05a6b1a69f355d8e7723a81cccaa1bbbc658be35
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread);
684
685 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
686 Return 0 if *READPTR is already at the end of the buffer.
687 Return -1 if there is insufficient buffer for a whole entry.
688 Return 1 if an entry was read into *TYPEP and *VALP. */
689 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
690 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
691
692 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
693 sequence of bytes in PATTERN with length PATTERN_LEN.
694
695 The result is 1 if found, 0 if not found, and -1 if there was an error
696 requiring halting of the search (e.g. memory read error).
697 If the pattern is found the address is recorded in FOUND_ADDRP. */
698 int (*to_search_memory) (struct target_ops *ops,
699 CORE_ADDR start_addr, ULONGEST search_space_len,
700 const gdb_byte *pattern, ULONGEST pattern_len,
701 CORE_ADDR *found_addrp);
702
703 /* Can target execute in reverse? */
704 int (*to_can_execute_reverse) (struct target_ops *);
705
706 /* The direction the target is currently executing. Must be
707 implemented on targets that support reverse execution and async
708 mode. The default simply returns forward execution. */
709 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
710
711 /* Does this target support debugging multiple processes
712 simultaneously? */
713 int (*to_supports_multi_process) (struct target_ops *);
714
715 /* Does this target support enabling and disabling tracepoints while a trace
716 experiment is running? */
717 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
718
719 /* Does this target support disabling address space randomization? */
720 int (*to_supports_disable_randomization) (struct target_ops *);
721
722 /* Does this target support the tracenz bytecode for string collection? */
723 int (*to_supports_string_tracing) (struct target_ops *);
724
725 /* Does this target support evaluation of breakpoint conditions on its
726 end? */
727 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
728
729 /* Does this target support evaluation of breakpoint commands on its
730 end? */
731 int (*to_can_run_breakpoint_commands) (struct target_ops *);
732
733 /* Determine current architecture of thread PTID.
734
735 The target is supposed to determine the architecture of the code where
736 the target is currently stopped at (on Cell, if a target is in spu_run,
737 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
738 This is architecture used to perform decr_pc_after_break adjustment,
739 and also determines the frame architecture of the innermost frame.
740 ptrace operations need to operate according to target_gdbarch ().
741
742 The default implementation always returns target_gdbarch (). */
743 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
744
745 /* Determine current address space of thread PTID.
746
747 The default implementation always returns the inferior's
748 address space. */
749 struct address_space *(*to_thread_address_space) (struct target_ops *,
750 ptid_t);
751
752 /* Target file operations. */
753
754 /* Open FILENAME on the target, using FLAGS and MODE. Return a
755 target file descriptor, or -1 if an error occurs (and set
756 *TARGET_ERRNO). */
757 int (*to_fileio_open) (struct target_ops *,
758 const char *filename, int flags, int mode,
759 int *target_errno);
760
761 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
762 Return the number of bytes written, or -1 if an error occurs
763 (and set *TARGET_ERRNO). */
764 int (*to_fileio_pwrite) (struct target_ops *,
765 int fd, const gdb_byte *write_buf, int len,
766 ULONGEST offset, int *target_errno);
767
768 /* Read up to LEN bytes FD on the target into READ_BUF.
769 Return the number of bytes read, or -1 if an error occurs
770 (and set *TARGET_ERRNO). */
771 int (*to_fileio_pread) (struct target_ops *,
772 int fd, gdb_byte *read_buf, int len,
773 ULONGEST offset, int *target_errno);
774
775 /* Close FD on the target. Return 0, or -1 if an error occurs
776 (and set *TARGET_ERRNO). */
777 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
778
779 /* Unlink FILENAME on the target. Return 0, or -1 if an error
780 occurs (and set *TARGET_ERRNO). */
781 int (*to_fileio_unlink) (struct target_ops *,
782 const char *filename, int *target_errno);
783
784 /* Read value of symbolic link FILENAME on the target. Return a
785 null-terminated string allocated via xmalloc, or NULL if an error
786 occurs (and set *TARGET_ERRNO). */
787 char *(*to_fileio_readlink) (struct target_ops *,
788 const char *filename, int *target_errno);
789
790
791 /* Implement the "info proc" command. */
792 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
793
794 /* Tracepoint-related operations. */
795
796 /* Prepare the target for a tracing run. */
797 void (*to_trace_init) (struct target_ops *);
798
799 /* Send full details of a tracepoint location to the target. */
800 void (*to_download_tracepoint) (struct target_ops *,
801 struct bp_location *location);
802
803 /* Is the target able to download tracepoint locations in current
804 state? */
805 int (*to_can_download_tracepoint) (struct target_ops *);
806
807 /* Send full details of a trace state variable to the target. */
808 void (*to_download_trace_state_variable) (struct target_ops *,
809 struct trace_state_variable *tsv);
810
811 /* Enable a tracepoint on the target. */
812 void (*to_enable_tracepoint) (struct target_ops *,
813 struct bp_location *location);
814
815 /* Disable a tracepoint on the target. */
816 void (*to_disable_tracepoint) (struct target_ops *,
817 struct bp_location *location);
818
819 /* Inform the target info of memory regions that are readonly
820 (such as text sections), and so it should return data from
821 those rather than look in the trace buffer. */
822 void (*to_trace_set_readonly_regions) (struct target_ops *);
823
824 /* Start a trace run. */
825 void (*to_trace_start) (struct target_ops *);
826
827 /* Get the current status of a tracing run. */
828 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
829
830 void (*to_get_tracepoint_status) (struct target_ops *,
831 struct breakpoint *tp,
832 struct uploaded_tp *utp);
833
834 /* Stop a trace run. */
835 void (*to_trace_stop) (struct target_ops *);
836
837 /* Ask the target to find a trace frame of the given type TYPE,
838 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
839 number of the trace frame, and also the tracepoint number at
840 TPP. If no trace frame matches, return -1. May throw if the
841 operation fails. */
842 int (*to_trace_find) (struct target_ops *,
843 enum trace_find_type type, int num,
844 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
845
846 /* Get the value of the trace state variable number TSV, returning
847 1 if the value is known and writing the value itself into the
848 location pointed to by VAL, else returning 0. */
849 int (*to_get_trace_state_variable_value) (struct target_ops *,
850 int tsv, LONGEST *val);
851
852 int (*to_save_trace_data) (struct target_ops *, const char *filename);
853
854 int (*to_upload_tracepoints) (struct target_ops *,
855 struct uploaded_tp **utpp);
856
857 int (*to_upload_trace_state_variables) (struct target_ops *,
858 struct uploaded_tsv **utsvp);
859
860 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
861 ULONGEST offset, LONGEST len);
862
863 /* Get the minimum length of instruction on which a fast tracepoint
864 may be set on the target. If this operation is unsupported,
865 return -1. If for some reason the minimum length cannot be
866 determined, return 0. */
867 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
868
869 /* Set the target's tracing behavior in response to unexpected
870 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
871 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
872 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
873 /* Set the size of trace buffer in the target. */
874 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
875
876 /* Add/change textual notes about the trace run, returning 1 if
877 successful, 0 otherwise. */
878 int (*to_set_trace_notes) (struct target_ops *,
879 const char *user, const char *notes,
880 const char *stopnotes);
881
882 /* Return the processor core that thread PTID was last seen on.
