, non-current
1896 target. This read must bypass the overlay support (as symbols
1897 don't match this target), and GDB's internal cache (wrong cache
1898 for this target). */
1899 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1900 != len)
1901 memory_error (TARGET_XFER_E_IO, addr);
1902 }
1903
1904 ULONGEST
1905 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1906 int len, enum bfd_endian byte_order)
1907 {
1908 gdb_byte buf[sizeof (ULONGEST)];
1909
1910 gdb_assert (len <= sizeof (buf));
1911 get_target_memory (ops, addr, buf, len);
1912 return extract_unsigned_integer (buf, len, byte_order);
1913 }
1914
1915 /* See target.h. */
1916
1917 int
1918 target_insert_breakpoint (struct gdbarch *gdbarch,
1919 struct bp_target_info *bp_tgt)
1920 {
1921 if (!may_insert_breakpoints)
1922 {
1923 warning (_("May not insert breakpoints"));
1924 return 1;
1925 }
1926
1927 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1928 }
1929
1930 /* See target.h. */
1931
1932 int
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt,
1935 enum remove_bp_reason reason)
1936 {
1937 /* This is kind of a weird case to handle, but the permission might
1938 have been changed after breakpoints were inserted - in which case
1939 we should just take the user literally and assume that any
1940 breakpoints should be left in place. */
1941 if (!may_insert_breakpoints)
1942 {
1943 warning (_("May not remove breakpoints"));
1944 return 1;
1945 }
1946
1947 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1948 }
1949
1950 static void
1951 info_target_command (const char *args, int from_tty)
1952 {
1953 int has_all_mem = 0;
1954
1955 if (symfile_objfile != NULL)
1956 printf_unfiltered (_("Symbols from \"%s\".\n"),
1957 objfile_name (symfile_objfile));
1958
1959 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1960 {
1961 if (!t->has_memory ())
1962 continue;
1963
1964 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1965 continue;
1966 if (has_all_mem)
1967 printf_unfiltered (_("\tWhile running this, "
1968 "GDB does not access memory from...\n"));
1969 printf_unfiltered ("%s:\n", t->longname ());
1970 t->files_info ();
1971 has_all_mem = t->has_all_memory ();
1972 }
1973 }
1974
1975 /* This function is called before any new inferior is created, e.g.
1976 by running a program, attaching, or connecting to a target.
1977 It cleans up any state from previous invocations which might
1978 change between runs. This is a subset of what target_preopen
1979 resets (things which might change between targets). */
1980
1981 void
1982 target_pre_inferior (int from_tty)
1983 {
1984 /* Clear out solib state. Otherwise the solib state of the previous
1985 inferior might have survived and is entirely wrong for the new
1986 target. This has been observed on GNU/Linux using glibc 2.3. How
1987 to reproduce:
1988
1989 bash$ ./foo&
1990 [1] 4711
1991 bash$ ./foo&
1992 [1] 4712
1993 bash$ gdb ./foo
1994 [...]
1995 (gdb) attach 4711
1996 (gdb) detach
1997 (gdb) attach 4712
1998 Cannot access memory at address 0xdeadbeef
1999 */
2000
2001 /* In some OSs, the shared library list is the same/global/shared
2002 across inferiors. If code is shared between processes, so are
2003 memory regions and features. */
2004 if (!gdbarch_has_global_solist (target_gdbarch ()))
2005 {
2006 no_shared_libraries (NULL, from_tty);
2007
2008 invalidate_target_mem_regions ();
2009
2010 target_clear_description ();
2011 }
2012
2013 /* attach_flag may be set if the previous process associated with
2014 the inferior was attached to. */
2015 current_inferior ()->attach_flag = 0;
2016
2017 current_inferior ()->highest_thread_num = 0;
2018
2019 agent_capability_invalidate ();
2020 }
2021
2022 /* Callback for iterate_over_inferiors. Gets rid of the given
2023 inferior. */
2024
2025 static int
2026 dispose_inferior (struct inferior *inf, void *args)
2027 {
2028 struct thread_info *thread;
2029
2030 thread = any_thread_of_process (inf->pid);
2031 if (thread)
2032 {
2033 switch_to_thread (thread->ptid);
2034
2035 /* Core inferiors actually should be detached, not killed. */
2036 if (target_has_execution)
2037 target_kill ();
2038 else
2039 target_detach (inf, 0);
2040 }
2041
2042 return 0;
2043 }
2044
2045 /* This is to be called by the open routine before it does
2046 anything. */
2047
2048 void
2049 target_preopen (int from_tty)
2050 {
2051 dont_repeat ();
2052
2053 if (have_inferiors ())
2054 {
2055 if (!from_tty
2056 || !have_live_inferiors ()
2057 || query (_("A program is being debugged already. Kill it? ")))
2058 iterate_over_inferiors (dispose_inferior, NULL);
2059 else
2060 error (_("Program not killed."));
2061 }
2062
2063 /* Calling target_kill may remove the target from the stack. But if
2064 it doesn't (which seems like a win for UDI), remove it now. */
2065 /* Leave the exec target, though. The user may be switching from a
2066 live process to a core of the same program. */
2067 pop_all_targets_above (file_stratum);
2068
2069 target_pre_inferior (from_tty);
2070 }
2071
2072 /* See target.h. */
2073
2074 void
2075 target_detach (inferior *inf, int from_tty)
2076 {
2077 /* As long as some to_detach implementations rely on the current_inferior
2078 (either directly, or indirectly, like through target_gdbarch or by
2079 reading memory), INF needs to be the current inferior. When that
2080 requirement will become no longer true, then we can remove this
2081 assertion. */
2082 gdb_assert (inf == current_inferior ());
2083
2084 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2085 /* Don't remove global breakpoints here. They're removed on
2086 disconnection from the target. */
2087 ;
2088 else
2089 /* If we're in breakpoints-always-inserted mode, have to remove
2090 them before detaching. */
2091 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2092
2093 prepare_for_detach ();
2094
2095 current_top_target ()->detach (inf, from_tty);
2096 }
2097
2098 void
2099 target_disconnect (const char *args, int from_tty)
2100 {
2101 /* If we're in breakpoints-always-inserted mode or if breakpoints
2102 are global across processes, we have to remove them before
2103 disconnecting. */
2104 remove_breakpoints ();
2105
2106 current_top_target ()->disconnect (args, from_tty);
2107 }
2108
2109 /* See target/target.h. */
2110
2111 ptid_t
2112 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2113 {
2114 return current_top_target ()->wait (ptid, status, options);
2115 }
2116
2117 /* See target.h. */
2118
2119 ptid_t
2120 default_target_wait (struct target_ops *ops,
2121 ptid_t ptid, struct target_waitstatus *status,
2122 int options)
2123 {
2124 status->kind = TARGET_WAITKIND_IGNORE;
2125 return minus_one_ptid;
2126 }
2127
2128 const char *
2129 target_pid_to_str (ptid_t ptid)
2130 {
2131 return current_top_target ()->pid_to_str (ptid);
2132 }
2133
2134 const char *
2135 target_thread_name (struct thread_info *info)
2136 {
2137 return current_top_target ()->thread_name (info);
2138 }
2139
2140 struct thread_info *
2141 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2142 int handle_len,
2143 struct inferior *inf)
2144 {
2145 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2146 handle_len, inf);
2147 }
2148
2149 void
2150 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2151 {
2152 target_dcache_invalidate ();
2153
2154 current_top_target ()->resume (ptid, step, signal);
2155
2156 registers_changed_ptid (ptid);
2157 /* We only set the internal executing state here. The user/frontend
2158 running state is set at a higher level. */
2159 set_executing (ptid, 1);
2160 clear_inline_frame_state (ptid);
2161 }
2162
2163 /* If true, target_commit_resume is a nop. */
2164 static int defer_target_commit_resume;
2165
2166 /* See target.h. */
2167
2168 void
2169 target_commit_resume (void)
2170 {
2171 if (defer_target_commit_resume)
2172 return;
2173
2174 current_top_target ()->commit_resume ();
2175 }
2176
2177 /* See target.h. */
2178
2179 scoped_restore_tmpl<int>
2180 make_scoped_defer_target_commit_resume ()
2181 {
2182 return make_scoped_restore (&defer_target_commit_resume, 1);
2183 }
2184
2185 void
2186 target_pass_signals (int numsigs, unsigned char *pass_signals)
2187 {
2188 current_top_target ()->pass_signals (numsigs, pass_signals);
2189 }
2190
2191 void
2192 target_program_signals (int numsigs, unsigned char *program_signals)
2193 {
2194 current_top_target ()->program_signals (numsigs, program_signals);
2195 }
2196
2197 static int
2198 default_follow_fork (struct target_ops *self, int follow_child,
2199 int detach_fork)
2200 {
2201 /* Some target returned a fork event, but did not know how to follow it. */
2202 internal_error (__FILE__, __LINE__,
2203 _("could not find a target to follow fork"));
2204 }
2205
2206 /* Look through the list of possible targets for a target that can
2207 follow forks. */
2208
2209 int
2210 target_follow_fork (int follow_child, int detach_fork)
2211 {
2212 return current_top_target ()->follow_fork (follow_child, detach_fork);
2213 }
2214
2215 /* Target wrapper for follow exec hook. */
2216
2217 void
2218 target_follow_exec (struct inferior *inf, char *execd_pathname)
2219 {
2220 current_top_target ()->follow_exec (inf, execd_pathname);
2221 }
2222
2223 static void
2224 default_mourn_inferior (struct target_ops *self)
2225 {
2226 internal_error (__FILE__, __LINE__,
2227 _("could not find a target to follow mourn inferior"));
2228 }
2229
2230 void
2231 target_mourn_inferior (ptid_t ptid)
2232 {
2233 gdb_assert (ptid_equal (ptid, inferior_ptid));
2234 current_top_target ()->mourn_inferior ();
2235
2236 /* We no longer need to keep handles on any of the object files.
