Add branch trace information to struct thread_info.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65 #include "btrace.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY,
154
155 /* There are no resumed children left in the program. */
156 TARGET_WAITKIND_NO_RESUMED
157 };
158
159 struct target_waitstatus
160 {
161 enum target_waitkind kind;
162
163 /* Forked child pid, execd pathname, exit status, signal number or
164 syscall number. */
165 union
166 {
167 int integer;
168 enum gdb_signal sig;
169 ptid_t related_pid;
170 char *execd_pathname;
171 int syscall_number;
172 }
173 value;
174 };
175
176 /* Options that can be passed to target_wait. */
177
178 /* Return immediately if there's no event already queued. If this
179 options is not requested, target_wait blocks waiting for an
180 event. */
181 #define TARGET_WNOHANG 1
182
183 /* The structure below stores information about a system call.
184 It is basically used in the "catch syscall" command, and in
185 every function that gives information about a system call.
186
187 It's also good to mention that its fields represent everything
188 that we currently know about a syscall in GDB. */
189 struct syscall
190 {
191 /* The syscall number. */
192 int number;
193
194 /* The syscall name. */
195 const char *name;
196 };
197
198 /* Return a pretty printed form of target_waitstatus.
199 Space for the result is malloc'd, caller must free. */
200 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
201
202 /* Return a pretty printed form of TARGET_OPTIONS.
203 Space for the result is malloc'd, caller must free. */
204 extern char *target_options_to_string (int target_options);
205
206 /* Possible types of events that the inferior handler will have to
207 deal with. */
208 enum inferior_event_type
209 {
210 /* Process a normal inferior event which will result in target_wait
211 being called. */
212 INF_REG_EVENT,
213 /* We are called because a timer went off. */
214 INF_TIMER,
215 /* We are called to do stuff after the inferior stops. */
216 INF_EXEC_COMPLETE,
217 /* We are called to do some stuff after the inferior stops, but we
218 are expected to reenter the proceed() and
219 handle_inferior_event() functions. This is used only in case of
220 'step n' like commands. */
221 INF_EXEC_CONTINUE
222 };
223 \f
224 /* Target objects which can be transfered using target_read,
225 target_write, et cetera. */
226
227 enum target_object
228 {
229 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
230 TARGET_OBJECT_AVR,
231 /* SPU target specific transfer. See "spu-tdep.c". */
232 TARGET_OBJECT_SPU,
233 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
234 TARGET_OBJECT_MEMORY,
235 /* Memory, avoiding GDB's data cache and trusting the executable.
236 Target implementations of to_xfer_partial never need to handle
237 this object, and most callers should not use it. */
238 TARGET_OBJECT_RAW_MEMORY,
239 /* Memory known to be part of the target's stack. This is cached even
240 if it is not in a region marked as such, since it is known to be
241 "normal" RAM. */
242 TARGET_OBJECT_STACK_MEMORY,
243 /* Kernel Unwind Table. See "ia64-tdep.c". */
244 TARGET_OBJECT_UNWIND_TABLE,
245 /* Transfer auxilliary vector. */
246 TARGET_OBJECT_AUXV,
247 /* StackGhost cookie. See "sparc-tdep.c". */
248 TARGET_OBJECT_WCOOKIE,
249 /* Target memory map in XML format. */
250 TARGET_OBJECT_MEMORY_MAP,
251 /* Flash memory. This object can be used to write contents to
252 a previously erased flash memory. Using it without erasing
253 flash can have unexpected results. Addresses are physical
254 address on target, and not relative to flash start. */
255 TARGET_OBJECT_FLASH,
256 /* Available target-specific features, e.g. registers and coprocessors.
257 See "target-descriptions.c". ANNEX should never be empty. */
258 TARGET_OBJECT_AVAILABLE_FEATURES,
259 /* Currently loaded libraries, in XML format. */
260 TARGET_OBJECT_LIBRARIES,
261 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
262 TARGET_OBJECT_LIBRARIES_SVR4,
263 /* Get OS specific data. The ANNEX specifies the type (running
264 processes, etc.). The data being transfered is expected to follow
265 the DTD specified in features/osdata.dtd. */
266 TARGET_OBJECT_OSDATA,
267 /* Extra signal info. Usually the contents of `siginfo_t' on unix
268 platforms. */
269 TARGET_OBJECT_SIGNAL_INFO,
270 /* The list of threads that are being debugged. */
271 TARGET_OBJECT_THREADS,
272 /* Collected static trace data. */
273 TARGET_OBJECT_STATIC_TRACE_DATA,
274 /* The HP-UX registers (those that can be obtained or modified by using
275 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
276 TARGET_OBJECT_HPUX_UREGS,
277 /* The HP-UX shared library linkage pointer. ANNEX should be a string
278 image of the code address whose linkage pointer we are looking for.
279
280 The size of the data transfered is always 8 bytes (the size of an
281 address on ia64). */
282 TARGET_OBJECT_HPUX_SOLIB_GOT,
283 /* Traceframe info, in XML format. */
284 TARGET_OBJECT_TRACEFRAME_INFO,
285 /* Load maps for FDPIC systems. */
286 TARGET_OBJECT_FDPIC,
287 /* Darwin dynamic linker info data. */
288 TARGET_OBJECT_DARWIN_DYLD_INFO,
289 /* OpenVMS Unwind Information Block. */
290 TARGET_OBJECT_OPENVMS_UIB,
291 /* Possible future objects: TARGET_OBJECT_FILE, ... */
292 };
293
294 /* Enumeration of the kinds of traceframe searches that a target may
295 be able to perform. */
296
297 enum trace_find_type
298 {
299 tfind_number,
300 tfind_pc,
301 tfind_tp,
302 tfind_range,
303 tfind_outside,
304 };
305
306 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
307 DEF_VEC_P(static_tracepoint_marker_p);
308
309 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
310 OBJECT. The OFFSET, for a seekable object, specifies the
311 starting point. The ANNEX can be used to provide additional
312 data-specific information to the target.
313
314 Return the number of bytes actually transfered, or -1 if the
315 transfer is not supported or otherwise fails. Return of a positive
316 value less than LEN indicates that no further transfer is possible.
317 Unlike the raw to_xfer_partial interface, callers of these
318 functions do not need to retry partial transfers. */
319
320 extern LONGEST target_read (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
324
325 struct memory_read_result
326 {
327 /* First address that was read. */
328 ULONGEST begin;
329 /* Past-the-end address. */
330 ULONGEST end;
331 /* The data. */
332 gdb_byte *data;
333 };
334 typedef struct memory_read_result memory_read_result_s;
335 DEF_VEC_O(memory_read_result_s);
336
337 extern void free_memory_read_result_vector (void *);
338
339 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
340 ULONGEST offset,
341 LONGEST len);
342
343 extern LONGEST target_write (struct target_ops *ops,
344 enum target_object object,
345 const char *annex, const gdb_byte *buf,
346 ULONGEST offset, LONGEST len);
347
348 /* Similar to target_write, except that it also calls PROGRESS with
349 the number of bytes written and the opaque BATON after every
350 successful partial write (and before the first write). This is
351 useful for progress reporting and user interaction while writing
352 data. To abort the transfer, the progress callback can throw an
353 exception. */
354
355 LONGEST target_write_with_progress (struct target_ops *ops,
356 enum target_object object,
357 const char *annex, const gdb_byte *buf,
358 ULONGEST offset, LONGEST len,
359 void (*progress) (ULONGEST, void *),
360 void *baton);
361
362 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
363 be read using OPS. The return value will be -1 if the transfer
364 fails or is not supported; 0 if the object is empty; or the length
365 of the object otherwise. If a positive value is returned, a
366 sufficiently large buffer will be allocated using xmalloc and
367 returned in *BUF_P containing the contents of the object.
