gdb/copyright.py: Adapt after move of gnulib from gdb to toplevel
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "gdbsupport/gdb_signals.h"
78 #include "btrace.h"
79 #include "record.h"
80 #include "command.h"
81 #include "disasm.h"
82 #include "tracepoint.h"
83
84 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
85
86 enum strata
87 {
88 dummy_stratum, /* The lowest of the low */
89 file_stratum, /* Executable files, etc */
90 process_stratum, /* Executing processes or core dump files */
91 thread_stratum, /* Executing threads */
92 record_stratum, /* Support record debugging */
93 arch_stratum, /* Architecture overrides */
94 debug_stratum /* Target debug. Must be last. */
95 };
96
97 enum thread_control_capabilities
98 {
99 tc_none = 0, /* Default: can't control thread execution. */
100 tc_schedlock = 1, /* Can lock the thread scheduler. */
101 };
102
103 /* The structure below stores information about a system call.
104 It is basically used in the "catch syscall" command, and in
105 every function that gives information about a system call.
106
107 It's also good to mention that its fields represent everything
108 that we currently know about a syscall in GDB. */
109 struct syscall
110 {
111 /* The syscall number. */
112 int number;
113
114 /* The syscall name. */
115 const char *name;
116 };
117
118 /* Return a pretty printed form of TARGET_OPTIONS. */
119 extern std::string target_options_to_string (int target_options);
120
121 /* Possible types of events that the inferior handler will have to
122 deal with. */
123 enum inferior_event_type
124 {
125 /* Process a normal inferior event which will result in target_wait
126 being called. */
127 INF_REG_EVENT,
128 /* We are called to do stuff after the inferior stops. */
129 INF_EXEC_COMPLETE,
130 };
131 \f
132 /* Target objects which can be transfered using target_read,
133 target_write, et cetera. */
134
135 enum target_object
136 {
137 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
138 TARGET_OBJECT_AVR,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* Traceframe info, in XML format. */
186 TARGET_OBJECT_TRACEFRAME_INFO,
187 /* Load maps for FDPIC systems. */
188 TARGET_OBJECT_FDPIC,
189 /* Darwin dynamic linker info data. */
190 TARGET_OBJECT_DARWIN_DYLD_INFO,
191 /* OpenVMS Unwind Information Block. */
192 TARGET_OBJECT_OPENVMS_UIB,
193 /* Branch trace data, in XML format. */
194 TARGET_OBJECT_BTRACE,
195 /* Branch trace configuration, in XML format. */
196 TARGET_OBJECT_BTRACE_CONF,
197 /* The pathname of the executable file that was run to create
198 a specified process. ANNEX should be a string representation
199 of the process ID of the process in question, in hexadecimal
200 format. */
201 TARGET_OBJECT_EXEC_FILE,
202 /* FreeBSD virtual memory mappings. */
203 TARGET_OBJECT_FREEBSD_VMMAP,
204 /* FreeBSD process strings. */
205 TARGET_OBJECT_FREEBSD_PS_STRINGS,
206 /* Possible future objects: TARGET_OBJECT_FILE, ... */
207 };
208
209 /* Possible values returned by target_xfer_partial, etc. */
210
211 enum target_xfer_status
212 {
213 /* Some bytes are transferred. */
214 TARGET_XFER_OK = 1,
215
216 /* No further transfer is possible. */
217 TARGET_XFER_EOF = 0,
218
219 /* The piece of the object requested is unavailable. */
220 TARGET_XFER_UNAVAILABLE = 2,
221
222 /* Generic I/O error. Note that it's important that this is '-1',
223 as we still have target_xfer-related code returning hardcoded
224 '-1' on error. */
225 TARGET_XFER_E_IO = -1,
226
227 /* Keep list in sync with target_xfer_status_to_string. */
228 };
229
230 /* Return the string form of STATUS. */
231
232 extern const char *
233 target_xfer_status_to_string (enum target_xfer_status status);
234
235 typedef enum target_xfer_status
236 target_xfer_partial_ftype (struct target_ops *ops,
237 enum target_object object,
238 const char *annex,
239 gdb_byte *readbuf,
240 const gdb_byte *writebuf,
241 ULONGEST offset,
242 ULONGEST len,
243 ULONGEST *xfered_len);
244
245 enum target_xfer_status
246 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
247 const gdb_byte *writebuf, ULONGEST memaddr,
248 LONGEST len, ULONGEST *xfered_len);
249
250 /* Request that OPS transfer up to LEN addressable units of the target's
251 OBJECT. When reading from a memory object, the size of an addressable unit
252 is architecture dependent and can be found using
253 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
254 byte long. BUF should point to a buffer large enough to hold the read data,
255 taking into account the addressable unit size. The OFFSET, for a seekable
256 object, specifies the starting point. The ANNEX can be used to provide
257 additional data-specific information to the target.
258
259 Return the number of addressable units actually transferred, or a negative
260 error code (an 'enum target_xfer_error' value) if the transfer is not
261 supported or otherwise fails. Return of a positive value less than
262 LEN indicates that no further transfer is possible. Unlike the raw
263 to_xfer_partial interface, callers of these functions do not need
264 to retry partial transfers. */
265
266 extern LONGEST target_read (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte *buf,
269 ULONGEST offset, LONGEST len);
270
271 struct memory_read_result
272 {
273 memory_read_result (ULONGEST begin_, ULONGEST end_,
274 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
275 : begin (begin_),
276 end (end_),
277 data (std::move (data_))
278 {
279 }
280
281 ~memory_read_result () = default;
282
283 memory_read_result (memory_read_result &&other) = default;
284
285 DISABLE_COPY_AND_ASSIGN (memory_read_result);
286
287 /* First address that was read. */
288 ULONGEST begin;
289 /* Past-the-end address. */
290 ULONGEST end;
291 /* The data. */
292 gdb::unique_xmalloc_ptr<gdb_byte> data;
293 };
294
295 extern std::vector<memory_read_result> read_memory_robust
296 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
297
298 /* Request that OPS transfer up to LEN addressable units from BUF to the
299 target's OBJECT. When writing to a memory object, the addressable unit
300 size is architecture dependent and can be found using
301 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
302 byte long. The OFFSET, for a seekable object, specifies the starting point.
303 The ANNEX can be used to provide additional data-specific information to
304 the target.
305
306 Return the number of addressable units actually transferred, or a negative
307 error code (an 'enum target_xfer_status' value) if the transfer is not
308 supported or otherwise fails. Return of a positive value less than
309 LEN indicates that no further transfer is possible. Unlike the raw
310 to_xfer_partial interface, callers of these functions do not need to
311 retry partial transfers. */
312
313 extern LONGEST target_write (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, const gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318 /* Similar to target_write, except that it also calls PROGRESS with
319 the number of bytes written and the opaque BATON after every
320 successful partial write (and before the first write). This is
321 useful for progress reporting and user interaction while writing
322 data. To abort the transfer, the progress callback can throw an
323 exception. */
324
325 LONGEST target_write_with_progress (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, const gdb_byte *buf,
328 ULONGEST offset, LONGEST len,
329 void (*progress) (ULONGEST, void *),
330 void *baton);
331
332 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
333 using OPS. The return value will be uninstantiated if the transfer fails or
334 is not supported.
335
336 This method should be used for objects sufficiently small to store
337 in a single xmalloc'd buffer, when no fixed bound on the object's
338 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
339 through this function. */
340
341 extern gdb::optional<gdb::byte_vector> target_read_alloc
342 (struct target_ops *ops, enum target_object object, const char *annex);
343
344 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
345 (therefore usable as a NUL-terminated string). If an error occurs or the
346 transfer is unsupported, the return value will be uninstantiated. Empty
347 objects are returned as allocated but empty strings. Therefore, on success,
348 the returned vector is guaranteed to have at least one element. A warning is
349 issued if the result contains any embedded NUL bytes. */
350
351 extern gdb::optional<gdb::char_vector> target_read_stralloc
352 (struct target_ops *ops, enum target_object object, const char *annex);
353
354 /* See target_ops->to_xfer_partial. */
355 extern target_xfer_partial_ftype target_xfer_partial;
356
357 /* Wrappers to target read/write that perform memory transfers. They
358 throw an error if the memory transfer fails.
359
360 NOTE: cagney/2003-10-23: The naming schema is lifted from
361 "frame.h". The parameter order is lifted from get_frame_memory,
362 which in turn lifted it from read_memory. */
363
364 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
365 gdb_byte *buf, LONGEST len);
366 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
367 CORE_ADDR addr, int len,
368 enum bfd_endian byte_order);
369 \f
370 struct thread_info; /* fwd decl for parameter list below: */
371
372 /* The type of the callback to the to_async method. */
373
374 typedef void async_callback_ftype (enum inferior_event_type event_type,
375 void *context);
376
377 /* Normally target debug printing is purely type-based. However,
378 sometimes it is necessary to override the debug printing on a
379 per-argument basis. This macro can be used, attribute-style, to
380 name the target debug printing function for a particular method
381 argument. FUNC is the name of the function. The macro's
382 definition is empty because it is only used by the
383 make-target-delegates script. */
384
385 #define TARGET_DEBUG_PRINTER(FUNC)
386
387 /* These defines are used to mark target_ops methods. The script
388 make-target-delegates scans these and auto-generates the base
389 method implementations. There are four macros that can be used:
390
391 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
392 does nothing. This is only valid if the method return type is
393 'void'.