2237 Make sure to release them to avoid unnecessarily locking any
2238 of them while we're not actually debugging. */
2239 bfd_cache_close_all ();
2240 }
2241
2242 /* Look for a target which can describe architectural features, starting
2243 from TARGET. If we find one, return its description. */
2244
2245 const struct target_desc *
2246 target_read_description (struct target_ops *target)
2247 {
2248 return target->read_description ();
2249 }
2250
2251 /* This implements a basic search of memory, reading target memory and
2252 performing the search here (as opposed to performing the search in on the
2253 target side with, for example, gdbserver). */
2254
2255 int
2256 simple_search_memory (struct target_ops *ops,
2257 CORE_ADDR start_addr, ULONGEST search_space_len,
2258 const gdb_byte *pattern, ULONGEST pattern_len,
2259 CORE_ADDR *found_addrp)
2260 {
2261 /* NOTE: also defined in find.c testcase. */
2262 #define SEARCH_CHUNK_SIZE 16000
2263 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2264 /* Buffer to hold memory contents for searching. */
2265 unsigned search_buf_size;
2266
2267 search_buf_size = chunk_size + pattern_len - 1;
2268
2269 /* No point in trying to allocate a buffer larger than the search space. */
2270 if (search_space_len < search_buf_size)
2271 search_buf_size = search_space_len;
2272
2273 gdb::byte_vector search_buf (search_buf_size);
2274
2275 /* Prime the search buffer. */
2276
2277 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2278 search_buf.data (), start_addr, search_buf_size)
2279 != search_buf_size)
2280 {
2281 warning (_("Unable to access %s bytes of target "
2282 "memory at %s, halting search."),
2283 pulongest (search_buf_size), hex_string (start_addr));
2284 return -1;
2285 }
2286
2287 /* Perform the search.
2288
2289 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2290 When we've scanned N bytes we copy the trailing bytes to the start and
2291 read in another N bytes. */
2292
2293 while (search_space_len >= pattern_len)
2294 {
2295 gdb_byte *found_ptr;
2296 unsigned nr_search_bytes
2297 = std::min (search_space_len, (ULONGEST) search_buf_size);
2298
2299 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2300 pattern, pattern_len);
2301
2302 if (found_ptr != NULL)
2303 {
2304 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2305
2306 *found_addrp = found_addr;
2307 return 1;
2308 }
2309
2310 /* Not found in this chunk, skip to next chunk. */
2311
2312 /* Don't let search_space_len wrap here, it's unsigned. */
2313 if (search_space_len >= chunk_size)
2314 search_space_len -= chunk_size;
2315 else
2316 search_space_len = 0;
2317
2318 if (search_space_len >= pattern_len)
2319 {
2320 unsigned keep_len = search_buf_size - chunk_size;
2321 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2322 int nr_to_read;
2323
2324 /* Copy the trailing part of the previous iteration to the front
2325 of the buffer for the next iteration. */
2326 gdb_assert (keep_len == pattern_len - 1);
2327 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2328
2329 nr_to_read = std::min (search_space_len - keep_len,
2330 (ULONGEST) chunk_size);
2331
2332 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2333 &search_buf[keep_len], read_addr,
2334 nr_to_read) != nr_to_read)
2335 {
2336 warning (_("Unable to access %s bytes of target "
2337 "memory at %s, halting search."),
2338 plongest (nr_to_read),
2339 hex_string (read_addr));
2340 return -1;
2341 }
2342
2343 start_addr += chunk_size;
2344 }
2345 }
2346
2347 /* Not found. */
2348
2349 return 0;
2350 }
2351
2352 /* Default implementation of memory-searching. */
2353
2354 static int
2355 default_search_memory (struct target_ops *self,
2356 CORE_ADDR start_addr, ULONGEST search_space_len,
2357 const gdb_byte *pattern, ULONGEST pattern_len,
2358 CORE_ADDR *found_addrp)
2359 {
2360 /* Start over from the top of the target stack. */
2361 return simple_search_memory (current_top_target (),
2362 start_addr, search_space_len,
2363 pattern, pattern_len, found_addrp);
2364 }
2365
2366 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2367 sequence of bytes in PATTERN with length PATTERN_LEN.
2368
2369 The result is 1 if found, 0 if not found, and -1 if there was an error
2370 requiring halting of the search (e.g. memory read error).
2371 If the pattern is found the address is recorded in FOUND_ADDRP. */
2372
2373 int
2374 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2375 const gdb_byte *pattern, ULONGEST pattern_len,
2376 CORE_ADDR *found_addrp)
2377 {
2378 return current_top_target ()->search_memory (start_addr, search_space_len,
2379 pattern, pattern_len, found_addrp);
2380 }
2381
2382 /* Look through the currently pushed targets. If none of them will
2383 be able to restart the currently running process, issue an error
2384 message. */
2385
2386 void
2387 target_require_runnable (void)
2388 {
2389 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2390 {
2391 /* If this target knows how to create a new program, then
2392 assume we will still be able to after killing the current
2393 one. Either killing and mourning will not pop T, or else
2394 find_default_run_target will find it again. */
2395 if (t->can_create_inferior ())
2396 return;
2397
2398 /* Do not worry about targets at certain strata that can not
2399 create inferiors. Assume they will be pushed again if
2400 necessary, and continue to the process_stratum. */
2401 if (t->to_stratum > process_stratum)
2402 continue;
2403
2404 error (_("The \"%s\" target does not support \"run\". "
2405 "Try \"help target\" or \"continue\"."),
2406 t->shortname ());
2407 }
2408
2409 /* This function is only called if the target is running. In that
2410 case there should have been a process_stratum target and it
2411 should either know how to create inferiors, or not... */
2412 internal_error (__FILE__, __LINE__, _("No targets found"));
2413 }
2414
2415 /* Whether GDB is allowed to fall back to the default run target for
2416 "run", "attach", etc. when no target is connected yet. */
2417 static int auto_connect_native_target = 1;
2418
2419 static void
2420 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2421 struct cmd_list_element *c, const char *value)
2422 {
2423 fprintf_filtered (file,
2424 _("Whether GDB may automatically connect to the "
2425 "native target is %s.\n"),
2426 value);
2427 }
2428
2429 /* A pointer to the target that can respond to "run" or "attach".