368
369 This method should be used for objects sufficiently small to store
370 in a single xmalloc'd buffer, when no fixed bound on the object's
371 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
372 through this function. */
373
374 extern LONGEST target_read_alloc (struct target_ops *ops,
375 enum target_object object,
376 const char *annex, gdb_byte **buf_p);
377
378 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
379 returned as a string, allocated using xmalloc. If an error occurs
380 or the transfer is unsupported, NULL is returned. Empty objects
381 are returned as allocated but empty strings. A warning is issued
382 if the result contains any embedded NUL bytes. */
383
384 extern char *target_read_stralloc (struct target_ops *ops,
385 enum target_object object,
386 const char *annex);
387
388 /* Wrappers to target read/write that perform memory transfers. They
389 throw an error if the memory transfer fails.
390
391 NOTE: cagney/2003-10-23: The naming schema is lifted from
392 "frame.h". The parameter order is lifted from get_frame_memory,
393 which in turn lifted it from read_memory. */
394
395 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
396 gdb_byte *buf, LONGEST len);
397 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
398 CORE_ADDR addr, int len,
399 enum bfd_endian byte_order);
400 \f
401 struct thread_info; /* fwd decl for parameter list below: */
402
403 struct target_ops
404 {
405 struct target_ops *beneath; /* To the target under this one. */
406 char *to_shortname; /* Name this target type */
407 char *to_longname; /* Name for printing */
408 char *to_doc; /* Documentation. Does not include trailing
409 newline, and starts with a one-line descrip-
410 tion (probably similar to to_longname). */
411 /* Per-target scratch pad. */
412 void *to_data;
413 /* The open routine takes the rest of the parameters from the
414 command, and (if successful) pushes a new target onto the
415 stack. Targets should supply this routine, if only to provide
416 an error message. */
417 void (*to_open) (char *, int);
418 /* Old targets with a static target vector provide "to_close".
419 New re-entrant targets provide "to_xclose" and that is expected
420 to xfree everything (including the "struct target_ops"). */
421 void (*to_xclose) (struct target_ops *targ, int quitting);
422 void (*to_close) (int);
423 void (*to_attach) (struct target_ops *ops, char *, int);
424 void (*to_post_attach) (int);
425 void (*to_detach) (struct target_ops *ops, char *, int);
426 void (*to_disconnect) (struct target_ops *, char *, int);
427 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
428 ptid_t (*to_wait) (struct target_ops *,
429 ptid_t, struct target_waitstatus *, int);
430 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
431 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
432 void (*to_prepare_to_store) (struct regcache *);
433
434 /* Transfer LEN bytes of memory between GDB address MYADDR and
435 target address MEMADDR. If WRITE, transfer them to the target, else
436 transfer them from the target. TARGET is the target from which we
437 get this function.
438
439 Return value, N, is one of the following:
440
441 0 means that we can't handle this. If errno has been set, it is the
442 error which prevented us from doing it (FIXME: What about bfd_error?).
443
444 positive (call it N) means that we have transferred N bytes
445 starting at MEMADDR. We might be able to handle more bytes
446 beyond this length, but no promises.
447
448 negative (call its absolute value N) means that we cannot
449 transfer right at MEMADDR, but we could transfer at least
450 something at MEMADDR + N.
451
452 NOTE: cagney/2004-10-01: This has been entirely superseeded by
453 to_xfer_partial and inferior inheritance. */
454
455 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
456 int len, int write,
457 struct mem_attrib *attrib,
458 struct target_ops *target);
459
460 void (*to_files_info) (struct target_ops *);
461 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
462 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
463 int (*to_can_use_hw_breakpoint) (int, int, int);
464 int (*to_ranged_break_num_registers) (struct target_ops *);
465 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
466 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
471 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
472
473 int (*to_insert_mask_watchpoint) (struct target_ops *,
474 CORE_ADDR, CORE_ADDR, int);
475 int (*to_remove_mask_watchpoint) (struct target_ops *,
476 CORE_ADDR, CORE_ADDR, int);
477 int (*to_stopped_by_watchpoint) (void);
478 int to_have_steppable_watchpoint;
479 int to_have_continuable_watchpoint;
480 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
481 int (*to_watchpoint_addr_within_range) (struct target_ops *,
482 CORE_ADDR, CORE_ADDR, int);
483
484 /* Documentation of this routine is provided with the corresponding
485 target_* macro. */
486 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
487
488 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
489 struct expression *);
490 int (*to_masked_watch_num_registers) (struct target_ops *,
491 CORE_ADDR, CORE_ADDR);
492 void (*to_terminal_init) (void);
493 void (*to_terminal_inferior) (void);
494 void (*to_terminal_ours_for_output) (void);
495 void (*to_terminal_ours) (void);
496 void (*to_terminal_save_ours) (void);
497 void (*to_terminal_info) (char *, int);
498 void (*to_kill) (struct target_ops *);
499 void (*to_load) (char *, int);
500 void (*to_create_inferior) (struct target_ops *,
501 char *, char *, char **, int);
502 void (*to_post_startup_inferior) (ptid_t);
503 int (*to_insert_fork_catchpoint) (int);
504 int (*to_remove_fork_catchpoint) (int);
505 int (*to_insert_vfork_catchpoint) (int);
506 int (*to_remove_vfork_catchpoint) (int);
507 int (*to_follow_fork) (struct target_ops *, int);
508 int (*to_insert_exec_catchpoint) (int);
509 int (*to_remove_exec_catchpoint) (int);
510 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
511 int (*to_has_exited) (int, int, int *);
512 void (*to_mourn_inferior) (struct target_ops *);
513 int (*to_can_run) (void);
514
515 /* Documentation of this routine is provided with the corresponding
516 target_* macro. */
517 void (*to_pass_signals) (int, unsigned char *);
518
519 /* Documentation of this routine is provided with the
520 corresponding target_* function. */
521 void (*to_program_signals) (int, unsigned char *);
522
523 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
524 void (*to_find_new_threads) (struct target_ops *);
525 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
526 char *(*to_extra_thread_info) (struct thread_info *);
527 char *(*to_thread_name) (struct thread_info *);
528 void (*to_stop) (ptid_t);
529 void (*to_rcmd) (char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (int pid);
531 void (*to_log_command) (const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (void);
543 int (*to_is_async_p) (void);
544 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
545 int (*to_supports_non_stop) (void);
546 /* find_memory_regions support method for gcore */
547 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
548 /* make_corefile_notes support method for gcore */
549 char * (*to_make_corefile_notes) (bfd *, int *);
550 /* get_bookmark support method for bookmarks */
551 gdb_byte * (*to_get_bookmark) (char *, int);
552 /* goto_bookmark support method for bookmarks */
553 void (*to_goto_bookmark) (gdb_byte *, int);
554 /* Return the thread-local address at OFFSET in the
555 thread-local storage for the thread PTID and the shared library
556 or executable file given by OBJFILE. If that block of
557 thread-local storage hasn't been allocated yet, this function
558 may return an error. */
559 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
560 ptid_t ptid,
561 CORE_ADDR load_module_addr,
562 CORE_ADDR offset);
563
564 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
565 OBJECT. The OFFSET, for a seekable object, specifies the
566 starting point. The ANNEX can be used to provide additional
567 data-specific information to the target.
568
569 Return the number of bytes actually transfered, zero when no
570 further transfer is possible, and -1 when the transfer is not
571 supported. Return of a positive value smaller than LEN does
572 not indicate the end of the object, only the end of the
573 transfer; higher level code should continue transferring if
574 desired. This is handled in target.c.
575
576 The interface does not support a "retry" mechanism. Instead it
577 assumes that at least one byte will be transfered on each
578 successful call.
579
580 NOTE: cagney/2003-10-17: The current interface can lead to
581 fragmented transfers. Lower target levels should not implement
582 hacks, such as enlarging the transfer, in an attempt to
583 compensate for this. Instead, the target stack should be
584 extended so that it implements supply/collect methods and a
585 look-aside object cache. With that available, the lowest
586 target can safely and freely "push" data up the stack.
