daily update
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (struct target_ops *ops, char *, int);
103
104 static void debug_to_detach (struct target_ops *ops, char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (struct target_ops *);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we should trust readonly sections from the
203 executable when reading memory. */
204
205 static int trust_readonly = 0;
206
207 /* Nonzero if we should show true memory content including
208 memory breakpoint inserted by gdb. */
209
210 static int show_memory_breakpoints = 0;
211
212 /* Non-zero if we want to see trace of target level stuff. */
213
214 static int targetdebug = 0;
215 static void
216 show_targetdebug (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
220 }
221
222 static void setup_target_debug (void);
223
224 DCACHE *target_dcache;
225
226 /* The user just typed 'target' without the name of a target. */
227
228 static void
229 target_command (char *arg, int from_tty)
230 {
231 fputs_filtered ("Argument required (target name). Try `help target'\n",
232 gdb_stdout);
233 }
234
235 /* Add a possible target architecture to the list. */
236
237 void
238 add_target (struct target_ops *t)
239 {
240 /* Provide default values for all "must have" methods. */
241 if (t->to_xfer_partial == NULL)
242 t->to_xfer_partial = default_xfer_partial;
243
244 if (!target_structs)
245 {
246 target_struct_allocsize = DEFAULT_ALLOCSIZE;
247 target_structs = (struct target_ops **) xmalloc
248 (target_struct_allocsize * sizeof (*target_structs));
249 }
250 if (target_struct_size >= target_struct_allocsize)
251 {
252 target_struct_allocsize *= 2;
253 target_structs = (struct target_ops **)
254 xrealloc ((char *) target_structs,
255 target_struct_allocsize * sizeof (*target_structs));
256 }
257 target_structs[target_struct_size++] = t;
258
259 if (targetlist == NULL)
260 add_prefix_cmd ("target", class_run, target_command, _("\
261 Connect to a target machine or process.\n\
262 The first argument is the type or protocol of the target machine.\n\
263 Remaining arguments are interpreted by the target protocol. For more\n\
264 information on the arguments for a particular protocol, type\n\
265 `help target ' followed by the protocol name."),
266 &targetlist, "target ", 0, &cmdlist);
267 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
268 }
269
270 /* Stub functions */
271
272 void
273 target_ignore (void)
274 {
275 }
276
277 void
278 target_load (char *arg, int from_tty)
279 {
280 dcache_invalidate (target_dcache);
281 (*current_target.to_load) (arg, from_tty);
282 }
283
284 void target_create_inferior (char *exec_file, char *args,
285 char **env, int from_tty)
286 {
287 struct target_ops *t;
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 {
290 if (t->to_create_inferior != NULL)
291 {
292 t->to_create_inferior (t, exec_file, args, env, from_tty);
293 return;
294 }
295 }
296
297 internal_error (__FILE__, __LINE__,
298 "could not find a target to create inferior");
299 }
300
301
302 static int
303 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
304 struct target_ops *t)
305 {
306 errno = EIO; /* Can't read/write this location */
307 return 0; /* No bytes handled */
308 }
309
310 static void
311 tcomplain (void)
312 {
313 error (_("You can't do that when your target is `%s'"),
314 current_target.to_shortname);
315 }
316
317 void
318 noprocess (void)
319 {
320 error (_("You can't do that without a process to debug."));
321 }
322
323 static int
324 nosymbol (char *name, CORE_ADDR *addrp)
325 {
326 return 1; /* Symbol does not exist in target env */
327 }
328
329 static void
330 nosupport_runtime (void)
331 {
332 if (ptid_equal (inferior_ptid, null_ptid))
333 noprocess ();
334 else
335 error (_("No run-time support for this"));
336 }
337
338
339 static void
340 default_terminal_info (char *args, int from_tty)
341 {
342 printf_unfiltered (_("No saved terminal information.\n"));
343 }
344
345 /* This is the default target_create_inferior and target_attach function.
346 If the current target is executing, it asks whether to kill it off.
347 If this function returns without calling error(), it has killed off
348 the target, and the operation should be attempted. */
349
350 static void
351 kill_or_be_killed (int from_tty)
352 {
353 if (target_has_execution)
354 {
355 printf_unfiltered (_("You are already running a program:\n"));
356 target_files_info ();
357 if (query ("Kill it? "))
358 {
359 target_kill ();
360 if (target_has_execution)
361 error (_("Killing the program did not help."));
362 return;
363 }
364 else
365 {
366 error (_("Program not killed."));
367 }
368 }
369 tcomplain ();
370 }
371
372 /* A default implementation for the to_get_ada_task_ptid target method.
373
374 This function builds the PTID by using both LWP and TID as part of
375 the PTID lwp and tid elements. The pid used is the pid of the
376 inferior_ptid. */
377
378 ptid_t
379 default_get_ada_task_ptid (long lwp, long tid)
380 {
381 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
382 }
383
384 /* Go through the target stack from top to bottom, copying over zero
385 entries in current_target, then filling in still empty entries. In
386 effect, we are doing class inheritance through the pushed target
387 vectors.
388
389 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
390 is currently implemented, is that it discards any knowledge of
391 which target an inherited method originally belonged to.
392 Consequently, new new target methods should instead explicitly and
393 locally search the target stack for the target that can handle the
394 request. */
395
396 static void
397 update_current_target (void)
398 {
399 struct target_ops *t;
400
401 /* First, reset current's contents. */
402 memset (&current_target, 0, sizeof (current_target));
403
404 #define INHERIT(FIELD, TARGET) \
405 if (!current_target.FIELD) \
406 current_target.FIELD = (TARGET)->FIELD
407
408 for (t = target_stack; t; t = t->beneath)
409 {
410 INHERIT (to_shortname, t);
411 INHERIT (to_longname, t);
412 INHERIT (to_doc, t);
413 /* Do not inherit to_open. */
414 /* Do not inherit to_close. */
415 /* Do not inherit to_attach. */
416 INHERIT (to_post_attach, t);
417 INHERIT (to_attach_no_wait, t);
418 /* Do not inherit to_detach. */
419 /* Do not inherit to_disconnect. */
420 INHERIT (to_resume, t);
421 INHERIT (to_wait, t);
422 INHERIT (to_fetch_registers, t);
423 INHERIT (to_store_registers, t);
424 INHERIT (to_prepare_to_store, t);
425 INHERIT (deprecated_xfer_memory, t);
426 INHERIT (to_files_info, t);
427 INHERIT (to_insert_breakpoint, t);
428 INHERIT (to_remove_breakpoint, t);
429 INHERIT (to_can_use_hw_breakpoint, t);
430 INHERIT (to_insert_hw_breakpoint, t);
431 INHERIT (to_remove_hw_breakpoint, t);
432 INHERIT (to_insert_watchpoint, t);
433 INHERIT (to_remove_watchpoint, t);
434 INHERIT (to_stopped_data_address, t);
435 INHERIT (to_have_steppable_watchpoint, t);
436 INHERIT (to_have_continuable_watchpoint, t);
437 INHERIT (to_stopped_by_watchpoint, t);
438 INHERIT (to_watchpoint_addr_within_range, t);
439 INHERIT (to_region_ok_for_hw_watchpoint, t);
440 INHERIT (to_terminal_init, t);
441 INHERIT (to_terminal_inferior, t);
442 INHERIT (to_terminal_ours_for_output, t);
443 INHERIT (to_terminal_ours, t);
444 INHERIT (to_terminal_save_ours, t);
445 INHERIT (to_terminal_info, t);
446 INHERIT (to_kill, t);
447 INHERIT (to_load, t);
448 INHERIT (to_lookup_symbol, t);
449 /* Do no inherit to_create_inferior. */
450 INHERIT (to_post_startup_inferior, t);
451 INHERIT (to_acknowledge_created_inferior, t);
452 INHERIT (to_insert_fork_catchpoint, t);
453 INHERIT (to_remove_fork_catchpoint, t);
454 INHERIT (to_insert_vfork_catchpoint, t);
455 INHERIT (to_remove_vfork_catchpoint, t);
456 /* Do not inherit to_follow_fork. */
457 INHERIT (to_insert_exec_catchpoint, t);
458 INHERIT (to_remove_exec_catchpoint, t);
459 INHERIT (to_has_exited, t);
460 /* Do no inherit to_mourn_inferiour. */
461 INHERIT (to_can_run, t);
462 INHERIT (to_notice_signals, t);
463 INHERIT (to_thread_alive, t);
464 INHERIT (to_find_new_threads, t);
465 INHERIT (to_pid_to_str, t);
466 INHERIT (to_extra_thread_info, t);
467 INHERIT (to_stop, t);
468 /* Do not inherit to_xfer_partial. */
469 INHERIT (to_rcmd, t);
470 INHERIT (to_pid_to_exec_file, t);
471 INHERIT (to_log_command, t);
472 INHERIT (to_stratum, t);
473 INHERIT (to_has_all_memory, t);
474 INHERIT (to_has_memory, t);
475 INHERIT (to_has_stack, t);
476 INHERIT (to_has_registers, t);
477 INHERIT (to_has_execution, t);
478 INHERIT (to_has_thread_control, t);
479 INHERIT (to_sections, t);
480 INHERIT (to_sections_end, t);
481 INHERIT (to_can_async_p, t);
482 INHERIT (to_is_async_p, t);
483 INHERIT (to_async, t);
484 INHERIT (to_async_mask, t);
485 INHERIT (to_find_memory_regions, t);
486 INHERIT (to_make_corefile_notes, t);
487 INHERIT (to_get_thread_local_address, t);
488 INHERIT (to_can_execute_reverse, t);
489 /* Do not inherit to_read_description. */
490 INHERIT (to_get_ada_task_ptid, t);
491 /* Do not inherit to_search_memory. */
492 INHERIT (to_supports_multi_process, t);
493 INHERIT (to_magic, t);
494 /* Do not inherit to_memory_map. */
495 /* Do not inherit to_flash_erase. */
496 /* Do not inherit to_flash_done. */
497 }
498 #undef INHERIT
499
500 /* Clean up a target struct so it no longer has any zero pointers in
501 it. Some entries are defaulted to a method that print an error,
502 others are hard-wired to a standard recursive default. */
503
504 #define de_fault(field, value) \
505 if (!current_target.field) \
506 current_target.field = value
507
508 de_fault (to_open,
509 (void (*) (char *, int))
510 tcomplain);
511 de_fault (to_close,
512 (void (*) (int))
513 target_ignore);
514 de_fault (to_post_attach,
515 (void (*) (int))
516 target_ignore);
517 de_fault (to_resume,
518 (void (*) (ptid_t, int, enum target_signal))
519 noprocess);
520 de_fault (to_wait,
521 (ptid_t (*) (ptid_t, struct target_waitstatus *))
522 noprocess);
523 de_fault (to_fetch_registers,
524 (void (*) (struct regcache *, int))
525 target_ignore);
