introduce and use find_target_at
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 struct target_ops
363 {
364 struct target_ops *beneath; /* To the target under this one. */
365 char *to_shortname; /* Name this target type */
366 char *to_longname; /* Name for printing */
367 char *to_doc; /* Documentation. Does not include trailing
368 newline, and starts with a one-line descrip-
369 tion (probably similar to to_longname). */
370 /* Per-target scratch pad. */
371 void *to_data;
372 /* The open routine takes the rest of the parameters from the
373 command, and (if successful) pushes a new target onto the
374 stack. Targets should supply this routine, if only to provide
375 an error message. */
376 void (*to_open) (char *, int);
377 /* Old targets with a static target vector provide "to_close".
378 New re-entrant targets provide "to_xclose" and that is expected
379 to xfree everything (including the "struct target_ops"). */
380 void (*to_xclose) (struct target_ops *targ);
381 void (*to_close) (void);
382 void (*to_attach) (struct target_ops *ops, char *, int);
383 void (*to_post_attach) (int);
384 void (*to_detach) (struct target_ops *ops, const char *, int);
385 void (*to_disconnect) (struct target_ops *, char *, int);
386 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
387 ptid_t (*to_wait) (struct target_ops *,
388 ptid_t, struct target_waitstatus *, int);
389 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
390 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
391 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
392
393 /* Transfer LEN bytes of memory between GDB address MYADDR and
394 target address MEMADDR. If WRITE, transfer them to the target, else
395 transfer them from the target. TARGET is the target from which we
396 get this function.
397
398 Return value, N, is one of the following:
399
400 0 means that we can't handle this. If errno has been set, it is the
401 error which prevented us from doing it (FIXME: What about bfd_error?).
402
403 positive (call it N) means that we have transferred N bytes
404 starting at MEMADDR. We might be able to handle more bytes
405 beyond this length, but no promises.
406
407 negative (call its absolute value N) means that we cannot
408 transfer right at MEMADDR, but we could transfer at least
409 something at MEMADDR + N.
410
411 NOTE: cagney/2004-10-01: This has been entirely superseeded by
412 to_xfer_partial and inferior inheritance. */
413
414 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
415 int len, int write,
416 struct mem_attrib *attrib,
417 struct target_ops *target);
418
419 void (*to_files_info) (struct target_ops *);
420 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
421 struct bp_target_info *);
422 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
423 struct bp_target_info *);
424 int (*to_can_use_hw_breakpoint) (int, int, int);
425 int (*to_ranged_break_num_registers) (struct target_ops *);
426 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
427 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
428
429 /* Documentation of what the two routines below are expected to do is
430 provided with the corresponding target_* macros. */
431 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
432 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
433
434 int (*to_insert_mask_watchpoint) (struct target_ops *,
435 CORE_ADDR, CORE_ADDR, int);
436 int (*to_remove_mask_watchpoint) (struct target_ops *,
437 CORE_ADDR, CORE_ADDR, int);
438 int (*to_stopped_by_watchpoint) (struct target_ops *);
439 int to_have_steppable_watchpoint;
440 int to_have_continuable_watchpoint;
441 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
442 int (*to_watchpoint_addr_within_range) (struct target_ops *,
443 CORE_ADDR, CORE_ADDR, int);
444
445 /* Documentation of this routine is provided with the corresponding
446 target_* macro. */
447 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
448
449 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
450 struct expression *);
451 int (*to_masked_watch_num_registers) (struct target_ops *,
452 CORE_ADDR, CORE_ADDR);
453 void (*to_terminal_init) (void);
454 void (*to_terminal_inferior) (void);
455 void (*to_terminal_ours_for_output) (void);
456 void (*to_terminal_ours) (void);
457 void (*to_terminal_save_ours) (void);
458 void (*to_terminal_info) (const char *, int);
459 void (*to_kill) (struct target_ops *);
460 void (*to_load) (char *, int);
461 void (*to_create_inferior) (struct target_ops *,
462 char *, char *, char **, int);
463 void (*to_post_startup_inferior) (ptid_t);
464 int (*to_insert_fork_catchpoint) (int);
465 int (*to_remove_fork_catchpoint) (int);
466 int (*to_insert_vfork_catchpoint) (int);
467 int (*to_remove_vfork_catchpoint) (int);
468 int (*to_follow_fork) (struct target_ops *, int, int);
469 int (*to_insert_exec_catchpoint) (int);
470 int (*to_remove_exec_catchpoint) (int);
471 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
472 int (*to_has_exited) (int, int, int *);
473 void (*to_mourn_inferior) (struct target_ops *);
474 int (*to_can_run) (void);
475
476 /* Documentation of this routine is provided with the corresponding
477 target_* macro. */
478 void (*to_pass_signals) (int, unsigned char *);
479
480 /* Documentation of this routine is provided with the
481 corresponding target_* function. */
482 void (*to_program_signals) (int, unsigned char *);
483
484 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
485 void (*to_find_new_threads) (struct target_ops *);
486 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
487 char *(*to_extra_thread_info) (struct thread_info *);
488 char *(*to_thread_name) (struct thread_info *);
489 void (*to_stop) (ptid_t);
490 void (*to_rcmd) (char *command, struct ui_file *output);
491 char *(*to_pid_to_exec_file) (int pid);
492 void (*to_log_command) (const char *);
493 struct target_section_table *(*to_get_section_table) (struct target_ops *);
494 enum strata to_stratum;
495 int (*to_has_all_memory) (struct target_ops *);
496 int (*to_has_memory) (struct target_ops *);
497 int (*to_has_stack) (struct target_ops *);
498 int (*to_has_registers) (struct target_ops *);
499 int (*to_has_execution) (struct target_ops *, ptid_t);
500 int to_has_thread_control; /* control thread execution */
501 int to_attach_no_wait;
502 /* ASYNC target controls */
503 int (*to_can_async_p) (struct target_ops *);
504 int (*to_is_async_p) (struct target_ops *);
505 void (*to_async) (struct target_ops *,
506 async_callback_ftype *, void *);
507 int (*to_supports_non_stop) (void);
508 /* find_memory_regions support method for gcore */
509 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
510 /* make_corefile_notes support method for gcore */
511 char * (*to_make_corefile_notes) (bfd *, int *);
512 /* get_bookmark support method for bookmarks */
513 gdb_byte * (*to_get_bookmark) (char *, int);
514 /* goto_bookmark support method for bookmarks */
515 void (*to_goto_bookmark) (gdb_byte *, int);
516 /* Return the thread-local address at OFFSET in the
517 thread-local storage for the thread PTID and the shared library
518 or executable file given by OBJFILE. If that block of
519 thread-local storage hasn't been allocated yet, this function
520 may return an error. */
521 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
522 ptid_t ptid,
523 CORE_ADDR load_module_addr,
524 CORE_ADDR offset);
525
526 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
527 OBJECT. The OFFSET, for a seekable object, specifies the
528 starting point. The ANNEX can be used to provide additional
529 data-specific information to the target.
530
531 Return the transferred status, error or OK (an
532 'enum target_xfer_status' value). Save the number of bytes
533 actually transferred in *XFERED_LEN if transfer is successful
534 (TARGET_XFER_OK) or the number unavailable bytes if the requested
535 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
536 smaller than LEN does not indicate the end of the object, only
537 the end of the transfer; higher level code should continue
538 transferring if desired. This is handled in target.c.
539
540 The interface does not support a "retry" mechanism. Instead it
541 assumes that at least one byte will be transfered on each
542 successful call.