394
395 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
396 'tcomplain ()'. The base method simply makes this call, which is
397 assumed not to return.
398
399 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
400 base method returns this expression's value.
401
402 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
403 make-target-delegates does not generate a base method in this case,
404 but instead uses the argument function as the base method. */
405
406 #define TARGET_DEFAULT_IGNORE()
407 #define TARGET_DEFAULT_NORETURN(ARG)
408 #define TARGET_DEFAULT_RETURN(ARG)
409 #define TARGET_DEFAULT_FUNC(ARG)
410
411 /* Each target that can be activated with "target TARGET_NAME" passes
412 the address of one of these objects to add_target, which uses the
413 object's address as unique identifier, and registers the "target
414 TARGET_NAME" command using SHORTNAME as target name. */
415
416 struct target_info
417 {
418 /* Name of this target. */
419 const char *shortname;
420
421 /* Name for printing. */
422 const char *longname;
423
424 /* Documentation. Does not include trailing newline, and starts
425 with a one-line description (probably similar to longname). */
426 const char *doc;
427 };
428
429 struct target_ops
430 {
431 /* Return this target's stratum. */
432 virtual strata stratum () const = 0;
433
434 /* To the target under this one. */
435 target_ops *beneath () const;
436
437 /* Free resources associated with the target. Note that singleton
438 targets, like e.g., native targets, are global objects, not
439 heap allocated, and are thus only deleted on GDB exit. The
440 main teardown entry point is the "close" method, below. */
441 virtual ~target_ops () {}
442
443 /* Return a reference to this target's unique target_info
444 object. */
445 virtual const target_info &info () const = 0;
446
447 /* Name this target type. */
448 const char *shortname ()
449 { return info ().shortname; }
450
451 const char *longname ()
452 { return info ().longname; }
453
454 /* Close the target. This is where the target can handle
455 teardown. Heap-allocated targets should delete themselves
456 before returning. */
457 virtual void close ();
458
459 /* Attaches to a process on the target side. Arguments are as
460 passed to the `attach' command by the user. This routine can
461 be called when the target is not on the target-stack, if the
462 target_ops::can_run method returns 1; in that case, it must push
463 itself onto the stack. Upon exit, the target should be ready
464 for normal operations, and should be ready to deliver the
465 status of the process immediately (without waiting) to an
466 upcoming target_wait call. */
467 virtual bool can_attach ();
468 virtual void attach (const char *, int);
469 virtual void post_attach (int)
470 TARGET_DEFAULT_IGNORE ();
471 virtual void detach (inferior *, int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void disconnect (const char *, int)
474 TARGET_DEFAULT_NORETURN (tcomplain ());
475 virtual void resume (ptid_t,
476 int TARGET_DEBUG_PRINTER (target_debug_print_step),
477 enum gdb_signal)
478 TARGET_DEFAULT_NORETURN (noprocess ());
479 virtual void commit_resume ()
480 TARGET_DEFAULT_IGNORE ();
481 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
482 int TARGET_DEBUG_PRINTER (target_debug_print_options))
483 TARGET_DEFAULT_FUNC (default_target_wait);
484 virtual void fetch_registers (struct regcache *, int)
485 TARGET_DEFAULT_IGNORE ();
486 virtual void store_registers (struct regcache *, int)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488 virtual void prepare_to_store (struct regcache *)
489 TARGET_DEFAULT_NORETURN (noprocess ());
490
491 virtual void files_info ()
492 TARGET_DEFAULT_IGNORE ();
493 virtual int insert_breakpoint (struct gdbarch *,
494 struct bp_target_info *)
495 TARGET_DEFAULT_NORETURN (noprocess ());
496 virtual int remove_breakpoint (struct gdbarch *,
497 struct bp_target_info *,
498 enum remove_bp_reason)
499 TARGET_DEFAULT_NORETURN (noprocess ());
500
501 /* Returns true if the target stopped because it executed a
502 software breakpoint. This is necessary for correct background
503 execution / non-stop mode operation, and for correct PC
504 adjustment on targets where the PC needs to be adjusted when a
505 software breakpoint triggers. In these modes, by the time GDB
506 processes a breakpoint event, the breakpoint may already be
507 done from the target, so GDB needs to be able to tell whether
508 it should ignore the event and whether it should adjust the PC.
509 See adjust_pc_after_break. */
510 virtual bool stopped_by_sw_breakpoint ()
511 TARGET_DEFAULT_RETURN (false);
512 /* Returns true if the above method is supported. */
513 virtual bool supports_stopped_by_sw_breakpoint ()
514 TARGET_DEFAULT_RETURN (false);
515
516 /* Returns true if the target stopped for a hardware breakpoint.
517 Likewise, if the target supports hardware breakpoints, this
518 method is necessary for correct background execution / non-stop
519 mode operation. Even though hardware breakpoints do not
520 require PC adjustment, GDB needs to be able to tell whether the
521 hardware breakpoint event is a delayed event for a breakpoint
522 that is already gone and should thus be ignored. */
523 virtual bool stopped_by_hw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525 /* Returns true if the above method is supported. */
526 virtual bool supports_stopped_by_hw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528
529 virtual int can_use_hw_breakpoint (enum bptype, int, int)
530 TARGET_DEFAULT_RETURN (0);
531 virtual int ranged_break_num_registers ()
532 TARGET_DEFAULT_RETURN (-1);
533 virtual int insert_hw_breakpoint (struct gdbarch *,
534 struct bp_target_info *)
535 TARGET_DEFAULT_RETURN (-1);
536 virtual int remove_hw_breakpoint (struct gdbarch *,
537 struct bp_target_info *)
538 TARGET_DEFAULT_RETURN (-1);
539
540 /* Documentation of what the two routines below are expected to do is
541 provided with the corresponding target_* macros. */
542 virtual int remove_watchpoint (CORE_ADDR, int,
543 enum target_hw_bp_type, struct expression *)
544 TARGET_DEFAULT_RETURN (-1);
545 virtual int insert_watchpoint (CORE_ADDR, int,
546 enum target_hw_bp_type, struct expression *)
547 TARGET_DEFAULT_RETURN (-1);
548
549 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
550 enum target_hw_bp_type)
551 TARGET_DEFAULT_RETURN (1);
552 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
553 enum target_hw_bp_type)
554 TARGET_DEFAULT_RETURN (1);
555 virtual bool stopped_by_watchpoint ()
556 TARGET_DEFAULT_RETURN (false);
557 virtual bool have_steppable_watchpoint ()
558 TARGET_DEFAULT_RETURN (false);
559 virtual bool stopped_data_address (CORE_ADDR *)
560 TARGET_DEFAULT_RETURN (false);
561 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
562 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
563
564 /* Documentation of this routine is provided with the corresponding
565 target_* macro. */
566 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
567 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
568
569 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
570 struct expression *)
571 TARGET_DEFAULT_RETURN (false);
572 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
573 TARGET_DEFAULT_RETURN (-1);
574
575 /* Return 1 for sure target can do single step. Return -1 for
576 unknown. Return 0 for target can't do. */
577 virtual int can_do_single_step ()
578 TARGET_DEFAULT_RETURN (-1);
579
580 virtual bool supports_terminal_ours ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual void terminal_init ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_inferior ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_save_inferior ()
587 TARGET_DEFAULT_IGNORE ();
588 virtual void terminal_ours_for_output ()
589 TARGET_DEFAULT_IGNORE ();
590 virtual void terminal_ours ()
591 TARGET_DEFAULT_IGNORE ();
592 virtual void terminal_info (const char *, int)
593 TARGET_DEFAULT_FUNC (default_terminal_info);
594 virtual void kill ()
595 TARGET_DEFAULT_NORETURN (noprocess ());
596 virtual void load (const char *, int)
597 TARGET_DEFAULT_NORETURN (tcomplain ());
598 /* Start an inferior process and set inferior_ptid to its pid.