587
588 See target_read and target_write for more information. One,
589 and only one, of readbuf or writebuf must be non-NULL. */
590
591 LONGEST (*to_xfer_partial) (struct target_ops *ops,
592 enum target_object object, const char *annex,
593 gdb_byte *readbuf, const gdb_byte *writebuf,
594 ULONGEST offset, LONGEST len);
595
596 /* Returns the memory map for the target. A return value of NULL
597 means that no memory map is available. If a memory address
598 does not fall within any returned regions, it's assumed to be
599 RAM. The returned memory regions should not overlap.
600
601 The order of regions does not matter; target_memory_map will
602 sort regions by starting address. For that reason, this
603 function should not be called directly except via
604 target_memory_map.
605
606 This method should not cache data; if the memory map could
607 change unexpectedly, it should be invalidated, and higher
608 layers will re-fetch it. */
609 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
610
611 /* Erases the region of flash memory starting at ADDRESS, of
612 length LENGTH.
613
614 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
615 on flash block boundaries, as reported by 'to_memory_map'. */
616 void (*to_flash_erase) (struct target_ops *,
617 ULONGEST address, LONGEST length);
618
619 /* Finishes a flash memory write sequence. After this operation
620 all flash memory should be available for writing and the result
621 of reading from areas written by 'to_flash_write' should be
622 equal to what was written. */
623 void (*to_flash_done) (struct target_ops *);
624
625 /* Describe the architecture-specific features of this target.
626 Returns the description found, or NULL if no description
627 was available. */
628 const struct target_desc *(*to_read_description) (struct target_ops *ops);
629
630 /* Build the PTID of the thread on which a given task is running,
631 based on LWP and THREAD. These values are extracted from the
632 task Private_Data section of the Ada Task Control Block, and
633 their interpretation depends on the target. */
634 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
635
636 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
637 Return 0 if *READPTR is already at the end of the buffer.
638 Return -1 if there is insufficient buffer for a whole entry.
639 Return 1 if an entry was read into *TYPEP and *VALP. */
640 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
641 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
642
643 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
644 sequence of bytes in PATTERN with length PATTERN_LEN.
645
646 The result is 1 if found, 0 if not found, and -1 if there was an error
647 requiring halting of the search (e.g. memory read error).
648 If the pattern is found the address is recorded in FOUND_ADDRP. */
649 int (*to_search_memory) (struct target_ops *ops,
650 CORE_ADDR start_addr, ULONGEST search_space_len,
651 const gdb_byte *pattern, ULONGEST pattern_len,
652 CORE_ADDR *found_addrp);
653
654 /* Can target execute in reverse? */
655 int (*to_can_execute_reverse) (void);
656
657 /* The direction the target is currently executing. Must be
658 implemented on targets that support reverse execution and async
659 mode. The default simply returns forward execution. */
660 enum exec_direction_kind (*to_execution_direction) (void);
661
662 /* Does this target support debugging multiple processes
663 simultaneously? */
664 int (*to_supports_multi_process) (void);
665
666 /* Does this target support enabling and disabling tracepoints while a trace
667 experiment is running? */
668 int (*to_supports_enable_disable_tracepoint) (void);
669
670 /* Does this target support disabling address space randomization? */
671 int (*to_supports_disable_randomization) (void);
672
673 /* Does this target support the tracenz bytecode for string collection? */
674 int (*to_supports_string_tracing) (void);
675
676 /* Does this target support evaluation of breakpoint conditions on its
677 end? */
678 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
679
680 /* Does this target support evaluation of breakpoint commands on its
681 end? */
682 int (*to_can_run_breakpoint_commands) (void);
683
684 /* Determine current architecture of thread PTID.
685
686 The target is supposed to determine the architecture of the code where
687 the target is currently stopped at (on Cell, if a target is in spu_run,
688 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
689 This is architecture used to perform decr_pc_after_break adjustment,
690 and also determines the frame architecture of the innermost frame.
691 ptrace operations need to operate according to target_gdbarch ().
692
693 The default implementation always returns target_gdbarch (). */
694 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
695
696 /* Determine current address space of thread PTID.
697
698 The default implementation always returns the inferior's
699 address space. */
700 struct address_space *(*to_thread_address_space) (struct target_ops *,
701 ptid_t);
702
703 /* Target file operations. */
704
705 /* Open FILENAME on the target, using FLAGS and MODE. Return a
706 target file descriptor, or -1 if an error occurs (and set
707 *TARGET_ERRNO). */
708 int (*to_fileio_open) (const char *filename, int flags, int mode,
709 int *target_errno);
710
711 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
712 Return the number of bytes written, or -1 if an error occurs
713 (and set *TARGET_ERRNO). */
714 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
715 ULONGEST offset, int *target_errno);
716
717 /* Read up to LEN bytes FD on the target into READ_BUF.
718 Return the number of bytes read, or -1 if an error occurs
719 (and set *TARGET_ERRNO). */
720 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
721 ULONGEST offset, int *target_errno);
722
723 /* Close FD on the target. Return 0, or -1 if an error occurs
724 (and set *TARGET_ERRNO). */
725 int (*to_fileio_close) (int fd, int *target_errno);
726
727 /* Unlink FILENAME on the target. Return 0, or -1 if an error
728 occurs (and set *TARGET_ERRNO). */
729 int (*to_fileio_unlink) (const char *filename, int *target_errno);
730
731 /* Read value of symbolic link FILENAME on the target. Return a
732 null-terminated string allocated via xmalloc, or NULL if an error
733 occurs (and set *TARGET_ERRNO). */
734 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
735
736
737 /* Implement the "info proc" command. */
738 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
739
740 /* Tracepoint-related operations. */
741
742 /* Prepare the target for a tracing run. */
743 void (*to_trace_init) (void);
744
745 /* Send full details of a tracepoint location to the target. */
746 void (*to_download_tracepoint) (struct bp_location *location);
747
748 /* Is the target able to download tracepoint locations in current
749 state? */
750 int (*to_can_download_tracepoint) (void);
751
752 /* Send full details of a trace state variable to the target. */
753 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
754
755 /* Enable a tracepoint on the target. */
756 void (*to_enable_tracepoint) (struct bp_location *location);
757
758 /* Disable a tracepoint on the target. */
759 void (*to_disable_tracepoint) (struct bp_location *location);
760
761 /* Inform the target info of memory regions that are readonly
762 (such as text sections), and so it should return data from
763 those rather than look in the trace buffer. */
764 void (*to_trace_set_readonly_regions) (void);
765
766 /* Start a trace run. */
767 void (*to_trace_start) (void);
768
769 /* Get the current status of a tracing run. */
770 int (*to_get_trace_status) (struct trace_status *ts);
771
772 void (*to_get_tracepoint_status) (struct breakpoint *tp,
773 struct uploaded_tp *utp);
774
775 /* Stop a trace run. */
776 void (*to_trace_stop) (void);
777
778 /* Ask the target to find a trace frame of the given type TYPE,
779 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
780 number of the trace frame, and also the tracepoint number at
781 TPP. If no trace frame matches, return -1. May throw if the
782 operation fails. */
783 int (*to_trace_find) (enum trace_find_type type, int num,
784 ULONGEST addr1, ULONGEST addr2, int *tpp);
785
786 /* Get the value of the trace state variable number TSV, returning
787 1 if the value is known and writing the value itself into the
788 location pointed to by VAL, else returning 0. */
789 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
790
791 int (*to_save_trace_data) (const char *filename);
792
793 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
794
795 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
796
797 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
798 ULONGEST offset, LONGEST len);
799
800 /* Get the minimum length of instruction on which a fast tracepoint
801 may be set on the target. If this operation is unsupported,
802 return -1. If for some reason the minimum length cannot be
803 determined, return 0. */
804 int (*to_get_min_fast_tracepoint_insn_len) (void);
805
806 /* Set the target's tracing behavior in response to unexpected
807 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
808 void (*to_set_disconnected_tracing) (int val);
809 void (*to_set_circular_trace_buffer) (int val);
810 /* Set the size of trace buffer in the target. */
811 void (*to_set_trace_buffer_size) (LONGEST val);
812
813 /* Add/change textual notes about the trace run, returning 1 if
814 successful, 0 otherwise. */
815 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
816
817 /* Return the processor core that thread PTID was last seen on.