526 de_fault (to_store_registers,
527 (void (*) (struct regcache *, int))
528 noprocess);
529 de_fault (to_prepare_to_store,
530 (void (*) (struct regcache *))
531 noprocess);
532 de_fault (deprecated_xfer_memory,
533 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
534 nomemory);
535 de_fault (to_files_info,
536 (void (*) (struct target_ops *))
537 target_ignore);
538 de_fault (to_insert_breakpoint,
539 memory_insert_breakpoint);
540 de_fault (to_remove_breakpoint,
541 memory_remove_breakpoint);
542 de_fault (to_can_use_hw_breakpoint,
543 (int (*) (int, int, int))
544 return_zero);
545 de_fault (to_insert_hw_breakpoint,
546 (int (*) (struct bp_target_info *))
547 return_minus_one);
548 de_fault (to_remove_hw_breakpoint,
549 (int (*) (struct bp_target_info *))
550 return_minus_one);
551 de_fault (to_insert_watchpoint,
552 (int (*) (CORE_ADDR, int, int))
553 return_minus_one);
554 de_fault (to_remove_watchpoint,
555 (int (*) (CORE_ADDR, int, int))
556 return_minus_one);
557 de_fault (to_stopped_by_watchpoint,
558 (int (*) (void))
559 return_zero);
560 de_fault (to_stopped_data_address,
561 (int (*) (struct target_ops *, CORE_ADDR *))
562 return_zero);
563 de_fault (to_watchpoint_addr_within_range,
564 default_watchpoint_addr_within_range);
565 de_fault (to_region_ok_for_hw_watchpoint,
566 default_region_ok_for_hw_watchpoint);
567 de_fault (to_terminal_init,
568 (void (*) (void))
569 target_ignore);
570 de_fault (to_terminal_inferior,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_ours_for_output,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_ours,
577 (void (*) (void))
578 target_ignore);
579 de_fault (to_terminal_save_ours,
580 (void (*) (void))
581 target_ignore);
582 de_fault (to_terminal_info,
583 default_terminal_info);
584 de_fault (to_kill,
585 (void (*) (void))
586 noprocess);
587 de_fault (to_load,
588 (void (*) (char *, int))
589 tcomplain);
590 de_fault (to_lookup_symbol,
591 (int (*) (char *, CORE_ADDR *))
592 nosymbol);
593 de_fault (to_post_startup_inferior,
594 (void (*) (ptid_t))
595 target_ignore);
596 de_fault (to_acknowledge_created_inferior,
597 (void (*) (int))
598 target_ignore);
599 de_fault (to_insert_fork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_fork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_vfork_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_vfork_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_insert_exec_catchpoint,
612 (void (*) (int))
613 tcomplain);
614 de_fault (to_remove_exec_catchpoint,
615 (int (*) (int))
616 tcomplain);
617 de_fault (to_has_exited,
618 (int (*) (int, int, int *))
619 return_zero);
620 de_fault (to_can_run,
621 return_zero);
622 de_fault (to_notice_signals,
623 (void (*) (ptid_t))
624 target_ignore);
625 de_fault (to_thread_alive,
626 (int (*) (ptid_t))
627 return_zero);
628 de_fault (to_find_new_threads,
629 (void (*) (void))
630 target_ignore);
631 de_fault (to_extra_thread_info,
632 (char *(*) (struct thread_info *))
633 return_zero);
634 de_fault (to_stop,
635 (void (*) (ptid_t))
636 target_ignore);
637 current_target.to_xfer_partial = current_xfer_partial;
638 de_fault (to_rcmd,
639 (void (*) (char *, struct ui_file *))
640 tcomplain);
641 de_fault (to_pid_to_exec_file,
642 (char *(*) (int))
643 return_zero);
644 de_fault (to_async,
645 (void (*) (void (*) (enum inferior_event_type, void*), void*))
646 tcomplain);
647 de_fault (to_async_mask,
648 (int (*) (int))
649 return_one);
650 current_target.to_read_description = NULL;
651 de_fault (to_get_ada_task_ptid,
652 (ptid_t (*) (long, long))
653 default_get_ada_task_ptid);
654 de_fault (to_supports_multi_process,
655 (int (*) (void))
656 return_zero);
657 #undef de_fault
658
659 /* Finally, position the target-stack beneath the squashed
660 "current_target". That way code looking for a non-inherited
661 target method can quickly and simply find it. */
662 current_target.beneath = target_stack;
663
664 if (targetdebug)
665 setup_target_debug ();
666 }
667
668 /* Mark OPS as a running target. This reverses the effect
669 of target_mark_exited. */
670
671 void
672 target_mark_running (struct target_ops *ops)
673 {
674 struct target_ops *t;
675
676 for (t = target_stack; t != NULL; t = t->beneath)
677 if (t == ops)
678 break;
679 if (t == NULL)
680 internal_error (__FILE__, __LINE__,
681 "Attempted to mark unpushed target \"%s\" as running",
682 ops->to_shortname);
683
684 ops->to_has_execution = 1;
685 ops->to_has_all_memory = 1;
686 ops->to_has_memory = 1;
687 ops->to_has_stack = 1;
688 ops->to_has_registers = 1;
689
690 update_current_target ();
691 }
692
693 /* Mark OPS as a non-running target. This reverses the effect
694 of target_mark_running. */
695
696 void
697 target_mark_exited (struct target_ops *ops)
698 {
699 struct target_ops *t;
700
701 for (t = target_stack; t != NULL; t = t->beneath)
702 if (t == ops)
703 break;
704 if (t == NULL)
705 internal_error (__FILE__, __LINE__,
706 "Attempted to mark unpushed target \"%s\" as running",
707 ops->to_shortname);
708
709 ops->to_has_execution = 0;
710 ops->to_has_all_memory = 0;
711 ops->to_has_memory = 0;
712 ops->to_has_stack = 0;
713 ops->to_has_registers = 0;
714
715 update_current_target ();
716 }
717
718 /* Push a new target type into the stack of the existing target accessors,
719 possibly superseding some of the existing accessors.
720
721 Result is zero if the pushed target ended up on top of the stack,
722 nonzero if at least one target is on top of it.
723
724 Rather than allow an empty stack, we always have the dummy target at
725 the bottom stratum, so we can call the function vectors without
726 checking them. */
727
728 int
729 push_target (struct target_ops *t)
730 {
731 struct target_ops **cur;
732
733 /* Check magic number. If wrong, it probably means someone changed
734 the struct definition, but not all the places that initialize one. */
735 if (t->to_magic != OPS_MAGIC)
736 {
737 fprintf_unfiltered (gdb_stderr,
738 "Magic number of %s target struct wrong\n",
739 t->to_shortname);
740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
741 }
742
743 /* Find the proper stratum to install this target in. */
744 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
745 {
746 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
747 break;
748 }
749
750 /* If there's already targets at this stratum, remove them. */
751 /* FIXME: cagney/2003-10-15: I think this should be popping all
752 targets to CUR, and not just those at this stratum level. */
753 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
754 {
755 /* There's already something at this stratum level. Close it,
756 and un-hook it from the stack. */
757 struct target_ops *tmp = (*cur);
758 (*cur) = (*cur)->beneath;
759 tmp->beneath = NULL;
760 target_close (tmp, 0);
761 }
762
763 /* We have removed all targets in our stratum, now add the new one. */
764 t->beneath = (*cur);
765 (*cur) = t;
766
767 update_current_target ();
768
769 /* Not on top? */
770 return (t != target_stack);
771 }
772
773 /* Remove a target_ops vector from the stack, wherever it may be.
774 Return how many times it was removed (0 or 1). */
775
776 int
777 unpush_target (struct target_ops *t)
778 {
779 struct target_ops **cur;
780 struct target_ops *tmp;
781
782 if (t->to_stratum == dummy_stratum)
783 internal_error (__FILE__, __LINE__,
784 "Attempt to unpush the dummy target");
785
786 /* Look for the specified target. Note that we assume that a target
787 can only occur once in the target stack. */
788
789 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
790 {
791 if ((*cur) == t)
792 break;
793 }
794
795 if ((*cur) == NULL)
796 return 0; /* Didn't find target_ops, quit now */
797
798 /* NOTE: cagney/2003-12-06: In '94 the close call was made
799 unconditional by moving it to before the above check that the
800 target was in the target stack (something about "Change the way
801 pushing and popping of targets work to support target overlays
802 and inheritance"). This doesn't make much sense - only open
803 targets should be closed. */
804 target_close (t, 0);
805
806 /* Unchain the target */
807 tmp = (*cur);
808 (*cur) = (*cur)->beneath;
809 tmp->beneath = NULL;
810
811 update_current_target ();
812
813 return 1;
814 }
815
816 void
817 pop_target (void)
818 {
819 target_close (target_stack, 0); /* Let it clean up */
820 if (unpush_target (target_stack) == 1)
821 return;
822
823 fprintf_unfiltered (gdb_stderr,
824 "pop_target couldn't find target %s\n",
825 current_target.to_shortname);
826 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
827 }
828
829 void
830 pop_all_targets_above (enum strata above_stratum, int quitting)
831 {
832 while ((int) (current_target.to_stratum) > (int) above_stratum)
833 {
834 target_close (target_stack, quitting);
835 if (!unpush_target (target_stack))
836 {
837 fprintf_unfiltered (gdb_stderr,
838 "pop_all_targets couldn't find target %s\n",
839 target_stack->to_shortname);
840 internal_error (__FILE__, __LINE__,
841 _("failed internal consistency check"));
842 break;
843 }
844 }
845 }
846
847 void
848 pop_all_targets (int quitting)
849 {
850 pop_all_targets_above (dummy_stratum, quitting);
851 }
852
853 /* Using the objfile specified in OBJFILE, find the address for the
854 current thread's thread-local storage with offset OFFSET. */
855 CORE_ADDR
856 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
857 {
858 volatile CORE_ADDR addr = 0;
859
860 if (target_get_thread_local_address_p ()
861 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
862 {
863 ptid_t ptid = inferior_ptid;
864 volatile struct gdb_exception ex;
865
866 TRY_CATCH (ex, RETURN_MASK_ALL)
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
872 objfile);
873 /* If it's 0, throw the appropriate exception. */
874 if (lm_addr == 0)
875 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
876 _("TLS load module not found"));
877
878 addr = target_get_thread_local_address (ptid, lm_addr, offset);
879 }
880 /* If an error occurred, print TLS related messages here. Otherwise,
881 throw the error to some higher catcher. */
