Use a std::vector in target_section_table
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
51 #include "terminal.h"
52 #include <unordered_map>
53 #include "target-connection.h"
54 #include "valprint.h"
55
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
57
58 static void default_terminal_info (struct target_ops *, const char *, int);
59
60 static int default_watchpoint_addr_within_range (struct target_ops *,
61 CORE_ADDR, CORE_ADDR, int);
62
63 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 CORE_ADDR, int);
65
66 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
67
68 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 long lwp, long tid);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
116
117 target_ops *
118 current_top_target ()
119 {
120 return current_inferior ()->top_target ();
121 }
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static bool trust_readonly = false;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
140
141 bool may_write_registers = true;
142
143 bool may_write_memory = true;
144
145 bool may_insert_breakpoints = true;
146
147 bool may_insert_tracepoints = true;
148
149 bool may_insert_fast_tracepoints = true;
150
151 bool may_stop = true;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 int
174 target_has_memory ()
175 {
176 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
177 if (t->has_memory ())
178 return 1;
179
180 return 0;
181 }
182
183 int
184 target_has_stack ()
185 {
186 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
187 if (t->has_stack ())
188 return 1;
189
190 return 0;
191 }
192
193 int
194 target_has_registers ()
195 {
196 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
197 if (t->has_registers ())
198 return 1;
199
200 return 0;
201 }
202
203 bool
204 target_has_execution (inferior *inf)
205 {
206 if (inf == nullptr)
207 inf = current_inferior ();
208
209 for (target_ops *t = inf->top_target ();
210 t != nullptr;
211 t = inf->find_target_beneath (t))
212 if (t->has_execution (inf))
213 return true;
214
215 return false;
216 }
217
218 /* This is used to implement the various target commands. */
219
220 static void
221 open_target (const char *args, int from_tty, struct cmd_list_element *command)
222 {
223 auto *ti = static_cast<target_info *> (get_cmd_context (command));
224 target_open_ftype *func = target_factories[ti];
225
226 if (targetdebug)
227 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
228 ti->shortname);
229
230 func (args, from_tty);
231
232 if (targetdebug)
233 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
234 ti->shortname, args, from_tty);
235 }
236
237 /* See target.h. */
238
239 void
240 add_target (const target_info &t, target_open_ftype *func,
241 completer_ftype *completer)
242 {
243 struct cmd_list_element *c;
244
245 auto &func_slot = target_factories[&t];
246 if (func_slot != nullptr)
247 internal_error (__FILE__, __LINE__,
248 _("target already added (\"%s\")."), t.shortname);
249 func_slot = func;
250
251 if (targetlist == NULL)
252 add_basic_prefix_cmd ("target", class_run, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
260 set_cmd_context (c, (void *) &t);
261 set_cmd_sfunc (c, open_target);
262 if (completer != NULL)
263 set_cmd_completer (c, completer);
264 }
265
266 /* See target.h. */
267
268 void
269 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
270 {
271 struct cmd_list_element *c;
272 char *alt;
273
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
275 see PR cli/15104. */
276 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
277 set_cmd_sfunc (c, open_target);
278 set_cmd_context (c, (void *) &tinfo);
279 alt = xstrprintf ("target %s", tinfo.shortname);
280 deprecate_cmd (c, alt);
281 }
282
283 /* Stub functions */
284
285 void
286 target_kill (void)
287 {
288 current_top_target ()->kill ();
289 }
290
291 void
292 target_load (const char *arg, int from_tty)
293 {
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg, from_tty);
296 }
297
298 /* Define it. */
299
300 target_terminal_state target_terminal::m_terminal_state
301 = target_terminal_state::is_ours;
302
303 /* See target/target.h. */
304
305 void
306 target_terminal::init (void)
307 {
308 current_top_target ()->terminal_init ();
309
310 m_terminal_state = target_terminal_state::is_ours;
311 }
312
313 /* See target/target.h. */
314
315 void
316 target_terminal::inferior (void)
317 {
318 struct ui *ui = current_ui;
319
320 /* A background resume (``run&'') should leave GDB in control of the
321 terminal. */
322 if (ui->prompt_state != PROMPT_BLOCKED)
323 return;
324
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
329 if (ui != main_ui)
330 return;
331
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
334
335 struct inferior *inf = current_inferior ();
336
337 if (inf->terminal_state != target_terminal_state::is_inferior)
338 {
339 current_top_target ()->terminal_inferior ();
340 inf->terminal_state = target_terminal_state::is_inferior;
341 }
342
343 m_terminal_state = target_terminal_state::is_inferior;
344
345 /* If the user hit C-c before, pretend that it was hit right
346 here. */
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
349 }
350
351 /* See target/target.h. */
352
353 void
354 target_terminal::restore_inferior (void)
355 {
356 struct ui *ui = current_ui;
357
358 /* See target_terminal::inferior(). */
359 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
360 return;
361
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
365
366 {
367 scoped_restore_current_inferior restore_inferior;
368
369 for (::inferior *inf : all_inferiors ())
370 {
371 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
372 {
373 set_current_inferior (inf);
374 current_top_target ()->terminal_inferior ();
375 inf->terminal_state = target_terminal_state::is_inferior;
376 }
377 }
378 }
379
380 m_terminal_state = target_terminal_state::is_inferior;
381
382 /* If the user hit C-c before, pretend that it was hit right
383 here. */
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
386 }
387
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
390
391 static void
392 target_terminal_is_ours_kind (target_terminal_state desired_state)
393 {
394 scoped_restore_current_inferior restore_inferior;
395
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
400
401 for (inferior *inf : all_inferiors ())
402 {
403 if (inf->terminal_state == target_terminal_state::is_inferior)
404 {
405 set_current_inferior (inf);
406 current_top_target ()->terminal_save_inferior ();
407 }
408 }
409
410 for (inferior *inf : all_inferiors ())
411 {
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
415 though. */
416 if (inf->terminal_state != target_terminal_state::is_ours
417 && inf->terminal_state != desired_state)
418 {
419 set_current_inferior (inf);
420 if (desired_state == target_terminal_state::is_ours)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state == target_terminal_state::is_ours_for_output)
423 current_top_target ()->terminal_ours_for_output ();
424 else
425 gdb_assert_not_reached ("unhandled desired state");
426 inf->terminal_state = desired_state;
427 }
428 }
429 }
430
431 /* See target/target.h. */
432
433 void
434 target_terminal::ours ()
435 {
436 struct ui *ui = current_ui;
437
438 /* See target_terminal::inferior. */
439 if (ui != main_ui)
440 return;
441
442 if (m_terminal_state == target_terminal_state::is_ours)
443 return;
444
445 target_terminal_is_ours_kind (target_terminal_state::is_ours);
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::ours_for_output ()
453 {
454 struct ui *ui = current_ui;
455
456 /* See target_terminal::inferior. */
457 if (ui != main_ui)
458 return;
459
460 if (!target_terminal::is_inferior ())
461 return;
462
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
464 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
465 }
466
467 /* See target/target.h. */
468
469 void
470 target_terminal::info (const char *arg, int from_tty)
471 {
472 current_top_target ()->terminal_info (arg, from_tty);
473 }
474
475 /* See target.h. */
476
477 bool
478 target_supports_terminal_ours (void)
479 {
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
484 created. */
485 inferior *inf = current_inferior ();
486
487 if (inf == nullptr)
488 return false;
489 return inf->top_target ()->supports_terminal_ours ();
490 }
491
492 static void
493 tcomplain (void)
494 {
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
497 }
498
499 void
500 noprocess (void)
501 {
502 error (_("You can't do that without a process to debug."));
503 }
504
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
507 {
508 printf_unfiltered (_("No saved terminal information.\n"));
509 }
510
511 /* A default implementation for the to_get_ada_task_ptid target method.
512
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
516
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
519 {
520 return ptid_t (inferior_ptid.pid (), lwp, tid);
521 }
522
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
525 {
526 if (!target_can_execute_reverse ())
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
533 }
534
535 /* See target.h. */
536
537 void
538 decref_target (target_ops *t)
539 {
540 t->decref ();
541 if (t->refcount () == 0)
542 {
543 if (t->stratum () == process_stratum)
544 connection_list_remove (as_process_stratum_target (t));
545 target_close (t);
546 }
547 }
548
549 /* See target.h. */
550
551 void
552 target_stack::push (target_ops *t)
553 {
554 t->incref ();
555
556 strata stratum = t->stratum ();
557
558 if (stratum == process_stratum)
559 connection_list_add (as_process_stratum_target (t));
560
561 /* If there's already a target at this stratum, remove it. */
562
563 if (m_stack[stratum] != NULL)
564 unpush (m_stack[stratum]);
565
566 /* Now add the new one. */
567 m_stack[stratum] = t;
568
569 if (m_top < stratum)
570 m_top = stratum;
571 }
572
573 /* See target.h. */
574
575 void
576 push_target (struct target_ops *t)
577 {
578 current_inferior ()->push_target (t);
579 }
580
581 /* See target.h. */
582
583 void
584 push_target (target_ops_up &&t)
585 {
586 current_inferior ()->push_target (t.get ());
587 t.release ();
588 }
589
590 /* See target.h. */
591
592 int
593 unpush_target (struct target_ops *t)
594 {
595 return current_inferior ()->unpush_target (t);
596 }
597
598 /* See target.h. */
599
600 bool
601 target_stack::unpush (target_ops *t)
602 {
603 gdb_assert (t != NULL);
604
605 strata stratum = t->stratum ();
606
607 if (stratum == dummy_stratum)
608 internal_error (__FILE__, __LINE__,
609 _("Attempt to unpush the dummy target"));
610
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
613
614 if (m_stack[stratum] != t)
615 {
616 /* If T wasn't pushed, quit. Only open targets should be
617 closed. */
618 return false;
619 }
620
621 /* Unchain the target. */
622 m_stack[stratum] = NULL;
623
624 if (m_top == stratum)
625 m_top = t->beneath ()->stratum ();
626
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
632 still. */
633 decref_target (t);
634
635 return true;
636 }
637
638 /* Unpush TARGET and assert that it worked. */
639
640 static void
641 unpush_target_and_assert (struct target_ops *target)
642 {
643 if (!unpush_target (target))
644 {
645 fprintf_unfiltered (gdb_stderr,
646 "pop_all_targets couldn't find target %s\n",
647 target->shortname ());
648 internal_error (__FILE__, __LINE__,
649 _("failed internal consistency check"));
650 }
651 }
652
653 void
654 pop_all_targets_above (enum strata above_stratum)
655 {
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
657 unpush_target_and_assert (current_top_target ());
658 }
659
660 /* See target.h. */
661
662 void
663 pop_all_targets_at_and_above (enum strata stratum)
664 {
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
666 unpush_target_and_assert (current_top_target ());
667 }
668
669 void
670 pop_all_targets (void)
671 {
672 pop_all_targets_above (dummy_stratum);
673 }
674
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
677
678 bool
679 target_is_pushed (target_ops *t)
680 {
681 return current_inferior ()->target_is_pushed (t);
682 }
683
684 /* Default implementation of to_get_thread_local_address. */
685
686 static void
687 generic_tls_error (void)
688 {
689 throw_error (TLS_GENERIC_ERROR,
690 _("Cannot find thread-local variables on this target"));
691 }
692
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
695 CORE_ADDR
696 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
697 {
698 volatile CORE_ADDR addr = 0;
699 struct target_ops *target = current_top_target ();
700 struct gdbarch *gdbarch = target_gdbarch ();
701
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
703 {
704 ptid_t ptid = inferior_ptid;
705
706 try
707 {
708 CORE_ADDR lm_addr;
709
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
712 objfile);
713
714 if (gdbarch_get_thread_local_address_p (gdbarch))
715 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
716 offset);
717 else
718 addr = target->get_thread_local_address (ptid, lm_addr, offset);
719 }
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception &ex)
723 {
724 int objfile_is_library = (objfile->flags & OBJF_SHARED);
725
726 switch (ex.error)
727 {
728 case TLS_NO_LIBRARY_SUPPORT_ERROR:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
731 break;
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
733 if (objfile_is_library)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 else
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile));
739 break;
740 case TLS_NOT_ALLOCATED_YET_ERROR:
741 if (objfile_is_library)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
745 "for %s"),
746 objfile_name (objfile),
747 target_pid_to_str (ptid).c_str ());
748 else
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
752 "for %s"),
753 objfile_name (objfile),
754 target_pid_to_str (ptid).c_str ());
755 break;
756 case TLS_GENERIC_ERROR:
757 if (objfile_is_library)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid).c_str (),
761 objfile_name (objfile), ex.what ());
762 else
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid).c_str (),
766 objfile_name (objfile), ex.what ());
767 break;
768 default:
769 throw;
770 break;
771 }
772 }
773 }
774 else
775 error (_("Cannot find thread-local variables on this target"));
776
777 return addr;
778 }
779
780 const char *
781 target_xfer_status_to_string (enum target_xfer_status status)
782 {
783 #define CASE(X) case X: return #X
784 switch (status)
785 {
786 CASE(TARGET_XFER_E_IO);
787 CASE(TARGET_XFER_UNAVAILABLE);
788 default:
789 return "<unknown>";
790 }
791 #undef CASE
792 };
793
794
795 /* See target.h. */
796
797 gdb::unique_xmalloc_ptr<char>
798 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
799 {
800 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
801
802 int ignore;
803 if (bytes_read == nullptr)
804 bytes_read = &ignore;
805
806 /* Note that the endian-ness does not matter here. */
807 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
808 &buffer, bytes_read);
809 if (errcode != 0)
810 return {};
811
812 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
813 }
814
815 struct target_section_table *
816 target_get_section_table (struct target_ops *target)
817 {
818 return target->get_section_table ();
819 }
820
821 /* Find a section containing ADDR. */
822
823 struct target_section *
824 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
825 {
826 struct target_section_table *table = target_get_section_table (target);
827
828 if (table == NULL)
829 return NULL;
830
831 for (target_section &secp : table->sections)
832 {
833 if (addr >= secp.addr && addr < secp.endaddr)
834 return &secp;
835 }
836 return NULL;
837 }
838
839
840 /* Helper for the memory xfer routines. Checks the attributes of the
841 memory region of MEMADDR against the read or write being attempted.