818 This information is updated only when:
819 - update_thread_list is called
820 - thread stops
821 If the core cannot be determined -- either for the specified
822 thread, or right now, or in this debug session, or for this
823 target -- return -1. */
824 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
825
826 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
827 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
828 a match, 0 if there's a mismatch, and -1 if an error is
829 encountered while reading memory. */
830 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
831 CORE_ADDR memaddr, ULONGEST size);
832
833 /* Return the address of the start of the Thread Information Block
834 a Windows OS specific feature. */
835 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
836
837 /* Send the new settings of write permission variables. */
838 void (*to_set_permissions) (void);
839
840 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
841 with its details. Return 1 on success, 0 on failure. */
842 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
843 struct static_tracepoint_marker *marker);
844
845 /* Return a vector of all tracepoints markers string id ID, or all
846 markers if ID is NULL. */
847 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
848 (const char *id);
849
850 /* Return a traceframe info object describing the current
851 traceframe's contents. This method should not cache data;
852 higher layers take care of caching, invalidating, and
853 re-fetching when necessary. */
854 struct traceframe_info *(*to_traceframe_info) (void);
855
856 /* Ask the target to use or not to use agent according to USE. Return 1
857 successful, 0 otherwise. */
858 int (*to_use_agent) (int use);
859
860 /* Is the target able to use agent in current state? */
861 int (*to_can_use_agent) (void);
862
863 /* Check whether the target supports branch tracing. */
864 int (*to_supports_btrace) (void);
865
866 /* Enable branch tracing for PTID and allocate a branch trace target
867 information struct for reading and for disabling branch trace. */
868 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
869
870 /* Disable branch tracing and deallocate TINFO. */
871 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
872
873 /* Disable branch tracing and deallocate TINFO. This function is similar
874 to to_disable_btrace, except that it is called during teardown and is
875 only allowed to perform actions that are safe. A counter-example would
876 be attempting to talk to a remote target. */
877 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
878
879 /* Read branch trace data. */
880 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
881 enum btrace_read_type);
882
883 int to_magic;
884 /* Need sub-structure for target machine related rather than comm related?
885 */
886 };
887
888 /* Magic number for checking ops size. If a struct doesn't end with this
889 number, somebody changed the declaration but didn't change all the
890 places that initialize one. */
891
892 #define OPS_MAGIC 3840
893
894 /* The ops structure for our "current" target process. This should
895 never be NULL. If there is no target, it points to the dummy_target. */
896
897 extern struct target_ops current_target;
898
899 /* Define easy words for doing these operations on our current target. */
900
901 #define target_shortname (current_target.to_shortname)
902 #define target_longname (current_target.to_longname)
903
904 /* Does whatever cleanup is required for a target that we are no
905 longer going to be calling. QUITTING indicates that GDB is exiting
906 and should not get hung on an error (otherwise it is important to
907 perform clean termination, even if it takes a while). This routine
908 is automatically always called after popping the target off the
909 target stack - the target's own methods are no longer available
910 through the target vector. Closing file descriptors and freeing all
911 memory allocated memory are typical things it should do. */
912
913 void target_close (struct target_ops *targ, int quitting);
914
915 /* Attaches to a process on the target side. Arguments are as passed
916 to the `attach' command by the user. This routine can be called
917 when the target is not on the target-stack, if the target_can_run
918 routine returns 1; in that case, it must push itself onto the stack.
919 Upon exit, the target should be ready for normal operations, and
920 should be ready to deliver the status of the process immediately
921 (without waiting) to an upcoming target_wait call. */
922
923 void target_attach (char *, int);
924
925 /* Some targets don't generate traps when attaching to the inferior,
926 or their target_attach implementation takes care of the waiting.
927 These targets must set to_attach_no_wait. */
928
929 #define target_attach_no_wait \
930 (current_target.to_attach_no_wait)
931
932 /* The target_attach operation places a process under debugger control,
933 and stops the process.
934
935 This operation provides a target-specific hook that allows the
936 necessary bookkeeping to be performed after an attach completes. */
937 #define target_post_attach(pid) \
938 (*current_target.to_post_attach) (pid)
939
940 /* Takes a program previously attached to and detaches it.
941 The program may resume execution (some targets do, some don't) and will
942 no longer stop on signals, etc. We better not have left any breakpoints
943 in the program or it'll die when it hits one. ARGS is arguments
944 typed by the user (e.g. a signal to send the process). FROM_TTY
945 says whether to be verbose or not. */
946
947 extern void target_detach (char *, int);
948
949 /* Disconnect from the current target without resuming it (leaving it
950 waiting for a debugger). */
951
952 extern void target_disconnect (char *, int);
953
954 /* Resume execution of the target process PTID (or a group of
955 threads). STEP says whether to single-step or to run free; SIGGNAL
956 is the signal to be given to the target, or GDB_SIGNAL_0 for no
957 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
958 PTID means `step/resume only this process id'. A wildcard PTID
959 (all threads, or all threads of process) means `step/resume
960 INFERIOR_PTID, and let other threads (for which the wildcard PTID
961 matches) resume with their 'thread->suspend.stop_signal' signal
962 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
963 if in "no pass" state. */
964
965 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
966
967 /* Wait for process pid to do something. PTID = -1 to wait for any
968 pid to do something. Return pid of child, or -1 in case of error;
969 store status through argument pointer STATUS. Note that it is
970 _NOT_ OK to throw_exception() out of target_wait() without popping
971 the debugging target from the stack; GDB isn't prepared to get back
972 to the prompt with a debugging target but without the frame cache,
973 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
974 options. */
975
976 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
977 int options);
978
979 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
980
981 extern void target_fetch_registers (struct regcache *regcache, int regno);
982
983 /* Store at least register REGNO, or all regs if REGNO == -1.
984 It can store as many registers as it wants to, so target_prepare_to_store
985 must have been previously called. Calls error() if there are problems. */
986
987 extern void target_store_registers (struct regcache *regcache, int regs);
988
989 /* Get ready to modify the registers array. On machines which store
990 individual registers, this doesn't need to do anything. On machines
991 which store all the registers in one fell swoop, this makes sure
992 that REGISTERS contains all the registers from the program being
993 debugged. */
994
995 #define target_prepare_to_store(regcache) \
996 (*current_target.to_prepare_to_store) (regcache)
997
998 /* Determine current address space of thread PTID. */
999
1000 struct address_space *target_thread_address_space (ptid_t);
1001
1002 /* Implement the "info proc" command. This returns one if the request
1003 was handled, and zero otherwise. It can also throw an exception if
1004 an error was encountered while attempting to handle the
1005 request. */
1006
1007 int target_info_proc (char *, enum info_proc_what);
1008
1009 /* Returns true if this target can debug multiple processes
1010 simultaneously. */
1011
1012 #define target_supports_multi_process() \
1013 (*current_target.to_supports_multi_process) ()
1014
1015 /* Returns true if this target can disable address space randomization. */
1016
1017 int target_supports_disable_randomization (void);
1018
1019 /* Returns true if this target can enable and disable tracepoints
1020 while a trace experiment is running. */
1021
1022 #define target_supports_enable_disable_tracepoint() \
1023 (*current_target.to_supports_enable_disable_tracepoint) ()
1024
1025 #define target_supports_string_tracing() \
1026 (*current_target.to_supports_string_tracing) ()
1027
1028 /* Returns true if this target can handle breakpoint conditions
1029 on its end. */
1030
1031 #define target_supports_evaluation_of_breakpoint_conditions() \
1032 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1033
1034 /* Returns true if this target can handle breakpoint commands
1035 on its end. */
1036
1037 #define target_can_run_breakpoint_commands() \
1038 (*current_target.to_can_run_breakpoint_commands) ()
1039
1040 /* Invalidate all target dcaches. */
1041 extern void target_dcache_invalidate (void);
1042
1043 extern int target_read_string (CORE_ADDR, char **, int, int *);
1044
1045 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1046 ssize_t len);
1047
1048 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1049
1050 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1051 ssize_t len);
1052
1053 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1054 ssize_t len);
1055
1056 /* Fetches the target's memory map. If one is found it is sorted
1057 and returned, after some consistency checking. Otherwise, NULL
1058 is returned. */
1059 VEC(mem_region_s) *target_memory_map (void);
1060
1061 /* Erase the specified flash region. */
1062 void target_flash_erase (ULONGEST address, LONGEST length);
1063
1064 /* Finish a sequence of flash operations. */
1065 void target_flash_done (void);
1066
1067 /* Describes a request for a memory write operation. */
1068 struct memory_write_request
1069 {
1070 /* Begining address that must be written. */
1071 ULONGEST begin;
1072 /* Past-the-end address. */
1073 ULONGEST end;
1074 /* The data to write. */
1075 gdb_byte *data;
1076 /* A callback baton for progress reporting for this request. */
1077 void *baton;
1078 };
1079 typedef struct memory_write_request memory_write_request_s;
1080 DEF_VEC_O(memory_write_request_s);
1081
1082 /* Enumeration specifying different flash preservation behaviour. */
1083 enum flash_preserve_mode
1084 {
1085 flash_preserve,
1086 flash_discard
1087 };
1088
1089 /* Write several memory blocks at once. This version can be more
1090 efficient than making several calls to target_write_memory, in
1091 particular because it can optimize accesses to flash memory.
