18bb852b61358628f21ced38b8927c91526de598
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
502 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
503 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
507 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
508 int (*to_set_syscall_catchpoint) (struct target_ops *,
509 int, int, int, int, int *);
510 int (*to_has_exited) (struct target_ops *, int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (struct target_ops *);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
526 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
527 void (*to_stop) (struct target_ops *, ptid_t);
528 void (*to_rcmd) (struct target_ops *,
529 char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
531 void (*to_log_command) (struct target_ops *, const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_can_async_p);
544 int (*to_is_async_p) (struct target_ops *)
545 TARGET_DEFAULT_FUNC (find_default_is_async_p);
546 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
547 TARGET_DEFAULT_NORETURN (tcomplain ());
548 int (*to_supports_non_stop) (struct target_ops *);
549 /* find_memory_regions support method for gcore */
550 int (*to_find_memory_regions) (struct target_ops *,
551 find_memory_region_ftype func, void *data);
552 /* make_corefile_notes support method for gcore */
553 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
554 /* get_bookmark support method for bookmarks */
555 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
556 /* goto_bookmark support method for bookmarks */
557 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
558 /* Return the thread-local address at OFFSET in the
559 thread-local storage for the thread PTID and the shared library
560 or executable file given by OBJFILE. If that block of
561 thread-local storage hasn't been allocated yet, this function
562 may return an error. */
563 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
564 ptid_t ptid,
565 CORE_ADDR load_module_addr,
566 CORE_ADDR offset);
567
568 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
569 OBJECT. The OFFSET, for a seekable object, specifies the
570 starting point. The ANNEX can be used to provide additional
571 data-specific information to the target.
572
573 Return the transferred status, error or OK (an
574 'enum target_xfer_status' value). Save the number of bytes
575 actually transferred in *XFERED_LEN if transfer is successful
576 (TARGET_XFER_OK) or the number unavailable bytes if the requested
577 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
578 smaller than LEN does not indicate the end of the object, only
579 the end of the transfer; higher level code should continue
580 transferring if desired. This is handled in target.c.
581
582 The interface does not support a "retry" mechanism. Instead it
583 assumes that at least one byte will be transfered on each
584 successful call.
585
586 NOTE: cagney/2003-10-17: The current interface can lead to
587 fragmented transfers. Lower target levels should not implement
588 hacks, such as enlarging the transfer, in an attempt to
589 compensate for this. Instead, the target stack should be
590 extended so that it implements supply/collect methods and a
591 look-aside object cache. With that available, the lowest
592 target can safely and freely "push" data up the stack.
593
594 See target_read and target_write for more information. One,
595 and only one, of readbuf or writebuf must be non-NULL. */
596
597 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
598 enum target_object object,
599 const char *annex,
600 gdb_byte *readbuf,
601 const gdb_byte *writebuf,
602 ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
605
606 /* Returns the memory map for the target. A return value of NULL
607 means that no memory map is available. If a memory address
608 does not fall within any returned regions, it's assumed to be
609 RAM. The returned memory regions should not overlap.
610
611 The order of regions does not matter; target_memory_map will
612 sort regions by starting address. For that reason, this
613 function should not be called directly except via
614 target_memory_map.
615
616 This method should not cache data; if the memory map could
617 change unexpectedly, it should be invalidated, and higher
618 layers will re-fetch it. */
619 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
620
621 /* Erases the region of flash memory starting at ADDRESS, of
622 length LENGTH.
623
624 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
625 on flash block boundaries, as reported by 'to_memory_map'. */
626 void (*to_flash_erase) (struct target_ops *,
627 ULONGEST address, LONGEST length);
628
629 /* Finishes a flash memory write sequence. After this operation
630 all flash memory should be available for writing and the result
631 of reading from areas written by 'to_flash_write' should be
632 equal to what was written. */
633 void (*to_flash_done) (struct target_ops *);
634
635 /* Describe the architecture-specific features of this target.
636 Returns the description found, or NULL if no description
637 was available. */
638 const struct target_desc *(*to_read_description) (struct target_ops *ops);
639
640 /* Build the PTID of the thread on which a given task is running,
641 based on LWP and THREAD. These values are extracted from the
642 task Private_Data section of the Ada Task Control Block, and
643 their interpretation depends on the target. */
644 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
645 long lwp, long thread);
646
647 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
648 Return 0 if *READPTR is already at the end of the buffer.
649 Return -1 if there is insufficient buffer for a whole entry.
650 Return 1 if an entry was read into *TYPEP and *VALP. */
651 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
652 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
653
654 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
655 sequence of bytes in PATTERN with length PATTERN_LEN.
656
657 The result is 1 if found, 0 if not found, and -1 if there was an error
658 requiring halting of the search (e.g. memory read error).
659 If the pattern is found the address is recorded in FOUND_ADDRP. */
660 int (*to_search_memory) (struct target_ops *ops,
661 CORE_ADDR start_addr, ULONGEST search_space_len,
662 const gdb_byte *pattern, ULONGEST pattern_len,
663 CORE_ADDR *found_addrp);
664
665 /* Can target execute in reverse? */
666 int (*to_can_execute_reverse) (struct target_ops *);
667
668 /* The direction the target is currently executing. Must be
669 implemented on targets that support reverse execution and async
670 mode. The default simply returns forward execution. */
671 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
672
673 /* Does this target support debugging multiple processes
674 simultaneously? */
675 int (*to_supports_multi_process) (struct target_ops *);
676
677 /* Does this target support enabling and disabling tracepoints while a trace
678 experiment is running? */
679 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
680
681 /* Does this target support disabling address space randomization? */
682 int (*to_supports_disable_randomization) (struct target_ops *);
683
684 /* Does this target support the tracenz bytecode for string collection? */
685 int (*to_supports_string_tracing) (struct target_ops *);
686
687 /* Does this target support evaluation of breakpoint conditions on its
688 end? */
689 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
690
691 /* Does this target support evaluation of breakpoint commands on its
692 end? */
693 int (*to_can_run_breakpoint_commands) (struct target_ops *);
694
695 /* Determine current architecture of thread PTID.
696
697 The target is supposed to determine the architecture of the code where
698 the target is currently stopped at (on Cell, if a target is in spu_run,
699 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
700 This is architecture used to perform decr_pc_after_break adjustment,
701 and also determines the frame architecture of the innermost frame.
702 ptrace operations need to operate according to target_gdbarch ().
703
704 The default implementation always returns target_gdbarch (). */
705 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
706
707 /* Determine current address space of thread PTID.
708
709 The default implementation always returns the inferior's
710 address space. */
711 struct address_space *(*to_thread_address_space) (struct target_ops *,
712 ptid_t);
713
714 /* Target file operations. */
715
716 /* Open FILENAME on the target, using FLAGS and MODE. Return a
717 target file descriptor, or -1 if an error occurs (and set
718 *TARGET_ERRNO). */
719 int (*to_fileio_open) (struct target_ops *,
720 const char *filename, int flags, int mode,
721 int *target_errno);
722
723 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
724 Return the number of bytes written, or -1 if an error occurs
725 (and set *TARGET_ERRNO). */
726 int (*to_fileio_pwrite) (struct target_ops *,
727 int fd, const gdb_byte *write_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Read up to LEN bytes FD on the target into READ_BUF.
