convert to_execution_direction
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static void tcomplain (void) ATTRIBUTE_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_minus_one (void);
67
68 static void *return_null (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static target_xfer_partial_ftype default_xfer_partial;
77
78 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
79 ptid_t ptid);
80
81 static int dummy_find_memory_regions (struct target_ops *self,
82 find_memory_region_ftype ignore1,
83 void *ignore2);
84
85 static char *dummy_make_corefile_notes (struct target_ops *self,
86 bfd *ignore1, int *ignore2);
87
88 static int find_default_can_async_p (struct target_ops *ignore);
89
90 static int find_default_is_async_p (struct target_ops *ignore);
91
92 static enum exec_direction_kind default_execution_direction
93 (struct target_ops *self);
94
95 #include "target-delegates.c"
96
97 static void init_dummy_target (void);
98
99 static struct target_ops debug_target;
100
101 static void debug_to_open (char *, int);
102
103 static void debug_to_prepare_to_store (struct target_ops *self,
104 struct regcache *);
105
106 static void debug_to_files_info (struct target_ops *);
107
108 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
115 int, int, int);
116
117 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
118 struct gdbarch *,
119 struct bp_target_info *);
120
121 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
122 struct gdbarch *,
123 struct bp_target_info *);
124
125 static int debug_to_insert_watchpoint (struct target_ops *self,
126 CORE_ADDR, int, int,
127 struct expression *);
128
129 static int debug_to_remove_watchpoint (struct target_ops *self,
130 CORE_ADDR, int, int,
131 struct expression *);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
136 CORE_ADDR, CORE_ADDR, int);
137
138 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
139 CORE_ADDR, int);
140
141 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
142 CORE_ADDR, int, int,
143 struct expression *);
144
145 static void debug_to_terminal_init (struct target_ops *self);
146
147 static void debug_to_terminal_inferior (struct target_ops *self);
148
149 static void debug_to_terminal_ours_for_output (struct target_ops *self);
150
151 static void debug_to_terminal_save_ours (struct target_ops *self);
152
153 static void debug_to_terminal_ours (struct target_ops *self);
154
155 static void debug_to_load (struct target_ops *self, char *, int);
156
157 static int debug_to_can_run (struct target_ops *self);
158
159 static void debug_to_stop (struct target_ops *self, ptid_t);
160
161 /* Pointer to array of target architecture structures; the size of the
162 array; the current index into the array; the allocated size of the
163 array. */
164 struct target_ops **target_structs;
165 unsigned target_struct_size;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* These globals control whether GDB attempts to perform these
198 operations; they are useful for targets that need to prevent
199 inadvertant disruption, such as in non-stop mode. */
200
201 int may_write_registers = 1;
202
203 int may_write_memory = 1;
204
205 int may_insert_breakpoints = 1;
206
207 int may_insert_tracepoints = 1;
208
209 int may_insert_fast_tracepoints = 1;
210
211 int may_stop = 1;
212
213 /* Non-zero if we want to see trace of target level stuff. */
214
215 static unsigned int targetdebug = 0;
216 static void
217 show_targetdebug (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
221 }
222
223 static void setup_target_debug (void);
224
225 /* The user just typed 'target' without the name of a target. */
226
227 static void
228 target_command (char *arg, int from_tty)
229 {
230 fputs_filtered ("Argument required (target name). Try `help target'\n",
231 gdb_stdout);
232 }
233
234 /* Default target_has_* methods for process_stratum targets. */
235
236 int
237 default_child_has_all_memory (struct target_ops *ops)
238 {
239 /* If no inferior selected, then we can't read memory here. */
240 if (ptid_equal (inferior_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246 int
247 default_child_has_memory (struct target_ops *ops)
248 {
249 /* If no inferior selected, then we can't read memory here. */
250 if (ptid_equal (inferior_ptid, null_ptid))
251 return 0;
252
253 return 1;
254 }
255
256 int
257 default_child_has_stack (struct target_ops *ops)
258 {
259 /* If no inferior selected, there's no stack. */
260 if (ptid_equal (inferior_ptid, null_ptid))
261 return 0;
262
263 return 1;
264 }
265
266 int
267 default_child_has_registers (struct target_ops *ops)
268 {
269 /* Can't read registers from no inferior. */
270 if (ptid_equal (inferior_ptid, null_ptid))
271 return 0;
272
273 return 1;
274 }
275
276 int
277 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
278 {
279 /* If there's no thread selected, then we can't make it run through
280 hoops. */
281 if (ptid_equal (the_ptid, null_ptid))
282 return 0;
283
284 return 1;
285 }
286
287
288 int
289 target_has_all_memory_1 (void)
290 {
291 struct target_ops *t;
292
293 for (t = current_target.beneath; t != NULL; t = t->beneath)
294 if (t->to_has_all_memory (t))
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_memory_1 (void)
302 {
303 struct target_ops *t;
304
305 for (t = current_target.beneath; t != NULL; t = t->beneath)
306 if (t->to_has_memory (t))
307 return 1;
308
309 return 0;
310 }
311
312 int
313 target_has_stack_1 (void)
314 {
315 struct target_ops *t;
316
317 for (t = current_target.beneath; t != NULL; t = t->beneath)
318 if (t->to_has_stack (t))
319 return 1;
320
321 return 0;
322 }
323
324 int
325 target_has_registers_1 (void)
326 {
327 struct target_ops *t;
328
329 for (t = current_target.beneath; t != NULL; t = t->beneath)
330 if (t->to_has_registers (t))
331 return 1;
332
333 return 0;
334 }
335
336 int
337 target_has_execution_1 (ptid_t the_ptid)
338 {
339 struct target_ops *t;
340
341 for (t = current_target.beneath; t != NULL; t = t->beneath)
342 if (t->to_has_execution (t, the_ptid))
343 return 1;
344
345 return 0;
346 }
347
348 int
349 target_has_execution_current (void)
350 {
351 return target_has_execution_1 (inferior_ptid);
352 }
353
354 /* Complete initialization of T. This ensures that various fields in
355 T are set, if needed by the target implementation. */
356
357 void
358 complete_target_initialization (struct target_ops *t)
359 {
360 /* Provide default values for all "must have" methods. */
361 if (t->to_xfer_partial == NULL)
362 t->to_xfer_partial = default_xfer_partial;
363
364 if (t->to_has_all_memory == NULL)
365 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
366
367 if (t->to_has_memory == NULL)
368 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_stack == NULL)
371 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_registers == NULL)
374 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_execution == NULL)
377 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
378
379 install_delegators (t);
380 }
381
382 /* Add possible target architecture T to the list and add a new
383 command 'target T->to_shortname'. Set COMPLETER as the command's
384 completer if not NULL. */
385
386 void
387 add_target_with_completer (struct target_ops *t,
388 completer_ftype *completer)
389 {
390 struct cmd_list_element *c;
391
392 complete_target_initialization (t);
393
394 if (!target_structs)
395 {
396 target_struct_allocsize = DEFAULT_ALLOCSIZE;
397 target_structs = (struct target_ops **) xmalloc
398 (target_struct_allocsize * sizeof (*target_structs));
399 }
400 if (target_struct_size >= target_struct_allocsize)
401 {
402 target_struct_allocsize *= 2;
403 target_structs = (struct target_ops **)
404 xrealloc ((char *) target_structs,
405 target_struct_allocsize * sizeof (*target_structs));
406 }
407 target_structs[target_struct_size++] = t;
408
409 if (targetlist == NULL)
410 add_prefix_cmd ("target", class_run, target_command, _("\
411 Connect to a target machine or process.\n\
412 The first argument is the type or protocol of the target machine.\n\
413 Remaining arguments are interpreted by the target protocol. For more\n\
414 information on the arguments for a particular protocol, type\n\
415 `help target ' followed by the protocol name."),
416 &targetlist, "target ", 0, &cmdlist);
417 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
418 &targetlist);
419 if (completer != NULL)
420 set_cmd_completer (c, completer);
421 }
422
423 /* Add a possible target architecture to the list. */
424
425 void
426 add_target (struct target_ops *t)
427 {
428 add_target_with_completer (t, NULL);
429 }
430
431 /* See target.h. */
432
433 void
434 add_deprecated_target_alias (struct target_ops *t, char *alias)
435 {
436 struct cmd_list_element *c;
437 char *alt;
438
439 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
440 see PR cli/15104. */
441 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
442 alt = xstrprintf ("target %s", t->to_shortname);
443 deprecate_cmd (c, alt);
444 }
445
446 /* Stub functions */
447
448 void
449 target_ignore (void)
450 {
451 }
452
453 void
454 target_kill (void)
455 {
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 if (t->to_kill != NULL)
460 {
461 if (targetdebug)
462 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
463
464 t->to_kill (t);
465 return;
466 }
467
468 noprocess ();
469 }
470
471 void
472 target_load (char *arg, int from_tty)
473 {
474 target_dcache_invalidate ();
475 (*current_target.to_load) (&current_target, arg, from_tty);
476 }
477
478 void
479 target_create_inferior (char *exec_file, char *args,
480 char **env, int from_tty)
481 {
482 struct target_ops *t;
483
484 for (t = current_target.beneath; t != NULL; t = t->beneath)
485 {
486 if (t->to_create_inferior != NULL)
487 {
488 t->to_create_inferior (t, exec_file, args, env, from_tty);
489 if (targetdebug)
490 fprintf_unfiltered (gdb_stdlog,
491 "target_create_inferior (%s, %s, xxx, %d)\n",
492 exec_file, args, from_tty);
493 return;
494 }
495 }
496
497 internal_error (__FILE__, __LINE__,
498 _("could not find a target to create inferior"));
499 }
500
501 void
502 target_terminal_inferior (void)
503 {
504 /* A background resume (``run&'') should leave GDB in control of the
505 terminal. Use target_can_async_p, not target_is_async_p, since at
506 this point the target is not async yet. However, if sync_execution
507 is not set, we know it will become async prior to resume. */
508 if (target_can_async_p () && !sync_execution)
509 return;
510
511 /* If GDB is resuming the inferior in the foreground, install
512 inferior's terminal modes. */
513 (*current_target.to_terminal_inferior) (&current_target);
514 }
515
516 static int
517 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
518 struct target_ops *t)
519 {
520 errno = EIO; /* Can't read/write this location. */
521 return 0; /* No bytes handled. */
522 }
523
524 static void
525 tcomplain (void)
526 {
527 error (_("You can't do that when your target is `%s'"),
528 current_target.to_shortname);
529 }
530
531 void
532 noprocess (void)
533 {
534 error (_("You can't do that without a process to debug."));
535 }
536
537 static void
538 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
539 {
540 printf_unfiltered (_("No saved terminal information.\n"));
541 }
542
543 /* A default implementation for the to_get_ada_task_ptid target method.
544
545 This function builds the PTID by using both LWP and TID as part of
546 the PTID lwp and tid elements. The pid used is the pid of the
547 inferior_ptid. */
548
549 static ptid_t
550 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
551 {
552 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
553 }
554
555 static enum exec_direction_kind
556 default_execution_direction (struct target_ops *self)
557 {
558 if (!target_can_execute_reverse)
559 return EXEC_FORWARD;
560 else if (!target_can_async_p ())
561 return EXEC_FORWARD;
562 else
563 gdb_assert_not_reached ("\
564 to_execution_direction must be implemented for reverse async");
565 }
566
567 /* Go through the target stack from top to bottom, copying over zero
568 entries in current_target, then filling in still empty entries. In
569 effect, we are doing class inheritance through the pushed target
570 vectors.
571
572 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
573 is currently implemented, is that it discards any knowledge of
574 which target an inherited method originally belonged to.
575 Consequently, new new target methods should instead explicitly and
576 locally search the target stack for the target that can handle the
577 request. */
578
579 static void
580 update_current_target (void)
581 {
582 struct target_ops *t;
583
584 /* First, reset current's contents. */
585 memset (&current_target, 0, sizeof (current_target));
586
587 /* Install the delegators. */
588 install_delegators (&current_target);
589
590 #define INHERIT(FIELD, TARGET) \
591 if (!current_target.FIELD) \
592 current_target.FIELD = (TARGET)->FIELD
593
594 for (t = target_stack; t; t = t->beneath)
595 {
596 INHERIT (to_shortname, t);
597 INHERIT (to_longname, t);
598 INHERIT (to_doc, t);
599 /* Do not inherit to_open. */
600 /* Do not inherit to_close. */
601 /* Do not inherit to_attach. */
602 /* Do not inherit to_post_attach. */
603 INHERIT (to_attach_no_wait, t);
604 /* Do not inherit to_detach. */
605 /* Do not inherit to_disconnect. */
606 /* Do not inherit to_resume. */
607 /* Do not inherit to_wait. */
608 /* Do not inherit to_fetch_registers. */
609 /* Do not inherit to_store_registers. */
610 /* Do not inherit to_prepare_to_store. */
611 INHERIT (deprecated_xfer_memory, t);
612 /* Do not inherit to_files_info. */
613 /* Do not inherit to_insert_breakpoint. */
614 /* Do not inherit to_remove_breakpoint. */
615 /* Do not inherit to_can_use_hw_breakpoint. */
616 /* Do not inherit to_insert_hw_breakpoint. */
617 /* Do not inherit to_remove_hw_breakpoint. */
618 /* Do not inherit to_ranged_break_num_registers. */
619 /* Do not inherit to_insert_watchpoint. */
620 /* Do not inherit to_remove_watchpoint. */
621 /* Do not inherit to_insert_mask_watchpoint. */
622 /* Do not inherit to_remove_mask_watchpoint. */
623 /* Do not inherit to_stopped_data_address. */
624 INHERIT (to_have_steppable_watchpoint, t);
625 INHERIT (to_have_continuable_watchpoint, t);
626 /* Do not inherit to_stopped_by_watchpoint. */
627 /* Do not inherit to_watchpoint_addr_within_range. */
628 /* Do not inherit to_region_ok_for_hw_watchpoint. */
629 /* Do not inherit to_can_accel_watchpoint_condition. */
630 /* Do not inherit to_masked_watch_num_registers. */
631 /* Do not inherit to_terminal_init. */
632 /* Do not inherit to_terminal_inferior. */
633 /* Do not inherit to_terminal_ours_for_output. */
634 /* Do not inherit to_terminal_ours. */
635 /* Do not inherit to_terminal_save_ours. */
636 /* Do not inherit to_terminal_info. */
637 /* Do not inherit to_kill. */
638 /* Do not inherit to_load. */
639 /* Do no inherit to_create_inferior. */
640 /* Do not inherit to_post_startup_inferior. */
641 /* Do not inherit to_insert_fork_catchpoint. */
642 /* Do not inherit to_remove_fork_catchpoint. */
643 /* Do not inherit to_insert_vfork_catchpoint. */
644 /* Do not inherit to_remove_vfork_catchpoint. */
645 /* Do not inherit to_follow_fork. */
646 /* Do not inherit to_insert_exec_catchpoint. */
647 /* Do not inherit to_remove_exec_catchpoint. */
648 /* Do not inherit to_set_syscall_catchpoint. */
649 /* Do not inherit to_has_exited. */
650 /* Do not inherit to_mourn_inferior. */
651 INHERIT (to_can_run, t);
652 /* Do not inherit to_pass_signals. */
653 /* Do not inherit to_program_signals. */
654 /* Do not inherit to_thread_alive. */
655 /* Do not inherit to_find_new_threads. */
656 /* Do not inherit to_pid_to_str. */
657 /* Do not inherit to_extra_thread_info. */
658 /* Do not inherit to_thread_name. */
659 INHERIT (to_stop, t);
660 /* Do not inherit to_xfer_partial. */
661 /* Do not inherit to_rcmd. */
662 /* Do not inherit to_pid_to_exec_file. */
663 /* Do not inherit to_log_command. */
664 INHERIT (to_stratum, t);
665 /* Do not inherit to_has_all_memory. */
666 /* Do not inherit to_has_memory. */
667 /* Do not inherit to_has_stack. */
668 /* Do not inherit to_has_registers. */
669 /* Do not inherit to_has_execution. */
670 INHERIT (to_has_thread_control, t);
671 /* Do not inherit to_can_async_p. */
672 /* Do not inherit to_is_async_p. */
673 /* Do not inherit to_async. */
674 /* Do not inherit to_find_memory_regions. */
675 /* Do not inherit to_make_corefile_notes. */
676 /* Do not inherit to_get_bookmark. */
677 /* Do not inherit to_goto_bookmark. */
678 /* Do not inherit to_get_thread_local_address. */
679 /* Do not inherit to_can_execute_reverse. */
680 /* Do not inherit to_execution_direction. */
681 INHERIT (to_thread_architecture, t);
682 /* Do not inherit to_read_description. */
683 INHERIT (to_get_ada_task_ptid, t);
684 /* Do not inherit to_search_memory. */
685 INHERIT (to_supports_multi_process, t);
686 INHERIT (to_supports_enable_disable_tracepoint, t);
687 INHERIT (to_supports_string_tracing, t);
688 INHERIT (to_trace_init, t);
689 INHERIT (to_download_tracepoint, t);
690 INHERIT (to_can_download_tracepoint, t);
691 INHERIT (to_download_trace_state_variable, t);
692 INHERIT (to_enable_tracepoint, t);
693 INHERIT (to_disable_tracepoint, t);
694 INHERIT (to_trace_set_readonly_regions, t);
695 INHERIT (to_trace_start, t);
696 INHERIT (to_get_trace_status, t);
