target_ops::beneath -> target_ops::beneath()
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* Top of target stack. */
123 /* The target structure we are currently using to talk to a process
124 or file or whatever "inferior" we have. */
125
126 static target_ops *g_current_top_target;
127
128 target_ops *
129 current_top_target ()
130 {
131 return g_current_top_target;
132 }
133
134 /* Command list for target. */
135
136 static struct cmd_list_element *targetlist = NULL;
137
138 /* Nonzero if we should trust readonly sections from the
139 executable when reading memory. */
140
141 static int trust_readonly = 0;
142
143 /* Nonzero if we should show true memory content including
144 memory breakpoint inserted by gdb. */
145
146 static int show_memory_breakpoints = 0;
147
148 /* These globals control whether GDB attempts to perform these
149 operations; they are useful for targets that need to prevent
150 inadvertant disruption, such as in non-stop mode. */
151
152 int may_write_registers = 1;
153
154 int may_write_memory = 1;
155
156 int may_insert_breakpoints = 1;
157
158 int may_insert_tracepoints = 1;
159
160 int may_insert_fast_tracepoints = 1;
161
162 int may_stop = 1;
163
164 /* Non-zero if we want to see trace of target level stuff. */
165
166 static unsigned int targetdebug = 0;
167
168 static void
169 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
170 {
171 if (targetdebug)
172 push_target (the_debug_target);
173 else
174 unpush_target (the_debug_target);
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (const char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 #if GDB_SELF_TEST
194 namespace selftests {
195
196 /* A mock process_stratum target_ops that doesn't read/write registers
197 anywhere. */
198
199 static const target_info test_target_info = {
200 "test",
201 N_("unit tests target"),
202 N_("You should never see this"),
203 };
204
205 const target_info &
206 test_target_ops::info () const
207 {
208 return test_target_info;
209 }
210
211 } /* namespace selftests */
212 #endif /* GDB_SELF_TEST */
213
214 /* Default target_has_* methods for process_stratum targets. */
215
216 int
217 default_child_has_all_memory ()
218 {
219 /* If no inferior selected, then we can't read memory here. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224 }
225
226 int
227 default_child_has_memory ()
228 {
229 /* If no inferior selected, then we can't read memory here. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_stack ()
238 {
239 /* If no inferior selected, there's no stack. */
240 if (ptid_equal (inferior_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246 int
247 default_child_has_registers ()
248 {
249 /* Can't read registers from no inferior. */
250 if (ptid_equal (inferior_ptid, null_ptid))
251 return 0;
252
253 return 1;
254 }
255
256 int
257 default_child_has_execution (ptid_t the_ptid)
258 {
259 /* If there's no thread selected, then we can't make it run through
260 hoops. */
261 if (ptid_equal (the_ptid, null_ptid))
262 return 0;
263
264 return 1;
265 }
266
267
268 int
269 target_has_all_memory_1 (void)
270 {
271 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
272 if (t->has_all_memory ())
273 return 1;
274
275 return 0;
276 }
277
278 int
279 target_has_memory_1 (void)
280 {
281 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
282 if (t->has_memory ())
283 return 1;
284
285 return 0;
286 }
287
288 int
289 target_has_stack_1 (void)
290 {
291 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
292 if (t->has_stack ())
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_registers_1 (void)
300 {
301 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
302 if (t->has_registers ())
303 return 1;
304
305 return 0;
306 }
307
308 int
309 target_has_execution_1 (ptid_t the_ptid)
310 {
311 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
312 if (t->has_execution (the_ptid))
313 return 1;
314
315 return 0;
316 }
317
318 int
319 target_has_execution_current (void)
320 {
321 return target_has_execution_1 (inferior_ptid);
322 }
323
324 /* This is used to implement the various target commands. */
325
326 static void
327 open_target (const char *args, int from_tty, struct cmd_list_element *command)
328 {
329 auto *ti = static_cast<target_info *> (get_cmd_context (command));
330 target_open_ftype *func = target_factories[ti];
331
332 if (targetdebug)
333 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
334 ti->shortname);
335
336 func (args, from_tty);
337
338 if (targetdebug)
339 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
340 ti->shortname, args, from_tty);
341 }
342
343 /* See target.h. */
344
345 void
346 add_target (const target_info &t, target_open_ftype *func,
347 completer_ftype *completer)
348 {
349 struct cmd_list_element *c;
350
351 auto &func_slot = target_factories[&t];
352 if (func_slot != nullptr)
353 internal_error (__FILE__, __LINE__,
354 _("target already added (\"%s\")."), t.shortname);
355 func_slot = func;
356
357 if (targetlist == NULL)
358 add_prefix_cmd ("target", class_run, target_command, _("\
359 Connect to a target machine or process.\n\
360 The first argument is the type or protocol of the target machine.\n\
361 Remaining arguments are interpreted by the target protocol. For more\n\
362 information on the arguments for a particular protocol, type\n\
363 `help target ' followed by the protocol name."),
364 &targetlist, "target ", 0, &cmdlist);
365 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
366 set_cmd_context (c, (void *) &t);
367 set_cmd_sfunc (c, open_target);
368 if (completer != NULL)
369 set_cmd_completer (c, completer);
370 }
371
372 /* See target.h. */
373
374 void
375 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
376 {
377 struct cmd_list_element *c;
378 char *alt;
379
380 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
381 see PR cli/15104. */
382 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
383 set_cmd_sfunc (c, open_target);
384 set_cmd_context (c, (void *) &tinfo);
385 alt = xstrprintf ("target %s", tinfo.shortname);
386 deprecate_cmd (c, alt);
387 }
388
389 /* Stub functions */
390
391 void
392 target_kill (void)
393 {
394 current_top_target ()->kill ();
395 }
396
397 void
398 target_load (const char *arg, int from_tty)
399 {
400 target_dcache_invalidate ();
401 current_top_target ()->load (arg, from_tty);
402 }
403
404 /* Define it. */
405
406 target_terminal_state target_terminal::m_terminal_state
407 = target_terminal_state::is_ours;
408
409 /* See target/target.h. */
410
411 void
412 target_terminal::init (void)
413 {
414 current_top_target ()->terminal_init ();
415
416 m_terminal_state = target_terminal_state::is_ours;
417 }
418
419 /* See target/target.h. */
420
421 void
422 target_terminal::inferior (void)
423 {
424 struct ui *ui = current_ui;
425
426 /* A background resume (``run&'') should leave GDB in control of the
427 terminal. */
428 if (ui->prompt_state != PROMPT_BLOCKED)
429 return;
430
431 /* Since we always run the inferior in the main console (unless "set
432 inferior-tty" is in effect), when some UI other than the main one
433 calls target_terminal::inferior, then we leave the main UI's
434 terminal settings as is. */
435 if (ui != main_ui)
436 return;
437
438 /* If GDB is resuming the inferior in the foreground, install
439 inferior's terminal modes. */
440
441 struct inferior *inf = current_inferior ();
442
443 if (inf->terminal_state != target_terminal_state::is_inferior)
444 {
445 current_top_target ()->terminal_inferior ();
446 inf->terminal_state = target_terminal_state::is_inferior;
447 }
448
449 m_terminal_state = target_terminal_state::is_inferior;
450
451 /* If the user hit C-c before, pretend that it was hit right
452 here. */
453 if (check_quit_flag ())
454 target_pass_ctrlc ();
455 }
456
457 /* See target/target.h. */
458
459 void
460 target_terminal::restore_inferior (void)
461 {
462 struct ui *ui = current_ui;
463
464 /* See target_terminal::inferior(). */
465 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
466 return;
467
468 /* Restore the terminal settings of inferiors that were in the
469 foreground but are now ours_for_output due to a temporary
470 target_target::ours_for_output() call. */
471
472 {
473 scoped_restore_current_inferior restore_inferior;
474 struct inferior *inf;
475
476 ALL_INFERIORS (inf)
477 {
478 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
479 {
480 set_current_inferior (inf);
481 current_top_target ()->terminal_inferior ();
482 inf->terminal_state = target_terminal_state::is_inferior;
483 }
484 }
485 }
486
487 m_terminal_state = target_terminal_state::is_inferior;
488
489 /* If the user hit C-c before, pretend that it was hit right
490 here. */
491 if (check_quit_flag ())
492 target_pass_ctrlc ();
493 }
494
495 /* Switch terminal state to DESIRED_STATE, either is_ours, or
496 is_ours_for_output. */
497
498 static void
499 target_terminal_is_ours_kind (target_terminal_state desired_state)
500 {
501 scoped_restore_current_inferior restore_inferior;
502 struct inferior *inf;
503
504 /* Must do this in two passes. First, have all inferiors save the
505 current terminal settings. Then, after all inferiors have add a
506 chance to safely save the terminal settings, restore GDB's
507 terminal settings. */
508
509 ALL_INFERIORS (inf)
510 {
511 if (inf->terminal_state == target_terminal_state::is_inferior)
512 {
513 set_current_inferior (inf);
514 current_top_target ()->terminal_save_inferior ();
515 }
516 }
517
518 ALL_INFERIORS (inf)
519 {
520 /* Note we don't check is_inferior here like above because we
521 need to handle 'is_ours_for_output -> is_ours' too. Careful
522 to never transition from 'is_ours' to 'is_ours_for_output',
523 though. */
524 if (inf->terminal_state != target_terminal_state::is_ours
525 && inf->terminal_state != desired_state)
526 {
527 set_current_inferior (inf);
528 if (desired_state == target_terminal_state::is_ours)
529 current_top_target ()->terminal_ours ();
530 else if (desired_state == target_terminal_state::is_ours_for_output)
531 current_top_target ()->terminal_ours_for_output ();
532 else
533 gdb_assert_not_reached ("unhandled desired state");
534 inf->terminal_state = desired_state;
535 }
536 }
537 }
538
539 /* See target/target.h. */
540
541 void
542 target_terminal::ours ()
543 {
544 struct ui *ui = current_ui;
545
546 /* See target_terminal::inferior. */
547 if (ui != main_ui)
548 return;
549
550 if (m_terminal_state == target_terminal_state::is_ours)
551 return;
552
553 target_terminal_is_ours_kind (target_terminal_state::is_ours);
554 m_terminal_state = target_terminal_state::is_ours;
555 }
556
557 /* See target/target.h. */
558
559 void
560 target_terminal::ours_for_output ()
561 {
562 struct ui *ui = current_ui;
563
564 /* See target_terminal::inferior. */
565 if (ui != main_ui)
566 return;
567
568 if (!target_terminal::is_inferior ())
569 return;
570
571 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
572 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
573 }
574
575 /* See target/target.h. */
576
577 void
578 target_terminal::info (const char *arg, int from_tty)
579 {
580 current_top_target ()->terminal_info (arg, from_tty);
581 }
582
583 /* See target.h. */
584
585 int
586 target_supports_terminal_ours (void)
587 {
588 return current_top_target ()->supports_terminal_ours ();
589 }
590
591 static void
592 tcomplain (void)
593 {
594 error (_("You can't do that when your target is `%s'"),
595 current_top_target ()->shortname ());
596 }
597
598 void
599 noprocess (void)
600 {
601 error (_("You can't do that without a process to debug."));
602 }
603
604 static void
605 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
606 {
607 printf_unfiltered (_("No saved terminal information.\n"));
608 }
609
610 /* A default implementation for the to_get_ada_task_ptid target method.
611
612 This function builds the PTID by using both LWP and TID as part of
613 the PTID lwp and tid elements. The pid used is the pid of the
614 inferior_ptid. */
615
616 static ptid_t
617 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
618 {
619 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
620 }
621
622 static enum exec_direction_kind
623 default_execution_direction (struct target_ops *self)
624 {
625 if (!target_can_execute_reverse)
626 return EXEC_FORWARD;
627 else if (!target_can_async_p ())
628 return EXEC_FORWARD;
629 else
630 gdb_assert_not_reached ("\
631 to_execution_direction must be implemented for reverse async");
632 }
633
634 /* Push a new target type into the stack of the existing target accessors,
635 possibly superseding some of the existing accessors.
636
637 Rather than allow an empty stack, we always have the dummy target at
638 the bottom stratum, so we can call the function vectors without
639 checking them. */
640
641 void
642 push_target (struct target_ops *t)
643 {
644 struct target_ops **cur;
645
646 /* Find the proper stratum to install this target in. */
647 for (cur = &g_current_top_target; (*cur) != NULL; cur = &(*cur)->m_beneath)
648 {
649 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
650 break;
651 }
652
653 /* If there's already targets at this stratum, remove them. */
654 /* FIXME: cagney/2003-10-15: I think this should be popping all
655 targets to CUR, and not just those at this stratum level. */
656 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
657 {
658 /* There's already something at this stratum level. Close it,
659 and un-hook it from the stack. */
660 struct target_ops *tmp = (*cur);
661
662 (*cur) = (*cur)->m_beneath;
663 tmp->m_beneath = NULL;
664 target_close (tmp);
665 }
666
667 /* We have removed all targets in our stratum, now add the new one. */
668 t->m_beneath = (*cur);
669 (*cur) = t;
670 }
671
672 /* Remove a target_ops vector from the stack, wherever it may be.