731 Return the number of bytes read, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pread) (struct target_ops *,
734 int fd, gdb_byte *read_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Close FD on the target. Return 0, or -1 if an error occurs
738 (and set *TARGET_ERRNO). */
739 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
740
741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
742 occurs (and set *TARGET_ERRNO). */
743 int (*to_fileio_unlink) (struct target_ops *,
744 const char *filename, int *target_errno);
745
746 /* Read value of symbolic link FILENAME on the target. Return a
747 null-terminated string allocated via xmalloc, or NULL if an error
748 occurs (and set *TARGET_ERRNO). */
749 char *(*to_fileio_readlink) (struct target_ops *,
750 const char *filename, int *target_errno);
751
752
753 /* Implement the "info proc" command. */
754 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
755
756 /* Tracepoint-related operations. */
757
758 /* Prepare the target for a tracing run. */
759 void (*to_trace_init) (struct target_ops *);
760
761 /* Send full details of a tracepoint location to the target. */
762 void (*to_download_tracepoint) (struct target_ops *,
763 struct bp_location *location);
764
765 /* Is the target able to download tracepoint locations in current
766 state? */
767 int (*to_can_download_tracepoint) (struct target_ops *);
768
769 /* Send full details of a trace state variable to the target. */
770 void (*to_download_trace_state_variable) (struct target_ops *,
771 struct trace_state_variable *tsv);
772
773 /* Enable a tracepoint on the target. */
774 void (*to_enable_tracepoint) (struct target_ops *,
775 struct bp_location *location);
776
777 /* Disable a tracepoint on the target. */
778 void (*to_disable_tracepoint) (struct target_ops *,
779 struct bp_location *location);
780
781 /* Inform the target info of memory regions that are readonly
782 (such as text sections), and so it should return data from
783 those rather than look in the trace buffer. */
784 void (*to_trace_set_readonly_regions) (struct target_ops *);
785
786 /* Start a trace run. */
787 void (*to_trace_start) (struct target_ops *);
788
789 /* Get the current status of a tracing run. */
790 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
791
792 void (*to_get_tracepoint_status) (struct target_ops *,
793 struct breakpoint *tp,
794 struct uploaded_tp *utp);
795
796 /* Stop a trace run. */
797 void (*to_trace_stop) (struct target_ops *);
798
799 /* Ask the target to find a trace frame of the given type TYPE,
800 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
801 number of the trace frame, and also the tracepoint number at
802 TPP. If no trace frame matches, return -1. May throw if the
803 operation fails. */
804 int (*to_trace_find) (struct target_ops *,
805 enum trace_find_type type, int num,
806 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
807
808 /* Get the value of the trace state variable number TSV, returning
809 1 if the value is known and writing the value itself into the
810 location pointed to by VAL, else returning 0. */
811 int (*to_get_trace_state_variable_value) (struct target_ops *,
812 int tsv, LONGEST *val);
813
814 int (*to_save_trace_data) (struct target_ops *, const char *filename);
815
816 int (*to_upload_tracepoints) (struct target_ops *,
817 struct uploaded_tp **utpp);
818
819 int (*to_upload_trace_state_variables) (struct target_ops *,
820 struct uploaded_tsv **utsvp);
821
822 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
823 ULONGEST offset, LONGEST len);
824
825 /* Get the minimum length of instruction on which a fast tracepoint
826 may be set on the target. If this operation is unsupported,
827 return -1. If for some reason the minimum length cannot be
828 determined, return 0. */
829 int (*to_get_min_fast_tracepoint_insn_len) (void);
830
831 /* Set the target's tracing behavior in response to unexpected
832 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
833 void (*to_set_disconnected_tracing) (int val);
834 void (*to_set_circular_trace_buffer) (int val);
835 /* Set the size of trace buffer in the target. */
836 void (*to_set_trace_buffer_size) (LONGEST val);
837
838 /* Add/change textual notes about the trace run, returning 1 if
839 successful, 0 otherwise. */
840 int (*to_set_trace_notes) (const char *user, const char *notes,
841 const char *stopnotes);
842
843 /* Return the processor core that thread PTID was last seen on.
844 This information is updated only when:
845 - update_thread_list is called
846 - thread stops
847 If the core cannot be determined -- either for the specified
848 thread, or right now, or in this debug session, or for this
849 target -- return -1. */
850 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
851
852 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
853 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
854 a match, 0 if there's a mismatch, and -1 if an error is
855 encountered while reading memory. */
856 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
857 CORE_ADDR memaddr, ULONGEST size);
858
859 /* Return the address of the start of the Thread Information Block
860 a Windows OS specific feature. */
861 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
862
863 /* Send the new settings of write permission variables. */
864 void (*to_set_permissions) (void);
865
866 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
867 with its details. Return 1 on success, 0 on failure. */
868 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
869 struct static_tracepoint_marker *marker);
870
871 /* Return a vector of all tracepoints markers string id ID, or all
872 markers if ID is NULL. */
873 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
874 (const char *id);
875
876 /* Return a traceframe info object describing the current
877 traceframe's contents. If the target doesn't support
878 traceframe info, return NULL. If the current traceframe is not
879 selected (the current traceframe number is -1), the target can
880 choose to return either NULL or an empty traceframe info. If
881 NULL is returned, for example in remote target, GDB will read
882 from the live inferior. If an empty traceframe info is
883 returned, for example in tfile target, which means the
884 traceframe info is available, but the requested memory is not
885 available in it. GDB will try to see if the requested memory
886 is available in the read-only sections. This method should not
887 cache data; higher layers take care of caching, invalidating,
888 and re-fetching when necessary. */
889 struct traceframe_info *(*to_traceframe_info) (void);
890
891 /* Ask the target to use or not to use agent according to USE. Return 1
892 successful, 0 otherwise. */
893 int (*to_use_agent) (int use);
894
895 /* Is the target able to use agent in current state? */
896 int (*to_can_use_agent) (void);
897
898 /* Check whether the target supports branch tracing. */
899 int (*to_supports_btrace) (struct target_ops *)
900 TARGET_DEFAULT_RETURN (0);
901
902 /* Enable branch tracing for PTID and allocate a branch trace target
903 information struct for reading and for disabling branch trace. */
904 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
905
906 /* Disable branch tracing and deallocate TINFO. */
907 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
908
909 /* Disable branch tracing and deallocate TINFO. This function is similar
910 to to_disable_btrace, except that it is called during teardown and is
911 only allowed to perform actions that are safe. A counter-example would
912 be attempting to talk to a remote target. */
913 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
914
915 /* Read branch trace data for the thread indicated by BTINFO into DATA.