883 This information is updated only when:
884 - update_thread_list is called
885 - thread stops
886 If the core cannot be determined -- either for the specified
887 thread, or right now, or in this debug session, or for this
888 target -- return -1. */
889 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
890
891 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
892 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
893 a match, 0 if there's a mismatch, and -1 if an error is
894 encountered while reading memory. */
895 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
896 CORE_ADDR memaddr, ULONGEST size);
897
898 /* Return the address of the start of the Thread Information Block
899 a Windows OS specific feature. */
900 int (*to_get_tib_address) (struct target_ops *,
901 ptid_t ptid, CORE_ADDR *addr);
902
903 /* Send the new settings of write permission variables. */
904 void (*to_set_permissions) (struct target_ops *);
905
906 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
907 with its details. Return 1 on success, 0 on failure. */
908 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
909 struct static_tracepoint_marker *marker);
910
911 /* Return a vector of all tracepoints markers string id ID, or all
912 markers if ID is NULL. */
913 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
914 (struct target_ops *, const char *id);
915
916 /* Return a traceframe info object describing the current
917 traceframe's contents. If the target doesn't support
918 traceframe info, return NULL. If the current traceframe is not
919 selected (the current traceframe number is -1), the target can
920 choose to return either NULL or an empty traceframe info. If
921 NULL is returned, for example in remote target, GDB will read
922 from the live inferior. If an empty traceframe info is
923 returned, for example in tfile target, which means the
924 traceframe info is available, but the requested memory is not
925 available in it. GDB will try to see if the requested memory
926 is available in the read-only sections. This method should not
927 cache data; higher layers take care of caching, invalidating,
928 and re-fetching when necessary. */
929 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
930
931 /* Ask the target to use or not to use agent according to USE. Return 1
932 successful, 0 otherwise. */
933 int (*to_use_agent) (struct target_ops *, int use);
934
935 /* Is the target able to use agent in current state? */
936 int (*to_can_use_agent) (struct target_ops *);
937
938 /* Check whether the target supports branch tracing. */
939 int (*to_supports_btrace) (struct target_ops *)
940 TARGET_DEFAULT_RETURN (0);
941
942 /* Enable branch tracing for PTID and allocate a branch trace target
943 information struct for reading and for disabling branch trace. */
944 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
945 ptid_t ptid);
946
947 /* Disable branch tracing and deallocate TINFO. */
948 void (*to_disable_btrace) (struct target_ops *,
949 struct btrace_target_info *tinfo);
950
951 /* Disable branch tracing and deallocate TINFO. This function is similar
952 to to_disable_btrace, except that it is called during teardown and is
953 only allowed to perform actions that are safe. A counter-example would
954 be attempting to talk to a remote target. */
955 void (*to_teardown_btrace) (struct target_ops *,
956 struct btrace_target_info *tinfo);
957
958 /* Read branch trace data for the thread indicated by BTINFO into DATA.
959 DATA is cleared before new trace is added.
960 The branch trace will start with the most recent block and continue
961 towards older blocks. */
962 enum btrace_error (*to_read_btrace) (struct target_ops *self,
963 VEC (btrace_block_s) **data,
964 struct btrace_target_info *btinfo,
965 enum btrace_read_type type);
966
967 /* Stop trace recording. */
968 void (*to_stop_recording) (struct target_ops *);
969
970 /* Print information about the recording. */
971 void (*to_info_record) (struct target_ops *);
972
973 /* Save the recorded execution trace into a file. */
974 void (*to_save_record) (struct target_ops *, const char *filename);
975
976 /* Delete the recorded execution trace from the current position onwards. */
977 void (*to_delete_record) (struct target_ops *);
978
979 /* Query if the record target is currently replaying. */
980 int (*to_record_is_replaying) (struct target_ops *);
981
982 /* Go to the begin of the execution trace. */
983 void (*to_goto_record_begin) (struct target_ops *);
984
985 /* Go to the end of the execution trace. */
986 void (*to_goto_record_end) (struct target_ops *);
987
988 /* Go to a specific location in the recorded execution trace. */
989 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
990
991 /* Disassemble SIZE instructions in the recorded execution trace from
992 the current position.
993 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
994 disassemble SIZE succeeding instructions. */
995 void (*to_insn_history) (struct target_ops *, int size, int flags);
996
997 /* Disassemble SIZE instructions in the recorded execution trace around
998 FROM.
999 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1000 disassemble SIZE instructions after FROM. */
1001 void (*to_insn_history_from) (struct target_ops *,
1002 ULONGEST from, int size, int flags);
1003
1004 /* Disassemble a section of the recorded execution trace from instruction
1005 BEGIN (inclusive) to instruction END (inclusive). */
1006 void (*to_insn_history_range) (struct target_ops *,
1007 ULONGEST begin, ULONGEST end, int flags);
1008
1009 /* Print a function trace of the recorded execution trace.
1010 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1011 succeeding functions. */
1012 void (*to_call_history) (struct target_ops *, int size, int flags);
1013
1014 /* Print a function trace of the recorded execution trace starting
1015 at function FROM.
1016 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1017 SIZE functions after FROM. */
1018 void (*to_call_history_from) (struct target_ops *,
1019 ULONGEST begin, int size, int flags);
1020
1021 /* Print a function trace of an execution trace section from function BEGIN
1022 (inclusive) to function END (inclusive). */
1023 void (*to_call_history_range) (struct target_ops *,
1024 ULONGEST begin, ULONGEST end, int flags);
1025
1026 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1027 non-empty annex. */
1028 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1029
1030 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1031 it is not used. */
1032 const struct frame_unwind *to_get_unwinder;
1033 const struct frame_unwind *to_get_tailcall_unwinder;
1034
1035 /* Return the number of bytes by which the PC needs to be decremented
1036 after executing a breakpoint instruction.
