gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38
39 /* This include file defines the interface between the main part
40 of the debugger, and the part which is target-specific, or
41 specific to the communications interface between us and the
42 target.
43
44 A TARGET is an interface between the debugger and a particular
45 kind of file or process. Targets can be STACKED in STRATA,
46 so that more than one target can potentially respond to a request.
47 In particular, memory accesses will walk down the stack of targets
48 until they find a target that is interested in handling that particular
49 address. STRATA are artificial boundaries on the stack, within
50 which particular kinds of targets live. Strata exist so that
51 people don't get confused by pushing e.g. a process target and then
52 a file target, and wondering why they can't see the current values
53 of variables any more (the file target is handling them and they
54 never get to the process target). So when you push a file target,
55 it goes into the file stratum, which is always below the process
56 stratum. */
57
58 #include "bfd.h"
59 #include "symtab.h"
60 #include "memattr.h"
61 #include "vec.h"
62 #include "gdb_signals.h"
63
64 enum strata
65 {
66 dummy_stratum, /* The lowest of the low */
67 file_stratum, /* Executable files, etc */
68 core_stratum, /* Core dump files */
69 process_stratum, /* Executing processes */
70 thread_stratum, /* Executing threads */
71 record_stratum, /* Support record debugging */
72 arch_stratum /* Architecture overrides */
73 };
74
75 enum thread_control_capabilities
76 {
77 tc_none = 0, /* Default: can't control thread execution. */
78 tc_schedlock = 1, /* Can lock the thread scheduler. */
79 };
80
81 /* Stuff for target_wait. */
82
83 /* Generally, what has the program done? */
84 enum target_waitkind
85 {
86 /* The program has exited. The exit status is in value.integer. */
87 TARGET_WAITKIND_EXITED,
88
89 /* The program has stopped with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_STOPPED,
92
93 /* The program has terminated with a signal. Which signal is in
94 value.sig. */
95 TARGET_WAITKIND_SIGNALLED,
96
97 /* The program is letting us know that it dynamically loaded something
98 (e.g. it called load(2) on AIX). */
99 TARGET_WAITKIND_LOADED,
100
101 /* The program has forked. A "related" process' PTID is in
102 value.related_pid. I.e., if the child forks, value.related_pid
103 is the parent's ID. */
104
105 TARGET_WAITKIND_FORKED,
106
107 /* The program has vforked. A "related" process's PTID is in
108 value.related_pid. */
109
110 TARGET_WAITKIND_VFORKED,
111
112 /* The program has exec'ed a new executable file. The new file's
113 pathname is pointed to by value.execd_pathname. */
114
115 TARGET_WAITKIND_EXECD,
116
117 /* The program had previously vforked, and now the child is done
118 with the shared memory region, because it exec'ed or exited.
119 Note that the event is reported to the vfork parent. This is
120 only used if GDB did not stay attached to the vfork child,
121 otherwise, a TARGET_WAITKIND_EXECD or
122 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
123 has the same effect. */
124 TARGET_WAITKIND_VFORK_DONE,
125
126 /* The program has entered or returned from a system call. On
127 HP-UX, this is used in the hardware watchpoint implementation.
128 The syscall's unique integer ID number is in value.syscall_id */
129
130 TARGET_WAITKIND_SYSCALL_ENTRY,
131 TARGET_WAITKIND_SYSCALL_RETURN,
132
133 /* Nothing happened, but we stopped anyway. This perhaps should be handled
134 within target_wait, but I'm not sure target_wait should be resuming the
135 inferior. */
136 TARGET_WAITKIND_SPURIOUS,
137
138 /* An event has occured, but we should wait again.
139 Remote_async_wait() returns this when there is an event
140 on the inferior, but the rest of the world is not interested in
141 it. The inferior has not stopped, but has just sent some output
142 to the console, for instance. In this case, we want to go back
143 to the event loop and wait there for another event from the
144 inferior, rather than being stuck in the remote_async_wait()
145 function. This way the event loop is responsive to other events,
146 like for instance the user typing. */
147 TARGET_WAITKIND_IGNORE,
148
149 /* The target has run out of history information,
150 and cannot run backward any further. */
151 TARGET_WAITKIND_NO_HISTORY
152 };
153
154 struct target_waitstatus
155 {
156 enum target_waitkind kind;
157
158 /* Forked child pid, execd pathname, exit status, signal number or
159 syscall number. */
160 union
161 {
162 int integer;
163 enum target_signal sig;
164 ptid_t related_pid;
165 char *execd_pathname;
166 int syscall_number;
167 }
168 value;
169 };
170
171 /* Options that can be passed to target_wait. */
172
173 /* Return immediately if there's no event already queued. If this
174 options is not requested, target_wait blocks waiting for an
175 event. */
176 #define TARGET_WNOHANG 1
177
178 /* The structure below stores information about a system call.
179 It is basically used in the "catch syscall" command, and in
180 every function that gives information about a system call.
181
182 It's also good to mention that its fields represent everything
183 that we currently know about a syscall in GDB. */
184 struct syscall
185 {
186 /* The syscall number. */
187 int number;
188
189 /* The syscall name. */
190 const char *name;
191 };
192
193 /* Return a pretty printed form of target_waitstatus.
194 Space for the result is malloc'd, caller must free. */
195 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
196
197 /* Possible types of events that the inferior handler will have to
198 deal with. */
199 enum inferior_event_type
200 {
201 /* There is a request to quit the inferior, abandon it. */
202 INF_QUIT_REQ,
203 /* Process a normal inferior event which will result in target_wait
204 being called. */
205 INF_REG_EVENT,
206 /* Deal with an error on the inferior. */
207 INF_ERROR,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
217 };
218 \f
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
221
222 enum target_object
223 {
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Get OS specific data. The ANNEX specifies the type (running
257 processes, etc.). */
258 TARGET_OBJECT_OSDATA,
259 /* Extra signal info. Usually the contents of `siginfo_t' on unix
260 platforms. */
261 TARGET_OBJECT_SIGNAL_INFO,
262 /* The list of threads that are being debugged. */
263 TARGET_OBJECT_THREADS,
264 /* Possible future objects: TARGET_OBJECT_FILE, ... */
265 };
266
267 /* Enumeration of the kinds of traceframe searches that a target may
268 be able to perform. */
269
270 enum trace_find_type
271 {
272 tfind_number,
273 tfind_pc,
274 tfind_tp,
275 tfind_range,
276 tfind_outside,
277 };
278
279 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
280 OBJECT. The OFFSET, for a seekable object, specifies the
281 starting point. The ANNEX can be used to provide additional
282 data-specific information to the target.