916 DATA is cleared before new trace is added.
917 The branch trace will start with the most recent block and continue
918 towards older blocks. */
919 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
920 struct btrace_target_info *btinfo,
921 enum btrace_read_type type);
922
923 /* Stop trace recording. */
924 void (*to_stop_recording) (void);
925
926 /* Print information about the recording. */
927 void (*to_info_record) (void);
928
929 /* Save the recorded execution trace into a file. */
930 void (*to_save_record) (const char *filename);
931
932 /* Delete the recorded execution trace from the current position onwards. */
933 void (*to_delete_record) (void);
934
935 /* Query if the record target is currently replaying. */
936 int (*to_record_is_replaying) (void);
937
938 /* Go to the begin of the execution trace. */
939 void (*to_goto_record_begin) (void);
940
941 /* Go to the end of the execution trace. */
942 void (*to_goto_record_end) (void);
943
944 /* Go to a specific location in the recorded execution trace. */
945 void (*to_goto_record) (ULONGEST insn);
946
947 /* Disassemble SIZE instructions in the recorded execution trace from
948 the current position.
949 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
950 disassemble SIZE succeeding instructions. */
951 void (*to_insn_history) (int size, int flags);
952
953 /* Disassemble SIZE instructions in the recorded execution trace around
954 FROM.
955 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
956 disassemble SIZE instructions after FROM. */
957 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
958
959 /* Disassemble a section of the recorded execution trace from instruction
960 BEGIN (inclusive) to instruction END (inclusive). */
961 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
962
963 /* Print a function trace of the recorded execution trace.
964 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
965 succeeding functions. */
966 void (*to_call_history) (int size, int flags);
967
968 /* Print a function trace of the recorded execution trace starting
969 at function FROM.
970 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
971 SIZE functions after FROM. */
972 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
973
974 /* Print a function trace of an execution trace section from function BEGIN
975 (inclusive) to function END (inclusive). */
976 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
977
978 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
979 non-empty annex. */
980 int (*to_augmented_libraries_svr4_read) (void);
981
982 /* Those unwinders are tried before any other arch unwinders. Use NULL if
983 it is not used. */
984 const struct frame_unwind *to_get_unwinder;
985 const struct frame_unwind *to_get_tailcall_unwinder;
986
987 /* Return the number of bytes by which the PC needs to be decremented
988 after executing a breakpoint instruction.
989 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
990 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
991 struct gdbarch *gdbarch);
992
993 int to_magic;
994 /* Need sub-structure for target machine related rather than comm related?
995 */
996 };
997
998 /* Magic number for checking ops size. If a struct doesn't end with this
999 number, somebody changed the declaration but didn't change all the
1000 places that initialize one. */
1001
1002 #define OPS_MAGIC 3840
1003
1004 /* The ops structure for our "current" target process. This should
1005 never be NULL. If there is no target, it points to the dummy_target. */
1006
1007 extern struct target_ops current_target;
1008
1009 /* Define easy words for doing these operations on our current target. */
1010
1011 #define target_shortname (current_target.to_shortname)
1012 #define target_longname (current_target.to_longname)
1013
1014 /* Does whatever cleanup is required for a target that we are no
1015 longer going to be calling. This routine is automatically always
1016 called after popping the target off the target stack - the target's
1017 own methods are no longer available through the target vector.
1018 Closing file descriptors and freeing all memory allocated memory are
1019 typical things it should do. */
1020
1021 void target_close (struct target_ops *targ);
1022
1023 /* Attaches to a process on the target side. Arguments are as passed
1024 to the `attach' command by the user. This routine can be called
1025 when the target is not on the target-stack, if the target_can_run
1026 routine returns 1; in that case, it must push itself onto the stack.
1027 Upon exit, the target should be ready for normal operations, and
1028 should be ready to deliver the status of the process immediately
1029 (without waiting) to an upcoming target_wait call. */
1030
1031 void target_attach (char *, int);
1032
1033 /* Some targets don't generate traps when attaching to the inferior,
1034 or their target_attach implementation takes care of the waiting.
1035 These targets must set to_attach_no_wait. */
1036
1037 #define target_attach_no_wait \
1038 (current_target.to_attach_no_wait)
1039
1040 /* The target_attach operation places a process under debugger control,
1041 and stops the process.
1042
1043 This operation provides a target-specific hook that allows the
1044 necessary bookkeeping to be performed after an attach completes. */
1045 #define target_post_attach(pid) \
1046 (*current_target.to_post_attach) (&current_target, pid)
1047
1048 /* Takes a program previously attached to and detaches it.
1049 The program may resume execution (some targets do, some don't) and will
1050 no longer stop on signals, etc. We better not have left any breakpoints
1051 in the program or it'll die when it hits one. ARGS is arguments
1052 typed by the user (e.g. a signal to send the process). FROM_TTY
1053 says whether to be verbose or not. */
1054
1055 extern void target_detach (const char *, int);
1056
1057 /* Disconnect from the current target without resuming it (leaving it
1058 waiting for a debugger). */
1059
1060 extern void target_disconnect (char *, int);
1061
1062 /* Resume execution of the target process PTID (or a group of
1063 threads). STEP says whether to single-step or to run free; SIGGNAL
1064 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1065 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1066 PTID means `step/resume only this process id'. A wildcard PTID
1067 (all threads, or all threads of process) means `step/resume
1068 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1069 matches) resume with their 'thread->suspend.stop_signal' signal
1070 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1071 if in "no pass" state. */
1072
1073 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1074
1075 /* Wait for process pid to do something. PTID = -1 to wait for any
1076 pid to do something. Return pid of child, or -1 in case of error;
1077 store status through argument pointer STATUS. Note that it is
1078 _NOT_ OK to throw_exception() out of target_wait() without popping
1079 the debugging target from the stack; GDB isn't prepared to get back
1080 to the prompt with a debugging target but without the frame cache,
1081 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1082 options. */
1083
1084 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1085 int options);
1086
1087 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1088
1089 extern void target_fetch_registers (struct regcache *regcache, int regno);
1090
1091 /* Store at least register REGNO, or all regs if REGNO == -1.