599 EXEC_FILE is the file to run.
600 ALLARGS is a string containing the arguments to the program.
601 ENV is the environment vector to pass. Errors reported with error().
602 On VxWorks and various standalone systems, we ignore exec_file. */
603 virtual bool can_create_inferior ();
604 virtual void create_inferior (const char *, const std::string &,
605 char **, int);
606 virtual void post_startup_inferior (ptid_t)
607 TARGET_DEFAULT_IGNORE ();
608 virtual int insert_fork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int remove_fork_catchpoint (int)
611 TARGET_DEFAULT_RETURN (1);
612 virtual int insert_vfork_catchpoint (int)
613 TARGET_DEFAULT_RETURN (1);
614 virtual int remove_vfork_catchpoint (int)
615 TARGET_DEFAULT_RETURN (1);
616 virtual int follow_fork (int, int)
617 TARGET_DEFAULT_FUNC (default_follow_fork);
618 virtual int insert_exec_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual int remove_exec_catchpoint (int)
621 TARGET_DEFAULT_RETURN (1);
622 virtual void follow_exec (struct inferior *, const char *)
623 TARGET_DEFAULT_IGNORE ();
624 virtual int set_syscall_catchpoint (int, bool, int,
625 gdb::array_view<const int>)
626 TARGET_DEFAULT_RETURN (1);
627 virtual void mourn_inferior ()
628 TARGET_DEFAULT_FUNC (default_mourn_inferior);
629
630 /* Note that can_run is special and can be invoked on an unpushed
631 target. Targets defining this method must also define
632 to_can_async_p and to_supports_non_stop. */
633 virtual bool can_run ();
634
635 /* Documentation of this routine is provided with the corresponding
636 target_* macro. */
637 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
638 TARGET_DEFAULT_IGNORE ();
639
640 /* Documentation of this routine is provided with the
641 corresponding target_* function. */
642 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
643 TARGET_DEFAULT_IGNORE ();
644
645 virtual bool thread_alive (ptid_t ptid)
646 TARGET_DEFAULT_RETURN (false);
647 virtual void update_thread_list ()
648 TARGET_DEFAULT_IGNORE ();
649 virtual std::string pid_to_str (ptid_t)
650 TARGET_DEFAULT_FUNC (default_pid_to_str);
651 virtual const char *extra_thread_info (thread_info *)
652 TARGET_DEFAULT_RETURN (NULL);
653 virtual const char *thread_name (thread_info *)
654 TARGET_DEFAULT_RETURN (NULL);
655 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
656 int,
657 inferior *inf)
658 TARGET_DEFAULT_RETURN (NULL);
659 /* See target_thread_info_to_thread_handle. */
660 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
661 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
662 virtual void stop (ptid_t)
663 TARGET_DEFAULT_IGNORE ();
664 virtual void interrupt ()
665 TARGET_DEFAULT_IGNORE ();
666 virtual void pass_ctrlc ()
667 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
668 virtual void rcmd (const char *command, struct ui_file *output)
669 TARGET_DEFAULT_FUNC (default_rcmd);
670 virtual char *pid_to_exec_file (int pid)
671 TARGET_DEFAULT_RETURN (NULL);
672 virtual void log_command (const char *)
673 TARGET_DEFAULT_IGNORE ();
674 virtual struct target_section_table *get_section_table ()
675 TARGET_DEFAULT_RETURN (NULL);
676
677 /* Provide default values for all "must have" methods. */
678 virtual bool has_all_memory () { return false; }
679 virtual bool has_memory () { return false; }
680 virtual bool has_stack () { return false; }
681 virtual bool has_registers () { return false; }
682 virtual bool has_execution (ptid_t) { return false; }
683
684 /* Control thread execution. */
685 virtual thread_control_capabilities get_thread_control_capabilities ()
686 TARGET_DEFAULT_RETURN (tc_none);
687 virtual bool attach_no_wait ()
688 TARGET_DEFAULT_RETURN (0);
689 /* This method must be implemented in some situations. See the
690 comment on 'can_run'. */
691 virtual bool can_async_p ()
692 TARGET_DEFAULT_RETURN (false);
693 virtual bool is_async_p ()
694 TARGET_DEFAULT_RETURN (false);
695 virtual void async (int)
696 TARGET_DEFAULT_NORETURN (tcomplain ());
697 virtual void thread_events (int)
698 TARGET_DEFAULT_IGNORE ();
699 /* This method must be implemented in some situations. See the
700 comment on 'can_run'. */
701 virtual bool supports_non_stop ()
702 TARGET_DEFAULT_RETURN (false);
703 /* Return true if the target operates in non-stop mode even with
704 "set non-stop off". */
705 virtual bool always_non_stop_p ()
706 TARGET_DEFAULT_RETURN (false);
707 /* find_memory_regions support method for gcore */
708 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
709 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
710 /* make_corefile_notes support method for gcore */
711 virtual char *make_corefile_notes (bfd *, int *)
712 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
713 /* get_bookmark support method for bookmarks */
714 virtual gdb_byte *get_bookmark (const char *, int)
715 TARGET_DEFAULT_NORETURN (tcomplain ());
716 /* goto_bookmark support method for bookmarks */
717 virtual void goto_bookmark (const gdb_byte *, int)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 /* Return the thread-local address at OFFSET in the
720 thread-local storage for the thread PTID and the shared library
721 or executable file given by LOAD_MODULE_ADDR. If that block of
722 thread-local storage hasn't been allocated yet, this function
723 may throw an error. LOAD_MODULE_ADDR may be zero for statically
724 linked multithreaded inferiors. */
725 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
726 CORE_ADDR load_module_addr,
727 CORE_ADDR offset)
728 TARGET_DEFAULT_NORETURN (generic_tls_error ());
729
730 /* Request that OPS transfer up to LEN addressable units of the target's
731 OBJECT. When reading from a memory object, the size of an addressable
732 unit is architecture dependent and can be found using
733 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
734 1 byte long. The OFFSET, for a seekable object, specifies the
735 starting point. The ANNEX can be used to provide additional
736 data-specific information to the target.
737
738 Return the transferred status, error or OK (an
739 'enum target_xfer_status' value). Save the number of addressable units
740 actually transferred in *XFERED_LEN if transfer is successful
741 (TARGET_XFER_OK) or the number unavailable units if the requested
742 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
743 smaller than LEN does not indicate the end of the object, only
744 the end of the transfer; higher level code should continue
745 transferring if desired. This is handled in target.c.
746
747 The interface does not support a "retry" mechanism. Instead it
748 assumes that at least one addressable unit will be transfered on each
749 successful call.
750
751 NOTE: cagney/2003-10-17: The current interface can lead to
752 fragmented transfers. Lower target levels should not implement
753 hacks, such as enlarging the transfer, in an attempt to
754 compensate for this. Instead, the target stack should be
755 extended so that it implements supply/collect methods and a
756 look-aside object cache. With that available, the lowest
757 target can safely and freely "push" data up the stack.
758
759 See target_read and target_write for more information. One,
760 and only one, of readbuf or writebuf must be non-NULL. */
761
762 virtual enum target_xfer_status xfer_partial (enum target_object object,
763 const char *annex,
764 gdb_byte *readbuf,
765 const gdb_byte *writebuf,
766 ULONGEST offset, ULONGEST len,
767 ULONGEST *xfered_len)
768 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
769
770 /* Return the limit on the size of any single memory transfer
771 for the target. */
772
773 virtual ULONGEST get_memory_xfer_limit ()
774 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
775
776 /* Returns the memory map for the target. A return value of NULL
777 means that no memory map is available. If a memory address
778 does not fall within any returned regions, it's assumed to be
779 RAM. The returned memory regions should not overlap.
780
781 The order of regions does not matter; target_memory_map will
782 sort regions by starting address. For that reason, this
783 function should not be called directly except via
784 target_memory_map.
785
786 This method should not cache data; if the memory map could
787 change unexpectedly, it should be invalidated, and higher
788 layers will re-fetch it. */
789 virtual std::vector<mem_region> memory_map ()
790 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
791
792 /* Erases the region of flash memory starting at ADDRESS, of
793 length LENGTH.
794
795 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
796 on flash block boundaries, as reported by 'to_memory_map'. */
797 virtual void flash_erase (ULONGEST address, LONGEST length)
798 TARGET_DEFAULT_NORETURN (tcomplain ());
799
800 /* Finishes a flash memory write sequence. After this operation
801 all flash memory should be available for writing and the result
802 of reading from areas written by 'to_flash_write' should be
803 equal to what was written. */
804 virtual void flash_done ()
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Describe the architecture-specific features of this target. If
808 OPS doesn't have a description, this should delegate to the
809 "beneath" target. Returns the description found, or NULL if no
810 description was available. */
811 virtual const struct target_desc *read_description ()
812 TARGET_DEFAULT_RETURN (NULL);
813
814 /* Build the PTID of the thread on which a given task is running,
815 based on LWP and THREAD. These values are extracted from the
816 task Private_Data section of the Ada Task Control Block, and
817 their interpretation depends on the target. */
818 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
819 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
820
821 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
822 Return 0 if *READPTR is already at the end of the buffer.
823 Return -1 if there is insufficient buffer for a whole entry.
824 Return 1 if an entry was read into *TYPEP and *VALP. */
825 virtual int auxv_parse (gdb_byte **readptr,
826 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
827 TARGET_DEFAULT_FUNC (default_auxv_parse);
828
829 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
830 sequence of bytes in PATTERN with length PATTERN_LEN.