283
284 Return the number of bytes actually transfered, or -1 if the
285 transfer is not supported or otherwise fails. Return of a positive
286 value less than LEN indicates that no further transfer is possible.
287 Unlike the raw to_xfer_partial interface, callers of these
288 functions do not need to retry partial transfers. */
289
290 extern LONGEST target_read (struct target_ops *ops,
291 enum target_object object,
292 const char *annex, gdb_byte *buf,
293 ULONGEST offset, LONGEST len);
294
295 extern LONGEST target_read_until_error (struct target_ops *ops,
296 enum target_object object,
297 const char *annex, gdb_byte *buf,
298 ULONGEST offset, LONGEST len);
299
300 extern LONGEST target_write (struct target_ops *ops,
301 enum target_object object,
302 const char *annex, const gdb_byte *buf,
303 ULONGEST offset, LONGEST len);
304
305 /* Similar to target_write, except that it also calls PROGRESS with
306 the number of bytes written and the opaque BATON after every
307 successful partial write (and before the first write). This is
308 useful for progress reporting and user interaction while writing
309 data. To abort the transfer, the progress callback can throw an
310 exception. */
311
312 LONGEST target_write_with_progress (struct target_ops *ops,
313 enum target_object object,
314 const char *annex, const gdb_byte *buf,
315 ULONGEST offset, LONGEST len,
316 void (*progress) (ULONGEST, void *),
317 void *baton);
318
319 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
320 be read using OPS. The return value will be -1 if the transfer
321 fails or is not supported; 0 if the object is empty; or the length
322 of the object otherwise. If a positive value is returned, a
323 sufficiently large buffer will be allocated using xmalloc and
324 returned in *BUF_P containing the contents of the object.
325
326 This method should be used for objects sufficiently small to store
327 in a single xmalloc'd buffer, when no fixed bound on the object's
328 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
329 through this function. */
330
331 extern LONGEST target_read_alloc (struct target_ops *ops,
332 enum target_object object,
333 const char *annex, gdb_byte **buf_p);
334
335 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
336 returned as a string, allocated using xmalloc. If an error occurs
337 or the transfer is unsupported, NULL is returned. Empty objects
338 are returned as allocated but empty strings. A warning is issued
339 if the result contains any embedded NUL bytes. */
340
341 extern char *target_read_stralloc (struct target_ops *ops,
342 enum target_object object,
343 const char *annex);
344
345 /* Wrappers to target read/write that perform memory transfers. They
346 throw an error if the memory transfer fails.
347
348 NOTE: cagney/2003-10-23: The naming schema is lifted from
349 "frame.h". The parameter order is lifted from get_frame_memory,
350 which in turn lifted it from read_memory. */
351
352 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
353 gdb_byte *buf, LONGEST len);
354 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
355 CORE_ADDR addr, int len,
356 enum bfd_endian byte_order);
357 \f
358 struct thread_info; /* fwd decl for parameter list below: */
359
360 struct target_ops
361 {
362 struct target_ops *beneath; /* To the target under this one. */
363 char *to_shortname; /* Name this target type */
364 char *to_longname; /* Name for printing */
365 char *to_doc; /* Documentation. Does not include trailing
366 newline, and starts with a one-line descrip-
367 tion (probably similar to to_longname). */
368 /* Per-target scratch pad. */
369 void *to_data;
370 /* The open routine takes the rest of the parameters from the
371 command, and (if successful) pushes a new target onto the
372 stack. Targets should supply this routine, if only to provide
373 an error message. */
374 void (*to_open) (char *, int);
375 /* Old targets with a static target vector provide "to_close".
376 New re-entrant targets provide "to_xclose" and that is expected
377 to xfree everything (including the "struct target_ops"). */
378 void (*to_xclose) (struct target_ops *targ, int quitting);
379 void (*to_close) (int);
380 void (*to_attach) (struct target_ops *ops, char *, int);
381 void (*to_post_attach) (int);
382 void (*to_detach) (struct target_ops *ops, char *, int);
383 void (*to_disconnect) (struct target_ops *, char *, int);
384 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
385 ptid_t (*to_wait) (struct target_ops *,
386 ptid_t, struct target_waitstatus *, int);
387 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
388 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
389 void (*to_prepare_to_store) (struct regcache *);
390
391 /* Transfer LEN bytes of memory between GDB address MYADDR and
392 target address MEMADDR. If WRITE, transfer them to the target, else
393 transfer them from the target. TARGET is the target from which we
394 get this function.
395
396 Return value, N, is one of the following:
397
398 0 means that we can't handle this. If errno has been set, it is the
399 error which prevented us from doing it (FIXME: What about bfd_error?).
400
401 positive (call it N) means that we have transferred N bytes
402 starting at MEMADDR. We might be able to handle more bytes
403 beyond this length, but no promises.
404
405 negative (call its absolute value N) means that we cannot
406 transfer right at MEMADDR, but we could transfer at least
407 something at MEMADDR + N.