1092 It can store as many registers as it wants to, so target_prepare_to_store
1093 must have been previously called. Calls error() if there are problems. */
1094
1095 extern void target_store_registers (struct regcache *regcache, int regs);
1096
1097 /* Get ready to modify the registers array. On machines which store
1098 individual registers, this doesn't need to do anything. On machines
1099 which store all the registers in one fell swoop, this makes sure
1100 that REGISTERS contains all the registers from the program being
1101 debugged. */
1102
1103 #define target_prepare_to_store(regcache) \
1104 (*current_target.to_prepare_to_store) (&current_target, regcache)
1105
1106 /* Determine current address space of thread PTID. */
1107
1108 struct address_space *target_thread_address_space (ptid_t);
1109
1110 /* Implement the "info proc" command. This returns one if the request
1111 was handled, and zero otherwise. It can also throw an exception if
1112 an error was encountered while attempting to handle the
1113 request. */
1114
1115 int target_info_proc (char *, enum info_proc_what);
1116
1117 /* Returns true if this target can debug multiple processes
1118 simultaneously. */
1119
1120 #define target_supports_multi_process() \
1121 (*current_target.to_supports_multi_process) (&current_target)
1122
1123 /* Returns true if this target can disable address space randomization. */
1124
1125 int target_supports_disable_randomization (void);
1126
1127 /* Returns true if this target can enable and disable tracepoints
1128 while a trace experiment is running. */
1129
1130 #define target_supports_enable_disable_tracepoint() \
1131 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1132
1133 #define target_supports_string_tracing() \
1134 (*current_target.to_supports_string_tracing) (&current_target)
1135
1136 /* Returns true if this target can handle breakpoint conditions
1137 on its end. */
1138
1139 #define target_supports_evaluation_of_breakpoint_conditions() \
1140 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1141
1142 /* Returns true if this target can handle breakpoint commands
1143 on its end. */
1144
1145 #define target_can_run_breakpoint_commands() \
1146 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1147
1148 extern int target_read_string (CORE_ADDR, char **, int, int *);
1149
1150 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1151 ssize_t len);
1152
1153 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1154 ssize_t len);
1155
1156 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1157
1158 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1159
1160 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1161 ssize_t len);
1162
1163 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1164 ssize_t len);
1165
1166 /* Fetches the target's memory map. If one is found it is sorted
1167 and returned, after some consistency checking. Otherwise, NULL
1168 is returned. */
1169 VEC(mem_region_s) *target_memory_map (void);
1170
1171 /* Erase the specified flash region. */
1172 void target_flash_erase (ULONGEST address, LONGEST length);
1173
1174 /* Finish a sequence of flash operations. */
1175 void target_flash_done (void);
1176
1177 /* Describes a request for a memory write operation. */
1178 struct memory_write_request
1179 {
1180 /* Begining address that must be written. */
1181 ULONGEST begin;
1182 /* Past-the-end address. */
1183 ULONGEST end;
1184 /* The data to write. */
1185 gdb_byte *data;
1186 /* A callback baton for progress reporting for this request. */
1187 void *baton;
1188 };
1189 typedef struct memory_write_request memory_write_request_s;
1190 DEF_VEC_O(memory_write_request_s);
1191
1192 /* Enumeration specifying different flash preservation behaviour. */
1193 enum flash_preserve_mode
1194 {
1195 flash_preserve,
1196 flash_discard
1197 };
1198
1199 /* Write several memory blocks at once. This version can be more
1200 efficient than making several calls to target_write_memory, in
1201 particular because it can optimize accesses to flash memory.
1202
1203 Moreover, this is currently the only memory access function in gdb
1204 that supports writing to flash memory, and it should be used for
1205 all cases where access to flash memory is desirable.
1206
1207 REQUESTS is the vector (see vec.h) of memory_write_request.
1208 PRESERVE_FLASH_P indicates what to do with blocks which must be
1209 erased, but not completely rewritten.
1210 PROGRESS_CB is a function that will be periodically called to provide
1211 feedback to user. It will be called with the baton corresponding
1212 to the request currently being written. It may also be called
1213 with a NULL baton, when preserved flash sectors are being rewritten.
1214
1215 The function returns 0 on success, and error otherwise. */
1216 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1217 enum flash_preserve_mode preserve_flash_p,
1218 void (*progress_cb) (ULONGEST, void *));
1219
1220 /* Print a line about the current target. */
1221
1222 #define target_files_info() \
1223 (*current_target.to_files_info) (&current_target)
1224
1225 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1226 the target machine. Returns 0 for success, and returns non-zero or
1227 throws an error (with a detailed failure reason error code and
1228 message) otherwise. */
1229
1230 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1231 struct bp_target_info *bp_tgt);
1232
1233 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1234 machine. Result is 0 for success, non-zero for error. */
1235
1236 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1237 struct bp_target_info *bp_tgt);
1238
1239 /* Initialize the terminal settings we record for the inferior,
1240 before we actually run the inferior. */
1241
1242 #define target_terminal_init() \
1243 (*current_target.to_terminal_init) (&current_target)
1244
1245 /* Put the inferior's terminal settings into effect.
1246 This is preparation for starting or resuming the inferior. */
1247
1248 extern void target_terminal_inferior (void);
1249
1250 /* Put some of our terminal settings into effect,
1251 enough to get proper results from our output,
1252 but do not change into or out of RAW mode
1253 so that no input is discarded.
1254
1255 After doing this, either terminal_ours or terminal_inferior
1256 should be called to get back to a normal state of affairs. */
1257
1258 #define target_terminal_ours_for_output() \
1259 (*current_target.to_terminal_ours_for_output) (&current_target)
1260
1261 /* Put our terminal settings into effect.
1262 First record the inferior's terminal settings
1263 so they can be restored properly later. */
1264
1265 #define target_terminal_ours() \
1266 (*current_target.to_terminal_ours) (&current_target)
1267
1268 /* Save our terminal settings.
1269 This is called from TUI after entering or leaving the curses
1270 mode. Since curses modifies our terminal this call is here
1271 to take this change into account. */
1272
1273 #define target_terminal_save_ours() \
1274 (*current_target.to_terminal_save_ours) (&current_target)
1275
1276 /* Print useful information about our terminal status, if such a thing
1277 exists. */
1278
1279 #define target_terminal_info(arg, from_tty) \
1280 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1281
1282 /* Kill the inferior process. Make it go away. */
1283
1284 extern void target_kill (void);
1285
1286 /* Load an executable file into the target process. This is expected
1287 to not only bring new code into the target process, but also to
1288 update GDB's symbol tables to match.
1289
1290 ARG contains command-line arguments, to be broken down with
1291 buildargv (). The first non-switch argument is the filename to
1292 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1293 0)), which is an offset to apply to the load addresses of FILE's
1294 sections. The target may define switches, or other non-switch
1295 arguments, as it pleases. */
1296
1297 extern void target_load (char *arg, int from_tty);
1298
1299 /* Start an inferior process and set inferior_ptid to its pid.
1300 EXEC_FILE is the file to run.
1301 ALLARGS is a string containing the arguments to the program.
1302 ENV is the environment vector to pass. Errors reported with error().
1303 On VxWorks and various standalone systems, we ignore exec_file. */
1304
1305 void target_create_inferior (char *exec_file, char *args,
1306 char **env, int from_tty);
1307
1308 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1309 notification of inferior events such as fork and vork immediately
1310 after the inferior is created. (This because of how gdb gets an
1311 inferior created via invoking a shell to do it. In such a scenario,
1312 if the shell init file has commands in it, the shell will fork and
1313 exec for each of those commands, and we will see each such fork
1314 event. Very bad.)