673 Return how many times it was removed (0 or 1). */
674
675 int
676 unpush_target (struct target_ops *t)
677 {
678 struct target_ops **cur;
679 struct target_ops *tmp;
680
681 if (t->to_stratum == dummy_stratum)
682 internal_error (__FILE__, __LINE__,
683 _("Attempt to unpush the dummy target"));
684
685 /* Look for the specified target. Note that we assume that a target
686 can only occur once in the target stack. */
687
688 for (cur = &g_current_top_target; (*cur) != NULL; cur = &(*cur)->m_beneath)
689 {
690 if ((*cur) == t)
691 break;
692 }
693
694 /* If we don't find target_ops, quit. Only open targets should be
695 closed. */
696 if ((*cur) == NULL)
697 return 0;
698
699 /* Unchain the target. */
700 tmp = (*cur);
701 (*cur) = (*cur)->m_beneath;
702 tmp->m_beneath = NULL;
703
704 /* Finally close the target. Note we do this after unchaining, so
705 any target method calls from within the target_close
706 implementation don't end up in T anymore. */
707 target_close (t);
708
709 return 1;
710 }
711
712 /* Unpush TARGET and assert that it worked. */
713
714 static void
715 unpush_target_and_assert (struct target_ops *target)
716 {
717 if (!unpush_target (target))
718 {
719 fprintf_unfiltered (gdb_stderr,
720 "pop_all_targets couldn't find target %s\n",
721 target->shortname ());
722 internal_error (__FILE__, __LINE__,
723 _("failed internal consistency check"));
724 }
725 }
726
727 void
728 pop_all_targets_above (enum strata above_stratum)
729 {
730 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
731 unpush_target_and_assert (current_top_target ());
732 }
733
734 /* See target.h. */
735
736 void
737 pop_all_targets_at_and_above (enum strata stratum)
738 {
739 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
740 unpush_target_and_assert (current_top_target ());
741 }
742
743 void
744 pop_all_targets (void)
745 {
746 pop_all_targets_above (dummy_stratum);
747 }
748
749 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
750
751 int
752 target_is_pushed (struct target_ops *t)
753 {
754 for (target_ops *cur = current_top_target ();
755 cur != NULL;
756 cur = cur->beneath ())
757 if (cur == t)
758 return 1;
759
760 return 0;
761 }
762
763 /* Default implementation of to_get_thread_local_address. */
764
765 static void
766 generic_tls_error (void)
767 {
768 throw_error (TLS_GENERIC_ERROR,
769 _("Cannot find thread-local variables on this target"));
770 }
771
772 /* Using the objfile specified in OBJFILE, find the address for the
773 current thread's thread-local storage with offset OFFSET. */
774 CORE_ADDR
775 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
776 {
777 volatile CORE_ADDR addr = 0;
778 struct target_ops *target = current_top_target ();
779
780 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
781 {
782 ptid_t ptid = inferior_ptid;
783
784 TRY
785 {
786 CORE_ADDR lm_addr;
787
788 /* Fetch the load module address for this objfile. */
789 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
790 objfile);
791
792 addr = target->get_thread_local_address (ptid, lm_addr, offset);
793 }
794 /* If an error occurred, print TLS related messages here. Otherwise,
795 throw the error to some higher catcher. */
796 CATCH (ex, RETURN_MASK_ALL)
797 {
798 int objfile_is_library = (objfile->flags & OBJF_SHARED);
799
800 switch (ex.error)
801 {
802 case TLS_NO_LIBRARY_SUPPORT_ERROR:
803 error (_("Cannot find thread-local variables "
804 "in this thread library."));
805 break;
806 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
807 if (objfile_is_library)
808 error (_("Cannot find shared library `%s' in dynamic"
809 " linker's load module list"), objfile_name (objfile));
810 else
811 error (_("Cannot find executable file `%s' in dynamic"
812 " linker's load module list"), objfile_name (objfile));
813 break;
814 case TLS_NOT_ALLOCATED_YET_ERROR:
815 if (objfile_is_library)
816 error (_("The inferior has not yet allocated storage for"
817 " thread-local variables in\n"
818 "the shared library `%s'\n"
819 "for %s"),
820 objfile_name (objfile), target_pid_to_str (ptid));
821 else
822 error (_("The inferior has not yet allocated storage for"
823 " thread-local variables in\n"
824 "the executable `%s'\n"
825 "for %s"),
826 objfile_name (objfile), target_pid_to_str (ptid));
827 break;
828 case TLS_GENERIC_ERROR:
829 if (objfile_is_library)
830 error (_("Cannot find thread-local storage for %s, "
831 "shared library %s:\n%s"),
832 target_pid_to_str (ptid),
833 objfile_name (objfile), ex.message);
834 else
835 error (_("Cannot find thread-local storage for %s, "
836 "executable file %s:\n%s"),
837 target_pid_to_str (ptid),
838 objfile_name (objfile), ex.message);
839 break;
840 default:
841 throw_exception (ex);
842 break;
843 }
844 }
845 END_CATCH
846 }
847 /* It wouldn't be wrong here to try a gdbarch method, too; finding
848 TLS is an ABI-specific thing. But we don't do that yet. */
849 else
850 error (_("Cannot find thread-local variables on this target"));
851
852 return addr;
853 }
854
855 const char *
856 target_xfer_status_to_string (enum target_xfer_status status)
857 {
858 #define CASE(X) case X: return #X
859 switch (status)
860 {
861 CASE(TARGET_XFER_E_IO);
862 CASE(TARGET_XFER_UNAVAILABLE);
863 default:
864 return "<unknown>";
865 }
866 #undef CASE
867 };
868
869
870 #undef MIN
871 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
872
873 /* target_read_string -- read a null terminated string, up to LEN bytes,
874 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
875 Set *STRING to a pointer to malloc'd memory containing the data; the caller
876 is responsible for freeing it. Return the number of bytes successfully
877 read. */
878
879 int
880 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
881 int len, int *errnop)
882 {
883 int tlen, offset, i;
884 gdb_byte buf[4];
885 int errcode = 0;
886 char *buffer;
887 int buffer_allocated;
888 char *bufptr;
889 unsigned int nbytes_read = 0;
890
891 gdb_assert (string);
892
893 /* Small for testing. */
894 buffer_allocated = 4;
895 buffer = (char *) xmalloc (buffer_allocated);
896 bufptr = buffer;
897
898 while (len > 0)
899 {
900 tlen = MIN (len, 4 - (memaddr & 3));
901 offset = memaddr & 3;
902
903 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
904 if (errcode != 0)
905 {
906 /* The transfer request might have crossed the boundary to an
907 unallocated region of memory. Retry the transfer, requesting
908 a single byte. */
909 tlen = 1;
910 offset = 0;
911 errcode = target_read_memory (memaddr, buf, 1);
912 if (errcode != 0)
913 goto done;
914 }
915
916 if (bufptr - buffer + tlen > buffer_allocated)
917 {
918 unsigned int bytes;
919
920 bytes = bufptr - buffer;
921 buffer_allocated *= 2;
922 buffer = (char *) xrealloc (buffer, buffer_allocated);
923 bufptr = buffer + bytes;
924 }
925
926 for (i = 0; i < tlen; i++)
927 {
928 *bufptr++ = buf[i + offset];
929 if (buf[i + offset] == '\000')
930 {
931 nbytes_read += i + 1;
932 goto done;
933 }
934 }
935
936 memaddr += tlen;
937 len -= tlen;
938 nbytes_read += tlen;
939 }
940 done:
941 string->reset (buffer);
942 if (errnop != NULL)
943 *errnop = errcode;
944 return nbytes_read;
945 }
946
947 struct target_section_table *
948 target_get_section_table (struct target_ops *target)
949 {
950 return target->get_section_table ();
951 }
952
953 /* Find a section containing ADDR. */
954
955 struct target_section *
956 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
957 {
958 struct target_section_table *table = target_get_section_table (target);
959 struct target_section *secp;
960
961 if (table == NULL)
962 return NULL;
963
964 for (secp = table->sections; secp < table->sections_end; secp++)
965 {
966 if (addr >= secp->addr && addr < secp->endaddr)
967 return secp;
968 }
969 return NULL;
970 }
971
972
973 /* Helper for the memory xfer routines. Checks the attributes of the
974 memory region of MEMADDR against the read or write being attempted.
975 If the access is permitted returns true, otherwise returns false.
976 REGION_P is an optional output parameter. If not-NULL, it is
977 filled with a pointer to the memory region of MEMADDR. REG_LEN
978 returns LEN trimmed to the end of the region. This is how much the
979 caller can continue requesting, if the access is permitted. A
980 single xfer request must not straddle memory region boundaries. */
981
982 static int
983 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
984 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
985 struct mem_region **region_p)
986 {
987 struct mem_region *region;
988
989 region = lookup_mem_region (memaddr);
990
991 if (region_p != NULL)
992 *region_p = region;
993
994 switch (region->attrib.mode)
995 {
996 case MEM_RO:
997 if (writebuf != NULL)
998 return 0;
999 break;
1000
1001 case MEM_WO:
1002 if (readbuf != NULL)
1003 return 0;
1004 break;
1005
1006 case MEM_FLASH:
1007 /* We only support writing to flash during "load" for now. */
1008 if (writebuf != NULL)
1009 error (_("Writing to flash memory forbidden in this context"));
1010 break;
1011
1012 case MEM_NONE:
1013 return 0;
1014 }
1015
1016 /* region->hi == 0 means there's no upper bound. */
1017 if (memaddr + len < region->hi || region->hi == 0)
1018 *reg_len = len;
1019 else
1020 *reg_len = region->hi - memaddr;
1021
1022 return 1;
1023 }
1024
1025 /* Read memory from more than one valid target. A core file, for
1026 instance, could have some of memory but delegate other bits to
1027 the target below it. So, we must manually try all targets. */
1028
1029 enum target_xfer_status
1030 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1031 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1032 ULONGEST *xfered_len)
1033 {
1034 enum target_xfer_status res;
1035
1036 do
1037 {
1038 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1039 readbuf, writebuf, memaddr, len,
1040 xfered_len);
1041 if (res == TARGET_XFER_OK)
1042 break;
1043
1044 /* Stop if the target reports that the memory is not available. */
1045 if (res == TARGET_XFER_UNAVAILABLE)
1046 break;
1047
1048 /* We want to continue past core files to executables, but not
1049 past a running target's memory. */
1050 if (ops->has_all_memory ())
1051 break;
1052
1053 ops = ops->beneath ();
1054 }
1055 while (ops != NULL);
1056
1057 /* The cache works at the raw memory level. Make sure the cache
1058 gets updated with raw contents no matter what kind of memory
1059 object was originally being written. Note we do write-through
1060 first, so that if it fails, we don't write to the cache contents
1061 that never made it to the target. */
1062 if (writebuf != NULL
1063 && !ptid_equal (inferior_ptid, null_ptid)
1064 && target_dcache_init_p ()
1065 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1066 {
1067 DCACHE *dcache = target_dcache_get ();
1068
1069 /* Note that writing to an area of memory which wasn't present
1070 in the cache doesn't cause it to be loaded in. */
1071 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1072 }
1073
1074 return res;
1075 }
1076
1077 /* Perform a partial memory transfer.
1078 For docs see target.h, to_xfer_partial. */
1079
1080 static enum target_xfer_status
1081 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1082 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1083 ULONGEST len, ULONGEST *xfered_len)
1084 {
1085 enum target_xfer_status res;
1086 ULONGEST reg_len;
1087 struct mem_region *region;
1088 struct inferior *inf;
1089
1090 /* For accesses to unmapped overlay sections, read directly from
1091 files. Must do this first, as MEMADDR may need adjustment. */
1092 if (readbuf != NULL && overlay_debugging)
1093 {
1094 struct obj_section *section = find_pc_overlay (memaddr);
1095
1096 if (pc_in_unmapped_range (memaddr, section))
1097 {
1098 struct target_section_table *table
1099 = target_get_section_table (ops);
1100 const char *section_name = section->the_bfd_section->name;
1101
1102 memaddr = overlay_mapped_address (memaddr, section);
1103 return section_table_xfer_memory_partial (readbuf, writebuf,
1104 memaddr, len, xfered_len,
1105 table->sections,
1106 table->sections_end,
1107 section_name);
1108 }
1109 }
1110
1111 /* Try the executable files, if "trust-readonly-sections" is set. */
1112 if (readbuf != NULL && trust_readonly)
1113 {
1114 struct target_section *secp;
1115 struct target_section_table *table;
1116
1117 secp = target_section_by_addr (ops, memaddr);
1118 if (secp != NULL
1119 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1120 secp->the_bfd_section)
1121 & SEC_READONLY))
1122 {
1123 table = target_get_section_table (ops);
1124 return section_table_xfer_memory_partial (readbuf, writebuf,
1125 memaddr, len, xfered_len,
1126 table->sections,
1127 table->sections_end,
1128 NULL);
1129 }
1130 }
1131
1132 /* Try GDB's internal data cache. */
1133
1134 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1135 &region))
1136 return TARGET_XFER_E_IO;
1137
1138 if (!ptid_equal (inferior_ptid, null_ptid))
1139 inf = find_inferior_ptid (inferior_ptid);
1140 else
1141 inf = NULL;
1142
1143 if (inf != NULL
1144 && readbuf != NULL
1145 /* The dcache reads whole cache lines; that doesn't play well
1146 with reading from a trace buffer, because reading outside of
1147 the collected memory range fails. */
1148 && get_traceframe_number () == -1
1149 && (region->attrib.cache
1150 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1151 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1152 {
1153 DCACHE *dcache = target_dcache_get_or_init ();
1154
1155 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1156 reg_len, xfered_len);
1157 }
1158
1159 /* If none of those methods found the memory we wanted, fall back
1160 to a target partial transfer. Normally a single call to
1161 to_xfer_partial is enough; if it doesn't recognize an object
1162 it will call the to_xfer_partial of the next target down.
1163 But for memory this won't do. Memory is the only target
1164 object which can be read from more than one valid target.