408
409 NOTE: cagney/2004-10-01: This has been entirely superseeded by
410 to_xfer_partial and inferior inheritance. */
411
412 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
413 int len, int write,
414 struct mem_attrib *attrib,
415 struct target_ops *target);
416
417 void (*to_files_info) (struct target_ops *);
418 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
419 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
420 int (*to_can_use_hw_breakpoint) (int, int, int);
421 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
422 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
423 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
424 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
425 int (*to_stopped_by_watchpoint) (void);
426 int to_have_steppable_watchpoint;
427 int to_have_continuable_watchpoint;
428 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
429 int (*to_watchpoint_addr_within_range) (struct target_ops *,
430 CORE_ADDR, CORE_ADDR, int);
431 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
432 void (*to_terminal_init) (void);
433 void (*to_terminal_inferior) (void);
434 void (*to_terminal_ours_for_output) (void);
435 void (*to_terminal_ours) (void);
436 void (*to_terminal_save_ours) (void);
437 void (*to_terminal_info) (char *, int);
438 void (*to_kill) (struct target_ops *);
439 void (*to_load) (char *, int);
440 int (*to_lookup_symbol) (char *, CORE_ADDR *);
441 void (*to_create_inferior) (struct target_ops *,
442 char *, char *, char **, int);
443 void (*to_post_startup_inferior) (ptid_t);
444 void (*to_acknowledge_created_inferior) (int);
445 void (*to_insert_fork_catchpoint) (int);
446 int (*to_remove_fork_catchpoint) (int);
447 void (*to_insert_vfork_catchpoint) (int);
448 int (*to_remove_vfork_catchpoint) (int);
449 int (*to_follow_fork) (struct target_ops *, int);
450 void (*to_insert_exec_catchpoint) (int);
451 int (*to_remove_exec_catchpoint) (int);
452 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
453 int (*to_has_exited) (int, int, int *);
454 void (*to_mourn_inferior) (struct target_ops *);
455 int (*to_can_run) (void);
456 void (*to_notice_signals) (ptid_t ptid);
457 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
458 void (*to_find_new_threads) (struct target_ops *);
459 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
460 char *(*to_extra_thread_info) (struct thread_info *);
461 void (*to_stop) (ptid_t);
462 void (*to_rcmd) (char *command, struct ui_file *output);
463 char *(*to_pid_to_exec_file) (int pid);
464 void (*to_log_command) (const char *);
465 struct target_section_table *(*to_get_section_table) (struct target_ops *);
466 enum strata to_stratum;
467 int (*to_has_all_memory) (struct target_ops *);
468 int (*to_has_memory) (struct target_ops *);
469 int (*to_has_stack) (struct target_ops *);
470 int (*to_has_registers) (struct target_ops *);
471 int (*to_has_execution) (struct target_ops *);
472 int to_has_thread_control; /* control thread execution */
473 int to_attach_no_wait;
474 /* ASYNC target controls */
475 int (*to_can_async_p) (void);
476 int (*to_is_async_p) (void);
477 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
478 int (*to_async_mask) (int);
479 int (*to_supports_non_stop) (void);
480 /* find_memory_regions support method for gcore */
481 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
482 unsigned long,
483 int, int, int,
484 void *),
485 void *);
486 /* make_corefile_notes support method for gcore */
487 char * (*to_make_corefile_notes) (bfd *, int *);
488 /* get_bookmark support method for bookmarks */
489 gdb_byte * (*to_get_bookmark) (char *, int);
490 /* goto_bookmark support method for bookmarks */
491 void (*to_goto_bookmark) (gdb_byte *, int);
492 /* Return the thread-local address at OFFSET in the
493 thread-local storage for the thread PTID and the shared library
494 or executable file given by OBJFILE. If that block of
495 thread-local storage hasn't been allocated yet, this function
496 may return an error. */
497 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
498 ptid_t ptid,
499 CORE_ADDR load_module_addr,
500 CORE_ADDR offset);
501
502 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
503 OBJECT. The OFFSET, for a seekable object, specifies the
504 starting point. The ANNEX can be used to provide additional
505 data-specific information to the target.
506
507 Return the number of bytes actually transfered, zero when no
508 further transfer is possible, and -1 when the transfer is not
509 supported. Return of a positive value smaller than LEN does
510 not indicate the end of the object, only the end of the
511 transfer; higher level code should continue transferring if
512 desired. This is handled in target.c.
513
514 The interface does not support a "retry" mechanism. Instead it
515 assumes that at least one byte will be transfered on each
516 successful call.
517
518 NOTE: cagney/2003-10-17: The current interface can lead to
519 fragmented transfers. Lower target levels should not implement
520 hacks, such as enlarging the transfer, in an attempt to
521 compensate for this. Instead, the target stack should be
522 extended so that it implements supply/collect methods and a
523 look-aside object cache. With that available, the lowest
524 target can safely and freely "push" data up the stack.
525
526 See target_read and target_write for more information. One,
527 and only one, of readbuf or writebuf must be non-NULL. */
528
529 LONGEST (*to_xfer_partial) (struct target_ops *ops,
530 enum target_object object, const char *annex,
531 gdb_byte *readbuf, const gdb_byte *writebuf,
532 ULONGEST offset, LONGEST len);
533
534 /* Returns the memory map for the target. A return value of NULL
535 means that no memory map is available. If a memory address
536 does not fall within any returned regions, it's assumed to be
537 RAM. The returned memory regions should not overlap.
538
539 The order of regions does not matter; target_memory_map will
540 sort regions by starting address. For that reason, this
541 function should not be called directly except via
542 target_memory_map.
543
544 This method should not cache data; if the memory map could
545 change unexpectedly, it should be invalidated, and higher
546 layers will re-fetch it. */
547 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
548
549 /* Erases the region of flash memory starting at ADDRESS, of
550 length LENGTH.
551
552 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
553 on flash block boundaries, as reported by 'to_memory_map'. */
554 void (*to_flash_erase) (struct target_ops *,
555 ULONGEST address, LONGEST length);
556
557 /* Finishes a flash memory write sequence. After this operation
558 all flash memory should be available for writing and the result
559 of reading from areas written by 'to_flash_write' should be
560 equal to what was written. */
561 void (*to_flash_done) (struct target_ops *);
562
563 /* Describe the architecture-specific features of this target.
564 Returns the description found, or NULL if no description
565 was available. */
566 const struct target_desc *(*to_read_description) (struct target_ops *ops);
567
568 /* Build the PTID of the thread on which a given task is running,
569 based on LWP and THREAD. These values are extracted from the
570 task Private_Data section of the Ada Task Control Block, and
571 their interpretation depends on the target. */
572 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
573
574 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
575 Return 0 if *READPTR is already at the end of the buffer.
576 Return -1 if there is insufficient buffer for a whole entry.
577 Return 1 if an entry was read into *TYPEP and *VALP. */
578 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
579 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
580
581 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
582 sequence of bytes in PATTERN with length PATTERN_LEN.
583
584 The result is 1 if found, 0 if not found, and -1 if there was an error
585 requiring halting of the search (e.g. memory read error).
586 If the pattern is found the address is recorded in FOUND_ADDRP. */
587 int (*to_search_memory) (struct target_ops *ops,
588 CORE_ADDR start_addr, ULONGEST search_space_len,
589 const gdb_byte *pattern, ULONGEST pattern_len,
590 CORE_ADDR *found_addrp);
591
592 /* Can target execute in reverse? */
593 int (*to_can_execute_reverse) (void);
594
595 /* Does this target support debugging multiple processes
596 simultaneously? */
597 int (*to_supports_multi_process) (void);
598
599 /* Determine current architecture of thread PTID.
600
601 The target is supposed to determine the architecture of the code where
602 the target is currently stopped at (on Cell, if a target is in spu_run,
603 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
604 This is architecture used to perform decr_pc_after_break adjustment,
605 and also determines the frame architecture of the innermost frame.
