0f41160c242a3a7c0c60ba16657139ae36d6175d
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY
155 };
156
157 struct target_waitstatus
158 {
159 enum target_waitkind kind;
160
161 /* Forked child pid, execd pathname, exit status, signal number or
162 syscall number. */
163 union
164 {
165 int integer;
166 enum target_signal sig;
167 ptid_t related_pid;
168 char *execd_pathname;
169 int syscall_number;
170 }
171 value;
172 };
173
174 /* Options that can be passed to target_wait. */
175
176 /* Return immediately if there's no event already queued. If this
177 options is not requested, target_wait blocks waiting for an
178 event. */
179 #define TARGET_WNOHANG 1
180
181 /* The structure below stores information about a system call.
182 It is basically used in the "catch syscall" command, and in
183 every function that gives information about a system call.
184
185 It's also good to mention that its fields represent everything
186 that we currently know about a syscall in GDB. */
187 struct syscall
188 {
189 /* The syscall number. */
190 int number;
191
192 /* The syscall name. */
193 const char *name;
194 };
195
196 /* Return a pretty printed form of target_waitstatus.
197 Space for the result is malloc'd, caller must free. */
198 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
199
200 /* Possible types of events that the inferior handler will have to
201 deal with. */
202 enum inferior_event_type
203 {
204 /* Process a normal inferior event which will result in target_wait
205 being called. */
206 INF_REG_EVENT,
207 /* We are called because a timer went off. */
208 INF_TIMER,
209 /* We are called to do stuff after the inferior stops. */
210 INF_EXEC_COMPLETE,
211 /* We are called to do some stuff after the inferior stops, but we
212 are expected to reenter the proceed() and
213 handle_inferior_event() functions. This is used only in case of
214 'step n' like commands. */
215 INF_EXEC_CONTINUE
216 };
217 \f
218 /* Target objects which can be transfered using target_read,
219 target_write, et cetera. */
220
221 enum target_object
222 {
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* SPU target specific transfer. See "spu-tdep.c". */
226 TARGET_OBJECT_SPU,
227 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
228 TARGET_OBJECT_MEMORY,
229 /* Memory, avoiding GDB's data cache and trusting the executable.
230 Target implementations of to_xfer_partial never need to handle
231 this object, and most callers should not use it. */
232 TARGET_OBJECT_RAW_MEMORY,
233 /* Memory known to be part of the target's stack. This is cached even
234 if it is not in a region marked as such, since it is known to be
235 "normal" RAM. */
236 TARGET_OBJECT_STACK_MEMORY,
237 /* Kernel Unwind Table. See "ia64-tdep.c". */
238 TARGET_OBJECT_UNWIND_TABLE,
239 /* Transfer auxilliary vector. */
240 TARGET_OBJECT_AUXV,
241 /* StackGhost cookie. See "sparc-tdep.c". */
242 TARGET_OBJECT_WCOOKIE,
243 /* Target memory map in XML format. */
244 TARGET_OBJECT_MEMORY_MAP,
245 /* Flash memory. This object can be used to write contents to
246 a previously erased flash memory. Using it without erasing
247 flash can have unexpected results. Addresses are physical
248 address on target, and not relative to flash start. */
249 TARGET_OBJECT_FLASH,
250 /* Available target-specific features, e.g. registers and coprocessors.
251 See "target-descriptions.c". ANNEX should never be empty. */
252 TARGET_OBJECT_AVAILABLE_FEATURES,
253 /* Currently loaded libraries, in XML format. */
254 TARGET_OBJECT_LIBRARIES,
255 /* Get OS specific data. The ANNEX specifies the type (running
256 processes, etc.). The data being transfered is expected to follow
257 the DTD specified in features/osdata.dtd. */
258 TARGET_OBJECT_OSDATA,
259 /* Extra signal info. Usually the contents of `siginfo_t' on unix
260 platforms. */
261 TARGET_OBJECT_SIGNAL_INFO,
262 /* The list of threads that are being debugged. */
263 TARGET_OBJECT_THREADS,
264 /* Collected static trace data. */
265 TARGET_OBJECT_STATIC_TRACE_DATA,
266 /* The HP-UX registers (those that can be obtained or modified by using
267 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
268 TARGET_OBJECT_HPUX_UREGS,
269 /* The HP-UX shared library linkage pointer. ANNEX should be a string
270 image of the code address whose linkage pointer we are looking for.
271
272 The size of the data transfered is always 8 bytes (the size of an
273 address on ia64). */
274 TARGET_OBJECT_HPUX_SOLIB_GOT,
275 /* Traceframe info, in XML format. */
276 TARGET_OBJECT_TRACEFRAME_INFO,
277 /* Possible future objects: TARGET_OBJECT_FILE, ... */
278 };
279
280 /* Enumeration of the kinds of traceframe searches that a target may
281 be able to perform. */
282
283 enum trace_find_type
284 {
285 tfind_number,
286 tfind_pc,
287 tfind_tp,
288 tfind_range,
289 tfind_outside,
290 };
291
292 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
293 DEF_VEC_P(static_tracepoint_marker_p);
294
295 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
296 OBJECT. The OFFSET, for a seekable object, specifies the
297 starting point. The ANNEX can be used to provide additional
298 data-specific information to the target.
299
300 Return the number of bytes actually transfered, or -1 if the
301 transfer is not supported or otherwise fails. Return of a positive
302 value less than LEN indicates that no further transfer is possible.
303 Unlike the raw to_xfer_partial interface, callers of these
304 functions do not need to retry partial transfers. */
305
306 extern LONGEST target_read (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, gdb_byte *buf,
309 ULONGEST offset, LONGEST len);
310
311 struct memory_read_result
312 {
313 /* First address that was read. */
314 ULONGEST begin;
315 /* Past-the-end address. */
316 ULONGEST end;
317 /* The data. */
318 gdb_byte *data;
319 };
320 typedef struct memory_read_result memory_read_result_s;
321 DEF_VEC_O(memory_read_result_s);
322
323 extern void free_memory_read_result_vector (void *);
324
325 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
326 ULONGEST offset,
327 LONGEST len);
328
329 extern LONGEST target_write (struct target_ops *ops,
330 enum target_object object,
331 const char *annex, const gdb_byte *buf,
332 ULONGEST offset, LONGEST len);
333
334 /* Similar to target_write, except that it also calls PROGRESS with
335 the number of bytes written and the opaque BATON after every
336 successful partial write (and before the first write). This is
337 useful for progress reporting and user interaction while writing
338 data. To abort the transfer, the progress callback can throw an
339 exception. */
340
341 LONGEST target_write_with_progress (struct target_ops *ops,
342 enum target_object object,
343 const char *annex, const gdb_byte *buf,
344 ULONGEST offset, LONGEST len,
345 void (*progress) (ULONGEST, void *),
346 void *baton);
347
348 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
349 be read using OPS. The return value will be -1 if the transfer
350 fails or is not supported; 0 if the object is empty; or the length
351 of the object otherwise. If a positive value is returned, a
352 sufficiently large buffer will be allocated using xmalloc and
353 returned in *BUF_P containing the contents of the object.