1315
1316 Such targets will supply an appropriate definition for this function. */
1317
1318 #define target_post_startup_inferior(ptid) \
1319 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1320
1321 /* On some targets, we can catch an inferior fork or vfork event when
1322 it occurs. These functions insert/remove an already-created
1323 catchpoint for such events. They return 0 for success, 1 if the
1324 catchpoint type is not supported and -1 for failure. */
1325
1326 #define target_insert_fork_catchpoint(pid) \
1327 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1328
1329 #define target_remove_fork_catchpoint(pid) \
1330 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1331
1332 #define target_insert_vfork_catchpoint(pid) \
1333 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1334
1335 #define target_remove_vfork_catchpoint(pid) \
1336 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1337
1338 /* If the inferior forks or vforks, this function will be called at
1339 the next resume in order to perform any bookkeeping and fiddling
1340 necessary to continue debugging either the parent or child, as
1341 requested, and releasing the other. Information about the fork
1342 or vfork event is available via get_last_target_status ().
1343 This function returns 1 if the inferior should not be resumed
1344 (i.e. there is another event pending). */
1345
1346 int target_follow_fork (int follow_child, int detach_fork);
1347
1348 /* On some targets, we can catch an inferior exec event when it
1349 occurs. These functions insert/remove an already-created
1350 catchpoint for such events. They return 0 for success, 1 if the
1351 catchpoint type is not supported and -1 for failure. */
1352
1353 #define target_insert_exec_catchpoint(pid) \
1354 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1355
1356 #define target_remove_exec_catchpoint(pid) \
1357 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1358
1359 /* Syscall catch.
1360
1361 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1362 If NEEDED is zero, it means the target can disable the mechanism to
1363 catch system calls because there are no more catchpoints of this type.
1364
1365 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1366 being requested. In this case, both TABLE_SIZE and TABLE should
1367 be ignored.
1368
1369 TABLE_SIZE is the number of elements in TABLE. It only matters if
1370 ANY_COUNT is zero.
1371
1372 TABLE is an array of ints, indexed by syscall number. An element in
1373 this array is nonzero if that syscall should be caught. This argument
1374 only matters if ANY_COUNT is zero.
1375
1376 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1377 for failure. */
1378
1379 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1380 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1381 pid, needed, any_count, \
1382 table_size, table)
1383
1384 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1385 exit code of PID, if any. */
1386
1387 #define target_has_exited(pid,wait_status,exit_status) \
1388 (*current_target.to_has_exited) (&current_target, \
1389 pid,wait_status,exit_status)
1390
1391 /* The debugger has completed a blocking wait() call. There is now
1392 some process event that must be processed. This function should
1393 be defined by those targets that require the debugger to perform
1394 cleanup or internal state changes in response to the process event. */
1395
1396 /* The inferior process has died. Do what is right. */
1397
1398 void target_mourn_inferior (void);
1399
1400 /* Does target have enough data to do a run or attach command? */
1401
1402 #define target_can_run(t) \
1403 ((t)->to_can_run) (t)
1404
1405 /* Set list of signals to be handled in the target.
1406
1407 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1408 (enum gdb_signal). For every signal whose entry in this array is
1409 non-zero, the target is allowed -but not required- to skip reporting
1410 arrival of the signal to the GDB core by returning from target_wait,
1411 and to pass the signal directly to the inferior instead.
1412
1413 However, if the target is hardware single-stepping a thread that is
1414 about to receive a signal, it needs to be reported in any case, even
1415 if mentioned in a previous target_pass_signals call. */
1416
1417 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1418
1419 /* Set list of signals the target may pass to the inferior. This
1420 directly maps to the "handle SIGNAL pass/nopass" setting.
1421
1422 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1423 number (enum gdb_signal). For every signal whose entry in this
1424 array is non-zero, the target is allowed to pass the signal to the
1425 inferior. Signals not present in the array shall be silently
1426 discarded. This does not influence whether to pass signals to the
1427 inferior as a result of a target_resume call. This is useful in
1428 scenarios where the target needs to decide whether to pass or not a
1429 signal to the inferior without GDB core involvement, such as for
1430 example, when detaching (as threads may have been suspended with
1431 pending signals not reported to GDB). */
1432
1433 extern void target_program_signals (int nsig, unsigned char *program_signals);
1434
1435 /* Check to see if a thread is still alive. */
1436
1437 extern int target_thread_alive (ptid_t ptid);
1438
1439 /* Query for new threads and add them to the thread list. */
1440
1441 extern void target_find_new_threads (void);
1442
1443 /* Make target stop in a continuable fashion. (For instance, under
1444 Unix, this should act like SIGSTOP). This function is normally
1445 used by GUIs to implement a stop button. */
1446
1447 extern void target_stop (ptid_t ptid);
1448
1449 /* Send the specified COMMAND to the target's monitor
1450 (shell,interpreter) for execution. The result of the query is
1451 placed in OUTBUF. */
1452
1453 #define target_rcmd(command, outbuf) \
1454 (*current_target.to_rcmd) (&current_target, command, outbuf)
1455
1456
1457 /* Does the target include all of memory, or only part of it? This
1458 determines whether we look up the target chain for other parts of
1459 memory if this target can't satisfy a request. */
1460
1461 extern int target_has_all_memory_1 (void);
1462 #define target_has_all_memory target_has_all_memory_1 ()
1463
1464 /* Does the target include memory? (Dummy targets don't.) */
1465
1466 extern int target_has_memory_1 (void);
1467 #define target_has_memory target_has_memory_1 ()
1468
1469 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1470 we start a process.) */
1471
1472 extern int target_has_stack_1 (void);
1473 #define target_has_stack target_has_stack_1 ()
1474
1475 /* Does the target have registers? (Exec files don't.) */
1476
1477 extern int target_has_registers_1 (void);
1478 #define target_has_registers target_has_registers_1 ()
1479
1480 /* Does the target have execution? Can we make it jump (through
1481 hoops), or pop its stack a few times? This means that the current
1482 target is currently executing; for some targets, that's the same as
1483 whether or not the target is capable of execution, but there are
1484 also targets which can be current while not executing. In that
1485 case this will become true after target_create_inferior or
1486 target_attach. */
1487
1488 extern int target_has_execution_1 (ptid_t);
1489
1490 /* Like target_has_execution_1, but always passes inferior_ptid. */
1491
1492 extern int target_has_execution_current (void);
1493
1494 #define target_has_execution target_has_execution_current ()
1495
1496 /* Default implementations for process_stratum targets. Return true
1497 if there's a selected inferior, false otherwise. */
1498
1499 extern int default_child_has_all_memory (struct target_ops *ops);
1500 extern int default_child_has_memory (struct target_ops *ops);
1501 extern int default_child_has_stack (struct target_ops *ops);
1502 extern int default_child_has_registers (struct target_ops *ops);
1503 extern int default_child_has_execution (struct target_ops *ops,
1504 ptid_t the_ptid);
1505
1506 /* Can the target support the debugger control of thread execution?