606 ptrace operations need to operate according to target_gdbarch.
607
608 The default implementation always returns target_gdbarch. */
609 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
610
611 /* Determine current address space of thread PTID.
612
613 The default implementation always returns the inferior's
614 address space. */
615 struct address_space *(*to_thread_address_space) (struct target_ops *,
616 ptid_t);
617
618 /* Tracepoint-related operations. */
619
620 /* Prepare the target for a tracing run. */
621 void (*to_trace_init) (void);
622
623 /* Send full details of a tracepoint to the target. */
624 void (*to_download_tracepoint) (struct breakpoint *t);
625
626 /* Send full details of a trace state variable to the target. */
627 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
628
629 /* Inform the target info of memory regions that are readonly
630 (such as text sections), and so it should return data from
631 those rather than look in the trace buffer. */
632 void (*to_trace_set_readonly_regions) (void);
633
634 /* Start a trace run. */
635 void (*to_trace_start) (void);
636
637 /* Get the current status of a tracing run. */
638 int (*to_get_trace_status) (struct trace_status *ts);
639
640 /* Stop a trace run. */
641 void (*to_trace_stop) (void);
642
643 /* Ask the target to find a trace frame of the given type TYPE,
644 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
645 number of the trace frame, and also the tracepoint number at
646 TPP. If no trace frame matches, return -1. May throw if the
647 operation fails. */
648 int (*to_trace_find) (enum trace_find_type type, int num,
649 ULONGEST addr1, ULONGEST addr2, int *tpp);
650
651 /* Get the value of the trace state variable number TSV, returning
652 1 if the value is known and writing the value itself into the
653 location pointed to by VAL, else returning 0. */
654 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
655
656 int (*to_save_trace_data) (const char *filename);
657
658 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
659
660 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
661
662 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
663 ULONGEST offset, LONGEST len);
664
665 /* Set the target's tracing behavior in response to unexpected
666 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
667 void (*to_set_disconnected_tracing) (int val);
668 void (*to_set_circular_trace_buffer) (int val);
669
670 /* Return the processor core that thread PTID was last seen on.
671 This information is updated only when:
672 - update_thread_list is called
673 - thread stops
674 If the core cannot be determined -- either for the specified thread, or
675 right now, or in this debug session, or for this target -- return -1. */
676 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
677
678 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
679 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
680 a match, 0 if there's a mismatch, and -1 if an error is
681 encountered while reading memory. */
682 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
683 CORE_ADDR memaddr, ULONGEST size);
684
685 int to_magic;
686 /* Need sub-structure for target machine related rather than comm related?
687 */
688 };
689
690 /* Magic number for checking ops size. If a struct doesn't end with this
691 number, somebody changed the declaration but didn't change all the
692 places that initialize one. */
693
694 #define OPS_MAGIC 3840
695
696 /* The ops structure for our "current" target process. This should
697 never be NULL. If there is no target, it points to the dummy_target. */
698
699 extern struct target_ops current_target;
700
701 /* Define easy words for doing these operations on our current target. */
702
703 #define target_shortname (current_target.to_shortname)
704 #define target_longname (current_target.to_longname)
705
706 /* Does whatever cleanup is required for a target that we are no
707 longer going to be calling. QUITTING indicates that GDB is exiting
708 and should not get hung on an error (otherwise it is important to
709 perform clean termination, even if it takes a while). This routine
710 is automatically always called when popping the target off the
711 target stack (to_beneath is undefined). Closing file descriptors
712 and freeing all memory allocated memory are typical things it
713 should do. */
714
715 void target_close (struct target_ops *targ, int quitting);
716
717 /* Attaches to a process on the target side. Arguments are as passed
718 to the `attach' command by the user. This routine can be called
719 when the target is not on the target-stack, if the target_can_run
720 routine returns 1; in that case, it must push itself onto the stack.
721 Upon exit, the target should be ready for normal operations, and
722 should be ready to deliver the status of the process immediately
723 (without waiting) to an upcoming target_wait call. */
724
725 void target_attach (char *, int);
726
727 /* Some targets don't generate traps when attaching to the inferior,
728 or their target_attach implementation takes care of the waiting.
729 These targets must set to_attach_no_wait. */
730
731 #define target_attach_no_wait \
732 (current_target.to_attach_no_wait)
733
734 /* The target_attach operation places a process under debugger control,
735 and stops the process.
736
737 This operation provides a target-specific hook that allows the
738 necessary bookkeeping to be performed after an attach completes. */
739 #define target_post_attach(pid) \
740 (*current_target.to_post_attach) (pid)
741
742 /* Takes a program previously attached to and detaches it.
743 The program may resume execution (some targets do, some don't) and will
744 no longer stop on signals, etc. We better not have left any breakpoints
745 in the program or it'll die when it hits one. ARGS is arguments
746 typed by the user (e.g. a signal to send the process). FROM_TTY
747 says whether to be verbose or not. */
748
749 extern void target_detach (char *, int);
750
751 /* Disconnect from the current target without resuming it (leaving it
752 waiting for a debugger). */
753
754 extern void target_disconnect (char *, int);
755
756 /* Resume execution of the target process PTID. STEP says whether to
757 single-step or to run free; SIGGNAL is the signal to be given to
758 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
759 pass TARGET_SIGNAL_DEFAULT. */
760
761 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
762
763 /* Wait for process pid to do something. PTID = -1 to wait for any
764 pid to do something. Return pid of child, or -1 in case of error;
765 store status through argument pointer STATUS. Note that it is
766 _NOT_ OK to throw_exception() out of target_wait() without popping
767 the debugging target from the stack; GDB isn't prepared to get back
768 to the prompt with a debugging target but without the frame cache,
769 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
770 options. */
771
772 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
773 int options);
774
775 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
776
777 extern void target_fetch_registers (struct regcache *regcache, int regno);
778
779 /* Store at least register REGNO, or all regs if REGNO == -1.