354
355 This method should be used for objects sufficiently small to store
356 in a single xmalloc'd buffer, when no fixed bound on the object's
357 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
358 through this function. */
359
360 extern LONGEST target_read_alloc (struct target_ops *ops,
361 enum target_object object,
362 const char *annex, gdb_byte **buf_p);
363
364 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
365 returned as a string, allocated using xmalloc. If an error occurs
366 or the transfer is unsupported, NULL is returned. Empty objects
367 are returned as allocated but empty strings. A warning is issued
368 if the result contains any embedded NUL bytes. */
369
370 extern char *target_read_stralloc (struct target_ops *ops,
371 enum target_object object,
372 const char *annex);
373
374 /* Wrappers to target read/write that perform memory transfers. They
375 throw an error if the memory transfer fails.
376
377 NOTE: cagney/2003-10-23: The naming schema is lifted from
378 "frame.h". The parameter order is lifted from get_frame_memory,
379 which in turn lifted it from read_memory. */
380
381 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
382 gdb_byte *buf, LONGEST len);
383 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
384 CORE_ADDR addr, int len,
385 enum bfd_endian byte_order);
386 \f
387 struct thread_info; /* fwd decl for parameter list below: */
388
389 struct target_ops
390 {
391 struct target_ops *beneath; /* To the target under this one. */
392 char *to_shortname; /* Name this target type */
393 char *to_longname; /* Name for printing */
394 char *to_doc; /* Documentation. Does not include trailing
395 newline, and starts with a one-line descrip-
396 tion (probably similar to to_longname). */
397 /* Per-target scratch pad. */
398 void *to_data;
399 /* The open routine takes the rest of the parameters from the
400 command, and (if successful) pushes a new target onto the
401 stack. Targets should supply this routine, if only to provide
402 an error message. */
403 void (*to_open) (char *, int);
404 /* Old targets with a static target vector provide "to_close".
405 New re-entrant targets provide "to_xclose" and that is expected
406 to xfree everything (including the "struct target_ops"). */
407 void (*to_xclose) (struct target_ops *targ, int quitting);
408 void (*to_close) (int);
409 void (*to_attach) (struct target_ops *ops, char *, int);
410 void (*to_post_attach) (int);
411 void (*to_detach) (struct target_ops *ops, char *, int);
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
414 ptid_t (*to_wait) (struct target_ops *,
415 ptid_t, struct target_waitstatus *, int);
416 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
417 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
418 void (*to_prepare_to_store) (struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
448 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
449 int (*to_can_use_hw_breakpoint) (int, int, int);
450 int (*to_ranged_break_num_registers) (struct target_ops *);
451 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
453
454 /* Documentation of what the two routines below are expected to do is
455 provided with the corresponding target_* macros. */
456 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
457 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
458
459 int (*to_insert_mask_watchpoint) (struct target_ops *,
460 CORE_ADDR, CORE_ADDR, int);
461 int (*to_remove_mask_watchpoint) (struct target_ops *,
462 CORE_ADDR, CORE_ADDR, int);
463 int (*to_stopped_by_watchpoint) (void);
464 int to_have_steppable_watchpoint;
465 int to_have_continuable_watchpoint;
466 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
467 int (*to_watchpoint_addr_within_range) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469
470 /* Documentation of this routine is provided with the corresponding
471 target_* macro. */
472 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
473
474 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
475 struct expression *);
476 int (*to_masked_watch_num_registers) (struct target_ops *,
477 CORE_ADDR, CORE_ADDR);
478 void (*to_terminal_init) (void);
479 void (*to_terminal_inferior) (void);
480 void (*to_terminal_ours_for_output) (void);
481 void (*to_terminal_ours) (void);
482 void (*to_terminal_save_ours) (void);
483 void (*to_terminal_info) (char *, int);
484 void (*to_kill) (struct target_ops *);
485 void (*to_load) (char *, int);
486 void (*to_create_inferior) (struct target_ops *,
487 char *, char *, char **, int);
488 void (*to_post_startup_inferior) (ptid_t);
489 int (*to_insert_fork_catchpoint) (int);
490 int (*to_remove_fork_catchpoint) (int);
491 int (*to_insert_vfork_catchpoint) (int);
492 int (*to_remove_vfork_catchpoint) (int);
493 int (*to_follow_fork) (struct target_ops *, int);
494 int (*to_insert_exec_catchpoint) (int);
495 int (*to_remove_exec_catchpoint) (int);
496 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
497 int (*to_has_exited) (int, int, int *);
498 void (*to_mourn_inferior) (struct target_ops *);
499 int (*to_can_run) (void);
500
501 /* Documentation of this routine is provided with the corresponding
502 target_* macro. */
503 void (*to_pass_signals) (int, unsigned char *);
504
505 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
506 void (*to_find_new_threads) (struct target_ops *);
507 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
508 char *(*to_extra_thread_info) (struct thread_info *);
509 char *(*to_thread_name) (struct thread_info *);
510 void (*to_stop) (ptid_t);
511 void (*to_rcmd) (char *command, struct ui_file *output);
512 char *(*to_pid_to_exec_file) (int pid);
513 void (*to_log_command) (const char *);
514 struct target_section_table *(*to_get_section_table) (struct target_ops *);
515 enum strata to_stratum;
516 int (*to_has_all_memory) (struct target_ops *);
517 int (*to_has_memory) (struct target_ops *);
518 int (*to_has_stack) (struct target_ops *);
519 int (*to_has_registers) (struct target_ops *);
520 int (*to_has_execution) (struct target_ops *, ptid_t);
521 int to_has_thread_control; /* control thread execution */
522 int to_attach_no_wait;
523 /* ASYNC target controls */
524 int (*to_can_async_p) (void);
525 int (*to_is_async_p) (void);
526 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
527 int (*to_async_mask) (int);
528 int (*to_supports_non_stop) (void);
529 /* find_memory_regions support method for gcore */
530 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
531 /* make_corefile_notes support method for gcore */
532 char * (*to_make_corefile_notes) (bfd *, int *);
533 /* get_bookmark support method for bookmarks */
534 gdb_byte * (*to_get_bookmark) (char *, int);
535 /* goto_bookmark support method for bookmarks */
536 void (*to_goto_bookmark) (gdb_byte *, int);
537 /* Return the thread-local address at OFFSET in the
538 thread-local storage for the thread PTID and the shared library
539 or executable file given by OBJFILE. If that block of
540 thread-local storage hasn't been allocated yet, this function
541 may return an error. */
542 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
543 ptid_t ptid,
544 CORE_ADDR load_module_addr,
545 CORE_ADDR offset);
546
547 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
548 OBJECT. The OFFSET, for a seekable object, specifies the
549 starting point. The ANNEX can be used to provide additional
550 data-specific information to the target.