2430 Native targets are always singletons and instantiated early at GDB
2431 startup. */
2432 static target_ops *the_native_target;
2433
2434 /* See target.h. */
2435
2436 void
2437 set_native_target (target_ops *target)
2438 {
2439 if (the_native_target != NULL)
2440 internal_error (__FILE__, __LINE__,
2441 _("native target already set (\"%s\")."),
2442 the_native_target->longname ());
2443
2444 the_native_target = target;
2445 }
2446
2447 /* See target.h. */
2448
2449 target_ops *
2450 get_native_target ()
2451 {
2452 return the_native_target;
2453 }
2454
2455 /* Look through the list of possible targets for a target that can
2456 execute a run or attach command without any other data. This is
2457 used to locate the default process stratum.
2458
2459 If DO_MESG is not NULL, the result is always valid (error() is
2460 called for errors); else, return NULL on error. */
2461
2462 static struct target_ops *
2463 find_default_run_target (const char *do_mesg)
2464 {
2465 if (auto_connect_native_target && the_native_target != NULL)
2466 return the_native_target;
2467
2468 if (do_mesg != NULL)
2469 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2470 return NULL;
2471 }
2472
2473 /* See target.h. */
2474
2475 struct target_ops *
2476 find_attach_target (void)
2477 {
2478 /* If a target on the current stack can attach, use it. */
2479 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2480 {
2481 if (t->can_attach ())
2482 return t;
2483 }
2484
2485 /* Otherwise, use the default run target for attaching. */
2486 return find_default_run_target ("attach");
2487 }
2488
2489 /* See target.h. */
2490
2491 struct target_ops *
2492 find_run_target (void)
2493 {
2494 /* If a target on the current stack can run, use it. */
2495 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2496 {
2497 if (t->can_create_inferior ())
2498 return t;
2499 }
2500
2501 /* Otherwise, use the default run target. */
2502 return find_default_run_target ("run");
2503 }
2504
2505 bool
2506 target_ops::info_proc (const char *args, enum info_proc_what what)
2507 {
2508 return false;
2509 }
2510
2511 /* Implement the "info proc" command. */
2512
2513 int
2514 target_info_proc (const char *args, enum info_proc_what what)
2515 {
2516 struct target_ops *t;
2517
2518 /* If we're already connected to something that can get us OS
2519 related data, use it. Otherwise, try using the native
2520 target. */
2521 t = find_target_at (process_stratum);
2522 if (t == NULL)
2523 t = find_default_run_target (NULL);
2524
2525 for (; t != NULL; t = t->beneath ())
2526 {
2527 if (t->info_proc (args, what))
2528 {
2529 if (targetdebug)
2530 fprintf_unfiltered (gdb_stdlog,
2531 "target_info_proc (\"%s\", %d)\n", args, what);
2532
2533 return 1;
2534 }
2535 }
2536
2537 return 0;
2538 }
2539
2540 static int
2541 find_default_supports_disable_randomization (struct target_ops *self)
2542 {
2543 struct target_ops *t;
2544
2545 t = find_default_run_target (NULL);
2546 if (t != NULL)
2547 return t->supports_disable_randomization ();
2548 return 0;
2549 }
2550
2551 int
2552 target_supports_disable_randomization (void)
2553 {
2554 return current_top_target ()->supports_disable_randomization ();
2555 }
2556
2557 /* See target/target.h. */
2558
2559 int
2560 target_supports_multi_process (void)
2561 {
2562 return current_top_target ()->supports_multi_process ();
2563 }
2564
2565 /* See target.h. */
2566
2567 gdb::optional<gdb::char_vector>
2568 target_get_osdata (const char *type)
2569 {
2570 struct target_ops *t;
2571
2572 /* If we're already connected to something that can get us OS
2573 related data, use it. Otherwise, try using the native
2574 target. */
2575 t = find_target_at (process_stratum);
2576 if (t == NULL)
2577 t = find_default_run_target ("get OS data");
2578
2579 if (!t)
2580 return {};
2581
2582 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2583 }
2584
2585 static struct address_space *
2586 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2587 {
2588 struct inferior *inf;
2589
2590 /* Fall-back to the "main" address space of the inferior. */
2591 inf = find_inferior_ptid (ptid);
2592
2593 if (inf == NULL || inf->aspace == NULL)
2594 internal_error (__FILE__, __LINE__,
2595 _("Can't determine the current "
2596 "address space of thread %s\n"),
2597 target_pid_to_str (ptid));
2598
2599 return inf->aspace;
2600 }
2601
2602 /* Determine the current address space of thread PTID. */
2603
2604 struct address_space *
2605 target_thread_address_space (ptid_t ptid)
2606 {
2607 struct address_space *aspace;
2608
2609 aspace = current_top_target ()->thread_address_space (ptid);
2610 gdb_assert (aspace != NULL);
2611
2612 return aspace;
2613 }
2614
2615 /* See target.h. */
2616
2617 target_ops *
2618 target_ops::beneath () const
2619 {
2620 return g_target_stack.find_beneath (this);
2621 }
2622
2623 void
2624 target_ops::close ()
2625 {
2626 }
2627
2628 bool
2629 target_ops::can_attach ()
2630 {
2631 return 0;
2632 }
2633
2634 void
2635 target_ops::attach (const char *, int)
2636 {
2637 gdb_assert_not_reached ("target_ops::attach called");
2638 }
2639
2640 bool
2641 target_ops::can_create_inferior ()
2642 {
2643 return 0;
2644 }
2645
2646 void
2647 target_ops::create_inferior (const char *, const std::string &,
2648 char **, int)
2649 {
2650 gdb_assert_not_reached ("target_ops::create_inferior called");
2651 }
2652
2653 bool
2654 target_ops::can_run ()
2655 {
2656 return false;
2657 }
2658
2659 int
2660 target_can_run ()
2661 {
2662 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2663 {
2664 if (t->can_run ())
2665 return 1;
2666 }
2667
2668 return 0;
2669 }
2670
2671 /* Target file operations. */
2672
2673 static struct target_ops *
2674 default_fileio_target (void)
2675 {
2676 struct target_ops *t;
2677
2678 /* If we're already connected to something that can perform
2679 file I/O, use it. Otherwise, try using the native target. */
2680 t = find_target_at (process_stratum);
2681 if (t != NULL)
2682 return t;
2683 return find_default_run_target ("file I/O");
2684 }
2685
2686 /* File handle for target file operations. */
2687
2688 struct fileio_fh_t
2689 {
2690 /* The target on which this file is open. NULL if the target is
2691 meanwhile closed while the handle is open. */
2692 target_ops *target;
2693
2694 /* The file descriptor on the target. */
2695 int target_fd;
2696
2697 /* Check whether this fileio_fh_t represents a closed file. */
2698 bool is_closed ()
2699 {
2700 return target_fd < 0;
2701 }
2702 };
2703
2704 /* Vector of currently open file handles. The value returned by
2705 target_fileio_open and passed as the FD argument to other
2706 target_fileio_* functions is an index into this vector. This
2707 vector's entries are never freed; instead, files are marked as
2708 closed, and the handle becomes available for reuse. */
2709 static std::vector<fileio_fh_t> fileio_fhandles;
2710
2711 /* Index into fileio_fhandles of the lowest handle that might be
2712 closed. This permits handle reuse without searching the whole
2713 list each time a new file is opened. */
2714 static int lowest_closed_fd;
2715
2716 /* Invalidate the target associated with open handles that were open
2717 on target TARG, since we're about to close (and maybe destroy) the
2718 target. The handles remain open from the client's perspective, but
2719 trying to do anything with them other than closing them will fail
2720 with EIO. */
2721
2722 static void
2723 fileio_handles_invalidate_target (target_ops *targ)
2724 {
2725 for (fileio_fh_t &fh : fileio_fhandles)
2726 if (fh.target == targ)
2727 fh.target = NULL;
2728 }
2729
2730 /* Acquire a target fileio file descriptor. */