780 It can store as many registers as it wants to, so target_prepare_to_store
781 must have been previously called. Calls error() if there are problems. */
782
783 extern void target_store_registers (struct regcache *regcache, int regs);
784
785 /* Get ready to modify the registers array. On machines which store
786 individual registers, this doesn't need to do anything. On machines
787 which store all the registers in one fell swoop, this makes sure
788 that REGISTERS contains all the registers from the program being
789 debugged. */
790
791 #define target_prepare_to_store(regcache) \
792 (*current_target.to_prepare_to_store) (regcache)
793
794 /* Determine current address space of thread PTID. */
795
796 struct address_space *target_thread_address_space (ptid_t);
797
798 /* Returns true if this target can debug multiple processes
799 simultaneously. */
800
801 #define target_supports_multi_process() \
802 (*current_target.to_supports_multi_process) ()
803
804 /* Invalidate all target dcaches. */
805 extern void target_dcache_invalidate (void);
806
807 extern int target_read_string (CORE_ADDR, char **, int, int *);
808
809 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
810
811 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
812
813 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
814 int len);
815
816 /* Fetches the target's memory map. If one is found it is sorted
817 and returned, after some consistency checking. Otherwise, NULL
818 is returned. */
819 VEC(mem_region_s) *target_memory_map (void);
820
821 /* Erase the specified flash region. */
822 void target_flash_erase (ULONGEST address, LONGEST length);
823
824 /* Finish a sequence of flash operations. */
825 void target_flash_done (void);
826
827 /* Describes a request for a memory write operation. */
828 struct memory_write_request
829 {
830 /* Begining address that must be written. */
831 ULONGEST begin;
832 /* Past-the-end address. */
833 ULONGEST end;
834 /* The data to write. */
835 gdb_byte *data;
836 /* A callback baton for progress reporting for this request. */
837 void *baton;
838 };
839 typedef struct memory_write_request memory_write_request_s;
840 DEF_VEC_O(memory_write_request_s);
841
842 /* Enumeration specifying different flash preservation behaviour. */
843 enum flash_preserve_mode
844 {
845 flash_preserve,
846 flash_discard
847 };
848
849 /* Write several memory blocks at once. This version can be more
850 efficient than making several calls to target_write_memory, in
851 particular because it can optimize accesses to flash memory.
852
853 Moreover, this is currently the only memory access function in gdb
854 that supports writing to flash memory, and it should be used for
855 all cases where access to flash memory is desirable.
856
857 REQUESTS is the vector (see vec.h) of memory_write_request.
858 PRESERVE_FLASH_P indicates what to do with blocks which must be
859 erased, but not completely rewritten.
860 PROGRESS_CB is a function that will be periodically called to provide
861 feedback to user. It will be called with the baton corresponding
862 to the request currently being written. It may also be called
863 with a NULL baton, when preserved flash sectors are being rewritten.
864
865 The function returns 0 on success, and error otherwise. */
866 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
867 enum flash_preserve_mode preserve_flash_p,
868 void (*progress_cb) (ULONGEST, void *));
869
870 /* From infrun.c. */
871
872 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
873
874 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
875
876 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
877
878 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
879
880 /* Print a line about the current target. */
881
882 #define target_files_info() \
883 (*current_target.to_files_info) (&current_target)
884
885 /* Insert a breakpoint at address BP_TGT->placed_address in the target
886 machine. Result is 0 for success, or an errno value. */
887
888 #define target_insert_breakpoint(gdbarch, bp_tgt) \
889 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
890
891 /* Remove a breakpoint at address BP_TGT->placed_address in the target
892 machine. Result is 0 for success, or an errno value. */
893
894 #define target_remove_breakpoint(gdbarch, bp_tgt) \
895 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
896
897 /* Initialize the terminal settings we record for the inferior,
898 before we actually run the inferior. */
899
900 #define target_terminal_init() \
901 (*current_target.to_terminal_init) ()
902
903 /* Put the inferior's terminal settings into effect.
904 This is preparation for starting or resuming the inferior. */
905
906 extern void target_terminal_inferior (void);
907
908 /* Put some of our terminal settings into effect,
909 enough to get proper results from our output,
910 but do not change into or out of RAW mode
911 so that no input is discarded.
912
913 After doing this, either terminal_ours or terminal_inferior
914 should be called to get back to a normal state of affairs. */
915
916 #define target_terminal_ours_for_output() \
917 (*current_target.to_terminal_ours_for_output) ()
918
919 /* Put our terminal settings into effect.
920 First record the inferior's terminal settings
921 so they can be restored properly later. */
922
923 #define target_terminal_ours() \
924 (*current_target.to_terminal_ours) ()
925
926 /* Save our terminal settings.
927 This is called from TUI after entering or leaving the curses
928 mode. Since curses modifies our terminal this call is here
929 to take this change into account. */
930
931 #define target_terminal_save_ours() \
932 (*current_target.to_terminal_save_ours) ()
933
934 /* Print useful information about our terminal status, if such a thing
935 exists. */
936
937 #define target_terminal_info(arg, from_tty) \
938 (*current_target.to_terminal_info) (arg, from_tty)
939
940 /* Kill the inferior process. Make it go away. */
941
942 extern void target_kill (void);
943
944 /* Load an executable file into the target process. This is expected
945 to not only bring new code into the target process, but also to
946 update GDB's symbol tables to match.
947
948 ARG contains command-line arguments, to be broken down with
949 buildargv (). The first non-switch argument is the filename to
950 load, FILE; the second is a number (as parsed by strtoul (..., ...,
951 0)), which is an offset to apply to the load addresses of FILE's
952 sections. The target may define switches, or other non-switch
953 arguments, as it pleases. */
954
955 extern void target_load (char *arg, int from_tty);
956
957 /* Look up a symbol in the target's symbol table. NAME is the symbol
958 name. ADDRP is a CORE_ADDR * pointing to where the value of the
959 symbol should be returned. The result is 0 if successful, nonzero
960 if the symbol does not exist in the target environment. This
961 function should not call error() if communication with the target
962 is interrupted, since it is called from symbol reading, but should
963 return nonzero, possibly doing a complain(). */
964
965 #define target_lookup_symbol(name, addrp) \
966 (*current_target.to_lookup_symbol) (name, addrp)
967
968 /* Start an inferior process and set inferior_ptid to its pid.
969 EXEC_FILE is the file to run.
970 ALLARGS is a string containing the arguments to the program.
971 ENV is the environment vector to pass. Errors reported with error().
972 On VxWorks and various standalone systems, we ignore exec_file. */
973
974 void target_create_inferior (char *exec_file, char *args,
975 char **env, int from_tty);
976
977 /* Some targets (such as ttrace-based HPUX) don't allow us to request
978 notification of inferior events such as fork and vork immediately
979 after the inferior is created. (This because of how gdb gets an
980 inferior created via invoking a shell to do it. In such a scenario,
981 if the shell init file has commands in it, the shell will fork and
982 exec for each of those commands, and we will see each such fork
983 event. Very bad.)