1165 A core file, for instance, could have some of memory but
1166 delegate other bits to the target below it. So, we must
1167 manually try all targets. */
1168
1169 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1170 xfered_len);
1171
1172 /* If we still haven't got anything, return the last error. We
1173 give up. */
1174 return res;
1175 }
1176
1177 /* Perform a partial memory transfer. For docs see target.h,
1178 to_xfer_partial. */
1179
1180 static enum target_xfer_status
1181 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1182 gdb_byte *readbuf, const gdb_byte *writebuf,
1183 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1184 {
1185 enum target_xfer_status res;
1186
1187 /* Zero length requests are ok and require no work. */
1188 if (len == 0)
1189 return TARGET_XFER_EOF;
1190
1191 memaddr = address_significant (target_gdbarch (), memaddr);
1192
1193 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1194 breakpoint insns, thus hiding out from higher layers whether
1195 there are software breakpoints inserted in the code stream. */
1196 if (readbuf != NULL)
1197 {
1198 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1199 xfered_len);
1200
1201 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1202 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1203 }
1204 else
1205 {
1206 /* A large write request is likely to be partially satisfied
1207 by memory_xfer_partial_1. We will continually malloc
1208 and free a copy of the entire write request for breakpoint
1209 shadow handling even though we only end up writing a small
1210 subset of it. Cap writes to a limit specified by the target
1211 to mitigate this. */
1212 len = std::min (ops->get_memory_xfer_limit (), len);
1213
1214 gdb::byte_vector buf (writebuf, writebuf + len);
1215 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1216 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1217 xfered_len);
1218 }
1219
1220 return res;
1221 }
1222
1223 scoped_restore_tmpl<int>
1224 make_scoped_restore_show_memory_breakpoints (int show)
1225 {
1226 return make_scoped_restore (&show_memory_breakpoints, show);
1227 }
1228
1229 /* For docs see target.h, to_xfer_partial. */
1230
1231 enum target_xfer_status
1232 target_xfer_partial (struct target_ops *ops,
1233 enum target_object object, const char *annex,
1234 gdb_byte *readbuf, const gdb_byte *writebuf,
1235 ULONGEST offset, ULONGEST len,
1236 ULONGEST *xfered_len)
1237 {
1238 enum target_xfer_status retval;
1239
1240 /* Transfer is done when LEN is zero. */
1241 if (len == 0)
1242 return TARGET_XFER_EOF;
1243
1244 if (writebuf && !may_write_memory)
1245 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1246 core_addr_to_string_nz (offset), plongest (len));
1247
1248 *xfered_len = 0;
1249
1250 /* If this is a memory transfer, let the memory-specific code
1251 have a look at it instead. Memory transfers are more
1252 complicated. */
1253 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1254 || object == TARGET_OBJECT_CODE_MEMORY)
1255 retval = memory_xfer_partial (ops, object, readbuf,
1256 writebuf, offset, len, xfered_len);
1257 else if (object == TARGET_OBJECT_RAW_MEMORY)
1258 {
1259 /* Skip/avoid accessing the target if the memory region
1260 attributes block the access. Check this here instead of in
1261 raw_memory_xfer_partial as otherwise we'd end up checking
1262 this twice in the case of the memory_xfer_partial path is
1263 taken; once before checking the dcache, and another in the
1264 tail call to raw_memory_xfer_partial. */
1265 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1266 NULL))
1267 return TARGET_XFER_E_IO;
1268
1269 /* Request the normal memory object from other layers. */
1270 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1271 xfered_len);
1272 }
1273 else
1274 retval = ops->xfer_partial (object, annex, readbuf,
1275 writebuf, offset, len, xfered_len);
1276
1277 if (targetdebug)
1278 {
1279 const unsigned char *myaddr = NULL;
1280
1281 fprintf_unfiltered (gdb_stdlog,
1282 "%s:target_xfer_partial "
1283 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1284 ops->shortname (),
1285 (int) object,
1286 (annex ? annex : "(null)"),
1287 host_address_to_string (readbuf),
1288 host_address_to_string (writebuf),
1289 core_addr_to_string_nz (offset),
1290 pulongest (len), retval,
1291 pulongest (*xfered_len));
1292
1293 if (readbuf)
1294 myaddr = readbuf;
1295 if (writebuf)
1296 myaddr = writebuf;
1297 if (retval == TARGET_XFER_OK && myaddr != NULL)
1298 {
1299 int i;
1300
1301 fputs_unfiltered (", bytes =", gdb_stdlog);
1302 for (i = 0; i < *xfered_len; i++)
1303 {
1304 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1305 {
1306 if (targetdebug < 2 && i > 0)
1307 {
1308 fprintf_unfiltered (gdb_stdlog, " ...");
1309 break;
1310 }
1311 fprintf_unfiltered (gdb_stdlog, "\n");
1312 }
1313
1314 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1315 }
1316 }
1317
1318 fputc_unfiltered ('\n', gdb_stdlog);
1319 }
1320
1321 /* Check implementations of to_xfer_partial update *XFERED_LEN
1322 properly. Do assertion after printing debug messages, so that we
1323 can find more clues on assertion failure from debugging messages. */
1324 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1325 gdb_assert (*xfered_len > 0);
1326
1327 return retval;
1328 }
1329
1330 /* Read LEN bytes of target memory at address MEMADDR, placing the
1331 results in GDB's memory at MYADDR. Returns either 0 for success or
1332 -1 if any error occurs.
1333
1334 If an error occurs, no guarantee is made about the contents of the data at
1335 MYADDR. In particular, the caller should not depend upon partial reads
1336 filling the buffer with good data. There is no way for the caller to know
1337 how much good data might have been transfered anyway. Callers that can
1338 deal with partial reads should call target_read (which will retry until
1339 it makes no progress, and then return how much was transferred). */
1340
1341 int
1342 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1343 {
1344 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1345 myaddr, memaddr, len) == len)
1346 return 0;
1347 else
1348 return -1;
1349 }
1350
1351 /* See target/target.h. */
1352
1353 int
1354 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1355 {
1356 gdb_byte buf[4];
1357 int r;
1358
1359 r = target_read_memory (memaddr, buf, sizeof buf);
1360 if (r != 0)
1361 return r;
1362 *result = extract_unsigned_integer (buf, sizeof buf,
1363 gdbarch_byte_order (target_gdbarch ()));
1364 return 0;
1365 }
1366
1367 /* Like target_read_memory, but specify explicitly that this is a read
1368 from the target's raw memory. That is, this read bypasses the
1369 dcache, breakpoint shadowing, etc. */
1370
1371 int
1372 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1373 {
1374 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1375 myaddr, memaddr, len) == len)
1376 return 0;
1377 else
1378 return -1;
1379 }
1380
1381 /* Like target_read_memory, but specify explicitly that this is a read from
1382 the target's stack. This may trigger different cache behavior. */
1383
1384 int
1385 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1386 {
1387 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1388 myaddr, memaddr, len) == len)
1389 return 0;
1390 else
1391 return -1;
1392 }
1393
1394 /* Like target_read_memory, but specify explicitly that this is a read from
1395 the target's code. This may trigger different cache behavior. */
1396
1397 int
1398 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1399 {
1400 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1401 myaddr, memaddr, len) == len)
1402 return 0;
1403 else
1404 return -1;
1405 }
1406
1407 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1408 Returns either 0 for success or -1 if any error occurs. If an
1409 error occurs, no guarantee is made about how much data got written.
1410 Callers that can deal with partial writes should call
1411 target_write. */
1412
1413 int
1414 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1415 {
1416 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1417 myaddr, memaddr, len) == len)
1418 return 0;
1419 else
1420 return -1;
1421 }
1422
1423 /* Write LEN bytes from MYADDR to target raw memory at address
1424 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1425 If an error occurs, no guarantee is made about how much data got
1426 written. Callers that can deal with partial writes should call
1427 target_write. */
1428
1429 int
1430 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1431 {
1432 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1433 myaddr, memaddr, len) == len)
1434 return 0;
1435 else
1436 return -1;
1437 }
1438
1439 /* Fetch the target's memory map. */
1440
1441 std::vector<mem_region>
1442 target_memory_map (void)
1443 {
1444 std::vector<mem_region> result = current_top_target ()->memory_map ();
1445 if (result.empty ())
1446 return result;
1447
1448 std::sort (result.begin (), result.end ());
1449
1450 /* Check that regions do not overlap. Simultaneously assign
1451 a numbering for the "mem" commands to use to refer to
1452 each region. */
1453 mem_region *last_one = NULL;
1454 for (size_t ix = 0; ix < result.size (); ix++)
1455 {
1456 mem_region *this_one = &result[ix];
1457 this_one->number = ix;
1458
1459 if (last_one != NULL && last_one->hi > this_one->lo)
1460 {
1461 warning (_("Overlapping regions in memory map: ignoring"));
1462 return std::vector<mem_region> ();
1463 }
1464
1465 last_one = this_one;
1466 }
1467
1468 return result;
1469 }
1470
1471 void
1472 target_flash_erase (ULONGEST address, LONGEST length)
1473 {
1474 current_top_target ()->flash_erase (address, length);
1475 }
1476
1477 void
1478 target_flash_done (void)
1479 {
1480 current_top_target ()->flash_done ();
1481 }
1482
1483 static void
1484 show_trust_readonly (struct ui_file *file, int from_tty,
1485 struct cmd_list_element *c, const char *value)
1486 {
1487 fprintf_filtered (file,
1488 _("Mode for reading from readonly sections is %s.\n"),
1489 value);
1490 }
1491
1492 /* Target vector read/write partial wrapper functions. */
1493
1494 static enum target_xfer_status
1495 target_read_partial (struct target_ops *ops,
1496 enum target_object object,
1497 const char *annex, gdb_byte *buf,
1498 ULONGEST offset, ULONGEST len,
1499 ULONGEST *xfered_len)
1500 {
1501 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1502 xfered_len);
1503 }
1504
1505 static enum target_xfer_status
1506 target_write_partial (struct target_ops *ops,
1507 enum target_object object,
1508 const char *annex, const gdb_byte *buf,
1509 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1510 {
1511 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1512 xfered_len);
1513 }
1514
1515 /* Wrappers to perform the full transfer. */
1516
1517 /* For docs on target_read see target.h. */
1518
1519 LONGEST
1520 target_read (struct target_ops *ops,
1521 enum target_object object,
1522 const char *annex, gdb_byte *buf,
1523 ULONGEST offset, LONGEST len)
1524 {
1525 LONGEST xfered_total = 0;
1526 int unit_size = 1;
1527
1528 /* If we are reading from a memory object, find the length of an addressable
1529 unit for that architecture. */
1530 if (object == TARGET_OBJECT_MEMORY
1531 || object == TARGET_OBJECT_STACK_MEMORY
1532 || object == TARGET_OBJECT_CODE_MEMORY
1533 || object == TARGET_OBJECT_RAW_MEMORY)
1534 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1535
1536 while (xfered_total < len)
1537 {
1538 ULONGEST xfered_partial;
1539 enum target_xfer_status status;
1540
1541 status = target_read_partial (ops, object, annex,
1542 buf + xfered_total * unit_size,
1543 offset + xfered_total, len - xfered_total,
1544 &xfered_partial);
1545
1546 /* Call an observer, notifying them of the xfer progress? */
1547 if (status == TARGET_XFER_EOF)
1548 return xfered_total;
1549 else if (status == TARGET_XFER_OK)
1550 {
1551 xfered_total += xfered_partial;
1552 QUIT;
1553 }
1554 else
1555 return TARGET_XFER_E_IO;
1556
1557 }
1558 return len;
1559 }
1560
1561 /* Assuming that the entire [begin, end) range of memory cannot be
1562 read, try to read whatever subrange is possible to read.
1563
1564 The function returns, in RESULT, either zero or one memory block.
1565 If there's a readable subrange at the beginning, it is completely
1566 read and returned. Any further readable subrange will not be read.
1567 Otherwise, if there's a readable subrange at the end, it will be
1568 completely read and returned. Any readable subranges before it
1569 (obviously, not starting at the beginning), will be ignored. In
1570 other cases -- either no readable subrange, or readable subrange(s)
1571 that is neither at the beginning, or end, nothing is returned.
1572
1573 The purpose of this function is to handle a read across a boundary
1574 of accessible memory in a case when memory map is not available.
1575 The above restrictions are fine for this case, but will give
1576 incorrect results if the memory is 'patchy'. However, supporting
1577 'patchy' memory would require trying to read every single byte,
1578 and it seems unacceptable solution. Explicit memory map is
1579 recommended for this case -- and target_read_memory_robust will
1580 take care of reading multiple ranges then. */
1581
1582 static void
1583 read_whatever_is_readable (struct target_ops *ops,
1584 const ULONGEST begin, const ULONGEST end,
1585 int unit_size,
1586 std::vector<memory_read_result> *result)
1587 {
1588 ULONGEST current_begin = begin;
1589 ULONGEST current_end = end;
1590 int forward;
1591 ULONGEST xfered_len;
1592
1593 /* If we previously failed to read 1 byte, nothing can be done here. */
1594 if (end - begin <= 1)
1595 return;
1596
1597 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1598
1599 /* Check that either first or the last byte is readable, and give up
1600 if not. This heuristic is meant to permit reading accessible memory
1601 at the boundary of accessible region. */
1602 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1603 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1604 {
1605 forward = 1;
1606 ++current_begin;
1607 }
1608 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1609 buf.get () + (end - begin) - 1, end - 1, 1,
1610 &xfered_len) == TARGET_XFER_OK)
1611 {
1612 forward = 0;
1613 --current_end;
1614 }
1615 else
1616 return;
1617
1618 /* Loop invariant is that the [current_begin, current_end) was previously
1619 found to be not readable as a whole.
1620
1621 Note loop condition -- if the range has 1 byte, we can't divide the range
1622 so there's no point trying further. */
1623 while (current_end - current_begin > 1)
1624 {
1625 ULONGEST first_half_begin, first_half_end;
1626 ULONGEST second_half_begin, second_half_end;
1627 LONGEST xfer;
1628 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1629
1630 if (forward)
1631 {
1632 first_half_begin = current_begin;
1633 first_half_end = middle;
1634 second_half_begin = middle;
1635 second_half_end = current_end;
1636 }
1637 else
1638 {
1639 first_half_begin = middle;
1640 first_half_end = current_end;
1641 second_half_begin = current_begin;
1642 second_half_end = middle;
1643 }
1644
1645 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1646 buf.get () + (first_half_begin - begin) * unit_size,
1647 first_half_begin,
1648 first_half_end - first_half_begin);
1649
1650 if (xfer == first_half_end - first_half_begin)
1651 {
1652 /* This half reads up fine. So, the error must be in the
1653 other half. */
1654 current_begin = second_half_begin;
1655 current_end = second_half_end;
1656 }
1657 else
1658 {
1659 /* This half is not readable. Because we've tried one byte, we
1660 know some part of this half if actually readable. Go to the next
1661 iteration to divide again and try to read.