842 If the access is permitted returns true, otherwise returns false.
843 REGION_P is an optional output parameter. If not-NULL, it is
844 filled with a pointer to the memory region of MEMADDR. REG_LEN
845 returns LEN trimmed to the end of the region. This is how much the
846 caller can continue requesting, if the access is permitted. A
847 single xfer request must not straddle memory region boundaries. */
848
849 static int
850 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
851 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
852 struct mem_region **region_p)
853 {
854 struct mem_region *region;
855
856 region = lookup_mem_region (memaddr);
857
858 if (region_p != NULL)
859 *region_p = region;
860
861 switch (region->attrib.mode)
862 {
863 case MEM_RO:
864 if (writebuf != NULL)
865 return 0;
866 break;
867
868 case MEM_WO:
869 if (readbuf != NULL)
870 return 0;
871 break;
872
873 case MEM_FLASH:
874 /* We only support writing to flash during "load" for now. */
875 if (writebuf != NULL)
876 error (_("Writing to flash memory forbidden in this context"));
877 break;
878
879 case MEM_NONE:
880 return 0;
881 }
882
883 /* region->hi == 0 means there's no upper bound. */
884 if (memaddr + len < region->hi || region->hi == 0)
885 *reg_len = len;
886 else
887 *reg_len = region->hi - memaddr;
888
889 return 1;
890 }
891
892 /* Read memory from more than one valid target. A core file, for
893 instance, could have some of memory but delegate other bits to
894 the target below it. So, we must manually try all targets. */
895
896 enum target_xfer_status
897 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
898 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
899 ULONGEST *xfered_len)
900 {
901 enum target_xfer_status res;
902
903 do
904 {
905 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
906 readbuf, writebuf, memaddr, len,
907 xfered_len);
908 if (res == TARGET_XFER_OK)
909 break;
910
911 /* Stop if the target reports that the memory is not available. */
912 if (res == TARGET_XFER_UNAVAILABLE)
913 break;
914
915 /* Don't continue past targets which have all the memory.
916 At one time, this code was necessary to read data from
917 executables / shared libraries when data for the requested
918 addresses weren't available in the core file. But now the
919 core target handles this case itself. */
920 if (ops->has_all_memory ())
921 break;
922
923 ops = ops->beneath ();
924 }
925 while (ops != NULL);
926
927 /* The cache works at the raw memory level. Make sure the cache
928 gets updated with raw contents no matter what kind of memory
929 object was originally being written. Note we do write-through
930 first, so that if it fails, we don't write to the cache contents
931 that never made it to the target. */
932 if (writebuf != NULL
933 && inferior_ptid != null_ptid
934 && target_dcache_init_p ()
935 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
936 {
937 DCACHE *dcache = target_dcache_get ();
938
939 /* Note that writing to an area of memory which wasn't present
940 in the cache doesn't cause it to be loaded in. */
941 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
942 }
943
944 return res;
945 }
946
947 /* Perform a partial memory transfer.
948 For docs see target.h, to_xfer_partial. */
949
950 static enum target_xfer_status
951 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
952 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
953 ULONGEST len, ULONGEST *xfered_len)
954 {
955 enum target_xfer_status res;
956 ULONGEST reg_len;
957 struct mem_region *region;
958 struct inferior *inf;
959
960 /* For accesses to unmapped overlay sections, read directly from
961 files. Must do this first, as MEMADDR may need adjustment. */
962 if (readbuf != NULL && overlay_debugging)
963 {
964 struct obj_section *section = find_pc_overlay (memaddr);
965
966 if (pc_in_unmapped_range (memaddr, section))
967 {
968 struct target_section_table *table
969 = target_get_section_table (ops);
970 const char *section_name = section->the_bfd_section->name;
971
972 memaddr = overlay_mapped_address (memaddr, section);
973
974 auto match_cb = [=] (const struct target_section *s)
975 {
976 return (strcmp (section_name, s->the_bfd_section->name) == 0);
977 };
978
979 return section_table_xfer_memory_partial (readbuf, writebuf,
980 memaddr, len, xfered_len,
981 *table, match_cb);
982 }
983 }
984
985 /* Try the executable files, if "trust-readonly-sections" is set. */
986 if (readbuf != NULL && trust_readonly)
987 {
988 struct target_section *secp;
989 struct target_section_table *table;
990
991 secp = target_section_by_addr (ops, memaddr);
992 if (secp != NULL
993 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
994 {
995 table = target_get_section_table (ops);
996 return section_table_xfer_memory_partial (readbuf, writebuf,
997 memaddr, len, xfered_len,
998 *table);
999 }
1000 }
1001
1002 /* Try GDB's internal data cache. */
1003
1004 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1005 &region))
1006 return TARGET_XFER_E_IO;
1007
1008 if (inferior_ptid != null_ptid)
1009 inf = current_inferior ();
1010 else
1011 inf = NULL;
1012
1013 if (inf != NULL
1014 && readbuf != NULL
1015 /* The dcache reads whole cache lines; that doesn't play well
1016 with reading from a trace buffer, because reading outside of
1017 the collected memory range fails. */
1018 && get_traceframe_number () == -1
1019 && (region->attrib.cache
1020 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1021 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1022 {
1023 DCACHE *dcache = target_dcache_get_or_init ();
1024
1025 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1026 reg_len, xfered_len);
1027 }
1028
1029 /* If none of those methods found the memory we wanted, fall back
1030 to a target partial transfer. Normally a single call to
1031 to_xfer_partial is enough; if it doesn't recognize an object
1032 it will call the to_xfer_partial of the next target down.
1033 But for memory this won't do. Memory is the only target
1034 object which can be read from more than one valid target.
1035 A core file, for instance, could have some of memory but
1036 delegate other bits to the target below it. So, we must
1037 manually try all targets. */
1038
1039 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1040 xfered_len);
1041
1042 /* If we still haven't got anything, return the last error. We
1043 give up. */
1044 return res;
1045 }
1046
1047 /* Perform a partial memory transfer. For docs see target.h,
1048 to_xfer_partial. */
1049
1050 static enum target_xfer_status
1051 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1052 gdb_byte *readbuf, const gdb_byte *writebuf,
1053 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1054 {
1055 enum target_xfer_status res;
1056
1057 /* Zero length requests are ok and require no work. */
1058 if (len == 0)
1059 return TARGET_XFER_EOF;
1060
1061 memaddr = address_significant (target_gdbarch (), memaddr);
1062
1063 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1064 breakpoint insns, thus hiding out from higher layers whether
1065 there are software breakpoints inserted in the code stream. */
1066 if (readbuf != NULL)
1067 {
1068 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1069 xfered_len);
1070
1071 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1072 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1073 }
1074 else
1075 {
1076 /* A large write request is likely to be partially satisfied
1077 by memory_xfer_partial_1. We will continually malloc
1078 and free a copy of the entire write request for breakpoint
1079 shadow handling even though we only end up writing a small
1080 subset of it. Cap writes to a limit specified by the target
1081 to mitigate this. */
1082 len = std::min (ops->get_memory_xfer_limit (), len);
1083
1084 gdb::byte_vector buf (writebuf, writebuf + len);
1085 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1086 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1087 xfered_len);
1088 }
1089
1090 return res;
1091 }
1092
1093 scoped_restore_tmpl<int>
1094 make_scoped_restore_show_memory_breakpoints (int show)
1095 {
1096 return make_scoped_restore (&show_memory_breakpoints, show);
1097 }
1098
1099 /* For docs see target.h, to_xfer_partial. */
1100
1101 enum target_xfer_status
1102 target_xfer_partial (struct target_ops *ops,
1103 enum target_object object, const char *annex,
1104 gdb_byte *readbuf, const gdb_byte *writebuf,
1105 ULONGEST offset, ULONGEST len,
1106 ULONGEST *xfered_len)
1107 {
1108 enum target_xfer_status retval;
1109
1110 /* Transfer is done when LEN is zero. */
1111 if (len == 0)
1112 return TARGET_XFER_EOF;
1113
1114 if (writebuf && !may_write_memory)
1115 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1116 core_addr_to_string_nz (offset), plongest (len));
1117
1118 *xfered_len = 0;
1119
1120 /* If this is a memory transfer, let the memory-specific code
1121 have a look at it instead. Memory transfers are more
1122 complicated. */
1123 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1124 || object == TARGET_OBJECT_CODE_MEMORY)
1125 retval = memory_xfer_partial (ops, object, readbuf,
1126 writebuf, offset, len, xfered_len);
1127 else if (object == TARGET_OBJECT_RAW_MEMORY)
1128 {
1129 /* Skip/avoid accessing the target if the memory region
1130 attributes block the access. Check this here instead of in
1131 raw_memory_xfer_partial as otherwise we'd end up checking
1132 this twice in the case of the memory_xfer_partial path is
1133 taken; once before checking the dcache, and another in the
1134 tail call to raw_memory_xfer_partial. */
1135 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1136 NULL))
1137 return TARGET_XFER_E_IO;
1138
1139 /* Request the normal memory object from other layers. */
1140 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1141 xfered_len);
1142 }
1143 else
1144 retval = ops->xfer_partial (object, annex, readbuf,
1145 writebuf, offset, len, xfered_len);
1146
1147 if (targetdebug)
1148 {
1149 const unsigned char *myaddr = NULL;
1150
1151 fprintf_unfiltered (gdb_stdlog,
1152 "%s:target_xfer_partial "
1153 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1154 ops->shortname (),
1155 (int) object,
1156 (annex ? annex : "(null)"),
1157 host_address_to_string (readbuf),
1158 host_address_to_string (writebuf),
1159 core_addr_to_string_nz (offset),
1160 pulongest (len), retval,
1161 pulongest (*xfered_len));
1162
1163 if (readbuf)
1164 myaddr = readbuf;
1165 if (writebuf)
1166 myaddr = writebuf;
1167 if (retval == TARGET_XFER_OK && myaddr != NULL)
1168 {
1169 int i;
1170
1171 fputs_unfiltered (", bytes =", gdb_stdlog);
1172 for (i = 0; i < *xfered_len; i++)
1173 {
1174 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1175 {
1176 if (targetdebug < 2 && i > 0)
1177 {
1178 fprintf_unfiltered (gdb_stdlog, " ...");
1179 break;
1180 }
1181 fprintf_unfiltered (gdb_stdlog, "\n");
1182 }
1183
1184 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1185 }
1186 }
1187
1188 fputc_unfiltered ('\n', gdb_stdlog);
1189 }
1190
1191 /* Check implementations of to_xfer_partial update *XFERED_LEN
1192 properly. Do assertion after printing debug messages, so that we
1193 can find more clues on assertion failure from debugging messages. */
1194 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1195 gdb_assert (*xfered_len > 0);
1196
1197 return retval;
1198 }
1199
1200 /* Read LEN bytes of target memory at address MEMADDR, placing the
1201 results in GDB's memory at MYADDR. Returns either 0 for success or
1202 -1 if any error occurs.