984
985 Such targets will supply an appropriate definition for this function. */
986
987 #define target_post_startup_inferior(ptid) \
988 (*current_target.to_post_startup_inferior) (ptid)
989
990 /* On some targets, the sequence of starting up an inferior requires
991 some synchronization between gdb and the new inferior process, PID. */
992
993 #define target_acknowledge_created_inferior(pid) \
994 (*current_target.to_acknowledge_created_inferior) (pid)
995
996 /* On some targets, we can catch an inferior fork or vfork event when
997 it occurs. These functions insert/remove an already-created
998 catchpoint for such events. */
999
1000 #define target_insert_fork_catchpoint(pid) \
1001 (*current_target.to_insert_fork_catchpoint) (pid)
1002
1003 #define target_remove_fork_catchpoint(pid) \
1004 (*current_target.to_remove_fork_catchpoint) (pid)
1005
1006 #define target_insert_vfork_catchpoint(pid) \
1007 (*current_target.to_insert_vfork_catchpoint) (pid)
1008
1009 #define target_remove_vfork_catchpoint(pid) \
1010 (*current_target.to_remove_vfork_catchpoint) (pid)
1011
1012 /* If the inferior forks or vforks, this function will be called at
1013 the next resume in order to perform any bookkeeping and fiddling
1014 necessary to continue debugging either the parent or child, as
1015 requested, and releasing the other. Information about the fork
1016 or vfork event is available via get_last_target_status ().
1017 This function returns 1 if the inferior should not be resumed
1018 (i.e. there is another event pending). */
1019
1020 int target_follow_fork (int follow_child);
1021
1022 /* On some targets, we can catch an inferior exec event when it
1023 occurs. These functions insert/remove an already-created
1024 catchpoint for such events. */
1025
1026 #define target_insert_exec_catchpoint(pid) \
1027 (*current_target.to_insert_exec_catchpoint) (pid)
1028
1029 #define target_remove_exec_catchpoint(pid) \
1030 (*current_target.to_remove_exec_catchpoint) (pid)
1031
1032 /* Syscall catch.
1033
1034 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1035 If NEEDED is zero, it means the target can disable the mechanism to
1036 catch system calls because there are no more catchpoints of this type.
1037
1038 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1039 being requested. In this case, both TABLE_SIZE and TABLE should
1040 be ignored.
1041
1042 TABLE_SIZE is the number of elements in TABLE. It only matters if
1043 ANY_COUNT is zero.
1044
1045 TABLE is an array of ints, indexed by syscall number. An element in
1046 this array is nonzero if that syscall should be caught. This argument
1047 only matters if ANY_COUNT is zero. */
1048
1049 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1050 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1051 table_size, table)
1052
1053 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1054 exit code of PID, if any. */
1055
1056 #define target_has_exited(pid,wait_status,exit_status) \
1057 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1058
1059 /* The debugger has completed a blocking wait() call. There is now
1060 some process event that must be processed. This function should
1061 be defined by those targets that require the debugger to perform
1062 cleanup or internal state changes in response to the process event. */
1063
1064 /* The inferior process has died. Do what is right. */
1065
1066 void target_mourn_inferior (void);
1067
1068 /* Does target have enough data to do a run or attach command? */
1069
1070 #define target_can_run(t) \
1071 ((t)->to_can_run) ()
1072
1073 /* post process changes to signal handling in the inferior. */
1074
1075 #define target_notice_signals(ptid) \
1076 (*current_target.to_notice_signals) (ptid)
1077
1078 /* Check to see if a thread is still alive. */
1079
1080 extern int target_thread_alive (ptid_t ptid);
1081
1082 /* Query for new threads and add them to the thread list. */
1083
1084 extern void target_find_new_threads (void);
1085
1086 /* Make target stop in a continuable fashion. (For instance, under
1087 Unix, this should act like SIGSTOP). This function is normally
1088 used by GUIs to implement a stop button. */
1089
1090 #define target_stop(ptid) (*current_target.to_stop) (ptid)
1091
1092 /* Send the specified COMMAND to the target's monitor
1093 (shell,interpreter) for execution. The result of the query is
1094 placed in OUTBUF. */
1095
1096 #define target_rcmd(command, outbuf) \
1097 (*current_target.to_rcmd) (command, outbuf)
1098
1099
1100 /* Does the target include all of memory, or only part of it? This
1101 determines whether we look up the target chain for other parts of
1102 memory if this target can't satisfy a request. */
1103
1104 extern int target_has_all_memory_1 (void);
1105 #define target_has_all_memory target_has_all_memory_1 ()
1106
1107 /* Does the target include memory? (Dummy targets don't.) */
1108
1109 extern int target_has_memory_1 (void);
1110 #define target_has_memory target_has_memory_1 ()
1111
1112 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1113 we start a process.) */
1114
1115 extern int target_has_stack_1 (void);
1116 #define target_has_stack target_has_stack_1 ()
1117
1118 /* Does the target have registers? (Exec files don't.) */
1119
1120 extern int target_has_registers_1 (void);
1121 #define target_has_registers target_has_registers_1 ()
1122
1123 /* Does the target have execution? Can we make it jump (through
1124 hoops), or pop its stack a few times? This means that the current
1125 target is currently executing; for some targets, that's the same as
1126 whether or not the target is capable of execution, but there are
1127 also targets which can be current while not executing. In that
1128 case this will become true after target_create_inferior or
1129 target_attach. */
1130
1131 extern int target_has_execution_1 (void);
1132 #define target_has_execution target_has_execution_1 ()
1133
1134 /* Default implementations for process_stratum targets. Return true
1135 if there's a selected inferior, false otherwise. */
1136
1137 extern int default_child_has_all_memory (struct target_ops *ops);
1138 extern int default_child_has_memory (struct target_ops *ops);
1139 extern int default_child_has_stack (struct target_ops *ops);
1140 extern int default_child_has_registers (struct target_ops *ops);
1141 extern int default_child_has_execution (struct target_ops *ops);
1142
1143 /* Can the target support the debugger control of thread execution?