697 INHERIT (to_get_tracepoint_status, t);
698 INHERIT (to_trace_stop, t);
699 INHERIT (to_trace_find, t);
700 INHERIT (to_get_trace_state_variable_value, t);
701 INHERIT (to_save_trace_data, t);
702 INHERIT (to_upload_tracepoints, t);
703 INHERIT (to_upload_trace_state_variables, t);
704 INHERIT (to_get_raw_trace_data, t);
705 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
706 INHERIT (to_set_disconnected_tracing, t);
707 INHERIT (to_set_circular_trace_buffer, t);
708 INHERIT (to_set_trace_buffer_size, t);
709 INHERIT (to_set_trace_notes, t);
710 INHERIT (to_get_tib_address, t);
711 INHERIT (to_set_permissions, t);
712 INHERIT (to_static_tracepoint_marker_at, t);
713 INHERIT (to_static_tracepoint_markers_by_strid, t);
714 INHERIT (to_traceframe_info, t);
715 INHERIT (to_use_agent, t);
716 INHERIT (to_can_use_agent, t);
717 INHERIT (to_augmented_libraries_svr4_read, t);
718 INHERIT (to_magic, t);
719 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
720 INHERIT (to_can_run_breakpoint_commands, t);
721 /* Do not inherit to_memory_map. */
722 /* Do not inherit to_flash_erase. */
723 /* Do not inherit to_flash_done. */
724 }
725 #undef INHERIT
726
727 /* Clean up a target struct so it no longer has any zero pointers in
728 it. Some entries are defaulted to a method that print an error,
729 others are hard-wired to a standard recursive default. */
730
731 #define de_fault(field, value) \
732 if (!current_target.field) \
733 current_target.field = value
734
735 de_fault (to_open,
736 (void (*) (char *, int))
737 tcomplain);
738 de_fault (to_close,
739 (void (*) (struct target_ops *))
740 target_ignore);
741 de_fault (deprecated_xfer_memory,
742 (int (*) (CORE_ADDR, gdb_byte *, int, int,
743 struct mem_attrib *, struct target_ops *))
744 nomemory);
745 de_fault (to_can_run,
746 (int (*) (struct target_ops *))
747 return_zero);
748 de_fault (to_stop,
749 (void (*) (struct target_ops *, ptid_t))
750 target_ignore);
751 de_fault (to_thread_architecture,
752 default_thread_architecture);
753 current_target.to_read_description = NULL;
754 de_fault (to_get_ada_task_ptid,
755 (ptid_t (*) (struct target_ops *, long, long))
756 default_get_ada_task_ptid);
757 de_fault (to_supports_multi_process,
758 (int (*) (struct target_ops *))
759 return_zero);
760 de_fault (to_supports_enable_disable_tracepoint,
761 (int (*) (struct target_ops *))
762 return_zero);
763 de_fault (to_supports_string_tracing,
764 (int (*) (struct target_ops *))
765 return_zero);
766 de_fault (to_trace_init,
767 (void (*) (struct target_ops *))
768 tcomplain);
769 de_fault (to_download_tracepoint,
770 (void (*) (struct target_ops *, struct bp_location *))
771 tcomplain);
772 de_fault (to_can_download_tracepoint,
773 (int (*) (struct target_ops *))
774 return_zero);
775 de_fault (to_download_trace_state_variable,
776 (void (*) (struct target_ops *, struct trace_state_variable *))
777 tcomplain);
778 de_fault (to_enable_tracepoint,
779 (void (*) (struct target_ops *, struct bp_location *))
780 tcomplain);
781 de_fault (to_disable_tracepoint,
782 (void (*) (struct target_ops *, struct bp_location *))
783 tcomplain);
784 de_fault (to_trace_set_readonly_regions,
785 (void (*) (struct target_ops *))
786 tcomplain);
787 de_fault (to_trace_start,
788 (void (*) (struct target_ops *))
789 tcomplain);
790 de_fault (to_get_trace_status,
791 (int (*) (struct target_ops *, struct trace_status *))
792 return_minus_one);
793 de_fault (to_get_tracepoint_status,
794 (void (*) (struct target_ops *, struct breakpoint *,
795 struct uploaded_tp *))
796 tcomplain);
797 de_fault (to_trace_stop,
798 (void (*) (struct target_ops *))
799 tcomplain);
800 de_fault (to_trace_find,
801 (int (*) (struct target_ops *,
802 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
803 return_minus_one);
804 de_fault (to_get_trace_state_variable_value,
805 (int (*) (struct target_ops *, int, LONGEST *))
806 return_zero);
807 de_fault (to_save_trace_data,
808 (int (*) (struct target_ops *, const char *))
809 tcomplain);
810 de_fault (to_upload_tracepoints,
811 (int (*) (struct target_ops *, struct uploaded_tp **))
812 return_zero);
813 de_fault (to_upload_trace_state_variables,
814 (int (*) (struct target_ops *, struct uploaded_tsv **))
815 return_zero);
816 de_fault (to_get_raw_trace_data,
817 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
818 tcomplain);
819 de_fault (to_get_min_fast_tracepoint_insn_len,
820 (int (*) (struct target_ops *))
821 return_minus_one);
822 de_fault (to_set_disconnected_tracing,
823 (void (*) (struct target_ops *, int))
824 target_ignore);
825 de_fault (to_set_circular_trace_buffer,
826 (void (*) (struct target_ops *, int))
827 target_ignore);
828 de_fault (to_set_trace_buffer_size,
829 (void (*) (struct target_ops *, LONGEST))
830 target_ignore);
831 de_fault (to_set_trace_notes,
832 (int (*) (struct target_ops *,
833 const char *, const char *, const char *))
834 return_zero);
835 de_fault (to_get_tib_address,
836 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
837 tcomplain);
838 de_fault (to_set_permissions,
839 (void (*) (struct target_ops *))
840 target_ignore);
841 de_fault (to_static_tracepoint_marker_at,
842 (int (*) (struct target_ops *,
843 CORE_ADDR, struct static_tracepoint_marker *))
844 return_zero);
845 de_fault (to_static_tracepoint_markers_by_strid,
846 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
847 const char *))
848 tcomplain);
849 de_fault (to_traceframe_info,
850 (struct traceframe_info * (*) (struct target_ops *))
851 return_null);
852 de_fault (to_supports_evaluation_of_breakpoint_conditions,
853 (int (*) (struct target_ops *))
854 return_zero);
855 de_fault (to_can_run_breakpoint_commands,
856 (int (*) (struct target_ops *))
857 return_zero);
858 de_fault (to_use_agent,
859 (int (*) (struct target_ops *, int))
860 tcomplain);
861 de_fault (to_can_use_agent,
862 (int (*) (struct target_ops *))
863 return_zero);
864 de_fault (to_augmented_libraries_svr4_read,
865 (int (*) (struct target_ops *))
866 return_zero);
867
868 #undef de_fault
869
870 /* Finally, position the target-stack beneath the squashed
871 "current_target". That way code looking for a non-inherited
872 target method can quickly and simply find it. */
873 current_target.beneath = target_stack;
874
875 if (targetdebug)
876 setup_target_debug ();
877 }
878
879 /* Push a new target type into the stack of the existing target accessors,
880 possibly superseding some of the existing accessors.
881
882 Rather than allow an empty stack, we always have the dummy target at
883 the bottom stratum, so we can call the function vectors without
884 checking them. */
885
886 void
887 push_target (struct target_ops *t)
888 {
889 struct target_ops **cur;
890
891 /* Check magic number. If wrong, it probably means someone changed
892 the struct definition, but not all the places that initialize one. */
893 if (t->to_magic != OPS_MAGIC)
894 {
895 fprintf_unfiltered (gdb_stderr,
896 "Magic number of %s target struct wrong\n",
897 t->to_shortname);
898 internal_error (__FILE__, __LINE__,
899 _("failed internal consistency check"));
900 }
901
902 /* Find the proper stratum to install this target in. */
903 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
904 {
905 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
906 break;
907 }
908
909 /* If there's already targets at this stratum, remove them. */
910 /* FIXME: cagney/2003-10-15: I think this should be popping all
911 targets to CUR, and not just those at this stratum level. */
912 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
913 {
914 /* There's already something at this stratum level. Close it,
915 and un-hook it from the stack. */
916 struct target_ops *tmp = (*cur);
917
918 (*cur) = (*cur)->beneath;
919 tmp->beneath = NULL;
920 target_close (tmp);
921 }
922
923 /* We have removed all targets in our stratum, now add the new one. */
924 t->beneath = (*cur);
925 (*cur) = t;
926
927 update_current_target ();
928 }
929
930 /* Remove a target_ops vector from the stack, wherever it may be.
931 Return how many times it was removed (0 or 1). */
932
933 int
934 unpush_target (struct target_ops *t)
935 {
936 struct target_ops **cur;
937 struct target_ops *tmp;
938
939 if (t->to_stratum == dummy_stratum)
940 internal_error (__FILE__, __LINE__,
941 _("Attempt to unpush the dummy target"));
942
943 /* Look for the specified target. Note that we assume that a target
944 can only occur once in the target stack. */
945
946 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
947 {
948 if ((*cur) == t)
949 break;
950 }
951
952 /* If we don't find target_ops, quit. Only open targets should be
953 closed. */
954 if ((*cur) == NULL)
955 return 0;
956
957 /* Unchain the target. */
958 tmp = (*cur);
959 (*cur) = (*cur)->beneath;
960 tmp->beneath = NULL;
961
962 update_current_target ();
963
964 /* Finally close the target. Note we do this after unchaining, so
965 any target method calls from within the target_close
966 implementation don't end up in T anymore. */
967 target_close (t);
968
969 return 1;
970 }
971
972 void
973 pop_all_targets_above (enum strata above_stratum)
974 {
975 while ((int) (current_target.to_stratum) > (int) above_stratum)
976 {
977 if (!unpush_target (target_stack))
978 {
979 fprintf_unfiltered (gdb_stderr,
980 "pop_all_targets couldn't find target %s\n",
981 target_stack->to_shortname);
982 internal_error (__FILE__, __LINE__,
983 _("failed internal consistency check"));
984 break;
985 }
986 }
987 }
988
989 void
990 pop_all_targets (void)
991 {
992 pop_all_targets_above (dummy_stratum);
993 }
994
995 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
996
997 int
998 target_is_pushed (struct target_ops *t)
999 {
1000 struct target_ops **cur;
1001
1002 /* Check magic number. If wrong, it probably means someone changed
1003 the struct definition, but not all the places that initialize one. */
1004 if (t->to_magic != OPS_MAGIC)
1005 {
1006 fprintf_unfiltered (gdb_stderr,
1007 "Magic number of %s target struct wrong\n",
1008 t->to_shortname);
1009 internal_error (__FILE__, __LINE__,
1010 _("failed internal consistency check"));
1011 }
1012
1013 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1014 if (*cur == t)
1015 return 1;
1016
1017 return 0;
1018 }
1019
1020 /* Using the objfile specified in OBJFILE, find the address for the
1021 current thread's thread-local storage with offset OFFSET. */
1022 CORE_ADDR
1023 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1024 {
1025 volatile CORE_ADDR addr = 0;
1026 struct target_ops *target;
1027
1028 for (target = current_target.beneath;
1029 target != NULL;
1030 target = target->beneath)
1031 {
1032 if (target->to_get_thread_local_address != NULL)
1033 break;
1034 }
1035
1036 if (target != NULL
1037 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1038 {
1039 ptid_t ptid = inferior_ptid;
1040 volatile struct gdb_exception ex;
1041
1042 TRY_CATCH (ex, RETURN_MASK_ALL)
1043 {
1044 CORE_ADDR lm_addr;
1045
1046 /* Fetch the load module address for this objfile. */
1047 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1048 objfile);
1049 /* If it's 0, throw the appropriate exception. */
1050 if (lm_addr == 0)
1051 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1052 _("TLS load module not found"));
1053
1054 addr = target->to_get_thread_local_address (target, ptid,
1055 lm_addr, offset);
1056 }
1057 /* If an error occurred, print TLS related messages here. Otherwise,
1058 throw the error to some higher catcher. */
1059 if (ex.reason < 0)
1060 {
1061 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1062
1063 switch (ex.error)
1064 {
1065 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1066 error (_("Cannot find thread-local variables "
1067 "in this thread library."));
1068 break;
1069 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1070 if (objfile_is_library)
1071 error (_("Cannot find shared library `%s' in dynamic"
1072 " linker's load module list"), objfile_name (objfile));
1073 else
1074 error (_("Cannot find executable file `%s' in dynamic"
1075 " linker's load module list"), objfile_name (objfile));
1076 break;
1077 case TLS_NOT_ALLOCATED_YET_ERROR:
1078 if (objfile_is_library)
1079 error (_("The inferior has not yet allocated storage for"
1080 " thread-local variables in\n"
1081 "the shared library `%s'\n"
1082 "for %s"),
1083 objfile_name (objfile), target_pid_to_str (ptid));
1084 else
1085 error (_("The inferior has not yet allocated storage for"
1086 " thread-local variables in\n"
1087 "the executable `%s'\n"
1088 "for %s"),
1089 objfile_name (objfile), target_pid_to_str (ptid));
1090 break;
1091 case TLS_GENERIC_ERROR:
1092 if (objfile_is_library)
1093 error (_("Cannot find thread-local storage for %s, "
1094 "shared library %s:\n%s"),
1095 target_pid_to_str (ptid),
1096 objfile_name (objfile), ex.message);
1097 else
1098 error (_("Cannot find thread-local storage for %s, "
1099 "executable file %s:\n%s"),
1100 target_pid_to_str (ptid),
1101 objfile_name (objfile), ex.message);
1102 break;
1103 default:
1104 throw_exception (ex);
1105 break;
1106 }
1107 }
1108 }
1109 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1110 TLS is an ABI-specific thing. But we don't do that yet. */
1111 else
1112 error (_("Cannot find thread-local variables on this target"));
1113
1114 return addr;
1115 }
1116
1117 const char *
1118 target_xfer_status_to_string (enum target_xfer_status err)
1119 {
1120 #define CASE(X) case X: return #X
1121 switch (err)
1122 {
1123 CASE(TARGET_XFER_E_IO);
1124 CASE(TARGET_XFER_E_UNAVAILABLE);
1125 default:
1126 return "<unknown>";
1127 }
1128 #undef CASE
1129 };
1130
1131
1132 #undef MIN
1133 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1134
1135 /* target_read_string -- read a null terminated string, up to LEN bytes,
1136 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1137 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1138 is responsible for freeing it. Return the number of bytes successfully
1139 read. */
1140
1141 int
1142 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1143 {
1144 int tlen, offset, i;
1145 gdb_byte buf[4];
1146 int errcode = 0;
1147 char *buffer;
1148 int buffer_allocated;
1149 char *bufptr;
1150 unsigned int nbytes_read = 0;
1151
1152 gdb_assert (string);
1153
1154 /* Small for testing. */
1155 buffer_allocated = 4;
1156 buffer = xmalloc (buffer_allocated);
1157 bufptr = buffer;
1158
1159 while (len > 0)
1160 {
1161 tlen = MIN (len, 4 - (memaddr & 3));
1162 offset = memaddr & 3;
1163
1164 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1165 if (errcode != 0)
1166 {
1167 /* The transfer request might have crossed the boundary to an
1168 unallocated region of memory. Retry the transfer, requesting
1169 a single byte. */
1170 tlen = 1;
1171 offset = 0;
1172 errcode = target_read_memory (memaddr, buf, 1);
1173 if (errcode != 0)
1174 goto done;
1175 }
1176
1177 if (bufptr - buffer + tlen > buffer_allocated)
1178 {
1179 unsigned int bytes;
1180
1181 bytes = bufptr - buffer;
1182 buffer_allocated *= 2;
1183 buffer = xrealloc (buffer, buffer_allocated);
1184 bufptr = buffer + bytes;
1185 }
1186
1187 for (i = 0; i < tlen; i++)
1188 {
1189 *bufptr++ = buf[i + offset];
1190 if (buf[i + offset] == '\000')
1191 {
1192 nbytes_read += i + 1;
1193 goto done;
1194 }
1195 }
1196
1197 memaddr += tlen;
1198 len -= tlen;
1199 nbytes_read += tlen;
1200 }
1201 done:
1202 *string = buffer;
1203 if (errnop != NULL)
1204 *errnop = errcode;
1205 return nbytes_read;
1206 }
1207
1208 struct target_section_table *
1209 target_get_section_table (struct target_ops *target)
1210 {
1211 struct target_ops *t;
1212
1213 if (targetdebug)
1214 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1215
1216 for (t = target; t != NULL; t = t->beneath)
1217 if (t->to_get_section_table != NULL)
1218 return (*t->to_get_section_table) (t);
1219
1220 return NULL;
1221 }
1222
1223 /* Find a section containing ADDR. */
1224
1225 struct target_section *
1226 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1227 {
1228 struct target_section_table *table = target_get_section_table (target);
1229 struct target_section *secp;
1230
1231 if (table == NULL)
1232 return NULL;
1233
1234 for (secp = table->sections; secp < table->sections_end; secp++)
1235 {
1236 if (addr >= secp->addr && addr < secp->endaddr)
1237 return secp;
1238 }
1239 return NULL;
1240 }
1241
1242 /* Read memory from the live target, even if currently inspecting a
1243 traceframe. The return is the same as that of target_read. */
1244
1245 static enum target_xfer_status
1246 target_read_live_memory (enum target_object object,
1247 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1248 ULONGEST *xfered_len)
1249 {
1250 enum target_xfer_status ret;
1251 struct cleanup *cleanup;
1252
1253 /* Switch momentarily out of tfind mode so to access live memory.
1254 Note that this must not clear global state, such as the frame
1255 cache, which must still remain valid for the previous traceframe.
1256 We may be _building_ the frame cache at this point. */
1257 cleanup = make_cleanup_restore_traceframe_number ();
1258 set_traceframe_number (-1);
1259
1260 ret = target_xfer_partial (current_target.beneath, object, NULL,
1261 myaddr, NULL, memaddr, len, xfered_len);
1262
1263 do_cleanups (cleanup);
1264 return ret;
1265 }
1266
1267 /* Using the set of read-only target sections of OPS, read live
1268 read-only memory. Note that the actual reads start from the
1269 top-most target again.