2731
2732 static int
2733 acquire_fileio_fd (target_ops *target, int target_fd)
2734 {
2735 /* Search for closed handles to reuse. */
2736 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2737 {
2738 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2739
2740 if (fh.is_closed ())
2741 break;
2742 }
2743
2744 /* Push a new handle if no closed handles were found. */
2745 if (lowest_closed_fd == fileio_fhandles.size ())
2746 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2747 else
2748 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2749
2750 /* Should no longer be marked closed. */
2751 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2752
2753 /* Return its index, and start the next lookup at
2754 the next index. */
2755 return lowest_closed_fd++;
2756 }
2757
2758 /* Release a target fileio file descriptor. */
2759
2760 static void
2761 release_fileio_fd (int fd, fileio_fh_t *fh)
2762 {
2763 fh->target_fd = -1;
2764 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2765 }
2766
2767 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2768
2769 static fileio_fh_t *
2770 fileio_fd_to_fh (int fd)
2771 {
2772 return &fileio_fhandles[fd];
2773 }
2774
2775
2776 /* Default implementations of file i/o methods. We don't want these
2777 to delegate automatically, because we need to know which target
2778 supported the method, in order to call it directly from within
2779 pread/pwrite, etc. */
2780
2781 int
2782 target_ops::fileio_open (struct inferior *inf, const char *filename,
2783 int flags, int mode, int warn_if_slow,
2784 int *target_errno)
2785 {
2786 *target_errno = FILEIO_ENOSYS;
2787 return -1;
2788 }
2789
2790 int
2791 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2792 ULONGEST offset, int *target_errno)
2793 {
2794 *target_errno = FILEIO_ENOSYS;
2795 return -1;
2796 }
2797
2798 int
2799 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2800 ULONGEST offset, int *target_errno)
2801 {
2802 *target_errno = FILEIO_ENOSYS;
2803 return -1;
2804 }
2805
2806 int
2807 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2808 {
2809 *target_errno = FILEIO_ENOSYS;
2810 return -1;
2811 }
2812
2813 int
2814 target_ops::fileio_close (int fd, int *target_errno)
2815 {
2816 *target_errno = FILEIO_ENOSYS;
2817 return -1;
2818 }
2819
2820 int
2821 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2822 int *target_errno)
2823 {
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826 }
2827
2828 gdb::optional<std::string>
2829 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2830 int *target_errno)
2831 {
2832 *target_errno = FILEIO_ENOSYS;
2833 return {};
2834 }
2835
2836 /* Helper for target_fileio_open and
2837 target_fileio_open_warn_if_slow. */
2838
2839 static int
2840 target_fileio_open_1 (struct inferior *inf, const char *filename,
2841 int flags, int mode, int warn_if_slow,
2842 int *target_errno)
2843 {
2844 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2845 {
2846 int fd = t->fileio_open (inf, filename, flags, mode,
2847 warn_if_slow, target_errno);
2848
2849 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2850 continue;
2851
2852 if (fd < 0)
2853 fd = -1;
2854 else
2855 fd = acquire_fileio_fd (t, fd);
2856
2857 if (targetdebug)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2860 " = %d (%d)\n",
2861 inf == NULL ? 0 : inf->num,
2862 filename, flags, mode,
2863 warn_if_slow, fd,
2864 fd != -1 ? 0 : *target_errno);
2865 return fd;
2866 }
2867
2868 *target_errno = FILEIO_ENOSYS;
2869 return -1;
2870 }
2871
2872 /* See target.h. */
2873
2874 int
2875 target_fileio_open (struct inferior *inf, const char *filename,
2876 int flags, int mode, int *target_errno)
2877 {
2878 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2879 target_errno);
2880 }
2881
2882 /* See target.h. */
2883
2884 int
2885 target_fileio_open_warn_if_slow (struct inferior *inf,
2886 const char *filename,
2887 int flags, int mode, int *target_errno)
2888 {
2889 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2890 target_errno);
2891 }
2892
2893 /* See target.h. */
2894
2895 int
2896 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2897 ULONGEST offset, int *target_errno)
2898 {
2899 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2900 int ret = -1;
2901
2902 if (fh->is_closed ())
2903 *target_errno = EBADF;
2904 else if (fh->target == NULL)
2905 *target_errno = EIO;
2906 else
2907 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2908 len, offset, target_errno);
2909
2910 if (targetdebug)
2911 fprintf_unfiltered (gdb_stdlog,
2912 "target_fileio_pwrite (%d,...,%d,%s) "
2913 "= %d (%d)\n",
2914 fd, len, pulongest (offset),
2915 ret, ret != -1 ? 0 : *target_errno);
2916 return ret;
2917 }
2918
2919 /* See target.h. */
2920
2921 int
2922 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2923 ULONGEST offset, int *target_errno)
2924 {
2925 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2926 int ret = -1;
2927
2928 if (fh->is_closed ())
2929 *target_errno = EBADF;
2930 else if (fh->target == NULL)
2931 *target_errno = EIO;
2932 else
2933 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2934 len, offset, target_errno);
2935
2936 if (targetdebug)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "target_fileio_pread (%d,...,%d,%s) "
2939 "= %d (%d)\n",
2940 fd, len, pulongest (offset),
2941 ret, ret != -1 ? 0 : *target_errno);
2942 return ret;
2943 }
2944
2945 /* See target.h. */
2946
2947 int
2948 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2949 {
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2951 int ret = -1;
2952
2953 if (fh->is_closed ())
2954 *target_errno = EBADF;
2955 else if (fh->target == NULL)
2956 *target_errno = EIO;
2957 else
2958 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2959
2960 if (targetdebug)
2961 fprintf_unfiltered (gdb_stdlog,
2962 "target_fileio_fstat (%d) = %d (%d)\n",
2963 fd, ret, ret != -1 ? 0 : *target_errno);
2964 return ret;
2965 }
2966
2967 /* See target.h. */
2968
2969 int
2970 target_fileio_close (int fd, int *target_errno)
2971 {
2972 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2973 int ret = -1;
2974
2975 if (fh->is_closed ())
2976 *target_errno = EBADF;
2977 else
2978 {
2979 if (fh->target != NULL)
2980 ret = fh->target->fileio_close (fh->target_fd,
2981 target_errno);
2982 else
2983 ret = 0;
2984 release_fileio_fd (fd, fh);
2985 }
2986
2987 if (targetdebug)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "target_fileio_close (%d) = %d (%d)\n",
2990 fd, ret, ret != -1 ? 0 : *target_errno);
2991 return ret;
2992 }
2993
2994 /* See target.h. */
2995
2996 int
2997 target_fileio_unlink (struct inferior *inf, const char *filename,
2998 int *target_errno)
2999 {
3000 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3001 {
3002 int ret = t->fileio_unlink (inf, filename, target_errno);
3003
3004 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3005 continue;
3006
3007 if (targetdebug)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_fileio_unlink (%d,%s)"
3010 " = %d (%d)\n",
3011 inf == NULL ? 0 : inf->num, filename,
3012 ret, ret != -1 ? 0 : *target_errno);
3013 return ret;
3014 }
3015
3016 *target_errno = FILEIO_ENOSYS;
3017 return -1;
3018 }
3019
3020 /* See target.h. */
3021
3022 gdb::optional<std::string>
3023 target_fileio_readlink (struct inferior *inf, const char *filename,
3024 int *target_errno)
3025 {
3026 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3027 {
3028 gdb::optional<std::string> ret
3029 = t->fileio_readlink (inf, filename, target_errno);
3030
3031 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3032 continue;
3033