831
832 The result is 1 if found, 0 if not found, and -1 if there was an error
833 requiring halting of the search (e.g. memory read error).
834 If the pattern is found the address is recorded in FOUND_ADDRP. */
835 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
836 const gdb_byte *pattern, ULONGEST pattern_len,
837 CORE_ADDR *found_addrp)
838 TARGET_DEFAULT_FUNC (default_search_memory);
839
840 /* Can target execute in reverse? */
841 virtual bool can_execute_reverse ()
842 TARGET_DEFAULT_RETURN (false);
843
844 /* The direction the target is currently executing. Must be
845 implemented on targets that support reverse execution and async
846 mode. The default simply returns forward execution. */
847 virtual enum exec_direction_kind execution_direction ()
848 TARGET_DEFAULT_FUNC (default_execution_direction);
849
850 /* Does this target support debugging multiple processes
851 simultaneously? */
852 virtual bool supports_multi_process ()
853 TARGET_DEFAULT_RETURN (false);
854
855 /* Does this target support enabling and disabling tracepoints while a trace
856 experiment is running? */
857 virtual bool supports_enable_disable_tracepoint ()
858 TARGET_DEFAULT_RETURN (false);
859
860 /* Does this target support disabling address space randomization? */
861 virtual bool supports_disable_randomization ()
862 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
863
864 /* Does this target support the tracenz bytecode for string collection? */
865 virtual bool supports_string_tracing ()
866 TARGET_DEFAULT_RETURN (false);
867
868 /* Does this target support evaluation of breakpoint conditions on its
869 end? */
870 virtual bool supports_evaluation_of_breakpoint_conditions ()
871 TARGET_DEFAULT_RETURN (false);
872
873 /* Does this target support evaluation of breakpoint commands on its
874 end? */
875 virtual bool can_run_breakpoint_commands ()
876 TARGET_DEFAULT_RETURN (false);
877
878 /* Determine current architecture of thread PTID.
879
880 The target is supposed to determine the architecture of the code where
881 the target is currently stopped at (on Cell, if a target is in spu_run,
882 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
883 This is architecture used to perform decr_pc_after_break adjustment,
884 and also determines the frame architecture of the innermost frame.
885 ptrace operations need to operate according to target_gdbarch (). */
886 virtual struct gdbarch *thread_architecture (ptid_t)
887 TARGET_DEFAULT_RETURN (NULL);
888
889 /* Determine current address space of thread PTID. */
890 virtual struct address_space *thread_address_space (ptid_t)
891 TARGET_DEFAULT_RETURN (NULL);
892
893 /* Target file operations. */
894
895 /* Return nonzero if the filesystem seen by the current inferior
896 is the local filesystem, zero otherwise. */
897 virtual bool filesystem_is_local ()
898 TARGET_DEFAULT_RETURN (true);
899
900 /* Open FILENAME on the target, in the filesystem as seen by INF,
901 using FLAGS and MODE. If INF is NULL, use the filesystem seen
902 by the debugger (GDB or, for remote targets, the remote stub).
903 If WARN_IF_SLOW is nonzero, print a warning message if the file
904 is being accessed over a link that may be slow. Return a
905 target file descriptor, or -1 if an error occurs (and set
906 *TARGET_ERRNO). */
907 virtual int fileio_open (struct inferior *inf, const char *filename,
908 int flags, int mode, int warn_if_slow,
909 int *target_errno);
910
911 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
912 Return the number of bytes written, or -1 if an error occurs
913 (and set *TARGET_ERRNO). */
914 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
915 ULONGEST offset, int *target_errno);
916
917 /* Read up to LEN bytes FD on the target into READ_BUF.
918 Return the number of bytes read, or -1 if an error occurs
919 (and set *TARGET_ERRNO). */
920 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
921 ULONGEST offset, int *target_errno);
922
923 /* Get information about the file opened as FD and put it in
924 SB. Return 0 on success, or -1 if an error occurs (and set
925 *TARGET_ERRNO). */
926 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
927
928 /* Close FD on the target. Return 0, or -1 if an error occurs
929 (and set *TARGET_ERRNO). */
930 virtual int fileio_close (int fd, int *target_errno);
931
932 /* Unlink FILENAME on the target, in the filesystem as seen by
933 INF. If INF is NULL, use the filesystem seen by the debugger
934 (GDB or, for remote targets, the remote stub). Return 0, or
935 -1 if an error occurs (and set *TARGET_ERRNO). */
936 virtual int fileio_unlink (struct inferior *inf,
937 const char *filename,
938 int *target_errno);
939
940 /* Read value of symbolic link FILENAME on the target, in the
941 filesystem as seen by INF. If INF is NULL, use the filesystem
942 seen by the debugger (GDB or, for remote targets, the remote
943 stub). Return a string, or an empty optional if an error
944 occurs (and set *TARGET_ERRNO). */
945 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
946 const char *filename,
947 int *target_errno);
948
949 /* Implement the "info proc" command. Returns true if the target
950 actually implemented the command, false otherwise. */
951 virtual bool info_proc (const char *, enum info_proc_what);
952
953 /* Tracepoint-related operations. */
954
955 /* Prepare the target for a tracing run. */
956 virtual void trace_init ()
957 TARGET_DEFAULT_NORETURN (tcomplain ());
958
959 /* Send full details of a tracepoint location to the target. */
960 virtual void download_tracepoint (struct bp_location *location)
961 TARGET_DEFAULT_NORETURN (tcomplain ());
962
963 /* Is the target able to download tracepoint locations in current
964 state? */
965 virtual bool can_download_tracepoint ()
966 TARGET_DEFAULT_RETURN (false);
967
968 /* Send full details of a trace state variable to the target. */
969 virtual void download_trace_state_variable (const trace_state_variable &tsv)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Enable a tracepoint on the target. */
973 virtual void enable_tracepoint (struct bp_location *location)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Disable a tracepoint on the target. */
977 virtual void disable_tracepoint (struct bp_location *location)
978 TARGET_DEFAULT_NORETURN (tcomplain ());
979
980 /* Inform the target info of memory regions that are readonly
981 (such as text sections), and so it should return data from
982 those rather than look in the trace buffer. */
983 virtual void trace_set_readonly_regions ()
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Start a trace run. */
987 virtual void trace_start ()
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Get the current status of a tracing run. */
991 virtual int get_trace_status (struct trace_status *ts)
992 TARGET_DEFAULT_RETURN (-1);
993
994 virtual void get_tracepoint_status (struct breakpoint *tp,
995 struct uploaded_tp *utp)
996 TARGET_DEFAULT_NORETURN (tcomplain ());
997
998 /* Stop a trace run. */
999 virtual void trace_stop ()
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 /* Ask the target to find a trace frame of the given type TYPE,
1003 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1004 number of the trace frame, and also the tracepoint number at
1005 TPP. If no trace frame matches, return -1. May throw if the
1006 operation fails. */
1007 virtual int trace_find (enum trace_find_type type, int num,
1008 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1009 TARGET_DEFAULT_RETURN (-1);
1010
1011 /* Get the value of the trace state variable number TSV, returning
1012 1 if the value is known and writing the value itself into the
1013 location pointed to by VAL, else returning 0. */
1014 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1015 TARGET_DEFAULT_RETURN (false);
1016
1017 virtual int save_trace_data (const char *filename)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1021 TARGET_DEFAULT_RETURN (0);
1022
1023 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1024 TARGET_DEFAULT_RETURN (0);
1025
1026 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1027 ULONGEST offset, LONGEST len)
1028 TARGET_DEFAULT_NORETURN (tcomplain ());
1029
1030 /* Get the minimum length of instruction on which a fast tracepoint
1031 may be set on the target. If this operation is unsupported,
1032 return -1. If for some reason the minimum length cannot be
1033 determined, return 0. */
1034 virtual int get_min_fast_tracepoint_insn_len ()
1035 TARGET_DEFAULT_RETURN (-1);
1036
1037 /* Set the target's tracing behavior in response to unexpected
1038 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1039 virtual void set_disconnected_tracing (int val)
1040 TARGET_DEFAULT_IGNORE ();
1041 virtual void set_circular_trace_buffer (int val)
1042 TARGET_DEFAULT_IGNORE ();
1043 /* Set the size of trace buffer in the target. */
1044 virtual void set_trace_buffer_size (LONGEST val)
1045 TARGET_DEFAULT_IGNORE ();
1046
1047 /* Add/change textual notes about the trace run, returning 1 if
1048 successful, 0 otherwise. */
1049 virtual bool set_trace_notes (const char *user, const char *notes,
1050 const char *stopnotes)
1051 TARGET_DEFAULT_RETURN (false);
1052
1053 /* Return the processor core that thread PTID was last seen on.