1092
1093 Moreover, this is currently the only memory access function in gdb
1094 that supports writing to flash memory, and it should be used for
1095 all cases where access to flash memory is desirable.
1096
1097 REQUESTS is the vector (see vec.h) of memory_write_request.
1098 PRESERVE_FLASH_P indicates what to do with blocks which must be
1099 erased, but not completely rewritten.
1100 PROGRESS_CB is a function that will be periodically called to provide
1101 feedback to user. It will be called with the baton corresponding
1102 to the request currently being written. It may also be called
1103 with a NULL baton, when preserved flash sectors are being rewritten.
1104
1105 The function returns 0 on success, and error otherwise. */
1106 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1107 enum flash_preserve_mode preserve_flash_p,
1108 void (*progress_cb) (ULONGEST, void *));
1109
1110 /* Print a line about the current target. */
1111
1112 #define target_files_info() \
1113 (*current_target.to_files_info) (&current_target)
1114
1115 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1116 machine. Result is 0 for success, or an errno value. */
1117
1118 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1119 struct bp_target_info *bp_tgt);
1120
1121 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1122 machine. Result is 0 for success, or an errno value. */
1123
1124 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1125 struct bp_target_info *bp_tgt);
1126
1127 /* Initialize the terminal settings we record for the inferior,
1128 before we actually run the inferior. */
1129
1130 #define target_terminal_init() \
1131 (*current_target.to_terminal_init) ()
1132
1133 /* Put the inferior's terminal settings into effect.
1134 This is preparation for starting or resuming the inferior. */
1135
1136 extern void target_terminal_inferior (void);
1137
1138 /* Put some of our terminal settings into effect,
1139 enough to get proper results from our output,
1140 but do not change into or out of RAW mode
1141 so that no input is discarded.
1142
1143 After doing this, either terminal_ours or terminal_inferior
1144 should be called to get back to a normal state of affairs. */
1145
1146 #define target_terminal_ours_for_output() \
1147 (*current_target.to_terminal_ours_for_output) ()
1148
1149 /* Put our terminal settings into effect.
1150 First record the inferior's terminal settings
1151 so they can be restored properly later. */
1152
1153 #define target_terminal_ours() \
1154 (*current_target.to_terminal_ours) ()
1155
1156 /* Save our terminal settings.
1157 This is called from TUI after entering or leaving the curses
1158 mode. Since curses modifies our terminal this call is here
1159 to take this change into account. */
1160
1161 #define target_terminal_save_ours() \
1162 (*current_target.to_terminal_save_ours) ()
1163
1164 /* Print useful information about our terminal status, if such a thing
1165 exists. */
1166
1167 #define target_terminal_info(arg, from_tty) \
1168 (*current_target.to_terminal_info) (arg, from_tty)
1169
1170 /* Kill the inferior process. Make it go away. */
1171
1172 extern void target_kill (void);
1173
1174 /* Load an executable file into the target process. This is expected
1175 to not only bring new code into the target process, but also to
1176 update GDB's symbol tables to match.
1177
1178 ARG contains command-line arguments, to be broken down with
1179 buildargv (). The first non-switch argument is the filename to
1180 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1181 0)), which is an offset to apply to the load addresses of FILE's
1182 sections. The target may define switches, or other non-switch
1183 arguments, as it pleases. */
1184
1185 extern void target_load (char *arg, int from_tty);
1186
1187 /* Start an inferior process and set inferior_ptid to its pid.
1188 EXEC_FILE is the file to run.
1189 ALLARGS is a string containing the arguments to the program.
1190 ENV is the environment vector to pass. Errors reported with error().
1191 On VxWorks and various standalone systems, we ignore exec_file. */
1192
1193 void target_create_inferior (char *exec_file, char *args,
1194 char **env, int from_tty);
1195
1196 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1197 notification of inferior events such as fork and vork immediately
1198 after the inferior is created. (This because of how gdb gets an
1199 inferior created via invoking a shell to do it. In such a scenario,
1200 if the shell init file has commands in it, the shell will fork and
1201 exec for each of those commands, and we will see each such fork
1202 event. Very bad.)
1203
1204 Such targets will supply an appropriate definition for this function. */
1205
1206 #define target_post_startup_inferior(ptid) \
1207 (*current_target.to_post_startup_inferior) (ptid)
1208
1209 /* On some targets, we can catch an inferior fork or vfork event when
1210 it occurs. These functions insert/remove an already-created
1211 catchpoint for such events. They return 0 for success, 1 if the
1212 catchpoint type is not supported and -1 for failure. */
1213
1214 #define target_insert_fork_catchpoint(pid) \
1215 (*current_target.to_insert_fork_catchpoint) (pid)
1216
1217 #define target_remove_fork_catchpoint(pid) \
1218 (*current_target.to_remove_fork_catchpoint) (pid)
1219
1220 #define target_insert_vfork_catchpoint(pid) \
1221 (*current_target.to_insert_vfork_catchpoint) (pid)
1222
1223 #define target_remove_vfork_catchpoint(pid) \
1224 (*current_target.to_remove_vfork_catchpoint) (pid)
1225
1226 /* If the inferior forks or vforks, this function will be called at
1227 the next resume in order to perform any bookkeeping and fiddling
1228 necessary to continue debugging either the parent or child, as
1229 requested, and releasing the other. Information about the fork
1230 or vfork event is available via get_last_target_status ().
1231 This function returns 1 if the inferior should not be resumed
1232 (i.e. there is another event pending). */
1233
1234 int target_follow_fork (int follow_child);
1235
1236 /* On some targets, we can catch an inferior exec event when it
1237 occurs. These functions insert/remove an already-created
1238 catchpoint for such events. They return 0 for success, 1 if the
1239 catchpoint type is not supported and -1 for failure. */
1240
1241 #define target_insert_exec_catchpoint(pid) \
1242 (*current_target.to_insert_exec_catchpoint) (pid)
1243
1244 #define target_remove_exec_catchpoint(pid) \
1245 (*current_target.to_remove_exec_catchpoint) (pid)
1246
1247 /* Syscall catch.
1248
1249 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1250 If NEEDED is zero, it means the target can disable the mechanism to
1251 catch system calls because there are no more catchpoints of this type.