543
544 NOTE: cagney/2003-10-17: The current interface can lead to
545 fragmented transfers. Lower target levels should not implement
546 hacks, such as enlarging the transfer, in an attempt to
547 compensate for this. Instead, the target stack should be
548 extended so that it implements supply/collect methods and a
549 look-aside object cache. With that available, the lowest
550 target can safely and freely "push" data up the stack.
551
552 See target_read and target_write for more information. One,
553 and only one, of readbuf or writebuf must be non-NULL. */
554
555 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
556 enum target_object object,
557 const char *annex,
558 gdb_byte *readbuf,
559 const gdb_byte *writebuf,
560 ULONGEST offset, ULONGEST len,
561 ULONGEST *xfered_len);
562
563 /* Returns the memory map for the target. A return value of NULL
564 means that no memory map is available. If a memory address
565 does not fall within any returned regions, it's assumed to be
566 RAM. The returned memory regions should not overlap.
567
568 The order of regions does not matter; target_memory_map will
569 sort regions by starting address. For that reason, this
570 function should not be called directly except via
571 target_memory_map.
572
573 This method should not cache data; if the memory map could
574 change unexpectedly, it should be invalidated, and higher
575 layers will re-fetch it. */
576 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
577
578 /* Erases the region of flash memory starting at ADDRESS, of
579 length LENGTH.
580
581 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
582 on flash block boundaries, as reported by 'to_memory_map'. */
583 void (*to_flash_erase) (struct target_ops *,
584 ULONGEST address, LONGEST length);
585
586 /* Finishes a flash memory write sequence. After this operation
587 all flash memory should be available for writing and the result
588 of reading from areas written by 'to_flash_write' should be
589 equal to what was written. */
590 void (*to_flash_done) (struct target_ops *);
591
592 /* Describe the architecture-specific features of this target.
593 Returns the description found, or NULL if no description
594 was available. */
595 const struct target_desc *(*to_read_description) (struct target_ops *ops);
596
597 /* Build the PTID of the thread on which a given task is running,
598 based on LWP and THREAD. These values are extracted from the
599 task Private_Data section of the Ada Task Control Block, and
600 their interpretation depends on the target. */
601 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
602
603 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
604 Return 0 if *READPTR is already at the end of the buffer.
605 Return -1 if there is insufficient buffer for a whole entry.
606 Return 1 if an entry was read into *TYPEP and *VALP. */
607 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
608 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
609
610 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
611 sequence of bytes in PATTERN with length PATTERN_LEN.
612
613 The result is 1 if found, 0 if not found, and -1 if there was an error
614 requiring halting of the search (e.g. memory read error).
615 If the pattern is found the address is recorded in FOUND_ADDRP. */
616 int (*to_search_memory) (struct target_ops *ops,
617 CORE_ADDR start_addr, ULONGEST search_space_len,
618 const gdb_byte *pattern, ULONGEST pattern_len,
619 CORE_ADDR *found_addrp);
620
621 /* Can target execute in reverse? */
622 int (*to_can_execute_reverse) (void);
623
624 /* The direction the target is currently executing. Must be
625 implemented on targets that support reverse execution and async
626 mode. The default simply returns forward execution. */
627 enum exec_direction_kind (*to_execution_direction) (void);
628
629 /* Does this target support debugging multiple processes
630 simultaneously? */
631 int (*to_supports_multi_process) (void);
632
633 /* Does this target support enabling and disabling tracepoints while a trace
634 experiment is running? */
635 int (*to_supports_enable_disable_tracepoint) (void);
636
637 /* Does this target support disabling address space randomization? */
638 int (*to_supports_disable_randomization) (void);
639
640 /* Does this target support the tracenz bytecode for string collection? */
641 int (*to_supports_string_tracing) (void);
642
643 /* Does this target support evaluation of breakpoint conditions on its
644 end? */
645 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
646
647 /* Does this target support evaluation of breakpoint commands on its
648 end? */
649 int (*to_can_run_breakpoint_commands) (void);
650
651 /* Determine current architecture of thread PTID.
652
653 The target is supposed to determine the architecture of the code where
654 the target is currently stopped at (on Cell, if a target is in spu_run,
655 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
656 This is architecture used to perform decr_pc_after_break adjustment,
657 and also determines the frame architecture of the innermost frame.
658 ptrace operations need to operate according to target_gdbarch ().
659
660 The default implementation always returns target_gdbarch (). */
661 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
662
663 /* Determine current address space of thread PTID.
664
665 The default implementation always returns the inferior's
666 address space. */
667 struct address_space *(*to_thread_address_space) (struct target_ops *,
668 ptid_t);
669
670 /* Target file operations. */
671
672 /* Open FILENAME on the target, using FLAGS and MODE. Return a
673 target file descriptor, or -1 if an error occurs (and set
674 *TARGET_ERRNO). */
675 int (*to_fileio_open) (const char *filename, int flags, int mode,
676 int *target_errno);
677
678 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
679 Return the number of bytes written, or -1 if an error occurs
680 (and set *TARGET_ERRNO). */
681 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
682 ULONGEST offset, int *target_errno);
683
684 /* Read up to LEN bytes FD on the target into READ_BUF.
685 Return the number of bytes read, or -1 if an error occurs
686 (and set *TARGET_ERRNO). */
687 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
688 ULONGEST offset, int *target_errno);
689
690 /* Close FD on the target. Return 0, or -1 if an error occurs
691 (and set *TARGET_ERRNO). */
692 int (*to_fileio_close) (int fd, int *target_errno);
693
694 /* Unlink FILENAME on the target. Return 0, or -1 if an error
695 occurs (and set *TARGET_ERRNO). */
696 int (*to_fileio_unlink) (const char *filename, int *target_errno);
697
698 /* Read value of symbolic link FILENAME on the target. Return a
699 null-terminated string allocated via xmalloc, or NULL if an error
700 occurs (and set *TARGET_ERRNO). */
701 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
702
703
704 /* Implement the "info proc" command. */
705 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
706
707 /* Tracepoint-related operations. */
708
709 /* Prepare the target for a tracing run. */
710 void (*to_trace_init) (void);
711
712 /* Send full details of a tracepoint location to the target. */
713 void (*to_download_tracepoint) (struct bp_location *location);
714
715 /* Is the target able to download tracepoint locations in current
716 state? */
717 int (*to_can_download_tracepoint) (void);
718
719 /* Send full details of a trace state variable to the target. */
720 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
721
722 /* Enable a tracepoint on the target. */
723 void (*to_enable_tracepoint) (struct bp_location *location);
724
725 /* Disable a tracepoint on the target. */
726 void (*to_disable_tracepoint) (struct bp_location *location);
727
728 /* Inform the target info of memory regions that are readonly
729 (such as text sections), and so it should return data from
730 those rather than look in the trace buffer. */
731 void (*to_trace_set_readonly_regions) (void);
732
733 /* Start a trace run. */
734 void (*to_trace_start) (void);
735
736 /* Get the current status of a tracing run. */
737 int (*to_get_trace_status) (struct trace_status *ts);
738
739 void (*to_get_tracepoint_status) (struct breakpoint *tp,
740 struct uploaded_tp *utp);
741
742 /* Stop a trace run. */
743 void (*to_trace_stop) (void);
744
745 /* Ask the target to find a trace frame of the given type TYPE,
746 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
747 number of the trace frame, and also the tracepoint number at
748 TPP. If no trace frame matches, return -1. May throw if the
749 operation fails. */
750 int (*to_trace_find) (enum trace_find_type type, int num,
751 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
752
753 /* Get the value of the trace state variable number TSV, returning
754 1 if the value is known and writing the value itself into the
755 location pointed to by VAL, else returning 0. */
756 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
757
758 int (*to_save_trace_data) (const char *filename);
759
760 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
761
762 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
763
764 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
765 ULONGEST offset, LONGEST len);
766
767 /* Get the minimum length of instruction on which a fast tracepoint
768 may be set on the target. If this operation is unsupported,
769 return -1. If for some reason the minimum length cannot be
770 determined, return 0. */
771 int (*to_get_min_fast_tracepoint_insn_len) (void);
772
773 /* Set the target's tracing behavior in response to unexpected
774 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
775 void (*to_set_disconnected_tracing) (int val);
776 void (*to_set_circular_trace_buffer) (int val);
777 /* Set the size of trace buffer in the target. */
778 void (*to_set_trace_buffer_size) (LONGEST val);
779
780 /* Add/change textual notes about the trace run, returning 1 if
781 successful, 0 otherwise. */
782 int (*to_set_trace_notes) (const char *user, const char *notes,
783 const char *stopnotes);
784
785 /* Return the processor core that thread PTID was last seen on.