1270
1271 For interface/parameters/return description see target.h,
1272 to_xfer_partial. */
1273
1274 static enum target_xfer_status
1275 memory_xfer_live_readonly_partial (struct target_ops *ops,
1276 enum target_object object,
1277 gdb_byte *readbuf, ULONGEST memaddr,
1278 ULONGEST len, ULONGEST *xfered_len)
1279 {
1280 struct target_section *secp;
1281 struct target_section_table *table;
1282
1283 secp = target_section_by_addr (ops, memaddr);
1284 if (secp != NULL
1285 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1286 secp->the_bfd_section)
1287 & SEC_READONLY))
1288 {
1289 struct target_section *p;
1290 ULONGEST memend = memaddr + len;
1291
1292 table = target_get_section_table (ops);
1293
1294 for (p = table->sections; p < table->sections_end; p++)
1295 {
1296 if (memaddr >= p->addr)
1297 {
1298 if (memend <= p->endaddr)
1299 {
1300 /* Entire transfer is within this section. */
1301 return target_read_live_memory (object, memaddr,
1302 readbuf, len, xfered_len);
1303 }
1304 else if (memaddr >= p->endaddr)
1305 {
1306 /* This section ends before the transfer starts. */
1307 continue;
1308 }
1309 else
1310 {
1311 /* This section overlaps the transfer. Just do half. */
1312 len = p->endaddr - memaddr;
1313 return target_read_live_memory (object, memaddr,
1314 readbuf, len, xfered_len);
1315 }
1316 }
1317 }
1318 }
1319
1320 return TARGET_XFER_EOF;
1321 }
1322
1323 /* Read memory from more than one valid target. A core file, for
1324 instance, could have some of memory but delegate other bits to
1325 the target below it. So, we must manually try all targets. */
1326
1327 static enum target_xfer_status
1328 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1329 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1330 ULONGEST *xfered_len)
1331 {
1332 enum target_xfer_status res;
1333
1334 do
1335 {
1336 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1337 readbuf, writebuf, memaddr, len,
1338 xfered_len);
1339 if (res == TARGET_XFER_OK)
1340 break;
1341
1342 /* Stop if the target reports that the memory is not available. */
1343 if (res == TARGET_XFER_E_UNAVAILABLE)
1344 break;
1345
1346 /* We want to continue past core files to executables, but not
1347 past a running target's memory. */
1348 if (ops->to_has_all_memory (ops))
1349 break;
1350
1351 ops = ops->beneath;
1352 }
1353 while (ops != NULL);
1354
1355 return res;
1356 }
1357
1358 /* Perform a partial memory transfer.
1359 For docs see target.h, to_xfer_partial. */
1360
1361 static enum target_xfer_status
1362 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1363 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1364 ULONGEST len, ULONGEST *xfered_len)
1365 {
1366 enum target_xfer_status res;
1367 int reg_len;
1368 struct mem_region *region;
1369 struct inferior *inf;
1370
1371 /* For accesses to unmapped overlay sections, read directly from
1372 files. Must do this first, as MEMADDR may need adjustment. */
1373 if (readbuf != NULL && overlay_debugging)
1374 {
1375 struct obj_section *section = find_pc_overlay (memaddr);
1376
1377 if (pc_in_unmapped_range (memaddr, section))
1378 {
1379 struct target_section_table *table
1380 = target_get_section_table (ops);
1381 const char *section_name = section->the_bfd_section->name;
1382
1383 memaddr = overlay_mapped_address (memaddr, section);
1384 return section_table_xfer_memory_partial (readbuf, writebuf,
1385 memaddr, len, xfered_len,
1386 table->sections,
1387 table->sections_end,
1388 section_name);
1389 }
1390 }
1391
1392 /* Try the executable files, if "trust-readonly-sections" is set. */
1393 if (readbuf != NULL && trust_readonly)
1394 {
1395 struct target_section *secp;
1396 struct target_section_table *table;
1397
1398 secp = target_section_by_addr (ops, memaddr);
1399 if (secp != NULL
1400 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1401 secp->the_bfd_section)
1402 & SEC_READONLY))
1403 {
1404 table = target_get_section_table (ops);
1405 return section_table_xfer_memory_partial (readbuf, writebuf,
1406 memaddr, len, xfered_len,
1407 table->sections,
1408 table->sections_end,
1409 NULL);
1410 }
1411 }
1412
1413 /* If reading unavailable memory in the context of traceframes, and
1414 this address falls within a read-only section, fallback to
1415 reading from live memory. */
1416 if (readbuf != NULL && get_traceframe_number () != -1)
1417 {
1418 VEC(mem_range_s) *available;
1419
1420 /* If we fail to get the set of available memory, then the
1421 target does not support querying traceframe info, and so we
1422 attempt reading from the traceframe anyway (assuming the
1423 target implements the old QTro packet then). */
1424 if (traceframe_available_memory (&available, memaddr, len))
1425 {
1426 struct cleanup *old_chain;
1427
1428 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1429
1430 if (VEC_empty (mem_range_s, available)
1431 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1432 {
1433 /* Don't read into the traceframe's available
1434 memory. */
1435 if (!VEC_empty (mem_range_s, available))
1436 {
1437 LONGEST oldlen = len;
1438
1439 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1440 gdb_assert (len <= oldlen);
1441 }
1442
1443 do_cleanups (old_chain);
1444
1445 /* This goes through the topmost target again. */
1446 res = memory_xfer_live_readonly_partial (ops, object,
1447 readbuf, memaddr,
1448 len, xfered_len);
1449 if (res == TARGET_XFER_OK)
1450 return TARGET_XFER_OK;
1451 else
1452 {
1453 /* No use trying further, we know some memory starting
1454 at MEMADDR isn't available. */
1455 *xfered_len = len;
1456 return TARGET_XFER_E_UNAVAILABLE;
1457 }
1458 }
1459
1460 /* Don't try to read more than how much is available, in
1461 case the target implements the deprecated QTro packet to
1462 cater for older GDBs (the target's knowledge of read-only
1463 sections may be outdated by now). */
1464 len = VEC_index (mem_range_s, available, 0)->length;
1465
1466 do_cleanups (old_chain);
1467 }
1468 }
1469
1470 /* Try GDB's internal data cache. */
1471 region = lookup_mem_region (memaddr);
1472 /* region->hi == 0 means there's no upper bound. */
1473 if (memaddr + len < region->hi || region->hi == 0)
1474 reg_len = len;
1475 else
1476 reg_len = region->hi - memaddr;
1477
1478 switch (region->attrib.mode)
1479 {
1480 case MEM_RO:
1481 if (writebuf != NULL)
1482 return TARGET_XFER_E_IO;
1483 break;
1484
1485 case MEM_WO:
1486 if (readbuf != NULL)
1487 return TARGET_XFER_E_IO;
1488 break;
1489
1490 case MEM_FLASH:
1491 /* We only support writing to flash during "load" for now. */
1492 if (writebuf != NULL)
1493 error (_("Writing to flash memory forbidden in this context"));
1494 break;
1495
1496 case MEM_NONE:
1497 return TARGET_XFER_E_IO;
1498 }
1499
1500 if (!ptid_equal (inferior_ptid, null_ptid))
1501 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1502 else
1503 inf = NULL;
1504
1505 if (inf != NULL
1506 /* The dcache reads whole cache lines; that doesn't play well
1507 with reading from a trace buffer, because reading outside of
1508 the collected memory range fails. */
1509 && get_traceframe_number () == -1
1510 && (region->attrib.cache
1511 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1512 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1513 {
1514 DCACHE *dcache = target_dcache_get_or_init ();
1515 int l;
1516
1517 if (readbuf != NULL)
1518 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1519 else
1520 /* FIXME drow/2006-08-09: If we're going to preserve const
1521 correctness dcache_xfer_memory should take readbuf and
1522 writebuf. */
1523 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1524 reg_len, 1);
1525 if (l <= 0)
1526 return TARGET_XFER_E_IO;
1527 else
1528 {
1529 *xfered_len = (ULONGEST) l;
1530 return TARGET_XFER_OK;
1531 }
1532 }
1533
1534 /* If none of those methods found the memory we wanted, fall back
1535 to a target partial transfer. Normally a single call to
1536 to_xfer_partial is enough; if it doesn't recognize an object
1537 it will call the to_xfer_partial of the next target down.
1538 But for memory this won't do. Memory is the only target
1539 object which can be read from more than one valid target.
1540 A core file, for instance, could have some of memory but
1541 delegate other bits to the target below it. So, we must
1542 manually try all targets. */
1543
1544 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1545 xfered_len);
1546
1547 /* Make sure the cache gets updated no matter what - if we are writing
1548 to the stack. Even if this write is not tagged as such, we still need
1549 to update the cache. */
1550
1551 if (res == TARGET_XFER_OK
1552 && inf != NULL
1553 && writebuf != NULL
1554 && target_dcache_init_p ()
1555 && !region->attrib.cache
1556 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1557 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1558 {
1559 DCACHE *dcache = target_dcache_get ();
1560
1561 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1562 }
1563
1564 /* If we still haven't got anything, return the last error. We
1565 give up. */
1566 return res;
1567 }
1568
1569 /* Perform a partial memory transfer. For docs see target.h,
1570 to_xfer_partial. */
1571
1572 static enum target_xfer_status
1573 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1574 gdb_byte *readbuf, const gdb_byte *writebuf,
1575 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1576 {
1577 enum target_xfer_status res;
1578
1579 /* Zero length requests are ok and require no work. */
1580 if (len == 0)
1581 return TARGET_XFER_EOF;
1582
1583 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1584 breakpoint insns, thus hiding out from higher layers whether
1585 there are software breakpoints inserted in the code stream. */
1586 if (readbuf != NULL)
1587 {
1588 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1589 xfered_len);
1590
1591 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1592 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1593 }
1594 else
1595 {
1596 void *buf;
1597 struct cleanup *old_chain;
1598
1599 /* A large write request is likely to be partially satisfied
1600 by memory_xfer_partial_1. We will continually malloc
1601 and free a copy of the entire write request for breakpoint
1602 shadow handling even though we only end up writing a small
1603 subset of it. Cap writes to 4KB to mitigate this. */
1604 len = min (4096, len);
1605
1606 buf = xmalloc (len);
1607 old_chain = make_cleanup (xfree, buf);
1608 memcpy (buf, writebuf, len);
1609
1610 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1611 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1612 xfered_len);
1613
1614 do_cleanups (old_chain);
1615 }
1616
1617 return res;
1618 }
1619
1620 static void
1621 restore_show_memory_breakpoints (void *arg)
1622 {
1623 show_memory_breakpoints = (uintptr_t) arg;
1624 }
1625
1626 struct cleanup *
1627 make_show_memory_breakpoints_cleanup (int show)
1628 {
1629 int current = show_memory_breakpoints;
1630
1631 show_memory_breakpoints = show;
1632 return make_cleanup (restore_show_memory_breakpoints,
1633 (void *) (uintptr_t) current);
1634 }
1635
1636 /* For docs see target.h, to_xfer_partial. */
1637
1638 enum target_xfer_status
1639 target_xfer_partial (struct target_ops *ops,
1640 enum target_object object, const char *annex,
1641 gdb_byte *readbuf, const gdb_byte *writebuf,
1642 ULONGEST offset, ULONGEST len,
1643 ULONGEST *xfered_len)
1644 {
1645 enum target_xfer_status retval;
1646
1647 gdb_assert (ops->to_xfer_partial != NULL);
1648
1649 /* Transfer is done when LEN is zero. */
1650 if (len == 0)
1651 return TARGET_XFER_EOF;
1652
1653 if (writebuf && !may_write_memory)
1654 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1655 core_addr_to_string_nz (offset), plongest (len));
1656
1657 *xfered_len = 0;
1658
1659 /* If this is a memory transfer, let the memory-specific code
1660 have a look at it instead. Memory transfers are more
1661 complicated. */
1662 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1663 || object == TARGET_OBJECT_CODE_MEMORY)
1664 retval = memory_xfer_partial (ops, object, readbuf,
1665 writebuf, offset, len, xfered_len);
1666 else if (object == TARGET_OBJECT_RAW_MEMORY)
1667 {
1668 /* Request the normal memory object from other layers. */
1669 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1670 xfered_len);
1671 }
1672 else
1673 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1674 writebuf, offset, len, xfered_len);
1675
1676 if (targetdebug)
1677 {
1678 const unsigned char *myaddr = NULL;
1679
1680 fprintf_unfiltered (gdb_stdlog,
1681 "%s:target_xfer_partial "
1682 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1683 ops->to_shortname,
1684 (int) object,
1685 (annex ? annex : "(null)"),
1686 host_address_to_string (readbuf),
1687 host_address_to_string (writebuf),
1688 core_addr_to_string_nz (offset),
1689 pulongest (len), retval,
1690 pulongest (*xfered_len));
1691
1692 if (readbuf)
1693 myaddr = readbuf;
1694 if (writebuf)
1695 myaddr = writebuf;
1696 if (retval == TARGET_XFER_OK && myaddr != NULL)
1697 {
1698 int i;
1699
1700 fputs_unfiltered (", bytes =", gdb_stdlog);
1701 for (i = 0; i < *xfered_len; i++)
1702 {
1703 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1704 {
1705 if (targetdebug < 2 && i > 0)
1706 {
1707 fprintf_unfiltered (gdb_stdlog, " ...");
1708 break;
1709 }
1710 fprintf_unfiltered (gdb_stdlog, "\n");
1711 }
1712
1713 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1714 }
1715 }
1716
1717 fputc_unfiltered ('\n', gdb_stdlog);
1718 }
1719
1720 /* Check implementations of to_xfer_partial update *XFERED_LEN
1721 properly. Do assertion after printing debug messages, so that we
1722 can find more clues on assertion failure from debugging messages. */
1723 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1724 gdb_assert (*xfered_len > 0);
1725
1726 return retval;
1727 }
1728
1729 /* Read LEN bytes of target memory at address MEMADDR, placing the
1730 results in GDB's memory at MYADDR. Returns either 0 for success or
1731 TARGET_XFER_E_IO if any error occurs.
1732
1733 If an error occurs, no guarantee is made about the contents of the data at
1734 MYADDR. In particular, the caller should not depend upon partial reads
1735 filling the buffer with good data. There is no way for the caller to know
1736 how much good data might have been transfered anyway. Callers that can
1737 deal with partial reads should call target_read (which will retry until
1738 it makes no progress, and then return how much was transferred). */
1739
1740 int
1741 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1742 {
1743 /* Dispatch to the topmost target, not the flattened current_target.