551
552 Return the number of bytes actually transfered, zero when no
553 further transfer is possible, and -1 when the transfer is not
554 supported. Return of a positive value smaller than LEN does
555 not indicate the end of the object, only the end of the
556 transfer; higher level code should continue transferring if
557 desired. This is handled in target.c.
558
559 The interface does not support a "retry" mechanism. Instead it
560 assumes that at least one byte will be transfered on each
561 successful call.
562
563 NOTE: cagney/2003-10-17: The current interface can lead to
564 fragmented transfers. Lower target levels should not implement
565 hacks, such as enlarging the transfer, in an attempt to
566 compensate for this. Instead, the target stack should be
567 extended so that it implements supply/collect methods and a
568 look-aside object cache. With that available, the lowest
569 target can safely and freely "push" data up the stack.
570
571 See target_read and target_write for more information. One,
572 and only one, of readbuf or writebuf must be non-NULL. */
573
574 LONGEST (*to_xfer_partial) (struct target_ops *ops,
575 enum target_object object, const char *annex,
576 gdb_byte *readbuf, const gdb_byte *writebuf,
577 ULONGEST offset, LONGEST len);
578
579 /* Returns the memory map for the target. A return value of NULL
580 means that no memory map is available. If a memory address
581 does not fall within any returned regions, it's assumed to be
582 RAM. The returned memory regions should not overlap.
583
584 The order of regions does not matter; target_memory_map will
585 sort regions by starting address. For that reason, this
586 function should not be called directly except via
587 target_memory_map.
588
589 This method should not cache data; if the memory map could
590 change unexpectedly, it should be invalidated, and higher
591 layers will re-fetch it. */
592 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
593
594 /* Erases the region of flash memory starting at ADDRESS, of
595 length LENGTH.
596
597 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
598 on flash block boundaries, as reported by 'to_memory_map'. */
599 void (*to_flash_erase) (struct target_ops *,
600 ULONGEST address, LONGEST length);
601
602 /* Finishes a flash memory write sequence. After this operation
603 all flash memory should be available for writing and the result
604 of reading from areas written by 'to_flash_write' should be
605 equal to what was written. */
606 void (*to_flash_done) (struct target_ops *);
607
608 /* Describe the architecture-specific features of this target.
609 Returns the description found, or NULL if no description
610 was available. */
611 const struct target_desc *(*to_read_description) (struct target_ops *ops);
612
613 /* Build the PTID of the thread on which a given task is running,
614 based on LWP and THREAD. These values are extracted from the
615 task Private_Data section of the Ada Task Control Block, and
616 their interpretation depends on the target. */
617 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
618
619 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
620 Return 0 if *READPTR is already at the end of the buffer.
621 Return -1 if there is insufficient buffer for a whole entry.
622 Return 1 if an entry was read into *TYPEP and *VALP. */
623 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
624 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
625
626 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
627 sequence of bytes in PATTERN with length PATTERN_LEN.
628
629 The result is 1 if found, 0 if not found, and -1 if there was an error
630 requiring halting of the search (e.g. memory read error).
631 If the pattern is found the address is recorded in FOUND_ADDRP. */
632 int (*to_search_memory) (struct target_ops *ops,
633 CORE_ADDR start_addr, ULONGEST search_space_len,
634 const gdb_byte *pattern, ULONGEST pattern_len,
635 CORE_ADDR *found_addrp);
636
637 /* Can target execute in reverse? */
638 int (*to_can_execute_reverse) (void);
639
640 /* The direction the target is currently executing. Must be
641 implemented on targets that support reverse execution and async
642 mode. The default simply returns forward execution. */
643 enum exec_direction_kind (*to_execution_direction) (void);
644
645 /* Does this target support debugging multiple processes
646 simultaneously? */
647 int (*to_supports_multi_process) (void);
648
649 /* Does this target support enabling and disabling tracepoints while a trace
650 experiment is running? */
651 int (*to_supports_enable_disable_tracepoint) (void);
652
653 /* Determine current architecture of thread PTID.
654
655 The target is supposed to determine the architecture of the code where
656 the target is currently stopped at (on Cell, if a target is in spu_run,
657 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
658 This is architecture used to perform decr_pc_after_break adjustment,
659 and also determines the frame architecture of the innermost frame.
660 ptrace operations need to operate according to target_gdbarch.
661
662 The default implementation always returns target_gdbarch. */
663 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
664
665 /* Determine current address space of thread PTID.
666
667 The default implementation always returns the inferior's
668 address space. */
669 struct address_space *(*to_thread_address_space) (struct target_ops *,
670 ptid_t);
671
672 /* Tracepoint-related operations. */
673
674 /* Prepare the target for a tracing run. */
675 void (*to_trace_init) (void);
676
677 /* Send full details of a tracepoint to the target. */
678 void (*to_download_tracepoint) (struct breakpoint *t);
679
680 /* Send full details of a trace state variable to the target. */
681 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
682
683 /* Enable a tracepoint on the target. */
684 void (*to_enable_tracepoint) (struct bp_location *location);
685
686 /* Disable a tracepoint on the target. */
687 void (*to_disable_tracepoint) (struct bp_location *location);
688
689 /* Inform the target info of memory regions that are readonly
690 (such as text sections), and so it should return data from
691 those rather than look in the trace buffer. */
692 void (*to_trace_set_readonly_regions) (void);
693
694 /* Start a trace run. */
695 void (*to_trace_start) (void);
696
697 /* Get the current status of a tracing run. */
698 int (*to_get_trace_status) (struct trace_status *ts);
699
700 /* Stop a trace run. */
701 void (*to_trace_stop) (void);
702
703 /* Ask the target to find a trace frame of the given type TYPE,
704 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
705 number of the trace frame, and also the tracepoint number at
706 TPP. If no trace frame matches, return -1. May throw if the
707 operation fails. */
708 int (*to_trace_find) (enum trace_find_type type, int num,
709 ULONGEST addr1, ULONGEST addr2, int *tpp);
710
711 /* Get the value of the trace state variable number TSV, returning
712 1 if the value is known and writing the value itself into the
713 location pointed to by VAL, else returning 0. */
714 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
715
716 int (*to_save_trace_data) (const char *filename);
717
718 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
719
720 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
721
722 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
723 ULONGEST offset, LONGEST len);
724
725 /* Set the target's tracing behavior in response to unexpected
726 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
727 void (*to_set_disconnected_tracing) (int val);
728 void (*to_set_circular_trace_buffer) (int val);
729
730 /* Return the processor core that thread PTID was last seen on.