786 This information is updated only when:
787 - update_thread_list is called
788 - thread stops
789 If the core cannot be determined -- either for the specified
790 thread, or right now, or in this debug session, or for this
791 target -- return -1. */
792 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
793
794 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
795 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
796 a match, 0 if there's a mismatch, and -1 if an error is
797 encountered while reading memory. */
798 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
799 CORE_ADDR memaddr, ULONGEST size);
800
801 /* Return the address of the start of the Thread Information Block
802 a Windows OS specific feature. */
803 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
804
805 /* Send the new settings of write permission variables. */
806 void (*to_set_permissions) (void);
807
808 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
809 with its details. Return 1 on success, 0 on failure. */
810 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
811 struct static_tracepoint_marker *marker);
812
813 /* Return a vector of all tracepoints markers string id ID, or all
814 markers if ID is NULL. */
815 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
816 (const char *id);
817
818 /* Return a traceframe info object describing the current
819 traceframe's contents. If the target doesn't support
820 traceframe info, return NULL. If the current traceframe is not
821 selected (the current traceframe number is -1), the target can
822 choose to return either NULL or an empty traceframe info. If
823 NULL is returned, for example in remote target, GDB will read
824 from the live inferior. If an empty traceframe info is
825 returned, for example in tfile target, which means the
826 traceframe info is available, but the requested memory is not
827 available in it. GDB will try to see if the requested memory
828 is available in the read-only sections. This method should not
829 cache data; higher layers take care of caching, invalidating,
830 and re-fetching when necessary. */
831 struct traceframe_info *(*to_traceframe_info) (void);
832
833 /* Ask the target to use or not to use agent according to USE. Return 1
834 successful, 0 otherwise. */
835 int (*to_use_agent) (int use);
836
837 /* Is the target able to use agent in current state? */
838 int (*to_can_use_agent) (void);
839
840 /* Check whether the target supports branch tracing. */
841 int (*to_supports_btrace) (void);
842
843 /* Enable branch tracing for PTID and allocate a branch trace target
844 information struct for reading and for disabling branch trace. */
845 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
846
847 /* Disable branch tracing and deallocate TINFO. */
848 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
849
850 /* Disable branch tracing and deallocate TINFO. This function is similar
851 to to_disable_btrace, except that it is called during teardown and is
852 only allowed to perform actions that are safe. A counter-example would
853 be attempting to talk to a remote target. */
854 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
855
856 /* Read branch trace data for the thread indicated by BTINFO into DATA.
857 DATA is cleared before new trace is added.
858 The branch trace will start with the most recent block and continue
859 towards older blocks. */
860 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
861 struct btrace_target_info *btinfo,
862 enum btrace_read_type type);
863
864 /* Stop trace recording. */
865 void (*to_stop_recording) (void);
866
867 /* Print information about the recording. */
868 void (*to_info_record) (void);
869
870 /* Save the recorded execution trace into a file. */
871 void (*to_save_record) (const char *filename);
872
873 /* Delete the recorded execution trace from the current position onwards. */
874 void (*to_delete_record) (void);
875
876 /* Query if the record target is currently replaying. */
877 int (*to_record_is_replaying) (void);
878
879 /* Go to the begin of the execution trace. */
880 void (*to_goto_record_begin) (void);
881
882 /* Go to the end of the execution trace. */
883 void (*to_goto_record_end) (void);
884
885 /* Go to a specific location in the recorded execution trace. */
886 void (*to_goto_record) (ULONGEST insn);
887
888 /* Disassemble SIZE instructions in the recorded execution trace from
889 the current position.
890 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
891 disassemble SIZE succeeding instructions. */
892 void (*to_insn_history) (int size, int flags);
893
894 /* Disassemble SIZE instructions in the recorded execution trace around
895 FROM.
896 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
897 disassemble SIZE instructions after FROM. */
898 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
899
900 /* Disassemble a section of the recorded execution trace from instruction
901 BEGIN (inclusive) to instruction END (inclusive). */
902 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
903
904 /* Print a function trace of the recorded execution trace.
905 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
906 succeeding functions. */
907 void (*to_call_history) (int size, int flags);
908
909 /* Print a function trace of the recorded execution trace starting
910 at function FROM.
911 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
912 SIZE functions after FROM. */
913 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
914
915 /* Print a function trace of an execution trace section from function BEGIN
916 (inclusive) to function END (inclusive). */
917 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
918
919 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
920 non-empty annex. */
921 int (*to_augmented_libraries_svr4_read) (void);
922
923 /* Those unwinders are tried before any other arch unwinders. Use NULL if
924 it is not used. */
925 const struct frame_unwind *to_get_unwinder;
926 const struct frame_unwind *to_get_tailcall_unwinder;
927
928 /* Return the number of bytes by which the PC needs to be decremented
929 after executing a breakpoint instruction.
930 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
931 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
932 struct gdbarch *gdbarch);
933
934 int to_magic;
935 /* Need sub-structure for target machine related rather than comm related?
936 */
937 };
938
939 /* Magic number for checking ops size. If a struct doesn't end with this
940 number, somebody changed the declaration but didn't change all the
941 places that initialize one. */
942
943 #define OPS_MAGIC 3840
944
945 /* The ops structure for our "current" target process. This should
946 never be NULL. If there is no target, it points to the dummy_target. */
947
948 extern struct target_ops current_target;
949
950 /* Define easy words for doing these operations on our current target. */
951
952 #define target_shortname (current_target.to_shortname)
953 #define target_longname (current_target.to_longname)
954
955 /* Does whatever cleanup is required for a target that we are no
956 longer going to be calling. This routine is automatically always
957 called after popping the target off the target stack - the target's
958 own methods are no longer available through the target vector.
959 Closing file descriptors and freeing all memory allocated memory are
960 typical things it should do. */
961
962 void target_close (struct target_ops *targ);
963
964 /* Attaches to a process on the target side. Arguments are as passed
965 to the `attach' command by the user. This routine can be called
966 when the target is not on the target-stack, if the target_can_run
967 routine returns 1; in that case, it must push itself onto the stack.
968 Upon exit, the target should be ready for normal operations, and
969 should be ready to deliver the status of the process immediately
970 (without waiting) to an upcoming target_wait call. */
971
972 void target_attach (char *, int);
973
974 /* Some targets don't generate traps when attaching to the inferior,
975 or their target_attach implementation takes care of the waiting.
976 These targets must set to_attach_no_wait. */
977
978 #define target_attach_no_wait \
979 (current_target.to_attach_no_wait)
980
981 /* The target_attach operation places a process under debugger control,
982 and stops the process.