1252
1253 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1254 being requested. In this case, both TABLE_SIZE and TABLE should
1255 be ignored.
1256
1257 TABLE_SIZE is the number of elements in TABLE. It only matters if
1258 ANY_COUNT is zero.
1259
1260 TABLE is an array of ints, indexed by syscall number. An element in
1261 this array is nonzero if that syscall should be caught. This argument
1262 only matters if ANY_COUNT is zero.
1263
1264 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1265 for failure. */
1266
1267 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1268 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1269 table_size, table)
1270
1271 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1272 exit code of PID, if any. */
1273
1274 #define target_has_exited(pid,wait_status,exit_status) \
1275 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1276
1277 /* The debugger has completed a blocking wait() call. There is now
1278 some process event that must be processed. This function should
1279 be defined by those targets that require the debugger to perform
1280 cleanup or internal state changes in response to the process event. */
1281
1282 /* The inferior process has died. Do what is right. */
1283
1284 void target_mourn_inferior (void);
1285
1286 /* Does target have enough data to do a run or attach command? */
1287
1288 #define target_can_run(t) \
1289 ((t)->to_can_run) ()
1290
1291 /* Set list of signals to be handled in the target.
1292
1293 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1294 (enum gdb_signal). For every signal whose entry in this array is
1295 non-zero, the target is allowed -but not required- to skip reporting
1296 arrival of the signal to the GDB core by returning from target_wait,
1297 and to pass the signal directly to the inferior instead.
1298
1299 However, if the target is hardware single-stepping a thread that is
1300 about to receive a signal, it needs to be reported in any case, even
1301 if mentioned in a previous target_pass_signals call. */
1302
1303 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1304
1305 /* Set list of signals the target may pass to the inferior. This
1306 directly maps to the "handle SIGNAL pass/nopass" setting.
1307
1308 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1309 number (enum gdb_signal). For every signal whose entry in this
1310 array is non-zero, the target is allowed to pass the signal to the
1311 inferior. Signals not present in the array shall be silently
1312 discarded. This does not influence whether to pass signals to the
1313 inferior as a result of a target_resume call. This is useful in
1314 scenarios where the target needs to decide whether to pass or not a
1315 signal to the inferior without GDB core involvement, such as for
1316 example, when detaching (as threads may have been suspended with
1317 pending signals not reported to GDB). */
1318
1319 extern void target_program_signals (int nsig, unsigned char *program_signals);
1320
1321 /* Check to see if a thread is still alive. */
1322
1323 extern int target_thread_alive (ptid_t ptid);
1324
1325 /* Query for new threads and add them to the thread list. */
1326
1327 extern void target_find_new_threads (void);
1328
1329 /* Make target stop in a continuable fashion. (For instance, under
1330 Unix, this should act like SIGSTOP). This function is normally
1331 used by GUIs to implement a stop button. */
1332
1333 extern void target_stop (ptid_t ptid);
1334
1335 /* Send the specified COMMAND to the target's monitor
1336 (shell,interpreter) for execution. The result of the query is
1337 placed in OUTBUF. */
1338
1339 #define target_rcmd(command, outbuf) \
1340 (*current_target.to_rcmd) (command, outbuf)
1341
1342
1343 /* Does the target include all of memory, or only part of it? This
1344 determines whether we look up the target chain for other parts of
1345 memory if this target can't satisfy a request. */
1346
1347 extern int target_has_all_memory_1 (void);
1348 #define target_has_all_memory target_has_all_memory_1 ()
1349
1350 /* Does the target include memory? (Dummy targets don't.) */
1351
1352 extern int target_has_memory_1 (void);
1353 #define target_has_memory target_has_memory_1 ()
1354
1355 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1356 we start a process.) */
1357
1358 extern int target_has_stack_1 (void);
1359 #define target_has_stack target_has_stack_1 ()
1360
1361 /* Does the target have registers? (Exec files don't.) */
1362
1363 extern int target_has_registers_1 (void);
1364 #define target_has_registers target_has_registers_1 ()
1365
1366 /* Does the target have execution? Can we make it jump (through
1367 hoops), or pop its stack a few times? This means that the current
1368 target is currently executing; for some targets, that's the same as
1369 whether or not the target is capable of execution, but there are
1370 also targets which can be current while not executing. In that
1371 case this will become true after target_create_inferior or
1372 target_attach. */
1373
1374 extern int target_has_execution_1 (ptid_t);
1375
1376 /* Like target_has_execution_1, but always passes inferior_ptid. */
1377
1378 extern int target_has_execution_current (void);
1379
1380 #define target_has_execution target_has_execution_current ()
1381
1382 /* Default implementations for process_stratum targets. Return true
1383 if there's a selected inferior, false otherwise. */
1384
1385 extern int default_child_has_all_memory (struct target_ops *ops);
1386 extern int default_child_has_memory (struct target_ops *ops);
1387 extern int default_child_has_stack (struct target_ops *ops);
1388 extern int default_child_has_registers (struct target_ops *ops);
1389 extern int default_child_has_execution (struct target_ops *ops,
1390 ptid_t the_ptid);
1391
1392 /* Can the target support the debugger control of thread execution?
1393 Can it lock the thread scheduler? */
1394
1395 #define target_can_lock_scheduler \
1396 (current_target.to_has_thread_control & tc_schedlock)
1397
1398 /* Should the target enable async mode if it is supported? Temporary
1399 cludge until async mode is a strict superset of sync mode. */
1400 extern int target_async_permitted;
1401
1402 /* Can the target support asynchronous execution? */
1403 #define target_can_async_p() (current_target.to_can_async_p ())
1404
1405 /* Is the target in asynchronous execution mode? */
1406 #define target_is_async_p() (current_target.to_is_async_p ())
1407
1408 int target_supports_non_stop (void);
1409
1410 /* Put the target in async mode with the specified callback function. */
1411 #define target_async(CALLBACK,CONTEXT) \
1412 (current_target.to_async ((CALLBACK), (CONTEXT)))
1413
1414 #define target_execution_direction() \
1415 (current_target.to_execution_direction ())
1416
1417 /* Converts a process id to a string. Usually, the string just contains
1418 `process xyz', but on some systems it may contain
1419 `process xyz thread abc'. */
1420
1421 extern char *target_pid_to_str (ptid_t ptid);
1422
1423 extern char *normal_pid_to_str (ptid_t ptid);
1424
1425 /* Return a short string describing extra information about PID,
1426 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1427 is okay. */
1428
1429 #define target_extra_thread_info(TP) \
1430 (current_target.to_extra_thread_info (TP))
1431
1432 /* Return the thread's name. A NULL result means that the target
1433 could not determine this thread's name. */
1434
1435 extern char *target_thread_name (struct thread_info *);
1436
1437 /* Attempts to find the pathname of the executable file
1438 that was run to create a specified process.
1439
1440 The process PID must be stopped when this operation is used.
1441
1442 If the executable file cannot be determined, NULL is returned.
1443
1444 Else, a pointer to a character string containing the pathname
1445 is returned. This string should be copied into a buffer by
1446 the client if the string will not be immediately used, or if
1447 it must persist. */
1448
1449 #define target_pid_to_exec_file(pid) \
1450 (current_target.to_pid_to_exec_file) (pid)
1451
1452 /* See the to_thread_architecture description in struct target_ops. */
1453
1454 #define target_thread_architecture(ptid) \
1455 (current_target.to_thread_architecture (&current_target, ptid))
1456
1457 /*
1458 * Iterator function for target memory regions.
1459 * Calls a callback function once for each memory region 'mapped'
1460 * in the child process. Defined as a simple macro rather than
1461 * as a function macro so that it can be tested for nullity.
1462 */
1463
1464 #define target_find_memory_regions(FUNC, DATA) \
1465 (current_target.to_find_memory_regions) (FUNC, DATA)
1466
1467 /*
1468 * Compose corefile .note section.