1662
1663 We don't handle the other half, because this function only tries
1664 to read a single readable subrange. */
1665 current_begin = first_half_begin;
1666 current_end = first_half_end;
1667 }
1668 }
1669
1670 if (forward)
1671 {
1672 /* The [begin, current_begin) range has been read. */
1673 result->emplace_back (begin, current_end, std::move (buf));
1674 }
1675 else
1676 {
1677 /* The [current_end, end) range has been read. */
1678 LONGEST region_len = end - current_end;
1679
1680 gdb::unique_xmalloc_ptr<gdb_byte> data
1681 ((gdb_byte *) xmalloc (region_len * unit_size));
1682 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1683 region_len * unit_size);
1684 result->emplace_back (current_end, end, std::move (data));
1685 }
1686 }
1687
1688 std::vector<memory_read_result>
1689 read_memory_robust (struct target_ops *ops,
1690 const ULONGEST offset, const LONGEST len)
1691 {
1692 std::vector<memory_read_result> result;
1693 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1694
1695 LONGEST xfered_total = 0;
1696 while (xfered_total < len)
1697 {
1698 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1699 LONGEST region_len;
1700
1701 /* If there is no explicit region, a fake one should be created. */
1702 gdb_assert (region);
1703
1704 if (region->hi == 0)
1705 region_len = len - xfered_total;
1706 else
1707 region_len = region->hi - offset;
1708
1709 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1710 {
1711 /* Cannot read this region. Note that we can end up here only
1712 if the region is explicitly marked inaccessible, or
1713 'inaccessible-by-default' is in effect. */
1714 xfered_total += region_len;
1715 }
1716 else
1717 {
1718 LONGEST to_read = std::min (len - xfered_total, region_len);
1719 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1720 ((gdb_byte *) xmalloc (to_read * unit_size));
1721
1722 LONGEST xfered_partial =
1723 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1724 offset + xfered_total, to_read);
1725 /* Call an observer, notifying them of the xfer progress? */
1726 if (xfered_partial <= 0)
1727 {
1728 /* Got an error reading full chunk. See if maybe we can read
1729 some subrange. */
1730 read_whatever_is_readable (ops, offset + xfered_total,
1731 offset + xfered_total + to_read,
1732 unit_size, &result);
1733 xfered_total += to_read;
1734 }
1735 else
1736 {
1737 result.emplace_back (offset + xfered_total,
1738 offset + xfered_total + xfered_partial,
1739 std::move (buffer));
1740 xfered_total += xfered_partial;
1741 }
1742 QUIT;
1743 }
1744 }
1745
1746 return result;
1747 }
1748
1749
1750 /* An alternative to target_write with progress callbacks. */
1751
1752 LONGEST
1753 target_write_with_progress (struct target_ops *ops,
1754 enum target_object object,
1755 const char *annex, const gdb_byte *buf,
1756 ULONGEST offset, LONGEST len,
1757 void (*progress) (ULONGEST, void *), void *baton)
1758 {
1759 LONGEST xfered_total = 0;
1760 int unit_size = 1;
1761
1762 /* If we are writing to a memory object, find the length of an addressable
1763 unit for that architecture. */
1764 if (object == TARGET_OBJECT_MEMORY
1765 || object == TARGET_OBJECT_STACK_MEMORY
1766 || object == TARGET_OBJECT_CODE_MEMORY
1767 || object == TARGET_OBJECT_RAW_MEMORY)
1768 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1769
1770 /* Give the progress callback a chance to set up. */
1771 if (progress)
1772 (*progress) (0, baton);
1773
1774 while (xfered_total < len)
1775 {
1776 ULONGEST xfered_partial;
1777 enum target_xfer_status status;
1778
1779 status = target_write_partial (ops, object, annex,
1780 buf + xfered_total * unit_size,
1781 offset + xfered_total, len - xfered_total,
1782 &xfered_partial);
1783
1784 if (status != TARGET_XFER_OK)
1785 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1786
1787 if (progress)
1788 (*progress) (xfered_partial, baton);
1789
1790 xfered_total += xfered_partial;
1791 QUIT;
1792 }
1793 return len;
1794 }
1795
1796 /* For docs on target_write see target.h. */
1797
1798 LONGEST
1799 target_write (struct target_ops *ops,
1800 enum target_object object,
1801 const char *annex, const gdb_byte *buf,
1802 ULONGEST offset, LONGEST len)
1803 {
1804 return target_write_with_progress (ops, object, annex, buf, offset, len,
1805 NULL, NULL);
1806 }
1807
1808 /* Help for target_read_alloc and target_read_stralloc. See their comments
1809 for details. */
1810
1811 template <typename T>
1812 gdb::optional<gdb::def_vector<T>>
1813 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1814 const char *annex)
1815 {
1816 gdb::def_vector<T> buf;
1817 size_t buf_pos = 0;
1818 const int chunk = 4096;
1819
1820 /* This function does not have a length parameter; it reads the
1821 entire OBJECT). Also, it doesn't support objects fetched partly
1822 from one target and partly from another (in a different stratum,
1823 e.g. a core file and an executable). Both reasons make it
1824 unsuitable for reading memory. */
1825 gdb_assert (object != TARGET_OBJECT_MEMORY);
1826
1827 /* Start by reading up to 4K at a time. The target will throttle
1828 this number down if necessary. */
1829 while (1)
1830 {
1831 ULONGEST xfered_len;
1832 enum target_xfer_status status;
1833
1834 buf.resize (buf_pos + chunk);
1835
1836 status = target_read_partial (ops, object, annex,
1837 (gdb_byte *) &buf[buf_pos],
1838 buf_pos, chunk,
1839 &xfered_len);
1840
1841 if (status == TARGET_XFER_EOF)
1842 {
1843 /* Read all there was. */
1844 buf.resize (buf_pos);
1845 return buf;
1846 }
1847 else if (status != TARGET_XFER_OK)
1848 {
1849 /* An error occurred. */
1850 return {};
1851 }
1852
1853 buf_pos += xfered_len;
1854
1855 QUIT;
1856 }
1857 }
1858
1859 /* See target.h */
1860
1861 gdb::optional<gdb::byte_vector>
1862 target_read_alloc (struct target_ops *ops, enum target_object object,
1863 const char *annex)
1864 {
1865 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1866 }
1867
1868 /* See target.h. */
1869
1870 gdb::optional<gdb::char_vector>
1871 target_read_stralloc (struct target_ops *ops, enum target_object object,
1872 const char *annex)
1873 {
1874 gdb::optional<gdb::char_vector> buf
1875 = target_read_alloc_1<char> (ops, object, annex);
1876
1877 if (!buf)
1878 return {};
1879
1880 if (buf->back () != '\0')
1881 buf->push_back ('\0');
1882
1883 /* Check for embedded NUL bytes; but allow trailing NULs. */
1884 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1885 it != buf->end (); it++)
1886 if (*it != '\0')
1887 {
1888 warning (_("target object %d, annex %s, "
1889 "contained unexpected null characters"),
1890 (int) object, annex ? annex : "(none)");
1891 break;
1892 }
1893
1894 return buf;
1895 }
1896
1897 /* Memory transfer methods. */
1898
1899 void
1900 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1901 LONGEST len)
1902 {
1903 /* This method is used to read from an alternate, non-current
1904 target. This read must bypass the overlay support (as symbols
1905 don't match this target), and GDB's internal cache (wrong cache
1906 for this target). */
1907 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1908 != len)
1909 memory_error (TARGET_XFER_E_IO, addr);
1910 }
1911
1912 ULONGEST
1913 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1914 int len, enum bfd_endian byte_order)
1915 {
1916 gdb_byte buf[sizeof (ULONGEST)];
1917
1918 gdb_assert (len <= sizeof (buf));
1919 get_target_memory (ops, addr, buf, len);
1920 return extract_unsigned_integer (buf, len, byte_order);
1921 }
1922
1923 /* See target.h. */
1924
1925 int
1926 target_insert_breakpoint (struct gdbarch *gdbarch,
1927 struct bp_target_info *bp_tgt)
1928 {
1929 if (!may_insert_breakpoints)
1930 {
1931 warning (_("May not insert breakpoints"));
1932 return 1;
1933 }
1934
1935 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1936 }
1937
1938 /* See target.h. */
1939
1940 int
1941 target_remove_breakpoint (struct gdbarch *gdbarch,
1942 struct bp_target_info *bp_tgt,
1943 enum remove_bp_reason reason)
1944 {
1945 /* This is kind of a weird case to handle, but the permission might
1946 have been changed after breakpoints were inserted - in which case
1947 we should just take the user literally and assume that any
1948 breakpoints should be left in place. */
1949 if (!may_insert_breakpoints)
1950 {
1951 warning (_("May not remove breakpoints"));
1952 return 1;
1953 }
1954
1955 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1956 }
1957
1958 static void
1959 info_target_command (const char *args, int from_tty)
1960 {
1961 int has_all_mem = 0;
1962
1963 if (symfile_objfile != NULL)
1964 printf_unfiltered (_("Symbols from \"%s\".\n"),
1965 objfile_name (symfile_objfile));
1966
1967 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1968 {
1969 if (!t->has_memory ())
1970 continue;
1971
1972 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1973 continue;
1974 if (has_all_mem)
1975 printf_unfiltered (_("\tWhile running this, "
1976 "GDB does not access memory from...\n"));
1977 printf_unfiltered ("%s:\n", t->longname ());
1978 t->files_info ();
1979 has_all_mem = t->has_all_memory ();
1980 }
1981 }
1982
1983 /* This function is called before any new inferior is created, e.g.
1984 by running a program, attaching, or connecting to a target.
1985 It cleans up any state from previous invocations which might
1986 change between runs. This is a subset of what target_preopen
1987 resets (things which might change between targets). */
1988
1989 void
1990 target_pre_inferior (int from_tty)
1991 {
1992 /* Clear out solib state. Otherwise the solib state of the previous
1993 inferior might have survived and is entirely wrong for the new
1994 target. This has been observed on GNU/Linux using glibc 2.3. How
1995 to reproduce:
1996
1997 bash$ ./foo&
1998 [1] 4711
1999 bash$ ./foo&
2000 [1] 4712
2001 bash$ gdb ./foo
2002 [...]
2003 (gdb) attach 4711
2004 (gdb) detach
2005 (gdb) attach 4712
2006 Cannot access memory at address 0xdeadbeef
2007 */
2008
2009 /* In some OSs, the shared library list is the same/global/shared
2010 across inferiors. If code is shared between processes, so are
2011 memory regions and features. */
2012 if (!gdbarch_has_global_solist (target_gdbarch ()))
2013 {
2014 no_shared_libraries (NULL, from_tty);
2015
2016 invalidate_target_mem_regions ();
2017
2018 target_clear_description ();
2019 }
2020
2021 /* attach_flag may be set if the previous process associated with
2022 the inferior was attached to. */
2023 current_inferior ()->attach_flag = 0;
2024
2025 current_inferior ()->highest_thread_num = 0;
2026
2027 agent_capability_invalidate ();
2028 }
2029
2030 /* Callback for iterate_over_inferiors. Gets rid of the given
2031 inferior. */
2032
2033 static int
2034 dispose_inferior (struct inferior *inf, void *args)
2035 {
2036 struct thread_info *thread;
2037
2038 thread = any_thread_of_process (inf->pid);
2039 if (thread)
2040 {
2041 switch_to_thread (thread->ptid);
2042
2043 /* Core inferiors actually should be detached, not killed. */
2044 if (target_has_execution)
2045 target_kill ();
2046 else
2047 target_detach (inf, 0);
2048 }
2049
2050 return 0;
2051 }
2052
2053 /* This is to be called by the open routine before it does
2054 anything. */
2055
2056 void
2057 target_preopen (int from_tty)
2058 {
2059 dont_repeat ();
2060
2061 if (have_inferiors ())
2062 {
2063 if (!from_tty
2064 || !have_live_inferiors ()
2065 || query (_("A program is being debugged already. Kill it? ")))
2066 iterate_over_inferiors (dispose_inferior, NULL);
2067 else
2068 error (_("Program not killed."));
2069 }
2070
2071 /* Calling target_kill may remove the target from the stack. But if
2072 it doesn't (which seems like a win for UDI), remove it now. */
2073 /* Leave the exec target, though. The user may be switching from a
2074 live process to a core of the same program. */
2075 pop_all_targets_above (file_stratum);
2076
2077 target_pre_inferior (from_tty);
2078 }
2079
2080 /* See target.h. */
2081
2082 void
2083 target_detach (inferior *inf, int from_tty)
2084 {
2085 /* As long as some to_detach implementations rely on the current_inferior
2086 (either directly, or indirectly, like through target_gdbarch or by
2087 reading memory), INF needs to be the current inferior. When that
2088 requirement will become no longer true, then we can remove this
2089 assertion. */
2090 gdb_assert (inf == current_inferior ());
2091
2092 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2093 /* Don't remove global breakpoints here. They're removed on
2094 disconnection from the target. */
2095 ;
2096 else
2097 /* If we're in breakpoints-always-inserted mode, have to remove
2098 them before detaching. */
2099 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2100
2101 prepare_for_detach ();
2102
2103 current_top_target ()->detach (inf, from_tty);
2104 }
2105
2106 void
2107 target_disconnect (const char *args, int from_tty)
2108 {
2109 /* If we're in breakpoints-always-inserted mode or if breakpoints
2110 are global across processes, we have to remove them before
2111 disconnecting. */
2112 remove_breakpoints ();
2113
2114 current_top_target ()->disconnect (args, from_tty);
2115 }
2116
2117 /* See target/target.h. */
2118
2119 ptid_t
2120 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2121 {
2122 return current_top_target ()->wait (ptid, status, options);
2123 }
2124
2125 /* See target.h. */
2126
2127 ptid_t
2128 default_target_wait (struct target_ops *ops,
2129 ptid_t ptid, struct target_waitstatus *status,
2130 int options)
2131 {
2132 status->kind = TARGET_WAITKIND_IGNORE;
2133 return minus_one_ptid;
2134 }
2135
2136 const char *
2137 target_pid_to_str (ptid_t ptid)
2138 {
2139 return current_top_target ()->pid_to_str (ptid);
2140 }
2141
2142 const char *
2143 target_thread_name (struct thread_info *info)
2144 {
2145 return current_top_target ()->thread_name (info);
2146 }
2147
2148 struct thread_info *
2149 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2150 int handle_len,
2151 struct inferior *inf)
2152 {
2153 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2154 handle_len, inf);
2155 }
2156
2157 void
2158 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2159 {
2160 target_dcache_invalidate ();
2161
2162 current_top_target ()->resume (ptid, step, signal);
2163
2164 registers_changed_ptid (ptid);
2165 /* We only set the internal executing state here. The user/frontend
2166 running state is set at a higher level. */
2167 set_executing (ptid, 1);
2168 clear_inline_frame_state (ptid);
2169 }
2170
2171 /* If true, target_commit_resume is a nop. */
2172 static int defer_target_commit_resume;
2173
2174 /* See target.h. */
2175
2176 void
2177 target_commit_resume (void)
2178 {
2179 if (defer_target_commit_resume)
2180 return;
2181
2182 current_top_target ()->commit_resume ();
2183 }
2184
2185 /* See target.h. */
2186
2187 scoped_restore_tmpl<int>
2188 make_scoped_defer_target_commit_resume ()
2189 {
2190 return make_scoped_restore (&defer_target_commit_resume, 1);
2191 }
2192
2193 void
2194 target_pass_signals (int numsigs, unsigned char *pass_signals)
2195 {
2196 current_top_target ()->pass_signals (numsigs, pass_signals);
2197 }
2198
2199 void
2200 target_program_signals (int numsigs, unsigned char *program_signals)
2201 {
2202 current_top_target ()->program_signals (numsigs, program_signals);
2203 }
2204
2205 static int
2206 default_follow_fork (struct target_ops *self, int follow_child,
2207 int detach_fork)
2208 {
2209 /* Some target returned a fork event, but did not know how to follow it. */
2210 internal_error (__FILE__, __LINE__,
2211 _("could not find a target to follow fork"));
2212 }
2213
2214 /* Look through the list of possible targets for a target that can
2215 follow forks. */
2216
2217 int
2218 target_follow_fork (int follow_child, int detach_fork)
2219 {
2220 return current_top_target ()->follow_fork (follow_child, detach_fork);
2221 }
2222
2223 /* Target wrapper for follow exec hook. */
2224
2225 void
2226 target_follow_exec (struct inferior *inf, char *execd_pathname)
2227 {
2228 current_top_target ()->follow_exec (inf, execd_pathname);
2229 }
2230
2231 static void
2232 default_mourn_inferior (struct target_ops *self)
2233 {
2234 internal_error (__FILE__, __LINE__,
2235 _("could not find a target to follow mourn inferior"));
2236 }
2237
2238 void
2239 target_mourn_inferior (ptid_t ptid)
2240 {
2241 gdb_assert (ptid_equal (ptid, inferior_ptid));
2242 current_top_target ()->mourn_inferior ();
2243
2244 /* We no longer need to keep handles on any of the object files.