983
984 This operation provides a target-specific hook that allows the
985 necessary bookkeeping to be performed after an attach completes. */
986 #define target_post_attach(pid) \
987 (*current_target.to_post_attach) (pid)
988
989 /* Takes a program previously attached to and detaches it.
990 The program may resume execution (some targets do, some don't) and will
991 no longer stop on signals, etc. We better not have left any breakpoints
992 in the program or it'll die when it hits one. ARGS is arguments
993 typed by the user (e.g. a signal to send the process). FROM_TTY
994 says whether to be verbose or not. */
995
996 extern void target_detach (const char *, int);
997
998 /* Disconnect from the current target without resuming it (leaving it
999 waiting for a debugger). */
1000
1001 extern void target_disconnect (char *, int);
1002
1003 /* Resume execution of the target process PTID (or a group of
1004 threads). STEP says whether to single-step or to run free; SIGGNAL
1005 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1006 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1007 PTID means `step/resume only this process id'. A wildcard PTID
1008 (all threads, or all threads of process) means `step/resume
1009 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1010 matches) resume with their 'thread->suspend.stop_signal' signal
1011 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1012 if in "no pass" state. */
1013
1014 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1015
1016 /* Wait for process pid to do something. PTID = -1 to wait for any
1017 pid to do something. Return pid of child, or -1 in case of error;
1018 store status through argument pointer STATUS. Note that it is
1019 _NOT_ OK to throw_exception() out of target_wait() without popping
1020 the debugging target from the stack; GDB isn't prepared to get back
1021 to the prompt with a debugging target but without the frame cache,
1022 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1023 options. */
1024
1025 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1026 int options);
1027
1028 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1029
1030 extern void target_fetch_registers (struct regcache *regcache, int regno);
1031
1032 /* Store at least register REGNO, or all regs if REGNO == -1.
1033 It can store as many registers as it wants to, so target_prepare_to_store
1034 must have been previously called. Calls error() if there are problems. */
1035
1036 extern void target_store_registers (struct regcache *regcache, int regs);
1037
1038 /* Get ready to modify the registers array. On machines which store
1039 individual registers, this doesn't need to do anything. On machines
1040 which store all the registers in one fell swoop, this makes sure
1041 that REGISTERS contains all the registers from the program being
1042 debugged. */
1043
1044 #define target_prepare_to_store(regcache) \
1045 (*current_target.to_prepare_to_store) (&current_target, regcache)
1046
1047 /* Determine current address space of thread PTID. */
1048
1049 struct address_space *target_thread_address_space (ptid_t);
1050
1051 /* Implement the "info proc" command. This returns one if the request
1052 was handled, and zero otherwise. It can also throw an exception if
1053 an error was encountered while attempting to handle the
1054 request. */
1055
1056 int target_info_proc (char *, enum info_proc_what);
1057
1058 /* Returns true if this target can debug multiple processes
1059 simultaneously. */
1060
1061 #define target_supports_multi_process() \
1062 (*current_target.to_supports_multi_process) ()
1063
1064 /* Returns true if this target can disable address space randomization. */
1065
1066 int target_supports_disable_randomization (void);
1067
1068 /* Returns true if this target can enable and disable tracepoints
1069 while a trace experiment is running. */
1070
1071 #define target_supports_enable_disable_tracepoint() \
1072 (*current_target.to_supports_enable_disable_tracepoint) ()
1073
1074 #define target_supports_string_tracing() \
1075 (*current_target.to_supports_string_tracing) ()
1076
1077 /* Returns true if this target can handle breakpoint conditions
1078 on its end. */
1079
1080 #define target_supports_evaluation_of_breakpoint_conditions() \
1081 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1082
1083 /* Returns true if this target can handle breakpoint commands
1084 on its end. */
1085
1086 #define target_can_run_breakpoint_commands() \
1087 (*current_target.to_can_run_breakpoint_commands) ()
1088
1089 extern int target_read_string (CORE_ADDR, char **, int, int *);
1090
1091 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1092 ssize_t len);
1093
1094 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1095 ssize_t len);
1096
1097 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1098
1099 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1100
1101 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1102 ssize_t len);
1103
1104 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1105 ssize_t len);
1106
1107 /* Fetches the target's memory map. If one is found it is sorted
1108 and returned, after some consistency checking. Otherwise, NULL
1109 is returned. */
1110 VEC(mem_region_s) *target_memory_map (void);
1111
1112 /* Erase the specified flash region. */
1113 void target_flash_erase (ULONGEST address, LONGEST length);
1114
1115 /* Finish a sequence of flash operations. */
1116 void target_flash_done (void);
1117
1118 /* Describes a request for a memory write operation. */
1119 struct memory_write_request
1120 {
1121 /* Begining address that must be written. */
1122 ULONGEST begin;
1123 /* Past-the-end address. */
1124 ULONGEST end;
1125 /* The data to write. */
1126 gdb_byte *data;
1127 /* A callback baton for progress reporting for this request. */
1128 void *baton;
1129 };
1130 typedef struct memory_write_request memory_write_request_s;
1131 DEF_VEC_O(memory_write_request_s);
1132
1133 /* Enumeration specifying different flash preservation behaviour. */
1134 enum flash_preserve_mode
1135 {
1136 flash_preserve,
1137 flash_discard
1138 };
1139
1140 /* Write several memory blocks at once. This version can be more
1141 efficient than making several calls to target_write_memory, in
1142 particular because it can optimize accesses to flash memory.
1143
1144 Moreover, this is currently the only memory access function in gdb
1145 that supports writing to flash memory, and it should be used for
1146 all cases where access to flash memory is desirable.
1147
1148 REQUESTS is the vector (see vec.h) of memory_write_request.
1149 PRESERVE_FLASH_P indicates what to do with blocks which must be
1150 erased, but not completely rewritten.
1151 PROGRESS_CB is a function that will be periodically called to provide
1152 feedback to user. It will be called with the baton corresponding
1153 to the request currently being written. It may also be called
1154 with a NULL baton, when preserved flash sectors are being rewritten.
1155
1156 The function returns 0 on success, and error otherwise. */
1157 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1158 enum flash_preserve_mode preserve_flash_p,
1159 void (*progress_cb) (ULONGEST, void *));
1160
1161 /* Print a line about the current target. */
1162
1163 #define target_files_info() \
1164 (*current_target.to_files_info) (&current_target)
1165
1166 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1167 the target machine. Returns 0 for success, and returns non-zero or
1168 throws an error (with a detailed failure reason error code and
1169 message) otherwise.
1170 Start the target search at OPS. */
1171
1172 extern int forward_target_insert_breakpoint (struct target_ops *ops,
1173 struct gdbarch *gdbarch,
1174 struct bp_target_info *bp_tgt);
1175
1176 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1177 the target machine. Returns 0 for success, and returns non-zero or
1178 throws an error (with a detailed failure reason error code and
1179 message) otherwise. */
1180
1181 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1182 struct bp_target_info *bp_tgt);
1183
1184 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1185 machine. Result is 0 for success, non-zero for error.
1186 Start the target search at OPS. */
1187
1188 extern int forward_target_remove_breakpoint (struct target_ops *ops,
1189 struct gdbarch *gdbarch,
1190 struct bp_target_info *bp_tgt);
1191 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1192 machine. Result is 0 for success, non-zero for error. */
1193
1194 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1195 struct bp_target_info *bp_tgt);
1196
1197 /* Initialize the terminal settings we record for the inferior,
1198 before we actually run the inferior. */
1199
1200 #define target_terminal_init() \
1201 (*current_target.to_terminal_init) ()
1202
1203 /* Put the inferior's terminal settings into effect.