3034 if (targetdebug)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "target_fileio_readlink (%d,%s)"
3037 " = %s (%d)\n",
3038 inf == NULL ? 0 : inf->num,
3039 filename, ret ? ret->c_str () : "(nil)",
3040 ret ? 0 : *target_errno);
3041 return ret;
3042 }
3043
3044 *target_errno = FILEIO_ENOSYS;
3045 return {};
3046 }
3047
3048 /* Like scoped_fd, but specific to target fileio. */
3049
3050 class scoped_target_fd
3051 {
3052 public:
3053 explicit scoped_target_fd (int fd) noexcept
3054 : m_fd (fd)
3055 {
3056 }
3057
3058 ~scoped_target_fd ()
3059 {
3060 if (m_fd >= 0)
3061 {
3062 int target_errno;
3063
3064 target_fileio_close (m_fd, &target_errno);
3065 }
3066 }
3067
3068 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3069
3070 int get () const noexcept
3071 {
3072 return m_fd;
3073 }
3074
3075 private:
3076 int m_fd;
3077 };
3078
3079 /* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
3086
3087 static LONGEST
3088 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3090 {
3091 size_t buf_alloc, buf_pos;
3092 gdb_byte *buf;
3093 LONGEST n;
3094 int target_errno;
3095
3096 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3097 0700, &target_errno));
3098 if (fd.get () == -1)
3099 return -1;
3100
3101 /* Start by reading up to 4K at a time. The target will throttle
3102 this number down if necessary. */
3103 buf_alloc = 4096;
3104 buf = (gdb_byte *) xmalloc (buf_alloc);
3105 buf_pos = 0;
3106 while (1)
3107 {
3108 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3109 buf_alloc - buf_pos - padding, buf_pos,
3110 &target_errno);
3111 if (n < 0)
3112 {
3113 /* An error occurred. */
3114 xfree (buf);
3115 return -1;
3116 }
3117 else if (n == 0)
3118 {
3119 /* Read all there was. */
3120 if (buf_pos == 0)
3121 xfree (buf);
3122 else
3123 *buf_p = buf;
3124 return buf_pos;
3125 }
3126
3127 buf_pos += n;
3128
3129 /* If the buffer is filling up, expand it. */
3130 if (buf_alloc < buf_pos * 2)
3131 {
3132 buf_alloc *= 2;
3133 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3134 }
3135
3136 QUIT;
3137 }
3138 }
3139
3140 /* See target.h. */
3141
3142 LONGEST
3143 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3144 gdb_byte **buf_p)
3145 {
3146 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3147 }
3148
3149 /* See target.h. */
3150
3151 gdb::unique_xmalloc_ptr<char>
3152 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3153 {
3154 gdb_byte *buffer;
3155 char *bufstr;
3156 LONGEST i, transferred;
3157
3158 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3159 bufstr = (char *) buffer;
3160
3161 if (transferred < 0)
3162 return gdb::unique_xmalloc_ptr<char> (nullptr);
3163
3164 if (transferred == 0)
3165 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3166
3167 bufstr[transferred] = 0;
3168
3169 /* Check for embedded NUL bytes; but allow trailing NULs. */
3170 for (i = strlen (bufstr); i < transferred; i++)
3171 if (bufstr[i] != 0)
3172 {
3173 warning (_("target file %s "
3174 "contained unexpected null characters"),
3175 filename);
3176 break;
3177 }
3178
3179 return gdb::unique_xmalloc_ptr<char> (bufstr);
3180 }
3181
3182
3183 static int
3184 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3185 CORE_ADDR addr, int len)
3186 {
3187 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3188 }
3189
3190 static int
3191 default_watchpoint_addr_within_range (struct target_ops *target,
3192 CORE_ADDR addr,
3193 CORE_ADDR start, int length)
3194 {
3195 return addr >= start && addr < start + length;
3196 }
3197
3198 static struct gdbarch *
3199 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3200 {
3201 inferior *inf = find_inferior_ptid (ptid);
3202 gdb_assert (inf != NULL);
3203 return inf->gdbarch;
3204 }
3205
3206 /* See target.h. */
3207
3208 target_ops *
3209 target_stack::find_beneath (const target_ops *t) const
3210 {
3211 /* Look for a non-empty slot at stratum levels beneath T's. */
3212 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3213 if (m_stack[stratum] != NULL)
3214 return m_stack[stratum];
3215
3216 return NULL;
3217 }
3218
3219 /* See target.h. */
3220
3221 struct target_ops *
3222 find_target_at (enum strata stratum)
3223 {
3224 return g_target_stack.at (stratum);
3225 }
3226
3227 \f
3228
3229 /* See target.h */
3230
3231 void
3232 target_announce_detach (int from_tty)
3233 {
3234 pid_t pid;
3235 const char *exec_file;
3236
3237 if (!from_tty)
3238 return;
3239
3240 exec_file = get_exec_file (0);
3241 if (exec_file == NULL)
3242 exec_file = "";
3243
3244 pid = ptid_get_pid (inferior_ptid);
3245 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3246 target_pid_to_str (pid_to_ptid (pid)));
3247 gdb_flush (gdb_stdout);
3248 }
3249
3250 /* The inferior process has died. Long live the inferior! */
3251
3252 void
3253 generic_mourn_inferior (void)
3254 {
3255 ptid_t ptid;
3256
3257 ptid = inferior_ptid;
3258 inferior_ptid = null_ptid;
3259
3260 /* Mark breakpoints uninserted in case something tries to delete a
3261 breakpoint while we delete the inferior's threads (which would
3262 fail, since the inferior is long gone). */
3263 mark_breakpoints_out ();
3264
3265 if (!ptid_equal (ptid, null_ptid))
3266 {
3267 int pid = ptid_get_pid (ptid);
3268 exit_inferior (pid);
3269 }
3270
3271 /* Note this wipes step-resume breakpoints, so needs to be done
3272 after exit_inferior, which ends up referencing the step-resume
3273 breakpoints through clear_thread_inferior_resources. */
3274 breakpoint_init_inferior (inf_exited);
3275
3276 registers_changed ();
3277
3278 reopen_exec_file ();
3279 reinit_frame_cache ();
3280
3281 if (deprecated_detach_hook)
3282 deprecated_detach_hook ();
3283 }
3284 \f
3285 /* Convert a normal process ID to a string. Returns the string in a
3286 static buffer. */
3287
3288 const char *
3289 normal_pid_to_str (ptid_t ptid)
3290 {
3291 static char buf[32];
3292
3293 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3294 return buf;
3295 }
3296
3297 static const char *
3298 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3299 {
3300 return normal_pid_to_str (ptid);
3301 }
3302
3303 /* Error-catcher for target_find_memory_regions. */
3304 static int
3305 dummy_find_memory_regions (struct target_ops *self,
3306 find_memory_region_ftype ignore1, void *ignore2)
3307 {
3308 error (_("Command not implemented for this target."));
3309 return 0;
3310 }
3311
3312 /* Error-catcher for target_make_corefile_notes. */
3313 static char *
3314 dummy_make_corefile_notes (struct target_ops *self,
3315 bfd *ignore1, int *ignore2)
3316 {
3317 error (_("Command not implemented for this target."));
3318 return NULL;
3319 }
3320
3321 #include "target-delegates.c"
3322
3323
3324 static const target_info dummy_target_info = {
3325 "None",
3326 N_("None"),
3327 ""
3328 };
3329
3330 dummy_target::dummy_target ()
3331 {
3332 to_stratum = dummy_stratum;
3333 }
3334
3335 debug_target::debug_target ()
3336 {
3337 to_stratum = debug_stratum;
3338 }
3339
3340 const target_info &
3341 dummy_target::info () const
3342 {
3343 return dummy_target_info;
3344 }
3345
3346 const target_info &
3347 debug_target::info () const
3348 {
3349 return beneath ()->info ();
3350 }
3351
3352 \f
3353
3354 void
3355 target_close (struct target_ops *targ)
3356 {
3357 gdb_assert (!target_is_pushed (targ));
3358
3359 fileio_handles_invalidate_target (targ);
3360
3361 targ->close ();
3362
3363 if (targetdebug)
3364 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3365 }
3366
3367 int
3368 target_thread_alive (ptid_t ptid)
3369 {
3370 return current_top_target ()->thread_alive (ptid);
3371 }
3372
3373 void
3374 target_update_thread_list (void)
3375 {
3376 current_top_target ()->update_thread_list ();