1037 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1038 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1039 struct gdbarch *gdbarch);
1040
1041 int to_magic;
1042 /* Need sub-structure for target machine related rather than comm related?
1043 */
1044 };
1045
1046 /* Magic number for checking ops size. If a struct doesn't end with this
1047 number, somebody changed the declaration but didn't change all the
1048 places that initialize one. */
1049
1050 #define OPS_MAGIC 3840
1051
1052 /* The ops structure for our "current" target process. This should
1053 never be NULL. If there is no target, it points to the dummy_target. */
1054
1055 extern struct target_ops current_target;
1056
1057 /* Define easy words for doing these operations on our current target. */
1058
1059 #define target_shortname (current_target.to_shortname)
1060 #define target_longname (current_target.to_longname)
1061
1062 /* Does whatever cleanup is required for a target that we are no
1063 longer going to be calling. This routine is automatically always
1064 called after popping the target off the target stack - the target's
1065 own methods are no longer available through the target vector.
1066 Closing file descriptors and freeing all memory allocated memory are
1067 typical things it should do. */
1068
1069 void target_close (struct target_ops *targ);
1070
1071 /* Attaches to a process on the target side. Arguments are as passed
1072 to the `attach' command by the user. This routine can be called
1073 when the target is not on the target-stack, if the target_can_run
1074 routine returns 1; in that case, it must push itself onto the stack.
1075 Upon exit, the target should be ready for normal operations, and
1076 should be ready to deliver the status of the process immediately
1077 (without waiting) to an upcoming target_wait call. */
1078
1079 void target_attach (char *, int);
1080
1081 /* Some targets don't generate traps when attaching to the inferior,
1082 or their target_attach implementation takes care of the waiting.
1083 These targets must set to_attach_no_wait. */
1084
1085 #define target_attach_no_wait \
1086 (current_target.to_attach_no_wait)
1087
1088 /* The target_attach operation places a process under debugger control,
1089 and stops the process.
1090
1091 This operation provides a target-specific hook that allows the
1092 necessary bookkeeping to be performed after an attach completes. */
1093 #define target_post_attach(pid) \
1094 (*current_target.to_post_attach) (&current_target, pid)
1095
1096 /* Takes a program previously attached to and detaches it.
1097 The program may resume execution (some targets do, some don't) and will
1098 no longer stop on signals, etc. We better not have left any breakpoints
1099 in the program or it'll die when it hits one. ARGS is arguments
1100 typed by the user (e.g. a signal to send the process). FROM_TTY
1101 says whether to be verbose or not. */
1102
1103 extern void target_detach (const char *, int);
1104
1105 /* Disconnect from the current target without resuming it (leaving it
1106 waiting for a debugger). */
1107
1108 extern void target_disconnect (char *, int);
1109
1110 /* Resume execution of the target process PTID (or a group of
1111 threads). STEP says whether to single-step or to run free; SIGGNAL
1112 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1113 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1114 PTID means `step/resume only this process id'. A wildcard PTID
1115 (all threads, or all threads of process) means `step/resume
1116 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1117 matches) resume with their 'thread->suspend.stop_signal' signal
1118 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1119 if in "no pass" state. */
1120
1121 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1122
1123 /* Wait for process pid to do something. PTID = -1 to wait for any
1124 pid to do something. Return pid of child, or -1 in case of error;
1125 store status through argument pointer STATUS. Note that it is
1126 _NOT_ OK to throw_exception() out of target_wait() without popping
1127 the debugging target from the stack; GDB isn't prepared to get back
1128 to the prompt with a debugging target but without the frame cache,
1129 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1130 options. */
1131
1132 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1133 int options);
1134
1135 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1136
1137 extern void target_fetch_registers (struct regcache *regcache, int regno);
1138
1139 /* Store at least register REGNO, or all regs if REGNO == -1.
1140 It can store as many registers as it wants to, so target_prepare_to_store
1141 must have been previously called. Calls error() if there are problems. */
1142
1143 extern void target_store_registers (struct regcache *regcache, int regs);
1144
1145 /* Get ready to modify the registers array. On machines which store
1146 individual registers, this doesn't need to do anything. On machines
1147 which store all the registers in one fell swoop, this makes sure
1148 that REGISTERS contains all the registers from the program being
1149 debugged. */
1150
1151 #define target_prepare_to_store(regcache) \
1152 (*current_target.to_prepare_to_store) (&current_target, regcache)
1153
1154 /* Determine current address space of thread PTID. */
1155
1156 struct address_space *target_thread_address_space (ptid_t);
1157
1158 /* Implement the "info proc" command. This returns one if the request
1159 was handled, and zero otherwise. It can also throw an exception if
1160 an error was encountered while attempting to handle the
1161 request. */
1162
1163 int target_info_proc (char *, enum info_proc_what);
1164
1165 /* Returns true if this target can debug multiple processes
1166 simultaneously. */
1167
1168 #define target_supports_multi_process() \
1169 (*current_target.to_supports_multi_process) (&current_target)
1170
1171 /* Returns true if this target can disable address space randomization. */
1172
1173 int target_supports_disable_randomization (void);
1174
1175 /* Returns true if this target can enable and disable tracepoints
1176 while a trace experiment is running. */
1177
1178 #define target_supports_enable_disable_tracepoint() \
1179 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1180
1181 #define target_supports_string_tracing() \
1182 (*current_target.to_supports_string_tracing) (&current_target)
1183
1184 /* Returns true if this target can handle breakpoint conditions
1185 on its end. */
1186
1187 #define target_supports_evaluation_of_breakpoint_conditions() \
1188 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1189
1190 /* Returns true if this target can handle breakpoint commands
1191 on its end. */
1192
1193 #define target_can_run_breakpoint_commands() \
1194 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1195
1196 extern int target_read_string (CORE_ADDR, char **, int, int *);
1197
1198 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1199 ssize_t len);
1200
1201 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1202 ssize_t len);
1203
1204 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1205
1206 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1207
1208 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1209 ssize_t len);
1210
1211 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1212 ssize_t len);
1213
1214 /* Fetches the target's memory map. If one is found it is sorted
1215 and returned, after some consistency checking. Otherwise, NULL
1216 is returned. */
1217 VEC(mem_region_s) *target_memory_map (void);
1218
1219 /* Erase the specified flash region. */
1220 void target_flash_erase (ULONGEST address, LONGEST length);
1221
1222 /* Finish a sequence of flash operations. */
1223 void target_flash_done (void);
1224
1225 /* Describes a request for a memory write operation. */
1226 struct memory_write_request
1227 {
1228 /* Begining address that must be written. */
1229 ULONGEST begin;
1230 /* Past-the-end address. */
1231 ULONGEST end;
1232 /* The data to write. */
1233 gdb_byte *data;
1234 /* A callback baton for progress reporting for this request. */
1235 void *baton;
1236 };
1237 typedef struct memory_write_request memory_write_request_s;
1238 DEF_VEC_O(memory_write_request_s);
1239
1240 /* Enumeration specifying different flash preservation behaviour. */
1241 enum flash_preserve_mode
1242 {
1243 flash_preserve,
1244 flash_discard
1245 };
1246
1247 /* Write several memory blocks at once. This version can be more
1248 efficient than making several calls to target_write_memory, in
1249 particular because it can optimize accesses to flash memory.