731 This information is updated only when:
732 - update_thread_list is called
733 - thread stops
734 If the core cannot be determined -- either for the specified
735 thread, or right now, or in this debug session, or for this
736 target -- return -1. */
737 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
738
739 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
740 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
741 a match, 0 if there's a mismatch, and -1 if an error is
742 encountered while reading memory. */
743 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
744 CORE_ADDR memaddr, ULONGEST size);
745
746 /* Return the address of the start of the Thread Information Block
747 a Windows OS specific feature. */
748 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
749
750 /* Send the new settings of write permission variables. */
751 void (*to_set_permissions) (void);
752
753 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
754 with its details. Return 1 on success, 0 on failure. */
755 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
756 struct static_tracepoint_marker *marker);
757
758 /* Return a vector of all tracepoints markers string id ID, or all
759 markers if ID is NULL. */
760 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
761 (const char *id);
762
763 /* Return a traceframe info object describing the current
764 traceframe's contents. This method should not cache data;
765 higher layers take care of caching, invalidating, and
766 re-fetching when necessary. */
767 struct traceframe_info *(*to_traceframe_info) (void);
768
769 int to_magic;
770 /* Need sub-structure for target machine related rather than comm related?
771 */
772 };
773
774 /* Magic number for checking ops size. If a struct doesn't end with this
775 number, somebody changed the declaration but didn't change all the
776 places that initialize one. */
777
778 #define OPS_MAGIC 3840
779
780 /* The ops structure for our "current" target process. This should
781 never be NULL. If there is no target, it points to the dummy_target. */
782
783 extern struct target_ops current_target;
784
785 /* Define easy words for doing these operations on our current target. */
786
787 #define target_shortname (current_target.to_shortname)
788 #define target_longname (current_target.to_longname)
789
790 /* Does whatever cleanup is required for a target that we are no
791 longer going to be calling. QUITTING indicates that GDB is exiting
792 and should not get hung on an error (otherwise it is important to
793 perform clean termination, even if it takes a while). This routine
794 is automatically always called when popping the target off the
795 target stack (to_beneath is undefined). Closing file descriptors
796 and freeing all memory allocated memory are typical things it
797 should do. */
798
799 void target_close (struct target_ops *targ, int quitting);
800
801 /* Attaches to a process on the target side. Arguments are as passed
802 to the `attach' command by the user. This routine can be called
803 when the target is not on the target-stack, if the target_can_run
804 routine returns 1; in that case, it must push itself onto the stack.
805 Upon exit, the target should be ready for normal operations, and
806 should be ready to deliver the status of the process immediately
807 (without waiting) to an upcoming target_wait call. */
808
809 void target_attach (char *, int);
810
811 /* Some targets don't generate traps when attaching to the inferior,
812 or their target_attach implementation takes care of the waiting.
813 These targets must set to_attach_no_wait. */
814
815 #define target_attach_no_wait \
816 (current_target.to_attach_no_wait)
817
818 /* The target_attach operation places a process under debugger control,
819 and stops the process.
820
821 This operation provides a target-specific hook that allows the
822 necessary bookkeeping to be performed after an attach completes. */
823 #define target_post_attach(pid) \
824 (*current_target.to_post_attach) (pid)
825
826 /* Takes a program previously attached to and detaches it.
827 The program may resume execution (some targets do, some don't) and will
828 no longer stop on signals, etc. We better not have left any breakpoints
829 in the program or it'll die when it hits one. ARGS is arguments
830 typed by the user (e.g. a signal to send the process). FROM_TTY
831 says whether to be verbose or not. */
832
833 extern void target_detach (char *, int);
834
835 /* Disconnect from the current target without resuming it (leaving it
836 waiting for a debugger). */
837
838 extern void target_disconnect (char *, int);
839
840 /* Resume execution of the target process PTID. STEP says whether to
841 single-step or to run free; SIGGNAL is the signal to be given to
842 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
843 pass TARGET_SIGNAL_DEFAULT. */
844
845 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
846
847 /* Wait for process pid to do something. PTID = -1 to wait for any
848 pid to do something. Return pid of child, or -1 in case of error;
849 store status through argument pointer STATUS. Note that it is
850 _NOT_ OK to throw_exception() out of target_wait() without popping
851 the debugging target from the stack; GDB isn't prepared to get back
852 to the prompt with a debugging target but without the frame cache,
853 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
854 options. */
855
856 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
857 int options);
858
859 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
860
861 extern void target_fetch_registers (struct regcache *regcache, int regno);
862
863 /* Store at least register REGNO, or all regs if REGNO == -1.
864 It can store as many registers as it wants to, so target_prepare_to_store
865 must have been previously called. Calls error() if there are problems. */
866
867 extern void target_store_registers (struct regcache *regcache, int regs);
868
869 /* Get ready to modify the registers array. On machines which store
870 individual registers, this doesn't need to do anything. On machines
871 which store all the registers in one fell swoop, this makes sure
872 that REGISTERS contains all the registers from the program being
873 debugged. */
874
875 #define target_prepare_to_store(regcache) \
876 (*current_target.to_prepare_to_store) (regcache)
877
878 /* Determine current address space of thread PTID. */
879
880 struct address_space *target_thread_address_space (ptid_t);
881
882 /* Returns true if this target can debug multiple processes
883 simultaneously. */
884
885 #define target_supports_multi_process() \
886 (*current_target.to_supports_multi_process) ()
887
888 /* Returns true if this target can enable and disable tracepoints
889 while a trace experiment is running. */
890
891 #define target_supports_enable_disable_tracepoint() \
892 (*current_target.to_supports_enable_disable_tracepoint) ()
893
894 /* Invalidate all target dcaches. */
895 extern void target_dcache_invalidate (void);
896
897 extern int target_read_string (CORE_ADDR, char **, int, int *);
898
899 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
900
901 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
902
903 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
904 int len);
905
906 /* Fetches the target's memory map. If one is found it is sorted
907 and returned, after some consistency checking. Otherwise, NULL
908 is returned. */
909 VEC(mem_region_s) *target_memory_map (void);
910
911 /* Erase the specified flash region. */
912 void target_flash_erase (ULONGEST address, LONGEST length);
913
914 /* Finish a sequence of flash operations. */
915 void target_flash_done (void);
916
917 /* Describes a request for a memory write operation. */
918 struct memory_write_request
919 {
920 /* Begining address that must be written. */
921 ULONGEST begin;
922 /* Past-the-end address. */
923 ULONGEST end;
924 /* The data to write. */
925 gdb_byte *data;
926 /* A callback baton for progress reporting for this request. */
927 void *baton;
928 };
929 typedef struct memory_write_request memory_write_request_s;
930 DEF_VEC_O(memory_write_request_s);
931
932 /* Enumeration specifying different flash preservation behaviour. */
933 enum flash_preserve_mode
934 {
935 flash_preserve,
936 flash_discard
937 };
938
939 /* Write several memory blocks at once. This version can be more
940 efficient than making several calls to target_write_memory, in
941 particular because it can optimize accesses to flash memory.