882 if (ex.reason < 0)
883 {
884 int objfile_is_library = (objfile->flags & OBJF_SHARED);
885
886 switch (ex.error)
887 {
888 case TLS_NO_LIBRARY_SUPPORT_ERROR:
889 error (_("Cannot find thread-local variables in this thread library."));
890 break;
891 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
892 if (objfile_is_library)
893 error (_("Cannot find shared library `%s' in dynamic"
894 " linker's load module list"), objfile->name);
895 else
896 error (_("Cannot find executable file `%s' in dynamic"
897 " linker's load module list"), objfile->name);
898 break;
899 case TLS_NOT_ALLOCATED_YET_ERROR:
900 if (objfile_is_library)
901 error (_("The inferior has not yet allocated storage for"
902 " thread-local variables in\n"
903 "the shared library `%s'\n"
904 "for %s"),
905 objfile->name, target_pid_to_str (ptid));
906 else
907 error (_("The inferior has not yet allocated storage for"
908 " thread-local variables in\n"
909 "the executable `%s'\n"
910 "for %s"),
911 objfile->name, target_pid_to_str (ptid));
912 break;
913 case TLS_GENERIC_ERROR:
914 if (objfile_is_library)
915 error (_("Cannot find thread-local storage for %s, "
916 "shared library %s:\n%s"),
917 target_pid_to_str (ptid),
918 objfile->name, ex.message);
919 else
920 error (_("Cannot find thread-local storage for %s, "
921 "executable file %s:\n%s"),
922 target_pid_to_str (ptid),
923 objfile->name, ex.message);
924 break;
925 default:
926 throw_exception (ex);
927 break;
928 }
929 }
930 }
931 /* It wouldn't be wrong here to try a gdbarch method, too; finding
932 TLS is an ABI-specific thing. But we don't do that yet. */
933 else
934 error (_("Cannot find thread-local variables on this target"));
935
936 return addr;
937 }
938
939 #undef MIN
940 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
941
942 /* target_read_string -- read a null terminated string, up to LEN bytes,
943 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
944 Set *STRING to a pointer to malloc'd memory containing the data; the caller
945 is responsible for freeing it. Return the number of bytes successfully
946 read. */
947
948 int
949 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
950 {
951 int tlen, origlen, offset, i;
952 gdb_byte buf[4];
953 int errcode = 0;
954 char *buffer;
955 int buffer_allocated;
956 char *bufptr;
957 unsigned int nbytes_read = 0;
958
959 gdb_assert (string);
960
961 /* Small for testing. */
962 buffer_allocated = 4;
963 buffer = xmalloc (buffer_allocated);
964 bufptr = buffer;
965
966 origlen = len;
967
968 while (len > 0)
969 {
970 tlen = MIN (len, 4 - (memaddr & 3));
971 offset = memaddr & 3;
972
973 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
974 if (errcode != 0)
975 {
976 /* The transfer request might have crossed the boundary to an
977 unallocated region of memory. Retry the transfer, requesting
978 a single byte. */
979 tlen = 1;
980 offset = 0;
981 errcode = target_read_memory (memaddr, buf, 1);
982 if (errcode != 0)
983 goto done;
984 }
985
986 if (bufptr - buffer + tlen > buffer_allocated)
987 {
988 unsigned int bytes;
989 bytes = bufptr - buffer;
990 buffer_allocated *= 2;
991 buffer = xrealloc (buffer, buffer_allocated);
992 bufptr = buffer + bytes;
993 }
994
995 for (i = 0; i < tlen; i++)
996 {
997 *bufptr++ = buf[i + offset];
998 if (buf[i + offset] == '\000')
999 {
1000 nbytes_read += i + 1;
1001 goto done;
1002 }
1003 }
1004
1005 memaddr += tlen;
1006 len -= tlen;
1007 nbytes_read += tlen;
1008 }
1009 done:
1010 *string = buffer;
1011 if (errnop != NULL)
1012 *errnop = errcode;
1013 return nbytes_read;
1014 }
1015
1016 /* Find a section containing ADDR. */
1017 struct section_table *
1018 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1019 {
1020 struct section_table *secp;
1021 for (secp = target->to_sections;
1022 secp < target->to_sections_end;
1023 secp++)
1024 {
1025 if (addr >= secp->addr && addr < secp->endaddr)
1026 return secp;
1027 }
1028 return NULL;
1029 }
1030
1031 /* Perform a partial memory transfer. The arguments and return
1032 value are just as for target_xfer_partial. */
1033
1034 static LONGEST
1035 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1036 ULONGEST memaddr, LONGEST len)
1037 {
1038 LONGEST res;
1039 int reg_len;
1040 struct mem_region *region;
1041
1042 /* Zero length requests are ok and require no work. */
1043 if (len == 0)
1044 return 0;
1045
1046 /* Try the executable file, if "trust-readonly-sections" is set. */
1047 if (readbuf != NULL && trust_readonly)
1048 {
1049 struct section_table *secp;
1050
1051 secp = target_section_by_addr (ops, memaddr);
1052 if (secp != NULL
1053 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1054 & SEC_READONLY))
1055 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1056 }
1057
1058 /* Likewise for accesses to unmapped overlay sections. */
1059 if (readbuf != NULL && overlay_debugging)
1060 {
1061 struct obj_section *section = find_pc_overlay (memaddr);
1062 if (pc_in_unmapped_range (memaddr, section))
1063 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1064 }
1065
1066 /* Try GDB's internal data cache. */
1067 region = lookup_mem_region (memaddr);
1068 /* region->hi == 0 means there's no upper bound. */
1069 if (memaddr + len < region->hi || region->hi == 0)
1070 reg_len = len;
1071 else
1072 reg_len = region->hi - memaddr;
1073
1074 switch (region->attrib.mode)
1075 {
1076 case MEM_RO:
1077 if (writebuf != NULL)
1078 return -1;
1079 break;
1080
1081 case MEM_WO:
1082 if (readbuf != NULL)
1083 return -1;
1084 break;
1085
1086 case MEM_FLASH:
1087 /* We only support writing to flash during "load" for now. */
1088 if (writebuf != NULL)
1089 error (_("Writing to flash memory forbidden in this context"));
1090 break;
1091
1092 case MEM_NONE:
1093 return -1;
1094 }
1095
1096 if (region->attrib.cache)
1097 {
1098 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1099 memory request will start back at current_target. */
1100 if (readbuf != NULL)
1101 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1102 reg_len, 0);
1103 else
1104 /* FIXME drow/2006-08-09: If we're going to preserve const
1105 correctness dcache_xfer_memory should take readbuf and
1106 writebuf. */
1107 res = dcache_xfer_memory (target_dcache, memaddr,
1108 (void *) writebuf,
1109 reg_len, 1);
1110 if (res <= 0)
1111 return -1;
1112 else
1113 {
1114 if (readbuf && !show_memory_breakpoints)
1115 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1116 return res;
1117 }
1118 }
1119
1120 /* If none of those methods found the memory we wanted, fall back
1121 to a target partial transfer. Normally a single call to
1122 to_xfer_partial is enough; if it doesn't recognize an object
1123 it will call the to_xfer_partial of the next target down.
1124 But for memory this won't do. Memory is the only target
1125 object which can be read from more than one valid target.
1126 A core file, for instance, could have some of memory but
1127 delegate other bits to the target below it. So, we must
1128 manually try all targets. */
1129
1130 do
1131 {
1132 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1133 readbuf, writebuf, memaddr, reg_len);
1134 if (res > 0)
1135 break;
1136
1137 /* We want to continue past core files to executables, but not
1138 past a running target's memory. */
1139 if (ops->to_has_all_memory)
1140 break;
1141
1142 ops = ops->beneath;
1143 }
1144 while (ops != NULL);
1145
1146 if (readbuf && !show_memory_breakpoints)
1147 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1148
1149 /* If we still haven't got anything, return the last error. We
1150 give up. */
1151 return res;
1152 }
1153
1154 static void
1155 restore_show_memory_breakpoints (void *arg)
1156 {
1157 show_memory_breakpoints = (uintptr_t) arg;
1158 }
1159
1160 struct cleanup *
1161 make_show_memory_breakpoints_cleanup (int show)
1162 {
1163 int current = show_memory_breakpoints;
1164 show_memory_breakpoints = show;
1165
1166 return make_cleanup (restore_show_memory_breakpoints,
1167 (void *) (uintptr_t) current);
1168 }
1169
1170 static LONGEST
1171 target_xfer_partial (struct target_ops *ops,
1172 enum target_object object, const char *annex,
1173 void *readbuf, const void *writebuf,
1174 ULONGEST offset, LONGEST len)
1175 {
1176 LONGEST retval;
1177
1178 gdb_assert (ops->to_xfer_partial != NULL);
1179
1180 /* If this is a memory transfer, let the memory-specific code
1181 have a look at it instead. Memory transfers are more
1182 complicated. */
1183 if (object == TARGET_OBJECT_MEMORY)
1184 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1185 else
1186 {
1187 enum target_object raw_object = object;
1188
1189 /* If this is a raw memory transfer, request the normal
1190 memory object from other layers. */
1191 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1192 raw_object = TARGET_OBJECT_MEMORY;
1193
1194 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1195 writebuf, offset, len);
1196 }
1197
1198 if (targetdebug)
1199 {
1200 const unsigned char *myaddr = NULL;
1201
1202 fprintf_unfiltered (gdb_stdlog,
1203 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1204 ops->to_shortname,
1205 (int) object,
1206 (annex ? annex : "(null)"),
1207 host_address_to_string (readbuf),
1208 host_address_to_string (writebuf),
1209 core_addr_to_string_nz (offset),
1210 plongest (len), plongest (retval));
1211
1212 if (readbuf)
1213 myaddr = readbuf;
1214 if (writebuf)
1215 myaddr = writebuf;
1216 if (retval > 0 && myaddr != NULL)
1217 {
1218 int i;
1219
1220 fputs_unfiltered (", bytes =", gdb_stdlog);
1221 for (i = 0; i < retval; i++)
1222 {
1223 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1224 {
1225 if (targetdebug < 2 && i > 0)
1226 {
1227 fprintf_unfiltered (gdb_stdlog, " ...");
1228 break;
1229 }
1230 fprintf_unfiltered (gdb_stdlog, "\n");
1231 }
1232
1233 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1234 }
1235 }
1236
1237 fputc_unfiltered ('\n', gdb_stdlog);
1238 }
1239 return retval;
1240 }
1241
1242 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1243 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1244 if any error occurs.