3377 }
3378
3379 void
3380 target_stop (ptid_t ptid)
3381 {
3382 if (!may_stop)
3383 {
3384 warning (_("May not interrupt or stop the target, ignoring attempt"));
3385 return;
3386 }
3387
3388 current_top_target ()->stop (ptid);
3389 }
3390
3391 void
3392 target_interrupt ()
3393 {
3394 if (!may_stop)
3395 {
3396 warning (_("May not interrupt or stop the target, ignoring attempt"));
3397 return;
3398 }
3399
3400 current_top_target ()->interrupt ();
3401 }
3402
3403 /* See target.h. */
3404
3405 void
3406 target_pass_ctrlc (void)
3407 {
3408 current_top_target ()->pass_ctrlc ();
3409 }
3410
3411 /* See target.h. */
3412
3413 void
3414 default_target_pass_ctrlc (struct target_ops *ops)
3415 {
3416 target_interrupt ();
3417 }
3418
3419 /* See target/target.h. */
3420
3421 void
3422 target_stop_and_wait (ptid_t ptid)
3423 {
3424 struct target_waitstatus status;
3425 int was_non_stop = non_stop;
3426
3427 non_stop = 1;
3428 target_stop (ptid);
3429
3430 memset (&status, 0, sizeof (status));
3431 target_wait (ptid, &status, 0);
3432
3433 non_stop = was_non_stop;
3434 }
3435
3436 /* See target/target.h. */
3437
3438 void
3439 target_continue_no_signal (ptid_t ptid)
3440 {
3441 target_resume (ptid, 0, GDB_SIGNAL_0);
3442 }
3443
3444 /* See target/target.h. */
3445
3446 void
3447 target_continue (ptid_t ptid, enum gdb_signal signal)
3448 {
3449 target_resume (ptid, 0, signal);
3450 }
3451
3452 /* Concatenate ELEM to LIST, a comma separate list, and return the
3453 result. The LIST incoming argument is released. */
3454
3455 static char *
3456 str_comma_list_concat_elem (char *list, const char *elem)
3457 {
3458 if (list == NULL)
3459 return xstrdup (elem);
3460 else
3461 return reconcat (list, list, ", ", elem, (char *) NULL);
3462 }
3463
3464 /* Helper for target_options_to_string. If OPT is present in
3465 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3466 Returns the new resulting string. OPT is removed from
3467 TARGET_OPTIONS. */
3468
3469 static char *
3470 do_option (int *target_options, char *ret,
3471 int opt, const char *opt_str)
3472 {
3473 if ((*target_options & opt) != 0)
3474 {
3475 ret = str_comma_list_concat_elem (ret, opt_str);
3476 *target_options &= ~opt;
3477 }
3478
3479 return ret;
3480 }
3481
3482 char *
3483 target_options_to_string (int target_options)
3484 {
3485 char *ret = NULL;
3486
3487 #define DO_TARG_OPTION(OPT) \
3488 ret = do_option (&target_options, ret, OPT, #OPT)
3489
3490 DO_TARG_OPTION (TARGET_WNOHANG);
3491
3492 if (target_options != 0)
3493 ret = str_comma_list_concat_elem (ret, "unknown???");
3494
3495 if (ret == NULL)
3496 ret = xstrdup ("");
3497 return ret;
3498 }
3499
3500 void
3501 target_fetch_registers (struct regcache *regcache, int regno)
3502 {
3503 current_top_target ()->fetch_registers (regcache, regno);
3504 if (targetdebug)
3505 regcache->debug_print_register ("target_fetch_registers", regno);
3506 }
3507
3508 void
3509 target_store_registers (struct regcache *regcache, int regno)
3510 {
3511 if (!may_write_registers)
3512 error (_("Writing to registers is not allowed (regno %d)"), regno);
3513
3514 current_top_target ()->store_registers (regcache, regno);
3515 if (targetdebug)
3516 {
3517 regcache->debug_print_register ("target_store_registers", regno);
3518 }
3519 }
3520
3521 int
3522 target_core_of_thread (ptid_t ptid)
3523 {
3524 return current_top_target ()->core_of_thread (ptid);
3525 }
3526
3527 int
3528 simple_verify_memory (struct target_ops *ops,
3529 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3530 {
3531 LONGEST total_xfered = 0;
3532
3533 while (total_xfered < size)
3534 {
3535 ULONGEST xfered_len;
3536 enum target_xfer_status status;
3537 gdb_byte buf[1024];
3538 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3539
3540 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3541 buf, NULL, lma + total_xfered, howmuch,
3542 &xfered_len);
3543 if (status == TARGET_XFER_OK
3544 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3545 {
3546 total_xfered += xfered_len;
3547 QUIT;
3548 }
3549 else
3550 return 0;
3551 }
3552 return 1;
3553 }
3554
3555 /* Default implementation of memory verification. */
3556
3557 static int
3558 default_verify_memory (struct target_ops *self,
3559 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3560 {
3561 /* Start over from the top of the target stack. */
3562 return simple_verify_memory (current_top_target (),
3563 data, memaddr, size);
3564 }
3565
3566 int
3567 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3568 {
3569 return current_top_target ()->verify_memory (data, memaddr, size);
3570 }
3571
3572 /* The documentation for this function is in its prototype declaration in
3573 target.h. */
3574
3575 int
3576 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3577 enum target_hw_bp_type rw)
3578 {
3579 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3580 }
3581
3582 /* The documentation for this function is in its prototype declaration in
3583 target.h. */
3584
3585 int
3586 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3587 enum target_hw_bp_type rw)
3588 {
3589 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3590 }
3591
3592 /* The documentation for this function is in its prototype declaration
3593 in target.h. */
3594
3595 int
3596 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3597 {
3598 return current_top_target ()->masked_watch_num_registers (addr, mask);
3599 }
3600
3601 /* The documentation for this function is in its prototype declaration
3602 in target.h. */
3603
3604 int
3605 target_ranged_break_num_registers (void)
3606 {
3607 return current_top_target ()->ranged_break_num_registers ();
3608 }
3609
3610 /* See target.h. */
3611
3612 struct btrace_target_info *
3613 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3614 {
3615 return current_top_target ()->enable_btrace (ptid, conf);
3616 }
3617
3618 /* See target.h. */
3619
3620 void
3621 target_disable_btrace (struct btrace_target_info *btinfo)
3622 {
3623 current_top_target ()->disable_btrace (btinfo);
3624 }
3625
3626 /* See target.h. */
3627
3628 void
3629 target_teardown_btrace (struct btrace_target_info *btinfo)
3630 {
3631 current_top_target ()->teardown_btrace (btinfo);
3632 }
3633
3634 /* See target.h. */
3635
3636 enum btrace_error
3637 target_read_btrace (struct btrace_data *btrace,
3638 struct btrace_target_info *btinfo,
3639 enum btrace_read_type type)
3640 {
3641 return current_top_target ()->read_btrace (btrace, btinfo, type);
3642 }
3643
3644 /* See target.h. */
3645
3646 const struct btrace_config *
3647 target_btrace_conf (const struct btrace_target_info *btinfo)
3648 {
3649 return current_top_target ()->btrace_conf (btinfo);
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_stop_recording (void)
3656 {
3657 current_top_target ()->stop_recording ();
3658 }
3659
3660 /* See target.h. */
3661
3662 void
3663 target_save_record (const char *filename)
3664 {
3665 current_top_target ()->save_record (filename);
3666 }
3667
3668 /* See target.h. */
3669
3670 int
3671 target_supports_delete_record ()
3672 {
3673 return current_top_target ()->supports_delete_record ();
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_delete_record (void)
3680 {
3681 current_top_target ()->delete_record ();
3682 }
3683
3684 /* See target.h. */
3685
3686 enum record_method
3687 target_record_method (ptid_t ptid)
3688 {
3689 return current_top_target ()->record_method (ptid);
3690 }
3691
3692 /* See target.h. */
3693
3694 int
3695 target_record_is_replaying (ptid_t ptid)
3696 {
3697 return current_top_target ()->record_is_replaying (ptid);
3698 }
3699
3700 /* See target.h. */
3701
3702 int