942
943 Moreover, this is currently the only memory access function in gdb
944 that supports writing to flash memory, and it should be used for
945 all cases where access to flash memory is desirable.
946
947 REQUESTS is the vector (see vec.h) of memory_write_request.
948 PRESERVE_FLASH_P indicates what to do with blocks which must be
949 erased, but not completely rewritten.
950 PROGRESS_CB is a function that will be periodically called to provide
951 feedback to user. It will be called with the baton corresponding
952 to the request currently being written. It may also be called
953 with a NULL baton, when preserved flash sectors are being rewritten.
954
955 The function returns 0 on success, and error otherwise. */
956 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
957 enum flash_preserve_mode preserve_flash_p,
958 void (*progress_cb) (ULONGEST, void *));
959
960 /* From infrun.c. */
961
962 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
963
964 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
965
966 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
967
968 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
969
970 /* Print a line about the current target. */
971
972 #define target_files_info() \
973 (*current_target.to_files_info) (&current_target)
974
975 /* Insert a breakpoint at address BP_TGT->placed_address in the target
976 machine. Result is 0 for success, or an errno value. */
977
978 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
979 struct bp_target_info *bp_tgt);
980
981 /* Remove a breakpoint at address BP_TGT->placed_address in the target
982 machine. Result is 0 for success, or an errno value. */
983
984 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
985 struct bp_target_info *bp_tgt);
986
987 /* Initialize the terminal settings we record for the inferior,
988 before we actually run the inferior. */
989
990 #define target_terminal_init() \
991 (*current_target.to_terminal_init) ()
992
993 /* Put the inferior's terminal settings into effect.
994 This is preparation for starting or resuming the inferior. */
995
996 extern void target_terminal_inferior (void);
997
998 /* Put some of our terminal settings into effect,
999 enough to get proper results from our output,
1000 but do not change into or out of RAW mode
1001 so that no input is discarded.
1002
1003 After doing this, either terminal_ours or terminal_inferior
1004 should be called to get back to a normal state of affairs. */
1005
1006 #define target_terminal_ours_for_output() \
1007 (*current_target.to_terminal_ours_for_output) ()
1008
1009 /* Put our terminal settings into effect.
1010 First record the inferior's terminal settings
1011 so they can be restored properly later. */
1012
1013 #define target_terminal_ours() \
1014 (*current_target.to_terminal_ours) ()
1015
1016 /* Save our terminal settings.
1017 This is called from TUI after entering or leaving the curses
1018 mode. Since curses modifies our terminal this call is here
1019 to take this change into account. */
1020
1021 #define target_terminal_save_ours() \
1022 (*current_target.to_terminal_save_ours) ()
1023
1024 /* Print useful information about our terminal status, if such a thing
1025 exists. */
1026
1027 #define target_terminal_info(arg, from_tty) \
1028 (*current_target.to_terminal_info) (arg, from_tty)
1029
1030 /* Kill the inferior process. Make it go away. */
1031
1032 extern void target_kill (void);
1033
1034 /* Load an executable file into the target process. This is expected
1035 to not only bring new code into the target process, but also to
1036 update GDB's symbol tables to match.
1037
1038 ARG contains command-line arguments, to be broken down with
1039 buildargv (). The first non-switch argument is the filename to
1040 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1041 0)), which is an offset to apply to the load addresses of FILE's
1042 sections. The target may define switches, or other non-switch
1043 arguments, as it pleases. */
1044
1045 extern void target_load (char *arg, int from_tty);
1046
1047 /* Start an inferior process and set inferior_ptid to its pid.
1048 EXEC_FILE is the file to run.
1049 ALLARGS is a string containing the arguments to the program.
1050 ENV is the environment vector to pass. Errors reported with error().
1051 On VxWorks and various standalone systems, we ignore exec_file. */
1052
1053 void target_create_inferior (char *exec_file, char *args,
1054 char **env, int from_tty);
1055
1056 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1057 notification of inferior events such as fork and vork immediately
1058 after the inferior is created. (This because of how gdb gets an
1059 inferior created via invoking a shell to do it. In such a scenario,
1060 if the shell init file has commands in it, the shell will fork and
1061 exec for each of those commands, and we will see each such fork
1062 event. Very bad.)
1063
1064 Such targets will supply an appropriate definition for this function. */
1065
1066 #define target_post_startup_inferior(ptid) \
1067 (*current_target.to_post_startup_inferior) (ptid)
1068
1069 /* On some targets, we can catch an inferior fork or vfork event when
1070 it occurs. These functions insert/remove an already-created
1071 catchpoint for such events. They return 0 for success, 1 if the
1072 catchpoint type is not supported and -1 for failure. */
1073
1074 #define target_insert_fork_catchpoint(pid) \
1075 (*current_target.to_insert_fork_catchpoint) (pid)
1076
1077 #define target_remove_fork_catchpoint(pid) \
1078 (*current_target.to_remove_fork_catchpoint) (pid)
1079
1080 #define target_insert_vfork_catchpoint(pid) \
1081 (*current_target.to_insert_vfork_catchpoint) (pid)
1082
1083 #define target_remove_vfork_catchpoint(pid) \
1084 (*current_target.to_remove_vfork_catchpoint) (pid)
1085
1086 /* If the inferior forks or vforks, this function will be called at
1087 the next resume in order to perform any bookkeeping and fiddling
1088 necessary to continue debugging either the parent or child, as
1089 requested, and releasing the other. Information about the fork
1090 or vfork event is available via get_last_target_status ().
1091 This function returns 1 if the inferior should not be resumed
1092 (i.e. there is another event pending). */
1093
1094 int target_follow_fork (int follow_child);
1095
1096 /* On some targets, we can catch an inferior exec event when it
1097 occurs. These functions insert/remove an already-created
1098 catchpoint for such events. They return 0 for success, 1 if the
1099 catchpoint type is not supported and -1 for failure. */
1100
1101 #define target_insert_exec_catchpoint(pid) \
1102 (*current_target.to_insert_exec_catchpoint) (pid)
1103
1104 #define target_remove_exec_catchpoint(pid) \
1105 (*current_target.to_remove_exec_catchpoint) (pid)
1106
1107 /* Syscall catch.
1108
1109 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1110 If NEEDED is zero, it means the target can disable the mechanism to
1111 catch system calls because there are no more catchpoints of this type.
1112
1113 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1114 being requested. In this case, both TABLE_SIZE and TABLE should
1115 be ignored.
1116
1117 TABLE_SIZE is the number of elements in TABLE. It only matters if
1118 ANY_COUNT is zero.
1119
1120 TABLE is an array of ints, indexed by syscall number. An element in
1121 this array is nonzero if that syscall should be caught. This argument
1122 only matters if ANY_COUNT is zero.