1507 Can it lock the thread scheduler? */
1508
1509 #define target_can_lock_scheduler \
1510 (current_target.to_has_thread_control & tc_schedlock)
1511
1512 /* Should the target enable async mode if it is supported? Temporary
1513 cludge until async mode is a strict superset of sync mode. */
1514 extern int target_async_permitted;
1515
1516 /* Can the target support asynchronous execution? */
1517 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1518
1519 /* Is the target in asynchronous execution mode? */
1520 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1521
1522 int target_supports_non_stop (void);
1523
1524 /* Put the target in async mode with the specified callback function. */
1525 #define target_async(CALLBACK,CONTEXT) \
1526 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1527
1528 #define target_execution_direction() \
1529 (current_target.to_execution_direction (&current_target))
1530
1531 /* Converts a process id to a string. Usually, the string just contains
1532 `process xyz', but on some systems it may contain
1533 `process xyz thread abc'. */
1534
1535 extern char *target_pid_to_str (ptid_t ptid);
1536
1537 extern char *normal_pid_to_str (ptid_t ptid);
1538
1539 /* Return a short string describing extra information about PID,
1540 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1541 is okay. */
1542
1543 #define target_extra_thread_info(TP) \
1544 (current_target.to_extra_thread_info (&current_target, TP))
1545
1546 /* Return the thread's name. A NULL result means that the target
1547 could not determine this thread's name. */
1548
1549 extern char *target_thread_name (struct thread_info *);
1550
1551 /* Attempts to find the pathname of the executable file
1552 that was run to create a specified process.
1553
1554 The process PID must be stopped when this operation is used.
1555
1556 If the executable file cannot be determined, NULL is returned.
1557
1558 Else, a pointer to a character string containing the pathname
1559 is returned. This string should be copied into a buffer by
1560 the client if the string will not be immediately used, or if
1561 it must persist. */
1562
1563 #define target_pid_to_exec_file(pid) \
1564 (current_target.to_pid_to_exec_file) (&current_target, pid)
1565
1566 /* See the to_thread_architecture description in struct target_ops. */
1567
1568 #define target_thread_architecture(ptid) \
1569 (current_target.to_thread_architecture (&current_target, ptid))
1570
1571 /*
1572 * Iterator function for target memory regions.
1573 * Calls a callback function once for each memory region 'mapped'
1574 * in the child process. Defined as a simple macro rather than
1575 * as a function macro so that it can be tested for nullity.
1576 */
1577
1578 #define target_find_memory_regions(FUNC, DATA) \
1579 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1580
1581 /*
1582 * Compose corefile .note section.
1583 */
1584
1585 #define target_make_corefile_notes(BFD, SIZE_P) \
1586 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1587
1588 /* Bookmark interfaces. */
1589 #define target_get_bookmark(ARGS, FROM_TTY) \
1590 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1591
1592 #define target_goto_bookmark(ARG, FROM_TTY) \
1593 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1594
1595 /* Hardware watchpoint interfaces. */
1596
1597 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1598 write). Only the INFERIOR_PTID task is being queried. */
1599
1600 #define target_stopped_by_watchpoint() \
1601 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1602
1603 /* Non-zero if we have steppable watchpoints */
1604
1605 #define target_have_steppable_watchpoint \
1606 (current_target.to_have_steppable_watchpoint)
1607
1608 /* Non-zero if we have continuable watchpoints */
1609
1610 #define target_have_continuable_watchpoint \
1611 (current_target.to_have_continuable_watchpoint)
1612
1613 /* Provide defaults for hardware watchpoint functions. */
1614
1615 /* If the *_hw_beakpoint functions have not been defined
1616 elsewhere use the definitions in the target vector. */
1617
1618 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1619 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1620 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1621 (including this one?). OTHERTYPE is who knows what... */
1622
1623 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1624 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1625 TYPE, CNT, OTHERTYPE);
1626
1627 /* Returns the number of debug registers needed to watch the given
1628 memory region, or zero if not supported. */
1629
1630 #define target_region_ok_for_hw_watchpoint(addr, len) \
1631 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1632 addr, len)
1633
1634
1635 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1636 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1637 COND is the expression for its condition, or NULL if there's none.
1638 Returns 0 for success, 1 if the watchpoint type is not supported,
1639 -1 for failure. */
1640
1641 #define target_insert_watchpoint(addr, len, type, cond) \
1642 (*current_target.to_insert_watchpoint) (&current_target, \
1643 addr, len, type, cond)
1644
1645 #define target_remove_watchpoint(addr, len, type, cond) \
1646 (*current_target.to_remove_watchpoint) (&current_target, \
1647 addr, len, type, cond)
1648
1649 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1650 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1651 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1652 masked watchpoints are not supported, -1 for failure. */
1653
1654 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1655
1656 /* Remove a masked watchpoint at ADDR with the mask MASK.
1657 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1658 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1659 for failure. */
1660
1661 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1662
1663 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1664 the target machine. Returns 0 for success, and returns non-zero or
1665 throws an error (with a detailed failure reason error code and
1666 message) otherwise. */
1667
1668 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1669 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1670 gdbarch, bp_tgt)
1671
1672 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1673 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1674 gdbarch, bp_tgt)
1675
1676 /* Return number of debug registers needed for a ranged breakpoint,
1677 or -1 if ranged breakpoints are not supported. */
1678
1679 extern int target_ranged_break_num_registers (void);
1680
1681 /* Return non-zero if target knows the data address which triggered this
1682 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1683 INFERIOR_PTID task is being queried. */
1684 #define target_stopped_data_address(target, addr_p) \
1685 (*target.to_stopped_data_address) (target, addr_p)
1686
1687 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1688 LENGTH bytes beginning at START. */
1689 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1690 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1691
1692 /* Return non-zero if the target is capable of using hardware to evaluate
1693 the condition expression. In this case, if the condition is false when
1694 the watched memory location changes, execution may continue without the
1695 debugger being notified.
1696
1697 Due to limitations in the hardware implementation, it may be capable of
1698 avoiding triggering the watchpoint in some cases where the condition
1699 expression is false, but may report some false positives as well.
1700 For this reason, GDB will still evaluate the condition expression when
1701 the watchpoint triggers. */
1702 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1703 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1704 addr, len, type, cond)
1705
1706 /* Return number of debug registers needed for a masked watchpoint,
1707 -1 if masked watchpoints are not supported or -2 if the given address
1708 and mask combination cannot be used. */
1709
1710 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1711
1712 /* Target can execute in reverse? */
1713 #define target_can_execute_reverse \
1714 (current_target.to_can_execute_reverse ? \
1715 current_target.to_can_execute_reverse (&current_target) : 0)
1716
1717 extern const struct target_desc *target_read_description (struct target_ops *);
1718
1719 #define target_get_ada_task_ptid(lwp, tid) \
1720 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1721
1722 /* Utility implementation of searching memory. */
1723 extern int simple_search_memory (struct target_ops* ops,
1724 CORE_ADDR start_addr,
1725 ULONGEST search_space_len,
1726 const gdb_byte *pattern,
1727 ULONGEST pattern_len,
1728 CORE_ADDR *found_addrp);
1729
1730 /* Main entry point for searching memory. */
1731 extern int target_search_memory (CORE_ADDR start_addr,
1732 ULONGEST search_space_len,
1733 const gdb_byte *pattern,
1734 ULONGEST pattern_len,
1735 CORE_ADDR *found_addrp);
1736
1737 /* Target file operations. */
1738
1739 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1740 target file descriptor, or -1 if an error occurs (and set
1741 *TARGET_ERRNO). */
1742 extern int target_fileio_open (const char *filename, int flags, int mode,
1743 int *target_errno);
1744
1745 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1746 Return the number of bytes written, or -1 if an error occurs
1747 (and set *TARGET_ERRNO). */
1748 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1749 ULONGEST offset, int *target_errno);
1750
1751 /* Read up to LEN bytes FD on the target into READ_BUF.