1245
1246 If an error occurs, no guarantee is made about the contents of the data at
1247 MYADDR. In particular, the caller should not depend upon partial reads
1248 filling the buffer with good data. There is no way for the caller to know
1249 how much good data might have been transfered anyway. Callers that can
1250 deal with partial reads should call target_read (which will retry until
1251 it makes no progress, and then return how much was transferred). */
1252
1253 int
1254 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1255 {
1256 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1257 myaddr, memaddr, len) == len)
1258 return 0;
1259 else
1260 return EIO;
1261 }
1262
1263 int
1264 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1265 {
1266 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1267 myaddr, memaddr, len) == len)
1268 return 0;
1269 else
1270 return EIO;
1271 }
1272
1273 /* Fetch the target's memory map. */
1274
1275 VEC(mem_region_s) *
1276 target_memory_map (void)
1277 {
1278 VEC(mem_region_s) *result;
1279 struct mem_region *last_one, *this_one;
1280 int ix;
1281 struct target_ops *t;
1282
1283 if (targetdebug)
1284 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1285
1286 for (t = current_target.beneath; t != NULL; t = t->beneath)
1287 if (t->to_memory_map != NULL)
1288 break;
1289
1290 if (t == NULL)
1291 return NULL;
1292
1293 result = t->to_memory_map (t);
1294 if (result == NULL)
1295 return NULL;
1296
1297 qsort (VEC_address (mem_region_s, result),
1298 VEC_length (mem_region_s, result),
1299 sizeof (struct mem_region), mem_region_cmp);
1300
1301 /* Check that regions do not overlap. Simultaneously assign
1302 a numbering for the "mem" commands to use to refer to
1303 each region. */
1304 last_one = NULL;
1305 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1306 {
1307 this_one->number = ix;
1308
1309 if (last_one && last_one->hi > this_one->lo)
1310 {
1311 warning (_("Overlapping regions in memory map: ignoring"));
1312 VEC_free (mem_region_s, result);
1313 return NULL;
1314 }
1315 last_one = this_one;
1316 }
1317
1318 return result;
1319 }
1320
1321 void
1322 target_flash_erase (ULONGEST address, LONGEST length)
1323 {
1324 struct target_ops *t;
1325
1326 for (t = current_target.beneath; t != NULL; t = t->beneath)
1327 if (t->to_flash_erase != NULL)
1328 {
1329 if (targetdebug)
1330 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1331 paddr (address), phex (length, 0));
1332 t->to_flash_erase (t, address, length);
1333 return;
1334 }
1335
1336 tcomplain ();
1337 }
1338
1339 void
1340 target_flash_done (void)
1341 {
1342 struct target_ops *t;
1343
1344 for (t = current_target.beneath; t != NULL; t = t->beneath)
1345 if (t->to_flash_done != NULL)
1346 {
1347 if (targetdebug)
1348 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1349 t->to_flash_done (t);
1350 return;
1351 }
1352
1353 tcomplain ();
1354 }
1355
1356 static void
1357 show_trust_readonly (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359 {
1360 fprintf_filtered (file, _("\
1361 Mode for reading from readonly sections is %s.\n"),
1362 value);
1363 }
1364
1365 /* More generic transfers. */
1366
1367 static LONGEST
1368 default_xfer_partial (struct target_ops *ops, enum target_object object,
1369 const char *annex, gdb_byte *readbuf,
1370 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1371 {
1372 if (object == TARGET_OBJECT_MEMORY
1373 && ops->deprecated_xfer_memory != NULL)
1374 /* If available, fall back to the target's
1375 "deprecated_xfer_memory" method. */
1376 {
1377 int xfered = -1;
1378 errno = 0;
1379 if (writebuf != NULL)
1380 {
1381 void *buffer = xmalloc (len);
1382 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1383 memcpy (buffer, writebuf, len);
1384 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1385 1/*write*/, NULL, ops);
1386 do_cleanups (cleanup);
1387 }
1388 if (readbuf != NULL)
1389 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1390 0/*read*/, NULL, ops);
1391 if (xfered > 0)
1392 return xfered;
1393 else if (xfered == 0 && errno == 0)
1394 /* "deprecated_xfer_memory" uses 0, cross checked against
1395 ERRNO as one indication of an error. */
1396 return 0;
1397 else
1398 return -1;
1399 }
1400 else if (ops->beneath != NULL)
1401 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1402 readbuf, writebuf, offset, len);
1403 else
1404 return -1;
1405 }
1406
1407 /* The xfer_partial handler for the topmost target. Unlike the default,
1408 it does not need to handle memory specially; it just passes all
1409 requests down the stack. */
1410
1411 static LONGEST
1412 current_xfer_partial (struct target_ops *ops, enum target_object object,
1413 const char *annex, gdb_byte *readbuf,
1414 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1415 {
1416 if (ops->beneath != NULL)
1417 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1418 readbuf, writebuf, offset, len);
1419 else
1420 return -1;
1421 }
1422
1423 /* Target vector read/write partial wrapper functions.
1424
1425 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1426 (inbuf, outbuf)", instead of separate read/write methods, make life
1427 easier. */
1428
1429 static LONGEST
1430 target_read_partial (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, gdb_byte *buf,
1433 ULONGEST offset, LONGEST len)
1434 {
1435 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1436 }
1437
1438 static LONGEST
1439 target_write_partial (struct target_ops *ops,
1440 enum target_object object,
1441 const char *annex, const gdb_byte *buf,
1442 ULONGEST offset, LONGEST len)
1443 {
1444 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1445 }
1446
1447 /* Wrappers to perform the full transfer. */
1448 LONGEST
1449 target_read (struct target_ops *ops,
1450 enum target_object object,
1451 const char *annex, gdb_byte *buf,
1452 ULONGEST offset, LONGEST len)
1453 {
1454 LONGEST xfered = 0;
1455 while (xfered < len)
1456 {
1457 LONGEST xfer = target_read_partial (ops, object, annex,
1458 (gdb_byte *) buf + xfered,
1459 offset + xfered, len - xfered);
1460 /* Call an observer, notifying them of the xfer progress? */
1461 if (xfer == 0)
1462 return xfered;
1463 if (xfer < 0)
1464 return -1;
1465 xfered += xfer;
1466 QUIT;
1467 }
1468 return len;
1469 }
1470
1471 LONGEST
1472 target_read_until_error (struct target_ops *ops,
1473 enum target_object object,
1474 const char *annex, gdb_byte *buf,
1475 ULONGEST offset, LONGEST len)
1476 {
1477 LONGEST xfered = 0;
1478 while (xfered < len)
1479 {
1480 LONGEST xfer = target_read_partial (ops, object, annex,
1481 (gdb_byte *) buf + xfered,
1482 offset + xfered, len - xfered);
1483 /* Call an observer, notifying them of the xfer progress? */
1484 if (xfer == 0)
1485 return xfered;
1486 if (xfer < 0)
1487 {
1488 /* We've got an error. Try to read in smaller blocks. */
1489 ULONGEST start = offset + xfered;
1490 ULONGEST remaining = len - xfered;
1491 ULONGEST half;
1492
1493 /* If an attempt was made to read a random memory address,
1494 it's likely that the very first byte is not accessible.
1495 Try reading the first byte, to avoid doing log N tries
1496 below. */
1497 xfer = target_read_partial (ops, object, annex,
1498 (gdb_byte *) buf + xfered, start, 1);
1499 if (xfer <= 0)
1500 return xfered;
1501 start += 1;
1502 remaining -= 1;
1503 half = remaining/2;
1504
1505 while (half > 0)
1506 {
1507 xfer = target_read_partial (ops, object, annex,
1508 (gdb_byte *) buf + xfered,
1509 start, half);
1510 if (xfer == 0)
1511 return xfered;
1512 if (xfer < 0)
1513 {
1514 remaining = half;
1515 }
1516 else
1517 {
1518 /* We have successfully read the first half. So, the
1519 error must be in the second half. Adjust start and
1520 remaining to point at the second half. */
1521 xfered += xfer;
1522 start += xfer;
1523 remaining -= xfer;
1524 }
1525 half = remaining/2;
1526 }
1527
1528 return xfered;
1529 }
1530 xfered += xfer;
1531 QUIT;
1532 }
1533 return len;
1534 }
1535
1536
1537 /* An alternative to target_write with progress callbacks. */
1538
1539 LONGEST
1540 target_write_with_progress (struct target_ops *ops,
1541 enum target_object object,
1542 const char *annex, const gdb_byte *buf,
1543 ULONGEST offset, LONGEST len,
1544 void (*progress) (ULONGEST, void *), void *baton)
1545 {
1546 LONGEST xfered = 0;
1547
1548 /* Give the progress callback a chance to set up. */
1549 if (progress)
1550 (*progress) (0, baton);
1551
1552 while (xfered < len)
1553 {
1554 LONGEST xfer = target_write_partial (ops, object, annex,
1555 (gdb_byte *) buf + xfered,
1556 offset + xfered, len - xfered);
1557
1558 if (xfer == 0)
1559 return xfered;
1560 if (xfer < 0)
1561 return -1;
1562
1563 if (progress)
1564 (*progress) (xfer, baton);
1565
1566 xfered += xfer;
1567 QUIT;
1568 }
1569 return len;
1570 }
1571
1572 LONGEST
1573 target_write (struct target_ops *ops,
1574 enum target_object object,
1575 const char *annex, const gdb_byte *buf,
1576 ULONGEST offset, LONGEST len)
1577 {
1578 return target_write_with_progress (ops, object, annex, buf, offset, len,
1579 NULL, NULL);
1580 }
1581
1582 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1583 the size of the transferred data. PADDING additional bytes are
1584 available in *BUF_P. This is a helper function for
1585 target_read_alloc; see the declaration of that function for more
1586 information. */
1587
1588 static LONGEST
1589 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1590 const char *annex, gdb_byte **buf_p, int padding)
1591 {
1592 size_t buf_alloc, buf_pos;
1593 gdb_byte *buf;
1594 LONGEST n;
1595
1596 /* This function does not have a length parameter; it reads the
1597 entire OBJECT). Also, it doesn't support objects fetched partly
1598 from one target and partly from another (in a different stratum,
1599 e.g. a core file and an executable). Both reasons make it
1600 unsuitable for reading memory. */
1601 gdb_assert (object != TARGET_OBJECT_MEMORY);
1602
1603 /* Start by reading up to 4K at a time. The target will throttle
1604 this number down if necessary. */
1605 buf_alloc = 4096;
1606 buf = xmalloc (buf_alloc);
1607 buf_pos = 0;
1608 while (1)
1609 {
1610 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1611 buf_pos, buf_alloc - buf_pos - padding);
1612 if (n < 0)
1613 {
1614 /* An error occurred. */
1615 xfree (buf);
1616 return -1;
1617 }
1618 else if (n == 0)
1619 {
1620 /* Read all there was. */
1621 if (buf_pos == 0)
1622 xfree (buf);
1623 else
1624 *buf_p = buf;
1625 return buf_pos;
1626 }
1627
1628 buf_pos += n;
1629
1630 /* If the buffer is filling up, expand it. */
1631 if (buf_alloc < buf_pos * 2)
1632 {
1633 buf_alloc *= 2;
1634 buf = xrealloc (buf, buf_alloc);
1635 }
1636
1637 QUIT;
1638 }
1639 }
1640
1641 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1642 the size of the transferred data. See the declaration in "target.h"
1643 function for more information about the return value. */
1644
1645 LONGEST
1646 target_read_alloc (struct target_ops *ops, enum target_object object,
1647 const char *annex, gdb_byte **buf_p)
1648 {
1649 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1650 }
1651
1652 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1653 returned as a string, allocated using xmalloc. If an error occurs
1654 or the transfer is unsupported, NULL is returned. Empty objects
1655 are returned as allocated but empty strings. A warning is issued
1656 if the result contains any embedded NUL bytes. */
1657
1658 char *
1659 target_read_stralloc (struct target_ops *ops, enum target_object object,
1660 const char *annex)
1661 {
1662 gdb_byte *buffer;
1663 LONGEST transferred;
1664
1665 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1666
1667 if (transferred < 0)
1668 return NULL;
1669
1670 if (transferred == 0)
1671 return xstrdup ("");
1672
1673 buffer[transferred] = 0;
1674 if (strlen (buffer) < transferred)
1675 warning (_("target object %d, annex %s, "
1676 "contained unexpected null characters"),
1677 (int) object, annex ? annex : "(none)");
1678
1679 return (char *) buffer;
1680 }
1681
1682 /* Memory transfer methods. */
1683
1684 void
1685 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1686 LONGEST len)
1687 {
1688 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1689 != len)
1690 memory_error (EIO, addr);
1691 }
1692
1693 ULONGEST
1694 get_target_memory_unsigned (struct target_ops *ops,
1695 CORE_ADDR addr, int len)
1696 {
1697 gdb_byte buf[sizeof (ULONGEST)];
1698
1699 gdb_assert (len <= sizeof (buf));
1700 get_target_memory (ops, addr, buf, len);
1701 return extract_unsigned_integer (buf, len);
1702 }
1703
1704 static void
1705 target_info (char *args, int from_tty)
1706 {
1707 struct target_ops *t;
1708 int has_all_mem = 0;
1709
1710 if (symfile_objfile != NULL)
1711 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1712
1713 for (t = target_stack; t != NULL; t = t->beneath)
1714 {
1715 if (!t->to_has_memory)
1716 continue;
1717
1718 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1719 continue;
1720 if (has_all_mem)
1721 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1722 printf_unfiltered ("%s:\n", t->to_longname);
1723 (t->to_files_info) (t);
1724 has_all_mem = t->to_has_all_memory;
1725 }
1726 }
1727
1728 /* This function is called before any new inferior is created, e.g.