2245 Make sure to release them to avoid unnecessarily locking any
2246 of them while we're not actually debugging. */
2247 bfd_cache_close_all ();
2248 }
2249
2250 /* Look for a target which can describe architectural features, starting
2251 from TARGET. If we find one, return its description. */
2252
2253 const struct target_desc *
2254 target_read_description (struct target_ops *target)
2255 {
2256 return target->read_description ();
2257 }
2258
2259 /* This implements a basic search of memory, reading target memory and
2260 performing the search here (as opposed to performing the search in on the
2261 target side with, for example, gdbserver). */
2262
2263 int
2264 simple_search_memory (struct target_ops *ops,
2265 CORE_ADDR start_addr, ULONGEST search_space_len,
2266 const gdb_byte *pattern, ULONGEST pattern_len,
2267 CORE_ADDR *found_addrp)
2268 {
2269 /* NOTE: also defined in find.c testcase. */
2270 #define SEARCH_CHUNK_SIZE 16000
2271 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2272 /* Buffer to hold memory contents for searching. */
2273 unsigned search_buf_size;
2274
2275 search_buf_size = chunk_size + pattern_len - 1;
2276
2277 /* No point in trying to allocate a buffer larger than the search space. */
2278 if (search_space_len < search_buf_size)
2279 search_buf_size = search_space_len;
2280
2281 gdb::byte_vector search_buf (search_buf_size);
2282
2283 /* Prime the search buffer. */
2284
2285 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2286 search_buf.data (), start_addr, search_buf_size)
2287 != search_buf_size)
2288 {
2289 warning (_("Unable to access %s bytes of target "
2290 "memory at %s, halting search."),
2291 pulongest (search_buf_size), hex_string (start_addr));
2292 return -1;
2293 }
2294
2295 /* Perform the search.
2296
2297 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2298 When we've scanned N bytes we copy the trailing bytes to the start and
2299 read in another N bytes. */
2300
2301 while (search_space_len >= pattern_len)
2302 {
2303 gdb_byte *found_ptr;
2304 unsigned nr_search_bytes
2305 = std::min (search_space_len, (ULONGEST) search_buf_size);
2306
2307 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2308 pattern, pattern_len);
2309
2310 if (found_ptr != NULL)
2311 {
2312 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2313
2314 *found_addrp = found_addr;
2315 return 1;
2316 }
2317
2318 /* Not found in this chunk, skip to next chunk. */
2319
2320 /* Don't let search_space_len wrap here, it's unsigned. */
2321 if (search_space_len >= chunk_size)
2322 search_space_len -= chunk_size;
2323 else
2324 search_space_len = 0;
2325
2326 if (search_space_len >= pattern_len)
2327 {
2328 unsigned keep_len = search_buf_size - chunk_size;
2329 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2330 int nr_to_read;
2331
2332 /* Copy the trailing part of the previous iteration to the front
2333 of the buffer for the next iteration. */
2334 gdb_assert (keep_len == pattern_len - 1);
2335 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2336
2337 nr_to_read = std::min (search_space_len - keep_len,
2338 (ULONGEST) chunk_size);
2339
2340 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2341 &search_buf[keep_len], read_addr,
2342 nr_to_read) != nr_to_read)
2343 {
2344 warning (_("Unable to access %s bytes of target "
2345 "memory at %s, halting search."),
2346 plongest (nr_to_read),
2347 hex_string (read_addr));
2348 return -1;
2349 }
2350
2351 start_addr += chunk_size;
2352 }
2353 }
2354
2355 /* Not found. */
2356
2357 return 0;
2358 }
2359
2360 /* Default implementation of memory-searching. */
2361
2362 static int
2363 default_search_memory (struct target_ops *self,
2364 CORE_ADDR start_addr, ULONGEST search_space_len,
2365 const gdb_byte *pattern, ULONGEST pattern_len,
2366 CORE_ADDR *found_addrp)
2367 {
2368 /* Start over from the top of the target stack. */
2369 return simple_search_memory (current_top_target (),
2370 start_addr, search_space_len,
2371 pattern, pattern_len, found_addrp);
2372 }
2373
2374 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2375 sequence of bytes in PATTERN with length PATTERN_LEN.
2376
2377 The result is 1 if found, 0 if not found, and -1 if there was an error
2378 requiring halting of the search (e.g. memory read error).
2379 If the pattern is found the address is recorded in FOUND_ADDRP. */
2380
2381 int
2382 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2383 const gdb_byte *pattern, ULONGEST pattern_len,
2384 CORE_ADDR *found_addrp)
2385 {
2386 return current_top_target ()->search_memory (start_addr, search_space_len,
2387 pattern, pattern_len, found_addrp);
2388 }
2389
2390 /* Look through the currently pushed targets. If none of them will
2391 be able to restart the currently running process, issue an error
2392 message. */
2393
2394 void
2395 target_require_runnable (void)
2396 {
2397 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2398 {
2399 /* If this target knows how to create a new program, then
2400 assume we will still be able to after killing the current
2401 one. Either killing and mourning will not pop T, or else
2402 find_default_run_target will find it again. */
2403 if (t->can_create_inferior ())
2404 return;
2405
2406 /* Do not worry about targets at certain strata that can not
2407 create inferiors. Assume they will be pushed again if
2408 necessary, and continue to the process_stratum. */
2409 if (t->to_stratum > process_stratum)
2410 continue;
2411
2412 error (_("The \"%s\" target does not support \"run\". "
2413 "Try \"help target\" or \"continue\"."),
2414 t->shortname ());
2415 }
2416
2417 /* This function is only called if the target is running. In that
2418 case there should have been a process_stratum target and it
2419 should either know how to create inferiors, or not... */
2420 internal_error (__FILE__, __LINE__, _("No targets found"));
2421 }
2422
2423 /* Whether GDB is allowed to fall back to the default run target for
2424 "run", "attach", etc. when no target is connected yet. */
2425 static int auto_connect_native_target = 1;
2426
2427 static void
2428 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2429 struct cmd_list_element *c, const char *value)
2430 {
2431 fprintf_filtered (file,
2432 _("Whether GDB may automatically connect to the "
2433 "native target is %s.\n"),
2434 value);
2435 }
2436
2437 /* A pointer to the target that can respond to "run" or "attach".
2438 Native targets are always singletons and instantiated early at GDB
2439 startup. */
2440 static target_ops *the_native_target;
2441
2442 /* See target.h. */
2443
2444 void
2445 set_native_target (target_ops *target)
2446 {
2447 if (the_native_target != NULL)
2448 internal_error (__FILE__, __LINE__,
2449 _("native target already set (\"%s\")."),
2450 the_native_target->longname ());
2451
2452 the_native_target = target;
2453 }
2454
2455 /* See target.h. */
2456
2457 target_ops *
2458 get_native_target ()
2459 {
2460 return the_native_target;
2461 }
2462
2463 /* Look through the list of possible targets for a target that can
2464 execute a run or attach command without any other data. This is
2465 used to locate the default process stratum.