1469 */
1470
1471 #define target_make_corefile_notes(BFD, SIZE_P) \
1472 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1473
1474 /* Bookmark interfaces. */
1475 #define target_get_bookmark(ARGS, FROM_TTY) \
1476 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1477
1478 #define target_goto_bookmark(ARG, FROM_TTY) \
1479 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1480
1481 /* Hardware watchpoint interfaces. */
1482
1483 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1484 write). Only the INFERIOR_PTID task is being queried. */
1485
1486 #define target_stopped_by_watchpoint \
1487 (*current_target.to_stopped_by_watchpoint)
1488
1489 /* Non-zero if we have steppable watchpoints */
1490
1491 #define target_have_steppable_watchpoint \
1492 (current_target.to_have_steppable_watchpoint)
1493
1494 /* Non-zero if we have continuable watchpoints */
1495
1496 #define target_have_continuable_watchpoint \
1497 (current_target.to_have_continuable_watchpoint)
1498
1499 /* Provide defaults for hardware watchpoint functions. */
1500
1501 /* If the *_hw_beakpoint functions have not been defined
1502 elsewhere use the definitions in the target vector. */
1503
1504 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1505 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1506 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1507 (including this one?). OTHERTYPE is who knows what... */
1508
1509 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1510 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1511
1512 /* Returns the number of debug registers needed to watch the given
1513 memory region, or zero if not supported. */
1514
1515 #define target_region_ok_for_hw_watchpoint(addr, len) \
1516 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1517
1518
1519 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1520 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1521 COND is the expression for its condition, or NULL if there's none.
1522 Returns 0 for success, 1 if the watchpoint type is not supported,
1523 -1 for failure. */
1524
1525 #define target_insert_watchpoint(addr, len, type, cond) \
1526 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1527
1528 #define target_remove_watchpoint(addr, len, type, cond) \
1529 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1530
1531 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1532 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1533 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1534 masked watchpoints are not supported, -1 for failure. */
1535
1536 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1537
1538 /* Remove a masked watchpoint at ADDR with the mask MASK.
1539 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1540 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1541 for failure. */
1542
1543 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1544
1545 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1546 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1547
1548 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1549 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1550
1551 /* Return number of debug registers needed for a ranged breakpoint,
1552 or -1 if ranged breakpoints are not supported. */
1553
1554 extern int target_ranged_break_num_registers (void);
1555
1556 /* Return non-zero if target knows the data address which triggered this
1557 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1558 INFERIOR_PTID task is being queried. */
1559 #define target_stopped_data_address(target, addr_p) \
1560 (*target.to_stopped_data_address) (target, addr_p)
1561
1562 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1563 LENGTH bytes beginning at START. */
1564 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1565 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1566
1567 /* Return non-zero if the target is capable of using hardware to evaluate
1568 the condition expression. In this case, if the condition is false when
1569 the watched memory location changes, execution may continue without the
1570 debugger being notified.
1571
1572 Due to limitations in the hardware implementation, it may be capable of
1573 avoiding triggering the watchpoint in some cases where the condition
1574 expression is false, but may report some false positives as well.
1575 For this reason, GDB will still evaluate the condition expression when
1576 the watchpoint triggers. */
1577 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1578 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1579
1580 /* Return number of debug registers needed for a masked watchpoint,
1581 -1 if masked watchpoints are not supported or -2 if the given address
1582 and mask combination cannot be used. */
1583
1584 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1585
1586 /* Target can execute in reverse? */
1587 #define target_can_execute_reverse \
1588 (current_target.to_can_execute_reverse ? \
1589 current_target.to_can_execute_reverse () : 0)
1590
1591 extern const struct target_desc *target_read_description (struct target_ops *);
1592
1593 #define target_get_ada_task_ptid(lwp, tid) \
1594 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1595
1596 /* Utility implementation of searching memory. */
1597 extern int simple_search_memory (struct target_ops* ops,
1598 CORE_ADDR start_addr,
1599 ULONGEST search_space_len,
1600 const gdb_byte *pattern,
1601 ULONGEST pattern_len,
1602 CORE_ADDR *found_addrp);
1603
1604 /* Main entry point for searching memory. */
1605 extern int target_search_memory (CORE_ADDR start_addr,
1606 ULONGEST search_space_len,
1607 const gdb_byte *pattern,
1608 ULONGEST pattern_len,
1609 CORE_ADDR *found_addrp);
1610
1611 /* Target file operations. */
1612
1613 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1614 target file descriptor, or -1 if an error occurs (and set
1615 *TARGET_ERRNO). */
1616 extern int target_fileio_open (const char *filename, int flags, int mode,
1617 int *target_errno);
1618
1619 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1620 Return the number of bytes written, or -1 if an error occurs
1621 (and set *TARGET_ERRNO). */
1622 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1623 ULONGEST offset, int *target_errno);
1624
1625 /* Read up to LEN bytes FD on the target into READ_BUF.
1626 Return the number of bytes read, or -1 if an error occurs
1627 (and set *TARGET_ERRNO). */
1628 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1629 ULONGEST offset, int *target_errno);
1630
1631 /* Close FD on the target. Return 0, or -1 if an error occurs
1632 (and set *TARGET_ERRNO). */
1633 extern int target_fileio_close (int fd, int *target_errno);
1634
1635 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1636 occurs (and set *TARGET_ERRNO). */
1637 extern int target_fileio_unlink (const char *filename, int *target_errno);
1638
1639 /* Read value of symbolic link FILENAME on the target. Return a
1640 null-terminated string allocated via xmalloc, or NULL if an error
1641 occurs (and set *TARGET_ERRNO). */
1642 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1643
1644 /* Read target file FILENAME. The return value will be -1 if the transfer
1645 fails or is not supported; 0 if the object is empty; or the length
1646 of the object otherwise. If a positive value is returned, a
1647 sufficiently large buffer will be allocated using xmalloc and
1648 returned in *BUF_P containing the contents of the object.