1144 Can it lock the thread scheduler? */
1145
1146 #define target_can_lock_scheduler \
1147 (current_target.to_has_thread_control & tc_schedlock)
1148
1149 /* Should the target enable async mode if it is supported? Temporary
1150 cludge until async mode is a strict superset of sync mode. */
1151 extern int target_async_permitted;
1152
1153 /* Can the target support asynchronous execution? */
1154 #define target_can_async_p() (current_target.to_can_async_p ())
1155
1156 /* Is the target in asynchronous execution mode? */
1157 #define target_is_async_p() (current_target.to_is_async_p ())
1158
1159 int target_supports_non_stop (void);
1160
1161 /* Put the target in async mode with the specified callback function. */
1162 #define target_async(CALLBACK,CONTEXT) \
1163 (current_target.to_async ((CALLBACK), (CONTEXT)))
1164
1165 /* This is to be used ONLY within call_function_by_hand(). It provides
1166 a workaround, to have inferior function calls done in sychronous
1167 mode, even though the target is asynchronous. After
1168 target_async_mask(0) is called, calls to target_can_async_p() will
1169 return FALSE , so that target_resume() will not try to start the
1170 target asynchronously. After the inferior stops, we IMMEDIATELY
1171 restore the previous nature of the target, by calling
1172 target_async_mask(1). After that, target_can_async_p() will return
1173 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1174
1175 FIXME ezannoni 1999-12-13: we won't need this once we move
1176 the turning async on and off to the single execution commands,
1177 from where it is done currently, in remote_resume(). */
1178
1179 #define target_async_mask(MASK) \
1180 (current_target.to_async_mask (MASK))
1181
1182 /* Converts a process id to a string. Usually, the string just contains
1183 `process xyz', but on some systems it may contain
1184 `process xyz thread abc'. */
1185
1186 extern char *target_pid_to_str (ptid_t ptid);
1187
1188 extern char *normal_pid_to_str (ptid_t ptid);
1189
1190 /* Return a short string describing extra information about PID,
1191 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1192 is okay. */
1193
1194 #define target_extra_thread_info(TP) \
1195 (current_target.to_extra_thread_info (TP))
1196
1197 /* Attempts to find the pathname of the executable file
1198 that was run to create a specified process.
1199
1200 The process PID must be stopped when this operation is used.
1201
1202 If the executable file cannot be determined, NULL is returned.
1203
1204 Else, a pointer to a character string containing the pathname
1205 is returned. This string should be copied into a buffer by
1206 the client if the string will not be immediately used, or if
1207 it must persist. */
1208
1209 #define target_pid_to_exec_file(pid) \
1210 (current_target.to_pid_to_exec_file) (pid)
1211
1212 /* See the to_thread_architecture description in struct target_ops. */
1213
1214 #define target_thread_architecture(ptid) \
1215 (current_target.to_thread_architecture (&current_target, ptid))
1216
1217 /*
1218 * Iterator function for target memory regions.
1219 * Calls a callback function once for each memory region 'mapped'
1220 * in the child process. Defined as a simple macro rather than
1221 * as a function macro so that it can be tested for nullity.
1222 */
1223
1224 #define target_find_memory_regions(FUNC, DATA) \
1225 (current_target.to_find_memory_regions) (FUNC, DATA)
1226
1227 /*
1228 * Compose corefile .note section.
1229 */
1230
1231 #define target_make_corefile_notes(BFD, SIZE_P) \
1232 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1233
1234 /* Bookmark interfaces. */
1235 #define target_get_bookmark(ARGS, FROM_TTY) \
1236 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1237
1238 #define target_goto_bookmark(ARG, FROM_TTY) \
1239 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1240
1241 /* Hardware watchpoint interfaces. */
1242
1243 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1244 write). Only the INFERIOR_PTID task is being queried. */
1245
1246 #define target_stopped_by_watchpoint \
1247 (*current_target.to_stopped_by_watchpoint)
1248
1249 /* Non-zero if we have steppable watchpoints */
1250
1251 #define target_have_steppable_watchpoint \
1252 (current_target.to_have_steppable_watchpoint)
1253
1254 /* Non-zero if we have continuable watchpoints */
1255
1256 #define target_have_continuable_watchpoint \
1257 (current_target.to_have_continuable_watchpoint)
1258
1259 /* Provide defaults for hardware watchpoint functions. */
1260
1261 /* If the *_hw_beakpoint functions have not been defined
1262 elsewhere use the definitions in the target vector. */
1263
1264 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1265 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1266 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1267 (including this one?). OTHERTYPE is who knows what... */
1268
1269 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1270 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1271
1272 #define target_region_ok_for_hw_watchpoint(addr, len) \
1273 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1274
1275
1276 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1277 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1278 Returns 0 for success, 1 if the watchpoint type is not supported,
1279 -1 for failure. */
1280
1281 #define target_insert_watchpoint(addr, len, type) \
1282 (*current_target.to_insert_watchpoint) (addr, len, type)
1283
1284 #define target_remove_watchpoint(addr, len, type) \
1285 (*current_target.to_remove_watchpoint) (addr, len, type)
1286
1287 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1288 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1289
1290 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1291 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1292
1293 /* Return non-zero if target knows the data address which triggered this
1294 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1295 INFERIOR_PTID task is being queried. */
1296 #define target_stopped_data_address(target, addr_p) \
1297 (*target.to_stopped_data_address) (target, addr_p)
1298
1299 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1300 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1301
1302 /* Target can execute in reverse? */
1303 #define target_can_execute_reverse \
1304 (current_target.to_can_execute_reverse ? \
1305 current_target.to_can_execute_reverse () : 0)
1306
1307 extern const struct target_desc *target_read_description (struct target_ops *);
1308
1309 #define target_get_ada_task_ptid(lwp, tid) \
1310 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1311
1312 /* Utility implementation of searching memory. */
1313 extern int simple_search_memory (struct target_ops* ops,
1314 CORE_ADDR start_addr,
1315 ULONGEST search_space_len,
1316 const gdb_byte *pattern,
1317 ULONGEST pattern_len,
1318 CORE_ADDR *found_addrp);
1319
1320 /* Main entry point for searching memory. */
1321 extern int target_search_memory (CORE_ADDR start_addr,
1322 ULONGEST search_space_len,
1323 const gdb_byte *pattern,
1324 ULONGEST pattern_len,
1325 CORE_ADDR *found_addrp);
1326
1327 /* Tracepoint-related operations. */
1328
1329 #define target_trace_init() \
1330 (*current_target.to_trace_init) ()
1331
1332 #define target_download_tracepoint(t) \
1333 (*current_target.to_download_tracepoint) (t)
1334
1335 #define target_download_trace_state_variable(tsv) \
1336 (*current_target.to_download_trace_state_variable) (tsv)
1337
1338 #define target_trace_start() \
1339 (*current_target.to_trace_start) ()
1340
1341 #define target_trace_set_readonly_regions() \
1342 (*current_target.to_trace_set_readonly_regions) ()
1343
1344 #define target_get_trace_status(ts) \
1345 (*current_target.to_get_trace_status) (ts)
1346
1347 #define target_trace_stop() \
1348 (*current_target.to_trace_stop) ()
1349
1350 #define target_trace_find(type,num,addr1,addr2,tpp) \
1351 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1352
1353 #define target_get_trace_state_variable_value(tsv,val) \
1354 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1355
1356 #define target_save_trace_data(filename) \
1357 (*current_target.to_save_trace_data) (filename)
1358
1359 #define target_upload_tracepoints(utpp) \
1360 (*current_target.to_upload_tracepoints) (utpp)
1361
1362 #define target_upload_trace_state_variables(utsvp) \
1363 (*current_target.to_upload_trace_state_variables) (utsvp)
1364
1365 #define target_get_raw_trace_data(buf,offset,len) \
1366 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1367
1368 #define target_set_disconnected_tracing(val) \
1369 (*current_target.to_set_disconnected_tracing) (val)
1370
1371 #define target_set_circular_trace_buffer(val) \
1372 (*current_target.to_set_circular_trace_buffer) (val)
1373
1374 /* Command logging facility. */
1375
1376 #define target_log_command(p) \
1377 do \
1378 if (current_target.to_log_command) \
1379 (*current_target.to_log_command) (p); \
1380 while (0)
1381
1382
1383 extern int target_core_of_thread (ptid_t ptid);
1384
1385 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1386 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1387 if there's a mismatch, and -1 if an error is encountered while
1388 reading memory. Throws an error if the functionality is found not
1389 to be supported by the current target. */
1390 int target_verify_memory (const gdb_byte *data,
1391 CORE_ADDR memaddr, ULONGEST size);
1392
1393 /* Routines for maintenance of the target structures...