2466
2467 If DO_MESG is not NULL, the result is always valid (error() is
2468 called for errors); else, return NULL on error. */
2469
2470 static struct target_ops *
2471 find_default_run_target (const char *do_mesg)
2472 {
2473 if (auto_connect_native_target && the_native_target != NULL)
2474 return the_native_target;
2475
2476 if (do_mesg != NULL)
2477 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2478 return NULL;
2479 }
2480
2481 /* See target.h. */
2482
2483 struct target_ops *
2484 find_attach_target (void)
2485 {
2486 /* If a target on the current stack can attach, use it. */
2487 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2488 {
2489 if (t->can_attach ())
2490 return t;
2491 }
2492
2493 /* Otherwise, use the default run target for attaching. */
2494 return find_default_run_target ("attach");
2495 }
2496
2497 /* See target.h. */
2498
2499 struct target_ops *
2500 find_run_target (void)
2501 {
2502 /* If a target on the current stack can run, use it. */
2503 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2504 {
2505 if (t->can_create_inferior ())
2506 return t;
2507 }
2508
2509 /* Otherwise, use the default run target. */
2510 return find_default_run_target ("run");
2511 }
2512
2513 bool
2514 target_ops::info_proc (const char *args, enum info_proc_what what)
2515 {
2516 return false;
2517 }
2518
2519 /* Implement the "info proc" command. */
2520
2521 int
2522 target_info_proc (const char *args, enum info_proc_what what)
2523 {
2524 struct target_ops *t;
2525
2526 /* If we're already connected to something that can get us OS
2527 related data, use it. Otherwise, try using the native
2528 target. */
2529 t = find_target_at (process_stratum);
2530 if (t == NULL)
2531 t = find_default_run_target (NULL);
2532
2533 for (; t != NULL; t = t->beneath ())
2534 {
2535 if (t->info_proc (args, what))
2536 {
2537 if (targetdebug)
2538 fprintf_unfiltered (gdb_stdlog,
2539 "target_info_proc (\"%s\", %d)\n", args, what);
2540
2541 return 1;
2542 }
2543 }
2544
2545 return 0;
2546 }
2547
2548 static int
2549 find_default_supports_disable_randomization (struct target_ops *self)
2550 {
2551 struct target_ops *t;
2552
2553 t = find_default_run_target (NULL);
2554 if (t != NULL)
2555 return t->supports_disable_randomization ();
2556 return 0;
2557 }
2558
2559 int
2560 target_supports_disable_randomization (void)
2561 {
2562 return current_top_target ()->supports_disable_randomization ();
2563 }
2564
2565 /* See target/target.h. */
2566
2567 int
2568 target_supports_multi_process (void)
2569 {
2570 return current_top_target ()->supports_multi_process ();
2571 }
2572
2573 /* See target.h. */
2574
2575 gdb::optional<gdb::char_vector>
2576 target_get_osdata (const char *type)
2577 {
2578 struct target_ops *t;
2579
2580 /* If we're already connected to something that can get us OS
2581 related data, use it. Otherwise, try using the native
2582 target. */
2583 t = find_target_at (process_stratum);
2584 if (t == NULL)
2585 t = find_default_run_target ("get OS data");
2586
2587 if (!t)
2588 return {};
2589
2590 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2591 }
2592
2593 static struct address_space *
2594 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2595 {
2596 struct inferior *inf;
2597
2598 /* Fall-back to the "main" address space of the inferior. */
2599 inf = find_inferior_ptid (ptid);
2600
2601 if (inf == NULL || inf->aspace == NULL)
2602 internal_error (__FILE__, __LINE__,
2603 _("Can't determine the current "
2604 "address space of thread %s\n"),
2605 target_pid_to_str (ptid));
2606
2607 return inf->aspace;
2608 }
2609
2610 /* Determine the current address space of thread PTID. */
2611
2612 struct address_space *
2613 target_thread_address_space (ptid_t ptid)
2614 {
2615 struct address_space *aspace;
2616
2617 aspace = current_top_target ()->thread_address_space (ptid);
2618 gdb_assert (aspace != NULL);
2619
2620 return aspace;
2621 }
2622
2623 /* See target.h. */
2624
2625 target_ops *
2626 target_ops::beneath () const
2627 {
2628 return m_beneath;
2629 }
2630
2631 void
2632 target_ops::close ()
2633 {
2634 }
2635
2636 bool
2637 target_ops::can_attach ()
2638 {
2639 return 0;
2640 }
2641
2642 void
2643 target_ops::attach (const char *, int)
2644 {
2645 gdb_assert_not_reached ("target_ops::attach called");
2646 }
2647
2648 bool
2649 target_ops::can_create_inferior ()
2650 {
2651 return 0;
2652 }
2653
2654 void
2655 target_ops::create_inferior (const char *, const std::string &,
2656 char **, int)
2657 {
2658 gdb_assert_not_reached ("target_ops::create_inferior called");
2659 }
2660
2661 bool
2662 target_ops::can_run ()
2663 {
2664 return false;
2665 }
2666
2667 int
2668 target_can_run ()
2669 {
2670 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2671 {
2672 if (t->can_run ())
2673 return 1;
2674 }
2675
2676 return 0;
2677 }
2678
2679 /* Target file operations. */
2680
2681 static struct target_ops *
2682 default_fileio_target (void)
2683 {
2684 struct target_ops *t;
2685
2686 /* If we're already connected to something that can perform
2687 file I/O, use it. Otherwise, try using the native target. */
2688 t = find_target_at (process_stratum);
2689 if (t != NULL)
2690 return t;
2691 return find_default_run_target ("file I/O");
2692 }
2693
2694 /* File handle for target file operations. */
2695
2696 struct fileio_fh_t
2697 {
2698 /* The target on which this file is open. NULL if the target is
2699 meanwhile closed while the handle is open. */
2700 target_ops *target;
2701
2702 /* The file descriptor on the target. */
2703 int target_fd;
2704
2705 /* Check whether this fileio_fh_t represents a closed file. */
2706 bool is_closed ()
2707 {
2708 return target_fd < 0;
2709 }
2710 };
2711
2712 /* Vector of currently open file handles. The value returned by
2713 target_fileio_open and passed as the FD argument to other
2714 target_fileio_* functions is an index into this vector. This
2715 vector's entries are never freed; instead, files are marked as
2716 closed, and the handle becomes available for reuse. */
2717 static std::vector<fileio_fh_t> fileio_fhandles;
2718
2719 /* Index into fileio_fhandles of the lowest handle that might be
2720 closed. This permits handle reuse without searching the whole
2721 list each time a new file is opened. */
2722 static int lowest_closed_fd;
2723
2724 /* Invalidate the target associated with open handles that were open
2725 on target TARG, since we're about to close (and maybe destroy) the
2726 target. The handles remain open from the client's perspective, but
2727 trying to do anything with them other than closing them will fail
2728 with EIO. */
2729
2730 static void
2731 fileio_handles_invalidate_target (target_ops *targ)
2732 {
2733 for (fileio_fh_t &fh : fileio_fhandles)
2734 if (fh.target == targ)
2735 fh.target = NULL;
2736 }
2737
2738 /* Acquire a target fileio file descriptor. */
2739
2740 static int
2741 acquire_fileio_fd (target_ops *target, int target_fd)
2742 {
2743 /* Search for closed handles to reuse. */
2744 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2745 {
2746 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2747
2748 if (fh.is_closed ())
2749 break;
2750 }
2751
2752 /* Push a new handle if no closed handles were found. */
2753 if (lowest_closed_fd == fileio_fhandles.size ())
2754 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2755 else
2756 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2757
2758 /* Should no longer be marked closed. */
2759 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2760
2761 /* Return its index, and start the next lookup at
2762 the next index. */
2763 return lowest_closed_fd++;
2764 }
2765
2766 /* Release a target fileio file descriptor. */
2767
2768 static void
2769 release_fileio_fd (int fd, fileio_fh_t *fh)
2770 {
2771 fh->target_fd = -1;
2772 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2773 }
2774
2775 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2776
2777 static fileio_fh_t *
2778 fileio_fd_to_fh (int fd)
2779 {
2780 return &fileio_fhandles[fd];
2781 }
2782
2783
2784 /* Default implementations of file i/o methods. We don't want these
2785 to delegate automatically, because we need to know which target
2786 supported the method, in order to call it directly from within
2787 pread/pwrite, etc. */
2788
2789 int
2790 target_ops::fileio_open (struct inferior *inf, const char *filename,
2791 int flags, int mode, int warn_if_slow,
2792 int *target_errno)
2793 {
2794 *target_errno = FILEIO_ENOSYS;
2795 return -1;
2796 }
2797
2798 int
2799 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2800 ULONGEST offset, int *target_errno)
2801 {
2802 *target_errno = FILEIO_ENOSYS;
2803 return -1;
2804 }
2805
2806 int
2807 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2808 ULONGEST offset, int *target_errno)
2809 {
2810 *target_errno = FILEIO_ENOSYS;
2811 return -1;
2812 }
2813
2814 int
2815 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2816 {
2817 *target_errno = FILEIO_ENOSYS;
2818 return -1;
2819 }
2820
2821 int
2822 target_ops::fileio_close (int fd, int *target_errno)
2823 {
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826 }
2827
2828 int
2829 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2830 int *target_errno)
2831 {
2832 *target_errno = FILEIO_ENOSYS;
2833 return -1;
2834 }
2835
2836 gdb::optional<std::string>
2837 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2838 int *target_errno)
2839 {
2840 *target_errno = FILEIO_ENOSYS;
2841 return {};
2842 }
2843
2844 /* Helper for target_fileio_open and
2845 target_fileio_open_warn_if_slow. */
2846
2847 static int
2848 target_fileio_open_1 (struct inferior *inf, const char *filename,
2849 int flags, int mode, int warn_if_slow,
2850 int *target_errno)
2851 {
2852 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2853 {
2854 int fd = t->fileio_open (inf, filename, flags, mode,
2855 warn_if_slow, target_errno);
2856
2857 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2858 continue;
2859
2860 if (fd < 0)
2861 fd = -1;
2862 else
2863 fd = acquire_fileio_fd (t, fd);
2864
2865 if (targetdebug)
2866 fprintf_unfiltered (gdb_stdlog,
2867 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2868 " = %d (%d)\n",
2869 inf == NULL ? 0 : inf->num,
2870 filename, flags, mode,
2871 warn_if_slow, fd,
2872 fd != -1 ? 0 : *target_errno);
2873 return fd;
2874 }
2875
2876 *target_errno = FILEIO_ENOSYS;
2877 return -1;
2878 }
2879
2880 /* See target.h. */
2881
2882 int
2883 target_fileio_open (struct inferior *inf, const char *filename,
2884 int flags, int mode, int *target_errno)
2885 {
2886 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2887 target_errno);
2888 }
2889
2890 /* See target.h. */
2891
2892 int
2893 target_fileio_open_warn_if_slow (struct inferior *inf,
2894 const char *filename,
2895 int flags, int mode, int *target_errno)
2896 {
2897 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2898 target_errno);
2899 }
2900
2901 /* See target.h. */
2902
2903 int
2904 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2905 ULONGEST offset, int *target_errno)
2906 {
2907 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2908 int ret = -1;
2909
2910 if (fh->is_closed ())
2911 *target_errno = EBADF;
2912 else if (fh->target == NULL)
2913 *target_errno = EIO;
2914 else
2915 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2916 len, offset, target_errno);
2917
2918 if (targetdebug)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "target_fileio_pwrite (%d,...,%d,%s) "
2921 "= %d (%d)\n",
2922 fd, len, pulongest (offset),
2923 ret, ret != -1 ? 0 : *target_errno);
2924 return ret;
2925 }
2926
2927 /* See target.h. */
2928
2929 int
2930 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2931 ULONGEST offset, int *target_errno)
2932 {
2933 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2934 int ret = -1;
2935
2936 if (fh->is_closed ())
2937 *target_errno = EBADF;
2938 else if (fh->target == NULL)
2939 *target_errno = EIO;
2940 else
2941 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2942 len, offset, target_errno);
2943
2944 if (targetdebug)
2945 fprintf_unfiltered (gdb_stdlog,
2946 "target_fileio_pread (%d,...,%d,%s) "
2947 "= %d (%d)\n",
2948 fd, len, pulongest (offset),
2949 ret, ret != -1 ? 0 : *target_errno);
2950 return ret;
2951 }
2952
2953 /* See target.h. */
2954
2955 int
2956 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2957 {
2958 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2959 int ret = -1;
2960
2961 if (fh->is_closed ())
2962 *target_errno = EBADF;
2963 else if (fh->target == NULL)
2964 *target_errno = EIO;
2965 else
2966 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2967
2968 if (targetdebug)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "target_fileio_fstat (%d) = %d (%d)\n",
2971 fd, ret, ret != -1 ? 0 : *target_errno);
2972 return ret;
2973 }
2974
2975 /* See target.h. */
2976
2977 int
2978 target_fileio_close (int fd, int *target_errno)
2979 {
2980 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2981 int ret = -1;
2982
2983 if (fh->is_closed ())
2984 *target_errno = EBADF;
2985 else
2986 {
2987 if (fh->target != NULL)
2988 ret = fh->target->fileio_close (fh->target_fd,
2989 target_errno);
2990 else
2991 ret = 0;
2992 release_fileio_fd (fd, fh);
2993 }
2994
2995 if (targetdebug)
2996 fprintf_unfiltered (gdb_stdlog,
2997 "target_fileio_close (%d) = %d (%d)\n",
2998 fd, ret, ret != -1 ? 0 : *target_errno);
2999 return ret;
3000 }
3001
3002 /* See target.h. */
3003
3004 int
3005 target_fileio_unlink (struct inferior *inf, const char *filename,
3006 int *target_errno)
3007 {
3008 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3009 {
3010 int ret = t->fileio_unlink (inf, filename, target_errno);
3011
3012 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3013 continue;
3014
3015 if (targetdebug)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "target_fileio_unlink (%d,%s)"
3018 " = %d (%d)\n",
3019 inf == NULL ? 0 : inf->num, filename,
3020 ret, ret != -1 ? 0 : *target_errno);
3021 return ret;
3022 }
3023
3024 *target_errno = FILEIO_ENOSYS;
3025 return -1;
3026 }
3027
3028 /* See target.h. */
3029
3030 gdb::optional<std::string>
3031 target_fileio_readlink (struct inferior *inf, const char *filename,
3032 int *target_errno)
3033 {
3034 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3035 {
3036 gdb::optional<std::string> ret
3037 = t->fileio_readlink (inf, filename, target_errno);
3038
3039 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3040 continue;
3041
3042 if (targetdebug)
3043 fprintf_unfiltered (gdb_stdlog,
3044 "target_fileio_readlink (%d,%s)"
3045 " = %s (%d)\n",
3046 inf == NULL ? 0 : inf->num,
3047 filename, ret ? ret->c_str () : "(nil)",
3048 ret ? 0 : *target_errno);
3049 return ret;
3050 }
3051
3052 *target_errno = FILEIO_ENOSYS;
3053 return {};
3054 }
3055
3056 /* Like scoped_fd, but specific to target fileio. */
3057
3058 class scoped_target_fd
3059 {
3060 public:
3061 explicit scoped_target_fd (int fd) noexcept
3062 : m_fd (fd)
3063 {
3064 }
3065
3066 ~scoped_target_fd ()
3067 {
3068 if (m_fd >= 0)
3069 {
3070 int target_errno;
3071
3072 target_fileio_close (m_fd, &target_errno);
3073 }
3074 }
3075
3076 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3077
3078 int get () const noexcept
3079 {
3080 return m_fd;
3081 }
3082
3083 private:
3084 int m_fd;
3085 };
3086
3087 /* Read target file FILENAME, in the filesystem as seen by INF. If
3088 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3089 remote targets, the remote stub). Store the result in *BUF_P and
3090 return the size of the transferred data. PADDING additional bytes
3091 are available in *BUF_P. This is a helper function for
3092 target_fileio_read_alloc; see the declaration of that function for
3093 more information. */
3094
3095 static LONGEST
3096 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3097 gdb_byte **buf_p, int padding)
3098 {
3099 size_t buf_alloc, buf_pos;
3100 gdb_byte *buf;
3101 LONGEST n;
3102 int target_errno;
3103
3104 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3105 0700, &target_errno));
3106 if (fd.get () == -1)
3107 return -1;
3108
3109 /* Start by reading up to 4K at a time. The target will throttle
3110 this number down if necessary. */
3111 buf_alloc = 4096;
3112 buf = (gdb_byte *) xmalloc (buf_alloc);
3113 buf_pos = 0;
3114 while (1)
3115 {
3116 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3117 buf_alloc - buf_pos - padding, buf_pos,
3118 &target_errno);
3119 if (n < 0)
3120 {
3121 /* An error occurred. */
3122 xfree (buf);
3123 return -1;
3124 }
3125 else if (n == 0)
3126 {
3127 /* Read all there was. */
3128 if (buf_pos == 0)
3129 xfree (buf);
3130 else
3131 *buf_p = buf;
3132 return buf_pos;
3133 }
3134
3135 buf_pos += n;
3136
3137 /* If the buffer is filling up, expand it. */
3138 if (buf_alloc < buf_pos * 2)
3139 {
3140 buf_alloc *= 2;
3141 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3142 }
3143
3144 QUIT;
3145 }
3146 }
3147
3148 /* See target.h. */
3149
3150 LONGEST
3151 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3152 gdb_byte **buf_p)
3153 {
3154 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3155 }
3156
3157 /* See target.h. */
3158
3159 gdb::unique_xmalloc_ptr<char>
3160 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3161 {
3162 gdb_byte *buffer;
3163 char *bufstr;
3164 LONGEST i, transferred;
3165
3166 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3167 bufstr = (char *) buffer;
3168
3169 if (transferred < 0)
3170 return gdb::unique_xmalloc_ptr<char> (nullptr);
3171
3172 if (transferred == 0)
3173 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3174
3175 bufstr[transferred] = 0;
3176
3177 /* Check for embedded NUL bytes; but allow trailing NULs. */
3178 for (i = strlen (bufstr); i < transferred; i++)
3179 if (bufstr[i] != 0)
3180 {
3181 warning (_("target file %s "
3182 "contained unexpected null characters"),
3183 filename);
3184 break;
3185 }
3186
3187 return gdb::unique_xmalloc_ptr<char> (bufstr);
3188 }
3189
3190
3191 static int
3192 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3193 CORE_ADDR addr, int len)
3194 {
3195 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3196 }
3197
3198 static int
3199 default_watchpoint_addr_within_range (struct target_ops *target,
3200 CORE_ADDR addr,
3201 CORE_ADDR start, int length)
3202 {
3203 return addr >= start && addr < start + length;
3204 }
3205
3206 static struct gdbarch *
3207 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3208 {
3209 inferior *inf = find_inferior_ptid (ptid);
3210 gdb_assert (inf != NULL);
3211 return inf->gdbarch;
3212 }
3213
3214 /*
3215 * Find the next target down the stack from the specified target.