1744 Memory accesses check target->to_has_(all_)memory, and the
1745 flattened target doesn't inherit those. */
1746 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1747 myaddr, memaddr, len) == len)
1748 return 0;
1749 else
1750 return TARGET_XFER_E_IO;
1751 }
1752
1753 /* Like target_read_memory, but specify explicitly that this is a read
1754 from the target's raw memory. That is, this read bypasses the
1755 dcache, breakpoint shadowing, etc. */
1756
1757 int
1758 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1759 {
1760 /* See comment in target_read_memory about why the request starts at
1761 current_target.beneath. */
1762 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1763 myaddr, memaddr, len) == len)
1764 return 0;
1765 else
1766 return TARGET_XFER_E_IO;
1767 }
1768
1769 /* Like target_read_memory, but specify explicitly that this is a read from
1770 the target's stack. This may trigger different cache behavior. */
1771
1772 int
1773 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1774 {
1775 /* See comment in target_read_memory about why the request starts at
1776 current_target.beneath. */
1777 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1778 myaddr, memaddr, len) == len)
1779 return 0;
1780 else
1781 return TARGET_XFER_E_IO;
1782 }
1783
1784 /* Like target_read_memory, but specify explicitly that this is a read from
1785 the target's code. This may trigger different cache behavior. */
1786
1787 int
1788 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1789 {
1790 /* See comment in target_read_memory about why the request starts at
1791 current_target.beneath. */
1792 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1793 myaddr, memaddr, len) == len)
1794 return 0;
1795 else
1796 return TARGET_XFER_E_IO;
1797 }
1798
1799 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1800 Returns either 0 for success or TARGET_XFER_E_IO if any
1801 error occurs. If an error occurs, no guarantee is made about how
1802 much data got written. Callers that can deal with partial writes
1803 should call target_write. */
1804
1805 int
1806 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1807 {
1808 /* See comment in target_read_memory about why the request starts at
1809 current_target.beneath. */
1810 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1811 myaddr, memaddr, len) == len)
1812 return 0;
1813 else
1814 return TARGET_XFER_E_IO;
1815 }
1816
1817 /* Write LEN bytes from MYADDR to target raw memory at address
1818 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1819 if any error occurs. If an error occurs, no guarantee is made
1820 about how much data got written. Callers that can deal with
1821 partial writes should call target_write. */
1822
1823 int
1824 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1825 {
1826 /* See comment in target_read_memory about why the request starts at
1827 current_target.beneath. */
1828 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1829 myaddr, memaddr, len) == len)
1830 return 0;
1831 else
1832 return TARGET_XFER_E_IO;
1833 }
1834
1835 /* Fetch the target's memory map. */
1836
1837 VEC(mem_region_s) *
1838 target_memory_map (void)
1839 {
1840 VEC(mem_region_s) *result;
1841 struct mem_region *last_one, *this_one;
1842 int ix;
1843 struct target_ops *t;
1844
1845 if (targetdebug)
1846 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1847
1848 for (t = current_target.beneath; t != NULL; t = t->beneath)
1849 if (t->to_memory_map != NULL)
1850 break;
1851
1852 if (t == NULL)
1853 return NULL;
1854
1855 result = t->to_memory_map (t);
1856 if (result == NULL)
1857 return NULL;
1858
1859 qsort (VEC_address (mem_region_s, result),
1860 VEC_length (mem_region_s, result),
1861 sizeof (struct mem_region), mem_region_cmp);
1862
1863 /* Check that regions do not overlap. Simultaneously assign
1864 a numbering for the "mem" commands to use to refer to
1865 each region. */
1866 last_one = NULL;
1867 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1868 {
1869 this_one->number = ix;
1870
1871 if (last_one && last_one->hi > this_one->lo)
1872 {
1873 warning (_("Overlapping regions in memory map: ignoring"));
1874 VEC_free (mem_region_s, result);
1875 return NULL;
1876 }
1877 last_one = this_one;
1878 }
1879
1880 return result;
1881 }
1882
1883 void
1884 target_flash_erase (ULONGEST address, LONGEST length)
1885 {
1886 struct target_ops *t;
1887
1888 for (t = current_target.beneath; t != NULL; t = t->beneath)
1889 if (t->to_flash_erase != NULL)
1890 {
1891 if (targetdebug)
1892 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1893 hex_string (address), phex (length, 0));
1894 t->to_flash_erase (t, address, length);
1895 return;
1896 }
1897
1898 tcomplain ();
1899 }
1900
1901 void
1902 target_flash_done (void)
1903 {
1904 struct target_ops *t;
1905
1906 for (t = current_target.beneath; t != NULL; t = t->beneath)
1907 if (t->to_flash_done != NULL)
1908 {
1909 if (targetdebug)
1910 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1911 t->to_flash_done (t);
1912 return;
1913 }
1914
1915 tcomplain ();
1916 }
1917
1918 static void
1919 show_trust_readonly (struct ui_file *file, int from_tty,
1920 struct cmd_list_element *c, const char *value)
1921 {
1922 fprintf_filtered (file,
1923 _("Mode for reading from readonly sections is %s.\n"),
1924 value);
1925 }
1926
1927 /* More generic transfers. */
1928
1929 static enum target_xfer_status
1930 default_xfer_partial (struct target_ops *ops, enum target_object object,
1931 const char *annex, gdb_byte *readbuf,
1932 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1933 ULONGEST *xfered_len)
1934 {
1935 if (object == TARGET_OBJECT_MEMORY
1936 && ops->deprecated_xfer_memory != NULL)
1937 /* If available, fall back to the target's
1938 "deprecated_xfer_memory" method. */
1939 {
1940 int xfered = -1;
1941
1942 errno = 0;
1943 if (writebuf != NULL)
1944 {
1945 void *buffer = xmalloc (len);
1946 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1947
1948 memcpy (buffer, writebuf, len);
1949 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1950 1/*write*/, NULL, ops);
1951 do_cleanups (cleanup);
1952 }
1953 if (readbuf != NULL)
1954 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1955 0/*read*/, NULL, ops);
1956 if (xfered > 0)
1957 {
1958 *xfered_len = (ULONGEST) xfered;
1959 return TARGET_XFER_E_IO;
1960 }
1961 else if (xfered == 0 && errno == 0)
1962 /* "deprecated_xfer_memory" uses 0, cross checked against
1963 ERRNO as one indication of an error. */
1964 return TARGET_XFER_EOF;
1965 else
1966 return TARGET_XFER_E_IO;
1967 }
1968 else
1969 {
1970 gdb_assert (ops->beneath != NULL);
1971 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1972 readbuf, writebuf, offset, len,
1973 xfered_len);
1974 }
1975 }
1976
1977 /* Target vector read/write partial wrapper functions. */
1978
1979 static enum target_xfer_status
1980 target_read_partial (struct target_ops *ops,
1981 enum target_object object,
1982 const char *annex, gdb_byte *buf,
1983 ULONGEST offset, ULONGEST len,
1984 ULONGEST *xfered_len)
1985 {
1986 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1987 xfered_len);
1988 }
1989
1990 static enum target_xfer_status
1991 target_write_partial (struct target_ops *ops,
1992 enum target_object object,
1993 const char *annex, const gdb_byte *buf,
1994 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1995 {
1996 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1997 xfered_len);
1998 }
1999
2000 /* Wrappers to perform the full transfer. */
2001
2002 /* For docs on target_read see target.h. */
2003
2004 LONGEST
2005 target_read (struct target_ops *ops,
2006 enum target_object object,
2007 const char *annex, gdb_byte *buf,
2008 ULONGEST offset, LONGEST len)
2009 {
2010 LONGEST xfered = 0;
2011
2012 while (xfered < len)
2013 {
2014 ULONGEST xfered_len;
2015 enum target_xfer_status status;
2016
2017 status = target_read_partial (ops, object, annex,
2018 (gdb_byte *) buf + xfered,
2019 offset + xfered, len - xfered,
2020 &xfered_len);
2021
2022 /* Call an observer, notifying them of the xfer progress? */
2023 if (status == TARGET_XFER_EOF)
2024 return xfered;
2025 else if (status == TARGET_XFER_OK)
2026 {
2027 xfered += xfered_len;
2028 QUIT;
2029 }
2030 else
2031 return -1;
2032
2033 }
2034 return len;
2035 }
2036
2037 /* Assuming that the entire [begin, end) range of memory cannot be
2038 read, try to read whatever subrange is possible to read.
2039
2040 The function returns, in RESULT, either zero or one memory block.
2041 If there's a readable subrange at the beginning, it is completely
2042 read and returned. Any further readable subrange will not be read.
2043 Otherwise, if there's a readable subrange at the end, it will be
2044 completely read and returned. Any readable subranges before it
2045 (obviously, not starting at the beginning), will be ignored. In
2046 other cases -- either no readable subrange, or readable subrange(s)
2047 that is neither at the beginning, or end, nothing is returned.
2048
2049 The purpose of this function is to handle a read across a boundary
2050 of accessible memory in a case when memory map is not available.
2051 The above restrictions are fine for this case, but will give
2052 incorrect results if the memory is 'patchy'. However, supporting
2053 'patchy' memory would require trying to read every single byte,
2054 and it seems unacceptable solution. Explicit memory map is
2055 recommended for this case -- and target_read_memory_robust will
2056 take care of reading multiple ranges then. */
2057
2058 static void
2059 read_whatever_is_readable (struct target_ops *ops,
2060 ULONGEST begin, ULONGEST end,
2061 VEC(memory_read_result_s) **result)
2062 {
2063 gdb_byte *buf = xmalloc (end - begin);
2064 ULONGEST current_begin = begin;
2065 ULONGEST current_end = end;
2066 int forward;
2067 memory_read_result_s r;
2068 ULONGEST xfered_len;
2069
2070 /* If we previously failed to read 1 byte, nothing can be done here. */
2071 if (end - begin <= 1)
2072 {
2073 xfree (buf);
2074 return;
2075 }
2076
2077 /* Check that either first or the last byte is readable, and give up
2078 if not. This heuristic is meant to permit reading accessible memory
2079 at the boundary of accessible region. */
2080 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2081 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2082 {
2083 forward = 1;
2084 ++current_begin;
2085 }
2086 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2087 buf + (end-begin) - 1, end - 1, 1,
2088 &xfered_len) == TARGET_XFER_OK)
2089 {
2090 forward = 0;
2091 --current_end;
2092 }
2093 else
2094 {
2095 xfree (buf);
2096 return;
2097 }
2098
2099 /* Loop invariant is that the [current_begin, current_end) was previously
2100 found to be not readable as a whole.
2101
2102 Note loop condition -- if the range has 1 byte, we can't divide the range
2103 so there's no point trying further. */
2104 while (current_end - current_begin > 1)
2105 {
2106 ULONGEST first_half_begin, first_half_end;
2107 ULONGEST second_half_begin, second_half_end;
2108 LONGEST xfer;
2109 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2110
2111 if (forward)
2112 {
2113 first_half_begin = current_begin;
2114 first_half_end = middle;
2115 second_half_begin = middle;
2116 second_half_end = current_end;
2117 }
2118 else
2119 {
2120 first_half_begin = middle;
2121 first_half_end = current_end;
2122 second_half_begin = current_begin;
2123 second_half_end = middle;
2124 }
2125
2126 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2127 buf + (first_half_begin - begin),
2128 first_half_begin,
2129 first_half_end - first_half_begin);
2130
2131 if (xfer == first_half_end - first_half_begin)
2132 {
2133 /* This half reads up fine. So, the error must be in the
2134 other half. */
2135 current_begin = second_half_begin;
2136 current_end = second_half_end;
2137 }
2138 else
2139 {
2140 /* This half is not readable. Because we've tried one byte, we
2141 know some part of this half if actually redable. Go to the next
2142 iteration to divide again and try to read.
2143
2144 We don't handle the other half, because this function only tries
2145 to read a single readable subrange. */
2146 current_begin = first_half_begin;
2147 current_end = first_half_end;
2148 }
2149 }
2150
2151 if (forward)
2152 {
2153 /* The [begin, current_begin) range has been read. */
2154 r.begin = begin;
2155 r.end = current_begin;
2156 r.data = buf;
2157 }
2158 else
2159 {
2160 /* The [current_end, end) range has been read. */
2161 LONGEST rlen = end - current_end;
2162
2163 r.data = xmalloc (rlen);
2164 memcpy (r.data, buf + current_end - begin, rlen);
2165 r.begin = current_end;
2166 r.end = end;
2167 xfree (buf);
2168 }
2169 VEC_safe_push(memory_read_result_s, (*result), &r);
2170 }
2171
2172 void
2173 free_memory_read_result_vector (void *x)
2174 {
2175 VEC(memory_read_result_s) *v = x;
2176 memory_read_result_s *current;
2177 int ix;
2178
2179 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2180 {
2181 xfree (current->data);
2182 }
2183 VEC_free (memory_read_result_s, v);
2184 }
2185
2186 VEC(memory_read_result_s) *
2187 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2188 {
2189 VEC(memory_read_result_s) *result = 0;
2190
2191 LONGEST xfered = 0;
2192 while (xfered < len)
2193 {
2194 struct mem_region *region = lookup_mem_region (offset + xfered);
2195 LONGEST rlen;
2196
2197 /* If there is no explicit region, a fake one should be created. */
2198 gdb_assert (region);
2199
2200 if (region->hi == 0)
2201 rlen = len - xfered;
2202 else
2203 rlen = region->hi - offset;
2204
2205 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2206 {
2207 /* Cannot read this region. Note that we can end up here only
2208 if the region is explicitly marked inaccessible, or
2209 'inaccessible-by-default' is in effect. */
2210 xfered += rlen;
2211 }
2212 else
2213 {
2214 LONGEST to_read = min (len - xfered, rlen);
2215 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2216
2217 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2218 (gdb_byte *) buffer,
2219 offset + xfered, to_read);
2220 /* Call an observer, notifying them of the xfer progress? */
2221 if (xfer <= 0)
2222 {
2223 /* Got an error reading full chunk. See if maybe we can read
2224 some subrange. */
2225 xfree (buffer);
2226 read_whatever_is_readable (ops, offset + xfered,
2227 offset + xfered + to_read, &result);
2228 xfered += to_read;
2229 }
2230 else
2231 {
2232 struct memory_read_result r;
2233 r.data = buffer;
2234 r.begin = offset + xfered;
2235 r.end = r.begin + xfer;
2236 VEC_safe_push (memory_read_result_s, result, &r);
2237 xfered += xfer;
2238 }
2239 QUIT;
2240 }
2241 }
2242 return result;
2243 }
2244
2245
2246 /* An alternative to target_write with progress callbacks. */
2247
2248 LONGEST
2249 target_write_with_progress (struct target_ops *ops,
2250 enum target_object object,
2251 const char *annex, const gdb_byte *buf,
2252 ULONGEST offset, LONGEST len,
2253 void (*progress) (ULONGEST, void *), void *baton)
2254 {
2255 LONGEST xfered = 0;
2256
2257 /* Give the progress callback a chance to set up. */
2258 if (progress)
2259 (*progress) (0, baton);
2260
2261 while (xfered < len)
2262 {
2263 ULONGEST xfered_len;
2264 enum target_xfer_status status;
2265
2266 status = target_write_partial (ops, object, annex,
2267 (gdb_byte *) buf + xfered,
2268 offset + xfered, len - xfered,
2269 &xfered_len);
2270
2271 if (status == TARGET_XFER_EOF)
2272 return xfered;
2273 if (TARGET_XFER_STATUS_ERROR_P (status))
2274 return -1;
2275
2276 gdb_assert (status == TARGET_XFER_OK);
2277 if (progress)
2278 (*progress) (xfered_len, baton);
2279
2280 xfered += xfered_len;
2281 QUIT;
2282 }
2283 return len;
2284 }
2285
2286 /* For docs on target_write see target.h. */
2287
2288 LONGEST
2289 target_write (struct target_ops *ops,
2290 enum target_object object,
2291 const char *annex, const gdb_byte *buf,
2292 ULONGEST offset, LONGEST len)
2293 {
2294 return target_write_with_progress (ops, object, annex, buf, offset, len,
2295 NULL, NULL);
2296 }
2297
2298 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2299 the size of the transferred data. PADDING additional bytes are
2300 available in *BUF_P. This is a helper function for
2301 target_read_alloc; see the declaration of that function for more
2302 information. */
2303
2304 static LONGEST
2305 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2306 const char *annex, gdb_byte **buf_p, int padding)
2307 {
2308 size_t buf_alloc, buf_pos;
2309 gdb_byte *buf;
2310
2311 /* This function does not have a length parameter; it reads the
2312 entire OBJECT). Also, it doesn't support objects fetched partly
2313 from one target and partly from another (in a different stratum,
2314 e.g. a core file and an executable). Both reasons make it
2315 unsuitable for reading memory. */
2316 gdb_assert (object != TARGET_OBJECT_MEMORY);
2317
2318 /* Start by reading up to 4K at a time. The target will throttle
2319 this number down if necessary. */
2320 buf_alloc = 4096;
2321 buf = xmalloc (buf_alloc);
2322 buf_pos = 0;
2323 while (1)
2324 {
2325 ULONGEST xfered_len;
2326 enum target_xfer_status status;
2327
2328 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2329 buf_pos, buf_alloc - buf_pos - padding,
2330 &xfered_len);
2331
2332 if (status == TARGET_XFER_EOF)
2333 {
2334 /* Read all there was. */
2335 if (buf_pos == 0)
2336 xfree (buf);
2337 else
2338 *buf_p = buf;
2339 return buf_pos;
2340 }
2341 else if (status != TARGET_XFER_OK)
2342 {
2343 /* An error occurred. */
2344 xfree (buf);
2345 return TARGET_XFER_E_IO;
2346 }
2347
2348 buf_pos += xfered_len;
2349
2350 /* If the buffer is filling up, expand it. */
2351 if (buf_alloc < buf_pos * 2)
2352 {
2353 buf_alloc *= 2;
2354 buf = xrealloc (buf, buf_alloc);
2355 }
2356
2357 QUIT;
2358 }
2359 }
2360
2361 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2362 the size of the transferred data. See the declaration in "target.h"
2363 function for more information about the return value. */
2364
2365 LONGEST
2366 target_read_alloc (struct target_ops *ops, enum target_object object,
2367 const char *annex, gdb_byte **buf_p)
2368 {
2369 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2370 }
2371
2372 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2373 returned as a string, allocated using xmalloc. If an error occurs
2374 or the transfer is unsupported, NULL is returned. Empty objects
2375 are returned as allocated but empty strings. A warning is issued
2376 if the result contains any embedded NUL bytes. */
2377
2378 char *
2379 target_read_stralloc (struct target_ops *ops, enum target_object object,
2380 const char *annex)
2381 {
2382 gdb_byte *buffer;
2383 char *bufstr;
2384 LONGEST i, transferred;
2385
2386 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2387 bufstr = (char *) buffer;
2388
2389 if (transferred < 0)
2390 return NULL;
2391
2392 if (transferred == 0)
2393 return xstrdup ("");
2394
2395 bufstr[transferred] = 0;
2396
2397 /* Check for embedded NUL bytes; but allow trailing NULs. */
2398 for (i = strlen (bufstr); i < transferred; i++)
2399 if (bufstr[i] != 0)
2400 {
2401 warning (_("target object %d, annex %s, "
2402 "contained unexpected null characters"),
2403 (int) object, annex ? annex : "(none)");
2404 break;
2405 }
2406
2407 return bufstr;
2408 }
2409
2410 /* Memory transfer methods. */
2411
2412 void
2413 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2414 LONGEST len)
2415 {
2416 /* This method is used to read from an alternate, non-current
2417 target. This read must bypass the overlay support (as symbols
2418 don't match this target), and GDB's internal cache (wrong cache
2419 for this target). */
2420 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2421 != len)
2422 memory_error (TARGET_XFER_E_IO, addr);
2423 }
2424
2425 ULONGEST
2426 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2427 int len, enum bfd_endian byte_order)
2428 {
2429 gdb_byte buf[sizeof (ULONGEST)];
2430
2431 gdb_assert (len <= sizeof (buf));
2432 get_target_memory (ops, addr, buf, len);
2433 return extract_unsigned_integer (buf, len, byte_order);
2434 }
2435
2436 /* See target.h. */
2437
2438 int
2439 target_insert_breakpoint (struct gdbarch *gdbarch,
2440 struct bp_target_info *bp_tgt)
2441 {
2442 if (!may_insert_breakpoints)
2443 {
2444 warning (_("May not insert breakpoints"));
2445 return 1;
2446 }
2447
2448 return current_target.to_insert_breakpoint (&current_target,
2449 gdbarch, bp_tgt);
2450 }
2451
2452 /* See target.h. */
2453
2454 int
2455 target_remove_breakpoint (struct gdbarch *gdbarch,
2456 struct bp_target_info *bp_tgt)
2457 {
2458 /* This is kind of a weird case to handle, but the permission might
2459 have been changed after breakpoints were inserted - in which case
2460 we should just take the user literally and assume that any
2461 breakpoints should be left in place. */
2462 if (!may_insert_breakpoints)
2463 {
2464 warning (_("May not remove breakpoints"));
2465 return 1;
2466 }
2467
2468 return current_target.to_remove_breakpoint (&current_target,
2469 gdbarch, bp_tgt);
2470 }
2471
2472 static void
2473 target_info (char *args, int from_tty)
2474 {
2475 struct target_ops *t;
2476 int has_all_mem = 0;
2477
2478 if (symfile_objfile != NULL)
2479 printf_unfiltered (_("Symbols from \"%s\".\n"),
2480 objfile_name (symfile_objfile));
2481
2482 for (t = target_stack; t != NULL; t = t->beneath)
2483 {
2484 if (!(*t->to_has_memory) (t))
2485 continue;
2486
2487 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2488 continue;
2489 if (has_all_mem)
2490 printf_unfiltered (_("\tWhile running this, "
2491 "GDB does not access memory from...\n"));
2492 printf_unfiltered ("%s:\n", t->to_longname);
2493 (t->to_files_info) (t);
2494 has_all_mem = (*t->to_has_all_memory) (t);
2495 }
2496 }
2497
2498 /* This function is called before any new inferior is created, e.g.