1204 This is preparation for starting or resuming the inferior. */
1205
1206 extern void target_terminal_inferior (void);
1207
1208 /* Put some of our terminal settings into effect,
1209 enough to get proper results from our output,
1210 but do not change into or out of RAW mode
1211 so that no input is discarded.
1212
1213 After doing this, either terminal_ours or terminal_inferior
1214 should be called to get back to a normal state of affairs. */
1215
1216 #define target_terminal_ours_for_output() \
1217 (*current_target.to_terminal_ours_for_output) ()
1218
1219 /* Put our terminal settings into effect.
1220 First record the inferior's terminal settings
1221 so they can be restored properly later. */
1222
1223 #define target_terminal_ours() \
1224 (*current_target.to_terminal_ours) ()
1225
1226 /* Save our terminal settings.
1227 This is called from TUI after entering or leaving the curses
1228 mode. Since curses modifies our terminal this call is here
1229 to take this change into account. */
1230
1231 #define target_terminal_save_ours() \
1232 (*current_target.to_terminal_save_ours) ()
1233
1234 /* Print useful information about our terminal status, if such a thing
1235 exists. */
1236
1237 #define target_terminal_info(arg, from_tty) \
1238 (*current_target.to_terminal_info) (arg, from_tty)
1239
1240 /* Kill the inferior process. Make it go away. */
1241
1242 extern void target_kill (void);
1243
1244 /* Load an executable file into the target process. This is expected
1245 to not only bring new code into the target process, but also to
1246 update GDB's symbol tables to match.
1247
1248 ARG contains command-line arguments, to be broken down with
1249 buildargv (). The first non-switch argument is the filename to
1250 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1251 0)), which is an offset to apply to the load addresses of FILE's
1252 sections. The target may define switches, or other non-switch
1253 arguments, as it pleases. */
1254
1255 extern void target_load (char *arg, int from_tty);
1256
1257 /* Start an inferior process and set inferior_ptid to its pid.
1258 EXEC_FILE is the file to run.
1259 ALLARGS is a string containing the arguments to the program.
1260 ENV is the environment vector to pass. Errors reported with error().
1261 On VxWorks and various standalone systems, we ignore exec_file. */
1262
1263 void target_create_inferior (char *exec_file, char *args,
1264 char **env, int from_tty);
1265
1266 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1267 notification of inferior events such as fork and vork immediately
1268 after the inferior is created. (This because of how gdb gets an
1269 inferior created via invoking a shell to do it. In such a scenario,
1270 if the shell init file has commands in it, the shell will fork and
1271 exec for each of those commands, and we will see each such fork
1272 event. Very bad.)
1273
1274 Such targets will supply an appropriate definition for this function. */
1275
1276 #define target_post_startup_inferior(ptid) \
1277 (*current_target.to_post_startup_inferior) (ptid)
1278
1279 /* On some targets, we can catch an inferior fork or vfork event when
1280 it occurs. These functions insert/remove an already-created
1281 catchpoint for such events. They return 0 for success, 1 if the
1282 catchpoint type is not supported and -1 for failure. */
1283
1284 #define target_insert_fork_catchpoint(pid) \
1285 (*current_target.to_insert_fork_catchpoint) (pid)
1286
1287 #define target_remove_fork_catchpoint(pid) \
1288 (*current_target.to_remove_fork_catchpoint) (pid)
1289
1290 #define target_insert_vfork_catchpoint(pid) \
1291 (*current_target.to_insert_vfork_catchpoint) (pid)
1292
1293 #define target_remove_vfork_catchpoint(pid) \
1294 (*current_target.to_remove_vfork_catchpoint) (pid)
1295
1296 /* If the inferior forks or vforks, this function will be called at
1297 the next resume in order to perform any bookkeeping and fiddling
1298 necessary to continue debugging either the parent or child, as
1299 requested, and releasing the other. Information about the fork
1300 or vfork event is available via get_last_target_status ().
1301 This function returns 1 if the inferior should not be resumed
1302 (i.e. there is another event pending). */
1303
1304 int target_follow_fork (int follow_child, int detach_fork);
1305
1306 /* On some targets, we can catch an inferior exec event when it
1307 occurs. These functions insert/remove an already-created
1308 catchpoint for such events. They return 0 for success, 1 if the
1309 catchpoint type is not supported and -1 for failure. */
1310
1311 #define target_insert_exec_catchpoint(pid) \
1312 (*current_target.to_insert_exec_catchpoint) (pid)
1313
1314 #define target_remove_exec_catchpoint(pid) \
1315 (*current_target.to_remove_exec_catchpoint) (pid)
1316
1317 /* Syscall catch.
1318
1319 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1320 If NEEDED is zero, it means the target can disable the mechanism to
1321 catch system calls because there are no more catchpoints of this type.
1322
1323 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1324 being requested. In this case, both TABLE_SIZE and TABLE should
1325 be ignored.
1326
1327 TABLE_SIZE is the number of elements in TABLE. It only matters if
1328 ANY_COUNT is zero.
1329
1330 TABLE is an array of ints, indexed by syscall number. An element in
1331 this array is nonzero if that syscall should be caught. This argument
1332 only matters if ANY_COUNT is zero.
1333
1334 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1335 for failure. */
1336
1337 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1338 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1339 table_size, table)
1340
1341 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1342 exit code of PID, if any. */
1343
1344 #define target_has_exited(pid,wait_status,exit_status) \
1345 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1346
1347 /* The debugger has completed a blocking wait() call. There is now
1348 some process event that must be processed. This function should
1349 be defined by those targets that require the debugger to perform
1350 cleanup or internal state changes in response to the process event. */
1351
1352 /* The inferior process has died. Do what is right. */
1353
1354 void target_mourn_inferior (void);
1355
1356 /* Does target have enough data to do a run or attach command? */
1357
1358 #define target_can_run(t) \
1359 ((t)->to_can_run) ()
1360
1361 /* Set list of signals to be handled in the target.
1362
1363 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1364 (enum gdb_signal). For every signal whose entry in this array is
1365 non-zero, the target is allowed -but not required- to skip reporting
1366 arrival of the signal to the GDB core by returning from target_wait,
1367 and to pass the signal directly to the inferior instead.
1368
1369 However, if the target is hardware single-stepping a thread that is
1370 about to receive a signal, it needs to be reported in any case, even
1371 if mentioned in a previous target_pass_signals call. */
1372
1373 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1374
1375 /* Set list of signals the target may pass to the inferior. This
1376 directly maps to the "handle SIGNAL pass/nopass" setting.