1250
1251 Moreover, this is currently the only memory access function in gdb
1252 that supports writing to flash memory, and it should be used for
1253 all cases where access to flash memory is desirable.
1254
1255 REQUESTS is the vector (see vec.h) of memory_write_request.
1256 PRESERVE_FLASH_P indicates what to do with blocks which must be
1257 erased, but not completely rewritten.
1258 PROGRESS_CB is a function that will be periodically called to provide
1259 feedback to user. It will be called with the baton corresponding
1260 to the request currently being written. It may also be called
1261 with a NULL baton, when preserved flash sectors are being rewritten.
1262
1263 The function returns 0 on success, and error otherwise. */
1264 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1265 enum flash_preserve_mode preserve_flash_p,
1266 void (*progress_cb) (ULONGEST, void *));
1267
1268 /* Print a line about the current target. */
1269
1270 #define target_files_info() \
1271 (*current_target.to_files_info) (&current_target)
1272
1273 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1274 the target machine. Returns 0 for success, and returns non-zero or
1275 throws an error (with a detailed failure reason error code and
1276 message) otherwise. */
1277
1278 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1279 struct bp_target_info *bp_tgt);
1280
1281 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1282 machine. Result is 0 for success, non-zero for error. */
1283
1284 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1285 struct bp_target_info *bp_tgt);
1286
1287 /* Initialize the terminal settings we record for the inferior,
1288 before we actually run the inferior. */
1289
1290 #define target_terminal_init() \
1291 (*current_target.to_terminal_init) (&current_target)
1292
1293 /* Put the inferior's terminal settings into effect.
1294 This is preparation for starting or resuming the inferior. */
1295
1296 extern void target_terminal_inferior (void);
1297
1298 /* Put some of our terminal settings into effect,
1299 enough to get proper results from our output,
1300 but do not change into or out of RAW mode
1301 so that no input is discarded.
1302
1303 After doing this, either terminal_ours or terminal_inferior
1304 should be called to get back to a normal state of affairs. */
1305
1306 #define target_terminal_ours_for_output() \
1307 (*current_target.to_terminal_ours_for_output) (&current_target)
1308
1309 /* Put our terminal settings into effect.
1310 First record the inferior's terminal settings
1311 so they can be restored properly later. */
1312
1313 #define target_terminal_ours() \
1314 (*current_target.to_terminal_ours) (&current_target)
1315
1316 /* Save our terminal settings.
1317 This is called from TUI after entering or leaving the curses
1318 mode. Since curses modifies our terminal this call is here
1319 to take this change into account. */
1320
1321 #define target_terminal_save_ours() \
1322 (*current_target.to_terminal_save_ours) (&current_target)
1323
1324 /* Print useful information about our terminal status, if such a thing
1325 exists. */
1326
1327 #define target_terminal_info(arg, from_tty) \
1328 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1329
1330 /* Kill the inferior process. Make it go away. */
1331
1332 extern void target_kill (void);
1333
1334 /* Load an executable file into the target process. This is expected
1335 to not only bring new code into the target process, but also to
1336 update GDB's symbol tables to match.
1337
1338 ARG contains command-line arguments, to be broken down with
1339 buildargv (). The first non-switch argument is the filename to
1340 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1341 0)), which is an offset to apply to the load addresses of FILE's
1342 sections. The target may define switches, or other non-switch
1343 arguments, as it pleases. */
1344
1345 extern void target_load (char *arg, int from_tty);
1346
1347 /* Start an inferior process and set inferior_ptid to its pid.
1348 EXEC_FILE is the file to run.
1349 ALLARGS is a string containing the arguments to the program.
1350 ENV is the environment vector to pass. Errors reported with error().
1351 On VxWorks and various standalone systems, we ignore exec_file. */
1352
1353 void target_create_inferior (char *exec_file, char *args,
1354 char **env, int from_tty);
1355
1356 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1357 notification of inferior events such as fork and vork immediately
1358 after the inferior is created. (This because of how gdb gets an
1359 inferior created via invoking a shell to do it. In such a scenario,
1360 if the shell init file has commands in it, the shell will fork and
1361 exec for each of those commands, and we will see each such fork
1362 event. Very bad.)
1363
1364 Such targets will supply an appropriate definition for this function. */
1365
1366 #define target_post_startup_inferior(ptid) \
1367 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1368
1369 /* On some targets, we can catch an inferior fork or vfork event when
1370 it occurs. These functions insert/remove an already-created
1371 catchpoint for such events. They return 0 for success, 1 if the
1372 catchpoint type is not supported and -1 for failure. */
1373
1374 #define target_insert_fork_catchpoint(pid) \
1375 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1376
1377 #define target_remove_fork_catchpoint(pid) \
1378 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1379
1380 #define target_insert_vfork_catchpoint(pid) \
1381 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1382
1383 #define target_remove_vfork_catchpoint(pid) \
1384 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1385
1386 /* If the inferior forks or vforks, this function will be called at
1387 the next resume in order to perform any bookkeeping and fiddling
1388 necessary to continue debugging either the parent or child, as
1389 requested, and releasing the other. Information about the fork
1390 or vfork event is available via get_last_target_status ().
1391 This function returns 1 if the inferior should not be resumed
1392 (i.e. there is another event pending). */
1393
1394 int target_follow_fork (int follow_child, int detach_fork);
1395
1396 /* On some targets, we can catch an inferior exec event when it
1397 occurs. These functions insert/remove an already-created
1398 catchpoint for such events. They return 0 for success, 1 if the
1399 catchpoint type is not supported and -1 for failure. */
1400
1401 #define target_insert_exec_catchpoint(pid) \
1402 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1403
1404 #define target_remove_exec_catchpoint(pid) \
1405 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1406
1407 /* Syscall catch.
1408
1409 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1410 If NEEDED is zero, it means the target can disable the mechanism to
1411 catch system calls because there are no more catchpoints of this type.