1649
1650 This method should be used for objects sufficiently small to store
1651 in a single xmalloc'd buffer, when no fixed bound on the object's
1652 size is known in advance. */
1653 extern LONGEST target_fileio_read_alloc (const char *filename,
1654 gdb_byte **buf_p);
1655
1656 /* Read target file FILENAME. The result is NUL-terminated and
1657 returned as a string, allocated using xmalloc. If an error occurs
1658 or the transfer is unsupported, NULL is returned. Empty objects
1659 are returned as allocated but empty strings. A warning is issued
1660 if the result contains any embedded NUL bytes. */
1661 extern char *target_fileio_read_stralloc (const char *filename);
1662
1663
1664 /* Tracepoint-related operations. */
1665
1666 #define target_trace_init() \
1667 (*current_target.to_trace_init) ()
1668
1669 #define target_download_tracepoint(t) \
1670 (*current_target.to_download_tracepoint) (t)
1671
1672 #define target_can_download_tracepoint() \
1673 (*current_target.to_can_download_tracepoint) ()
1674
1675 #define target_download_trace_state_variable(tsv) \
1676 (*current_target.to_download_trace_state_variable) (tsv)
1677
1678 #define target_enable_tracepoint(loc) \
1679 (*current_target.to_enable_tracepoint) (loc)
1680
1681 #define target_disable_tracepoint(loc) \
1682 (*current_target.to_disable_tracepoint) (loc)
1683
1684 #define target_trace_start() \
1685 (*current_target.to_trace_start) ()
1686
1687 #define target_trace_set_readonly_regions() \
1688 (*current_target.to_trace_set_readonly_regions) ()
1689
1690 #define target_get_trace_status(ts) \
1691 (*current_target.to_get_trace_status) (ts)
1692
1693 #define target_get_tracepoint_status(tp,utp) \
1694 (*current_target.to_get_tracepoint_status) (tp, utp)
1695
1696 #define target_trace_stop() \
1697 (*current_target.to_trace_stop) ()
1698
1699 #define target_trace_find(type,num,addr1,addr2,tpp) \
1700 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1701
1702 #define target_get_trace_state_variable_value(tsv,val) \
1703 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1704
1705 #define target_save_trace_data(filename) \
1706 (*current_target.to_save_trace_data) (filename)
1707
1708 #define target_upload_tracepoints(utpp) \
1709 (*current_target.to_upload_tracepoints) (utpp)
1710
1711 #define target_upload_trace_state_variables(utsvp) \
1712 (*current_target.to_upload_trace_state_variables) (utsvp)
1713
1714 #define target_get_raw_trace_data(buf,offset,len) \
1715 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1716
1717 #define target_get_min_fast_tracepoint_insn_len() \
1718 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1719
1720 #define target_set_disconnected_tracing(val) \
1721 (*current_target.to_set_disconnected_tracing) (val)
1722
1723 #define target_set_circular_trace_buffer(val) \
1724 (*current_target.to_set_circular_trace_buffer) (val)
1725
1726 #define target_set_trace_buffer_size(val) \
1727 (*current_target.to_set_trace_buffer_size) (val)
1728
1729 #define target_set_trace_notes(user,notes,stopnotes) \
1730 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1731
1732 #define target_get_tib_address(ptid, addr) \
1733 (*current_target.to_get_tib_address) ((ptid), (addr))
1734
1735 #define target_set_permissions() \
1736 (*current_target.to_set_permissions) ()
1737
1738 #define target_static_tracepoint_marker_at(addr, marker) \
1739 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1740
1741 #define target_static_tracepoint_markers_by_strid(marker_id) \
1742 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1743
1744 #define target_traceframe_info() \
1745 (*current_target.to_traceframe_info) ()
1746
1747 #define target_use_agent(use) \
1748 (*current_target.to_use_agent) (use)
1749
1750 #define target_can_use_agent() \
1751 (*current_target.to_can_use_agent) ()
1752
1753 /* Command logging facility. */
1754
1755 #define target_log_command(p) \
1756 do \
1757 if (current_target.to_log_command) \
1758 (*current_target.to_log_command) (p); \
1759 while (0)
1760
1761
1762 extern int target_core_of_thread (ptid_t ptid);
1763
1764 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1765 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1766 if there's a mismatch, and -1 if an error is encountered while
1767 reading memory. Throws an error if the functionality is found not
1768 to be supported by the current target. */
1769 int target_verify_memory (const gdb_byte *data,
1770 CORE_ADDR memaddr, ULONGEST size);
1771
1772 /* Routines for maintenance of the target structures...
1773
1774 add_target: Add a target to the list of all possible targets.
1775
1776 push_target: Make this target the top of the stack of currently used
1777 targets, within its particular stratum of the stack. Result
1778 is 0 if now atop the stack, nonzero if not on top (maybe
1779 should warn user).
1780
1781 unpush_target: Remove this from the stack of currently used targets,
1782 no matter where it is on the list. Returns 0 if no
1783 change, 1 if removed from stack.
1784
1785 pop_target: Remove the top thing on the stack of current targets. */
1786
1787 extern void add_target (struct target_ops *);
1788
1789 extern void push_target (struct target_ops *);
1790
1791 extern int unpush_target (struct target_ops *);
1792
1793 extern void target_pre_inferior (int);
1794
1795 extern void target_preopen (int);
1796
1797 extern void pop_target (void);
1798
1799 /* Does whatever cleanup is required to get rid of all pushed targets.
1800 QUITTING is propagated to target_close; it indicates that GDB is
1801 exiting and should not get hung on an error (otherwise it is
1802 important to perform clean termination, even if it takes a
1803 while). */
1804 extern void pop_all_targets (int quitting);
1805
1806 /* Like pop_all_targets, but pops only targets whose stratum is
1807 strictly above ABOVE_STRATUM. */
1808 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1809
1810 extern int target_is_pushed (struct target_ops *t);
1811
1812 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1813 CORE_ADDR offset);
1814
1815 /* Struct target_section maps address ranges to file sections. It is
1816 mostly used with BFD files, but can be used without (e.g. for handling
1817 raw disks, or files not in formats handled by BFD). */
1818
1819 struct target_section
1820 {
1821 CORE_ADDR addr; /* Lowest address in section */
1822 CORE_ADDR endaddr; /* 1+highest address in section */
1823
1824 struct bfd_section *the_bfd_section;
1825
1826 /* A given BFD may appear multiple times in the target section
1827 list, so each BFD is associated with a given key. The key is
1828 just some convenient pointer that can be used to differentiate
1829 the BFDs. These are managed only by convention. */
1830 void *key;
1831
1832 bfd *bfd; /* BFD file pointer */
1833 };
1834
1835 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1836
1837 struct target_section_table
1838 {
1839 struct target_section *sections;
1840 struct target_section *sections_end;
1841 };
1842
1843 /* Return the "section" containing the specified address. */
1844 struct target_section *target_section_by_addr (struct target_ops *target,
1845 CORE_ADDR addr);
1846
1847 /* Return the target section table this target (or the targets
1848 beneath) currently manipulate. */
1849
1850 extern struct target_section_table *target_get_section_table
1851 (struct target_ops *target);
1852
1853 /* From mem-break.c */
1854
1855 extern int memory_remove_breakpoint (struct gdbarch *,
1856 struct bp_target_info *);
1857
1858 extern int memory_insert_breakpoint (struct gdbarch *,
1859 struct bp_target_info *);
1860
1861 extern int default_memory_remove_breakpoint (struct gdbarch *,
1862 struct bp_target_info *);
1863
1864 extern int default_memory_insert_breakpoint (struct gdbarch *,
1865 struct bp_target_info *);
1866
1867
1868 /* From target.c */
1869
1870 extern void initialize_targets (void);
1871
1872 extern void noprocess (void) ATTRIBUTE_NORETURN;
1873
1874 extern void target_require_runnable (void);
1875
1876 extern void find_default_attach (struct target_ops *, char *, int);
1877
1878 extern void find_default_create_inferior (struct target_ops *,
1879 char *, char *, char **, int);
1880
1881 extern struct target_ops *find_run_target (void);
1882
1883 extern struct target_ops *find_target_beneath (struct target_ops *);
1884
1885 /* Read OS data object of type TYPE from the target, and return it in
1886 XML format. The result is NUL-terminated and returned as a string,
1887 allocated using xmalloc. If an error occurs or the transfer is
1888 unsupported, NULL is returned. Empty objects are returned as
1889 allocated but empty strings. */
1890
1891 extern char *target_get_osdata (const char *type);
1892
1893 \f
1894 /* Stuff that should be shared among the various remote targets. */
1895
1896 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1897 information (higher values, more information). */
1898 extern int remote_debug;
1899
1900 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1901 extern int baud_rate;
1902 /* Timeout limit for response from target. */
1903 extern int remote_timeout;
1904
1905 \f
1906
1907 /* Set the show memory breakpoints mode to show, and installs a cleanup
1908 to restore it back to the current value. */
1909 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1910
1911 extern int may_write_registers;
1912 extern int may_write_memory;
1913 extern int may_insert_breakpoints;
1914 extern int may_insert_tracepoints;
1915 extern int may_insert_fast_tracepoints;
1916 extern int may_stop;
1917
1918 extern void update_target_permissions (void);
1919
1920 \f
1921 /* Imported from machine dependent code. */
1922
1923 /* Blank target vector entries are initialized to target_ignore. */
1924 void target_ignore (void);
1925
1926 /* See to_supports_btrace in struct target_ops. */
1927 extern int target_supports_btrace (void);
1928
1929 /* See to_enable_btrace in struct target_ops. */
1930 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1931
1932 /* See to_disable_btrace in struct target_ops. */
1933 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1934
1935 /* See to_teardown_btrace in struct target_ops. */
1936 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1937
1938 /* See to_read_btrace in struct target_ops. */
1939 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1940 enum btrace_read_type);
1941
1942
1943 #endif /* !defined (TARGET_H) */
This page took 0.115862 seconds and 4 git commands to generate.