1729 by running a program, attaching, or connecting to a target.
1730 It cleans up any state from previous invocations which might
1731 change between runs. This is a subset of what target_preopen
1732 resets (things which might change between targets). */
1733
1734 void
1735 target_pre_inferior (int from_tty)
1736 {
1737 /* Clear out solib state. Otherwise the solib state of the previous
1738 inferior might have survived and is entirely wrong for the new
1739 target. This has been observed on GNU/Linux using glibc 2.3. How
1740 to reproduce:
1741
1742 bash$ ./foo&
1743 [1] 4711
1744 bash$ ./foo&
1745 [1] 4712
1746 bash$ gdb ./foo
1747 [...]
1748 (gdb) attach 4711
1749 (gdb) detach
1750 (gdb) attach 4712
1751 Cannot access memory at address 0xdeadbeef
1752 */
1753
1754 /* In some OSs, the shared library list is the same/global/shared
1755 across inferiors. If code is shared between processes, so are
1756 memory regions and features. */
1757 if (!gdbarch_has_global_solist (target_gdbarch))
1758 {
1759 no_shared_libraries (NULL, from_tty);
1760
1761 invalidate_target_mem_regions ();
1762
1763 target_clear_description ();
1764 }
1765 }
1766
1767 /* This is to be called by the open routine before it does
1768 anything. */
1769
1770 void
1771 target_preopen (int from_tty)
1772 {
1773 dont_repeat ();
1774
1775 if (target_has_execution)
1776 {
1777 if (!from_tty
1778 || query (_("A program is being debugged already. Kill it? ")))
1779 target_kill ();
1780 else
1781 error (_("Program not killed."));
1782 }
1783
1784 /* Calling target_kill may remove the target from the stack. But if
1785 it doesn't (which seems like a win for UDI), remove it now. */
1786 /* Leave the exec target, though. The user may be switching from a
1787 live process to a core of the same program. */
1788 pop_all_targets_above (file_stratum, 0);
1789
1790 target_pre_inferior (from_tty);
1791 }
1792
1793 /* Detach a target after doing deferred register stores. */
1794
1795 void
1796 target_detach (char *args, int from_tty)
1797 {
1798 struct target_ops* t;
1799
1800 if (gdbarch_has_global_solist (target_gdbarch))
1801 /* Don't remove global breakpoints here. They're removed on
1802 disconnection from the target. */
1803 ;
1804 else
1805 /* If we're in breakpoints-always-inserted mode, have to remove
1806 them before detaching. */
1807 remove_breakpoints ();
1808
1809 for (t = current_target.beneath; t != NULL; t = t->beneath)
1810 {
1811 if (t->to_detach != NULL)
1812 {
1813 t->to_detach (t, args, from_tty);
1814 return;
1815 }
1816 }
1817
1818 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1819 }
1820
1821 void
1822 target_disconnect (char *args, int from_tty)
1823 {
1824 struct target_ops *t;
1825
1826 /* If we're in breakpoints-always-inserted mode or if breakpoints
1827 are global across processes, we have to remove them before
1828 disconnecting. */
1829 remove_breakpoints ();
1830
1831 for (t = current_target.beneath; t != NULL; t = t->beneath)
1832 if (t->to_disconnect != NULL)
1833 {
1834 if (targetdebug)
1835 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1836 args, from_tty);
1837 t->to_disconnect (t, args, from_tty);
1838 return;
1839 }
1840
1841 tcomplain ();
1842 }
1843
1844 void
1845 target_resume (ptid_t ptid, int step, enum target_signal signal)
1846 {
1847 dcache_invalidate (target_dcache);
1848 (*current_target.to_resume) (ptid, step, signal);
1849 set_executing (ptid, 1);
1850 set_running (ptid, 1);
1851 }
1852 /* Look through the list of possible targets for a target that can
1853 follow forks. */
1854
1855 int
1856 target_follow_fork (int follow_child)
1857 {
1858 struct target_ops *t;
1859
1860 for (t = current_target.beneath; t != NULL; t = t->beneath)
1861 {
1862 if (t->to_follow_fork != NULL)
1863 {
1864 int retval = t->to_follow_fork (t, follow_child);
1865 if (targetdebug)
1866 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1867 follow_child, retval);
1868 return retval;
1869 }
1870 }
1871
1872 /* Some target returned a fork event, but did not know how to follow it. */
1873 internal_error (__FILE__, __LINE__,
1874 "could not find a target to follow fork");
1875 }
1876
1877 void
1878 target_mourn_inferior (void)
1879 {
1880 struct target_ops *t;
1881 for (t = current_target.beneath; t != NULL; t = t->beneath)
1882 {
1883 if (t->to_mourn_inferior != NULL)
1884 {
1885 t->to_mourn_inferior (t);
1886 return;
1887 }
1888 }
1889
1890 internal_error (__FILE__, __LINE__,
1891 "could not find a target to follow mourn inferiour");
1892 }
1893
1894 /* Look for a target which can describe architectural features, starting
1895 from TARGET. If we find one, return its description. */
1896
1897 const struct target_desc *
1898 target_read_description (struct target_ops *target)
1899 {
1900 struct target_ops *t;
1901
1902 for (t = target; t != NULL; t = t->beneath)
1903 if (t->to_read_description != NULL)
1904 {
1905 const struct target_desc *tdesc;
1906
1907 tdesc = t->to_read_description (t);
1908 if (tdesc)
1909 return tdesc;
1910 }
1911
1912 return NULL;
1913 }
1914
1915 /* The default implementation of to_search_memory.
1916 This implements a basic search of memory, reading target memory and
1917 performing the search here (as opposed to performing the search in on the
1918 target side with, for example, gdbserver). */
1919
1920 int
1921 simple_search_memory (struct target_ops *ops,
1922 CORE_ADDR start_addr, ULONGEST search_space_len,
1923 const gdb_byte *pattern, ULONGEST pattern_len,
1924 CORE_ADDR *found_addrp)
1925 {
1926 /* NOTE: also defined in find.c testcase. */
1927 #define SEARCH_CHUNK_SIZE 16000
1928 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1929 /* Buffer to hold memory contents for searching. */
1930 gdb_byte *search_buf;
1931 unsigned search_buf_size;
1932 struct cleanup *old_cleanups;
1933
1934 search_buf_size = chunk_size + pattern_len - 1;
1935
1936 /* No point in trying to allocate a buffer larger than the search space. */
1937 if (search_space_len < search_buf_size)
1938 search_buf_size = search_space_len;
1939
1940 search_buf = malloc (search_buf_size);
1941 if (search_buf == NULL)
1942 error (_("Unable to allocate memory to perform the search."));
1943 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1944
1945 /* Prime the search buffer. */
1946
1947 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1948 search_buf, start_addr, search_buf_size) != search_buf_size)
1949 {
1950 warning (_("Unable to access target memory at %s, halting search."),
1951 hex_string (start_addr));
1952 do_cleanups (old_cleanups);
1953 return -1;
1954 }
1955
1956 /* Perform the search.
1957
1958 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1959 When we've scanned N bytes we copy the trailing bytes to the start and
1960 read in another N bytes. */
1961
1962 while (search_space_len >= pattern_len)
1963 {
1964 gdb_byte *found_ptr;
1965 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1966
1967 found_ptr = memmem (search_buf, nr_search_bytes,
1968 pattern, pattern_len);
1969
1970 if (found_ptr != NULL)
1971 {
1972 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1973 *found_addrp = found_addr;
1974 do_cleanups (old_cleanups);
1975 return 1;
1976 }
1977
1978 /* Not found in this chunk, skip to next chunk. */
1979
1980 /* Don't let search_space_len wrap here, it's unsigned. */
1981 if (search_space_len >= chunk_size)
1982 search_space_len -= chunk_size;
1983 else
1984 search_space_len = 0;
1985
1986 if (search_space_len >= pattern_len)
1987 {
1988 unsigned keep_len = search_buf_size - chunk_size;
1989 CORE_ADDR read_addr = start_addr + keep_len;
1990 int nr_to_read;
1991
1992 /* Copy the trailing part of the previous iteration to the front
1993 of the buffer for the next iteration. */
1994 gdb_assert (keep_len == pattern_len - 1);
1995 memcpy (search_buf, search_buf + chunk_size, keep_len);
1996
1997 nr_to_read = min (search_space_len - keep_len, chunk_size);
1998
1999 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2000 search_buf + keep_len, read_addr,
2001 nr_to_read) != nr_to_read)
2002 {
2003 warning (_("Unable to access target memory at %s, halting search."),
2004 hex_string (read_addr));
2005 do_cleanups (old_cleanups);
2006 return -1;
2007 }
2008
2009 start_addr += chunk_size;
2010 }
2011 }
2012
2013 /* Not found. */
2014
2015 do_cleanups (old_cleanups);
2016 return 0;
2017 }
2018
2019 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2020 sequence of bytes in PATTERN with length PATTERN_LEN.
2021
2022 The result is 1 if found, 0 if not found, and -1 if there was an error
2023 requiring halting of the search (e.g. memory read error).
2024 If the pattern is found the address is recorded in FOUND_ADDRP. */
2025
2026 int
2027 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2028 const gdb_byte *pattern, ULONGEST pattern_len,
2029 CORE_ADDR *found_addrp)
2030 {
2031 struct target_ops *t;
2032 int found;
2033
2034 /* We don't use INHERIT to set current_target.to_search_memory,
2035 so we have to scan the target stack and handle targetdebug
2036 ourselves. */
2037
2038 if (targetdebug)
2039 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2040 hex_string (start_addr));
2041
2042 for (t = current_target.beneath; t != NULL; t = t->beneath)
2043 if (t->to_search_memory != NULL)
2044 break;
2045
2046 if (t != NULL)
2047 {
2048 found = t->to_search_memory (t, start_addr, search_space_len,
2049 pattern, pattern_len, found_addrp);
2050 }
2051 else
2052 {
2053 /* If a special version of to_search_memory isn't available, use the
2054 simple version. */
2055 found = simple_search_memory (&current_target,
2056 start_addr, search_space_len,
2057 pattern, pattern_len, found_addrp);
2058 }
2059
2060 if (targetdebug)
2061 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2062
2063 return found;
2064 }
2065
2066 /* Look through the currently pushed targets. If none of them will
2067 be able to restart the currently running process, issue an error
2068 message. */
2069
2070 void
2071 target_require_runnable (void)
2072 {
2073 struct target_ops *t;
2074
2075 for (t = target_stack; t != NULL; t = t->beneath)
2076 {
2077 /* If this target knows how to create a new program, then
2078 assume we will still be able to after killing the current
2079 one. Either killing and mourning will not pop T, or else
2080 find_default_run_target will find it again. */
2081 if (t->to_create_inferior != NULL)
2082 return;
2083
2084 /* Do not worry about thread_stratum targets that can not
2085 create inferiors. Assume they will be pushed again if
2086 necessary, and continue to the process_stratum. */
2087 if (t->to_stratum == thread_stratum)
2088 continue;
2089
2090 error (_("\
2091 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2092 t->to_shortname);
2093 }
2094
2095 /* This function is only called if the target is running. In that
2096 case there should have been a process_stratum target and it
2097 should either know how to create inferiors, or not... */
2098 internal_error (__FILE__, __LINE__, "No targets found");
2099 }
2100
2101 /* Look through the list of possible targets for a target that can
2102 execute a run or attach command without any other data. This is
2103 used to locate the default process stratum.