1054 This information is updated only when:
1055 - update_thread_list is called
1056 - thread stops
1057 If the core cannot be determined -- either for the specified
1058 thread, or right now, or in this debug session, or for this
1059 target -- return -1. */
1060 virtual int core_of_thread (ptid_t ptid)
1061 TARGET_DEFAULT_RETURN (-1);
1062
1063 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1064 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1065 a match, 0 if there's a mismatch, and -1 if an error is
1066 encountered while reading memory. */
1067 virtual int verify_memory (const gdb_byte *data,
1068 CORE_ADDR memaddr, ULONGEST size)
1069 TARGET_DEFAULT_FUNC (default_verify_memory);
1070
1071 /* Return the address of the start of the Thread Information Block
1072 a Windows OS specific feature. */
1073 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1074 TARGET_DEFAULT_NORETURN (tcomplain ());
1075
1076 /* Send the new settings of write permission variables. */
1077 virtual void set_permissions ()
1078 TARGET_DEFAULT_IGNORE ();
1079
1080 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1081 with its details. Return true on success, false on failure. */
1082 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1083 static_tracepoint_marker *marker)
1084 TARGET_DEFAULT_RETURN (false);
1085
1086 /* Return a vector of all tracepoints markers string id ID, or all
1087 markers if ID is NULL. */
1088 virtual std::vector<static_tracepoint_marker>
1089 static_tracepoint_markers_by_strid (const char *id)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Return a traceframe info object describing the current
1093 traceframe's contents. This method should not cache data;
1094 higher layers take care of caching, invalidating, and
1095 re-fetching when necessary. */
1096 virtual traceframe_info_up traceframe_info ()
1097 TARGET_DEFAULT_NORETURN (tcomplain ());
1098
1099 /* Ask the target to use or not to use agent according to USE.
1100 Return true if successful, false otherwise. */
1101 virtual bool use_agent (bool use)
1102 TARGET_DEFAULT_NORETURN (tcomplain ());
1103
1104 /* Is the target able to use agent in current state? */
1105 virtual bool can_use_agent ()
1106 TARGET_DEFAULT_RETURN (false);
1107
1108 /* Enable branch tracing for PTID using CONF configuration.
1109 Return a branch trace target information struct for reading and for
1110 disabling branch trace. */
1111 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1112 const struct btrace_config *conf)
1113 TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115 /* Disable branch tracing and deallocate TINFO. */
1116 virtual void disable_btrace (struct btrace_target_info *tinfo)
1117 TARGET_DEFAULT_NORETURN (tcomplain ());
1118
1119 /* Disable branch tracing and deallocate TINFO. This function is similar
1120 to to_disable_btrace, except that it is called during teardown and is
1121 only allowed to perform actions that are safe. A counter-example would
1122 be attempting to talk to a remote target. */
1123 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1124 TARGET_DEFAULT_NORETURN (tcomplain ());
1125
1126 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1127 DATA is cleared before new trace is added. */
1128 virtual enum btrace_error read_btrace (struct btrace_data *data,
1129 struct btrace_target_info *btinfo,
1130 enum btrace_read_type type)
1131 TARGET_DEFAULT_NORETURN (tcomplain ());
1132
1133 /* Get the branch trace configuration. */
1134 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1135 TARGET_DEFAULT_RETURN (NULL);
1136
1137 /* Current recording method. */
1138 virtual enum record_method record_method (ptid_t ptid)
1139 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1140
1141 /* Stop trace recording. */
1142 virtual void stop_recording ()
1143 TARGET_DEFAULT_IGNORE ();
1144
1145 /* Print information about the recording. */
1146 virtual void info_record ()
1147 TARGET_DEFAULT_IGNORE ();
1148
1149 /* Save the recorded execution trace into a file. */
1150 virtual void save_record (const char *filename)
1151 TARGET_DEFAULT_NORETURN (tcomplain ());
1152
1153 /* Delete the recorded execution trace from the current position
1154 onwards. */
1155 virtual bool supports_delete_record ()
1156 TARGET_DEFAULT_RETURN (false);
1157 virtual void delete_record ()
1158 TARGET_DEFAULT_NORETURN (tcomplain ());
1159
1160 /* Query if the record target is currently replaying PTID. */
1161 virtual bool record_is_replaying (ptid_t ptid)
1162 TARGET_DEFAULT_RETURN (false);
1163
1164 /* Query if the record target will replay PTID if it were resumed in
1165 execution direction DIR. */
1166 virtual bool record_will_replay (ptid_t ptid, int dir)
1167 TARGET_DEFAULT_RETURN (false);
1168
1169 /* Stop replaying. */
1170 virtual void record_stop_replaying ()
1171 TARGET_DEFAULT_IGNORE ();
1172
1173 /* Go to the begin of the execution trace. */
1174 virtual void goto_record_begin ()
1175 TARGET_DEFAULT_NORETURN (tcomplain ());
1176
1177 /* Go to the end of the execution trace. */
1178 virtual void goto_record_end ()
1179 TARGET_DEFAULT_NORETURN (tcomplain ());
1180
1181 /* Go to a specific location in the recorded execution trace. */
1182 virtual void goto_record (ULONGEST insn)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Disassemble SIZE instructions in the recorded execution trace from
1186 the current position.
1187 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1188 disassemble SIZE succeeding instructions. */
1189 virtual void insn_history (int size, gdb_disassembly_flags flags)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Disassemble SIZE instructions in the recorded execution trace around
1193 FROM.
1194 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1195 disassemble SIZE instructions after FROM. */
1196 virtual void insn_history_from (ULONGEST from, int size,
1197 gdb_disassembly_flags flags)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Disassemble a section of the recorded execution trace from instruction
1201 BEGIN (inclusive) to instruction END (inclusive). */
1202 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1203 gdb_disassembly_flags flags)
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Print a function trace of the recorded execution trace.
1207 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1208 succeeding functions. */
1209 virtual void call_history (int size, record_print_flags flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Print a function trace of the recorded execution trace starting
1213 at function FROM.
1214 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1215 SIZE functions after FROM. */
1216 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1218
1219 /* Print a function trace of an execution trace section from function BEGIN
1220 (inclusive) to function END (inclusive). */
1221 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1225 non-empty annex. */
1226 virtual bool augmented_libraries_svr4_read ()
1227 TARGET_DEFAULT_RETURN (false);
1228
1229 /* Those unwinders are tried before any other arch unwinders. If
1230 SELF doesn't have unwinders, it should delegate to the
1231 "beneath" target. */
1232 virtual const struct frame_unwind *get_unwinder ()
1233 TARGET_DEFAULT_RETURN (NULL);
1234
1235 virtual const struct frame_unwind *get_tailcall_unwinder ()
1236 TARGET_DEFAULT_RETURN (NULL);
1237
1238 /* Prepare to generate a core file. */
1239 virtual void prepare_to_generate_core ()
1240 TARGET_DEFAULT_IGNORE ();
1241
1242 /* Cleanup after generating a core file. */
1243 virtual void done_generating_core ()
1244 TARGET_DEFAULT_IGNORE ();
1245 };
1246
1247 /* Deleter for std::unique_ptr. See comments in
1248 target_ops::~target_ops and target_ops::close about heap-allocated
1249 targets. */
1250 struct target_ops_deleter
1251 {
1252 void operator() (target_ops *target)
1253 {
1254 target->close ();
1255 }
1256 };
1257
1258 /* A unique pointer for target_ops. */
1259 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1260
1261 /* Native target backends call this once at initialization time to
1262 inform the core about which is the target that can respond to "run"
1263 or "attach". Note: native targets are always singletons. */
1264 extern void set_native_target (target_ops *target);
1265
1266 /* Get the registered native target, if there's one. Otherwise return
1267 NULL. */
1268 extern target_ops *get_native_target ();
1269
1270 /* Type that manages a target stack. See description of target stacks
1271 and strata at the top of the file. */
1272
1273 class target_stack
1274 {
1275 public:
1276 target_stack () = default;
1277 DISABLE_COPY_AND_ASSIGN (target_stack);
1278
1279 /* Push a new target into the stack of the existing target
1280 accessors, possibly superseding some existing accessor. */
1281 void push (target_ops *t);
1282
1283 /* Remove a target from the stack, wherever it may be. Return true
1284 if it was removed, false otherwise. */
1285 bool unpush (target_ops *t);
1286
1287 /* Returns true if T is pushed on the target stack. */
1288 bool is_pushed (target_ops *t) const
1289 { return at (t->stratum ()) == t; }
1290
1291 /* Return the target at STRATUM. */
1292 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1293
1294 /* Return the target at the top of the stack. */
1295 target_ops *top () const { return at (m_top); }
1296
1297 /* Find the next target down the stack from the specified target. */
1298 target_ops *find_beneath (const target_ops *t) const;
1299
1300 private:
1301 /* The stratum of the top target. */
1302 enum strata m_top {};
1303
1304 /* The stack, represented as an array, with one slot per stratum.