1752 Return the number of bytes read, or -1 if an error occurs
1753 (and set *TARGET_ERRNO). */
1754 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1755 ULONGEST offset, int *target_errno);
1756
1757 /* Close FD on the target. Return 0, or -1 if an error occurs
1758 (and set *TARGET_ERRNO). */
1759 extern int target_fileio_close (int fd, int *target_errno);
1760
1761 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1762 occurs (and set *TARGET_ERRNO). */
1763 extern int target_fileio_unlink (const char *filename, int *target_errno);
1764
1765 /* Read value of symbolic link FILENAME on the target. Return a
1766 null-terminated string allocated via xmalloc, or NULL if an error
1767 occurs (and set *TARGET_ERRNO). */
1768 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1769
1770 /* Read target file FILENAME. The return value will be -1 if the transfer
1771 fails or is not supported; 0 if the object is empty; or the length
1772 of the object otherwise. If a positive value is returned, a
1773 sufficiently large buffer will be allocated using xmalloc and
1774 returned in *BUF_P containing the contents of the object.
1775
1776 This method should be used for objects sufficiently small to store
1777 in a single xmalloc'd buffer, when no fixed bound on the object's
1778 size is known in advance. */
1779 extern LONGEST target_fileio_read_alloc (const char *filename,
1780 gdb_byte **buf_p);
1781
1782 /* Read target file FILENAME. The result is NUL-terminated and
1783 returned as a string, allocated using xmalloc. If an error occurs
1784 or the transfer is unsupported, NULL is returned. Empty objects
1785 are returned as allocated but empty strings. A warning is issued
1786 if the result contains any embedded NUL bytes. */
1787 extern char *target_fileio_read_stralloc (const char *filename);
1788
1789
1790 /* Tracepoint-related operations. */
1791
1792 #define target_trace_init() \
1793 (*current_target.to_trace_init) (&current_target)
1794
1795 #define target_download_tracepoint(t) \
1796 (*current_target.to_download_tracepoint) (&current_target, t)
1797
1798 #define target_can_download_tracepoint() \
1799 (*current_target.to_can_download_tracepoint) (&current_target)
1800
1801 #define target_download_trace_state_variable(tsv) \
1802 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1803
1804 #define target_enable_tracepoint(loc) \
1805 (*current_target.to_enable_tracepoint) (&current_target, loc)
1806
1807 #define target_disable_tracepoint(loc) \
1808 (*current_target.to_disable_tracepoint) (&current_target, loc)
1809
1810 #define target_trace_start() \
1811 (*current_target.to_trace_start) (&current_target)
1812
1813 #define target_trace_set_readonly_regions() \
1814 (*current_target.to_trace_set_readonly_regions) (&current_target)
1815
1816 #define target_get_trace_status(ts) \
1817 (*current_target.to_get_trace_status) (&current_target, ts)
1818
1819 #define target_get_tracepoint_status(tp,utp) \
1820 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1821
1822 #define target_trace_stop() \
1823 (*current_target.to_trace_stop) (&current_target)
1824
1825 #define target_trace_find(type,num,addr1,addr2,tpp) \
1826 (*current_target.to_trace_find) (&current_target, \
1827 (type), (num), (addr1), (addr2), (tpp))
1828
1829 #define target_get_trace_state_variable_value(tsv,val) \
1830 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1831 (tsv), (val))
1832
1833 #define target_save_trace_data(filename) \
1834 (*current_target.to_save_trace_data) (&current_target, filename)
1835
1836 #define target_upload_tracepoints(utpp) \
1837 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1838
1839 #define target_upload_trace_state_variables(utsvp) \
1840 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1841
1842 #define target_get_raw_trace_data(buf,offset,len) \
1843 (*current_target.to_get_raw_trace_data) (&current_target, \
1844 (buf), (offset), (len))
1845
1846 #define target_get_min_fast_tracepoint_insn_len() \
1847 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1848
1849 #define target_set_disconnected_tracing(val) \
1850 (*current_target.to_set_disconnected_tracing) (val)
1851
1852 #define target_set_circular_trace_buffer(val) \
1853 (*current_target.to_set_circular_trace_buffer) (val)
1854
1855 #define target_set_trace_buffer_size(val) \
1856 (*current_target.to_set_trace_buffer_size) (val)
1857
1858 #define target_set_trace_notes(user,notes,stopnotes) \
1859 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1860
1861 #define target_get_tib_address(ptid, addr) \
1862 (*current_target.to_get_tib_address) ((ptid), (addr))
1863
1864 #define target_set_permissions() \
1865 (*current_target.to_set_permissions) ()
1866
1867 #define target_static_tracepoint_marker_at(addr, marker) \
1868 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1869
1870 #define target_static_tracepoint_markers_by_strid(marker_id) \
1871 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1872
1873 #define target_traceframe_info() \
1874 (*current_target.to_traceframe_info) ()
1875
1876 #define target_use_agent(use) \
1877 (*current_target.to_use_agent) (use)
1878
1879 #define target_can_use_agent() \
1880 (*current_target.to_can_use_agent) ()
1881
1882 #define target_augmented_libraries_svr4_read() \
1883 (*current_target.to_augmented_libraries_svr4_read) ()
1884
1885 /* Command logging facility. */
1886
1887 #define target_log_command(p) \
1888 do \
1889 if (current_target.to_log_command) \
1890 (*current_target.to_log_command) (&current_target, \
1891 p); \
1892 while (0)
1893
1894
1895 extern int target_core_of_thread (ptid_t ptid);
1896
1897 /* See to_get_unwinder in struct target_ops. */
1898 extern const struct frame_unwind *target_get_unwinder (void);
1899
1900 /* See to_get_tailcall_unwinder in struct target_ops. */
1901 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1902
1903 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1904 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1905 if there's a mismatch, and -1 if an error is encountered while
1906 reading memory. Throws an error if the functionality is found not
1907 to be supported by the current target. */
1908 int target_verify_memory (const gdb_byte *data,
1909 CORE_ADDR memaddr, ULONGEST size);
1910
1911 /* Routines for maintenance of the target structures...
1912
1913 complete_target_initialization: Finalize a target_ops by filling in
1914 any fields needed by the target implementation.
1915
1916 add_target: Add a target to the list of all possible targets.