1123
1124 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1125 for failure. */
1126
1127 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1128 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1129 table_size, table)
1130
1131 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1132 exit code of PID, if any. */
1133
1134 #define target_has_exited(pid,wait_status,exit_status) \
1135 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1136
1137 /* The debugger has completed a blocking wait() call. There is now
1138 some process event that must be processed. This function should
1139 be defined by those targets that require the debugger to perform
1140 cleanup or internal state changes in response to the process event. */
1141
1142 /* The inferior process has died. Do what is right. */
1143
1144 void target_mourn_inferior (void);
1145
1146 /* Does target have enough data to do a run or attach command? */
1147
1148 #define target_can_run(t) \
1149 ((t)->to_can_run) ()
1150
1151 /* Set list of signals to be handled in the target.
1152
1153 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1154 (enum target_signal). For every signal whose entry in this array is
1155 non-zero, the target is allowed -but not required- to skip reporting
1156 arrival of the signal to the GDB core by returning from target_wait,
1157 and to pass the signal directly to the inferior instead.
1158
1159 However, if the target is hardware single-stepping a thread that is
1160 about to receive a signal, it needs to be reported in any case, even
1161 if mentioned in a previous target_pass_signals call. */
1162
1163 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1164
1165 /* Check to see if a thread is still alive. */
1166
1167 extern int target_thread_alive (ptid_t ptid);
1168
1169 /* Query for new threads and add them to the thread list. */
1170
1171 extern void target_find_new_threads (void);
1172
1173 /* Make target stop in a continuable fashion. (For instance, under
1174 Unix, this should act like SIGSTOP). This function is normally
1175 used by GUIs to implement a stop button. */
1176
1177 extern void target_stop (ptid_t ptid);
1178
1179 /* Send the specified COMMAND to the target's monitor
1180 (shell,interpreter) for execution. The result of the query is
1181 placed in OUTBUF. */
1182
1183 #define target_rcmd(command, outbuf) \
1184 (*current_target.to_rcmd) (command, outbuf)
1185
1186
1187 /* Does the target include all of memory, or only part of it? This
1188 determines whether we look up the target chain for other parts of
1189 memory if this target can't satisfy a request. */
1190
1191 extern int target_has_all_memory_1 (void);
1192 #define target_has_all_memory target_has_all_memory_1 ()
1193
1194 /* Does the target include memory? (Dummy targets don't.) */
1195
1196 extern int target_has_memory_1 (void);
1197 #define target_has_memory target_has_memory_1 ()
1198
1199 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1200 we start a process.) */
1201
1202 extern int target_has_stack_1 (void);
1203 #define target_has_stack target_has_stack_1 ()
1204
1205 /* Does the target have registers? (Exec files don't.) */
1206
1207 extern int target_has_registers_1 (void);
1208 #define target_has_registers target_has_registers_1 ()
1209
1210 /* Does the target have execution? Can we make it jump (through
1211 hoops), or pop its stack a few times? This means that the current
1212 target is currently executing; for some targets, that's the same as
1213 whether or not the target is capable of execution, but there are
1214 also targets which can be current while not executing. In that
1215 case this will become true after target_create_inferior or
1216 target_attach. */
1217
1218 extern int target_has_execution_1 (ptid_t);
1219
1220 /* Like target_has_execution_1, but always passes inferior_ptid. */
1221
1222 extern int target_has_execution_current (void);
1223
1224 #define target_has_execution target_has_execution_current ()
1225
1226 /* Default implementations for process_stratum targets. Return true
1227 if there's a selected inferior, false otherwise. */
1228
1229 extern int default_child_has_all_memory (struct target_ops *ops);
1230 extern int default_child_has_memory (struct target_ops *ops);
1231 extern int default_child_has_stack (struct target_ops *ops);
1232 extern int default_child_has_registers (struct target_ops *ops);
1233 extern int default_child_has_execution (struct target_ops *ops,
1234 ptid_t the_ptid);
1235
1236 /* Can the target support the debugger control of thread execution?
1237 Can it lock the thread scheduler? */
1238
1239 #define target_can_lock_scheduler \
1240 (current_target.to_has_thread_control & tc_schedlock)
1241
1242 /* Should the target enable async mode if it is supported? Temporary
1243 cludge until async mode is a strict superset of sync mode. */
1244 extern int target_async_permitted;
1245
1246 /* Can the target support asynchronous execution? */
1247 #define target_can_async_p() (current_target.to_can_async_p ())
1248
1249 /* Is the target in asynchronous execution mode? */
1250 #define target_is_async_p() (current_target.to_is_async_p ())
1251
1252 int target_supports_non_stop (void);
1253
1254 /* Put the target in async mode with the specified callback function. */
1255 #define target_async(CALLBACK,CONTEXT) \
1256 (current_target.to_async ((CALLBACK), (CONTEXT)))
1257
1258 /* This is to be used ONLY within call_function_by_hand(). It provides
1259 a workaround, to have inferior function calls done in sychronous
1260 mode, even though the target is asynchronous. After
1261 target_async_mask(0) is called, calls to target_can_async_p() will
1262 return FALSE , so that target_resume() will not try to start the
1263 target asynchronously. After the inferior stops, we IMMEDIATELY
1264 restore the previous nature of the target, by calling
1265 target_async_mask(1). After that, target_can_async_p() will return
1266 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1267
1268 FIXME ezannoni 1999-12-13: we won't need this once we move
1269 the turning async on and off to the single execution commands,
1270 from where it is done currently, in remote_resume(). */
1271
1272 #define target_async_mask(MASK) \
1273 (current_target.to_async_mask (MASK))
1274
1275 #define target_execution_direction() \
1276 (current_target.to_execution_direction ())
1277
1278 /* Converts a process id to a string. Usually, the string just contains
1279 `process xyz', but on some systems it may contain
1280 `process xyz thread abc'. */
1281
1282 extern char *target_pid_to_str (ptid_t ptid);
1283
1284 extern char *normal_pid_to_str (ptid_t ptid);
1285
1286 /* Return a short string describing extra information about PID,
1287 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1288 is okay. */
1289
1290 #define target_extra_thread_info(TP) \
1291 (current_target.to_extra_thread_info (TP))
1292
1293 /* Return the thread's name. A NULL result means that the target
1294 could not determine this thread's name. */
1295
1296 extern char *target_thread_name (struct thread_info *);
1297
1298 /* Attempts to find the pathname of the executable file
1299 that was run to create a specified process.