1305 If no target is pushed at some stratum, the corresponding slot is
1306 null. */
1307 target_ops *m_stack[(int) debug_stratum + 1] {};
1308 };
1309
1310 /* The ops structure for our "current" target process. This should
1311 never be NULL. If there is no target, it points to the dummy_target. */
1312
1313 extern target_ops *current_top_target ();
1314
1315 /* Define easy words for doing these operations on our current target. */
1316
1317 #define target_shortname (current_top_target ()->shortname ())
1318 #define target_longname (current_top_target ()->longname ())
1319
1320 /* Does whatever cleanup is required for a target that we are no
1321 longer going to be calling. This routine is automatically always
1322 called after popping the target off the target stack - the target's
1323 own methods are no longer available through the target vector.
1324 Closing file descriptors and freeing all memory allocated memory are
1325 typical things it should do. */
1326
1327 void target_close (struct target_ops *targ);
1328
1329 /* Find the correct target to use for "attach". If a target on the
1330 current stack supports attaching, then it is returned. Otherwise,
1331 the default run target is returned. */
1332
1333 extern struct target_ops *find_attach_target (void);
1334
1335 /* Find the correct target to use for "run". If a target on the
1336 current stack supports creating a new inferior, then it is
1337 returned. Otherwise, the default run target is returned. */
1338
1339 extern struct target_ops *find_run_target (void);
1340
1341 /* Some targets don't generate traps when attaching to the inferior,
1342 or their target_attach implementation takes care of the waiting.
1343 These targets must set to_attach_no_wait. */
1344
1345 #define target_attach_no_wait() \
1346 (current_top_target ()->attach_no_wait ())
1347
1348 /* The target_attach operation places a process under debugger control,
1349 and stops the process.
1350
1351 This operation provides a target-specific hook that allows the
1352 necessary bookkeeping to be performed after an attach completes. */
1353 #define target_post_attach(pid) \
1354 (current_top_target ()->post_attach) (pid)
1355
1356 /* Display a message indicating we're about to detach from the current
1357 inferior process. */
1358
1359 extern void target_announce_detach (int from_tty);
1360
1361 /* Takes a program previously attached to and detaches it.
1362 The program may resume execution (some targets do, some don't) and will
1363 no longer stop on signals, etc. We better not have left any breakpoints
1364 in the program or it'll die when it hits one. FROM_TTY says whether to be
1365 verbose or not. */
1366
1367 extern void target_detach (inferior *inf, int from_tty);
1368
1369 /* Disconnect from the current target without resuming it (leaving it
1370 waiting for a debugger). */
1371
1372 extern void target_disconnect (const char *, int);
1373
1374 /* Resume execution (or prepare for execution) of a target thread,
1375 process or all processes. STEP says whether to hardware
1376 single-step or to run free; SIGGNAL is the signal to be given to
1377 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1378 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1379 process id'. A wildcard PTID (all threads, or all threads of
1380 process) means `step/resume INFERIOR_PTID, and let other threads
1381 (for which the wildcard PTID matches) resume with their
1382 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1383 is in "pass" state, or with no signal if in "no pass" state.
1384
1385 In order to efficiently handle batches of resumption requests,
1386 targets may implement this method such that it records the
1387 resumption request, but defers the actual resumption to the
1388 target_commit_resume method implementation. See
1389 target_commit_resume below. */
1390 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1391
1392 /* Commit a series of resumption requests previously prepared with
1393 target_resume calls.
1394
1395 GDB always calls target_commit_resume after calling target_resume
1396 one or more times. A target may thus use this method in
1397 coordination with the target_resume method to batch target-side
1398 resumption requests. In that case, the target doesn't actually
1399 resume in its target_resume implementation. Instead, it prepares
1400 the resumption in target_resume, and defers the actual resumption
1401 to target_commit_resume. E.g., the remote target uses this to
1402 coalesce multiple resumption requests in a single vCont packet. */
1403 extern void target_commit_resume ();
1404
1405 /* Setup to defer target_commit_resume calls, and reactivate
1406 target_commit_resume on destruction, if it was previously
1407 active. */
1408 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1409
1410 /* For target_read_memory see target/target.h. */
1411
1412 /* The default target_ops::to_wait implementation. */
1413
1414 extern ptid_t default_target_wait (struct target_ops *ops,
1415 ptid_t ptid,
1416 struct target_waitstatus *status,
1417 int options);
1418
1419 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1420
1421 extern void target_fetch_registers (struct regcache *regcache, int regno);
1422
1423 /* Store at least register REGNO, or all regs if REGNO == -1.
1424 It can store as many registers as it wants to, so target_prepare_to_store
1425 must have been previously called. Calls error() if there are problems. */
1426
1427 extern void target_store_registers (struct regcache *regcache, int regs);
1428
1429 /* Get ready to modify the registers array. On machines which store
1430 individual registers, this doesn't need to do anything. On machines
1431 which store all the registers in one fell swoop, this makes sure
1432 that REGISTERS contains all the registers from the program being
1433 debugged. */
1434
1435 #define target_prepare_to_store(regcache) \
1436 (current_top_target ()->prepare_to_store) (regcache)
1437
1438 /* Determine current address space of thread PTID. */
1439
1440 struct address_space *target_thread_address_space (ptid_t);
1441
1442 /* Implement the "info proc" command. This returns one if the request
1443 was handled, and zero otherwise. It can also throw an exception if
1444 an error was encountered while attempting to handle the
1445 request. */
1446
1447 int target_info_proc (const char *, enum info_proc_what);
1448
1449 /* Returns true if this target can disable address space randomization. */
1450
1451 int target_supports_disable_randomization (void);
1452
1453 /* Returns true if this target can enable and disable tracepoints
1454 while a trace experiment is running. */
1455
1456 #define target_supports_enable_disable_tracepoint() \
1457 (current_top_target ()->supports_enable_disable_tracepoint) ()
1458
1459 #define target_supports_string_tracing() \
1460 (current_top_target ()->supports_string_tracing) ()
1461
1462 /* Returns true if this target can handle breakpoint conditions
1463 on its end. */
1464
1465 #define target_supports_evaluation_of_breakpoint_conditions() \
1466 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1467
1468 /* Returns true if this target can handle breakpoint commands
1469 on its end. */
1470
1471 #define target_can_run_breakpoint_commands() \
1472 (current_top_target ()->can_run_breakpoint_commands) ()
1473
1474 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1475 int, int *);
1476
1477 /* For target_read_memory see target/target.h. */
1478
1479 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1480 ssize_t len);
1481
1482 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1483
1484 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1485
1486 /* For target_write_memory see target/target.h. */
1487
1488 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1489 ssize_t len);
1490
1491 /* Fetches the target's memory map. If one is found it is sorted
1492 and returned, after some consistency checking. Otherwise, NULL
1493 is returned. */
1494 std::vector<mem_region> target_memory_map (void);
1495
1496 /* Erases all flash memory regions on the target. */
1497 void flash_erase_command (const char *cmd, int from_tty);
1498
1499 /* Erase the specified flash region. */
1500 void target_flash_erase (ULONGEST address, LONGEST length);
1501
1502 /* Finish a sequence of flash operations. */
1503 void target_flash_done (void);
1504
1505 /* Describes a request for a memory write operation. */
1506 struct memory_write_request
1507 {
1508 memory_write_request (ULONGEST begin_, ULONGEST end_,
1509 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1510 : begin (begin_), end (end_), data (data_), baton (baton_)
1511 {}
1512
1513 /* Begining address that must be written. */
1514 ULONGEST begin;
1515 /* Past-the-end address. */
1516 ULONGEST end;
1517 /* The data to write. */
1518 gdb_byte *data;
1519 /* A callback baton for progress reporting for this request. */
1520 void *baton;
1521 };
1522
1523 /* Enumeration specifying different flash preservation behaviour. */
1524 enum flash_preserve_mode
1525 {
1526 flash_preserve,
1527 flash_discard
1528 };
1529
1530 /* Write several memory blocks at once. This version can be more
1531 efficient than making several calls to target_write_memory, in
1532 particular because it can optimize accesses to flash memory.
1533
1534 Moreover, this is currently the only memory access function in gdb
1535 that supports writing to flash memory, and it should be used for
1536 all cases where access to flash memory is desirable.
1537
1538 REQUESTS is the vector of memory_write_request.
1539 PRESERVE_FLASH_P indicates what to do with blocks which must be
1540 erased, but not completely rewritten.
1541 PROGRESS_CB is a function that will be periodically called to provide
1542 feedback to user. It will be called with the baton corresponding
1543 to the request currently being written. It may also be called
1544 with a NULL baton, when preserved flash sectors are being rewritten.