1203
1204 If an error occurs, no guarantee is made about the contents of the data at
1205 MYADDR. In particular, the caller should not depend upon partial reads
1206 filling the buffer with good data. There is no way for the caller to know
1207 how much good data might have been transfered anyway. Callers that can
1208 deal with partial reads should call target_read (which will retry until
1209 it makes no progress, and then return how much was transferred). */
1210
1211 int
1212 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1213 {
1214 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1215 myaddr, memaddr, len) == len)
1216 return 0;
1217 else
1218 return -1;
1219 }
1220
1221 /* See target/target.h. */
1222
1223 int
1224 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1225 {
1226 gdb_byte buf[4];
1227 int r;
1228
1229 r = target_read_memory (memaddr, buf, sizeof buf);
1230 if (r != 0)
1231 return r;
1232 *result = extract_unsigned_integer (buf, sizeof buf,
1233 gdbarch_byte_order (target_gdbarch ()));
1234 return 0;
1235 }
1236
1237 /* Like target_read_memory, but specify explicitly that this is a read
1238 from the target's raw memory. That is, this read bypasses the
1239 dcache, breakpoint shadowing, etc. */
1240
1241 int
1242 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1243 {
1244 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1245 myaddr, memaddr, len) == len)
1246 return 0;
1247 else
1248 return -1;
1249 }
1250
1251 /* Like target_read_memory, but specify explicitly that this is a read from
1252 the target's stack. This may trigger different cache behavior. */
1253
1254 int
1255 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1256 {
1257 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1258 myaddr, memaddr, len) == len)
1259 return 0;
1260 else
1261 return -1;
1262 }
1263
1264 /* Like target_read_memory, but specify explicitly that this is a read from
1265 the target's code. This may trigger different cache behavior. */
1266
1267 int
1268 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1269 {
1270 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1271 myaddr, memaddr, len) == len)
1272 return 0;
1273 else
1274 return -1;
1275 }
1276
1277 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1278 Returns either 0 for success or -1 if any error occurs. If an
1279 error occurs, no guarantee is made about how much data got written.
1280 Callers that can deal with partial writes should call
1281 target_write. */
1282
1283 int
1284 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1285 {
1286 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1287 myaddr, memaddr, len) == len)
1288 return 0;
1289 else
1290 return -1;
1291 }
1292
1293 /* Write LEN bytes from MYADDR to target raw memory at address
1294 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1295 If an error occurs, no guarantee is made about how much data got
1296 written. Callers that can deal with partial writes should call
1297 target_write. */
1298
1299 int
1300 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1301 {
1302 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return -1;
1307 }
1308
1309 /* Fetch the target's memory map. */
1310
1311 std::vector<mem_region>
1312 target_memory_map (void)
1313 {
1314 std::vector<mem_region> result = current_top_target ()->memory_map ();
1315 if (result.empty ())
1316 return result;
1317
1318 std::sort (result.begin (), result.end ());
1319
1320 /* Check that regions do not overlap. Simultaneously assign
1321 a numbering for the "mem" commands to use to refer to
1322 each region. */
1323 mem_region *last_one = NULL;
1324 for (size_t ix = 0; ix < result.size (); ix++)
1325 {
1326 mem_region *this_one = &result[ix];
1327 this_one->number = ix;
1328
1329 if (last_one != NULL && last_one->hi > this_one->lo)
1330 {
1331 warning (_("Overlapping regions in memory map: ignoring"));
1332 return std::vector<mem_region> ();
1333 }
1334
1335 last_one = this_one;
1336 }
1337
1338 return result;
1339 }
1340
1341 void
1342 target_flash_erase (ULONGEST address, LONGEST length)
1343 {
1344 current_top_target ()->flash_erase (address, length);
1345 }
1346
1347 void
1348 target_flash_done (void)
1349 {
1350 current_top_target ()->flash_done ();
1351 }
1352
1353 static void
1354 show_trust_readonly (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 fprintf_filtered (file,
1358 _("Mode for reading from readonly sections is %s.\n"),
1359 value);
1360 }
1361
1362 /* Target vector read/write partial wrapper functions. */
1363
1364 static enum target_xfer_status
1365 target_read_partial (struct target_ops *ops,
1366 enum target_object object,
1367 const char *annex, gdb_byte *buf,
1368 ULONGEST offset, ULONGEST len,
1369 ULONGEST *xfered_len)
1370 {
1371 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1372 xfered_len);
1373 }
1374
1375 static enum target_xfer_status
1376 target_write_partial (struct target_ops *ops,
1377 enum target_object object,
1378 const char *annex, const gdb_byte *buf,
1379 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1380 {
1381 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1382 xfered_len);
1383 }
1384
1385 /* Wrappers to perform the full transfer. */
1386
1387 /* For docs on target_read see target.h. */
1388
1389 LONGEST
1390 target_read (struct target_ops *ops,
1391 enum target_object object,
1392 const char *annex, gdb_byte *buf,
1393 ULONGEST offset, LONGEST len)
1394 {
1395 LONGEST xfered_total = 0;
1396 int unit_size = 1;
1397
1398 /* If we are reading from a memory object, find the length of an addressable
1399 unit for that architecture. */
1400 if (object == TARGET_OBJECT_MEMORY
1401 || object == TARGET_OBJECT_STACK_MEMORY
1402 || object == TARGET_OBJECT_CODE_MEMORY
1403 || object == TARGET_OBJECT_RAW_MEMORY)
1404 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1405
1406 while (xfered_total < len)
1407 {
1408 ULONGEST xfered_partial;
1409 enum target_xfer_status status;
1410
1411 status = target_read_partial (ops, object, annex,
1412 buf + xfered_total * unit_size,
1413 offset + xfered_total, len - xfered_total,
1414 &xfered_partial);
1415
1416 /* Call an observer, notifying them of the xfer progress? */
1417 if (status == TARGET_XFER_EOF)
1418 return xfered_total;
1419 else if (status == TARGET_XFER_OK)
1420 {
1421 xfered_total += xfered_partial;
1422 QUIT;
1423 }
1424 else
1425 return TARGET_XFER_E_IO;
1426
1427 }
1428 return len;
1429 }
1430
1431 /* Assuming that the entire [begin, end) range of memory cannot be
1432 read, try to read whatever subrange is possible to read.
1433
1434 The function returns, in RESULT, either zero or one memory block.
1435 If there's a readable subrange at the beginning, it is completely
1436 read and returned. Any further readable subrange will not be read.
1437 Otherwise, if there's a readable subrange at the end, it will be
1438 completely read and returned. Any readable subranges before it
1439 (obviously, not starting at the beginning), will be ignored. In
1440 other cases -- either no readable subrange, or readable subrange(s)
1441 that is neither at the beginning, or end, nothing is returned.
1442
1443 The purpose of this function is to handle a read across a boundary
1444 of accessible memory in a case when memory map is not available.
1445 The above restrictions are fine for this case, but will give
1446 incorrect results if the memory is 'patchy'. However, supporting
1447 'patchy' memory would require trying to read every single byte,
1448 and it seems unacceptable solution. Explicit memory map is
1449 recommended for this case -- and target_read_memory_robust will
1450 take care of reading multiple ranges then. */
1451
1452 static void
1453 read_whatever_is_readable (struct target_ops *ops,
1454 const ULONGEST begin, const ULONGEST end,
1455 int unit_size,
1456 std::vector<memory_read_result> *result)
1457 {
1458 ULONGEST current_begin = begin;
1459 ULONGEST current_end = end;
1460 int forward;
1461 ULONGEST xfered_len;
1462
1463 /* If we previously failed to read 1 byte, nothing can be done here. */
1464 if (end - begin <= 1)
1465 return;
1466
1467 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1468
1469 /* Check that either first or the last byte is readable, and give up
1470 if not. This heuristic is meant to permit reading accessible memory
1471 at the boundary of accessible region. */
1472 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1473 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1474 {
1475 forward = 1;
1476 ++current_begin;
1477 }
1478 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1479 buf.get () + (end - begin) - 1, end - 1, 1,
1480 &xfered_len) == TARGET_XFER_OK)
1481 {
1482 forward = 0;
1483 --current_end;
1484 }
1485 else
1486 return;
1487
1488 /* Loop invariant is that the [current_begin, current_end) was previously
1489 found to be not readable as a whole.
1490
1491 Note loop condition -- if the range has 1 byte, we can't divide the range
1492 so there's no point trying further. */
1493 while (current_end - current_begin > 1)
1494 {
1495 ULONGEST first_half_begin, first_half_end;
1496 ULONGEST second_half_begin, second_half_end;
1497 LONGEST xfer;
1498 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1499
1500 if (forward)
1501 {
1502 first_half_begin = current_begin;
1503 first_half_end = middle;
1504 second_half_begin = middle;
1505 second_half_end = current_end;
1506 }
1507 else
1508 {
1509 first_half_begin = middle;
1510 first_half_end = current_end;
1511 second_half_begin = current_begin;
1512 second_half_end = middle;
1513 }
1514
1515 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1516 buf.get () + (first_half_begin - begin) * unit_size,
1517 first_half_begin,
1518 first_half_end - first_half_begin);
1519
1520 if (xfer == first_half_end - first_half_begin)
1521 {
1522 /* This half reads up fine. So, the error must be in the
1523 other half. */
1524 current_begin = second_half_begin;
1525 current_end = second_half_end;
1526 }
1527 else
1528 {
1529 /* This half is not readable. Because we've tried one byte, we
1530 know some part of this half if actually readable. Go to the next
1531 iteration to divide again and try to read.
1532
1533 We don't handle the other half, because this function only tries
1534 to read a single readable subrange. */
1535 current_begin = first_half_begin;
1536 current_end = first_half_end;
1537 }
1538 }
1539
1540 if (forward)
1541 {
1542 /* The [begin, current_begin) range has been read. */
1543 result->emplace_back (begin, current_end, std::move (buf));
1544 }
1545 else
1546 {
1547 /* The [current_end, end) range has been read. */
1548 LONGEST region_len = end - current_end;
1549
1550 gdb::unique_xmalloc_ptr<gdb_byte> data
1551 ((gdb_byte *) xmalloc (region_len * unit_size));
1552 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1553 region_len * unit_size);
1554 result->emplace_back (current_end, end, std::move (data));
1555 }
1556 }
1557
1558 std::vector<memory_read_result>
1559 read_memory_robust (struct target_ops *ops,
1560 const ULONGEST offset, const LONGEST len)
1561 {
1562 std::vector<memory_read_result> result;
1563 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1564
1565 LONGEST xfered_total = 0;
1566 while (xfered_total < len)
1567 {
1568 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1569 LONGEST region_len;
1570
1571 /* If there is no explicit region, a fake one should be created. */
1572 gdb_assert (region);
1573
1574 if (region->hi == 0)
1575 region_len = len - xfered_total;
1576 else
1577 region_len = region->hi - offset;
1578
1579 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1580 {
1581 /* Cannot read this region. Note that we can end up here only
1582 if the region is explicitly marked inaccessible, or
1583 'inaccessible-by-default' is in effect. */
1584 xfered_total += region_len;
1585 }
1586 else
1587 {
1588 LONGEST to_read = std::min (len - xfered_total, region_len);
1589 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1590 ((gdb_byte *) xmalloc (to_read * unit_size));
1591
1592 LONGEST xfered_partial =
1593 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1594 offset + xfered_total, to_read);
1595 /* Call an observer, notifying them of the xfer progress? */
1596 if (xfered_partial <= 0)
1597 {
1598 /* Got an error reading full chunk. See if maybe we can read
1599 some subrange. */
1600 read_whatever_is_readable (ops, offset + xfered_total,
1601 offset + xfered_total + to_read,
1602 unit_size, &result);
1603 xfered_total += to_read;
1604 }
1605 else
1606 {
1607 result.emplace_back (offset + xfered_total,
1608 offset + xfered_total + xfered_partial,
1609 std::move (buffer));
1610 xfered_total += xfered_partial;
1611 }
1612 QUIT;
1613 }
1614 }
1615
1616 return result;
1617 }
1618
1619
1620 /* An alternative to target_write with progress callbacks. */
1621
1622 LONGEST
1623 target_write_with_progress (struct target_ops *ops,
1624 enum target_object object,
1625 const char *annex, const gdb_byte *buf,
1626 ULONGEST offset, LONGEST len,
1627 void (*progress) (ULONGEST, void *), void *baton)
1628 {
1629 LONGEST xfered_total = 0;
1630 int unit_size = 1;
1631
1632 /* If we are writing to a memory object, find the length of an addressable
1633 unit for that architecture. */
1634 if (object == TARGET_OBJECT_MEMORY
1635 || object == TARGET_OBJECT_STACK_MEMORY
1636 || object == TARGET_OBJECT_CODE_MEMORY
1637 || object == TARGET_OBJECT_RAW_MEMORY)
1638 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1639
1640 /* Give the progress callback a chance to set up. */
1641 if (progress)
1642 (*progress) (0, baton);
1643
1644 while (xfered_total < len)
1645 {
1646 ULONGEST xfered_partial;
1647 enum target_xfer_status status;
1648
1649 status = target_write_partial (ops, object, annex,
1650 buf + xfered_total * unit_size,