2499 by running a program, attaching, or connecting to a target.
2500 It cleans up any state from previous invocations which might
2501 change between runs. This is a subset of what target_preopen
2502 resets (things which might change between targets). */
2503
2504 void
2505 target_pre_inferior (int from_tty)
2506 {
2507 /* Clear out solib state. Otherwise the solib state of the previous
2508 inferior might have survived and is entirely wrong for the new
2509 target. This has been observed on GNU/Linux using glibc 2.3. How
2510 to reproduce:
2511
2512 bash$ ./foo&
2513 [1] 4711
2514 bash$ ./foo&
2515 [1] 4712
2516 bash$ gdb ./foo
2517 [...]
2518 (gdb) attach 4711
2519 (gdb) detach
2520 (gdb) attach 4712
2521 Cannot access memory at address 0xdeadbeef
2522 */
2523
2524 /* In some OSs, the shared library list is the same/global/shared
2525 across inferiors. If code is shared between processes, so are
2526 memory regions and features. */
2527 if (!gdbarch_has_global_solist (target_gdbarch ()))
2528 {
2529 no_shared_libraries (NULL, from_tty);
2530
2531 invalidate_target_mem_regions ();
2532
2533 target_clear_description ();
2534 }
2535
2536 agent_capability_invalidate ();
2537 }
2538
2539 /* Callback for iterate_over_inferiors. Gets rid of the given
2540 inferior. */
2541
2542 static int
2543 dispose_inferior (struct inferior *inf, void *args)
2544 {
2545 struct thread_info *thread;
2546
2547 thread = any_thread_of_process (inf->pid);
2548 if (thread)
2549 {
2550 switch_to_thread (thread->ptid);
2551
2552 /* Core inferiors actually should be detached, not killed. */
2553 if (target_has_execution)
2554 target_kill ();
2555 else
2556 target_detach (NULL, 0);
2557 }
2558
2559 return 0;
2560 }
2561
2562 /* This is to be called by the open routine before it does
2563 anything. */
2564
2565 void
2566 target_preopen (int from_tty)
2567 {
2568 dont_repeat ();
2569
2570 if (have_inferiors ())
2571 {
2572 if (!from_tty
2573 || !have_live_inferiors ()
2574 || query (_("A program is being debugged already. Kill it? ")))
2575 iterate_over_inferiors (dispose_inferior, NULL);
2576 else
2577 error (_("Program not killed."));
2578 }
2579
2580 /* Calling target_kill may remove the target from the stack. But if
2581 it doesn't (which seems like a win for UDI), remove it now. */
2582 /* Leave the exec target, though. The user may be switching from a
2583 live process to a core of the same program. */
2584 pop_all_targets_above (file_stratum);
2585
2586 target_pre_inferior (from_tty);
2587 }
2588
2589 /* Detach a target after doing deferred register stores. */
2590
2591 void
2592 target_detach (const char *args, int from_tty)
2593 {
2594 struct target_ops* t;
2595
2596 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2597 /* Don't remove global breakpoints here. They're removed on
2598 disconnection from the target. */
2599 ;
2600 else
2601 /* If we're in breakpoints-always-inserted mode, have to remove
2602 them before detaching. */
2603 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2604
2605 prepare_for_detach ();
2606
2607 current_target.to_detach (&current_target, args, from_tty);
2608 if (targetdebug)
2609 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2610 args, from_tty);
2611 }
2612
2613 void
2614 target_disconnect (char *args, int from_tty)
2615 {
2616 struct target_ops *t;
2617
2618 /* If we're in breakpoints-always-inserted mode or if breakpoints
2619 are global across processes, we have to remove them before
2620 disconnecting. */
2621 remove_breakpoints ();
2622
2623 for (t = current_target.beneath; t != NULL; t = t->beneath)
2624 if (t->to_disconnect != NULL)
2625 {
2626 if (targetdebug)
2627 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2628 args, from_tty);
2629 t->to_disconnect (t, args, from_tty);
2630 return;
2631 }
2632
2633 tcomplain ();
2634 }
2635
2636 ptid_t
2637 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2638 {
2639 struct target_ops *t;
2640 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2641 status, options);
2642
2643 if (targetdebug)
2644 {
2645 char *status_string;
2646 char *options_string;
2647
2648 status_string = target_waitstatus_to_string (status);
2649 options_string = target_options_to_string (options);
2650 fprintf_unfiltered (gdb_stdlog,
2651 "target_wait (%d, status, options={%s})"
2652 " = %d, %s\n",
2653 ptid_get_pid (ptid), options_string,
2654 ptid_get_pid (retval), status_string);
2655 xfree (status_string);
2656 xfree (options_string);
2657 }
2658
2659 return retval;
2660 }
2661
2662 char *
2663 target_pid_to_str (ptid_t ptid)
2664 {
2665 struct target_ops *t;
2666
2667 for (t = current_target.beneath; t != NULL; t = t->beneath)
2668 {
2669 if (t->to_pid_to_str != NULL)
2670 return (*t->to_pid_to_str) (t, ptid);
2671 }
2672
2673 return normal_pid_to_str (ptid);
2674 }
2675
2676 char *
2677 target_thread_name (struct thread_info *info)
2678 {
2679 return current_target.to_thread_name (&current_target, info);
2680 }
2681
2682 void
2683 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2684 {
2685 struct target_ops *t;
2686
2687 target_dcache_invalidate ();
2688
2689 current_target.to_resume (&current_target, ptid, step, signal);
2690 if (targetdebug)
2691 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2692 ptid_get_pid (ptid),
2693 step ? "step" : "continue",
2694 gdb_signal_to_name (signal));
2695
2696 registers_changed_ptid (ptid);
2697 set_executing (ptid, 1);
2698 set_running (ptid, 1);
2699 clear_inline_frame_state (ptid);
2700 }
2701
2702 void
2703 target_pass_signals (int numsigs, unsigned char *pass_signals)
2704 {
2705 struct target_ops *t;
2706
2707 for (t = current_target.beneath; t != NULL; t = t->beneath)
2708 {
2709 if (t->to_pass_signals != NULL)
2710 {
2711 if (targetdebug)
2712 {
2713 int i;
2714
2715 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2716 numsigs);
2717
2718 for (i = 0; i < numsigs; i++)
2719 if (pass_signals[i])
2720 fprintf_unfiltered (gdb_stdlog, " %s",
2721 gdb_signal_to_name (i));
2722
2723 fprintf_unfiltered (gdb_stdlog, " })\n");
2724 }
2725
2726 (*t->to_pass_signals) (t, numsigs, pass_signals);
2727 return;
2728 }
2729 }
2730 }
2731
2732 void
2733 target_program_signals (int numsigs, unsigned char *program_signals)
2734 {
2735 struct target_ops *t;
2736
2737 for (t = current_target.beneath; t != NULL; t = t->beneath)
2738 {
2739 if (t->to_program_signals != NULL)
2740 {
2741 if (targetdebug)
2742 {
2743 int i;
2744
2745 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2746 numsigs);
2747
2748 for (i = 0; i < numsigs; i++)
2749 if (program_signals[i])
2750 fprintf_unfiltered (gdb_stdlog, " %s",
2751 gdb_signal_to_name (i));
2752
2753 fprintf_unfiltered (gdb_stdlog, " })\n");
2754 }
2755
2756 (*t->to_program_signals) (t, numsigs, program_signals);
2757 return;
2758 }
2759 }
2760 }
2761
2762 /* Look through the list of possible targets for a target that can
2763 follow forks. */
2764
2765 int
2766 target_follow_fork (int follow_child, int detach_fork)
2767 {
2768 struct target_ops *t;
2769
2770 for (t = current_target.beneath; t != NULL; t = t->beneath)
2771 {
2772 if (t->to_follow_fork != NULL)
2773 {
2774 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2775
2776 if (targetdebug)
2777 fprintf_unfiltered (gdb_stdlog,
2778 "target_follow_fork (%d, %d) = %d\n",
2779 follow_child, detach_fork, retval);
2780 return retval;
2781 }
2782 }
2783
2784 /* Some target returned a fork event, but did not know how to follow it. */
2785 internal_error (__FILE__, __LINE__,
2786 _("could not find a target to follow fork"));
2787 }
2788
2789 void
2790 target_mourn_inferior (void)
2791 {
2792 struct target_ops *t;
2793
2794 for (t = current_target.beneath; t != NULL; t = t->beneath)
2795 {
2796 if (t->to_mourn_inferior != NULL)
2797 {
2798 t->to_mourn_inferior (t);
2799 if (targetdebug)
2800 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2801
2802 /* We no longer need to keep handles on any of the object files.
2803 Make sure to release them to avoid unnecessarily locking any
2804 of them while we're not actually debugging. */
2805 bfd_cache_close_all ();
2806
2807 return;
2808 }
2809 }
2810
2811 internal_error (__FILE__, __LINE__,
2812 _("could not find a target to follow mourn inferior"));
2813 }
2814
2815 /* Look for a target which can describe architectural features, starting
2816 from TARGET. If we find one, return its description. */
2817
2818 const struct target_desc *
2819 target_read_description (struct target_ops *target)
2820 {
2821 struct target_ops *t;
2822
2823 for (t = target; t != NULL; t = t->beneath)
2824 if (t->to_read_description != NULL)
2825 {
2826 const struct target_desc *tdesc;
2827
2828 tdesc = t->to_read_description (t);
2829 if (tdesc)
2830 return tdesc;
2831 }
2832
2833 return NULL;
2834 }
2835
2836 /* The default implementation of to_search_memory.
2837 This implements a basic search of memory, reading target memory and
2838 performing the search here (as opposed to performing the search in on the
2839 target side with, for example, gdbserver). */
2840
2841 int
2842 simple_search_memory (struct target_ops *ops,
2843 CORE_ADDR start_addr, ULONGEST search_space_len,
2844 const gdb_byte *pattern, ULONGEST pattern_len,
2845 CORE_ADDR *found_addrp)
2846 {
2847 /* NOTE: also defined in find.c testcase. */
2848 #define SEARCH_CHUNK_SIZE 16000
2849 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2850 /* Buffer to hold memory contents for searching. */
2851 gdb_byte *search_buf;
2852 unsigned search_buf_size;
2853 struct cleanup *old_cleanups;
2854
2855 search_buf_size = chunk_size + pattern_len - 1;
2856
2857 /* No point in trying to allocate a buffer larger than the search space. */
2858 if (search_space_len < search_buf_size)
2859 search_buf_size = search_space_len;
2860
2861 search_buf = malloc (search_buf_size);
2862 if (search_buf == NULL)
2863 error (_("Unable to allocate memory to perform the search."));
2864 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2865
2866 /* Prime the search buffer. */
2867
2868 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2869 search_buf, start_addr, search_buf_size) != search_buf_size)
2870 {
2871 warning (_("Unable to access %s bytes of target "
2872 "memory at %s, halting search."),
2873 pulongest (search_buf_size), hex_string (start_addr));
2874 do_cleanups (old_cleanups);
2875 return -1;
2876 }
2877
2878 /* Perform the search.
2879
2880 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2881 When we've scanned N bytes we copy the trailing bytes to the start and
2882 read in another N bytes. */
2883
2884 while (search_space_len >= pattern_len)
2885 {
2886 gdb_byte *found_ptr;
2887 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2888
2889 found_ptr = memmem (search_buf, nr_search_bytes,
2890 pattern, pattern_len);
2891
2892 if (found_ptr != NULL)
2893 {
2894 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2895
2896 *found_addrp = found_addr;
2897 do_cleanups (old_cleanups);
2898 return 1;
2899 }
2900
2901 /* Not found in this chunk, skip to next chunk. */
2902
2903 /* Don't let search_space_len wrap here, it's unsigned. */
2904 if (search_space_len >= chunk_size)
2905 search_space_len -= chunk_size;
2906 else
2907 search_space_len = 0;
2908
2909 if (search_space_len >= pattern_len)
2910 {
2911 unsigned keep_len = search_buf_size - chunk_size;
2912 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2913 int nr_to_read;
2914
2915 /* Copy the trailing part of the previous iteration to the front
2916 of the buffer for the next iteration. */
2917 gdb_assert (keep_len == pattern_len - 1);
2918 memcpy (search_buf, search_buf + chunk_size, keep_len);
2919
2920 nr_to_read = min (search_space_len - keep_len, chunk_size);
2921
2922 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2923 search_buf + keep_len, read_addr,
2924 nr_to_read) != nr_to_read)
2925 {
2926 warning (_("Unable to access %s bytes of target "
2927 "memory at %s, halting search."),
2928 plongest (nr_to_read),
2929 hex_string (read_addr));
2930 do_cleanups (old_cleanups);
2931 return -1;
2932 }
2933
2934 start_addr += chunk_size;
2935 }
2936 }
2937
2938 /* Not found. */
2939
2940 do_cleanups (old_cleanups);
2941 return 0;
2942 }
2943
2944 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2945 sequence of bytes in PATTERN with length PATTERN_LEN.
2946
2947 The result is 1 if found, 0 if not found, and -1 if there was an error
2948 requiring halting of the search (e.g. memory read error).
2949 If the pattern is found the address is recorded in FOUND_ADDRP. */
2950
2951 int
2952 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2953 const gdb_byte *pattern, ULONGEST pattern_len,
2954 CORE_ADDR *found_addrp)
2955 {
2956 struct target_ops *t;
2957 int found;
2958
2959 /* We don't use INHERIT to set current_target.to_search_memory,
2960 so we have to scan the target stack and handle targetdebug
2961 ourselves. */
2962
2963 if (targetdebug)
2964 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2965 hex_string (start_addr));
2966
2967 for (t = current_target.beneath; t != NULL; t = t->beneath)
2968 if (t->to_search_memory != NULL)
2969 break;
2970
2971 if (t != NULL)
2972 {
2973 found = t->to_search_memory (t, start_addr, search_space_len,
2974 pattern, pattern_len, found_addrp);
2975 }
2976 else
2977 {
2978 /* If a special version of to_search_memory isn't available, use the
2979 simple version. */
2980 found = simple_search_memory (current_target.beneath,
2981 start_addr, search_space_len,
2982 pattern, pattern_len, found_addrp);
2983 }
2984
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2987
2988 return found;
2989 }
2990
2991 /* Look through the currently pushed targets. If none of them will
2992 be able to restart the currently running process, issue an error
2993 message. */
2994
2995 void
2996 target_require_runnable (void)
2997 {
2998 struct target_ops *t;
2999
3000 for (t = target_stack; t != NULL; t = t->beneath)
3001 {
3002 /* If this target knows how to create a new program, then
3003 assume we will still be able to after killing the current
3004 one. Either killing and mourning will not pop T, or else
3005 find_default_run_target will find it again. */
3006 if (t->to_create_inferior != NULL)
3007 return;
3008
3009 /* Do not worry about thread_stratum targets that can not
3010 create inferiors. Assume they will be pushed again if
3011 necessary, and continue to the process_stratum. */
3012 if (t->to_stratum == thread_stratum
3013 || t->to_stratum == arch_stratum)
3014 continue;
3015
3016 error (_("The \"%s\" target does not support \"run\". "
3017 "Try \"help target\" or \"continue\"."),
3018 t->to_shortname);
3019 }
3020
3021 /* This function is only called if the target is running. In that
3022 case there should have been a process_stratum target and it
3023 should either know how to create inferiors, or not... */
3024 internal_error (__FILE__, __LINE__, _("No targets found"));
3025 }
3026
3027 /* Look through the list of possible targets for a target that can
3028 execute a run or attach command without any other data. This is
3029 used to locate the default process stratum.