2104
2105 If DO_MESG is not NULL, the result is always valid (error() is
2106 called for errors); else, return NULL on error. */
2107
2108 static struct target_ops *
2109 find_default_run_target (char *do_mesg)
2110 {
2111 struct target_ops **t;
2112 struct target_ops *runable = NULL;
2113 int count;
2114
2115 count = 0;
2116
2117 for (t = target_structs; t < target_structs + target_struct_size;
2118 ++t)
2119 {
2120 if ((*t)->to_can_run && target_can_run (*t))
2121 {
2122 runable = *t;
2123 ++count;
2124 }
2125 }
2126
2127 if (count != 1)
2128 {
2129 if (do_mesg)
2130 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2131 else
2132 return NULL;
2133 }
2134
2135 return runable;
2136 }
2137
2138 void
2139 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2140 {
2141 struct target_ops *t;
2142
2143 t = find_default_run_target ("attach");
2144 (t->to_attach) (t, args, from_tty);
2145 return;
2146 }
2147
2148 void
2149 find_default_create_inferior (struct target_ops *ops,
2150 char *exec_file, char *allargs, char **env,
2151 int from_tty)
2152 {
2153 struct target_ops *t;
2154
2155 t = find_default_run_target ("run");
2156 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2157 return;
2158 }
2159
2160 int
2161 find_default_can_async_p (void)
2162 {
2163 struct target_ops *t;
2164
2165 /* This may be called before the target is pushed on the stack;
2166 look for the default process stratum. If there's none, gdb isn't
2167 configured with a native debugger, and target remote isn't
2168 connected yet. */
2169 t = find_default_run_target (NULL);
2170 if (t && t->to_can_async_p)
2171 return (t->to_can_async_p) ();
2172 return 0;
2173 }
2174
2175 int
2176 find_default_is_async_p (void)
2177 {
2178 struct target_ops *t;
2179
2180 /* This may be called before the target is pushed on the stack;
2181 look for the default process stratum. If there's none, gdb isn't
2182 configured with a native debugger, and target remote isn't
2183 connected yet. */
2184 t = find_default_run_target (NULL);
2185 if (t && t->to_is_async_p)
2186 return (t->to_is_async_p) ();
2187 return 0;
2188 }
2189
2190 int
2191 find_default_supports_non_stop (void)
2192 {
2193 struct target_ops *t;
2194
2195 t = find_default_run_target (NULL);
2196 if (t && t->to_supports_non_stop)
2197 return (t->to_supports_non_stop) ();
2198 return 0;
2199 }
2200
2201 int
2202 target_supports_non_stop ()
2203 {
2204 struct target_ops *t;
2205 for (t = &current_target; t != NULL; t = t->beneath)
2206 if (t->to_supports_non_stop)
2207 return t->to_supports_non_stop ();
2208
2209 return 0;
2210 }
2211
2212
2213 char *
2214 target_get_osdata (const char *type)
2215 {
2216 char *document;
2217 struct target_ops *t;
2218
2219 if (target_can_run (&current_target))
2220 t = &current_target;
2221 else
2222 t = find_default_run_target ("get OS data");
2223
2224 if (!t)
2225 return NULL;
2226
2227 document = target_read_stralloc (t,
2228 TARGET_OBJECT_OSDATA,
2229 type);
2230 return document;
2231 }
2232
2233 static int
2234 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2235 {
2236 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2237 }
2238
2239 static int
2240 default_watchpoint_addr_within_range (struct target_ops *target,
2241 CORE_ADDR addr,
2242 CORE_ADDR start, int length)
2243 {
2244 return addr >= start && addr < start + length;
2245 }
2246
2247 static int
2248 return_zero (void)
2249 {
2250 return 0;
2251 }
2252
2253 static int
2254 return_one (void)
2255 {
2256 return 1;
2257 }
2258
2259 static int
2260 return_minus_one (void)
2261 {
2262 return -1;
2263 }
2264
2265 /*
2266 * Resize the to_sections pointer. Also make sure that anyone that
2267 * was holding on to an old value of it gets updated.
2268 * Returns the old size.
2269 */
2270
2271 int
2272 target_resize_to_sections (struct target_ops *target, int num_added)
2273 {
2274 struct target_ops **t;
2275 struct section_table *old_value;
2276 int old_count;
2277
2278 old_value = target->to_sections;
2279
2280 if (target->to_sections)
2281 {
2282 old_count = target->to_sections_end - target->to_sections;
2283 target->to_sections = (struct section_table *)
2284 xrealloc ((char *) target->to_sections,
2285 (sizeof (struct section_table)) * (num_added + old_count));
2286 }
2287 else
2288 {
2289 old_count = 0;
2290 target->to_sections = (struct section_table *)
2291 xmalloc ((sizeof (struct section_table)) * num_added);
2292 }
2293 target->to_sections_end = target->to_sections + (num_added + old_count);
2294
2295 /* Check to see if anyone else was pointing to this structure.
2296 If old_value was null, then no one was. */
2297
2298 if (old_value)
2299 {
2300 for (t = target_structs; t < target_structs + target_struct_size;
2301 ++t)
2302 {
2303 if ((*t)->to_sections == old_value)
2304 {
2305 (*t)->to_sections = target->to_sections;
2306 (*t)->to_sections_end = target->to_sections_end;
2307 }
2308 }
2309 /* There is a flattened view of the target stack in current_target,
2310 so its to_sections pointer might also need updating. */
2311 if (current_target.to_sections == old_value)
2312 {
2313 current_target.to_sections = target->to_sections;
2314 current_target.to_sections_end = target->to_sections_end;
2315 }
2316 }
2317
2318 return old_count;
2319
2320 }
2321
2322 /* Remove all target sections taken from ABFD.
2323
2324 Scan the current target stack for targets whose section tables
2325 refer to sections from BFD, and remove those sections. We use this
2326 when we notice that the inferior has unloaded a shared object, for
2327 example. */
2328 void
2329 remove_target_sections (bfd *abfd)
2330 {
2331 struct target_ops **t;
2332
2333 for (t = target_structs; t < target_structs + target_struct_size; t++)
2334 {
2335 struct section_table *src, *dest;
2336
2337 dest = (*t)->to_sections;
2338 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2339 if (src->bfd != abfd)
2340 {
2341 /* Keep this section. */
2342 if (dest < src) *dest = *src;
2343 dest++;
2344 }
2345
2346 /* If we've dropped any sections, resize the section table. */
2347 if (dest < src)
2348 target_resize_to_sections (*t, dest - src);
2349 }
2350 }
2351
2352
2353
2354
2355 /* Find a single runnable target in the stack and return it. If for
2356 some reason there is more than one, return NULL. */
2357
2358 struct target_ops *
2359 find_run_target (void)
2360 {
2361 struct target_ops **t;
2362 struct target_ops *runable = NULL;
2363 int count;
2364
2365 count = 0;
2366
2367 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2368 {
2369 if ((*t)->to_can_run && target_can_run (*t))
2370 {
2371 runable = *t;
2372 ++count;
2373 }
2374 }
2375
2376 return (count == 1 ? runable : NULL);
2377 }
2378
2379 /* Find a single core_stratum target in the list of targets and return it.
2380 If for some reason there is more than one, return NULL. */
2381
2382 struct target_ops *
2383 find_core_target (void)
2384 {
2385 struct target_ops **t;
2386 struct target_ops *runable = NULL;
2387 int count;
2388
2389 count = 0;
2390
2391 for (t = target_structs; t < target_structs + target_struct_size;
2392 ++t)
2393 {
2394 if ((*t)->to_stratum == core_stratum)
2395 {
2396 runable = *t;
2397 ++count;
2398 }
2399 }
2400
2401 return (count == 1 ? runable : NULL);
2402 }
2403
2404 /*
2405 * Find the next target down the stack from the specified target.
2406 */
2407
2408 struct target_ops *
2409 find_target_beneath (struct target_ops *t)
2410 {
2411 return t->beneath;
2412 }
2413
2414 \f
2415 /* The inferior process has died. Long live the inferior! */
2416
2417 void
2418 generic_mourn_inferior (void)
2419 {
2420 ptid_t ptid;
2421
2422 ptid = inferior_ptid;
2423 inferior_ptid = null_ptid;
2424
2425 if (!ptid_equal (ptid, null_ptid))
2426 {
2427 int pid = ptid_get_pid (ptid);
2428 delete_inferior (pid);
2429 }
2430
2431 breakpoint_init_inferior (inf_exited);
2432 registers_changed ();
2433
2434 reopen_exec_file ();
2435 reinit_frame_cache ();
2436
2437 if (deprecated_detach_hook)
2438 deprecated_detach_hook ();
2439 }
2440 \f
2441 /* Helper function for child_wait and the derivatives of child_wait.