1651 offset + xfered_total, len - xfered_total,
1652 &xfered_partial);
1653
1654 if (status != TARGET_XFER_OK)
1655 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1656
1657 if (progress)
1658 (*progress) (xfered_partial, baton);
1659
1660 xfered_total += xfered_partial;
1661 QUIT;
1662 }
1663 return len;
1664 }
1665
1666 /* For docs on target_write see target.h. */
1667
1668 LONGEST
1669 target_write (struct target_ops *ops,
1670 enum target_object object,
1671 const char *annex, const gdb_byte *buf,
1672 ULONGEST offset, LONGEST len)
1673 {
1674 return target_write_with_progress (ops, object, annex, buf, offset, len,
1675 NULL, NULL);
1676 }
1677
1678 /* Help for target_read_alloc and target_read_stralloc. See their comments
1679 for details. */
1680
1681 template <typename T>
1682 gdb::optional<gdb::def_vector<T>>
1683 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1684 const char *annex)
1685 {
1686 gdb::def_vector<T> buf;
1687 size_t buf_pos = 0;
1688 const int chunk = 4096;
1689
1690 /* This function does not have a length parameter; it reads the
1691 entire OBJECT). Also, it doesn't support objects fetched partly
1692 from one target and partly from another (in a different stratum,
1693 e.g. a core file and an executable). Both reasons make it
1694 unsuitable for reading memory. */
1695 gdb_assert (object != TARGET_OBJECT_MEMORY);
1696
1697 /* Start by reading up to 4K at a time. The target will throttle
1698 this number down if necessary. */
1699 while (1)
1700 {
1701 ULONGEST xfered_len;
1702 enum target_xfer_status status;
1703
1704 buf.resize (buf_pos + chunk);
1705
1706 status = target_read_partial (ops, object, annex,
1707 (gdb_byte *) &buf[buf_pos],
1708 buf_pos, chunk,
1709 &xfered_len);
1710
1711 if (status == TARGET_XFER_EOF)
1712 {
1713 /* Read all there was. */
1714 buf.resize (buf_pos);
1715 return buf;
1716 }
1717 else if (status != TARGET_XFER_OK)
1718 {
1719 /* An error occurred. */
1720 return {};
1721 }
1722
1723 buf_pos += xfered_len;
1724
1725 QUIT;
1726 }
1727 }
1728
1729 /* See target.h */
1730
1731 gdb::optional<gdb::byte_vector>
1732 target_read_alloc (struct target_ops *ops, enum target_object object,
1733 const char *annex)
1734 {
1735 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1736 }
1737
1738 /* See target.h. */
1739
1740 gdb::optional<gdb::char_vector>
1741 target_read_stralloc (struct target_ops *ops, enum target_object object,
1742 const char *annex)
1743 {
1744 gdb::optional<gdb::char_vector> buf
1745 = target_read_alloc_1<char> (ops, object, annex);
1746
1747 if (!buf)
1748 return {};
1749
1750 if (buf->empty () || buf->back () != '\0')
1751 buf->push_back ('\0');
1752
1753 /* Check for embedded NUL bytes; but allow trailing NULs. */
1754 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1755 it != buf->end (); it++)
1756 if (*it != '\0')
1757 {
1758 warning (_("target object %d, annex %s, "
1759 "contained unexpected null characters"),
1760 (int) object, annex ? annex : "(none)");
1761 break;
1762 }
1763
1764 return buf;
1765 }
1766
1767 /* Memory transfer methods. */
1768
1769 void
1770 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1771 LONGEST len)
1772 {
1773 /* This method is used to read from an alternate, non-current
1774 target. This read must bypass the overlay support (as symbols
1775 don't match this target), and GDB's internal cache (wrong cache
1776 for this target). */
1777 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1778 != len)
1779 memory_error (TARGET_XFER_E_IO, addr);
1780 }
1781
1782 ULONGEST
1783 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1784 int len, enum bfd_endian byte_order)
1785 {
1786 gdb_byte buf[sizeof (ULONGEST)];
1787
1788 gdb_assert (len <= sizeof (buf));
1789 get_target_memory (ops, addr, buf, len);
1790 return extract_unsigned_integer (buf, len, byte_order);
1791 }
1792
1793 /* See target.h. */
1794
1795 int
1796 target_insert_breakpoint (struct gdbarch *gdbarch,
1797 struct bp_target_info *bp_tgt)
1798 {
1799 if (!may_insert_breakpoints)
1800 {
1801 warning (_("May not insert breakpoints"));
1802 return 1;
1803 }
1804
1805 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1806 }
1807
1808 /* See target.h. */
1809
1810 int
1811 target_remove_breakpoint (struct gdbarch *gdbarch,
1812 struct bp_target_info *bp_tgt,
1813 enum remove_bp_reason reason)
1814 {
1815 /* This is kind of a weird case to handle, but the permission might
1816 have been changed after breakpoints were inserted - in which case
1817 we should just take the user literally and assume that any
1818 breakpoints should be left in place. */
1819 if (!may_insert_breakpoints)
1820 {
1821 warning (_("May not remove breakpoints"));
1822 return 1;
1823 }
1824
1825 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1826 }
1827
1828 static void
1829 info_target_command (const char *args, int from_tty)
1830 {
1831 int has_all_mem = 0;
1832
1833 if (symfile_objfile != NULL)
1834 printf_unfiltered (_("Symbols from \"%s\".\n"),
1835 objfile_name (symfile_objfile));
1836
1837 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1838 {
1839 if (!t->has_memory ())
1840 continue;
1841
1842 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1843 continue;
1844 if (has_all_mem)
1845 printf_unfiltered (_("\tWhile running this, "
1846 "GDB does not access memory from...\n"));
1847 printf_unfiltered ("%s:\n", t->longname ());
1848 t->files_info ();
1849 has_all_mem = t->has_all_memory ();
1850 }
1851 }
1852
1853 /* This function is called before any new inferior is created, e.g.
1854 by running a program, attaching, or connecting to a target.
1855 It cleans up any state from previous invocations which might
1856 change between runs. This is a subset of what target_preopen
1857 resets (things which might change between targets). */
1858
1859 void
1860 target_pre_inferior (int from_tty)
1861 {
1862 /* Clear out solib state. Otherwise the solib state of the previous
1863 inferior might have survived and is entirely wrong for the new
1864 target. This has been observed on GNU/Linux using glibc 2.3. How
1865 to reproduce:
1866
1867 bash$ ./foo&
1868 [1] 4711
1869 bash$ ./foo&
1870 [1] 4712
1871 bash$ gdb ./foo
1872 [...]
1873 (gdb) attach 4711
1874 (gdb) detach
1875 (gdb) attach 4712
1876 Cannot access memory at address 0xdeadbeef
1877 */
1878
1879 /* In some OSs, the shared library list is the same/global/shared
1880 across inferiors. If code is shared between processes, so are
1881 memory regions and features. */
1882 if (!gdbarch_has_global_solist (target_gdbarch ()))
1883 {
1884 no_shared_libraries (NULL, from_tty);
1885
1886 invalidate_target_mem_regions ();
1887
1888 target_clear_description ();
1889 }
1890
1891 /* attach_flag may be set if the previous process associated with
1892 the inferior was attached to. */
1893 current_inferior ()->attach_flag = 0;
1894
1895 current_inferior ()->highest_thread_num = 0;
1896
1897 agent_capability_invalidate ();
1898 }
1899
1900 /* This is to be called by the open routine before it does
1901 anything. */
1902
1903 void
1904 target_preopen (int from_tty)
1905 {
1906 dont_repeat ();
1907
1908 if (current_inferior ()->pid != 0)
1909 {
1910 if (!from_tty
1911 || !target_has_execution ()
1912 || query (_("A program is being debugged already. Kill it? ")))
1913 {
1914 /* Core inferiors actually should be detached, not
1915 killed. */
1916 if (target_has_execution ())
1917 target_kill ();
1918 else
1919 target_detach (current_inferior (), 0);
1920 }
1921 else
1922 error (_("Program not killed."));
1923 }
1924
1925 /* Calling target_kill may remove the target from the stack. But if
1926 it doesn't (which seems like a win for UDI), remove it now. */
1927 /* Leave the exec target, though. The user may be switching from a
1928 live process to a core of the same program. */
1929 pop_all_targets_above (file_stratum);
1930
1931 target_pre_inferior (from_tty);
1932 }
1933
1934 /* See target.h. */
1935
1936 void
1937 target_detach (inferior *inf, int from_tty)
1938 {
1939 /* After we have detached, we will clear the register cache for this inferior
1940 by calling registers_changed_ptid. We must save the pid_ptid before
1941 detaching, as the target detach method will clear inf->pid. */
1942 ptid_t save_pid_ptid = ptid_t (inf->pid);
1943
1944 /* As long as some to_detach implementations rely on the current_inferior
1945 (either directly, or indirectly, like through target_gdbarch or by
1946 reading memory), INF needs to be the current inferior. When that
1947 requirement will become no longer true, then we can remove this
1948 assertion. */
1949 gdb_assert (inf == current_inferior ());
1950
1951 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1952 /* Don't remove global breakpoints here. They're removed on
1953 disconnection from the target. */
1954 ;
1955 else
1956 /* If we're in breakpoints-always-inserted mode, have to remove
1957 breakpoints before detaching. */
1958 remove_breakpoints_inf (current_inferior ());
1959
1960 prepare_for_detach ();
1961
1962 /* Hold a strong reference because detaching may unpush the
1963 target. */
1964 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1965
1966 current_top_target ()->detach (inf, from_tty);
1967
1968 process_stratum_target *proc_target
1969 = as_process_stratum_target (proc_target_ref.get ());
1970
1971 registers_changed_ptid (proc_target, save_pid_ptid);
1972
1973 /* We have to ensure we have no frame cache left. Normally,
1974 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1975 inferior_ptid matches save_pid_ptid, but in our case, it does not
1976 call it, as inferior_ptid has been reset. */
1977 reinit_frame_cache ();
1978 }
1979
1980 void
1981 target_disconnect (const char *args, int from_tty)
1982 {
1983 /* If we're in breakpoints-always-inserted mode or if breakpoints
1984 are global across processes, we have to remove them before
1985 disconnecting. */
1986 remove_breakpoints ();
1987
1988 current_top_target ()->disconnect (args, from_tty);
1989 }
1990
1991 /* See target/target.h. */
1992
1993 ptid_t
1994 target_wait (ptid_t ptid, struct target_waitstatus *status,
1995 target_wait_flags options)
1996 {
1997 return current_top_target ()->wait (ptid, status, options);
1998 }
1999
2000 /* See target.h. */
2001
2002 ptid_t
2003 default_target_wait (struct target_ops *ops,
2004 ptid_t ptid, struct target_waitstatus *status,
2005 target_wait_flags options)
2006 {
2007 status->kind = TARGET_WAITKIND_IGNORE;
2008 return minus_one_ptid;
2009 }
2010
2011 std::string
2012 target_pid_to_str (ptid_t ptid)
2013 {
2014 return current_top_target ()->pid_to_str (ptid);
2015 }
2016
2017 const char *
2018 target_thread_name (struct thread_info *info)
2019 {
2020 gdb_assert (info->inf == current_inferior ());
2021
2022 return current_top_target ()->thread_name (info);
2023 }
2024
2025 struct thread_info *
2026 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2027 int handle_len,
2028 struct inferior *inf)
2029 {
2030 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2031 handle_len, inf);
2032 }
2033
2034 /* See target.h. */
2035
2036 gdb::byte_vector
2037 target_thread_info_to_thread_handle (struct thread_info *tip)
2038 {
2039 return current_top_target ()->thread_info_to_thread_handle (tip);
2040 }
2041
2042 void
2043 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2044 {
2045 process_stratum_target *curr_target = current_inferior ()->process_target ();
2046
2047 target_dcache_invalidate ();
2048
2049 current_top_target ()->resume (ptid, step, signal);
2050
2051 registers_changed_ptid (curr_target, ptid);
2052 /* We only set the internal executing state here. The user/frontend
2053 running state is set at a higher level. This also clears the
2054 thread's stop_pc as side effect. */
2055 set_executing (curr_target, ptid, true);
2056 clear_inline_frame_state (curr_target, ptid);
2057 }
2058
2059 /* If true, target_commit_resume is a nop. */
2060 static int defer_target_commit_resume;
2061
2062 /* See target.h. */
2063
2064 void
2065 target_commit_resume (void)
2066 {
2067 if (defer_target_commit_resume)
2068 return;
2069
2070 current_top_target ()->commit_resume ();
2071 }
2072
2073 /* See target.h. */
2074
2075 scoped_restore_tmpl<int>
2076 make_scoped_defer_target_commit_resume ()
2077 {
2078 return make_scoped_restore (&defer_target_commit_resume, 1);
2079 }
2080
2081 void
2082 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2083 {
2084 current_top_target ()->pass_signals (pass_signals);
2085 }
2086
2087 void
2088 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2089 {
2090 current_top_target ()->program_signals (program_signals);
2091 }
2092
2093 static bool
2094 default_follow_fork (struct target_ops *self, bool follow_child,
2095 bool detach_fork)
2096 {
2097 /* Some target returned a fork event, but did not know how to follow it. */
2098 internal_error (__FILE__, __LINE__,
2099 _("could not find a target to follow fork"));
2100 }
2101
2102 /* Look through the list of possible targets for a target that can
2103 follow forks. */
2104
2105 bool
2106 target_follow_fork (bool follow_child, bool detach_fork)
2107 {
2108 return current_top_target ()->follow_fork (follow_child, detach_fork);
2109 }
2110
2111 /* Target wrapper for follow exec hook. */
2112
2113 void
2114 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2115 {
2116 current_top_target ()->follow_exec (inf, execd_pathname);
2117 }
2118
2119 static void
2120 default_mourn_inferior (struct target_ops *self)
2121 {
2122 internal_error (__FILE__, __LINE__,
2123 _("could not find a target to follow mourn inferior"));
2124 }
2125
2126 void
2127 target_mourn_inferior (ptid_t ptid)
2128 {
2129 gdb_assert (ptid == inferior_ptid);
2130 current_top_target ()->mourn_inferior ();
2131
2132 /* We no longer need to keep handles on any of the object files.