3703 target_record_will_replay (ptid_t ptid, int dir)
3704 {
3705 return current_top_target ()->record_will_replay (ptid, dir);
3706 }
3707
3708 /* See target.h. */
3709
3710 void
3711 target_record_stop_replaying (void)
3712 {
3713 current_top_target ()->record_stop_replaying ();
3714 }
3715
3716 /* See target.h. */
3717
3718 void
3719 target_goto_record_begin (void)
3720 {
3721 current_top_target ()->goto_record_begin ();
3722 }
3723
3724 /* See target.h. */
3725
3726 void
3727 target_goto_record_end (void)
3728 {
3729 current_top_target ()->goto_record_end ();
3730 }
3731
3732 /* See target.h. */
3733
3734 void
3735 target_goto_record (ULONGEST insn)
3736 {
3737 current_top_target ()->goto_record (insn);
3738 }
3739
3740 /* See target.h. */
3741
3742 void
3743 target_insn_history (int size, gdb_disassembly_flags flags)
3744 {
3745 current_top_target ()->insn_history (size, flags);
3746 }
3747
3748 /* See target.h. */
3749
3750 void
3751 target_insn_history_from (ULONGEST from, int size,
3752 gdb_disassembly_flags flags)
3753 {
3754 current_top_target ()->insn_history_from (from, size, flags);
3755 }
3756
3757 /* See target.h. */
3758
3759 void
3760 target_insn_history_range (ULONGEST begin, ULONGEST end,
3761 gdb_disassembly_flags flags)
3762 {
3763 current_top_target ()->insn_history_range (begin, end, flags);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_call_history (int size, record_print_flags flags)
3770 {
3771 current_top_target ()->call_history (size, flags);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3778 {
3779 current_top_target ()->call_history_from (begin, size, flags);
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3786 {
3787 current_top_target ()->call_history_range (begin, end, flags);
3788 }
3789
3790 /* See target.h. */
3791
3792 const struct frame_unwind *
3793 target_get_unwinder (void)
3794 {
3795 return current_top_target ()->get_unwinder ();
3796 }
3797
3798 /* See target.h. */
3799
3800 const struct frame_unwind *
3801 target_get_tailcall_unwinder (void)
3802 {
3803 return current_top_target ()->get_tailcall_unwinder ();
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_prepare_to_generate_core (void)
3810 {
3811 current_top_target ()->prepare_to_generate_core ();
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_done_generating_core (void)
3818 {
3819 current_top_target ()->done_generating_core ();
3820 }
3821
3822 \f
3823
3824 static char targ_desc[] =
3825 "Names of targets and files being debugged.\nShows the entire \
3826 stack of targets currently in use (including the exec-file,\n\
3827 core-file, and process, if any), as well as the symbol file name.";
3828
3829 static void
3830 default_rcmd (struct target_ops *self, const char *command,
3831 struct ui_file *output)
3832 {
3833 error (_("\"monitor\" command not supported by this target."));
3834 }
3835
3836 static void
3837 do_monitor_command (const char *cmd, int from_tty)
3838 {
3839 target_rcmd (cmd, gdb_stdtarg);
3840 }
3841
3842 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3843 ignored. */
3844
3845 void
3846 flash_erase_command (const char *cmd, int from_tty)
3847 {
3848 /* Used to communicate termination of flash operations to the target. */
3849 bool found_flash_region = false;
3850 struct gdbarch *gdbarch = target_gdbarch ();
3851
3852 std::vector<mem_region> mem_regions = target_memory_map ();
3853
3854 /* Iterate over all memory regions. */
3855 for (const mem_region &m : mem_regions)
3856 {
3857 /* Is this a flash memory region? */
3858 if (m.attrib.mode == MEM_FLASH)
3859 {
3860 found_flash_region = true;
3861 target_flash_erase (m.lo, m.hi - m.lo);
3862
3863 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3864
3865 current_uiout->message (_("Erasing flash memory region at address "));
3866 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3867 current_uiout->message (", size = ");
3868 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3869 current_uiout->message ("\n");
3870 }
3871 }
3872
3873 /* Did we do any flash operations? If so, we need to finalize them. */
3874 if (found_flash_region)
3875 target_flash_done ();
3876 else
3877 current_uiout->message (_("No flash memory regions found.\n"));
3878 }
3879
3880 /* Print the name of each layers of our target stack. */
3881
3882 static void
3883 maintenance_print_target_stack (const char *cmd, int from_tty)
3884 {
3885 printf_filtered (_("The current target stack is:\n"));
3886
3887 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3888 {
3889 if (t->to_stratum == debug_stratum)
3890 continue;
3891 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3892 }
3893 }
3894
3895 /* See target.h. */
3896
3897 void
3898 target_async (int enable)
3899 {
3900 infrun_async (enable);
3901 current_top_target ()->async (enable);
3902 }
3903
3904 /* See target.h. */
3905
3906 void
3907 target_thread_events (int enable)
3908 {
3909 current_top_target ()->thread_events (enable);
3910 }
3911
3912 /* Controls if targets can report that they can/are async. This is
3913 just for maintainers to use when debugging gdb. */
3914 int target_async_permitted = 1;
3915
3916 /* The set command writes to this variable. If the inferior is
3917 executing, target_async_permitted is *not* updated. */
3918 static int target_async_permitted_1 = 1;
3919
3920 static void
3921 maint_set_target_async_command (const char *args, int from_tty,
3922 struct cmd_list_element *c)
3923 {
3924 if (have_live_inferiors ())
3925 {
3926 target_async_permitted_1 = target_async_permitted;
3927 error (_("Cannot change this setting while the inferior is running."));
3928 }
3929
3930 target_async_permitted = target_async_permitted_1;
3931 }
3932
3933 static void
3934 maint_show_target_async_command (struct ui_file *file, int from_tty,
3935 struct cmd_list_element *c,
3936 const char *value)
3937 {
3938 fprintf_filtered (file,
3939 _("Controlling the inferior in "
3940 "asynchronous mode is %s.\n"), value);
3941 }
3942
3943 /* Return true if the target operates in non-stop mode even with "set
3944 non-stop off". */
3945
3946 static int
3947 target_always_non_stop_p (void)
3948 {
3949 return current_top_target ()->always_non_stop_p ();
3950 }
3951
3952 /* See target.h. */
3953
3954 int
3955 target_is_non_stop_p (void)
3956 {
3957 return (non_stop
3958 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3959 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3960 && target_always_non_stop_p ()));
3961 }
3962
3963 /* Controls if targets can report that they always run in non-stop
3964 mode. This is just for maintainers to use when debugging gdb. */
3965 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3966
3967 /* The set command writes to this variable. If the inferior is
3968 executing, target_non_stop_enabled is *not* updated. */
3969 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3970
3971 /* Implementation of "maint set target-non-stop". */
3972
3973 static void
3974 maint_set_target_non_stop_command (const char *args, int from_tty,
3975 struct cmd_list_element *c)
3976 {
3977 if (have_live_inferiors ())
3978 {
3979 target_non_stop_enabled_1 = target_non_stop_enabled;
3980 error (_("Cannot change this setting while the inferior is running."));
3981 }
3982
3983 target_non_stop_enabled = target_non_stop_enabled_1;
3984 }
3985
3986 /* Implementation of "maint show target-non-stop". */
3987
3988 static void
3989 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3990 struct cmd_list_element *c,
3991 const char *value)
3992 {
3993 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3994 fprintf_filtered (file,
3995 _("Whether the target is always in non-stop mode "