1545
1546 The function returns 0 on success, and error otherwise. */
1547 int target_write_memory_blocks
1548 (const std::vector<memory_write_request> &requests,
1549 enum flash_preserve_mode preserve_flash_p,
1550 void (*progress_cb) (ULONGEST, void *));
1551
1552 /* Print a line about the current target. */
1553
1554 #define target_files_info() \
1555 (current_top_target ()->files_info) ()
1556
1557 /* Insert a breakpoint at address BP_TGT->placed_address in
1558 the target machine. Returns 0 for success, and returns non-zero or
1559 throws an error (with a detailed failure reason error code and
1560 message) otherwise. */
1561
1562 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1563 struct bp_target_info *bp_tgt);
1564
1565 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1566 machine. Result is 0 for success, non-zero for error. */
1567
1568 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1569 struct bp_target_info *bp_tgt,
1570 enum remove_bp_reason reason);
1571
1572 /* Return true if the target stack has a non-default
1573 "terminal_ours" method. */
1574
1575 extern bool target_supports_terminal_ours (void);
1576
1577 /* Kill the inferior process. Make it go away. */
1578
1579 extern void target_kill (void);
1580
1581 /* Load an executable file into the target process. This is expected
1582 to not only bring new code into the target process, but also to
1583 update GDB's symbol tables to match.
1584
1585 ARG contains command-line arguments, to be broken down with
1586 buildargv (). The first non-switch argument is the filename to
1587 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1588 0)), which is an offset to apply to the load addresses of FILE's
1589 sections. The target may define switches, or other non-switch
1590 arguments, as it pleases. */
1591
1592 extern void target_load (const char *arg, int from_tty);
1593
1594 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1595 notification of inferior events such as fork and vork immediately
1596 after the inferior is created. (This because of how gdb gets an
1597 inferior created via invoking a shell to do it. In such a scenario,
1598 if the shell init file has commands in it, the shell will fork and
1599 exec for each of those commands, and we will see each such fork
1600 event. Very bad.)
1601
1602 Such targets will supply an appropriate definition for this function. */
1603
1604 #define target_post_startup_inferior(ptid) \
1605 (current_top_target ()->post_startup_inferior) (ptid)
1606
1607 /* On some targets, we can catch an inferior fork or vfork event when
1608 it occurs. These functions insert/remove an already-created
1609 catchpoint for such events. They return 0 for success, 1 if the
1610 catchpoint type is not supported and -1 for failure. */
1611
1612 #define target_insert_fork_catchpoint(pid) \
1613 (current_top_target ()->insert_fork_catchpoint) (pid)
1614
1615 #define target_remove_fork_catchpoint(pid) \
1616 (current_top_target ()->remove_fork_catchpoint) (pid)
1617
1618 #define target_insert_vfork_catchpoint(pid) \
1619 (current_top_target ()->insert_vfork_catchpoint) (pid)
1620
1621 #define target_remove_vfork_catchpoint(pid) \
1622 (current_top_target ()->remove_vfork_catchpoint) (pid)
1623
1624 /* If the inferior forks or vforks, this function will be called at
1625 the next resume in order to perform any bookkeeping and fiddling
1626 necessary to continue debugging either the parent or child, as
1627 requested, and releasing the other. Information about the fork
1628 or vfork event is available via get_last_target_status ().
1629 This function returns 1 if the inferior should not be resumed
1630 (i.e. there is another event pending). */
1631
1632 int target_follow_fork (int follow_child, int detach_fork);
1633
1634 /* Handle the target-specific bookkeeping required when the inferior
1635 makes an exec call. INF is the exec'd inferior. */
1636
1637 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1638
1639 /* On some targets, we can catch an inferior exec event when it
1640 occurs. These functions insert/remove an already-created
1641 catchpoint for such events. They return 0 for success, 1 if the
1642 catchpoint type is not supported and -1 for failure. */
1643
1644 #define target_insert_exec_catchpoint(pid) \
1645 (current_top_target ()->insert_exec_catchpoint) (pid)
1646
1647 #define target_remove_exec_catchpoint(pid) \
1648 (current_top_target ()->remove_exec_catchpoint) (pid)
1649
1650 /* Syscall catch.
1651
1652 NEEDED is true if any syscall catch (of any kind) is requested.
1653 If NEEDED is false, it means the target can disable the mechanism to
1654 catch system calls because there are no more catchpoints of this type.
1655
1656 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1657 being requested. In this case, SYSCALL_COUNTS should be ignored.
1658
1659 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1660 element in this array is nonzero if that syscall should be caught.
1661 This argument only matters if ANY_COUNT is zero.
1662
1663 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1664 for failure. */
1665
1666 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1667 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1668 syscall_counts)
1669
1670 /* The debugger has completed a blocking wait() call. There is now
1671 some process event that must be processed. This function should
1672 be defined by those targets that require the debugger to perform
1673 cleanup or internal state changes in response to the process event. */
1674
1675 /* For target_mourn_inferior see target/target.h. */
1676
1677 /* Does target have enough data to do a run or attach command? */
1678
1679 extern int target_can_run ();
1680
1681 /* Set list of signals to be handled in the target.
1682
1683 PASS_SIGNALS is an array indexed by target signal number
1684 (enum gdb_signal). For every signal whose entry in this array is
1685 non-zero, the target is allowed -but not required- to skip reporting
1686 arrival of the signal to the GDB core by returning from target_wait,
1687 and to pass the signal directly to the inferior instead.
1688
1689 However, if the target is hardware single-stepping a thread that is
1690 about to receive a signal, it needs to be reported in any case, even
1691 if mentioned in a previous target_pass_signals call. */
1692
1693 extern void target_pass_signals
1694 (gdb::array_view<const unsigned char> pass_signals);
1695
1696 /* Set list of signals the target may pass to the inferior. This
1697 directly maps to the "handle SIGNAL pass/nopass" setting.
1698
1699 PROGRAM_SIGNALS is an array indexed by target signal
1700 number (enum gdb_signal). For every signal whose entry in this
1701 array is non-zero, the target is allowed to pass the signal to the
1702 inferior. Signals not present in the array shall be silently
1703 discarded. This does not influence whether to pass signals to the
1704 inferior as a result of a target_resume call. This is useful in
1705 scenarios where the target needs to decide whether to pass or not a
1706 signal to the inferior without GDB core involvement, such as for
1707 example, when detaching (as threads may have been suspended with
1708 pending signals not reported to GDB). */
1709
1710 extern void target_program_signals
1711 (gdb::array_view<const unsigned char> program_signals);
1712
1713 /* Check to see if a thread is still alive. */
1714
1715 extern int target_thread_alive (ptid_t ptid);
1716
1717 /* Sync the target's threads with GDB's thread list. */
1718
1719 extern void target_update_thread_list (void);
1720
1721 /* Make target stop in a continuable fashion. (For instance, under
1722 Unix, this should act like SIGSTOP). Note that this function is
1723 asynchronous: it does not wait for the target to become stopped
1724 before returning. If this is the behavior you want please use
1725 target_stop_and_wait. */
1726
1727 extern void target_stop (ptid_t ptid);
1728
1729 /* Interrupt the target. Unlike target_stop, this does not specify
1730 which thread/process reports the stop. For most target this acts
1731 like raising a SIGINT, though that's not absolutely required. This
1732 function is asynchronous. */
1733
1734 extern void target_interrupt ();
1735
1736 /* Pass a ^C, as determined to have been pressed by checking the quit
1737 flag, to the target, as if the user had typed the ^C on the
1738 inferior's controlling terminal while the inferior was in the
1739 foreground. Remote targets may take the opportunity to detect the
1740 remote side is not responding and offer to disconnect. */
1741
1742 extern void target_pass_ctrlc (void);
1743
1744 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1745 target_interrupt. */
1746 extern void default_target_pass_ctrlc (struct target_ops *ops);
1747
1748 /* Send the specified COMMAND to the target's monitor
1749 (shell,interpreter) for execution. The result of the query is
1750 placed in OUTBUF. */
1751
1752 #define target_rcmd(command, outbuf) \
1753 (current_top_target ()->rcmd) (command, outbuf)
1754
1755
1756 /* Does the target include all of memory, or only part of it? This
1757 determines whether we look up the target chain for other parts of
1758 memory if this target can't satisfy a request. */
1759
1760 extern int target_has_all_memory_1 (void);
1761 #define target_has_all_memory target_has_all_memory_1 ()
1762
1763 /* Does the target include memory? (Dummy targets don't.) */
1764
1765 extern int target_has_memory_1 (void);
1766 #define target_has_memory target_has_memory_1 ()
1767
1768 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1769 we start a process.) */
1770
1771 extern int target_has_stack_1 (void);
1772 #define target_has_stack target_has_stack_1 ()
1773
1774 /* Does the target have registers? (Exec files don't.) */
1775
1776 extern int target_has_registers_1 (void);
1777 #define target_has_registers target_has_registers_1 ()
1778
1779 /* Does the target have execution? Can we make it jump (through
1780 hoops), or pop its stack a few times? This means that the current
1781 target is currently executing; for some targets, that's the same as
1782 whether or not the target is capable of execution, but there are
1783 also targets which can be current while not executing. In that
1784 case this will become true after to_create_inferior or
1785 to_attach. */
1786
1787 extern int target_has_execution_1 (ptid_t);
1788
1789 /* Like target_has_execution_1, but always passes inferior_ptid. */
1790
1791 extern int target_has_execution_current (void);
1792
1793 #define target_has_execution target_has_execution_current ()
1794
1795 /* Can the target support the debugger control of thread execution?