2133 Make sure to release them to avoid unnecessarily locking any
2134 of them while we're not actually debugging. */
2135 bfd_cache_close_all ();
2136 }
2137
2138 /* Look for a target which can describe architectural features, starting
2139 from TARGET. If we find one, return its description. */
2140
2141 const struct target_desc *
2142 target_read_description (struct target_ops *target)
2143 {
2144 return target->read_description ();
2145 }
2146
2147
2148 /* Default implementation of memory-searching. */
2149
2150 static int
2151 default_search_memory (struct target_ops *self,
2152 CORE_ADDR start_addr, ULONGEST search_space_len,
2153 const gdb_byte *pattern, ULONGEST pattern_len,
2154 CORE_ADDR *found_addrp)
2155 {
2156 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2157 {
2158 return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
2159 result, addr, len) == len;
2160 };
2161
2162 /* Start over from the top of the target stack. */
2163 return simple_search_memory (read_memory, start_addr, search_space_len,
2164 pattern, pattern_len, found_addrp);
2165 }
2166
2167 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2168 sequence of bytes in PATTERN with length PATTERN_LEN.
2169
2170 The result is 1 if found, 0 if not found, and -1 if there was an error
2171 requiring halting of the search (e.g. memory read error).
2172 If the pattern is found the address is recorded in FOUND_ADDRP. */
2173
2174 int
2175 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2176 const gdb_byte *pattern, ULONGEST pattern_len,
2177 CORE_ADDR *found_addrp)
2178 {
2179 return current_top_target ()->search_memory (start_addr, search_space_len,
2180 pattern, pattern_len, found_addrp);
2181 }
2182
2183 /* Look through the currently pushed targets. If none of them will
2184 be able to restart the currently running process, issue an error
2185 message. */
2186
2187 void
2188 target_require_runnable (void)
2189 {
2190 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2191 {
2192 /* If this target knows how to create a new program, then
2193 assume we will still be able to after killing the current
2194 one. Either killing and mourning will not pop T, or else
2195 find_default_run_target will find it again. */
2196 if (t->can_create_inferior ())
2197 return;
2198
2199 /* Do not worry about targets at certain strata that can not
2200 create inferiors. Assume they will be pushed again if
2201 necessary, and continue to the process_stratum. */
2202 if (t->stratum () > process_stratum)
2203 continue;
2204
2205 error (_("The \"%s\" target does not support \"run\". "
2206 "Try \"help target\" or \"continue\"."),
2207 t->shortname ());
2208 }
2209
2210 /* This function is only called if the target is running. In that
2211 case there should have been a process_stratum target and it
2212 should either know how to create inferiors, or not... */
2213 internal_error (__FILE__, __LINE__, _("No targets found"));
2214 }
2215
2216 /* Whether GDB is allowed to fall back to the default run target for
2217 "run", "attach", etc. when no target is connected yet. */
2218 static bool auto_connect_native_target = true;
2219
2220 static void
2221 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2222 struct cmd_list_element *c, const char *value)
2223 {
2224 fprintf_filtered (file,
2225 _("Whether GDB may automatically connect to the "
2226 "native target is %s.\n"),
2227 value);
2228 }
2229
2230 /* A pointer to the target that can respond to "run" or "attach".
2231 Native targets are always singletons and instantiated early at GDB
2232 startup. */
2233 static target_ops *the_native_target;
2234
2235 /* See target.h. */
2236
2237 void
2238 set_native_target (target_ops *target)
2239 {
2240 if (the_native_target != NULL)
2241 internal_error (__FILE__, __LINE__,
2242 _("native target already set (\"%s\")."),
2243 the_native_target->longname ());
2244
2245 the_native_target = target;
2246 }
2247
2248 /* See target.h. */
2249
2250 target_ops *
2251 get_native_target ()
2252 {
2253 return the_native_target;
2254 }
2255
2256 /* Look through the list of possible targets for a target that can
2257 execute a run or attach command without any other data. This is
2258 used to locate the default process stratum.
2259
2260 If DO_MESG is not NULL, the result is always valid (error() is
2261 called for errors); else, return NULL on error. */
2262
2263 static struct target_ops *
2264 find_default_run_target (const char *do_mesg)
2265 {
2266 if (auto_connect_native_target && the_native_target != NULL)
2267 return the_native_target;
2268
2269 if (do_mesg != NULL)
2270 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2271 return NULL;
2272 }
2273
2274 /* See target.h. */
2275
2276 struct target_ops *
2277 find_attach_target (void)
2278 {
2279 /* If a target on the current stack can attach, use it. */
2280 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2281 {
2282 if (t->can_attach ())
2283 return t;
2284 }
2285
2286 /* Otherwise, use the default run target for attaching. */
2287 return find_default_run_target ("attach");
2288 }
2289
2290 /* See target.h. */
2291
2292 struct target_ops *
2293 find_run_target (void)
2294 {
2295 /* If a target on the current stack can run, use it. */
2296 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2297 {
2298 if (t->can_create_inferior ())
2299 return t;
2300 }
2301
2302 /* Otherwise, use the default run target. */
2303 return find_default_run_target ("run");
2304 }
2305
2306 bool
2307 target_ops::info_proc (const char *args, enum info_proc_what what)
2308 {
2309 return false;
2310 }
2311
2312 /* Implement the "info proc" command. */
2313
2314 int
2315 target_info_proc (const char *args, enum info_proc_what what)
2316 {
2317 struct target_ops *t;
2318
2319 /* If we're already connected to something that can get us OS
2320 related data, use it. Otherwise, try using the native
2321 target. */
2322 t = find_target_at (process_stratum);
2323 if (t == NULL)
2324 t = find_default_run_target (NULL);
2325
2326 for (; t != NULL; t = t->beneath ())
2327 {
2328 if (t->info_proc (args, what))
2329 {
2330 if (targetdebug)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "target_info_proc (\"%s\", %d)\n", args, what);
2333
2334 return 1;
2335 }
2336 }
2337
2338 return 0;
2339 }
2340
2341 static int
2342 find_default_supports_disable_randomization (struct target_ops *self)
2343 {
2344 struct target_ops *t;
2345
2346 t = find_default_run_target (NULL);
2347 if (t != NULL)
2348 return t->supports_disable_randomization ();
2349 return 0;
2350 }
2351
2352 int
2353 target_supports_disable_randomization (void)
2354 {
2355 return current_top_target ()->supports_disable_randomization ();
2356 }
2357
2358 /* See target/target.h. */
2359
2360 int
2361 target_supports_multi_process (void)
2362 {
2363 return current_top_target ()->supports_multi_process ();
2364 }
2365
2366 /* See target.h. */
2367
2368 gdb::optional<gdb::char_vector>
2369 target_get_osdata (const char *type)
2370 {
2371 struct target_ops *t;
2372
2373 /* If we're already connected to something that can get us OS
2374 related data, use it. Otherwise, try using the native
2375 target. */
2376 t = find_target_at (process_stratum);
2377 if (t == NULL)
2378 t = find_default_run_target ("get OS data");
2379
2380 if (!t)
2381 return {};
2382
2383 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2384 }
2385
2386 /* Determine the current address space of thread PTID. */
2387
2388 struct address_space *
2389 target_thread_address_space (ptid_t ptid)
2390 {
2391 struct address_space *aspace;
2392
2393 aspace = current_top_target ()->thread_address_space (ptid);
2394 gdb_assert (aspace != NULL);
2395
2396 return aspace;
2397 }
2398
2399 /* See target.h. */
2400
2401 target_ops *
2402 target_ops::beneath () const
2403 {
2404 return current_inferior ()->find_target_beneath (this);
2405 }
2406
2407 void
2408 target_ops::close ()
2409 {
2410 }
2411
2412 bool
2413 target_ops::can_attach ()
2414 {
2415 return 0;
2416 }
2417
2418 void
2419 target_ops::attach (const char *, int)
2420 {
2421 gdb_assert_not_reached ("target_ops::attach called");
2422 }
2423
2424 bool
2425 target_ops::can_create_inferior ()
2426 {
2427 return 0;
2428 }
2429
2430 void
2431 target_ops::create_inferior (const char *, const std::string &,
2432 char **, int)
2433 {
2434 gdb_assert_not_reached ("target_ops::create_inferior called");
2435 }
2436
2437 bool
2438 target_ops::can_run ()
2439 {
2440 return false;
2441 }
2442
2443 int
2444 target_can_run ()
2445 {
2446 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2447 {
2448 if (t->can_run ())
2449 return 1;
2450 }
2451
2452 return 0;
2453 }
2454
2455 /* Target file operations. */
2456
2457 static struct target_ops *
2458 default_fileio_target (void)
2459 {
2460 struct target_ops *t;
2461
2462 /* If we're already connected to something that can perform
2463 file I/O, use it. Otherwise, try using the native target. */
2464 t = find_target_at (process_stratum);
2465 if (t != NULL)
2466 return t;
2467 return find_default_run_target ("file I/O");
2468 }
2469
2470 /* File handle for target file operations. */
2471
2472 struct fileio_fh_t
2473 {
2474 /* The target on which this file is open. NULL if the target is
2475 meanwhile closed while the handle is open. */
2476 target_ops *target;
2477
2478 /* The file descriptor on the target. */
2479 int target_fd;
2480
2481 /* Check whether this fileio_fh_t represents a closed file. */
2482 bool is_closed ()
2483 {
2484 return target_fd < 0;
2485 }
2486 };
2487
2488 /* Vector of currently open file handles. The value returned by
2489 target_fileio_open and passed as the FD argument to other
2490 target_fileio_* functions is an index into this vector. This
2491 vector's entries are never freed; instead, files are marked as
2492 closed, and the handle becomes available for reuse. */
2493 static std::vector<fileio_fh_t> fileio_fhandles;
2494
2495 /* Index into fileio_fhandles of the lowest handle that might be
2496 closed. This permits handle reuse without searching the whole
2497 list each time a new file is opened. */
2498 static int lowest_closed_fd;
2499
2500 /* Invalidate the target associated with open handles that were open
2501 on target TARG, since we're about to close (and maybe destroy) the
2502 target. The handles remain open from the client's perspective, but
2503 trying to do anything with them other than closing them will fail
2504 with EIO. */
2505
2506 static void
2507 fileio_handles_invalidate_target (target_ops *targ)
2508 {
2509 for (fileio_fh_t &fh : fileio_fhandles)
2510 if (fh.target == targ)
2511 fh.target = NULL;
2512 }
2513
2514 /* Acquire a target fileio file descriptor. */
2515
2516 static int
2517 acquire_fileio_fd (target_ops *target, int target_fd)
2518 {
2519 /* Search for closed handles to reuse. */
2520 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2521 {
2522 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2523
2524 if (fh.is_closed ())
2525 break;
2526 }
2527
2528 /* Push a new handle if no closed handles were found. */
2529 if (lowest_closed_fd == fileio_fhandles.size ())
2530 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2531 else
2532 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2533
2534 /* Should no longer be marked closed. */
2535 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2536
2537 /* Return its index, and start the next lookup at
2538 the next index. */
2539 return lowest_closed_fd++;
2540 }
2541
2542 /* Release a target fileio file descriptor. */
2543
2544 static void
2545 release_fileio_fd (int fd, fileio_fh_t *fh)
2546 {
2547 fh->target_fd = -1;
2548 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2549 }
2550
2551 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2552
2553 static fileio_fh_t *
2554 fileio_fd_to_fh (int fd)
2555 {
2556 return &fileio_fhandles[fd];
2557 }
2558
2559
2560 /* Default implementations of file i/o methods. We don't want these
2561 to delegate automatically, because we need to know which target
2562 supported the method, in order to call it directly from within
2563 pread/pwrite, etc. */
2564
2565 int
2566 target_ops::fileio_open (struct inferior *inf, const char *filename,
2567 int flags, int mode, int warn_if_slow,
2568 int *target_errno)
2569 {
2570 *target_errno = FILEIO_ENOSYS;
2571 return -1;
2572 }
2573
2574 int
2575 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2576 ULONGEST offset, int *target_errno)
2577 {
2578 *target_errno = FILEIO_ENOSYS;