1917
1918 push_target: Make this target the top of the stack of currently used
1919 targets, within its particular stratum of the stack. Result
1920 is 0 if now atop the stack, nonzero if not on top (maybe
1921 should warn user).
1922
1923 unpush_target: Remove this from the stack of currently used targets,
1924 no matter where it is on the list. Returns 0 if no
1925 change, 1 if removed from stack. */
1926
1927 extern void add_target (struct target_ops *);
1928
1929 extern void add_target_with_completer (struct target_ops *t,
1930 completer_ftype *completer);
1931
1932 extern void complete_target_initialization (struct target_ops *t);
1933
1934 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1935 for maintaining backwards compatibility when renaming targets. */
1936
1937 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1938
1939 extern void push_target (struct target_ops *);
1940
1941 extern int unpush_target (struct target_ops *);
1942
1943 extern void target_pre_inferior (int);
1944
1945 extern void target_preopen (int);
1946
1947 /* Does whatever cleanup is required to get rid of all pushed targets. */
1948 extern void pop_all_targets (void);
1949
1950 /* Like pop_all_targets, but pops only targets whose stratum is
1951 strictly above ABOVE_STRATUM. */
1952 extern void pop_all_targets_above (enum strata above_stratum);
1953
1954 extern int target_is_pushed (struct target_ops *t);
1955
1956 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1957 CORE_ADDR offset);
1958
1959 /* Struct target_section maps address ranges to file sections. It is
1960 mostly used with BFD files, but can be used without (e.g. for handling
1961 raw disks, or files not in formats handled by BFD). */
1962
1963 struct target_section
1964 {
1965 CORE_ADDR addr; /* Lowest address in section */
1966 CORE_ADDR endaddr; /* 1+highest address in section */
1967
1968 struct bfd_section *the_bfd_section;
1969
1970 /* The "owner" of the section.
1971 It can be any unique value. It is set by add_target_sections
1972 and used by remove_target_sections.
1973 For example, for executables it is a pointer to exec_bfd and
1974 for shlibs it is the so_list pointer. */
1975 void *owner;
1976 };
1977
1978 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1979
1980 struct target_section_table
1981 {
1982 struct target_section *sections;
1983 struct target_section *sections_end;
1984 };
1985
1986 /* Return the "section" containing the specified address. */
1987 struct target_section *target_section_by_addr (struct target_ops *target,
1988 CORE_ADDR addr);
1989
1990 /* Return the target section table this target (or the targets
1991 beneath) currently manipulate. */
1992
1993 extern struct target_section_table *target_get_section_table
1994 (struct target_ops *target);
1995
1996 /* From mem-break.c */
1997
1998 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1999 struct bp_target_info *);
2000
2001 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2002 struct bp_target_info *);
2003
2004 extern int default_memory_remove_breakpoint (struct gdbarch *,
2005 struct bp_target_info *);
2006
2007 extern int default_memory_insert_breakpoint (struct gdbarch *,
2008 struct bp_target_info *);
2009
2010
2011 /* From target.c */
2012
2013 extern void initialize_targets (void);
2014
2015 extern void noprocess (void) ATTRIBUTE_NORETURN;
2016
2017 extern void target_require_runnable (void);
2018
2019 extern void find_default_attach (struct target_ops *, char *, int);
2020
2021 extern void find_default_create_inferior (struct target_ops *,
2022 char *, char *, char **, int);
2023
2024 extern struct target_ops *find_target_beneath (struct target_ops *);
2025
2026 /* Find the target at STRATUM. If no target is at that stratum,
2027 return NULL. */
2028
2029 struct target_ops *find_target_at (enum strata stratum);
2030
2031 /* Read OS data object of type TYPE from the target, and return it in
2032 XML format. The result is NUL-terminated and returned as a string,
2033 allocated using xmalloc. If an error occurs or the transfer is
2034 unsupported, NULL is returned. Empty objects are returned as
2035 allocated but empty strings. */
2036
2037 extern char *target_get_osdata (const char *type);
2038
2039 \f
2040 /* Stuff that should be shared among the various remote targets. */
2041
2042 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2043 information (higher values, more information). */
2044 extern int remote_debug;
2045
2046 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2047 extern int baud_rate;
2048 /* Timeout limit for response from target. */
2049 extern int remote_timeout;
2050
2051 \f
2052
2053 /* Set the show memory breakpoints mode to show, and installs a cleanup
2054 to restore it back to the current value. */
2055 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2056
2057 extern int may_write_registers;
2058 extern int may_write_memory;
2059 extern int may_insert_breakpoints;
2060 extern int may_insert_tracepoints;
2061 extern int may_insert_fast_tracepoints;
2062 extern int may_stop;
2063
2064 extern void update_target_permissions (void);
2065
2066 \f
2067 /* Imported from machine dependent code. */
2068
2069 /* Blank target vector entries are initialized to target_ignore. */
2070 void target_ignore (void);
2071
2072 /* See to_supports_btrace in struct target_ops. */
2073 #define target_supports_btrace() \
2074 (current_target.to_supports_btrace (&current_target))
2075
2076 /* See to_enable_btrace in struct target_ops. */
2077 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2078
2079 /* See to_disable_btrace in struct target_ops. */
2080 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2081
2082 /* See to_teardown_btrace in struct target_ops. */
2083 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2084
2085 /* See to_read_btrace in struct target_ops. */
2086 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2087 struct btrace_target_info *,
2088 enum btrace_read_type);
2089
2090 /* See to_stop_recording in struct target_ops. */
2091 extern void target_stop_recording (void);
2092
2093 /* See to_info_record in struct target_ops. */
2094 extern void target_info_record (void);
2095
2096 /* See to_save_record in struct target_ops. */
2097 extern void target_save_record (const char *filename);
2098
2099 /* Query if the target supports deleting the execution log. */
2100 extern int target_supports_delete_record (void);
2101
2102 /* See to_delete_record in struct target_ops. */
2103 extern void target_delete_record (void);
2104
2105 /* See to_record_is_replaying in struct target_ops. */
2106 extern int target_record_is_replaying (void);
2107
2108 /* See to_goto_record_begin in struct target_ops. */
2109 extern void target_goto_record_begin (void);
2110
2111 /* See to_goto_record_end in struct target_ops. */
2112 extern void target_goto_record_end (void);
2113
2114 /* See to_goto_record in struct target_ops. */
2115 extern void target_goto_record (ULONGEST insn);
2116
2117 /* See to_insn_history. */
2118 extern void target_insn_history (int size, int flags);
2119
2120 /* See to_insn_history_from. */
2121 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2122
2123 /* See to_insn_history_range. */
2124 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2125
2126 /* See to_call_history. */
2127 extern void target_call_history (int size, int flags);
2128
2129 /* See to_call_history_from. */
2130 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2131
2132 /* See to_call_history_range. */
2133 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2134
2135 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2136 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2137 struct gdbarch *gdbarch);
2138
2139 /* See to_decr_pc_after_break. */
2140 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2141
2142 #endif /* !defined (TARGET_H) */
This page took 0.07454 seconds and 4 git commands to generate.