3216 */
3217
3218 struct target_ops *
3219 find_target_beneath (struct target_ops *t)
3220 {
3221 return t->beneath ();
3222 }
3223
3224 /* See target.h. */
3225
3226 struct target_ops *
3227 find_target_at (enum strata stratum)
3228 {
3229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3230 if (t->to_stratum == stratum)
3231 return t;
3232
3233 return NULL;
3234 }
3235
3236 \f
3237
3238 /* See target.h */
3239
3240 void
3241 target_announce_detach (int from_tty)
3242 {
3243 pid_t pid;
3244 const char *exec_file;
3245
3246 if (!from_tty)
3247 return;
3248
3249 exec_file = get_exec_file (0);
3250 if (exec_file == NULL)
3251 exec_file = "";
3252
3253 pid = ptid_get_pid (inferior_ptid);
3254 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3255 target_pid_to_str (pid_to_ptid (pid)));
3256 gdb_flush (gdb_stdout);
3257 }
3258
3259 /* The inferior process has died. Long live the inferior! */
3260
3261 void
3262 generic_mourn_inferior (void)
3263 {
3264 ptid_t ptid;
3265
3266 ptid = inferior_ptid;
3267 inferior_ptid = null_ptid;
3268
3269 /* Mark breakpoints uninserted in case something tries to delete a
3270 breakpoint while we delete the inferior's threads (which would
3271 fail, since the inferior is long gone). */
3272 mark_breakpoints_out ();
3273
3274 if (!ptid_equal (ptid, null_ptid))
3275 {
3276 int pid = ptid_get_pid (ptid);
3277 exit_inferior (pid);
3278 }
3279
3280 /* Note this wipes step-resume breakpoints, so needs to be done
3281 after exit_inferior, which ends up referencing the step-resume
3282 breakpoints through clear_thread_inferior_resources. */
3283 breakpoint_init_inferior (inf_exited);
3284
3285 registers_changed ();
3286
3287 reopen_exec_file ();
3288 reinit_frame_cache ();
3289
3290 if (deprecated_detach_hook)
3291 deprecated_detach_hook ();
3292 }
3293 \f
3294 /* Convert a normal process ID to a string. Returns the string in a
3295 static buffer. */
3296
3297 const char *
3298 normal_pid_to_str (ptid_t ptid)
3299 {
3300 static char buf[32];
3301
3302 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3303 return buf;
3304 }
3305
3306 static const char *
3307 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3308 {
3309 return normal_pid_to_str (ptid);
3310 }
3311
3312 /* Error-catcher for target_find_memory_regions. */
3313 static int
3314 dummy_find_memory_regions (struct target_ops *self,
3315 find_memory_region_ftype ignore1, void *ignore2)
3316 {
3317 error (_("Command not implemented for this target."));
3318 return 0;
3319 }
3320
3321 /* Error-catcher for target_make_corefile_notes. */
3322 static char *
3323 dummy_make_corefile_notes (struct target_ops *self,
3324 bfd *ignore1, int *ignore2)
3325 {
3326 error (_("Command not implemented for this target."));
3327 return NULL;
3328 }
3329
3330 #include "target-delegates.c"
3331
3332
3333 static const target_info dummy_target_info = {
3334 "None",
3335 N_("None"),
3336 ""
3337 };
3338
3339 dummy_target::dummy_target ()
3340 {
3341 to_stratum = dummy_stratum;
3342 }
3343
3344 debug_target::debug_target ()
3345 {
3346 to_stratum = debug_stratum;
3347 }
3348
3349 const target_info &
3350 dummy_target::info () const
3351 {
3352 return dummy_target_info;
3353 }
3354
3355 const target_info &
3356 debug_target::info () const
3357 {
3358 return beneath ()->info ();
3359 }
3360
3361 \f
3362
3363 void
3364 target_close (struct target_ops *targ)
3365 {
3366 gdb_assert (!target_is_pushed (targ));
3367
3368 fileio_handles_invalidate_target (targ);
3369
3370 targ->close ();
3371
3372 if (targetdebug)
3373 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3374 }
3375
3376 int
3377 target_thread_alive (ptid_t ptid)
3378 {
3379 return current_top_target ()->thread_alive (ptid);
3380 }
3381
3382 void
3383 target_update_thread_list (void)
3384 {
3385 current_top_target ()->update_thread_list ();
3386 }
3387
3388 void
3389 target_stop (ptid_t ptid)
3390 {
3391 if (!may_stop)
3392 {
3393 warning (_("May not interrupt or stop the target, ignoring attempt"));
3394 return;
3395 }
3396
3397 current_top_target ()->stop (ptid);
3398 }
3399
3400 void
3401 target_interrupt ()
3402 {
3403 if (!may_stop)
3404 {
3405 warning (_("May not interrupt or stop the target, ignoring attempt"));
3406 return;
3407 }
3408
3409 current_top_target ()->interrupt ();
3410 }
3411
3412 /* See target.h. */
3413
3414 void
3415 target_pass_ctrlc (void)
3416 {
3417 current_top_target ()->pass_ctrlc ();
3418 }
3419
3420 /* See target.h. */
3421
3422 void
3423 default_target_pass_ctrlc (struct target_ops *ops)
3424 {
3425 target_interrupt ();
3426 }
3427
3428 /* See target/target.h. */
3429
3430 void
3431 target_stop_and_wait (ptid_t ptid)
3432 {
3433 struct target_waitstatus status;
3434 int was_non_stop = non_stop;
3435
3436 non_stop = 1;
3437 target_stop (ptid);
3438
3439 memset (&status, 0, sizeof (status));
3440 target_wait (ptid, &status, 0);
3441
3442 non_stop = was_non_stop;
3443 }
3444
3445 /* See target/target.h. */
3446
3447 void
3448 target_continue_no_signal (ptid_t ptid)
3449 {
3450 target_resume (ptid, 0, GDB_SIGNAL_0);
3451 }
3452
3453 /* See target/target.h. */
3454
3455 void
3456 target_continue (ptid_t ptid, enum gdb_signal signal)
3457 {
3458 target_resume (ptid, 0, signal);
3459 }
3460
3461 /* Concatenate ELEM to LIST, a comma separate list, and return the
3462 result. The LIST incoming argument is released. */
3463
3464 static char *
3465 str_comma_list_concat_elem (char *list, const char *elem)
3466 {
3467 if (list == NULL)
3468 return xstrdup (elem);
3469 else
3470 return reconcat (list, list, ", ", elem, (char *) NULL);
3471 }
3472
3473 /* Helper for target_options_to_string. If OPT is present in
3474 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3475 Returns the new resulting string. OPT is removed from
3476 TARGET_OPTIONS. */
3477
3478 static char *
3479 do_option (int *target_options, char *ret,
3480 int opt, const char *opt_str)
3481 {
3482 if ((*target_options & opt) != 0)
3483 {
3484 ret = str_comma_list_concat_elem (ret, opt_str);
3485 *target_options &= ~opt;
3486 }
3487
3488 return ret;
3489 }
3490
3491 char *
3492 target_options_to_string (int target_options)
3493 {
3494 char *ret = NULL;
3495
3496 #define DO_TARG_OPTION(OPT) \
3497 ret = do_option (&target_options, ret, OPT, #OPT)
3498
3499 DO_TARG_OPTION (TARGET_WNOHANG);
3500
3501 if (target_options != 0)
3502 ret = str_comma_list_concat_elem (ret, "unknown???");
3503
3504 if (ret == NULL)
3505 ret = xstrdup ("");
3506 return ret;
3507 }
3508
3509 void
3510 target_fetch_registers (struct regcache *regcache, int regno)
3511 {
3512 current_top_target ()->fetch_registers (regcache, regno);
3513 if (targetdebug)
3514 regcache->debug_print_register ("target_fetch_registers", regno);
3515 }
3516
3517 void
3518 target_store_registers (struct regcache *regcache, int regno)
3519 {
3520 if (!may_write_registers)
3521 error (_("Writing to registers is not allowed (regno %d)"), regno);
3522
3523 current_top_target ()->store_registers (regcache, regno);
3524 if (targetdebug)
3525 {
3526 regcache->debug_print_register ("target_store_registers", regno);
3527 }
3528 }
3529
3530 int
3531 target_core_of_thread (ptid_t ptid)
3532 {
3533 return current_top_target ()->core_of_thread (ptid);
3534 }
3535
3536 int
3537 simple_verify_memory (struct target_ops *ops,
3538 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3539 {
3540 LONGEST total_xfered = 0;
3541
3542 while (total_xfered < size)
3543 {
3544 ULONGEST xfered_len;
3545 enum target_xfer_status status;
3546 gdb_byte buf[1024];
3547 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3548
3549 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3550 buf, NULL, lma + total_xfered, howmuch,
3551 &xfered_len);
3552 if (status == TARGET_XFER_OK
3553 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3554 {
3555 total_xfered += xfered_len;
3556 QUIT;
3557 }
3558 else
3559 return 0;
3560 }
3561 return 1;
3562 }
3563
3564 /* Default implementation of memory verification. */
3565
3566 static int
3567 default_verify_memory (struct target_ops *self,
3568 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3569 {
3570 /* Start over from the top of the target stack. */
3571 return simple_verify_memory (current_top_target (),
3572 data, memaddr, size);
3573 }
3574
3575 int
3576 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3577 {
3578 return current_top_target ()->verify_memory (data, memaddr, size);
3579 }
3580
3581 /* The documentation for this function is in its prototype declaration in
3582 target.h. */
3583
3584 int
3585 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3586 enum target_hw_bp_type rw)
3587 {
3588 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3589 }
3590
3591 /* The documentation for this function is in its prototype declaration in
3592 target.h. */
3593
3594 int
3595 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3596 enum target_hw_bp_type rw)
3597 {
3598 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3599 }
3600
3601 /* The documentation for this function is in its prototype declaration
3602 in target.h. */
3603
3604 int
3605 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3606 {
3607 return current_top_target ()->masked_watch_num_registers (addr, mask);
3608 }
3609
3610 /* The documentation for this function is in its prototype declaration
3611 in target.h. */
3612
3613 int
3614 target_ranged_break_num_registers (void)
3615 {
3616 return current_top_target ()->ranged_break_num_registers ();
3617 }
3618
3619 /* See target.h. */
3620
3621 struct btrace_target_info *
3622 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3623 {
3624 return current_top_target ()->enable_btrace (ptid, conf);
3625 }
3626
3627 /* See target.h. */
3628
3629 void
3630 target_disable_btrace (struct btrace_target_info *btinfo)
3631 {
3632 current_top_target ()->disable_btrace (btinfo);
3633 }
3634
3635 /* See target.h. */
3636
3637 void
3638 target_teardown_btrace (struct btrace_target_info *btinfo)
3639 {
3640 current_top_target ()->teardown_btrace (btinfo);
3641 }
3642
3643 /* See target.h. */
3644
3645 enum btrace_error
3646 target_read_btrace (struct btrace_data *btrace,
3647 struct btrace_target_info *btinfo,
3648 enum btrace_read_type type)
3649 {
3650 return current_top_target ()->read_btrace (btrace, btinfo, type);
3651 }
3652
3653 /* See target.h. */
3654
3655 const struct btrace_config *
3656 target_btrace_conf (const struct btrace_target_info *btinfo)
3657 {
3658 return current_top_target ()->btrace_conf (btinfo);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_stop_recording (void)
3665 {
3666 current_top_target ()->stop_recording ();
3667 }
3668
3669 /* See target.h. */
3670
3671 void
3672 target_save_record (const char *filename)
3673 {
3674 current_top_target ()->save_record (filename);
3675 }
3676
3677 /* See target.h. */
3678
3679 int
3680 target_supports_delete_record ()
3681 {
3682 return current_top_target ()->supports_delete_record ();
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_delete_record (void)
3689 {
3690 current_top_target ()->delete_record ();
3691 }
3692
3693 /* See target.h. */
3694
3695 enum record_method
3696 target_record_method (ptid_t ptid)
3697 {
3698 return current_top_target ()->record_method (ptid);
3699 }
3700
3701 /* See target.h. */
3702
3703 int
3704 target_record_is_replaying (ptid_t ptid)
3705 {
3706 return current_top_target ()->record_is_replaying (ptid);
3707 }
3708
3709 /* See target.h. */
3710
3711 int
3712 target_record_will_replay (ptid_t ptid, int dir)
3713 {
3714 return current_top_target ()->record_will_replay (ptid, dir);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_record_stop_replaying (void)
3721 {
3722 current_top_target ()->record_stop_replaying ();
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_goto_record_begin (void)
3729 {
3730 current_top_target ()->goto_record_begin ();
3731 }
3732
3733 /* See target.h. */
3734
3735 void
3736 target_goto_record_end (void)
3737 {
3738 current_top_target ()->goto_record_end ();
3739 }
3740
3741 /* See target.h. */
3742
3743 void
3744 target_goto_record (ULONGEST insn)
3745 {
3746 current_top_target ()->goto_record (insn);
3747 }
3748
3749 /* See target.h. */
3750
3751 void
3752 target_insn_history (int size, gdb_disassembly_flags flags)
3753 {
3754 current_top_target ()->insn_history (size, flags);
3755 }
3756
3757 /* See target.h. */
3758
3759 void
3760 target_insn_history_from (ULONGEST from, int size,
3761 gdb_disassembly_flags flags)
3762 {
3763 current_top_target ()->insn_history_from (from, size, flags);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_insn_history_range (ULONGEST begin, ULONGEST end,
3770 gdb_disassembly_flags flags)
3771 {
3772 current_top_target ()->insn_history_range (begin, end, flags);
3773 }
3774
3775 /* See target.h. */
3776
3777 void
3778 target_call_history (int size, record_print_flags flags)
3779 {
3780 current_top_target ()->call_history (size, flags);
3781 }
3782
3783 /* See target.h. */
3784
3785 void
3786 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3787 {
3788 current_top_target ()->call_history_from (begin, size, flags);
3789 }
3790
3791 /* See target.h. */
3792
3793 void
3794 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3795 {
3796 current_top_target ()->call_history_range (begin, end, flags);
3797 }
3798
3799 /* See target.h. */
3800
3801 const struct frame_unwind *
3802 target_get_unwinder (void)
3803 {