2579 return -1;
2580 }
2581
2582 int
2583 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2584 ULONGEST offset, int *target_errno)
2585 {
2586 *target_errno = FILEIO_ENOSYS;
2587 return -1;
2588 }
2589
2590 int
2591 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2592 {
2593 *target_errno = FILEIO_ENOSYS;
2594 return -1;
2595 }
2596
2597 int
2598 target_ops::fileio_close (int fd, int *target_errno)
2599 {
2600 *target_errno = FILEIO_ENOSYS;
2601 return -1;
2602 }
2603
2604 int
2605 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2606 int *target_errno)
2607 {
2608 *target_errno = FILEIO_ENOSYS;
2609 return -1;
2610 }
2611
2612 gdb::optional<std::string>
2613 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2614 int *target_errno)
2615 {
2616 *target_errno = FILEIO_ENOSYS;
2617 return {};
2618 }
2619
2620 /* See target.h. */
2621
2622 int
2623 target_fileio_open (struct inferior *inf, const char *filename,
2624 int flags, int mode, bool warn_if_slow, int *target_errno)
2625 {
2626 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2627 {
2628 int fd = t->fileio_open (inf, filename, flags, mode,
2629 warn_if_slow, target_errno);
2630
2631 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2632 continue;
2633
2634 if (fd < 0)
2635 fd = -1;
2636 else
2637 fd = acquire_fileio_fd (t, fd);
2638
2639 if (targetdebug)
2640 fprintf_unfiltered (gdb_stdlog,
2641 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2642 " = %d (%d)\n",
2643 inf == NULL ? 0 : inf->num,
2644 filename, flags, mode,
2645 warn_if_slow, fd,
2646 fd != -1 ? 0 : *target_errno);
2647 return fd;
2648 }
2649
2650 *target_errno = FILEIO_ENOSYS;
2651 return -1;
2652 }
2653
2654 /* See target.h. */
2655
2656 int
2657 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2658 ULONGEST offset, int *target_errno)
2659 {
2660 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2661 int ret = -1;
2662
2663 if (fh->is_closed ())
2664 *target_errno = EBADF;
2665 else if (fh->target == NULL)
2666 *target_errno = EIO;
2667 else
2668 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2669 len, offset, target_errno);
2670
2671 if (targetdebug)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "target_fileio_pwrite (%d,...,%d,%s) "
2674 "= %d (%d)\n",
2675 fd, len, pulongest (offset),
2676 ret, ret != -1 ? 0 : *target_errno);
2677 return ret;
2678 }
2679
2680 /* See target.h. */
2681
2682 int
2683 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2684 ULONGEST offset, int *target_errno)
2685 {
2686 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2687 int ret = -1;
2688
2689 if (fh->is_closed ())
2690 *target_errno = EBADF;
2691 else if (fh->target == NULL)
2692 *target_errno = EIO;
2693 else
2694 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2695 len, offset, target_errno);
2696
2697 if (targetdebug)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "target_fileio_pread (%d,...,%d,%s) "
2700 "= %d (%d)\n",
2701 fd, len, pulongest (offset),
2702 ret, ret != -1 ? 0 : *target_errno);
2703 return ret;
2704 }
2705
2706 /* See target.h. */
2707
2708 int
2709 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2710 {
2711 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2712 int ret = -1;
2713
2714 if (fh->is_closed ())
2715 *target_errno = EBADF;
2716 else if (fh->target == NULL)
2717 *target_errno = EIO;
2718 else
2719 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2720
2721 if (targetdebug)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "target_fileio_fstat (%d) = %d (%d)\n",
2724 fd, ret, ret != -1 ? 0 : *target_errno);
2725 return ret;
2726 }
2727
2728 /* See target.h. */
2729
2730 int
2731 target_fileio_close (int fd, int *target_errno)
2732 {
2733 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2734 int ret = -1;
2735
2736 if (fh->is_closed ())
2737 *target_errno = EBADF;
2738 else
2739 {
2740 if (fh->target != NULL)
2741 ret = fh->target->fileio_close (fh->target_fd,
2742 target_errno);
2743 else
2744 ret = 0;
2745 release_fileio_fd (fd, fh);
2746 }
2747
2748 if (targetdebug)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "target_fileio_close (%d) = %d (%d)\n",
2751 fd, ret, ret != -1 ? 0 : *target_errno);
2752 return ret;
2753 }
2754
2755 /* See target.h. */
2756
2757 int
2758 target_fileio_unlink (struct inferior *inf, const char *filename,
2759 int *target_errno)
2760 {
2761 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2762 {
2763 int ret = t->fileio_unlink (inf, filename, target_errno);
2764
2765 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2766 continue;
2767
2768 if (targetdebug)
2769 fprintf_unfiltered (gdb_stdlog,
2770 "target_fileio_unlink (%d,%s)"
2771 " = %d (%d)\n",
2772 inf == NULL ? 0 : inf->num, filename,
2773 ret, ret != -1 ? 0 : *target_errno);
2774 return ret;
2775 }
2776
2777 *target_errno = FILEIO_ENOSYS;
2778 return -1;
2779 }
2780
2781 /* See target.h. */
2782
2783 gdb::optional<std::string>
2784 target_fileio_readlink (struct inferior *inf, const char *filename,
2785 int *target_errno)
2786 {
2787 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2788 {
2789 gdb::optional<std::string> ret
2790 = t->fileio_readlink (inf, filename, target_errno);
2791
2792 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2793 continue;
2794
2795 if (targetdebug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "target_fileio_readlink (%d,%s)"
2798 " = %s (%d)\n",
2799 inf == NULL ? 0 : inf->num,
2800 filename, ret ? ret->c_str () : "(nil)",
2801 ret ? 0 : *target_errno);
2802 return ret;
2803 }
2804
2805 *target_errno = FILEIO_ENOSYS;
2806 return {};
2807 }
2808
2809 /* Like scoped_fd, but specific to target fileio. */
2810
2811 class scoped_target_fd
2812 {
2813 public:
2814 explicit scoped_target_fd (int fd) noexcept
2815 : m_fd (fd)
2816 {
2817 }
2818
2819 ~scoped_target_fd ()
2820 {
2821 if (m_fd >= 0)
2822 {
2823 int target_errno;
2824
2825 target_fileio_close (m_fd, &target_errno);
2826 }
2827 }
2828
2829 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2830
2831 int get () const noexcept
2832 {
2833 return m_fd;
2834 }
2835
2836 private:
2837 int m_fd;
2838 };
2839
2840 /* Read target file FILENAME, in the filesystem as seen by INF. If
2841 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2842 remote targets, the remote stub). Store the result in *BUF_P and
2843 return the size of the transferred data. PADDING additional bytes
2844 are available in *BUF_P. This is a helper function for
2845 target_fileio_read_alloc; see the declaration of that function for
2846 more information. */
2847
2848 static LONGEST
2849 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2850 gdb_byte **buf_p, int padding)
2851 {
2852 size_t buf_alloc, buf_pos;
2853 gdb_byte *buf;
2854 LONGEST n;
2855 int target_errno;
2856
2857 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2858 0700, false, &target_errno));
2859 if (fd.get () == -1)
2860 return -1;
2861
2862 /* Start by reading up to 4K at a time. The target will throttle
2863 this number down if necessary. */
2864 buf_alloc = 4096;
2865 buf = (gdb_byte *) xmalloc (buf_alloc);
2866 buf_pos = 0;
2867 while (1)
2868 {
2869 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2870 buf_alloc - buf_pos - padding, buf_pos,
2871 &target_errno);
2872 if (n < 0)
2873 {
2874 /* An error occurred. */
2875 xfree (buf);
2876 return -1;
2877 }
2878 else if (n == 0)
2879 {
2880 /* Read all there was. */
2881 if (buf_pos == 0)
2882 xfree (buf);
2883 else
2884 *buf_p = buf;
2885 return buf_pos;
2886 }
2887
2888 buf_pos += n;
2889
2890 /* If the buffer is filling up, expand it. */
2891 if (buf_alloc < buf_pos * 2)
2892 {
2893 buf_alloc *= 2;
2894 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2895 }
2896
2897 QUIT;
2898 }
2899 }
2900
2901 /* See target.h. */
2902
2903 LONGEST
2904 target_fileio_read_alloc (struct inferior *inf, const char *filename,
2905 gdb_byte **buf_p)
2906 {
2907 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
2908 }
2909
2910 /* See target.h. */
2911
2912 gdb::unique_xmalloc_ptr<char>
2913 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
2914 {
2915 gdb_byte *buffer;
2916 char *bufstr;
2917 LONGEST i, transferred;
2918
2919 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
2920 bufstr = (char *) buffer;
2921
2922 if (transferred < 0)
2923 return gdb::unique_xmalloc_ptr<char> (nullptr);
2924
2925 if (transferred == 0)
2926 return make_unique_xstrdup ("");
2927
2928 bufstr[transferred] = 0;
2929
2930 /* Check for embedded NUL bytes; but allow trailing NULs. */
2931 for (i = strlen (bufstr); i < transferred; i++)
2932 if (bufstr[i] != 0)
2933 {
2934 warning (_("target file %s "
2935 "contained unexpected null characters"),
2936 filename);
2937 break;
2938 }
2939
2940 return gdb::unique_xmalloc_ptr<char> (bufstr);
2941 }
2942
2943
2944 static int
2945 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2946 CORE_ADDR addr, int len)
2947 {
2948 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2949 }
2950
2951 static int
2952 default_watchpoint_addr_within_range (struct target_ops *target,
2953 CORE_ADDR addr,
2954 CORE_ADDR start, int length)
2955 {
2956 return addr >= start && addr < start + length;
2957 }
2958
2959 /* See target.h. */
2960
2961 target_ops *
2962 target_stack::find_beneath (const target_ops *t) const
2963 {
2964 /* Look for a non-empty slot at stratum levels beneath T's. */
2965 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
2966 if (m_stack[stratum] != NULL)
2967 return m_stack[stratum];
2968
2969 return NULL;
2970 }
2971
2972 /* See target.h. */
2973
2974 struct target_ops *
2975 find_target_at (enum strata stratum)
2976 {
2977 return current_inferior ()->target_at (stratum);
2978 }
2979
2980 \f
2981
2982 /* See target.h */
2983
2984 void
2985 target_announce_detach (int from_tty)
2986 {
2987 pid_t pid;
2988 const char *exec_file;
2989
2990 if (!from_tty)
2991 return;
2992
2993 exec_file = get_exec_file (0);
2994 if (exec_file == NULL)
2995 exec_file = "";
2996
2997 pid = inferior_ptid.pid ();
2998 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
2999 target_pid_to_str (ptid_t (pid)).c_str ());
3000 }
3001
3002 /* The inferior process has died. Long live the inferior! */
3003
3004 void
3005 generic_mourn_inferior (void)
3006 {
3007 inferior *inf = current_inferior ();
3008
3009 switch_to_no_thread ();
3010
3011 /* Mark breakpoints uninserted in case something tries to delete a
3012 breakpoint while we delete the inferior's threads (which would
3013 fail, since the inferior is long gone). */
3014 mark_breakpoints_out ();
3015
3016 if (inf->pid != 0)
3017 exit_inferior (inf);
3018
3019 /* Note this wipes step-resume breakpoints, so needs to be done
3020 after exit_inferior, which ends up referencing the step-resume
3021 breakpoints through clear_thread_inferior_resources. */
3022 breakpoint_init_inferior (inf_exited);
3023
3024 registers_changed ();
3025
3026 reopen_exec_file ();
3027 reinit_frame_cache ();
3028
3029 if (deprecated_detach_hook)
3030 deprecated_detach_hook ();
3031 }
3032 \f
3033 /* Convert a normal process ID to a string. Returns the string in a
3034 static buffer. */
3035
3036 std::string
3037 normal_pid_to_str (ptid_t ptid)
3038 {
3039 return string_printf ("process %d", ptid.pid ());
3040 }
3041
3042 static std::string
3043 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3044 {
3045 return normal_pid_to_str (ptid);
3046 }
3047
3048 /* Error-catcher for target_find_memory_regions. */
3049 static int
3050 dummy_find_memory_regions (struct target_ops *self,
3051 find_memory_region_ftype ignore1, void *ignore2)
3052 {
3053 error (_("Command not implemented for this target."));
3054 return 0;
3055 }
3056
3057 /* Error-catcher for target_make_corefile_notes. */
3058 static char *
3059 dummy_make_corefile_notes (struct target_ops *self,
3060 bfd *ignore1, int *ignore2)
3061 {
3062 error (_("Command not implemented for this target."));
3063 return NULL;
3064 }
3065
3066 #include "target-delegates.c"
3067
3068 /* The initial current target, so that there is always a semi-valid
3069 current target. */
3070
3071 static dummy_target the_dummy_target;
3072
3073 /* See target.h. */
3074
3075 target_ops *
3076 get_dummy_target ()
3077 {
3078 return &the_dummy_target;
3079 }
3080
3081 static const target_info dummy_target_info = {
3082 "None",
3083 N_("None"),
3084 ""
3085 };
3086
3087 strata
3088 dummy_target::stratum () const
3089 {
3090 return dummy_stratum;
3091 }
3092
3093 strata