2442 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2443 translation of that in OURSTATUS. */
2444 void
2445 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2446 {
2447 if (WIFEXITED (hoststatus))
2448 {
2449 ourstatus->kind = TARGET_WAITKIND_EXITED;
2450 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2451 }
2452 else if (!WIFSTOPPED (hoststatus))
2453 {
2454 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2455 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2456 }
2457 else
2458 {
2459 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2460 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2461 }
2462 }
2463 \f
2464 /* Convert a normal process ID to a string. Returns the string in a
2465 static buffer. */
2466
2467 char *
2468 normal_pid_to_str (ptid_t ptid)
2469 {
2470 static char buf[32];
2471
2472 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2473 return buf;
2474 }
2475
2476 /* Error-catcher for target_find_memory_regions */
2477 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2478 {
2479 error (_("No target."));
2480 return 0;
2481 }
2482
2483 /* Error-catcher for target_make_corefile_notes */
2484 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2485 {
2486 error (_("No target."));
2487 return NULL;
2488 }
2489
2490 /* Set up the handful of non-empty slots needed by the dummy target
2491 vector. */
2492
2493 static void
2494 init_dummy_target (void)
2495 {
2496 dummy_target.to_shortname = "None";
2497 dummy_target.to_longname = "None";
2498 dummy_target.to_doc = "";
2499 dummy_target.to_attach = find_default_attach;
2500 dummy_target.to_detach =
2501 (void (*)(struct target_ops *, char *, int))target_ignore;
2502 dummy_target.to_create_inferior = find_default_create_inferior;
2503 dummy_target.to_can_async_p = find_default_can_async_p;
2504 dummy_target.to_is_async_p = find_default_is_async_p;
2505 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2506 dummy_target.to_pid_to_str = normal_pid_to_str;
2507 dummy_target.to_stratum = dummy_stratum;
2508 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2509 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2510 dummy_target.to_xfer_partial = default_xfer_partial;
2511 dummy_target.to_magic = OPS_MAGIC;
2512 }
2513 \f
2514 static void
2515 debug_to_open (char *args, int from_tty)
2516 {
2517 debug_target.to_open (args, from_tty);
2518
2519 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2520 }
2521
2522 static void
2523 debug_to_close (int quitting)
2524 {
2525 target_close (&debug_target, quitting);
2526 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2527 }
2528
2529 void
2530 target_close (struct target_ops *targ, int quitting)
2531 {
2532 if (targ->to_xclose != NULL)
2533 targ->to_xclose (targ, quitting);
2534 else if (targ->to_close != NULL)
2535 targ->to_close (quitting);
2536 }
2537
2538 void
2539 target_attach (char *args, int from_tty)
2540 {
2541 struct target_ops *t;
2542 for (t = current_target.beneath; t != NULL; t = t->beneath)
2543 {
2544 if (t->to_attach != NULL)
2545 {
2546 t->to_attach (t, args, from_tty);
2547 return;
2548 }
2549 }
2550
2551 internal_error (__FILE__, __LINE__,
2552 "could not find a target to attach");
2553 }
2554
2555
2556 static void
2557 debug_to_attach (struct target_ops *ops, char *args, int from_tty)
2558 {
2559 debug_target.to_attach (&debug_target, args, from_tty);
2560
2561 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2562 }
2563
2564
2565 static void
2566 debug_to_post_attach (int pid)
2567 {
2568 debug_target.to_post_attach (pid);
2569
2570 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2571 }
2572
2573 static void
2574 debug_to_detach (struct target_ops *ops, char *args, int from_tty)
2575 {
2576 debug_target.to_detach (&debug_target, args, from_tty);
2577
2578 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2579 }
2580
2581 static void
2582 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2583 {
2584 debug_target.to_resume (ptid, step, siggnal);
2585
2586 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2587 step ? "step" : "continue",
2588 target_signal_to_name (siggnal));
2589 }
2590
2591 /* Return a pretty printed form of target_waitstatus.
2592 Space for the result is malloc'd, caller must free. */
2593
2594 char *
2595 target_waitstatus_to_string (const struct target_waitstatus *ws)
2596 {
2597 const char *kind_str = "status->kind = ";
2598
2599 switch (ws->kind)
2600 {
2601 case TARGET_WAITKIND_EXITED:
2602 return xstrprintf ("%sexited, status = %d",
2603 kind_str, ws->value.integer);
2604 case TARGET_WAITKIND_STOPPED:
2605 return xstrprintf ("%sstopped, signal = %s",
2606 kind_str, target_signal_to_name (ws->value.sig));
2607 case TARGET_WAITKIND_SIGNALLED:
2608 return xstrprintf ("%ssignalled, signal = %s",
2609 kind_str, target_signal_to_name (ws->value.sig));
2610 case TARGET_WAITKIND_LOADED:
2611 return xstrprintf ("%sloaded", kind_str);
2612 case TARGET_WAITKIND_FORKED:
2613 return xstrprintf ("%sforked", kind_str);
2614 case TARGET_WAITKIND_VFORKED:
2615 return xstrprintf ("%svforked", kind_str);
2616 case TARGET_WAITKIND_EXECD:
2617 return xstrprintf ("%sexecd", kind_str);
2618 case TARGET_WAITKIND_SYSCALL_ENTRY:
2619 return xstrprintf ("%ssyscall-entry", kind_str);
2620 case TARGET_WAITKIND_SYSCALL_RETURN:
2621 return xstrprintf ("%ssyscall-return", kind_str);
2622 case TARGET_WAITKIND_SPURIOUS:
2623 return xstrprintf ("%sspurious", kind_str);
2624 case TARGET_WAITKIND_IGNORE:
2625 return xstrprintf ("%signore", kind_str);
2626 case TARGET_WAITKIND_NO_HISTORY:
2627 return xstrprintf ("%sno-history", kind_str);
2628 default:
2629 return xstrprintf ("%sunknown???", kind_str);
2630 }
2631 }
2632
2633 static ptid_t
2634 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2635 {
2636 ptid_t retval;
2637 char *status_string;
2638
2639 retval = debug_target.to_wait (ptid, status);
2640
2641 fprintf_unfiltered (gdb_stdlog,
2642 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2643 PIDGET (retval));
2644
2645 status_string = target_waitstatus_to_string (status);
2646 fprintf_unfiltered (gdb_stdlog, "%s\n", status_string);
2647 xfree (status_string);
2648
2649 return retval;
2650 }
2651
2652 static void
2653 debug_print_register (const char * func,
2654 struct regcache *regcache, int regno)
2655 {
2656 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2657 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2658 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2659 && gdbarch_register_name (gdbarch, regno) != NULL
2660 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2661 fprintf_unfiltered (gdb_stdlog, "(%s)",
2662 gdbarch_register_name (gdbarch, regno));
2663 else
2664 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2665 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2666 {
2667 int i, size = register_size (gdbarch, regno);
2668 unsigned char buf[MAX_REGISTER_SIZE];
2669 regcache_raw_collect (regcache, regno, buf);
2670 fprintf_unfiltered (gdb_stdlog, " = ");
2671 for (i = 0; i < size; i++)
2672 {
2673 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2674 }
2675 if (size <= sizeof (LONGEST))
2676 {
2677 ULONGEST val = extract_unsigned_integer (buf, size);
2678 fprintf_unfiltered (gdb_stdlog, " %s %s",
2679 core_addr_to_string_nz (val), plongest (val));
2680 }
2681 }
2682 fprintf_unfiltered (gdb_stdlog, "\n");
2683 }
2684
2685 static void
2686 debug_to_fetch_registers (struct regcache *regcache, int regno)
2687 {
2688 debug_target.to_fetch_registers (regcache, regno);
2689 debug_print_register ("target_fetch_registers", regcache, regno);
2690 }
2691
2692 static void
2693 debug_to_store_registers (struct regcache *regcache, int regno)
2694 {
2695 debug_target.to_store_registers (regcache, regno);
2696 debug_print_register ("target_store_registers", regcache, regno);
2697 fprintf_unfiltered (gdb_stdlog, "\n");
2698 }
2699
2700 static void
2701 debug_to_prepare_to_store (struct regcache *regcache)
2702 {
2703 debug_target.to_prepare_to_store (regcache);
2704
2705 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2706 }
2707
2708 static int
2709 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2710 int write, struct mem_attrib *attrib,
2711 struct target_ops *target)
2712 {
2713 int retval;
2714
2715 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2716 attrib, target);
2717
2718 fprintf_unfiltered (gdb_stdlog,
2719 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2720 paddress (memaddr), len, write ? "write" : "read",
2721 retval);
2722
2723 if (retval > 0)
2724 {
2725 int i;
2726
2727 fputs_unfiltered (", bytes =", gdb_stdlog);
2728 for (i = 0; i < retval; i++)
2729 {
2730 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2731 {
2732 if (targetdebug < 2 && i > 0)
2733 {
2734 fprintf_unfiltered (gdb_stdlog, " ...");
2735 break;
2736 }
2737 fprintf_unfiltered (gdb_stdlog, "\n");
2738 }
2739
2740 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2741 }
2742 }
2743
2744 fputc_unfiltered ('\n', gdb_stdlog);
2745
2746 return retval;
2747 }
2748
2749 static void
2750 debug_to_files_info (struct target_ops *target)
2751 {
2752 debug_target.to_files_info (target);
2753
2754 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2755 }
2756
2757 static int
2758 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2759 {
2760 int retval;
2761
2762 retval = debug_target.to_insert_breakpoint (bp_tgt);
2763
2764 fprintf_unfiltered (gdb_stdlog,
2765 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2766 (unsigned long) bp_tgt->placed_address,
2767 (unsigned long) retval);
2768 return retval;
2769 }
2770
2771 static int
2772 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2773 {
2774 int retval;
2775
2776 retval = debug_target.to_remove_breakpoint (bp_tgt);
2777
2778 fprintf_unfiltered (gdb_stdlog,
2779 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2780 (unsigned long) bp_tgt->placed_address,
2781 (unsigned long) retval);
2782 return retval;
2783 }
2784
2785 static int
2786 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2787 {
2788 int retval;
2789
2790 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2791
2792 fprintf_unfiltered (gdb_stdlog,
2793 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2794 (unsigned long) type,
2795 (unsigned long) cnt,
2796 (unsigned long) from_tty,
2797 (unsigned long) retval);
2798 return retval;
2799 }
2800
2801 static int
2802 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2803 {
2804 CORE_ADDR retval;
2805
2806 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2807
2808 fprintf_unfiltered (gdb_stdlog,
2809 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2810 (unsigned long) addr,
2811 (unsigned long) len,
2812 (unsigned long) retval);
2813 return retval;
2814 }
2815
2816 static int
2817 debug_to_stopped_by_watchpoint (void)
2818 {
2819 int retval;
2820
2821 retval = debug_target.to_stopped_by_watchpoint ();
2822
2823 fprintf_unfiltered (gdb_stdlog,
2824 "STOPPED_BY_WATCHPOINT () = %ld\n",
2825 (unsigned long) retval);
2826 return retval;
2827 }
2828
2829 static int
2830 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2831 {
2832 int retval;
2833
2834 retval = debug_target.to_stopped_data_address (target, addr);
2835
2836 fprintf_unfiltered (gdb_stdlog,
2837 "target_stopped_data_address ([0x%lx]) = %ld\n",
2838 (unsigned long)*addr,
2839 (unsigned long)retval);
2840 return retval;
2841 }
2842
2843 static int
2844 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2845 CORE_ADDR addr,
2846 CORE_ADDR start, int length)
2847 {
2848 int retval;
2849
2850 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2851 start, length);
2852
2853 fprintf_filtered (gdb_stdlog,
2854 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2855 (unsigned long) addr, (unsigned long) start, length,
2856 retval);
2857 return retval;
2858 }
2859
2860 static int
2861 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2862 {
2863 int retval;
2864
2865 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2866
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2869 (unsigned long) bp_tgt->placed_address,
2870 (unsigned long) retval);
2871 return retval;
2872 }
2873
2874 static int
2875 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2876 {
2877 int retval;
2878
2879 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2880
2881 fprintf_unfiltered (gdb_stdlog,
2882 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2883 (unsigned long) bp_tgt->placed_address,
2884 (unsigned long) retval);
2885 return retval;
2886 }
2887
2888 static int
2889 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2890 {
2891 int retval;
2892
2893 retval = debug_target.to_insert_watchpoint (addr, len, type);
2894
2895 fprintf_unfiltered (gdb_stdlog,
2896 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2897 (unsigned long) addr, len, type, (unsigned long) retval);
2898 return retval;
2899 }
2900
2901 static int
2902 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2903 {
2904 int retval;
2905
2906 retval = debug_target.to_remove_watchpoint (addr, len, type);