1300
1301 The process PID must be stopped when this operation is used.
1302
1303 If the executable file cannot be determined, NULL is returned.
1304
1305 Else, a pointer to a character string containing the pathname
1306 is returned. This string should be copied into a buffer by
1307 the client if the string will not be immediately used, or if
1308 it must persist. */
1309
1310 #define target_pid_to_exec_file(pid) \
1311 (current_target.to_pid_to_exec_file) (pid)
1312
1313 /* See the to_thread_architecture description in struct target_ops. */
1314
1315 #define target_thread_architecture(ptid) \
1316 (current_target.to_thread_architecture (&current_target, ptid))
1317
1318 /*
1319 * Iterator function for target memory regions.
1320 * Calls a callback function once for each memory region 'mapped'
1321 * in the child process. Defined as a simple macro rather than
1322 * as a function macro so that it can be tested for nullity.
1323 */
1324
1325 #define target_find_memory_regions(FUNC, DATA) \
1326 (current_target.to_find_memory_regions) (FUNC, DATA)
1327
1328 /*
1329 * Compose corefile .note section.
1330 */
1331
1332 #define target_make_corefile_notes(BFD, SIZE_P) \
1333 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1334
1335 /* Bookmark interfaces. */
1336 #define target_get_bookmark(ARGS, FROM_TTY) \
1337 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1338
1339 #define target_goto_bookmark(ARG, FROM_TTY) \
1340 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1341
1342 /* Hardware watchpoint interfaces. */
1343
1344 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1345 write). Only the INFERIOR_PTID task is being queried. */
1346
1347 #define target_stopped_by_watchpoint \
1348 (*current_target.to_stopped_by_watchpoint)
1349
1350 /* Non-zero if we have steppable watchpoints */
1351
1352 #define target_have_steppable_watchpoint \
1353 (current_target.to_have_steppable_watchpoint)
1354
1355 /* Non-zero if we have continuable watchpoints */
1356
1357 #define target_have_continuable_watchpoint \
1358 (current_target.to_have_continuable_watchpoint)
1359
1360 /* Provide defaults for hardware watchpoint functions. */
1361
1362 /* If the *_hw_beakpoint functions have not been defined
1363 elsewhere use the definitions in the target vector. */
1364
1365 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1366 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1367 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1368 (including this one?). OTHERTYPE is who knows what... */
1369
1370 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1371 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1372
1373 /* Returns the number of debug registers needed to watch the given
1374 memory region, or zero if not supported. */
1375
1376 #define target_region_ok_for_hw_watchpoint(addr, len) \
1377 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1378
1379
1380 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1381 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1382 COND is the expression for its condition, or NULL if there's none.
1383 Returns 0 for success, 1 if the watchpoint type is not supported,
1384 -1 for failure. */
1385
1386 #define target_insert_watchpoint(addr, len, type, cond) \
1387 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1388
1389 #define target_remove_watchpoint(addr, len, type, cond) \
1390 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1391
1392 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1393 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1394 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1395 masked watchpoints are not supported, -1 for failure. */
1396
1397 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1398
1399 /* Remove a masked watchpoint at ADDR with the mask MASK.
1400 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1401 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1402 for failure. */
1403
1404 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1405
1406 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1407 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1408
1409 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1410 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1411
1412 /* Return number of debug registers needed for a ranged breakpoint,
1413 or -1 if ranged breakpoints are not supported. */
1414
1415 extern int target_ranged_break_num_registers (void);
1416
1417 /* Return non-zero if target knows the data address which triggered this
1418 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1419 INFERIOR_PTID task is being queried. */
1420 #define target_stopped_data_address(target, addr_p) \
1421 (*target.to_stopped_data_address) (target, addr_p)
1422
1423 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1424 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1425
1426 /* Return non-zero if the target is capable of using hardware to evaluate
1427 the condition expression. In this case, if the condition is false when
1428 the watched memory location changes, execution may continue without the
1429 debugger being notified.
1430
1431 Due to limitations in the hardware implementation, it may be capable of
1432 avoiding triggering the watchpoint in some cases where the condition
1433 expression is false, but may report some false positives as well.
1434 For this reason, GDB will still evaluate the condition expression when
1435 the watchpoint triggers. */
1436 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1437 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1438
1439 /* Return number of debug registers needed for a masked watchpoint,
1440 -1 if masked watchpoints are not supported or -2 if the given address
1441 and mask combination cannot be used. */
1442
1443 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1444
1445 /* Target can execute in reverse? */
1446 #define target_can_execute_reverse \
1447 (current_target.to_can_execute_reverse ? \
1448 current_target.to_can_execute_reverse () : 0)
1449
1450 extern const struct target_desc *target_read_description (struct target_ops *);
1451
1452 #define target_get_ada_task_ptid(lwp, tid) \
1453 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1454
1455 /* Utility implementation of searching memory. */
1456 extern int simple_search_memory (struct target_ops* ops,
1457 CORE_ADDR start_addr,
1458 ULONGEST search_space_len,
1459 const gdb_byte *pattern,
1460 ULONGEST pattern_len,
1461 CORE_ADDR *found_addrp);
1462
1463 /* Main entry point for searching memory. */
1464 extern int target_search_memory (CORE_ADDR start_addr,
1465 ULONGEST search_space_len,
1466 const gdb_byte *pattern,
1467 ULONGEST pattern_len,
1468 CORE_ADDR *found_addrp);
1469
1470 /* Tracepoint-related operations. */
1471
1472 #define target_trace_init() \
1473 (*current_target.to_trace_init) ()
1474
1475 #define target_download_tracepoint(t) \
1476 (*current_target.to_download_tracepoint) (t)
1477
1478 #define target_download_trace_state_variable(tsv) \
1479 (*current_target.to_download_trace_state_variable) (tsv)
1480
1481 #define target_enable_tracepoint(loc) \
1482 (*current_target.to_enable_tracepoint) (loc)
1483
1484 #define target_disable_tracepoint(loc) \
1485 (*current_target.to_disable_tracepoint) (loc)
1486
1487 #define target_trace_start() \
1488 (*current_target.to_trace_start) ()
1489
1490 #define target_trace_set_readonly_regions() \
1491 (*current_target.to_trace_set_readonly_regions) ()
1492
1493 #define target_get_trace_status(ts) \
1494 (*current_target.to_get_trace_status) (ts)
1495
1496 #define target_trace_stop() \
1497 (*current_target.to_trace_stop) ()
1498
1499 #define target_trace_find(type,num,addr1,addr2,tpp) \
1500 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1501
1502 #define target_get_trace_state_variable_value(tsv,val) \
1503 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1504
1505 #define target_save_trace_data(filename) \
1506 (*current_target.to_save_trace_data) (filename)
1507
1508 #define target_upload_tracepoints(utpp) \
1509 (*current_target.to_upload_tracepoints) (utpp)
1510
1511 #define target_upload_trace_state_variables(utsvp) \
1512 (*current_target.to_upload_trace_state_variables) (utsvp)
1513
1514 #define target_get_raw_trace_data(buf,offset,len) \
1515 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1516
1517 #define target_set_disconnected_tracing(val) \
1518 (*current_target.to_set_disconnected_tracing) (val)
1519
1520 #define target_set_circular_trace_buffer(val) \
1521 (*current_target.to_set_circular_trace_buffer) (val)
1522
1523 #define target_get_tib_address(ptid, addr) \
1524 (*current_target.to_get_tib_address) ((ptid), (addr))
1525
1526 #define target_set_permissions() \
1527 (*current_target.to_set_permissions) ()
1528
1529 #define target_static_tracepoint_marker_at(addr, marker) \
1530 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1531
1532 #define target_static_tracepoint_markers_by_strid(marker_id) \
1533 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1534
1535 #define target_traceframe_info() \
1536 (*current_target.to_traceframe_info) ()
1537
1538 /* Command logging facility. */
1539
1540 #define target_log_command(p) \
1541 do \
1542 if (current_target.to_log_command) \
1543 (*current_target.to_log_command) (p); \
1544 while (0)
1545
1546
1547 extern int target_core_of_thread (ptid_t ptid);
1548
1549 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1550 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1551 if there's a mismatch, and -1 if an error is encountered while
1552 reading memory. Throws an error if the functionality is found not
1553 to be supported by the current target. */
1554 int target_verify_memory (const gdb_byte *data,
1555 CORE_ADDR memaddr, ULONGEST size);
1556
1557 /* Routines for maintenance of the target structures...