3804 return current_top_target ()->get_unwinder ();
3805 }
3806
3807 /* See target.h. */
3808
3809 const struct frame_unwind *
3810 target_get_tailcall_unwinder (void)
3811 {
3812 return current_top_target ()->get_tailcall_unwinder ();
3813 }
3814
3815 /* See target.h. */
3816
3817 void
3818 target_prepare_to_generate_core (void)
3819 {
3820 current_top_target ()->prepare_to_generate_core ();
3821 }
3822
3823 /* See target.h. */
3824
3825 void
3826 target_done_generating_core (void)
3827 {
3828 current_top_target ()->done_generating_core ();
3829 }
3830
3831 \f
3832
3833 static char targ_desc[] =
3834 "Names of targets and files being debugged.\nShows the entire \
3835 stack of targets currently in use (including the exec-file,\n\
3836 core-file, and process, if any), as well as the symbol file name.";
3837
3838 static void
3839 default_rcmd (struct target_ops *self, const char *command,
3840 struct ui_file *output)
3841 {
3842 error (_("\"monitor\" command not supported by this target."));
3843 }
3844
3845 static void
3846 do_monitor_command (const char *cmd, int from_tty)
3847 {
3848 target_rcmd (cmd, gdb_stdtarg);
3849 }
3850
3851 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3852 ignored. */
3853
3854 void
3855 flash_erase_command (const char *cmd, int from_tty)
3856 {
3857 /* Used to communicate termination of flash operations to the target. */
3858 bool found_flash_region = false;
3859 struct gdbarch *gdbarch = target_gdbarch ();
3860
3861 std::vector<mem_region> mem_regions = target_memory_map ();
3862
3863 /* Iterate over all memory regions. */
3864 for (const mem_region &m : mem_regions)
3865 {
3866 /* Is this a flash memory region? */
3867 if (m.attrib.mode == MEM_FLASH)
3868 {
3869 found_flash_region = true;
3870 target_flash_erase (m.lo, m.hi - m.lo);
3871
3872 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3873
3874 current_uiout->message (_("Erasing flash memory region at address "));
3875 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3876 current_uiout->message (", size = ");
3877 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3878 current_uiout->message ("\n");
3879 }
3880 }
3881
3882 /* Did we do any flash operations? If so, we need to finalize them. */
3883 if (found_flash_region)
3884 target_flash_done ();
3885 else
3886 current_uiout->message (_("No flash memory regions found.\n"));
3887 }
3888
3889 /* Print the name of each layers of our target stack. */
3890
3891 static void
3892 maintenance_print_target_stack (const char *cmd, int from_tty)
3893 {
3894 printf_filtered (_("The current target stack is:\n"));
3895
3896 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3897 {
3898 if (t->to_stratum == debug_stratum)
3899 continue;
3900 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3901 }
3902 }
3903
3904 /* See target.h. */
3905
3906 void
3907 target_async (int enable)
3908 {
3909 infrun_async (enable);
3910 current_top_target ()->async (enable);
3911 }
3912
3913 /* See target.h. */
3914
3915 void
3916 target_thread_events (int enable)
3917 {
3918 current_top_target ()->thread_events (enable);
3919 }
3920
3921 /* Controls if targets can report that they can/are async. This is
3922 just for maintainers to use when debugging gdb. */
3923 int target_async_permitted = 1;
3924
3925 /* The set command writes to this variable. If the inferior is
3926 executing, target_async_permitted is *not* updated. */
3927 static int target_async_permitted_1 = 1;
3928
3929 static void
3930 maint_set_target_async_command (const char *args, int from_tty,
3931 struct cmd_list_element *c)
3932 {
3933 if (have_live_inferiors ())
3934 {
3935 target_async_permitted_1 = target_async_permitted;
3936 error (_("Cannot change this setting while the inferior is running."));
3937 }
3938
3939 target_async_permitted = target_async_permitted_1;
3940 }
3941
3942 static void
3943 maint_show_target_async_command (struct ui_file *file, int from_tty,
3944 struct cmd_list_element *c,
3945 const char *value)
3946 {
3947 fprintf_filtered (file,
3948 _("Controlling the inferior in "
3949 "asynchronous mode is %s.\n"), value);
3950 }
3951
3952 /* Return true if the target operates in non-stop mode even with "set
3953 non-stop off". */
3954
3955 static int
3956 target_always_non_stop_p (void)
3957 {
3958 return current_top_target ()->always_non_stop_p ();
3959 }
3960
3961 /* See target.h. */
3962
3963 int
3964 target_is_non_stop_p (void)
3965 {
3966 return (non_stop
3967 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3968 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3969 && target_always_non_stop_p ()));
3970 }
3971
3972 /* Controls if targets can report that they always run in non-stop
3973 mode. This is just for maintainers to use when debugging gdb. */
3974 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3975
3976 /* The set command writes to this variable. If the inferior is
3977 executing, target_non_stop_enabled is *not* updated. */
3978 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3979
3980 /* Implementation of "maint set target-non-stop". */
3981
3982 static void
3983 maint_set_target_non_stop_command (const char *args, int from_tty,
3984 struct cmd_list_element *c)
3985 {
3986 if (have_live_inferiors ())
3987 {
3988 target_non_stop_enabled_1 = target_non_stop_enabled;
3989 error (_("Cannot change this setting while the inferior is running."));
3990 }
3991
3992 target_non_stop_enabled = target_non_stop_enabled_1;
3993 }
3994
3995 /* Implementation of "maint show target-non-stop". */
3996
3997 static void
3998 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3999 struct cmd_list_element *c,
4000 const char *value)
4001 {
4002 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4003 fprintf_filtered (file,
4004 _("Whether the target is always in non-stop mode "
4005 "is %s (currently %s).\n"), value,
4006 target_always_non_stop_p () ? "on" : "off");
4007 else
4008 fprintf_filtered (file,
4009 _("Whether the target is always in non-stop mode "
4010 "is %s.\n"), value);
4011 }
4012
4013 /* Temporary copies of permission settings. */
4014
4015 static int may_write_registers_1 = 1;
4016 static int may_write_memory_1 = 1;
4017 static int may_insert_breakpoints_1 = 1;
4018 static int may_insert_tracepoints_1 = 1;
4019 static int may_insert_fast_tracepoints_1 = 1;
4020 static int may_stop_1 = 1;
4021
4022 /* Make the user-set values match the real values again. */
4023
4024 void
4025 update_target_permissions (void)
4026 {
4027 may_write_registers_1 = may_write_registers;
4028 may_write_memory_1 = may_write_memory;
4029 may_insert_breakpoints_1 = may_insert_breakpoints;
4030 may_insert_tracepoints_1 = may_insert_tracepoints;
4031 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4032 may_stop_1 = may_stop;
4033 }
4034
4035 /* The one function handles (most of) the permission flags in the same
4036 way. */
4037
4038 static void
4039 set_target_permissions (const char *args, int from_tty,
4040 struct cmd_list_element *c)
4041 {
4042 if (target_has_execution)
4043 {
4044 update_target_permissions ();
4045 error (_("Cannot change this setting while the inferior is running."));
4046 }
4047
4048 /* Make the real values match the user-changed values. */
4049 may_write_registers = may_write_registers_1;
4050 may_insert_breakpoints = may_insert_breakpoints_1;
4051 may_insert_tracepoints = may_insert_tracepoints_1;
4052 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4053 may_stop = may_stop_1;
4054 update_observer_mode ();
4055 }
4056
4057 /* Set memory write permission independently of observer mode. */
4058
4059 static void
4060 set_write_memory_permission (const char *args, int from_tty,
4061 struct cmd_list_element *c)
4062 {
4063 /* Make the real values match the user-changed values. */
4064 may_write_memory = may_write_memory_1;
4065 update_observer_mode ();
4066 }
4067
4068 void
4069 initialize_targets (void)
4070 {
4071 the_dummy_target = new dummy_target ();
4072 push_target (the_dummy_target);
4073
4074 the_debug_target = new debug_target ();
4075
4076 add_info ("target", info_target_command, targ_desc);
4077 add_info ("files", info_target_command, targ_desc);
4078
4079 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4080 Set target debugging."), _("\
4081 Show target debugging."), _("\
4082 When non-zero, target debugging is enabled. Higher numbers are more\n\
4083 verbose."),
4084 set_targetdebug,
4085 show_targetdebug,
4086 &setdebuglist, &showdebuglist);
4087
4088 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4089 &trust_readonly, _("\
4090 Set mode for reading from readonly sections."), _("\
4091 Show mode for reading from readonly sections."), _("\
4092 When this mode is on, memory reads from readonly sections (such as .text)\n\
4093 will be read from the object file instead of from the target. This will\n\
4094 result in significant performance improvement for remote targets."),
4095 NULL,
4096 show_trust_readonly,
4097 &setlist, &showlist);
4098
4099 add_com ("monitor", class_obscure, do_monitor_command,
4100 _("Send a command to the remote monitor (remote targets only)."));
4101
4102 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4103 _("Print the name of each layer of the internal target stack."),
4104 &maintenanceprintlist);
4105
4106 add_setshow_boolean_cmd ("target-async", no_class,
4107 &target_async_permitted_1, _("\
4108 Set whether gdb controls the inferior in asynchronous mode."), _("\
4109 Show whether gdb controls the inferior in asynchronous mode."), _("\
4110 Tells gdb whether to control the inferior in asynchronous mode."),
4111 maint_set_target_async_command,
4112 maint_show_target_async_command,
4113 &maintenance_set_cmdlist,
4114 &maintenance_show_cmdlist);
4115
4116 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4117 &target_non_stop_enabled_1, _("\
4118 Set whether gdb always controls the inferior in non-stop mode."), _("\
4119 Show whether gdb always controls the inferior in non-stop mode."), _("\
4120 Tells gdb whether to control the inferior in non-stop mode."),
4121 maint_set_target_non_stop_command,
4122 maint_show_target_non_stop_command,
4123 &maintenance_set_cmdlist,
4124 &maintenance_show_cmdlist);
4125
4126 add_setshow_boolean_cmd ("may-write-registers", class_support,
4127 &may_write_registers_1, _("\
4128 Set permission to write into registers."), _("\
4129 Show permission to write into registers."), _("\
4130 When this permission is on, GDB may write into the target's registers.\n\
4131 Otherwise, any sort of write attempt will result in an error."),
4132 set_target_permissions, NULL,
4133 &setlist, &showlist);
4134
4135 add_setshow_boolean_cmd ("may-write-memory", class_support,
4136 &may_write_memory_1, _("\
4137 Set permission to write into target memory."), _("\
4138 Show permission to write into target memory."), _("\
4139 When this permission is on, GDB may write into the target's memory.\n\
4140 Otherwise, any sort of write attempt will result in an error."),
4141 set_write_memory_permission, NULL,
4142 &setlist, &showlist);
4143
4144 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4145 &may_insert_breakpoints_1, _("\
4146 Set permission to insert breakpoints in the target."), _("\
4147 Show permission to insert breakpoints in the target."), _("\
4148 When this permission is on, GDB may insert breakpoints in the program.\n\
4149 Otherwise, any sort of insertion attempt will result in an error."),
4150 set_target_permissions, NULL,
4151 &setlist, &showlist);
4152
4153 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4154 &may_insert_tracepoints_1, _("\
4155 Set permission to insert tracepoints in the target."), _("\
4156 Show permission to insert tracepoints in the target."), _("\
4157 When this permission is on, GDB may insert tracepoints in the program.\n\
4158 Otherwise, any sort of insertion attempt will result in an error."),
4159 set_target_permissions, NULL,
4160 &setlist, &showlist);
4161
4162 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4163 &may_insert_fast_tracepoints_1, _("\
4164 Set permission to insert fast tracepoints in the target."), _("\
4165 Show permission to insert fast tracepoints in the target."), _("\
4166 When this permission is on, GDB may insert fast tracepoints.\n\
4167 Otherwise, any sort of insertion attempt will result in an error."),
4168 set_target_permissions, NULL,
4169 &setlist, &showlist);
4170
4171 add_setshow_boolean_cmd ("may-interrupt", class_support,
4172 &may_stop_1, _("\
4173 Set permission to interrupt or signal the target."), _("\
4174 Show permission to interrupt or signal the target."), _("\
4175 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4176 Otherwise, any attempt to interrupt or stop will be ignored."),
4177 set_target_permissions, NULL,
4178 &setlist, &showlist);
4179
4180 add_com ("flash-erase", no_class, flash_erase_command,
4181 _("Erase all flash memory regions."));
4182
4183 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4184 &auto_connect_native_target, _("\
4185 Set whether GDB may automatically connect to the native target."), _("\
4186 Show whether GDB may automatically connect to the native target."), _("\
4187 When on, and GDB is not connected to a target yet, GDB\n\
4188 attempts \"run\" and other commands with the native target."),
4189 NULL, show_auto_connect_native_target,
4190 &setlist, &showlist);
4191 }
This page took 0.116892 seconds and 5 git commands to generate.