3094 debug_target::stratum () const
3095 {
3096 return debug_stratum;
3097 }
3098
3099 const target_info &
3100 dummy_target::info () const
3101 {
3102 return dummy_target_info;
3103 }
3104
3105 const target_info &
3106 debug_target::info () const
3107 {
3108 return beneath ()->info ();
3109 }
3110
3111 \f
3112
3113 void
3114 target_close (struct target_ops *targ)
3115 {
3116 gdb_assert (!target_is_pushed (targ));
3117
3118 fileio_handles_invalidate_target (targ);
3119
3120 targ->close ();
3121
3122 if (targetdebug)
3123 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3124 }
3125
3126 int
3127 target_thread_alive (ptid_t ptid)
3128 {
3129 return current_top_target ()->thread_alive (ptid);
3130 }
3131
3132 void
3133 target_update_thread_list (void)
3134 {
3135 current_top_target ()->update_thread_list ();
3136 }
3137
3138 void
3139 target_stop (ptid_t ptid)
3140 {
3141 if (!may_stop)
3142 {
3143 warning (_("May not interrupt or stop the target, ignoring attempt"));
3144 return;
3145 }
3146
3147 current_top_target ()->stop (ptid);
3148 }
3149
3150 void
3151 target_interrupt ()
3152 {
3153 if (!may_stop)
3154 {
3155 warning (_("May not interrupt or stop the target, ignoring attempt"));
3156 return;
3157 }
3158
3159 current_top_target ()->interrupt ();
3160 }
3161
3162 /* See target.h. */
3163
3164 void
3165 target_pass_ctrlc (void)
3166 {
3167 /* Pass the Ctrl-C to the first target that has a thread
3168 running. */
3169 for (inferior *inf : all_inferiors ())
3170 {
3171 target_ops *proc_target = inf->process_target ();
3172 if (proc_target == NULL)
3173 continue;
3174
3175 for (thread_info *thr : inf->non_exited_threads ())
3176 {
3177 /* A thread can be THREAD_STOPPED and executing, while
3178 running an infcall. */
3179 if (thr->state == THREAD_RUNNING || thr->executing)
3180 {
3181 /* We can get here quite deep in target layers. Avoid
3182 switching thread context or anything that would
3183 communicate with the target (e.g., to fetch
3184 registers), or flushing e.g., the frame cache. We
3185 just switch inferior in order to be able to call
3186 through the target_stack. */
3187 scoped_restore_current_inferior restore_inferior;
3188 set_current_inferior (inf);
3189 current_top_target ()->pass_ctrlc ();
3190 return;
3191 }
3192 }
3193 }
3194 }
3195
3196 /* See target.h. */
3197
3198 void
3199 default_target_pass_ctrlc (struct target_ops *ops)
3200 {
3201 target_interrupt ();
3202 }
3203
3204 /* See target/target.h. */
3205
3206 void
3207 target_stop_and_wait (ptid_t ptid)
3208 {
3209 struct target_waitstatus status;
3210 bool was_non_stop = non_stop;
3211
3212 non_stop = true;
3213 target_stop (ptid);
3214
3215 memset (&status, 0, sizeof (status));
3216 target_wait (ptid, &status, 0);
3217
3218 non_stop = was_non_stop;
3219 }
3220
3221 /* See target/target.h. */
3222
3223 void
3224 target_continue_no_signal (ptid_t ptid)
3225 {
3226 target_resume (ptid, 0, GDB_SIGNAL_0);
3227 }
3228
3229 /* See target/target.h. */
3230
3231 void
3232 target_continue (ptid_t ptid, enum gdb_signal signal)
3233 {
3234 target_resume (ptid, 0, signal);
3235 }
3236
3237 /* Concatenate ELEM to LIST, a comma-separated list. */
3238
3239 static void
3240 str_comma_list_concat_elem (std::string *list, const char *elem)
3241 {
3242 if (!list->empty ())
3243 list->append (", ");
3244
3245 list->append (elem);
3246 }
3247
3248 /* Helper for target_options_to_string. If OPT is present in
3249 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3250 OPT is removed from TARGET_OPTIONS. */
3251
3252 static void
3253 do_option (target_wait_flags *target_options, std::string *ret,
3254 target_wait_flag opt, const char *opt_str)
3255 {
3256 if ((*target_options & opt) != 0)
3257 {
3258 str_comma_list_concat_elem (ret, opt_str);
3259 *target_options &= ~opt;
3260 }
3261 }
3262
3263 /* See target.h. */
3264
3265 std::string
3266 target_options_to_string (target_wait_flags target_options)
3267 {
3268 std::string ret;
3269
3270 #define DO_TARG_OPTION(OPT) \
3271 do_option (&target_options, &ret, OPT, #OPT)
3272
3273 DO_TARG_OPTION (TARGET_WNOHANG);
3274
3275 if (target_options != 0)
3276 str_comma_list_concat_elem (&ret, "unknown???");
3277
3278 return ret;
3279 }
3280
3281 void
3282 target_fetch_registers (struct regcache *regcache, int regno)
3283 {
3284 current_top_target ()->fetch_registers (regcache, regno);
3285 if (targetdebug)
3286 regcache->debug_print_register ("target_fetch_registers", regno);
3287 }
3288
3289 void
3290 target_store_registers (struct regcache *regcache, int regno)
3291 {
3292 if (!may_write_registers)
3293 error (_("Writing to registers is not allowed (regno %d)"), regno);
3294
3295 current_top_target ()->store_registers (regcache, regno);
3296 if (targetdebug)
3297 {
3298 regcache->debug_print_register ("target_store_registers", regno);
3299 }
3300 }
3301
3302 int
3303 target_core_of_thread (ptid_t ptid)
3304 {
3305 return current_top_target ()->core_of_thread (ptid);
3306 }
3307
3308 int
3309 simple_verify_memory (struct target_ops *ops,
3310 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3311 {
3312 LONGEST total_xfered = 0;
3313
3314 while (total_xfered < size)
3315 {
3316 ULONGEST xfered_len;
3317 enum target_xfer_status status;
3318 gdb_byte buf[1024];
3319 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3320
3321 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3322 buf, NULL, lma + total_xfered, howmuch,
3323 &xfered_len);
3324 if (status == TARGET_XFER_OK
3325 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3326 {
3327 total_xfered += xfered_len;
3328 QUIT;
3329 }
3330 else
3331 return 0;
3332 }
3333 return 1;
3334 }
3335
3336 /* Default implementation of memory verification. */
3337
3338 static int
3339 default_verify_memory (struct target_ops *self,
3340 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3341 {
3342 /* Start over from the top of the target stack. */
3343 return simple_verify_memory (current_top_target (),
3344 data, memaddr, size);
3345 }
3346
3347 int
3348 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3349 {
3350 return current_top_target ()->verify_memory (data, memaddr, size);
3351 }
3352
3353 /* The documentation for this function is in its prototype declaration in
3354 target.h. */
3355
3356 int
3357 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3358 enum target_hw_bp_type rw)
3359 {
3360 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3361 }
3362
3363 /* The documentation for this function is in its prototype declaration in
3364 target.h. */
3365
3366 int
3367 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3368 enum target_hw_bp_type rw)
3369 {
3370 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3371 }
3372
3373 /* The documentation for this function is in its prototype declaration
3374 in target.h. */
3375
3376 int
3377 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3378 {
3379 return current_top_target ()->masked_watch_num_registers (addr, mask);
3380 }
3381
3382 /* The documentation for this function is in its prototype declaration
3383 in target.h. */
3384
3385 int
3386 target_ranged_break_num_registers (void)
3387 {
3388 return current_top_target ()->ranged_break_num_registers ();
3389 }
3390
3391 /* See target.h. */
3392
3393 struct btrace_target_info *
3394 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3395 {
3396 return current_top_target ()->enable_btrace (ptid, conf);
3397 }
3398
3399 /* See target.h. */
3400
3401 void
3402 target_disable_btrace (struct btrace_target_info *btinfo)
3403 {
3404 current_top_target ()->disable_btrace (btinfo);
3405 }
3406
3407 /* See target.h. */
3408
3409 void
3410 target_teardown_btrace (struct btrace_target_info *btinfo)
3411 {
3412 current_top_target ()->teardown_btrace (btinfo);
3413 }
3414
3415 /* See target.h. */
3416
3417 enum btrace_error
3418 target_read_btrace (struct btrace_data *btrace,
3419 struct btrace_target_info *btinfo,
3420 enum btrace_read_type type)
3421 {
3422 return current_top_target ()->read_btrace (btrace, btinfo, type);
3423 }
3424
3425 /* See target.h. */
3426
3427 const struct btrace_config *
3428 target_btrace_conf (const struct btrace_target_info *btinfo)
3429 {
3430 return current_top_target ()->btrace_conf (btinfo);
3431 }
3432
3433 /* See target.h. */
3434
3435 void
3436 target_stop_recording (void)
3437 {
3438 current_top_target ()->stop_recording ();
3439 }
3440
3441 /* See target.h. */
3442
3443 void
3444 target_save_record (const char *filename)
3445 {
3446 current_top_target ()->save_record (filename);
3447 }
3448
3449 /* See target.h. */
3450
3451 int
3452 target_supports_delete_record ()
3453 {
3454 return current_top_target ()->supports_delete_record ();
3455 }
3456
3457 /* See target.h. */
3458
3459 void
3460 target_delete_record (void)
3461 {
3462 current_top_target ()->delete_record ();
3463 }
3464
3465 /* See target.h. */
3466
3467 enum record_method
3468 target_record_method (ptid_t ptid)
3469 {
3470 return current_top_target ()->record_method (ptid);
3471 }
3472
3473 /* See target.h. */
3474
3475 int
3476 target_record_is_replaying (ptid_t ptid)
3477 {
3478 return current_top_target ()->record_is_replaying (ptid);
3479 }
3480
3481 /* See target.h. */
3482
3483 int
3484 target_record_will_replay (ptid_t ptid, int dir)
3485 {
3486 return current_top_target ()->record_will_replay (ptid, dir);
3487 }
3488
3489 /* See target.h. */
3490
3491 void
3492 target_record_stop_replaying (void)
3493 {
3494 current_top_target ()->record_stop_replaying ();
3495 }
3496
3497 /* See target.h. */
3498
3499 void
3500 target_goto_record_begin (void)
3501 {
3502 current_top_target ()->goto_record_begin ();
3503 }
3504
3505 /* See target.h. */
3506
3507 void
3508 target_goto_record_end (void)
3509 {
3510 current_top_target ()->goto_record_end ();
3511 }
3512
3513 /* See target.h. */
3514
3515 void
3516 target_goto_record (ULONGEST insn)
3517 {
3518 current_top_target ()->goto_record (insn);
3519 }
3520
3521 /* See target.h. */
3522
3523 void
3524 target_insn_history (int size, gdb_disassembly_flags flags)
3525 {
3526 current_top_target ()->insn_history (size, flags);
3527 }
3528
3529 /* See target.h. */
3530
3531 void
3532 target_insn_history_from (ULONGEST from, int size,
3533 gdb_disassembly_flags flags)
3534 {
3535 current_top_target ()->insn_history_from (from, size, flags);
3536 }
3537
3538 /* See target.h. */
3539
3540 void
3541 target_insn_history_range (ULONGEST begin, ULONGEST end,
3542 gdb_disassembly_flags flags)
3543 {
3544 current_top_target ()->insn_history_range (begin, end, flags);
3545 }
3546
3547 /* See target.h. */
3548
3549 void
3550 target_call_history (int size, record_print_flags flags)
3551 {
3552 current_top_target ()->call_history (size, flags);
3553 }
3554
3555 /* See target.h. */
3556
3557 void
3558 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3559 {
3560 current_top_target ()->call_history_from (begin, size, flags);
3561 }
3562
3563 /* See target.h. */
3564
3565 void
3566 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3567 {
3568 current_top_target ()->call_history_range (begin, end, flags);
3569 }
3570
3571 /* See target.h. */
3572
3573 const struct frame_unwind *
3574 target_get_unwinder (void)
3575 {
3576 return current_top_target ()->get_unwinder ();
3577 }
3578
3579 /* See target.h. */
3580
3581 const struct frame_unwind *
3582 target_get_tailcall_unwinder (void)
3583 {
3584 return current_top_target ()->get_tailcall_unwinder ();
3585 }
3586
3587 /* See target.h. */
3588
3589 void
3590 target_prepare_to_generate_core (void)
3591 {
3592 current_top_target ()->prepare_to_generate_core ();
3593 }
3594
3595 /* See target.h. */
3596
3597 void
3598 target_done_generating_core (void)
3599 {
3600 current_top_target ()->done_generating_core ();
3601 }
3602
3603 \f
3604
3605 static char targ_desc[] =
3606 "Names of targets and files being debugged.\nShows the entire \
3607 stack of targets currently in use (including the exec-file,\n\
3608 core-file, and process, if any), as well as the symbol file name.";
3609
3610 static void
3611 default_rcmd (struct target_ops *self, const char *command,
3612 struct ui_file *output)
3613 {
3614 error (_("\"monitor\" command not supported by this target."));
3615 }
3616
3617 static void
3618 do_monitor_command (const char *cmd, int from_tty)
3619 {
3620 target_rcmd (cmd, gdb_stdtarg);
3621 }
3622
3623 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3624 ignored. */
3625
3626 void
3627 flash_erase_command (const char *cmd, int from_tty)