3996 "is %s (currently %s).\n"), value,
3997 target_always_non_stop_p () ? "on" : "off");
3998 else
3999 fprintf_filtered (file,
4000 _("Whether the target is always in non-stop mode "
4001 "is %s.\n"), value);
4002 }
4003
4004 /* Temporary copies of permission settings. */
4005
4006 static int may_write_registers_1 = 1;
4007 static int may_write_memory_1 = 1;
4008 static int may_insert_breakpoints_1 = 1;
4009 static int may_insert_tracepoints_1 = 1;
4010 static int may_insert_fast_tracepoints_1 = 1;
4011 static int may_stop_1 = 1;
4012
4013 /* Make the user-set values match the real values again. */
4014
4015 void
4016 update_target_permissions (void)
4017 {
4018 may_write_registers_1 = may_write_registers;
4019 may_write_memory_1 = may_write_memory;
4020 may_insert_breakpoints_1 = may_insert_breakpoints;
4021 may_insert_tracepoints_1 = may_insert_tracepoints;
4022 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4023 may_stop_1 = may_stop;
4024 }
4025
4026 /* The one function handles (most of) the permission flags in the same
4027 way. */
4028
4029 static void
4030 set_target_permissions (const char *args, int from_tty,
4031 struct cmd_list_element *c)
4032 {
4033 if (target_has_execution)
4034 {
4035 update_target_permissions ();
4036 error (_("Cannot change this setting while the inferior is running."));
4037 }
4038
4039 /* Make the real values match the user-changed values. */
4040 may_write_registers = may_write_registers_1;
4041 may_insert_breakpoints = may_insert_breakpoints_1;
4042 may_insert_tracepoints = may_insert_tracepoints_1;
4043 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4044 may_stop = may_stop_1;
4045 update_observer_mode ();
4046 }
4047
4048 /* Set memory write permission independently of observer mode. */
4049
4050 static void
4051 set_write_memory_permission (const char *args, int from_tty,
4052 struct cmd_list_element *c)
4053 {
4054 /* Make the real values match the user-changed values. */
4055 may_write_memory = may_write_memory_1;
4056 update_observer_mode ();
4057 }
4058
4059 void
4060 initialize_targets (void)
4061 {
4062 the_dummy_target = new dummy_target ();
4063 push_target (the_dummy_target);
4064
4065 the_debug_target = new debug_target ();
4066
4067 add_info ("target", info_target_command, targ_desc);
4068 add_info ("files", info_target_command, targ_desc);
4069
4070 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4071 Set target debugging."), _("\
4072 Show target debugging."), _("\
4073 When non-zero, target debugging is enabled. Higher numbers are more\n\
4074 verbose."),
4075 set_targetdebug,
4076 show_targetdebug,
4077 &setdebuglist, &showdebuglist);
4078
4079 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4080 &trust_readonly, _("\
4081 Set mode for reading from readonly sections."), _("\
4082 Show mode for reading from readonly sections."), _("\
4083 When this mode is on, memory reads from readonly sections (such as .text)\n\
4084 will be read from the object file instead of from the target. This will\n\
4085 result in significant performance improvement for remote targets."),
4086 NULL,
4087 show_trust_readonly,
4088 &setlist, &showlist);
4089
4090 add_com ("monitor", class_obscure, do_monitor_command,
4091 _("Send a command to the remote monitor (remote targets only)."));
4092
4093 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4094 _("Print the name of each layer of the internal target stack."),
4095 &maintenanceprintlist);
4096
4097 add_setshow_boolean_cmd ("target-async", no_class,
4098 &target_async_permitted_1, _("\
4099 Set whether gdb controls the inferior in asynchronous mode."), _("\
4100 Show whether gdb controls the inferior in asynchronous mode."), _("\
4101 Tells gdb whether to control the inferior in asynchronous mode."),
4102 maint_set_target_async_command,
4103 maint_show_target_async_command,
4104 &maintenance_set_cmdlist,
4105 &maintenance_show_cmdlist);
4106
4107 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4108 &target_non_stop_enabled_1, _("\
4109 Set whether gdb always controls the inferior in non-stop mode."), _("\
4110 Show whether gdb always controls the inferior in non-stop mode."), _("\
4111 Tells gdb whether to control the inferior in non-stop mode."),
4112 maint_set_target_non_stop_command,
4113 maint_show_target_non_stop_command,
4114 &maintenance_set_cmdlist,
4115 &maintenance_show_cmdlist);
4116
4117 add_setshow_boolean_cmd ("may-write-registers", class_support,
4118 &may_write_registers_1, _("\
4119 Set permission to write into registers."), _("\
4120 Show permission to write into registers."), _("\
4121 When this permission is on, GDB may write into the target's registers.\n\
4122 Otherwise, any sort of write attempt will result in an error."),
4123 set_target_permissions, NULL,
4124 &setlist, &showlist);
4125
4126 add_setshow_boolean_cmd ("may-write-memory", class_support,
4127 &may_write_memory_1, _("\
4128 Set permission to write into target memory."), _("\
4129 Show permission to write into target memory."), _("\
4130 When this permission is on, GDB may write into the target's memory.\n\
4131 Otherwise, any sort of write attempt will result in an error."),
4132 set_write_memory_permission, NULL,
4133 &setlist, &showlist);
4134
4135 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4136 &may_insert_breakpoints_1, _("\
4137 Set permission to insert breakpoints in the target."), _("\
4138 Show permission to insert breakpoints in the target."), _("\
4139 When this permission is on, GDB may insert breakpoints in the program.\n\
4140 Otherwise, any sort of insertion attempt will result in an error."),
4141 set_target_permissions, NULL,
4142 &setlist, &showlist);
4143
4144 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4145 &may_insert_tracepoints_1, _("\
4146 Set permission to insert tracepoints in the target."), _("\
4147 Show permission to insert tracepoints in the target."), _("\
4148 When this permission is on, GDB may insert tracepoints in the program.\n\
4149 Otherwise, any sort of insertion attempt will result in an error."),
4150 set_target_permissions, NULL,
4151 &setlist, &showlist);
4152
4153 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4154 &may_insert_fast_tracepoints_1, _("\
4155 Set permission to insert fast tracepoints in the target."), _("\
4156 Show permission to insert fast tracepoints in the target."), _("\
4157 When this permission is on, GDB may insert fast tracepoints.\n\
4158 Otherwise, any sort of insertion attempt will result in an error."),
4159 set_target_permissions, NULL,
4160 &setlist, &showlist);
4161
4162 add_setshow_boolean_cmd ("may-interrupt", class_support,
4163 &may_stop_1, _("\
4164 Set permission to interrupt or signal the target."), _("\
4165 Show permission to interrupt or signal the target."), _("\
4166 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4167 Otherwise, any attempt to interrupt or stop will be ignored."),
4168 set_target_permissions, NULL,
4169 &setlist, &showlist);
4170
4171 add_com ("flash-erase", no_class, flash_erase_command,
4172 _("Erase all flash memory regions."));
4173
4174 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4175 &auto_connect_native_target, _("\
4176 Set whether GDB may automatically connect to the native target."), _("\
4177 Show whether GDB may automatically connect to the native target."), _("\
4178 When on, and GDB is not connected to a target yet, GDB\n\
4179 attempts \"run\" and other commands with the native target."),
4180 NULL, show_auto_connect_native_target,
4181 &setlist, &showlist);
4182 }
This page took 0.113492 seconds and 5 git commands to generate.