1377
1378 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1379 number (enum gdb_signal). For every signal whose entry in this
1380 array is non-zero, the target is allowed to pass the signal to the
1381 inferior. Signals not present in the array shall be silently
1382 discarded. This does not influence whether to pass signals to the
1383 inferior as a result of a target_resume call. This is useful in
1384 scenarios where the target needs to decide whether to pass or not a
1385 signal to the inferior without GDB core involvement, such as for
1386 example, when detaching (as threads may have been suspended with
1387 pending signals not reported to GDB). */
1388
1389 extern void target_program_signals (int nsig, unsigned char *program_signals);
1390
1391 /* Check to see if a thread is still alive. */
1392
1393 extern int target_thread_alive (ptid_t ptid);
1394
1395 /* Query for new threads and add them to the thread list. */
1396
1397 extern void target_find_new_threads (void);
1398
1399 /* Make target stop in a continuable fashion. (For instance, under
1400 Unix, this should act like SIGSTOP). This function is normally
1401 used by GUIs to implement a stop button. */
1402
1403 extern void target_stop (ptid_t ptid);
1404
1405 /* Send the specified COMMAND to the target's monitor
1406 (shell,interpreter) for execution. The result of the query is
1407 placed in OUTBUF. */
1408
1409 #define target_rcmd(command, outbuf) \
1410 (*current_target.to_rcmd) (command, outbuf)
1411
1412
1413 /* Does the target include all of memory, or only part of it? This
1414 determines whether we look up the target chain for other parts of
1415 memory if this target can't satisfy a request. */
1416
1417 extern int target_has_all_memory_1 (void);
1418 #define target_has_all_memory target_has_all_memory_1 ()
1419
1420 /* Does the target include memory? (Dummy targets don't.) */
1421
1422 extern int target_has_memory_1 (void);
1423 #define target_has_memory target_has_memory_1 ()
1424
1425 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1426 we start a process.) */
1427
1428 extern int target_has_stack_1 (void);
1429 #define target_has_stack target_has_stack_1 ()
1430
1431 /* Does the target have registers? (Exec files don't.) */
1432
1433 extern int target_has_registers_1 (void);
1434 #define target_has_registers target_has_registers_1 ()
1435
1436 /* Does the target have execution? Can we make it jump (through
1437 hoops), or pop its stack a few times? This means that the current
1438 target is currently executing; for some targets, that's the same as
1439 whether or not the target is capable of execution, but there are
1440 also targets which can be current while not executing. In that
1441 case this will become true after target_create_inferior or
1442 target_attach. */
1443
1444 extern int target_has_execution_1 (ptid_t);
1445
1446 /* Like target_has_execution_1, but always passes inferior_ptid. */
1447
1448 extern int target_has_execution_current (void);
1449
1450 #define target_has_execution target_has_execution_current ()
1451
1452 /* Default implementations for process_stratum targets. Return true
1453 if there's a selected inferior, false otherwise. */
1454
1455 extern int default_child_has_all_memory (struct target_ops *ops);
1456 extern int default_child_has_memory (struct target_ops *ops);
1457 extern int default_child_has_stack (struct target_ops *ops);
1458 extern int default_child_has_registers (struct target_ops *ops);
1459 extern int default_child_has_execution (struct target_ops *ops,
1460 ptid_t the_ptid);
1461
1462 /* Can the target support the debugger control of thread execution?
1463 Can it lock the thread scheduler? */
1464
1465 #define target_can_lock_scheduler \
1466 (current_target.to_has_thread_control & tc_schedlock)
1467
1468 /* Should the target enable async mode if it is supported? Temporary
1469 cludge until async mode is a strict superset of sync mode. */
1470 extern int target_async_permitted;
1471
1472 /* Can the target support asynchronous execution? */
1473 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1474
1475 /* Is the target in asynchronous execution mode? */
1476 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1477
1478 int target_supports_non_stop (void);
1479
1480 /* Put the target in async mode with the specified callback function. */
1481 #define target_async(CALLBACK,CONTEXT) \
1482 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1483
1484 #define target_execution_direction() \
1485 (current_target.to_execution_direction ())
1486
1487 /* Converts a process id to a string. Usually, the string just contains
1488 `process xyz', but on some systems it may contain
1489 `process xyz thread abc'. */
1490
1491 extern char *target_pid_to_str (ptid_t ptid);
1492
1493 extern char *normal_pid_to_str (ptid_t ptid);
1494
1495 /* Return a short string describing extra information about PID,
1496 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1497 is okay. */
1498
1499 #define target_extra_thread_info(TP) \
1500 (current_target.to_extra_thread_info (TP))
1501
1502 /* Return the thread's name. A NULL result means that the target
1503 could not determine this thread's name. */
1504
1505 extern char *target_thread_name (struct thread_info *);
1506
1507 /* Attempts to find the pathname of the executable file
1508 that was run to create a specified process.
1509
1510 The process PID must be stopped when this operation is used.
1511
1512 If the executable file cannot be determined, NULL is returned.
1513
1514 Else, a pointer to a character string containing the pathname
1515 is returned. This string should be copied into a buffer by
1516 the client if the string will not be immediately used, or if
1517 it must persist. */
1518
1519 #define target_pid_to_exec_file(pid) \
1520 (current_target.to_pid_to_exec_file) (pid)
1521
1522 /* See the to_thread_architecture description in struct target_ops. */
1523
1524 #define target_thread_architecture(ptid) \
1525 (current_target.to_thread_architecture (&current_target, ptid))
1526
1527 /*
1528 * Iterator function for target memory regions.
1529 * Calls a callback function once for each memory region 'mapped'
1530 * in the child process. Defined as a simple macro rather than
1531 * as a function macro so that it can be tested for nullity.
1532 */
1533
1534 #define target_find_memory_regions(FUNC, DATA) \
1535 (current_target.to_find_memory_regions) (FUNC, DATA)
1536
1537 /*
1538 * Compose corefile .note section.
1539 */
1540
1541 #define target_make_corefile_notes(BFD, SIZE_P) \
1542 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1543
1544 /* Bookmark interfaces. */
1545 #define target_get_bookmark(ARGS, FROM_TTY) \
1546 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1547
1548 #define target_goto_bookmark(ARG, FROM_TTY) \
1549 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1550
1551 /* Hardware watchpoint interfaces. */
1552
1553 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1554 write). Only the INFERIOR_PTID task is being queried. */
1555
1556 #define target_stopped_by_watchpoint() \
1557 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1558
1559 /* Non-zero if we have steppable watchpoints */
1560
1561 #define target_have_steppable_watchpoint \
1562 (current_target.to_have_steppable_watchpoint)
1563
1564 /* Non-zero if we have continuable watchpoints */
1565
1566 #define target_have_continuable_watchpoint \
1567 (current_target.to_have_continuable_watchpoint)
1568
1569 /* Provide defaults for hardware watchpoint functions. */
1570
1571 /* If the *_hw_beakpoint functions have not been defined
1572 elsewhere use the definitions in the target vector. */
1573
1574 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1575 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1576 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1577 (including this one?). OTHERTYPE is who knows what... */
1578
1579 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1580 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1581
1582 /* Returns the number of debug registers needed to watch the given
1583 memory region, or zero if not supported. */
1584
1585 #define target_region_ok_for_hw_watchpoint(addr, len) \
1586 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1587
1588
1589 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1590 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1591 COND is the expression for its condition, or NULL if there's none.
1592 Returns 0 for success, 1 if the watchpoint type is not supported,
1593 -1 for failure. */
1594
1595 #define target_insert_watchpoint(addr, len, type, cond) \
1596 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1597
1598 #define target_remove_watchpoint(addr, len, type, cond) \
1599 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1600
1601 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1602 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1603 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1604 masked watchpoints are not supported, -1 for failure. */
1605
1606 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1607
1608 /* Remove a masked watchpoint at ADDR with the mask MASK.
1609 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1610 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1611 for failure. */
1612
1613 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1614
1615 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1616 the target machine. Returns 0 for success, and returns non-zero or
1617 throws an error (with a detailed failure reason error code and
1618 message) otherwise. */
1619
1620 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1621 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1622
1623 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1624 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1625
1626 /* Return number of debug registers needed for a ranged breakpoint,
1627 or -1 if ranged breakpoints are not supported. */
1628
1629 extern int target_ranged_break_num_registers (void);
1630
1631 /* Return non-zero if target knows the data address which triggered this
1632 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1633 INFERIOR_PTID task is being queried. */
1634 #define target_stopped_data_address(target, addr_p) \
1635 (*target.to_stopped_data_address) (target, addr_p)
1636
1637 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1638 LENGTH bytes beginning at START. */
1639 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1640 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1641
1642 /* Return non-zero if the target is capable of using hardware to evaluate
1643 the condition expression. In this case, if the condition is false when
1644 the watched memory location changes, execution may continue without the
1645 debugger being notified.