3030
3031 If DO_MESG is not NULL, the result is always valid (error() is
3032 called for errors); else, return NULL on error. */
3033
3034 static struct target_ops *
3035 find_default_run_target (char *do_mesg)
3036 {
3037 struct target_ops **t;
3038 struct target_ops *runable = NULL;
3039 int count;
3040
3041 count = 0;
3042
3043 for (t = target_structs; t < target_structs + target_struct_size;
3044 ++t)
3045 {
3046 if ((*t)->to_can_run && target_can_run (*t))
3047 {
3048 runable = *t;
3049 ++count;
3050 }
3051 }
3052
3053 if (count != 1)
3054 {
3055 if (do_mesg)
3056 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3057 else
3058 return NULL;
3059 }
3060
3061 return runable;
3062 }
3063
3064 void
3065 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3066 {
3067 struct target_ops *t;
3068
3069 t = find_default_run_target ("attach");
3070 (t->to_attach) (t, args, from_tty);
3071 return;
3072 }
3073
3074 void
3075 find_default_create_inferior (struct target_ops *ops,
3076 char *exec_file, char *allargs, char **env,
3077 int from_tty)
3078 {
3079 struct target_ops *t;
3080
3081 t = find_default_run_target ("run");
3082 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3083 return;
3084 }
3085
3086 static int
3087 find_default_can_async_p (struct target_ops *ignore)
3088 {
3089 struct target_ops *t;
3090
3091 /* This may be called before the target is pushed on the stack;
3092 look for the default process stratum. If there's none, gdb isn't
3093 configured with a native debugger, and target remote isn't
3094 connected yet. */
3095 t = find_default_run_target (NULL);
3096 if (t && t->to_can_async_p != delegate_can_async_p)
3097 return (t->to_can_async_p) (t);
3098 return 0;
3099 }
3100
3101 static int
3102 find_default_is_async_p (struct target_ops *ignore)
3103 {
3104 struct target_ops *t;
3105
3106 /* This may be called before the target is pushed on the stack;
3107 look for the default process stratum. If there's none, gdb isn't
3108 configured with a native debugger, and target remote isn't
3109 connected yet. */
3110 t = find_default_run_target (NULL);
3111 if (t && t->to_is_async_p != delegate_is_async_p)
3112 return (t->to_is_async_p) (t);
3113 return 0;
3114 }
3115
3116 static int
3117 find_default_supports_non_stop (struct target_ops *self)
3118 {
3119 struct target_ops *t;
3120
3121 t = find_default_run_target (NULL);
3122 if (t && t->to_supports_non_stop)
3123 return (t->to_supports_non_stop) (t);
3124 return 0;
3125 }
3126
3127 int
3128 target_supports_non_stop (void)
3129 {
3130 struct target_ops *t;
3131
3132 for (t = &current_target; t != NULL; t = t->beneath)
3133 if (t->to_supports_non_stop)
3134 return t->to_supports_non_stop (t);
3135
3136 return 0;
3137 }
3138
3139 /* Implement the "info proc" command. */
3140
3141 int
3142 target_info_proc (char *args, enum info_proc_what what)
3143 {
3144 struct target_ops *t;
3145
3146 /* If we're already connected to something that can get us OS
3147 related data, use it. Otherwise, try using the native
3148 target. */
3149 if (current_target.to_stratum >= process_stratum)
3150 t = current_target.beneath;
3151 else
3152 t = find_default_run_target (NULL);
3153
3154 for (; t != NULL; t = t->beneath)
3155 {
3156 if (t->to_info_proc != NULL)
3157 {
3158 t->to_info_proc (t, args, what);
3159
3160 if (targetdebug)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "target_info_proc (\"%s\", %d)\n", args, what);
3163
3164 return 1;
3165 }
3166 }
3167
3168 return 0;
3169 }
3170
3171 static int
3172 find_default_supports_disable_randomization (struct target_ops *self)
3173 {
3174 struct target_ops *t;
3175
3176 t = find_default_run_target (NULL);
3177 if (t && t->to_supports_disable_randomization)
3178 return (t->to_supports_disable_randomization) (t);
3179 return 0;
3180 }
3181
3182 int
3183 target_supports_disable_randomization (void)
3184 {
3185 struct target_ops *t;
3186
3187 for (t = &current_target; t != NULL; t = t->beneath)
3188 if (t->to_supports_disable_randomization)
3189 return t->to_supports_disable_randomization (t);
3190
3191 return 0;
3192 }
3193
3194 char *
3195 target_get_osdata (const char *type)
3196 {
3197 struct target_ops *t;
3198
3199 /* If we're already connected to something that can get us OS
3200 related data, use it. Otherwise, try using the native
3201 target. */
3202 if (current_target.to_stratum >= process_stratum)
3203 t = current_target.beneath;
3204 else
3205 t = find_default_run_target ("get OS data");
3206
3207 if (!t)
3208 return NULL;
3209
3210 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3211 }
3212
3213 /* Determine the current address space of thread PTID. */
3214
3215 struct address_space *
3216 target_thread_address_space (ptid_t ptid)
3217 {
3218 struct address_space *aspace;
3219 struct inferior *inf;
3220 struct target_ops *t;
3221
3222 for (t = current_target.beneath; t != NULL; t = t->beneath)
3223 {
3224 if (t->to_thread_address_space != NULL)
3225 {
3226 aspace = t->to_thread_address_space (t, ptid);
3227 gdb_assert (aspace);
3228
3229 if (targetdebug)
3230 fprintf_unfiltered (gdb_stdlog,
3231 "target_thread_address_space (%s) = %d\n",
3232 target_pid_to_str (ptid),
3233 address_space_num (aspace));
3234 return aspace;
3235 }
3236 }
3237
3238 /* Fall-back to the "main" address space of the inferior. */
3239 inf = find_inferior_pid (ptid_get_pid (ptid));
3240
3241 if (inf == NULL || inf->aspace == NULL)
3242 internal_error (__FILE__, __LINE__,
3243 _("Can't determine the current "
3244 "address space of thread %s\n"),
3245 target_pid_to_str (ptid));
3246
3247 return inf->aspace;
3248 }
3249
3250
3251 /* Target file operations. */
3252
3253 static struct target_ops *
3254 default_fileio_target (void)
3255 {
3256 /* If we're already connected to something that can perform
3257 file I/O, use it. Otherwise, try using the native target. */
3258 if (current_target.to_stratum >= process_stratum)
3259 return current_target.beneath;
3260 else
3261 return find_default_run_target ("file I/O");
3262 }
3263
3264 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3265 target file descriptor, or -1 if an error occurs (and set
3266 *TARGET_ERRNO). */
3267 int
3268 target_fileio_open (const char *filename, int flags, int mode,
3269 int *target_errno)
3270 {
3271 struct target_ops *t;
3272
3273 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3274 {
3275 if (t->to_fileio_open != NULL)
3276 {
3277 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3278
3279 if (targetdebug)
3280 fprintf_unfiltered (gdb_stdlog,
3281 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3282 filename, flags, mode,
3283 fd, fd != -1 ? 0 : *target_errno);
3284 return fd;
3285 }
3286 }
3287
3288 *target_errno = FILEIO_ENOSYS;
3289 return -1;
3290 }
3291
3292 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3293 Return the number of bytes written, or -1 if an error occurs
3294 (and set *TARGET_ERRNO). */
3295 int
3296 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3297 ULONGEST offset, int *target_errno)
3298 {
3299 struct target_ops *t;
3300
3301 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3302 {
3303 if (t->to_fileio_pwrite != NULL)
3304 {
3305 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3306 target_errno);
3307
3308 if (targetdebug)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "target_fileio_pwrite (%d,...,%d,%s) "
3311 "= %d (%d)\n",
3312 fd, len, pulongest (offset),
3313 ret, ret != -1 ? 0 : *target_errno);
3314 return ret;
3315 }
3316 }
3317
3318 *target_errno = FILEIO_ENOSYS;
3319 return -1;
3320 }
3321
3322 /* Read up to LEN bytes FD on the target into READ_BUF.
3323 Return the number of bytes read, or -1 if an error occurs
3324 (and set *TARGET_ERRNO). */
3325 int
3326 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3327 ULONGEST offset, int *target_errno)
3328 {
3329 struct target_ops *t;
3330
3331 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3332 {
3333 if (t->to_fileio_pread != NULL)
3334 {
3335 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3336 target_errno);
3337
3338 if (targetdebug)
3339 fprintf_unfiltered (gdb_stdlog,
3340 "target_fileio_pread (%d,...,%d,%s) "
3341 "= %d (%d)\n",
3342 fd, len, pulongest (offset),
3343 ret, ret != -1 ? 0 : *target_errno);
3344 return ret;
3345 }
3346 }
3347
3348 *target_errno = FILEIO_ENOSYS;
3349 return -1;
3350 }
3351
3352 /* Close FD on the target. Return 0, or -1 if an error occurs
3353 (and set *TARGET_ERRNO). */
3354 int
3355 target_fileio_close (int fd, int *target_errno)
3356 {
3357 struct target_ops *t;
3358
3359 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3360 {
3361 if (t->to_fileio_close != NULL)
3362 {
3363 int ret = t->to_fileio_close (t, fd, target_errno);
3364
3365 if (targetdebug)
3366 fprintf_unfiltered (gdb_stdlog,
3367 "target_fileio_close (%d) = %d (%d)\n",
3368 fd, ret, ret != -1 ? 0 : *target_errno);
3369 return ret;
3370 }
3371 }
3372
3373 *target_errno = FILEIO_ENOSYS;
3374 return -1;
3375 }
3376
3377 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3378 occurs (and set *TARGET_ERRNO). */
3379 int
3380 target_fileio_unlink (const char *filename, int *target_errno)
3381 {
3382 struct target_ops *t;
3383
3384 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3385 {
3386 if (t->to_fileio_unlink != NULL)
3387 {
3388 int ret = t->to_fileio_unlink (t, filename, target_errno);
3389
3390 if (targetdebug)
3391 fprintf_unfiltered (gdb_stdlog,
3392 "target_fileio_unlink (%s) = %d (%d)\n",
3393 filename, ret, ret != -1 ? 0 : *target_errno);
3394 return ret;
3395 }
3396 }
3397
3398 *target_errno = FILEIO_ENOSYS;
3399 return -1;
3400 }
3401
3402 /* Read value of symbolic link FILENAME on the target. Return a
3403 null-terminated string allocated via xmalloc, or NULL if an error
3404 occurs (and set *TARGET_ERRNO). */
3405 char *
3406 target_fileio_readlink (const char *filename, int *target_errno)
3407 {
3408 struct target_ops *t;
3409
3410 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3411 {
3412 if (t->to_fileio_readlink != NULL)
3413 {
3414 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3415
3416 if (targetdebug)
3417 fprintf_unfiltered (gdb_stdlog,
3418 "target_fileio_readlink (%s) = %s (%d)\n",
3419 filename, ret? ret : "(nil)",
3420 ret? 0 : *target_errno);
3421 return ret;
3422 }
3423 }
3424
3425 *target_errno = FILEIO_ENOSYS;
3426 return NULL;
3427 }
3428
3429 static void
3430 target_fileio_close_cleanup (void *opaque)
3431 {
3432 int fd = *(int *) opaque;
3433 int target_errno;
3434
3435 target_fileio_close (fd, &target_errno);
3436 }
3437
3438 /* Read target file FILENAME. Store the result in *BUF_P and
3439 return the size of the transferred data. PADDING additional bytes are
3440 available in *BUF_P. This is a helper function for
3441 target_fileio_read_alloc; see the declaration of that function for more
3442 information. */
3443
3444 static LONGEST
3445 target_fileio_read_alloc_1 (const char *filename,
3446 gdb_byte **buf_p, int padding)
3447 {
3448 struct cleanup *close_cleanup;
3449 size_t buf_alloc, buf_pos;
3450 gdb_byte *buf;
3451 LONGEST n;
3452 int fd;
3453 int target_errno;
3454
3455 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3456 if (fd == -1)
3457 return -1;
3458
3459 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3460
3461 /* Start by reading up to 4K at a time. The target will throttle
3462 this number down if necessary. */
3463 buf_alloc = 4096;
3464 buf = xmalloc (buf_alloc);
3465 buf_pos = 0;
3466 while (1)
3467 {
3468 n = target_fileio_pread (fd, &buf[buf_pos],
3469 buf_alloc - buf_pos - padding, buf_pos,
3470 &target_errno);
3471 if (n < 0)
3472 {
3473 /* An error occurred. */
3474 do_cleanups (close_cleanup);
3475 xfree (buf);
3476 return -1;
3477 }
3478 else if (n == 0)
3479 {
3480 /* Read all there was. */
3481 do_cleanups (close_cleanup);
3482 if (buf_pos == 0)
3483 xfree (buf);
3484 else
3485 *buf_p = buf;
3486 return buf_pos;
3487 }
3488
3489 buf_pos += n;
3490
3491 /* If the buffer is filling up, expand it. */
3492 if (buf_alloc < buf_pos * 2)
3493 {
3494 buf_alloc *= 2;
3495 buf = xrealloc (buf, buf_alloc);
3496 }
3497
3498 QUIT;
3499 }
3500 }
3501
3502 /* Read target file FILENAME. Store the result in *BUF_P and return
3503 the size of the transferred data. See the declaration in "target.h"
3504 function for more information about the return value. */
3505
3506 LONGEST
3507 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3508 {
3509 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3510 }
3511
3512 /* Read target file FILENAME. The result is NUL-terminated and
3513 returned as a string, allocated using xmalloc. If an error occurs
3514 or the transfer is unsupported, NULL is returned. Empty objects
3515 are returned as allocated but empty strings. A warning is issued
3516 if the result contains any embedded NUL bytes. */
3517
3518 char *
3519 target_fileio_read_stralloc (const char *filename)
3520 {
3521 gdb_byte *buffer;
3522 char *bufstr;
3523 LONGEST i, transferred;
3524
3525 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3526 bufstr = (char *) buffer;
3527
3528 if (transferred < 0)
3529 return NULL;
3530
3531 if (transferred == 0)
3532 return xstrdup ("");
3533
3534 bufstr[transferred] = 0;
3535
3536 /* Check for embedded NUL bytes; but allow trailing NULs. */
3537 for (i = strlen (bufstr); i < transferred; i++)
3538 if (bufstr[i] != 0)
3539 {
3540 warning (_("target file %s "
3541 "contained unexpected null characters"),
3542 filename);
3543 break;
3544 }
3545
3546 return bufstr;
3547 }
3548
3549
3550 static int
3551 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3552 CORE_ADDR addr, int len)
3553 {
3554 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3555 }
3556
3557 static int
3558 default_watchpoint_addr_within_range (struct target_ops *target,
3559 CORE_ADDR addr,
3560 CORE_ADDR start, int length)
3561 {
3562 return addr >= start && addr < start + length;
3563 }
3564
3565 static struct gdbarch *
3566 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3567 {
3568 return target_gdbarch ();
3569 }
3570
3571 static int
3572 return_zero (void)
3573 {
3574 return 0;
3575 }
3576
3577 static int
3578 return_minus_one (void)
3579 {
3580 return -1;
3581 }
3582
3583 static void *
3584 return_null (void)
3585 {
3586 return 0;
3587 }
3588
3589 /*
3590 * Find the next target down the stack from the specified target.