3628 {
3629 /* Used to communicate termination of flash operations to the target. */
3630 bool found_flash_region = false;
3631 struct gdbarch *gdbarch = target_gdbarch ();
3632
3633 std::vector<mem_region> mem_regions = target_memory_map ();
3634
3635 /* Iterate over all memory regions. */
3636 for (const mem_region &m : mem_regions)
3637 {
3638 /* Is this a flash memory region? */
3639 if (m.attrib.mode == MEM_FLASH)
3640 {
3641 found_flash_region = true;
3642 target_flash_erase (m.lo, m.hi - m.lo);
3643
3644 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3645
3646 current_uiout->message (_("Erasing flash memory region at address "));
3647 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3648 current_uiout->message (", size = ");
3649 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3650 current_uiout->message ("\n");
3651 }
3652 }
3653
3654 /* Did we do any flash operations? If so, we need to finalize them. */
3655 if (found_flash_region)
3656 target_flash_done ();
3657 else
3658 current_uiout->message (_("No flash memory regions found.\n"));
3659 }
3660
3661 /* Print the name of each layers of our target stack. */
3662
3663 static void
3664 maintenance_print_target_stack (const char *cmd, int from_tty)
3665 {
3666 printf_filtered (_("The current target stack is:\n"));
3667
3668 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3669 {
3670 if (t->stratum () == debug_stratum)
3671 continue;
3672 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3673 }
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_async (int enable)
3680 {
3681 infrun_async (enable);
3682 current_top_target ()->async (enable);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_thread_events (int enable)
3689 {
3690 current_top_target ()->thread_events (enable);
3691 }
3692
3693 /* Controls if targets can report that they can/are async. This is
3694 just for maintainers to use when debugging gdb. */
3695 bool target_async_permitted = true;
3696
3697 /* The set command writes to this variable. If the inferior is
3698 executing, target_async_permitted is *not* updated. */
3699 static bool target_async_permitted_1 = true;
3700
3701 static void
3702 maint_set_target_async_command (const char *args, int from_tty,
3703 struct cmd_list_element *c)
3704 {
3705 if (have_live_inferiors ())
3706 {
3707 target_async_permitted_1 = target_async_permitted;
3708 error (_("Cannot change this setting while the inferior is running."));
3709 }
3710
3711 target_async_permitted = target_async_permitted_1;
3712 }
3713
3714 static void
3715 maint_show_target_async_command (struct ui_file *file, int from_tty,
3716 struct cmd_list_element *c,
3717 const char *value)
3718 {
3719 fprintf_filtered (file,
3720 _("Controlling the inferior in "
3721 "asynchronous mode is %s.\n"), value);
3722 }
3723
3724 /* Return true if the target operates in non-stop mode even with "set
3725 non-stop off". */
3726
3727 static int
3728 target_always_non_stop_p (void)
3729 {
3730 return current_top_target ()->always_non_stop_p ();
3731 }
3732
3733 /* See target.h. */
3734
3735 int
3736 target_is_non_stop_p (void)
3737 {
3738 return (non_stop
3739 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3740 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3741 && target_always_non_stop_p ()));
3742 }
3743
3744 /* See target.h. */
3745
3746 bool
3747 exists_non_stop_target ()
3748 {
3749 if (target_is_non_stop_p ())
3750 return true;
3751
3752 scoped_restore_current_thread restore_thread;
3753
3754 for (inferior *inf : all_inferiors ())
3755 {
3756 switch_to_inferior_no_thread (inf);
3757 if (target_is_non_stop_p ())
3758 return true;
3759 }
3760
3761 return false;
3762 }
3763
3764 /* Controls if targets can report that they always run in non-stop
3765 mode. This is just for maintainers to use when debugging gdb. */
3766 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3767
3768 /* The set command writes to this variable. If the inferior is
3769 executing, target_non_stop_enabled is *not* updated. */
3770 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3771
3772 /* Implementation of "maint set target-non-stop". */
3773
3774 static void
3775 maint_set_target_non_stop_command (const char *args, int from_tty,
3776 struct cmd_list_element *c)
3777 {
3778 if (have_live_inferiors ())
3779 {
3780 target_non_stop_enabled_1 = target_non_stop_enabled;
3781 error (_("Cannot change this setting while the inferior is running."));
3782 }
3783
3784 target_non_stop_enabled = target_non_stop_enabled_1;
3785 }
3786
3787 /* Implementation of "maint show target-non-stop". */
3788
3789 static void
3790 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3791 struct cmd_list_element *c,
3792 const char *value)
3793 {
3794 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3795 fprintf_filtered (file,
3796 _("Whether the target is always in non-stop mode "
3797 "is %s (currently %s).\n"), value,
3798 target_always_non_stop_p () ? "on" : "off");
3799 else
3800 fprintf_filtered (file,
3801 _("Whether the target is always in non-stop mode "
3802 "is %s.\n"), value);
3803 }
3804
3805 /* Temporary copies of permission settings. */
3806
3807 static bool may_write_registers_1 = true;
3808 static bool may_write_memory_1 = true;
3809 static bool may_insert_breakpoints_1 = true;
3810 static bool may_insert_tracepoints_1 = true;
3811 static bool may_insert_fast_tracepoints_1 = true;
3812 static bool may_stop_1 = true;
3813
3814 /* Make the user-set values match the real values again. */
3815
3816 void
3817 update_target_permissions (void)
3818 {
3819 may_write_registers_1 = may_write_registers;
3820 may_write_memory_1 = may_write_memory;
3821 may_insert_breakpoints_1 = may_insert_breakpoints;
3822 may_insert_tracepoints_1 = may_insert_tracepoints;
3823 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3824 may_stop_1 = may_stop;
3825 }
3826
3827 /* The one function handles (most of) the permission flags in the same
3828 way. */
3829
3830 static void
3831 set_target_permissions (const char *args, int from_tty,
3832 struct cmd_list_element *c)
3833 {
3834 if (target_has_execution ())
3835 {
3836 update_target_permissions ();
3837 error (_("Cannot change this setting while the inferior is running."));
3838 }
3839
3840 /* Make the real values match the user-changed values. */
3841 may_write_registers = may_write_registers_1;
3842 may_insert_breakpoints = may_insert_breakpoints_1;
3843 may_insert_tracepoints = may_insert_tracepoints_1;
3844 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3845 may_stop = may_stop_1;
3846 update_observer_mode ();
3847 }
3848
3849 /* Set memory write permission independently of observer mode. */
3850
3851 static void
3852 set_write_memory_permission (const char *args, int from_tty,
3853 struct cmd_list_element *c)
3854 {
3855 /* Make the real values match the user-changed values. */
3856 may_write_memory = may_write_memory_1;
3857 update_observer_mode ();
3858 }
3859
3860 void _initialize_target ();
3861
3862 void
3863 _initialize_target ()
3864 {
3865 the_debug_target = new debug_target ();
3866
3867 add_info ("target", info_target_command, targ_desc);
3868 add_info ("files", info_target_command, targ_desc);
3869
3870 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3871 Set target debugging."), _("\
3872 Show target debugging."), _("\
3873 When non-zero, target debugging is enabled. Higher numbers are more\n\
3874 verbose."),
3875 set_targetdebug,
3876 show_targetdebug,
3877 &setdebuglist, &showdebuglist);
3878
3879 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3880 &trust_readonly, _("\
3881 Set mode for reading from readonly sections."), _("\
3882 Show mode for reading from readonly sections."), _("\
3883 When this mode is on, memory reads from readonly sections (such as .text)\n\
3884 will be read from the object file instead of from the target. This will\n\
3885 result in significant performance improvement for remote targets."),
3886 NULL,
3887 show_trust_readonly,
3888 &setlist, &showlist);
3889
3890 add_com ("monitor", class_obscure, do_monitor_command,
3891 _("Send a command to the remote monitor (remote targets only)."));
3892
3893 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3894 _("Print the name of each layer of the internal target stack."),
3895 &maintenanceprintlist);
3896
3897 add_setshow_boolean_cmd ("target-async", no_class,
3898 &target_async_permitted_1, _("\
3899 Set whether gdb controls the inferior in asynchronous mode."), _("\
3900 Show whether gdb controls the inferior in asynchronous mode."), _("\
3901 Tells gdb whether to control the inferior in asynchronous mode."),
3902 maint_set_target_async_command,
3903 maint_show_target_async_command,
3904 &maintenance_set_cmdlist,
3905 &maintenance_show_cmdlist);
3906
3907 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
3908 &target_non_stop_enabled_1, _("\
3909 Set whether gdb always controls the inferior in non-stop mode."), _("\
3910 Show whether gdb always controls the inferior in non-stop mode."), _("\
3911 Tells gdb whether to control the inferior in non-stop mode."),
3912 maint_set_target_non_stop_command,
3913 maint_show_target_non_stop_command,
3914 &maintenance_set_cmdlist,
3915 &maintenance_show_cmdlist);
3916
3917 add_setshow_boolean_cmd ("may-write-registers", class_support,
3918 &may_write_registers_1, _("\
3919 Set permission to write into registers."), _("\
3920 Show permission to write into registers."), _("\
3921 When this permission is on, GDB may write into the target's registers.\n\
3922 Otherwise, any sort of write attempt will result in an error."),
3923 set_target_permissions, NULL,
3924 &setlist, &showlist);
3925
3926 add_setshow_boolean_cmd ("may-write-memory", class_support,
3927 &may_write_memory_1, _("\
3928 Set permission to write into target memory."), _("\
3929 Show permission to write into target memory."), _("\
3930 When this permission is on, GDB may write into the target's memory.\n\
3931 Otherwise, any sort of write attempt will result in an error."),
3932 set_write_memory_permission, NULL,
3933 &setlist, &showlist);
3934
3935 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3936 &may_insert_breakpoints_1, _("\
3937 Set permission to insert breakpoints in the target."), _("\
3938 Show permission to insert breakpoints in the target."), _("\
3939 When this permission is on, GDB may insert breakpoints in the program.\n\
3940 Otherwise, any sort of insertion attempt will result in an error."),
3941 set_target_permissions, NULL,
3942 &setlist, &showlist);
3943
3944 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3945 &may_insert_tracepoints_1, _("\
3946 Set permission to insert tracepoints in the target."), _("\
3947 Show permission to insert tracepoints in the target."), _("\
3948 When this permission is on, GDB may insert tracepoints in the program.\n\
3949 Otherwise, any sort of insertion attempt will result in an error."),
3950 set_target_permissions, NULL,
3951 &setlist, &showlist);
3952
3953 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3954 &may_insert_fast_tracepoints_1, _("\
3955 Set permission to insert fast tracepoints in the target."), _("\
3956 Show permission to insert fast tracepoints in the target."), _("\
3957 When this permission is on, GDB may insert fast tracepoints.\n\
3958 Otherwise, any sort of insertion attempt will result in an error."),
3959 set_target_permissions, NULL,
3960 &setlist, &showlist);
3961
3962 add_setshow_boolean_cmd ("may-interrupt", class_support,
3963 &may_stop_1, _("\
3964 Set permission to interrupt or signal the target."), _("\
3965 Show permission to interrupt or signal the target."), _("\
3966 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3967 Otherwise, any attempt to interrupt or stop will be ignored."),
3968 set_target_permissions, NULL,
3969 &setlist, &showlist);
3970
3971 add_com ("flash-erase", no_class, flash_erase_command,
3972 _("Erase all flash memory regions."));
3973
3974 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3975 &auto_connect_native_target, _("\
3976 Set whether GDB may automatically connect to the native target."), _("\
3977 Show whether GDB may automatically connect to the native target."), _("\
3978 When on, and GDB is not connected to a target yet, GDB\n\
3979 attempts \"run\" and other commands with the native target."),
3980 NULL, show_auto_connect_native_target,
3981 &setlist, &showlist);
3982 }
This page took 0.106228 seconds and 5 git commands to generate.