1646
1647 Due to limitations in the hardware implementation, it may be capable of
1648 avoiding triggering the watchpoint in some cases where the condition
1649 expression is false, but may report some false positives as well.
1650 For this reason, GDB will still evaluate the condition expression when
1651 the watchpoint triggers. */
1652 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1653 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1654
1655 /* Return number of debug registers needed for a masked watchpoint,
1656 -1 if masked watchpoints are not supported or -2 if the given address
1657 and mask combination cannot be used. */
1658
1659 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1660
1661 /* Target can execute in reverse? */
1662 #define target_can_execute_reverse \
1663 (current_target.to_can_execute_reverse ? \
1664 current_target.to_can_execute_reverse () : 0)
1665
1666 extern const struct target_desc *target_read_description (struct target_ops *);
1667
1668 #define target_get_ada_task_ptid(lwp, tid) \
1669 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1670
1671 /* Utility implementation of searching memory. */
1672 extern int simple_search_memory (struct target_ops* ops,
1673 CORE_ADDR start_addr,
1674 ULONGEST search_space_len,
1675 const gdb_byte *pattern,
1676 ULONGEST pattern_len,
1677 CORE_ADDR *found_addrp);
1678
1679 /* Main entry point for searching memory. */
1680 extern int target_search_memory (CORE_ADDR start_addr,
1681 ULONGEST search_space_len,
1682 const gdb_byte *pattern,
1683 ULONGEST pattern_len,
1684 CORE_ADDR *found_addrp);
1685
1686 /* Target file operations. */
1687
1688 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1689 target file descriptor, or -1 if an error occurs (and set
1690 *TARGET_ERRNO). */
1691 extern int target_fileio_open (const char *filename, int flags, int mode,
1692 int *target_errno);
1693
1694 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1695 Return the number of bytes written, or -1 if an error occurs
1696 (and set *TARGET_ERRNO). */
1697 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1698 ULONGEST offset, int *target_errno);
1699
1700 /* Read up to LEN bytes FD on the target into READ_BUF.
1701 Return the number of bytes read, or -1 if an error occurs
1702 (and set *TARGET_ERRNO). */
1703 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1704 ULONGEST offset, int *target_errno);
1705
1706 /* Close FD on the target. Return 0, or -1 if an error occurs
1707 (and set *TARGET_ERRNO). */
1708 extern int target_fileio_close (int fd, int *target_errno);
1709
1710 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1711 occurs (and set *TARGET_ERRNO). */
1712 extern int target_fileio_unlink (const char *filename, int *target_errno);
1713
1714 /* Read value of symbolic link FILENAME on the target. Return a
1715 null-terminated string allocated via xmalloc, or NULL if an error
1716 occurs (and set *TARGET_ERRNO). */
1717 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1718
1719 /* Read target file FILENAME. The return value will be -1 if the transfer
1720 fails or is not supported; 0 if the object is empty; or the length
1721 of the object otherwise. If a positive value is returned, a
1722 sufficiently large buffer will be allocated using xmalloc and
1723 returned in *BUF_P containing the contents of the object.
1724
1725 This method should be used for objects sufficiently small to store
1726 in a single xmalloc'd buffer, when no fixed bound on the object's
1727 size is known in advance. */
1728 extern LONGEST target_fileio_read_alloc (const char *filename,
1729 gdb_byte **buf_p);
1730
1731 /* Read target file FILENAME. The result is NUL-terminated and
1732 returned as a string, allocated using xmalloc. If an error occurs
1733 or the transfer is unsupported, NULL is returned. Empty objects
1734 are returned as allocated but empty strings. A warning is issued
1735 if the result contains any embedded NUL bytes. */
1736 extern char *target_fileio_read_stralloc (const char *filename);
1737
1738
1739 /* Tracepoint-related operations. */
1740
1741 #define target_trace_init() \
1742 (*current_target.to_trace_init) ()
1743
1744 #define target_download_tracepoint(t) \
1745 (*current_target.to_download_tracepoint) (t)
1746
1747 #define target_can_download_tracepoint() \
1748 (*current_target.to_can_download_tracepoint) ()
1749
1750 #define target_download_trace_state_variable(tsv) \
1751 (*current_target.to_download_trace_state_variable) (tsv)
1752
1753 #define target_enable_tracepoint(loc) \
1754 (*current_target.to_enable_tracepoint) (loc)
1755
1756 #define target_disable_tracepoint(loc) \
1757 (*current_target.to_disable_tracepoint) (loc)
1758
1759 #define target_trace_start() \
1760 (*current_target.to_trace_start) ()
1761
1762 #define target_trace_set_readonly_regions() \
1763 (*current_target.to_trace_set_readonly_regions) ()
1764
1765 #define target_get_trace_status(ts) \
1766 (*current_target.to_get_trace_status) (ts)
1767
1768 #define target_get_tracepoint_status(tp,utp) \
1769 (*current_target.to_get_tracepoint_status) (tp, utp)
1770
1771 #define target_trace_stop() \
1772 (*current_target.to_trace_stop) ()
1773
1774 #define target_trace_find(type,num,addr1,addr2,tpp) \
1775 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1776
1777 #define target_get_trace_state_variable_value(tsv,val) \
1778 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1779
1780 #define target_save_trace_data(filename) \
1781 (*current_target.to_save_trace_data) (filename)
1782
1783 #define target_upload_tracepoints(utpp) \
1784 (*current_target.to_upload_tracepoints) (utpp)
1785
1786 #define target_upload_trace_state_variables(utsvp) \
1787 (*current_target.to_upload_trace_state_variables) (utsvp)
1788
1789 #define target_get_raw_trace_data(buf,offset,len) \
1790 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1791
1792 #define target_get_min_fast_tracepoint_insn_len() \
1793 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1794
1795 #define target_set_disconnected_tracing(val) \
1796 (*current_target.to_set_disconnected_tracing) (val)
1797
1798 #define target_set_circular_trace_buffer(val) \
1799 (*current_target.to_set_circular_trace_buffer) (val)
1800
1801 #define target_set_trace_buffer_size(val) \
1802 (*current_target.to_set_trace_buffer_size) (val)
1803
1804 #define target_set_trace_notes(user,notes,stopnotes) \
1805 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1806
1807 #define target_get_tib_address(ptid, addr) \
1808 (*current_target.to_get_tib_address) ((ptid), (addr))
1809
1810 #define target_set_permissions() \
1811 (*current_target.to_set_permissions) ()
1812
1813 #define target_static_tracepoint_marker_at(addr, marker) \
1814 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1815
1816 #define target_static_tracepoint_markers_by_strid(marker_id) \
1817 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1818
1819 #define target_traceframe_info() \
1820 (*current_target.to_traceframe_info) ()
1821
1822 #define target_use_agent(use) \
1823 (*current_target.to_use_agent) (use)
1824
1825 #define target_can_use_agent() \
1826 (*current_target.to_can_use_agent) ()
1827
1828 #define target_augmented_libraries_svr4_read() \
1829 (*current_target.to_augmented_libraries_svr4_read) ()
1830
1831 /* Command logging facility. */
1832
1833 #define target_log_command(p) \
1834 do \
1835 if (current_target.to_log_command) \
1836 (*current_target.to_log_command) (p); \
1837 while (0)
1838
1839
1840 extern int target_core_of_thread (ptid_t ptid);
1841
1842 /* See to_get_unwinder in struct target_ops. */
1843 extern const struct frame_unwind *target_get_unwinder (void);
1844
1845 /* See to_get_tailcall_unwinder in struct target_ops. */
1846 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1847
1848 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1849 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1850 if there's a mismatch, and -1 if an error is encountered while
1851 reading memory. Throws an error if the functionality is found not
1852 to be supported by the current target. */
1853 int target_verify_memory (const gdb_byte *data,
1854 CORE_ADDR memaddr, ULONGEST size);
1855
1856 /* Routines for maintenance of the target structures...