1558
1559 add_target: Add a target to the list of all possible targets.
1560
1561 push_target: Make this target the top of the stack of currently used
1562 targets, within its particular stratum of the stack. Result
1563 is 0 if now atop the stack, nonzero if not on top (maybe
1564 should warn user).
1565
1566 unpush_target: Remove this from the stack of currently used targets,
1567 no matter where it is on the list. Returns 0 if no
1568 change, 1 if removed from stack.
1569
1570 pop_target: Remove the top thing on the stack of current targets. */
1571
1572 extern void add_target (struct target_ops *);
1573
1574 extern void push_target (struct target_ops *);
1575
1576 extern int unpush_target (struct target_ops *);
1577
1578 extern void target_pre_inferior (int);
1579
1580 extern void target_preopen (int);
1581
1582 extern void pop_target (void);
1583
1584 /* Does whatever cleanup is required to get rid of all pushed targets.
1585 QUITTING is propagated to target_close; it indicates that GDB is
1586 exiting and should not get hung on an error (otherwise it is
1587 important to perform clean termination, even if it takes a
1588 while). */
1589 extern void pop_all_targets (int quitting);
1590
1591 /* Like pop_all_targets, but pops only targets whose stratum is
1592 strictly above ABOVE_STRATUM. */
1593 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1594
1595 extern int target_is_pushed (struct target_ops *t);
1596
1597 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1598 CORE_ADDR offset);
1599
1600 /* Struct target_section maps address ranges to file sections. It is
1601 mostly used with BFD files, but can be used without (e.g. for handling
1602 raw disks, or files not in formats handled by BFD). */
1603
1604 struct target_section
1605 {
1606 CORE_ADDR addr; /* Lowest address in section */
1607 CORE_ADDR endaddr; /* 1+highest address in section */
1608
1609 struct bfd_section *the_bfd_section;
1610
1611 bfd *bfd; /* BFD file pointer */
1612 };
1613
1614 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1615
1616 struct target_section_table
1617 {
1618 struct target_section *sections;
1619 struct target_section *sections_end;
1620 };
1621
1622 /* Return the "section" containing the specified address. */
1623 struct target_section *target_section_by_addr (struct target_ops *target,
1624 CORE_ADDR addr);
1625
1626 /* Return the target section table this target (or the targets
1627 beneath) currently manipulate. */
1628
1629 extern struct target_section_table *target_get_section_table
1630 (struct target_ops *target);
1631
1632 /* From mem-break.c */
1633
1634 extern int memory_remove_breakpoint (struct gdbarch *,
1635 struct bp_target_info *);
1636
1637 extern int memory_insert_breakpoint (struct gdbarch *,
1638 struct bp_target_info *);
1639
1640 extern int default_memory_remove_breakpoint (struct gdbarch *,
1641 struct bp_target_info *);
1642
1643 extern int default_memory_insert_breakpoint (struct gdbarch *,
1644 struct bp_target_info *);
1645
1646
1647 /* From target.c */
1648
1649 extern void initialize_targets (void);
1650
1651 extern void noprocess (void) ATTRIBUTE_NORETURN;
1652
1653 extern void target_require_runnable (void);
1654
1655 extern void find_default_attach (struct target_ops *, char *, int);
1656
1657 extern void find_default_create_inferior (struct target_ops *,
1658 char *, char *, char **, int);
1659
1660 extern struct target_ops *find_run_target (void);
1661
1662 extern struct target_ops *find_target_beneath (struct target_ops *);
1663
1664 /* Read OS data object of type TYPE from the target, and return it in
1665 XML format. The result is NUL-terminated and returned as a string,
1666 allocated using xmalloc. If an error occurs or the transfer is
1667 unsupported, NULL is returned. Empty objects are returned as
1668 allocated but empty strings. */
1669
1670 extern char *target_get_osdata (const char *type);
1671
1672 \f
1673 /* Stuff that should be shared among the various remote targets. */
1674
1675 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1676 information (higher values, more information). */
1677 extern int remote_debug;
1678
1679 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1680 extern int baud_rate;
1681 /* Timeout limit for response from target. */
1682 extern int remote_timeout;
1683
1684 \f
1685 /* Functions for helping to write a native target. */
1686
1687 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1688 extern void store_waitstatus (struct target_waitstatus *, int);
1689
1690 /* These are in common/signals.c, but they're only used by gdb. */
1691 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1692 int);
1693 extern int default_target_signal_to_host (struct gdbarch *,
1694 enum target_signal);
1695
1696 /* Convert from a number used in a GDB command to an enum target_signal. */
1697 extern enum target_signal target_signal_from_command (int);
1698 /* End of files in common/signals.c. */
1699
1700 /* Set the show memory breakpoints mode to show, and installs a cleanup
1701 to restore it back to the current value. */
1702 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1703
1704 extern int may_write_registers;
1705 extern int may_write_memory;
1706 extern int may_insert_breakpoints;
1707 extern int may_insert_tracepoints;
1708 extern int may_insert_fast_tracepoints;
1709 extern int may_stop;
1710
1711 extern void update_target_permissions (void);
1712
1713 \f
1714 /* Imported from machine dependent code. */
1715
1716 /* Blank target vector entries are initialized to target_ignore. */
1717 void target_ignore (void);
1718
1719 #endif /* !defined (TARGET_H) */
This page took 0.100042 seconds and 3 git commands to generate.