1412
1413 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1414 being requested. In this case, both TABLE_SIZE and TABLE should
1415 be ignored.
1416
1417 TABLE_SIZE is the number of elements in TABLE. It only matters if
1418 ANY_COUNT is zero.
1419
1420 TABLE is an array of ints, indexed by syscall number. An element in
1421 this array is nonzero if that syscall should be caught. This argument
1422 only matters if ANY_COUNT is zero.
1423
1424 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1425 for failure. */
1426
1427 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1428 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1429 pid, needed, any_count, \
1430 table_size, table)
1431
1432 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1433 exit code of PID, if any. */
1434
1435 #define target_has_exited(pid,wait_status,exit_status) \
1436 (*current_target.to_has_exited) (&current_target, \
1437 pid,wait_status,exit_status)
1438
1439 /* The debugger has completed a blocking wait() call. There is now
1440 some process event that must be processed. This function should
1441 be defined by those targets that require the debugger to perform
1442 cleanup or internal state changes in response to the process event. */
1443
1444 /* The inferior process has died. Do what is right. */
1445
1446 void target_mourn_inferior (void);
1447
1448 /* Does target have enough data to do a run or attach command? */
1449
1450 #define target_can_run(t) \
1451 ((t)->to_can_run) (t)
1452
1453 /* Set list of signals to be handled in the target.
1454
1455 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1456 (enum gdb_signal). For every signal whose entry in this array is
1457 non-zero, the target is allowed -but not required- to skip reporting
1458 arrival of the signal to the GDB core by returning from target_wait,
1459 and to pass the signal directly to the inferior instead.
1460
1461 However, if the target is hardware single-stepping a thread that is
1462 about to receive a signal, it needs to be reported in any case, even
1463 if mentioned in a previous target_pass_signals call. */
1464
1465 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1466
1467 /* Set list of signals the target may pass to the inferior. This
1468 directly maps to the "handle SIGNAL pass/nopass" setting.
1469
1470 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1471 number (enum gdb_signal). For every signal whose entry in this
1472 array is non-zero, the target is allowed to pass the signal to the
1473 inferior. Signals not present in the array shall be silently
1474 discarded. This does not influence whether to pass signals to the
1475 inferior as a result of a target_resume call. This is useful in
1476 scenarios where the target needs to decide whether to pass or not a
1477 signal to the inferior without GDB core involvement, such as for
1478 example, when detaching (as threads may have been suspended with
1479 pending signals not reported to GDB). */
1480
1481 extern void target_program_signals (int nsig, unsigned char *program_signals);
1482
1483 /* Check to see if a thread is still alive. */
1484
1485 extern int target_thread_alive (ptid_t ptid);
1486
1487 /* Query for new threads and add them to the thread list. */
1488
1489 extern void target_find_new_threads (void);
1490
1491 /* Make target stop in a continuable fashion. (For instance, under
1492 Unix, this should act like SIGSTOP). This function is normally
1493 used by GUIs to implement a stop button. */
1494
1495 extern void target_stop (ptid_t ptid);
1496
1497 /* Send the specified COMMAND to the target's monitor
1498 (shell,interpreter) for execution. The result of the query is
1499 placed in OUTBUF. */
1500
1501 #define target_rcmd(command, outbuf) \
1502 (*current_target.to_rcmd) (&current_target, command, outbuf)
1503
1504
1505 /* Does the target include all of memory, or only part of it? This
1506 determines whether we look up the target chain for other parts of
1507 memory if this target can't satisfy a request. */
1508
1509 extern int target_has_all_memory_1 (void);
1510 #define target_has_all_memory target_has_all_memory_1 ()
1511
1512 /* Does the target include memory? (Dummy targets don't.) */
1513
1514 extern int target_has_memory_1 (void);
1515 #define target_has_memory target_has_memory_1 ()
1516
1517 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1518 we start a process.) */
1519
1520 extern int target_has_stack_1 (void);
1521 #define target_has_stack target_has_stack_1 ()
1522
1523 /* Does the target have registers? (Exec files don't.) */
1524
1525 extern int target_has_registers_1 (void);
1526 #define target_has_registers target_has_registers_1 ()
1527
1528 /* Does the target have execution? Can we make it jump (through
1529 hoops), or pop its stack a few times? This means that the current
1530 target is currently executing; for some targets, that's the same as
1531 whether or not the target is capable of execution, but there are
1532 also targets which can be current while not executing. In that
1533 case this will become true after target_create_inferior or
1534 target_attach. */
1535
1536 extern int target_has_execution_1 (ptid_t);
1537
1538 /* Like target_has_execution_1, but always passes inferior_ptid. */
1539
1540 extern int target_has_execution_current (void);
1541
1542 #define target_has_execution target_has_execution_current ()
1543
1544 /* Default implementations for process_stratum targets. Return true
1545 if there's a selected inferior, false otherwise. */
1546
1547 extern int default_child_has_all_memory (struct target_ops *ops);
1548 extern int default_child_has_memory (struct target_ops *ops);
1549 extern int default_child_has_stack (struct target_ops *ops);
1550 extern int default_child_has_registers (struct target_ops *ops);
1551 extern int default_child_has_execution (struct target_ops *ops,
1552 ptid_t the_ptid);
1553
1554 /* Can the target support the debugger control of thread execution?
1555 Can it lock the thread scheduler? */
1556
1557 #define target_can_lock_scheduler \
1558 (current_target.to_has_thread_control & tc_schedlock)
1559
1560 /* Should the target enable async mode if it is supported? Temporary
1561 cludge until async mode is a strict superset of sync mode. */
1562 extern int target_async_permitted;
1563
1564 /* Can the target support asynchronous execution? */
1565 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1566
1567 /* Is the target in asynchronous execution mode? */
1568 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1569
1570 int target_supports_non_stop (void);
1571
1572 /* Put the target in async mode with the specified callback function. */
1573 #define target_async(CALLBACK,CONTEXT) \
1574 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1575
1576 #define target_execution_direction() \
1577 (current_target.to_execution_direction (&current_target))
1578
1579 /* Converts a process id to a string. Usually, the string just contains
1580 `process xyz', but on some systems it may contain
1581 `process xyz thread abc'. */
1582
1583 extern char *target_pid_to_str (ptid_t ptid);
1584
1585 extern char *normal_pid_to_str (ptid_t ptid);
1586
1587 /* Return a short string describing extra information about PID,
1588 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1589 is okay. */
1590
1591 #define target_extra_thread_info(TP) \
1592 (current_target.to_extra_thread_info (&current_target, TP))
1593
1594 /* Return the thread's name. A NULL result means that the target
1595 could not determine this thread's name. */
1596
1597 extern char *target_thread_name (struct thread_info *);
1598
1599 /* Attempts to find the pathname of the executable file
1600 that was run to create a specified process.