3591 */
3592
3593 struct target_ops *
3594 find_target_beneath (struct target_ops *t)
3595 {
3596 return t->beneath;
3597 }
3598
3599 /* See target.h. */
3600
3601 struct target_ops *
3602 find_target_at (enum strata stratum)
3603 {
3604 struct target_ops *t;
3605
3606 for (t = current_target.beneath; t != NULL; t = t->beneath)
3607 if (t->to_stratum == stratum)
3608 return t;
3609
3610 return NULL;
3611 }
3612
3613 \f
3614 /* The inferior process has died. Long live the inferior! */
3615
3616 void
3617 generic_mourn_inferior (void)
3618 {
3619 ptid_t ptid;
3620
3621 ptid = inferior_ptid;
3622 inferior_ptid = null_ptid;
3623
3624 /* Mark breakpoints uninserted in case something tries to delete a
3625 breakpoint while we delete the inferior's threads (which would
3626 fail, since the inferior is long gone). */
3627 mark_breakpoints_out ();
3628
3629 if (!ptid_equal (ptid, null_ptid))
3630 {
3631 int pid = ptid_get_pid (ptid);
3632 exit_inferior (pid);
3633 }
3634
3635 /* Note this wipes step-resume breakpoints, so needs to be done
3636 after exit_inferior, which ends up referencing the step-resume
3637 breakpoints through clear_thread_inferior_resources. */
3638 breakpoint_init_inferior (inf_exited);
3639
3640 registers_changed ();
3641
3642 reopen_exec_file ();
3643 reinit_frame_cache ();
3644
3645 if (deprecated_detach_hook)
3646 deprecated_detach_hook ();
3647 }
3648 \f
3649 /* Convert a normal process ID to a string. Returns the string in a
3650 static buffer. */
3651
3652 char *
3653 normal_pid_to_str (ptid_t ptid)
3654 {
3655 static char buf[32];
3656
3657 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3658 return buf;
3659 }
3660
3661 static char *
3662 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3663 {
3664 return normal_pid_to_str (ptid);
3665 }
3666
3667 /* Error-catcher for target_find_memory_regions. */
3668 static int
3669 dummy_find_memory_regions (struct target_ops *self,
3670 find_memory_region_ftype ignore1, void *ignore2)
3671 {
3672 error (_("Command not implemented for this target."));
3673 return 0;
3674 }
3675
3676 /* Error-catcher for target_make_corefile_notes. */
3677 static char *
3678 dummy_make_corefile_notes (struct target_ops *self,
3679 bfd *ignore1, int *ignore2)
3680 {
3681 error (_("Command not implemented for this target."));
3682 return NULL;
3683 }
3684
3685 /* Set up the handful of non-empty slots needed by the dummy target
3686 vector. */
3687
3688 static void
3689 init_dummy_target (void)
3690 {
3691 dummy_target.to_shortname = "None";
3692 dummy_target.to_longname = "None";
3693 dummy_target.to_doc = "";
3694 dummy_target.to_create_inferior = find_default_create_inferior;
3695 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3696 dummy_target.to_supports_disable_randomization
3697 = find_default_supports_disable_randomization;
3698 dummy_target.to_pid_to_str = dummy_pid_to_str;
3699 dummy_target.to_stratum = dummy_stratum;
3700 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3701 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3702 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3703 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3704 dummy_target.to_has_execution
3705 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3706 dummy_target.to_magic = OPS_MAGIC;
3707
3708 install_dummy_methods (&dummy_target);
3709 }
3710 \f
3711 static void
3712 debug_to_open (char *args, int from_tty)
3713 {
3714 debug_target.to_open (args, from_tty);
3715
3716 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3717 }
3718
3719 void
3720 target_close (struct target_ops *targ)
3721 {
3722 gdb_assert (!target_is_pushed (targ));
3723
3724 if (targ->to_xclose != NULL)
3725 targ->to_xclose (targ);
3726 else if (targ->to_close != NULL)
3727 targ->to_close (targ);
3728
3729 if (targetdebug)
3730 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3731 }
3732
3733 void
3734 target_attach (char *args, int from_tty)
3735 {
3736 current_target.to_attach (&current_target, args, from_tty);
3737 if (targetdebug)
3738 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3739 args, from_tty);
3740 }
3741
3742 int
3743 target_thread_alive (ptid_t ptid)
3744 {
3745 struct target_ops *t;
3746
3747 for (t = current_target.beneath; t != NULL; t = t->beneath)
3748 {
3749 if (t->to_thread_alive != NULL)
3750 {
3751 int retval;
3752
3753 retval = t->to_thread_alive (t, ptid);
3754 if (targetdebug)
3755 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3756 ptid_get_pid (ptid), retval);
3757
3758 return retval;
3759 }
3760 }
3761
3762 return 0;
3763 }
3764
3765 void
3766 target_find_new_threads (void)
3767 {
3768 struct target_ops *t;
3769
3770 for (t = current_target.beneath; t != NULL; t = t->beneath)
3771 {
3772 if (t->to_find_new_threads != NULL)
3773 {
3774 t->to_find_new_threads (t);
3775 if (targetdebug)
3776 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3777
3778 return;
3779 }
3780 }
3781 }
3782
3783 void
3784 target_stop (ptid_t ptid)
3785 {
3786 if (!may_stop)
3787 {
3788 warning (_("May not interrupt or stop the target, ignoring attempt"));
3789 return;
3790 }
3791
3792 (*current_target.to_stop) (&current_target, ptid);
3793 }
3794
3795 static void
3796 debug_to_post_attach (struct target_ops *self, int pid)
3797 {
3798 debug_target.to_post_attach (&debug_target, pid);
3799
3800 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3801 }
3802
3803 /* Concatenate ELEM to LIST, a comma separate list, and return the
3804 result. The LIST incoming argument is released. */
3805
3806 static char *
3807 str_comma_list_concat_elem (char *list, const char *elem)
3808 {
3809 if (list == NULL)
3810 return xstrdup (elem);
3811 else
3812 return reconcat (list, list, ", ", elem, (char *) NULL);
3813 }
3814
3815 /* Helper for target_options_to_string. If OPT is present in
3816 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3817 Returns the new resulting string. OPT is removed from
3818 TARGET_OPTIONS. */
3819
3820 static char *
3821 do_option (int *target_options, char *ret,
3822 int opt, char *opt_str)
3823 {
3824 if ((*target_options & opt) != 0)
3825 {
3826 ret = str_comma_list_concat_elem (ret, opt_str);
3827 *target_options &= ~opt;
3828 }
3829
3830 return ret;
3831 }
3832
3833 char *
3834 target_options_to_string (int target_options)
3835 {
3836 char *ret = NULL;
3837
3838 #define DO_TARG_OPTION(OPT) \
3839 ret = do_option (&target_options, ret, OPT, #OPT)
3840
3841 DO_TARG_OPTION (TARGET_WNOHANG);
3842
3843 if (target_options != 0)
3844 ret = str_comma_list_concat_elem (ret, "unknown???");
3845
3846 if (ret == NULL)
3847 ret = xstrdup ("");
3848 return ret;
3849 }
3850
3851 static void
3852 debug_print_register (const char * func,
3853 struct regcache *regcache, int regno)
3854 {
3855 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3856
3857 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3858 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3859 && gdbarch_register_name (gdbarch, regno) != NULL
3860 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3861 fprintf_unfiltered (gdb_stdlog, "(%s)",
3862 gdbarch_register_name (gdbarch, regno));
3863 else
3864 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3865 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3866 {
3867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3868 int i, size = register_size (gdbarch, regno);
3869 gdb_byte buf[MAX_REGISTER_SIZE];
3870
3871 regcache_raw_collect (regcache, regno, buf);
3872 fprintf_unfiltered (gdb_stdlog, " = ");
3873 for (i = 0; i < size; i++)
3874 {
3875 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3876 }
3877 if (size <= sizeof (LONGEST))
3878 {
3879 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3880
3881 fprintf_unfiltered (gdb_stdlog, " %s %s",
3882 core_addr_to_string_nz (val), plongest (val));
3883 }
3884 }
3885 fprintf_unfiltered (gdb_stdlog, "\n");
3886 }
3887
3888 void
3889 target_fetch_registers (struct regcache *regcache, int regno)
3890 {
3891 struct target_ops *t;
3892
3893 for (t = current_target.beneath; t != NULL; t = t->beneath)
3894 {
3895 if (t->to_fetch_registers != NULL)
3896 {
3897 t->to_fetch_registers (t, regcache, regno);
3898 if (targetdebug)
3899 debug_print_register ("target_fetch_registers", regcache, regno);
3900 return;
3901 }
3902 }
3903 }
3904
3905 void
3906 target_store_registers (struct regcache *regcache, int regno)
3907 {
3908 struct target_ops *t;
3909
3910 if (!may_write_registers)
3911 error (_("Writing to registers is not allowed (regno %d)"), regno);
3912
3913 current_target.to_store_registers (&current_target, regcache, regno);
3914 if (targetdebug)
3915 {
3916 debug_print_register ("target_store_registers", regcache, regno);
3917 }
3918 }
3919
3920 int
3921 target_core_of_thread (ptid_t ptid)
3922 {
3923 struct target_ops *t;
3924
3925 for (t = current_target.beneath; t != NULL; t = t->beneath)
3926 {
3927 if (t->to_core_of_thread != NULL)
3928 {
3929 int retval = t->to_core_of_thread (t, ptid);
3930
3931 if (targetdebug)
3932 fprintf_unfiltered (gdb_stdlog,
3933 "target_core_of_thread (%d) = %d\n",
3934 ptid_get_pid (ptid), retval);
3935 return retval;
3936 }
3937 }
3938
3939 return -1;
3940 }
3941
3942 int
3943 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3944 {
3945 struct target_ops *t;
3946
3947 for (t = current_target.beneath; t != NULL; t = t->beneath)
3948 {
3949 if (t->to_verify_memory != NULL)
3950 {
3951 int retval = t->to_verify_memory (t, data, memaddr, size);
3952
3953 if (targetdebug)
3954 fprintf_unfiltered (gdb_stdlog,
3955 "target_verify_memory (%s, %s) = %d\n",
3956 paddress (target_gdbarch (), memaddr),
3957 pulongest (size),
3958 retval);
3959 return retval;
3960 }
3961 }
3962
3963 tcomplain ();
3964 }
3965
3966 /* The documentation for this function is in its prototype declaration in
3967 target.h. */
3968
3969 int
3970 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3971 {
3972 struct target_ops *t;
3973
3974 for (t = current_target.beneath; t != NULL; t = t->beneath)
3975 if (t->to_insert_mask_watchpoint != NULL)
3976 {
3977 int ret;
3978
3979 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3980
3981 if (targetdebug)
3982 fprintf_unfiltered (gdb_stdlog, "\
3983 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3984 core_addr_to_string (addr),
3985 core_addr_to_string (mask), rw, ret);
3986
3987 return ret;
3988 }
3989
3990 return 1;
3991 }
3992
3993 /* The documentation for this function is in its prototype declaration in
3994 target.h. */
3995
3996 int
3997 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3998 {
3999 struct target_ops *t;
4000
4001 for (t = current_target.beneath; t != NULL; t = t->beneath)
4002 if (t->to_remove_mask_watchpoint != NULL)
4003 {
4004 int ret;
4005
4006 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4007
4008 if (targetdebug)
4009 fprintf_unfiltered (gdb_stdlog, "\
4010 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4011 core_addr_to_string (addr),
4012 core_addr_to_string (mask), rw, ret);
4013
4014 return ret;
4015 }
4016
4017 return 1;
4018 }
4019
4020 /* The documentation for this function is in its prototype declaration
4021 in target.h. */
4022
4023 int
4024 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4025 {
4026 struct target_ops *t;
4027
4028 for (t = current_target.beneath; t != NULL; t = t->beneath)
4029 if (t->to_masked_watch_num_registers != NULL)
4030 return t->to_masked_watch_num_registers (t, addr, mask);
4031
4032 return -1;
4033 }
4034
4035 /* The documentation for this function is in its prototype declaration
4036 in target.h. */
4037
4038 int
4039 target_ranged_break_num_registers (void)
4040 {
4041 struct target_ops *t;
4042
4043 for (t = current_target.beneath; t != NULL; t = t->beneath)
4044 if (t->to_ranged_break_num_registers != NULL)
4045 return t->to_ranged_break_num_registers (t);
4046
4047 return -1;
4048 }
4049
4050 /* See target.h. */
4051
4052 struct btrace_target_info *
4053 target_enable_btrace (ptid_t ptid)
4054 {
4055 struct target_ops *t;
4056
4057 for (t = current_target.beneath; t != NULL; t = t->beneath)
4058 if (t->to_enable_btrace != NULL)
4059 return t->to_enable_btrace (t, ptid);
4060
4061 tcomplain ();
4062 return NULL;
4063 }
4064
4065 /* See target.h. */
4066
4067 void
4068 target_disable_btrace (struct btrace_target_info *btinfo)
4069 {
4070 struct target_ops *t;
4071
4072 for (t = current_target.beneath; t != NULL; t = t->beneath)
4073 if (t->to_disable_btrace != NULL)
4074 {
4075 t->to_disable_btrace (t, btinfo);
4076 return;
4077 }
4078
4079 tcomplain ();
4080 }
4081
4082 /* See target.h. */
4083
4084 void
4085 target_teardown_btrace (struct btrace_target_info *btinfo)
4086 {
4087 struct target_ops *t;
4088
4089 for (t = current_target.beneath; t != NULL; t = t->beneath)
4090 if (t->to_teardown_btrace != NULL)
4091 {
4092 t->to_teardown_btrace (t, btinfo);
4093 return;
4094 }
4095
4096 tcomplain ();
4097 }
4098
4099 /* See target.h. */
4100
4101 enum btrace_error
4102 target_read_btrace (VEC (btrace_block_s) **btrace,
4103 struct btrace_target_info *btinfo,
4104 enum btrace_read_type type)
4105 {
4106 struct target_ops *t;
4107
4108 for (t = current_target.beneath; t != NULL; t = t->beneath)
4109 if (t->to_read_btrace != NULL)
4110 return t->to_read_btrace (t, btrace, btinfo, type);
4111
4112 tcomplain ();
4113 return BTRACE_ERR_NOT_SUPPORTED;
4114 }
4115
4116 /* See target.h. */
4117
4118 void
4119 target_stop_recording (void)
4120 {
4121 struct target_ops *t;
4122
4123 for (t = current_target.beneath; t != NULL; t = t->beneath)
4124 if (t->to_stop_recording != NULL)
4125 {
4126 t->to_stop_recording (t);
4127 return;
4128 }
4129
4130 /* This is optional. */
4131 }
4132
4133 /* See target.h. */
4134
4135 void
4136 target_info_record (void)
4137 {
4138 struct target_ops *t;
4139
4140 for (t = current_target.beneath; t != NULL; t = t->beneath)
4141 if (t->to_info_record != NULL)
4142 {
4143 t->to_info_record (t);
4144 return;
4145 }
4146
4147 tcomplain ();
4148 }
4149
4150 /* See target.h. */
4151
4152 void
4153 target_save_record (const char *filename)
4154 {
4155 struct target_ops *t;
4156
4157 for (t = current_target.beneath; t != NULL; t = t->beneath)
4158 if (t->to_save_record != NULL)
4159 {
4160 t->to_save_record (t, filename);
4161 return;
4162 }
4163
4164 tcomplain ();
4165 }
4166
4167 /* See target.h. */
4168
4169 int
4170 target_supports_delete_record (void)
4171 {
4172 struct target_ops *t;
4173
4174 for (t = current_target.beneath; t != NULL; t = t->beneath)
4175 if (t->to_delete_record != NULL)
4176 return 1;
4177
4178 return 0;
4179 }
4180
4181 /* See target.h. */
4182
4183 void
4184 target_delete_record (void)
4185 {
4186 struct target_ops *t;
4187
4188 for (t = current_target.beneath; t != NULL; t = t->beneath)
4189 if (t->to_delete_record != NULL)
4190 {
4191 t->to_delete_record (t);
4192 return;
4193 }
4194
4195 tcomplain ();
4196 }
4197
4198 /* See target.h. */
4199
4200 int
4201 target_record_is_replaying (void)
4202 {
4203 struct target_ops *t;
4204
4205 for (t = current_target.beneath; t != NULL; t = t->beneath)
4206 if (t->to_record_is_replaying != NULL)
4207 return t->to_record_is_replaying (t);
4208
4209 return 0;
4210 }
4211
4212 /* See target.h. */
4213
4214 void
4215 target_goto_record_begin (void)
4216 {
4217 struct target_ops *t;
4218
4219 for (t = current_target.beneath; t != NULL; t = t->beneath)
4220 if (t->to_goto_record_begin != NULL)
4221 {
4222 t->to_goto_record_begin (t);
4223 return;
4224 }
4225
4226 tcomplain ();
4227 }
4228
4229 /* See target.h. */
4230
4231 void
4232 target_goto_record_end (void)
4233 {
4234 struct target_ops *t;
4235
4236 for (t = current_target.beneath; t != NULL; t = t->beneath)
4237 if (t->to_goto_record_end != NULL)
4238 {
4239 t->to_goto_record_end (t);
4240 return;
4241 }
4242
4243 tcomplain ();
4244 }
4245
4246 /* See target.h. */
4247
4248 void
4249 target_goto_record (ULONGEST insn)
4250 {
4251 struct target_ops *t;
4252
4253 for (t = current_target.beneath; t != NULL; t = t->beneath)
4254 if (t->to_goto_record != NULL)
4255 {
4256 t->to_goto_record (t, insn);
4257 return;
4258 }
4259
4260 tcomplain ();
4261 }
4262
4263 /* See target.h. */
4264
4265 void
4266 target_insn_history (int size, int flags)
4267 {
4268 struct target_ops *t;
4269
4270 for (t = current_target.beneath; t != NULL; t = t->beneath)
4271 if (t->to_insn_history != NULL)
4272 {
4273 t->to_insn_history (t, size, flags);
4274 return;
4275 }
4276
4277 tcomplain ();
4278 }
4279
4280 /* See target.h. */
4281
4282 void
4283 target_insn_history_from (ULONGEST from, int size, int flags)
4284 {
4285 struct target_ops *t;
4286
4287 for (t = current_target.beneath; t != NULL; t = t->beneath)
4288 if (t->to_insn_history_from != NULL)
4289 {
4290 t->to_insn_history_from (t, from, size, flags);
4291 return;
4292 }
4293
4294 tcomplain ();
4295 }
4296
4297 /* See target.h. */
4298
4299 void
4300 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4301 {
4302 struct target_ops *t;
4303
4304 for (t = current_target.beneath; t != NULL; t = t->beneath)
4305 if (t->to_insn_history_range != NULL)
4306 {
4307 t->to_insn_history_range (t, begin, end, flags);
4308 return;
4309 }
4310
4311 tcomplain ();
4312 }
4313
4314 /* See target.h. */
4315
4316 void
4317 target_call_history (int size, int flags)
4318 {
4319 struct target_ops *t;
4320
4321 for (t = current_target.beneath; t != NULL; t = t->beneath)
4322 if (t->to_call_history != NULL)
4323 {
4324 t->to_call_history (t, size, flags);
4325 return;
4326 }
4327
4328 tcomplain ();
4329 }
4330
4331 /* See target.h. */
4332
4333 void
4334 target_call_history_from (ULONGEST begin, int size, int flags)
4335 {
4336 struct target_ops *t;
4337
4338 for (t = current_target.beneath; t != NULL; t = t->beneath)
4339 if (t->to_call_history_from != NULL)
4340 {
4341 t->to_call_history_from (t, begin, size, flags);
4342 return;
4343 }
4344
4345 tcomplain ();
4346 }
4347
4348 /* See target.h. */
4349
4350 void
4351 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4352 {
4353 struct target_ops *t;
4354
4355 for (t = current_target.beneath; t != NULL; t = t->beneath)
4356 if (t->to_call_history_range != NULL)
4357 {
4358 t->to_call_history_range (t, begin, end, flags);
4359 return;
4360 }
4361
4362 tcomplain ();
4363 }
4364
4365 static void
4366 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4367 {
4368 debug_target.to_prepare_to_store (&debug_target, regcache);
4369
4370 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4371 }
4372
4373 /* See target.h. */
4374
4375 const struct frame_unwind *
4376 target_get_unwinder (void)
4377 {
4378 struct target_ops *t;
4379
4380 for (t = current_target.beneath; t != NULL; t = t->beneath)
4381 if (t->to_get_unwinder != NULL)
4382 return t->to_get_unwinder;
4383
4384 return NULL;
4385 }
4386
4387 /* See target.h. */
4388
4389 const struct frame_unwind *
4390 target_get_tailcall_unwinder (void)
4391 {
4392 struct target_ops *t;
4393
4394 for (t = current_target.beneath; t != NULL; t = t->beneath)
4395 if (t->to_get_tailcall_unwinder != NULL)
4396 return t->to_get_tailcall_unwinder;
4397
4398 return NULL;
4399 }
4400
4401 /* See target.h. */
4402
4403 CORE_ADDR
4404 forward_target_decr_pc_after_break (struct target_ops *ops,
4405 struct gdbarch *gdbarch)
4406 {
4407 for (; ops != NULL; ops = ops->beneath)
4408 if (ops->to_decr_pc_after_break != NULL)
4409 return ops->to_decr_pc_after_break (ops, gdbarch);
4410
4411 return gdbarch_decr_pc_after_break (gdbarch);
4412 }
4413
4414 /* See target.h. */
4415
4416 CORE_ADDR
4417 target_decr_pc_after_break (struct gdbarch *gdbarch)
4418 {
4419 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4420 }
4421
4422 static int
4423 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4424 int write, struct mem_attrib *attrib,
4425 struct target_ops *target)
4426 {
4427 int retval;
4428
4429 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4430 attrib, target);
4431
4432 fprintf_unfiltered (gdb_stdlog,
4433 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4434 paddress (target_gdbarch (), memaddr), len,
4435 write ? "write" : "read", retval);
4436
4437 if (retval > 0)
4438 {
4439 int i;
4440
4441 fputs_unfiltered (", bytes =", gdb_stdlog);
4442 for (i = 0; i < retval; i++)
4443 {
4444 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4445 {
4446 if (targetdebug < 2 && i > 0)
4447 {
4448 fprintf_unfiltered (gdb_stdlog, " ...");
4449 break;
4450 }
4451 fprintf_unfiltered (gdb_stdlog, "\n");
4452 }
4453
4454 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4455 }
4456 }
4457
4458 fputc_unfiltered ('\n', gdb_stdlog);
4459
4460 return retval;
4461 }
4462
4463 static void
4464 debug_to_files_info (struct target_ops *target)
4465 {
4466 debug_target.to_files_info (target);
4467
4468 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4469 }
4470
4471 static int
4472 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4473 struct bp_target_info *bp_tgt)
4474 {
4475 int retval;
4476