2907
2908 fprintf_unfiltered (gdb_stdlog,
2909 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2910 (unsigned long) addr, len, type, (unsigned long) retval);
2911 return retval;
2912 }
2913
2914 static void
2915 debug_to_terminal_init (void)
2916 {
2917 debug_target.to_terminal_init ();
2918
2919 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2920 }
2921
2922 static void
2923 debug_to_terminal_inferior (void)
2924 {
2925 debug_target.to_terminal_inferior ();
2926
2927 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2928 }
2929
2930 static void
2931 debug_to_terminal_ours_for_output (void)
2932 {
2933 debug_target.to_terminal_ours_for_output ();
2934
2935 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2936 }
2937
2938 static void
2939 debug_to_terminal_ours (void)
2940 {
2941 debug_target.to_terminal_ours ();
2942
2943 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2944 }
2945
2946 static void
2947 debug_to_terminal_save_ours (void)
2948 {
2949 debug_target.to_terminal_save_ours ();
2950
2951 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2952 }
2953
2954 static void
2955 debug_to_terminal_info (char *arg, int from_tty)
2956 {
2957 debug_target.to_terminal_info (arg, from_tty);
2958
2959 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2960 from_tty);
2961 }
2962
2963 static void
2964 debug_to_kill (void)
2965 {
2966 debug_target.to_kill ();
2967
2968 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2969 }
2970
2971 static void
2972 debug_to_load (char *args, int from_tty)
2973 {
2974 debug_target.to_load (args, from_tty);
2975
2976 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2977 }
2978
2979 static int
2980 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2981 {
2982 int retval;
2983
2984 retval = debug_target.to_lookup_symbol (name, addrp);
2985
2986 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2987
2988 return retval;
2989 }
2990
2991 static void
2992 debug_to_create_inferior (struct target_ops *ops,
2993 char *exec_file, char *args, char **env,
2994 int from_tty)
2995 {
2996 debug_target.to_create_inferior (ops, exec_file, args, env, from_tty);
2997
2998 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2999 exec_file, args, from_tty);
3000 }
3001
3002 static void
3003 debug_to_post_startup_inferior (ptid_t ptid)
3004 {
3005 debug_target.to_post_startup_inferior (ptid);
3006
3007 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3008 PIDGET (ptid));
3009 }
3010
3011 static void
3012 debug_to_acknowledge_created_inferior (int pid)
3013 {
3014 debug_target.to_acknowledge_created_inferior (pid);
3015
3016 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3017 pid);
3018 }
3019
3020 static void
3021 debug_to_insert_fork_catchpoint (int pid)
3022 {
3023 debug_target.to_insert_fork_catchpoint (pid);
3024
3025 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3026 pid);
3027 }
3028
3029 static int
3030 debug_to_remove_fork_catchpoint (int pid)
3031 {
3032 int retval;
3033
3034 retval = debug_target.to_remove_fork_catchpoint (pid);
3035
3036 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3037 pid, retval);
3038
3039 return retval;
3040 }
3041
3042 static void
3043 debug_to_insert_vfork_catchpoint (int pid)
3044 {
3045 debug_target.to_insert_vfork_catchpoint (pid);
3046
3047 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3048 pid);
3049 }
3050
3051 static int
3052 debug_to_remove_vfork_catchpoint (int pid)
3053 {
3054 int retval;
3055
3056 retval = debug_target.to_remove_vfork_catchpoint (pid);
3057
3058 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3059 pid, retval);
3060
3061 return retval;
3062 }
3063
3064 static void
3065 debug_to_insert_exec_catchpoint (int pid)
3066 {
3067 debug_target.to_insert_exec_catchpoint (pid);
3068
3069 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3070 pid);
3071 }
3072
3073 static int
3074 debug_to_remove_exec_catchpoint (int pid)
3075 {
3076 int retval;
3077
3078 retval = debug_target.to_remove_exec_catchpoint (pid);
3079
3080 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3081 pid, retval);
3082
3083 return retval;
3084 }
3085
3086 static int
3087 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3088 {
3089 int has_exited;
3090
3091 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3092
3093 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3094 pid, wait_status, *exit_status, has_exited);
3095
3096 return has_exited;
3097 }
3098
3099 static void
3100 debug_to_mourn_inferior (struct target_ops *ops)
3101 {
3102 debug_target.to_mourn_inferior (&debug_target);
3103
3104 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
3105 }
3106
3107 static int
3108 debug_to_can_run (void)
3109 {
3110 int retval;
3111
3112 retval = debug_target.to_can_run ();
3113
3114 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3115
3116 return retval;
3117 }
3118
3119 static void
3120 debug_to_notice_signals (ptid_t ptid)
3121 {
3122 debug_target.to_notice_signals (ptid);
3123
3124 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3125 PIDGET (ptid));
3126 }
3127
3128 static int
3129 debug_to_thread_alive (ptid_t ptid)
3130 {
3131 int retval;
3132
3133 retval = debug_target.to_thread_alive (ptid);
3134
3135 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3136 PIDGET (ptid), retval);
3137
3138 return retval;
3139 }
3140
3141 static void
3142 debug_to_find_new_threads (void)
3143 {
3144 debug_target.to_find_new_threads ();
3145
3146 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3147 }
3148
3149 static void
3150 debug_to_stop (ptid_t ptid)
3151 {
3152 debug_target.to_stop (ptid);
3153
3154 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3155 target_pid_to_str (ptid));
3156 }
3157
3158 static void
3159 debug_to_rcmd (char *command,
3160 struct ui_file *outbuf)
3161 {
3162 debug_target.to_rcmd (command, outbuf);
3163 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3164 }
3165
3166 static char *
3167 debug_to_pid_to_exec_file (int pid)
3168 {
3169 char *exec_file;
3170
3171 exec_file = debug_target.to_pid_to_exec_file (pid);
3172
3173 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3174 pid, exec_file);
3175
3176 return exec_file;
3177 }
3178
3179 static void
3180 setup_target_debug (void)
3181 {
3182 memcpy (&debug_target, &current_target, sizeof debug_target);
3183
3184 current_target.to_open = debug_to_open;
3185 current_target.to_close = debug_to_close;
3186 current_target.to_attach = debug_to_attach;
3187 current_target.to_post_attach = debug_to_post_attach;
3188 current_target.to_detach = debug_to_detach;
3189 current_target.to_resume = debug_to_resume;
3190 current_target.to_wait = debug_to_wait;
3191 current_target.to_fetch_registers = debug_to_fetch_registers;
3192 current_target.to_store_registers = debug_to_store_registers;
3193 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3194 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3195 current_target.to_files_info = debug_to_files_info;
3196 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3197 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3198 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3199 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3200 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3201 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3202 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3203 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3204 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3205 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3206 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3207 current_target.to_terminal_init = debug_to_terminal_init;
3208 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3209 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3210 current_target.to_terminal_ours = debug_to_terminal_ours;
3211 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3212 current_target.to_terminal_info = debug_to_terminal_info;
3213 current_target.to_kill = debug_to_kill;
3214 current_target.to_load = debug_to_load;
3215 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3216 current_target.to_create_inferior = debug_to_create_inferior;
3217 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3218 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3219 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3220 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3221 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3222 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3223 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3224 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3225 current_target.to_has_exited = debug_to_has_exited;
3226 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3227 current_target.to_can_run = debug_to_can_run;
3228 current_target.to_notice_signals = debug_to_notice_signals;
3229 current_target.to_thread_alive = debug_to_thread_alive;
3230 current_target.to_find_new_threads = debug_to_find_new_threads;
3231 current_target.to_stop = debug_to_stop;
3232 current_target.to_rcmd = debug_to_rcmd;
3233 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3234 }
3235 \f
3236
3237 static char targ_desc[] =
3238 "Names of targets and files being debugged.\n\
3239 Shows the entire stack of targets currently in use (including the exec-file,\n\
3240 core-file, and process, if any), as well as the symbol file name.";
3241
3242 static void
3243 do_monitor_command (char *cmd,
3244 int from_tty)
3245 {
3246 if ((current_target.to_rcmd
3247 == (void (*) (char *, struct ui_file *)) tcomplain)
3248 || (current_target.to_rcmd == debug_to_rcmd
3249 && (debug_target.to_rcmd
3250 == (void (*) (char *, struct ui_file *)) tcomplain)))
3251 error (_("\"monitor\" command not supported by this target."));
3252 target_rcmd (cmd, gdb_stdtarg);
3253 }
3254
3255 /* Print the name of each layers of our target stack. */
3256
3257 static void
3258 maintenance_print_target_stack (char *cmd, int from_tty)
3259 {
3260 struct target_ops *t;
3261
3262 printf_filtered (_("The current target stack is:\n"));
3263
3264 for (t = target_stack; t != NULL; t = t->beneath)
3265 {
3266 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3267 }
3268 }
3269
3270 /* Controls if async mode is permitted. */
3271 int target_async_permitted = 0;
3272
3273 /* The set command writes to this variable. If the inferior is
3274 executing, linux_nat_async_permitted is *not* updated. */
3275 static int target_async_permitted_1 = 0;
3276
3277 static void
3278 set_maintenance_target_async_permitted (char *args, int from_tty,
3279 struct cmd_list_element *c)
3280 {
3281 if (target_has_execution)
3282 {
3283 target_async_permitted_1 = target_async_permitted;
3284 error (_("Cannot change this setting while the inferior is running."));
3285 }
3286
3287 target_async_permitted = target_async_permitted_1;
3288 }
3289
3290 static void
3291 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3292 struct cmd_list_element *c,
3293 const char *value)
3294 {
3295 fprintf_filtered (file, _("\
3296 Controlling the inferior in asynchronous mode is %s.\n"), value);
3297 }
3298
3299 void
3300 initialize_targets (void)
3301 {
3302 init_dummy_target ();
3303 push_target (&dummy_target);
3304
3305 add_info ("target", target_info, targ_desc);
3306 add_info ("files", target_info, targ_desc);
3307
3308 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3309 Set target debugging."), _("\
3310 Show target debugging."), _("\
3311 When non-zero, target debugging is enabled. Higher numbers are more\n\
3312 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3313 command."),
3314 NULL,
3315 show_targetdebug,
3316 &setdebuglist, &showdebuglist);
3317
3318 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3319 &trust_readonly, _("\
3320 Set mode for reading from readonly sections."), _("\
3321 Show mode for reading from readonly sections."), _("\
3322 When this mode is on, memory reads from readonly sections (such as .text)\n\
3323 will be read from the object file instead of from the target. This will\n\
3324 result in significant performance improvement for remote targets."),
3325 NULL,
3326 show_trust_readonly,
3327 &setlist, &showlist);
3328
3329 add_com ("monitor", class_obscure, do_monitor_command,
3330 _("Send a command to the remote monitor (remote targets only)."));
3331
3332 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3333 _("Print the name of each layer of the internal target stack."),
3334 &maintenanceprintlist);
3335
3336 add_setshow_boolean_cmd ("target-async", no_class,
3337 &target_async_permitted_1, _("\
3338 Set whether gdb controls the inferior in asynchronous mode."), _("\
3339 Show whether gdb controls the inferior in asynchronous mode."), _("\
3340 Tells gdb whether to control the inferior in asynchronous mode."),
3341 set_maintenance_target_async_permitted,
3342 show_maintenance_target_async_permitted,
3343 &setlist,
3344 &showlist);
3345
3346 target_dcache = dcache_init ();
3347 }
This page took 0.125541 seconds and 5 git commands to generate.