1601
1602 The process PID must be stopped when this operation is used.
1603
1604 If the executable file cannot be determined, NULL is returned.
1605
1606 Else, a pointer to a character string containing the pathname
1607 is returned. This string should be copied into a buffer by
1608 the client if the string will not be immediately used, or if
1609 it must persist. */
1610
1611 #define target_pid_to_exec_file(pid) \
1612 (current_target.to_pid_to_exec_file) (&current_target, pid)
1613
1614 /* See the to_thread_architecture description in struct target_ops. */
1615
1616 #define target_thread_architecture(ptid) \
1617 (current_target.to_thread_architecture (&current_target, ptid))
1618
1619 /*
1620 * Iterator function for target memory regions.
1621 * Calls a callback function once for each memory region 'mapped'
1622 * in the child process. Defined as a simple macro rather than
1623 * as a function macro so that it can be tested for nullity.
1624 */
1625
1626 #define target_find_memory_regions(FUNC, DATA) \
1627 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1628
1629 /*
1630 * Compose corefile .note section.
1631 */
1632
1633 #define target_make_corefile_notes(BFD, SIZE_P) \
1634 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1635
1636 /* Bookmark interfaces. */
1637 #define target_get_bookmark(ARGS, FROM_TTY) \
1638 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1639
1640 #define target_goto_bookmark(ARG, FROM_TTY) \
1641 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1642
1643 /* Hardware watchpoint interfaces. */
1644
1645 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1646 write). Only the INFERIOR_PTID task is being queried. */
1647
1648 #define target_stopped_by_watchpoint() \
1649 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1650
1651 /* Non-zero if we have steppable watchpoints */
1652
1653 #define target_have_steppable_watchpoint \
1654 (current_target.to_have_steppable_watchpoint)
1655
1656 /* Non-zero if we have continuable watchpoints */
1657
1658 #define target_have_continuable_watchpoint \
1659 (current_target.to_have_continuable_watchpoint)
1660
1661 /* Provide defaults for hardware watchpoint functions. */
1662
1663 /* If the *_hw_beakpoint functions have not been defined
1664 elsewhere use the definitions in the target vector. */
1665
1666 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1667 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1668 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1669 (including this one?). OTHERTYPE is who knows what... */
1670
1671 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1672 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1673 TYPE, CNT, OTHERTYPE);
1674
1675 /* Returns the number of debug registers needed to watch the given
1676 memory region, or zero if not supported. */
1677
1678 #define target_region_ok_for_hw_watchpoint(addr, len) \
1679 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1680 addr, len)
1681
1682
1683 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1684 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1685 COND is the expression for its condition, or NULL if there's none.
1686 Returns 0 for success, 1 if the watchpoint type is not supported,
1687 -1 for failure. */
1688
1689 #define target_insert_watchpoint(addr, len, type, cond) \
1690 (*current_target.to_insert_watchpoint) (&current_target, \
1691 addr, len, type, cond)
1692
1693 #define target_remove_watchpoint(addr, len, type, cond) \
1694 (*current_target.to_remove_watchpoint) (&current_target, \
1695 addr, len, type, cond)
1696
1697 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1698 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1699 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1700 masked watchpoints are not supported, -1 for failure. */
1701
1702 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1703
1704 /* Remove a masked watchpoint at ADDR with the mask MASK.
1705 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1706 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1707 for failure. */
1708
1709 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1710
1711 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1712 the target machine. Returns 0 for success, and returns non-zero or
1713 throws an error (with a detailed failure reason error code and
1714 message) otherwise. */
1715
1716 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1717 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1718 gdbarch, bp_tgt)
1719
1720 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1721 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1722 gdbarch, bp_tgt)
1723
1724 /* Return number of debug registers needed for a ranged breakpoint,
1725 or -1 if ranged breakpoints are not supported. */
1726
1727 extern int target_ranged_break_num_registers (void);
1728
1729 /* Return non-zero if target knows the data address which triggered this
1730 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1731 INFERIOR_PTID task is being queried. */
1732 #define target_stopped_data_address(target, addr_p) \
1733 (*target.to_stopped_data_address) (target, addr_p)
1734
1735 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1736 LENGTH bytes beginning at START. */
1737 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1738 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1739
1740 /* Return non-zero if the target is capable of using hardware to evaluate
1741 the condition expression. In this case, if the condition is false when
1742 the watched memory location changes, execution may continue without the
1743 debugger being notified.
1744
1745 Due to limitations in the hardware implementation, it may be capable of
1746 avoiding triggering the watchpoint in some cases where the condition
1747 expression is false, but may report some false positives as well.
1748 For this reason, GDB will still evaluate the condition expression when
1749 the watchpoint triggers. */
1750 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1751 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1752 addr, len, type, cond)
1753
1754 /* Return number of debug registers needed for a masked watchpoint,
1755 -1 if masked watchpoints are not supported or -2 if the given address
1756 and mask combination cannot be used. */
1757
1758 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1759
1760 /* Target can execute in reverse? */
1761 #define target_can_execute_reverse \
1762 (current_target.to_can_execute_reverse ? \
1763 current_target.to_can_execute_reverse (&current_target) : 0)
1764
1765 extern const struct target_desc *target_read_description (struct target_ops *);
1766
1767 #define target_get_ada_task_ptid(lwp, tid) \
1768 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1769
1770 /* Utility implementation of searching memory. */
1771 extern int simple_search_memory (struct target_ops* ops,
1772 CORE_ADDR start_addr,
1773 ULONGEST search_space_len,
1774 const gdb_byte *pattern,
1775 ULONGEST pattern_len,
1776 CORE_ADDR *found_addrp);
1777
1778 /* Main entry point for searching memory. */
1779 extern int target_search_memory (CORE_ADDR start_addr,
1780 ULONGEST search_space_len,
1781 const gdb_byte *pattern,
1782 ULONGEST pattern_len,
1783 CORE_ADDR *found_addrp);
1784
1785 /* Target file operations. */
1786
1787 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1788 target file descriptor, or -1 if an error occurs (and set
1789 *TARGET_ERRNO). */
1790 extern int target_fileio_open (const char *filename, int flags, int mode,
1791 int *target_errno);
1792
1793 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1794 Return the number of bytes written, or -1 if an error occurs
1795 (and set *TARGET_ERRNO). */
1796 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1797 ULONGEST offset, int *target_errno);
1798
1799 /* Read up to LEN bytes FD on the target into READ_BUF.