4477 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4478
4479 fprintf_unfiltered (gdb_stdlog,
4480 "target_insert_breakpoint (%s, xxx) = %ld\n",
4481 core_addr_to_string (bp_tgt->placed_address),
4482 (unsigned long) retval);
4483 return retval;
4484 }
4485
4486 static int
4487 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4488 struct bp_target_info *bp_tgt)
4489 {
4490 int retval;
4491
4492 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4493
4494 fprintf_unfiltered (gdb_stdlog,
4495 "target_remove_breakpoint (%s, xxx) = %ld\n",
4496 core_addr_to_string (bp_tgt->placed_address),
4497 (unsigned long) retval);
4498 return retval;
4499 }
4500
4501 static int
4502 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4503 int type, int cnt, int from_tty)
4504 {
4505 int retval;
4506
4507 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4508 type, cnt, from_tty);
4509
4510 fprintf_unfiltered (gdb_stdlog,
4511 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4512 (unsigned long) type,
4513 (unsigned long) cnt,
4514 (unsigned long) from_tty,
4515 (unsigned long) retval);
4516 return retval;
4517 }
4518
4519 static int
4520 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4521 CORE_ADDR addr, int len)
4522 {
4523 CORE_ADDR retval;
4524
4525 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4526 addr, len);
4527
4528 fprintf_unfiltered (gdb_stdlog,
4529 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4530 core_addr_to_string (addr), (unsigned long) len,
4531 core_addr_to_string (retval));
4532 return retval;
4533 }
4534
4535 static int
4536 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4537 CORE_ADDR addr, int len, int rw,
4538 struct expression *cond)
4539 {
4540 int retval;
4541
4542 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4543 addr, len,
4544 rw, cond);
4545
4546 fprintf_unfiltered (gdb_stdlog,
4547 "target_can_accel_watchpoint_condition "
4548 "(%s, %d, %d, %s) = %ld\n",
4549 core_addr_to_string (addr), len, rw,
4550 host_address_to_string (cond), (unsigned long) retval);
4551 return retval;
4552 }
4553
4554 static int
4555 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4556 {
4557 int retval;
4558
4559 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4560
4561 fprintf_unfiltered (gdb_stdlog,
4562 "target_stopped_by_watchpoint () = %ld\n",
4563 (unsigned long) retval);
4564 return retval;
4565 }
4566
4567 static int
4568 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4569 {
4570 int retval;
4571
4572 retval = debug_target.to_stopped_data_address (target, addr);
4573
4574 fprintf_unfiltered (gdb_stdlog,
4575 "target_stopped_data_address ([%s]) = %ld\n",
4576 core_addr_to_string (*addr),
4577 (unsigned long)retval);
4578 return retval;
4579 }
4580
4581 static int
4582 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4583 CORE_ADDR addr,
4584 CORE_ADDR start, int length)
4585 {
4586 int retval;
4587
4588 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4589 start, length);
4590
4591 fprintf_filtered (gdb_stdlog,
4592 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4593 core_addr_to_string (addr), core_addr_to_string (start),
4594 length, retval);
4595 return retval;
4596 }
4597
4598 static int
4599 debug_to_insert_hw_breakpoint (struct target_ops *self,
4600 struct gdbarch *gdbarch,
4601 struct bp_target_info *bp_tgt)
4602 {
4603 int retval;
4604
4605 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4606 gdbarch, bp_tgt);
4607
4608 fprintf_unfiltered (gdb_stdlog,
4609 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4610 core_addr_to_string (bp_tgt->placed_address),
4611 (unsigned long) retval);
4612 return retval;
4613 }
4614
4615 static int
4616 debug_to_remove_hw_breakpoint (struct target_ops *self,
4617 struct gdbarch *gdbarch,
4618 struct bp_target_info *bp_tgt)
4619 {
4620 int retval;
4621
4622 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4623 gdbarch, bp_tgt);
4624
4625 fprintf_unfiltered (gdb_stdlog,
4626 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4627 core_addr_to_string (bp_tgt->placed_address),
4628 (unsigned long) retval);
4629 return retval;
4630 }
4631
4632 static int
4633 debug_to_insert_watchpoint (struct target_ops *self,
4634 CORE_ADDR addr, int len, int type,
4635 struct expression *cond)
4636 {
4637 int retval;
4638
4639 retval = debug_target.to_insert_watchpoint (&debug_target,
4640 addr, len, type, cond);
4641
4642 fprintf_unfiltered (gdb_stdlog,
4643 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4644 core_addr_to_string (addr), len, type,
4645 host_address_to_string (cond), (unsigned long) retval);
4646 return retval;
4647 }
4648
4649 static int
4650 debug_to_remove_watchpoint (struct target_ops *self,
4651 CORE_ADDR addr, int len, int type,
4652 struct expression *cond)
4653 {
4654 int retval;
4655
4656 retval = debug_target.to_remove_watchpoint (&debug_target,
4657 addr, len, type, cond);
4658
4659 fprintf_unfiltered (gdb_stdlog,
4660 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4661 core_addr_to_string (addr), len, type,
4662 host_address_to_string (cond), (unsigned long) retval);
4663 return retval;
4664 }
4665
4666 static void
4667 debug_to_terminal_init (struct target_ops *self)
4668 {
4669 debug_target.to_terminal_init (&debug_target);
4670
4671 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4672 }
4673
4674 static void
4675 debug_to_terminal_inferior (struct target_ops *self)
4676 {
4677 debug_target.to_terminal_inferior (&debug_target);
4678
4679 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4680 }
4681
4682 static void
4683 debug_to_terminal_ours_for_output (struct target_ops *self)
4684 {
4685 debug_target.to_terminal_ours_for_output (&debug_target);
4686
4687 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4688 }
4689
4690 static void
4691 debug_to_terminal_ours (struct target_ops *self)
4692 {
4693 debug_target.to_terminal_ours (&debug_target);
4694
4695 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4696 }
4697
4698 static void
4699 debug_to_terminal_save_ours (struct target_ops *self)
4700 {
4701 debug_target.to_terminal_save_ours (&debug_target);
4702
4703 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4704 }
4705
4706 static void
4707 debug_to_terminal_info (struct target_ops *self,
4708 const char *arg, int from_tty)
4709 {
4710 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4711
4712 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4713 from_tty);
4714 }
4715
4716 static void
4717 debug_to_load (struct target_ops *self, char *args, int from_tty)
4718 {
4719 debug_target.to_load (&debug_target, args, from_tty);
4720
4721 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4722 }
4723
4724 static void
4725 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4726 {
4727 debug_target.to_post_startup_inferior (&debug_target, ptid);
4728
4729 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4730 ptid_get_pid (ptid));
4731 }
4732
4733 static int
4734 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4735 {
4736 int retval;
4737
4738 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4739
4740 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4741 pid, retval);
4742
4743 return retval;
4744 }
4745
4746 static int
4747 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4748 {
4749 int retval;
4750
4751 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4752
4753 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4754 pid, retval);
4755
4756 return retval;
4757 }
4758
4759 static int
4760 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4761 {
4762 int retval;
4763
4764 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4765
4766 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4767 pid, retval);
4768
4769 return retval;
4770 }
4771
4772 static int
4773 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4774 {
4775 int retval;
4776
4777 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4778
4779 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4780 pid, retval);
4781
4782 return retval;
4783 }
4784
4785 static int
4786 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4787 {
4788 int retval;
4789
4790 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4791
4792 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4793 pid, retval);
4794
4795 return retval;
4796 }
4797
4798 static int
4799 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4800 {
4801 int retval;
4802
4803 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4804
4805 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4806 pid, retval);
4807
4808 return retval;
4809 }
4810
4811 static int
4812 debug_to_has_exited (struct target_ops *self,
4813 int pid, int wait_status, int *exit_status)
4814 {
4815 int has_exited;
4816
4817 has_exited = debug_target.to_has_exited (&debug_target,
4818 pid, wait_status, exit_status);
4819
4820 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4821 pid, wait_status, *exit_status, has_exited);
4822
4823 return has_exited;
4824 }
4825
4826 static int
4827 debug_to_can_run (struct target_ops *self)
4828 {
4829 int retval;
4830
4831 retval = debug_target.to_can_run (&debug_target);
4832
4833 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4834
4835 return retval;
4836 }
4837
4838 static struct gdbarch *
4839 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4840 {
4841 struct gdbarch *retval;
4842
4843 retval = debug_target.to_thread_architecture (ops, ptid);
4844
4845 fprintf_unfiltered (gdb_stdlog,
4846 "target_thread_architecture (%s) = %s [%s]\n",
4847 target_pid_to_str (ptid),
4848 host_address_to_string (retval),
4849 gdbarch_bfd_arch_info (retval)->printable_name);
4850 return retval;
4851 }
4852
4853 static void
4854 debug_to_stop (struct target_ops *self, ptid_t ptid)
4855 {
4856 debug_target.to_stop (&debug_target, ptid);
4857
4858 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4859 target_pid_to_str (ptid));
4860 }
4861
4862 static void
4863 debug_to_rcmd (struct target_ops *self, char *command,
4864 struct ui_file *outbuf)
4865 {
4866 debug_target.to_rcmd (&debug_target, command, outbuf);
4867 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4868 }
4869
4870 static char *
4871 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4872 {
4873 char *exec_file;
4874
4875 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4876
4877 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4878 pid, exec_file);
4879
4880 return exec_file;
4881 }
4882
4883 static void
4884 setup_target_debug (void)
4885 {
4886 memcpy (&debug_target, &current_target, sizeof debug_target);
4887
4888 current_target.to_open = debug_to_open;
4889 current_target.to_post_attach = debug_to_post_attach;
4890 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4891 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4892 current_target.to_files_info = debug_to_files_info;
4893 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4894 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4895 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4896 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4897 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4898 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4899 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4900 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4901 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4902 current_target.to_watchpoint_addr_within_range
4903 = debug_to_watchpoint_addr_within_range;
4904 current_target.to_region_ok_for_hw_watchpoint
4905 = debug_to_region_ok_for_hw_watchpoint;
4906 current_target.to_can_accel_watchpoint_condition
4907 = debug_to_can_accel_watchpoint_condition;
4908 current_target.to_terminal_init = debug_to_terminal_init;
4909 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4910 current_target.to_terminal_ours_for_output
4911 = debug_to_terminal_ours_for_output;
4912 current_target.to_terminal_ours = debug_to_terminal_ours;
4913 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4914 current_target.to_terminal_info = debug_to_terminal_info;
4915 current_target.to_load = debug_to_load;
4916 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4917 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4918 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4919 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4920 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4921 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4922 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4923 current_target.to_has_exited = debug_to_has_exited;
4924 current_target.to_can_run = debug_to_can_run;
4925 current_target.to_stop = debug_to_stop;
4926 current_target.to_rcmd = debug_to_rcmd;
4927 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4928 current_target.to_thread_architecture = debug_to_thread_architecture;
4929 }
4930 \f
4931
4932 static char targ_desc[] =
4933 "Names of targets and files being debugged.\nShows the entire \
4934 stack of targets currently in use (including the exec-file,\n\
4935 core-file, and process, if any), as well as the symbol file name.";
4936
4937 static void
4938 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4939 {
4940 error (_("\"monitor\" command not supported by this target."));
4941 }
4942
4943 static void
4944 do_monitor_command (char *cmd,
4945 int from_tty)
4946 {
4947 target_rcmd (cmd, gdb_stdtarg);
4948 }
4949
4950 /* Print the name of each layers of our target stack. */
4951
4952 static void
4953 maintenance_print_target_stack (char *cmd, int from_tty)
4954 {
4955 struct target_ops *t;
4956
4957 printf_filtered (_("The current target stack is:\n"));
4958
4959 for (t = target_stack; t != NULL; t = t->beneath)
4960 {
4961 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4962 }
4963 }
4964
4965 /* Controls if async mode is permitted. */
4966 int target_async_permitted = 0;
4967
4968 /* The set command writes to this variable. If the inferior is
4969 executing, target_async_permitted is *not* updated. */
4970 static int target_async_permitted_1 = 0;
4971
4972 static void
4973 set_target_async_command (char *args, int from_tty,
4974 struct cmd_list_element *c)
4975 {
4976 if (have_live_inferiors ())
4977 {
4978 target_async_permitted_1 = target_async_permitted;
4979 error (_("Cannot change this setting while the inferior is running."));
4980 }
4981
4982 target_async_permitted = target_async_permitted_1;
4983 }
4984
4985 static void
4986 show_target_async_command (struct ui_file *file, int from_tty,
4987 struct cmd_list_element *c,
4988 const char *value)
4989 {
4990 fprintf_filtered (file,
4991 _("Controlling the inferior in "
4992 "asynchronous mode is %s.\n"), value);
4993 }
4994
4995 /* Temporary copies of permission settings. */
4996
4997 static int may_write_registers_1 = 1;
4998 static int may_write_memory_1 = 1;
4999 static int may_insert_breakpoints_1 = 1;
5000 static int may_insert_tracepoints_1 = 1;
5001 static int may_insert_fast_tracepoints_1 = 1;
5002 static int may_stop_1 = 1;
5003
5004 /* Make the user-set values match the real values again. */
5005
5006 void
5007 update_target_permissions (void)
5008 {
5009 may_write_registers_1 = may_write_registers;
5010 may_write_memory_1 = may_write_memory;
5011 may_insert_breakpoints_1 = may_insert_breakpoints;
5012 may_insert_tracepoints_1 = may_insert_tracepoints;
5013 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5014 may_stop_1 = may_stop;
5015 }
5016
5017 /* The one function handles (most of) the permission flags in the same
5018 way. */
5019
5020 static void
5021 set_target_permissions (char *args, int from_tty,
5022 struct cmd_list_element *c)
5023 {
5024 if (target_has_execution)
5025 {
5026 update_target_permissions ();
5027 error (_("Cannot change this setting while the inferior is running."));
5028 }
5029
5030 /* Make the real values match the user-changed values. */
5031 may_write_registers = may_write_registers_1;
5032 may_insert_breakpoints = may_insert_breakpoints_1;
5033 may_insert_tracepoints = may_insert_tracepoints_1;
5034 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5035 may_stop = may_stop_1;
5036 update_observer_mode ();
5037 }
5038
5039 /* Set memory write permission independently of observer mode. */
5040
5041 static void
5042 set_write_memory_permission (char *args, int from_tty,
5043 struct cmd_list_element *c)
5044 {
5045 /* Make the real values match the user-changed values. */
5046 may_write_memory = may_write_memory_1;
5047 update_observer_mode ();
5048 }
5049
5050
5051 void
5052 initialize_targets (void)
5053 {
5054 init_dummy_target ();
5055 push_target (&dummy_target);
5056
5057 add_info ("target", target_info, targ_desc);
5058 add_info ("files", target_info, targ_desc);
5059
5060 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5061 Set target debugging."), _("\
5062 Show target debugging."), _("\
5063 When non-zero, target debugging is enabled. Higher numbers are more\n\
5064 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5065 command."),
5066 NULL,
5067 show_targetdebug,
5068 &setdebuglist, &showdebuglist);
5069
5070 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5071 &trust_readonly, _("\
5072 Set mode for reading from readonly sections."), _("\
5073 Show mode for reading from readonly sections."), _("\
5074 When this mode is on, memory reads from readonly sections (such as .text)\n\
5075 will be read from the object file instead of from the target. This will\n\
5076 result in significant performance improvement for remote targets."),
5077 NULL,
5078 show_trust_readonly,
5079 &setlist, &showlist);
5080
5081 add_com ("monitor", class_obscure, do_monitor_command,
5082 _("Send a command to the remote monitor (remote targets only)."));
5083
5084 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5085 _("Print the name of each layer of the internal target stack."),
5086 &maintenanceprintlist);
5087
5088 add_setshow_boolean_cmd ("target-async", no_class,
5089 &target_async_permitted_1, _("\
5090 Set whether gdb controls the inferior in asynchronous mode."), _("\
5091 Show whether gdb controls the inferior in asynchronous mode."), _("\
5092 Tells gdb whether to control the inferior in asynchronous mode."),
5093 set_target_async_command,
5094 show_target_async_command,
5095 &setlist,
5096 &showlist);
5097
5098 add_setshow_boolean_cmd ("may-write-registers", class_support,
5099 &may_write_registers_1, _("\
5100 Set permission to write into registers."), _("\
5101 Show permission to write into registers."), _("\
5102 When this permission is on, GDB may write into the target's registers.\n\
5103 Otherwise, any sort of write attempt will result in an error."),
5104 set_target_permissions, NULL,
5105 &setlist, &showlist);
5106
5107 add_setshow_boolean_cmd ("may-write-memory", class_support,
5108 &may_write_memory_1, _("\
5109 Set permission to write into target memory."), _("\
5110 Show permission to write into target memory."), _("\
5111 When this permission is on, GDB may write into the target's memory.\n\
5112 Otherwise, any sort of write attempt will result in an error."),
5113 set_write_memory_permission, NULL,
5114 &setlist, &showlist);
5115
5116 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5117 &may_insert_breakpoints_1, _("\
5118 Set permission to insert breakpoints in the target."), _("\
5119 Show permission to insert breakpoints in the target."), _("\
5120 When this permission is on, GDB may insert breakpoints in the program.\n\
5121 Otherwise, any sort of insertion attempt will result in an error."),
5122 set_target_permissions, NULL,
5123 &setlist, &showlist);
5124
5125 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5126 &may_insert_tracepoints_1, _("\
5127 Set permission to insert tracepoints in the target."), _("\
5128 Show permission to insert tracepoints in the target."), _("\
5129 When this permission is on, GDB may insert tracepoints in the program.\n\
5130 Otherwise, any sort of insertion attempt will result in an error."),
5131 set_target_permissions, NULL,
5132 &setlist, &showlist);
5133
5134 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5135 &may_insert_fast_tracepoints_1, _("\
5136 Set permission to insert fast tracepoints in the target."), _("\
5137 Show permission to insert fast tracepoints in the target."), _("\
5138 When this permission is on, GDB may insert fast tracepoints.\n\
5139 Otherwise, any sort of insertion attempt will result in an error."),
5140 set_target_permissions, NULL,
5141 &setlist, &showlist);
5142
5143 add_setshow_boolean_cmd ("may-interrupt", class_support,
5144 &may_stop_1, _("\
5145 Set permission to interrupt or signal the target."), _("\
5146 Show permission to interrupt or signal the target."), _("\
5147 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5148 Otherwise, any attempt to interrupt or stop will be ignored."),
5149 set_target_permissions, NULL,
5150 &setlist, &showlist);
5151 }
This page took 0.139348 seconds and 5 git commands to generate.