1394
1395 add_target: Add a target to the list of all possible targets.
1396
1397 push_target: Make this target the top of the stack of currently used
1398 targets, within its particular stratum of the stack. Result
1399 is 0 if now atop the stack, nonzero if not on top (maybe
1400 should warn user).
1401
1402 unpush_target: Remove this from the stack of currently used targets,
1403 no matter where it is on the list. Returns 0 if no
1404 change, 1 if removed from stack.
1405
1406 pop_target: Remove the top thing on the stack of current targets. */
1407
1408 extern void add_target (struct target_ops *);
1409
1410 extern int push_target (struct target_ops *);
1411
1412 extern int unpush_target (struct target_ops *);
1413
1414 extern void target_pre_inferior (int);
1415
1416 extern void target_preopen (int);
1417
1418 extern void pop_target (void);
1419
1420 /* Does whatever cleanup is required to get rid of all pushed targets.
1421 QUITTING is propagated to target_close; it indicates that GDB is
1422 exiting and should not get hung on an error (otherwise it is
1423 important to perform clean termination, even if it takes a
1424 while). */
1425 extern void pop_all_targets (int quitting);
1426
1427 /* Like pop_all_targets, but pops only targets whose stratum is
1428 strictly above ABOVE_STRATUM. */
1429 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1430
1431 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1432 CORE_ADDR offset);
1433
1434 /* Struct target_section maps address ranges to file sections. It is
1435 mostly used with BFD files, but can be used without (e.g. for handling
1436 raw disks, or files not in formats handled by BFD). */
1437
1438 struct target_section
1439 {
1440 CORE_ADDR addr; /* Lowest address in section */
1441 CORE_ADDR endaddr; /* 1+highest address in section */
1442
1443 struct bfd_section *the_bfd_section;
1444
1445 bfd *bfd; /* BFD file pointer */
1446 };
1447
1448 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1449
1450 struct target_section_table
1451 {
1452 struct target_section *sections;
1453 struct target_section *sections_end;
1454 };
1455
1456 /* Return the "section" containing the specified address. */
1457 struct target_section *target_section_by_addr (struct target_ops *target,
1458 CORE_ADDR addr);
1459
1460 /* Return the target section table this target (or the targets
1461 beneath) currently manipulate. */
1462
1463 extern struct target_section_table *target_get_section_table
1464 (struct target_ops *target);
1465
1466 /* From mem-break.c */
1467
1468 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1469
1470 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1471
1472 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1473
1474 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1475
1476
1477 /* From target.c */
1478
1479 extern void initialize_targets (void);
1480
1481 extern NORETURN void noprocess (void) ATTR_NORETURN;
1482
1483 extern void target_require_runnable (void);
1484
1485 extern void find_default_attach (struct target_ops *, char *, int);
1486
1487 extern void find_default_create_inferior (struct target_ops *,
1488 char *, char *, char **, int);
1489
1490 extern struct target_ops *find_run_target (void);
1491
1492 extern struct target_ops *find_core_target (void);
1493
1494 extern struct target_ops *find_target_beneath (struct target_ops *);
1495
1496 /* Read OS data object of type TYPE from the target, and return it in
1497 XML format. The result is NUL-terminated and returned as a string,
1498 allocated using xmalloc. If an error occurs or the transfer is
1499 unsupported, NULL is returned. Empty objects are returned as
1500 allocated but empty strings. */
1501
1502 extern char *target_get_osdata (const char *type);
1503
1504 \f
1505 /* Stuff that should be shared among the various remote targets. */
1506
1507 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1508 information (higher values, more information). */
1509 extern int remote_debug;
1510
1511 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1512 extern int baud_rate;
1513 /* Timeout limit for response from target. */
1514 extern int remote_timeout;
1515
1516 \f
1517 /* Functions for helping to write a native target. */
1518
1519 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1520 extern void store_waitstatus (struct target_waitstatus *, int);
1521
1522 /* These are in common/signals.c, but they're only used by gdb. */
1523 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1524 int);
1525 extern int default_target_signal_to_host (struct gdbarch *,
1526 enum target_signal);
1527
1528 /* Convert from a number used in a GDB command to an enum target_signal. */
1529 extern enum target_signal target_signal_from_command (int);
1530 /* End of files in common/signals.c. */
1531
1532 /* Set the show memory breakpoints mode to show, and installs a cleanup
1533 to restore it back to the current value. */
1534 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1535
1536 \f
1537 /* Imported from machine dependent code */
1538
1539 /* Blank target vector entries are initialized to target_ignore. */
1540 void target_ignore (void);
1541
1542 extern struct target_ops deprecated_child_ops;
1543
1544 #endif /* !defined (TARGET_H) */
This page took 0.063412 seconds and 4 git commands to generate.