1800 Return the number of bytes read, or -1 if an error occurs
1801 (and set *TARGET_ERRNO). */
1802 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1803 ULONGEST offset, int *target_errno);
1804
1805 /* Close FD on the target. Return 0, or -1 if an error occurs
1806 (and set *TARGET_ERRNO). */
1807 extern int target_fileio_close (int fd, int *target_errno);
1808
1809 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1810 occurs (and set *TARGET_ERRNO). */
1811 extern int target_fileio_unlink (const char *filename, int *target_errno);
1812
1813 /* Read value of symbolic link FILENAME on the target. Return a
1814 null-terminated string allocated via xmalloc, or NULL if an error
1815 occurs (and set *TARGET_ERRNO). */
1816 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1817
1818 /* Read target file FILENAME. The return value will be -1 if the transfer
1819 fails or is not supported; 0 if the object is empty; or the length
1820 of the object otherwise. If a positive value is returned, a
1821 sufficiently large buffer will be allocated using xmalloc and
1822 returned in *BUF_P containing the contents of the object.
1823
1824 This method should be used for objects sufficiently small to store
1825 in a single xmalloc'd buffer, when no fixed bound on the object's
1826 size is known in advance. */
1827 extern LONGEST target_fileio_read_alloc (const char *filename,
1828 gdb_byte **buf_p);
1829
1830 /* Read target file FILENAME. The result is NUL-terminated and
1831 returned as a string, allocated using xmalloc. If an error occurs
1832 or the transfer is unsupported, NULL is returned. Empty objects
1833 are returned as allocated but empty strings. A warning is issued
1834 if the result contains any embedded NUL bytes. */
1835 extern char *target_fileio_read_stralloc (const char *filename);
1836
1837
1838 /* Tracepoint-related operations. */
1839
1840 #define target_trace_init() \
1841 (*current_target.to_trace_init) (&current_target)
1842
1843 #define target_download_tracepoint(t) \
1844 (*current_target.to_download_tracepoint) (&current_target, t)
1845
1846 #define target_can_download_tracepoint() \
1847 (*current_target.to_can_download_tracepoint) (&current_target)
1848
1849 #define target_download_trace_state_variable(tsv) \
1850 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1851
1852 #define target_enable_tracepoint(loc) \
1853 (*current_target.to_enable_tracepoint) (&current_target, loc)
1854
1855 #define target_disable_tracepoint(loc) \
1856 (*current_target.to_disable_tracepoint) (&current_target, loc)
1857
1858 #define target_trace_start() \
1859 (*current_target.to_trace_start) (&current_target)
1860
1861 #define target_trace_set_readonly_regions() \
1862 (*current_target.to_trace_set_readonly_regions) (&current_target)
1863
1864 #define target_get_trace_status(ts) \
1865 (*current_target.to_get_trace_status) (&current_target, ts)
1866
1867 #define target_get_tracepoint_status(tp,utp) \
1868 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1869
1870 #define target_trace_stop() \
1871 (*current_target.to_trace_stop) (&current_target)
1872
1873 #define target_trace_find(type,num,addr1,addr2,tpp) \
1874 (*current_target.to_trace_find) (&current_target, \
1875 (type), (num), (addr1), (addr2), (tpp))
1876
1877 #define target_get_trace_state_variable_value(tsv,val) \
1878 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1879 (tsv), (val))
1880
1881 #define target_save_trace_data(filename) \
1882 (*current_target.to_save_trace_data) (&current_target, filename)
1883
1884 #define target_upload_tracepoints(utpp) \
1885 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1886
1887 #define target_upload_trace_state_variables(utsvp) \
1888 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1889
1890 #define target_get_raw_trace_data(buf,offset,len) \
1891 (*current_target.to_get_raw_trace_data) (&current_target, \
1892 (buf), (offset), (len))
1893
1894 #define target_get_min_fast_tracepoint_insn_len() \
1895 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1896
1897 #define target_set_disconnected_tracing(val) \
1898 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1899
1900 #define target_set_circular_trace_buffer(val) \
1901 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1902
1903 #define target_set_trace_buffer_size(val) \
1904 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1905
1906 #define target_set_trace_notes(user,notes,stopnotes) \
1907 (*current_target.to_set_trace_notes) (&current_target, \
1908 (user), (notes), (stopnotes))
1909
1910 #define target_get_tib_address(ptid, addr) \
1911 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1912
1913 #define target_set_permissions() \
1914 (*current_target.to_set_permissions) (&current_target)
1915
1916 #define target_static_tracepoint_marker_at(addr, marker) \
1917 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1918 addr, marker)
1919
1920 #define target_static_tracepoint_markers_by_strid(marker_id) \
1921 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1922 marker_id)
1923
1924 #define target_traceframe_info() \
1925 (*current_target.to_traceframe_info) (&current_target)
1926
1927 #define target_use_agent(use) \
1928 (*current_target.to_use_agent) (&current_target, use)
1929
1930 #define target_can_use_agent() \
1931 (*current_target.to_can_use_agent) (&current_target)
1932
1933 #define target_augmented_libraries_svr4_read() \
1934 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1935
1936 /* Command logging facility. */
1937
1938 #define target_log_command(p) \
1939 (*current_target.to_log_command) (&current_target, p)
1940
1941
1942 extern int target_core_of_thread (ptid_t ptid);
1943
1944 /* See to_get_unwinder in struct target_ops. */
1945 extern const struct frame_unwind *target_get_unwinder (void);
1946
1947 /* See to_get_tailcall_unwinder in struct target_ops. */
1948 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1949
1950 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1951 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1952 if there's a mismatch, and -1 if an error is encountered while
1953 reading memory. Throws an error if the functionality is found not
1954 to be supported by the current target. */
1955 int target_verify_memory (const gdb_byte *data,
1956 CORE_ADDR memaddr, ULONGEST size);
1957
1958 /* Routines for maintenance of the target structures...
1959
1960 complete_target_initialization: Finalize a target_ops by filling in
1961 any fields needed by the target implementation.
1962
1963 add_target: Add a target to the list of all possible targets.
1964
1965 push_target: Make this target the top of the stack of currently used
1966 targets, within its particular stratum of the stack. Result
1967 is 0 if now atop the stack, nonzero if not on top (maybe
1968 should warn user).