1857
1858 complete_target_initialization: Finalize a target_ops by filling in
1859 any fields needed by the target implementation.
1860
1861 add_target: Add a target to the list of all possible targets.
1862
1863 push_target: Make this target the top of the stack of currently used
1864 targets, within its particular stratum of the stack. Result
1865 is 0 if now atop the stack, nonzero if not on top (maybe
1866 should warn user).
1867
1868 unpush_target: Remove this from the stack of currently used targets,
1869 no matter where it is on the list. Returns 0 if no
1870 change, 1 if removed from stack. */
1871
1872 extern void add_target (struct target_ops *);
1873
1874 extern void add_target_with_completer (struct target_ops *t,
1875 completer_ftype *completer);
1876
1877 extern void complete_target_initialization (struct target_ops *t);
1878
1879 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1880 for maintaining backwards compatibility when renaming targets. */
1881
1882 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1883
1884 extern void push_target (struct target_ops *);
1885
1886 extern int unpush_target (struct target_ops *);
1887
1888 extern void target_pre_inferior (int);
1889
1890 extern void target_preopen (int);
1891
1892 /* Does whatever cleanup is required to get rid of all pushed targets. */
1893 extern void pop_all_targets (void);
1894
1895 /* Like pop_all_targets, but pops only targets whose stratum is
1896 strictly above ABOVE_STRATUM. */
1897 extern void pop_all_targets_above (enum strata above_stratum);
1898
1899 extern int target_is_pushed (struct target_ops *t);
1900
1901 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1902 CORE_ADDR offset);
1903
1904 /* Struct target_section maps address ranges to file sections. It is
1905 mostly used with BFD files, but can be used without (e.g. for handling
1906 raw disks, or files not in formats handled by BFD). */
1907
1908 struct target_section
1909 {
1910 CORE_ADDR addr; /* Lowest address in section */
1911 CORE_ADDR endaddr; /* 1+highest address in section */
1912
1913 struct bfd_section *the_bfd_section;
1914
1915 /* The "owner" of the section.
1916 It can be any unique value. It is set by add_target_sections
1917 and used by remove_target_sections.
1918 For example, for executables it is a pointer to exec_bfd and
1919 for shlibs it is the so_list pointer. */
1920 void *owner;
1921 };
1922
1923 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1924
1925 struct target_section_table
1926 {
1927 struct target_section *sections;
1928 struct target_section *sections_end;
1929 };
1930
1931 /* Return the "section" containing the specified address. */
1932 struct target_section *target_section_by_addr (struct target_ops *target,
1933 CORE_ADDR addr);
1934
1935 /* Return the target section table this target (or the targets
1936 beneath) currently manipulate. */
1937
1938 extern struct target_section_table *target_get_section_table
1939 (struct target_ops *target);
1940
1941 /* From mem-break.c */
1942
1943 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1944 struct bp_target_info *);
1945
1946 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1947 struct bp_target_info *);
1948
1949 extern int default_memory_remove_breakpoint (struct gdbarch *,
1950 struct bp_target_info *);
1951
1952 extern int default_memory_insert_breakpoint (struct gdbarch *,
1953 struct bp_target_info *);
1954
1955
1956 /* From target.c */
1957
1958 extern void initialize_targets (void);
1959
1960 extern void noprocess (void) ATTRIBUTE_NORETURN;
1961
1962 extern void target_require_runnable (void);
1963
1964 extern void find_default_attach (struct target_ops *, char *, int);
1965
1966 extern void find_default_create_inferior (struct target_ops *,
1967 char *, char *, char **, int);
1968
1969 extern struct target_ops *find_target_beneath (struct target_ops *);
1970
1971 /* Find the target at STRATUM. If no target is at that stratum,
1972 return NULL. */
1973
1974 struct target_ops *find_target_at (enum strata stratum);
1975
1976 /* Read OS data object of type TYPE from the target, and return it in
1977 XML format. The result is NUL-terminated and returned as a string,
1978 allocated using xmalloc. If an error occurs or the transfer is
1979 unsupported, NULL is returned. Empty objects are returned as
1980 allocated but empty strings. */
1981
1982 extern char *target_get_osdata (const char *type);
1983
1984 \f
1985 /* Stuff that should be shared among the various remote targets. */
1986
1987 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1988 information (higher values, more information). */
1989 extern int remote_debug;
1990
1991 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1992 extern int baud_rate;
1993 /* Timeout limit for response from target. */
1994 extern int remote_timeout;
1995
1996 \f
1997
1998 /* Set the show memory breakpoints mode to show, and installs a cleanup
1999 to restore it back to the current value. */
2000 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2001
2002 extern int may_write_registers;
2003 extern int may_write_memory;
2004 extern int may_insert_breakpoints;
2005 extern int may_insert_tracepoints;
2006 extern int may_insert_fast_tracepoints;
2007 extern int may_stop;
2008
2009 extern void update_target_permissions (void);
2010
2011 \f
2012 /* Imported from machine dependent code. */
2013
2014 /* Blank target vector entries are initialized to target_ignore. */
2015 void target_ignore (void);
2016
2017 /* See to_supports_btrace in struct target_ops. */
2018 extern int target_supports_btrace (void);
2019
2020 /* See to_enable_btrace in struct target_ops. */
2021 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2022
2023 /* See to_disable_btrace in struct target_ops. */
2024 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2025
2026 /* See to_teardown_btrace in struct target_ops. */
2027 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2028
2029 /* See to_read_btrace in struct target_ops. */
2030 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2031 struct btrace_target_info *,
2032 enum btrace_read_type);
2033
2034 /* See to_stop_recording in struct target_ops. */
2035 extern void target_stop_recording (void);
2036
2037 /* See to_info_record in struct target_ops. */
2038 extern void target_info_record (void);
2039
2040 /* See to_save_record in struct target_ops. */
2041 extern void target_save_record (const char *filename);
2042
2043 /* Query if the target supports deleting the execution log. */
2044 extern int target_supports_delete_record (void);
2045
2046 /* See to_delete_record in struct target_ops. */
2047 extern void target_delete_record (void);
2048
2049 /* See to_record_is_replaying in struct target_ops. */
2050 extern int target_record_is_replaying (void);
2051
2052 /* See to_goto_record_begin in struct target_ops. */
2053 extern void target_goto_record_begin (void);
2054
2055 /* See to_goto_record_end in struct target_ops. */
2056 extern void target_goto_record_end (void);
2057
2058 /* See to_goto_record in struct target_ops. */
2059 extern void target_goto_record (ULONGEST insn);
2060
2061 /* See to_insn_history. */
2062 extern void target_insn_history (int size, int flags);
2063
2064 /* See to_insn_history_from. */
2065 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2066
2067 /* See to_insn_history_range. */
2068 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2069
2070 /* See to_call_history. */
2071 extern void target_call_history (int size, int flags);
2072
2073 /* See to_call_history_from. */
2074 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2075
2076 /* See to_call_history_range. */
2077 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2078
2079 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2080 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2081 struct gdbarch *gdbarch);
2082
2083 /* See to_decr_pc_after_break. */
2084 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2085
2086 #endif /* !defined (TARGET_H) */
This page took 0.07428 seconds and 4 git commands to generate.