1969
1970 unpush_target: Remove this from the stack of currently used targets,
1971 no matter where it is on the list. Returns 0 if no
1972 change, 1 if removed from stack. */
1973
1974 extern void add_target (struct target_ops *);
1975
1976 extern void add_target_with_completer (struct target_ops *t,
1977 completer_ftype *completer);
1978
1979 extern void complete_target_initialization (struct target_ops *t);
1980
1981 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1982 for maintaining backwards compatibility when renaming targets. */
1983
1984 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1985
1986 extern void push_target (struct target_ops *);
1987
1988 extern int unpush_target (struct target_ops *);
1989
1990 extern void target_pre_inferior (int);
1991
1992 extern void target_preopen (int);
1993
1994 /* Does whatever cleanup is required to get rid of all pushed targets. */
1995 extern void pop_all_targets (void);
1996
1997 /* Like pop_all_targets, but pops only targets whose stratum is
1998 strictly above ABOVE_STRATUM. */
1999 extern void pop_all_targets_above (enum strata above_stratum);
2000
2001 extern int target_is_pushed (struct target_ops *t);
2002
2003 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2004 CORE_ADDR offset);
2005
2006 /* Struct target_section maps address ranges to file sections. It is
2007 mostly used with BFD files, but can be used without (e.g. for handling
2008 raw disks, or files not in formats handled by BFD). */
2009
2010 struct target_section
2011 {
2012 CORE_ADDR addr; /* Lowest address in section */
2013 CORE_ADDR endaddr; /* 1+highest address in section */
2014
2015 struct bfd_section *the_bfd_section;
2016
2017 /* The "owner" of the section.
2018 It can be any unique value. It is set by add_target_sections
2019 and used by remove_target_sections.
2020 For example, for executables it is a pointer to exec_bfd and
2021 for shlibs it is the so_list pointer. */
2022 void *owner;
2023 };
2024
2025 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2026
2027 struct target_section_table
2028 {
2029 struct target_section *sections;
2030 struct target_section *sections_end;
2031 };
2032
2033 /* Return the "section" containing the specified address. */
2034 struct target_section *target_section_by_addr (struct target_ops *target,
2035 CORE_ADDR addr);
2036
2037 /* Return the target section table this target (or the targets
2038 beneath) currently manipulate. */
2039
2040 extern struct target_section_table *target_get_section_table
2041 (struct target_ops *target);
2042
2043 /* From mem-break.c */
2044
2045 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2046 struct bp_target_info *);
2047
2048 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2049 struct bp_target_info *);
2050
2051 extern int default_memory_remove_breakpoint (struct gdbarch *,
2052 struct bp_target_info *);
2053
2054 extern int default_memory_insert_breakpoint (struct gdbarch *,
2055 struct bp_target_info *);
2056
2057
2058 /* From target.c */
2059
2060 extern void initialize_targets (void);
2061
2062 extern void noprocess (void) ATTRIBUTE_NORETURN;
2063
2064 extern void target_require_runnable (void);
2065
2066 extern void find_default_attach (struct target_ops *, char *, int);
2067
2068 extern void find_default_create_inferior (struct target_ops *,
2069 char *, char *, char **, int);
2070
2071 extern struct target_ops *find_target_beneath (struct target_ops *);
2072
2073 /* Find the target at STRATUM. If no target is at that stratum,
2074 return NULL. */
2075
2076 struct target_ops *find_target_at (enum strata stratum);
2077
2078 /* Read OS data object of type TYPE from the target, and return it in
2079 XML format. The result is NUL-terminated and returned as a string,
2080 allocated using xmalloc. If an error occurs or the transfer is
2081 unsupported, NULL is returned. Empty objects are returned as
2082 allocated but empty strings. */
2083
2084 extern char *target_get_osdata (const char *type);
2085
2086 \f
2087 /* Stuff that should be shared among the various remote targets. */
2088
2089 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2090 information (higher values, more information). */
2091 extern int remote_debug;
2092
2093 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2094 extern int baud_rate;
2095 /* Timeout limit for response from target. */
2096 extern int remote_timeout;
2097
2098 \f
2099
2100 /* Set the show memory breakpoints mode to show, and installs a cleanup
2101 to restore it back to the current value. */
2102 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2103
2104 extern int may_write_registers;
2105 extern int may_write_memory;
2106 extern int may_insert_breakpoints;
2107 extern int may_insert_tracepoints;
2108 extern int may_insert_fast_tracepoints;
2109 extern int may_stop;
2110
2111 extern void update_target_permissions (void);
2112
2113 \f
2114 /* Imported from machine dependent code. */
2115
2116 /* Blank target vector entries are initialized to target_ignore. */
2117 void target_ignore (void);
2118
2119 /* See to_supports_btrace in struct target_ops. */
2120 #define target_supports_btrace() \
2121 (current_target.to_supports_btrace (&current_target))
2122
2123 /* See to_enable_btrace in struct target_ops. */
2124 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2125
2126 /* See to_disable_btrace in struct target_ops. */
2127 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2128
2129 /* See to_teardown_btrace in struct target_ops. */
2130 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2131
2132 /* See to_read_btrace in struct target_ops. */
2133 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2134 struct btrace_target_info *,
2135 enum btrace_read_type);
2136
2137 /* See to_stop_recording in struct target_ops. */
2138 extern void target_stop_recording (void);
2139
2140 /* See to_info_record in struct target_ops. */
2141 extern void target_info_record (void);
2142
2143 /* See to_save_record in struct target_ops. */
2144 extern void target_save_record (const char *filename);
2145
2146 /* Query if the target supports deleting the execution log. */
2147 extern int target_supports_delete_record (void);
2148
2149 /* See to_delete_record in struct target_ops. */
2150 extern void target_delete_record (void);
2151
2152 /* See to_record_is_replaying in struct target_ops. */
2153 extern int target_record_is_replaying (void);
2154
2155 /* See to_goto_record_begin in struct target_ops. */
2156 extern void target_goto_record_begin (void);
2157
2158 /* See to_goto_record_end in struct target_ops. */
2159 extern void target_goto_record_end (void);
2160
2161 /* See to_goto_record in struct target_ops. */
2162 extern void target_goto_record (ULONGEST insn);
2163
2164 /* See to_insn_history. */
2165 extern void target_insn_history (int size, int flags);
2166
2167 /* See to_insn_history_from. */
2168 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2169
2170 /* See to_insn_history_range. */
2171 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2172
2173 /* See to_call_history. */
2174 extern void target_call_history (int size, int flags);
2175
2176 /* See to_call_history_from. */
2177 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2178
2179 /* See to_call_history_range. */
2180 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2181
2182 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2183 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2184 struct gdbarch *gdbarch);
2185
2186 /* See to_decr_pc_after_break. */
2187 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2188
2189 #endif /* !defined (TARGET_H) */
This page took 0.082453 seconds and 4 git commands to generate.