1796 Can it lock the thread scheduler? */
1797
1798 #define target_can_lock_scheduler \
1799 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1800
1801 /* Controls whether async mode is permitted. */
1802 extern bool target_async_permitted;
1803
1804 /* Can the target support asynchronous execution? */
1805 #define target_can_async_p() (current_top_target ()->can_async_p ())
1806
1807 /* Is the target in asynchronous execution mode? */
1808 #define target_is_async_p() (current_top_target ()->is_async_p ())
1809
1810 /* Enables/disabled async target events. */
1811 extern void target_async (int enable);
1812
1813 /* Enables/disables thread create and exit events. */
1814 extern void target_thread_events (int enable);
1815
1816 /* Whether support for controlling the target backends always in
1817 non-stop mode is enabled. */
1818 extern enum auto_boolean target_non_stop_enabled;
1819
1820 /* Is the target in non-stop mode? Some targets control the inferior
1821 in non-stop mode even with "set non-stop off". Always true if "set
1822 non-stop" is on. */
1823 extern int target_is_non_stop_p (void);
1824
1825 #define target_execution_direction() \
1826 (current_top_target ()->execution_direction ())
1827
1828 /* Converts a process id to a string. Usually, the string just contains
1829 `process xyz', but on some systems it may contain
1830 `process xyz thread abc'. */
1831
1832 extern std::string target_pid_to_str (ptid_t ptid);
1833
1834 extern std::string normal_pid_to_str (ptid_t ptid);
1835
1836 /* Return a short string describing extra information about PID,
1837 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1838 is okay. */
1839
1840 #define target_extra_thread_info(TP) \
1841 (current_top_target ()->extra_thread_info (TP))
1842
1843 /* Return the thread's name, or NULL if the target is unable to determine it.
1844 The returned value must not be freed by the caller. */
1845
1846 extern const char *target_thread_name (struct thread_info *);
1847
1848 /* Given a pointer to a thread library specific thread handle and
1849 its length, return a pointer to the corresponding thread_info struct. */
1850
1851 extern struct thread_info *target_thread_handle_to_thread_info
1852 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1853
1854 /* Given a thread, return the thread handle, a target-specific sequence of
1855 bytes which serves as a thread identifier within the program being
1856 debugged. */
1857 extern gdb::byte_vector target_thread_info_to_thread_handle
1858 (struct thread_info *);
1859
1860 /* Attempts to find the pathname of the executable file
1861 that was run to create a specified process.
1862
1863 The process PID must be stopped when this operation is used.
1864
1865 If the executable file cannot be determined, NULL is returned.
1866
1867 Else, a pointer to a character string containing the pathname
1868 is returned. This string should be copied into a buffer by
1869 the client if the string will not be immediately used, or if
1870 it must persist. */
1871
1872 #define target_pid_to_exec_file(pid) \
1873 (current_top_target ()->pid_to_exec_file) (pid)
1874
1875 /* See the to_thread_architecture description in struct target_ops. */
1876
1877 #define target_thread_architecture(ptid) \
1878 (current_top_target ()->thread_architecture (ptid))
1879
1880 /*
1881 * Iterator function for target memory regions.
1882 * Calls a callback function once for each memory region 'mapped'
1883 * in the child process. Defined as a simple macro rather than
1884 * as a function macro so that it can be tested for nullity.
1885 */
1886
1887 #define target_find_memory_regions(FUNC, DATA) \
1888 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1889
1890 /*
1891 * Compose corefile .note section.
1892 */
1893
1894 #define target_make_corefile_notes(BFD, SIZE_P) \
1895 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1896
1897 /* Bookmark interfaces. */
1898 #define target_get_bookmark(ARGS, FROM_TTY) \
1899 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1900
1901 #define target_goto_bookmark(ARG, FROM_TTY) \
1902 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1903
1904 /* Hardware watchpoint interfaces. */
1905
1906 /* GDB's current model is that there are three "kinds" of watchpoints,
1907 with respect to when they trigger and how you can move past them.
1908
1909 Those are: continuable, steppable, and non-steppable.
1910
1911 Continuable watchpoints are like x86's -- those trigger after the
1912 memory access's side effects are fully committed to memory. I.e.,
1913 they trap with the PC pointing at the next instruction already.
1914 Continuing past such a watchpoint is doable by just normally
1915 continuing, hence the name.
1916
1917 Both steppable and non-steppable watchpoints trap before the memory
1918 access. I.e, the PC points at the instruction that is accessing
1919 the memory. So GDB needs to single-step once past the current
1920 instruction in order to make the access effective and check whether
1921 the instruction's side effects change the watched expression.
1922
1923 Now, in order to step past that instruction, depending on
1924 architecture and target, you can have two situations:
1925
1926 - steppable watchpoints: you can single-step with the watchpoint
1927 still armed, and the watchpoint won't trigger again.
1928
1929 - non-steppable watchpoints: if you try to single-step with the
1930 watchpoint still armed, you'd trap the watchpoint again and the
1931 thread wouldn't make any progress. So GDB needs to temporarily
1932 remove the watchpoint in order to step past it.
1933
1934 If your target/architecture does not signal that it has either
1935 steppable or non-steppable watchpoints via either
1936 target_have_steppable_watchpoint or
1937 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1938 watchpoints. */
1939
1940 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1941 write). Only the INFERIOR_PTID task is being queried. */
1942
1943 #define target_stopped_by_watchpoint() \
1944 ((current_top_target ()->stopped_by_watchpoint) ())
1945
1946 /* Returns non-zero if the target stopped because it executed a
1947 software breakpoint instruction. */
1948
1949 #define target_stopped_by_sw_breakpoint() \
1950 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1951
1952 #define target_supports_stopped_by_sw_breakpoint() \
1953 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1954
1955 #define target_stopped_by_hw_breakpoint() \
1956 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1957
1958 #define target_supports_stopped_by_hw_breakpoint() \
1959 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1960
1961 /* Non-zero if we have steppable watchpoints */
1962
1963 #define target_have_steppable_watchpoint \
1964 (current_top_target ()->have_steppable_watchpoint ())
1965
1966 /* Provide defaults for hardware watchpoint functions. */
1967
1968 /* If the *_hw_beakpoint functions have not been defined
1969 elsewhere use the definitions in the target vector. */
1970
1971 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1972 Returns negative if the target doesn't have enough hardware debug
1973 registers available. Return zero if hardware watchpoint of type
1974 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1975 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1976 CNT is the number of such watchpoints used so far, including this
1977 one. OTHERTYPE is the number of watchpoints of other types than
1978 this one used so far. */
1979
1980 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1981 (current_top_target ()->can_use_hw_breakpoint) ( \
1982 TYPE, CNT, OTHERTYPE)
1983
1984 /* Returns the number of debug registers needed to watch the given
1985 memory region, or zero if not supported. */
1986
1987 #define target_region_ok_for_hw_watchpoint(addr, len) \
1988 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1989
1990
1991 #define target_can_do_single_step() \
1992 (current_top_target ()->can_do_single_step) ()
1993
1994 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1995 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1996 COND is the expression for its condition, or NULL if there's none.
1997 Returns 0 for success, 1 if the watchpoint type is not supported,
1998 -1 for failure. */
1999
2000 #define target_insert_watchpoint(addr, len, type, cond) \
2001 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2002
2003 #define target_remove_watchpoint(addr, len, type, cond) \
2004 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2005
2006 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2007 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2008 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2009 masked watchpoints are not supported, -1 for failure. */
2010
2011 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2012 enum target_hw_bp_type);
2013
2014 /* Remove a masked watchpoint at ADDR with the mask MASK.
2015 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2016 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2017 for failure. */
2018
2019 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2020 enum target_hw_bp_type);
2021
2022 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2023 the target machine. Returns 0 for success, and returns non-zero or
2024 throws an error (with a detailed failure reason error code and
2025 message) otherwise. */
2026
2027 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2028 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2029
2030 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2031 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2032
2033 /* Return number of debug registers needed for a ranged breakpoint,
2034 or -1 if ranged breakpoints are not supported. */
2035
2036 extern int target_ranged_break_num_registers (void);
2037
2038 /* Return non-zero if target knows the data address which triggered this
2039 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2040 INFERIOR_PTID task is being queried. */
2041 #define target_stopped_data_address(target, addr_p) \
2042 (target)->stopped_data_address (addr_p)
2043
2044 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2045 LENGTH bytes beginning at START. */
2046 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2047 (target)->watchpoint_addr_within_range (addr, start, length)
2048
2049 /* Return non-zero if the target is capable of using hardware to evaluate
2050 the condition expression. In this case, if the condition is false when
2051 the watched memory location changes, execution may continue without the
2052 debugger being notified.
2053
2054 Due to limitations in the hardware implementation, it may be capable of
2055 avoiding triggering the watchpoint in some cases where the condition
2056 expression is false, but may report some false positives as well.
2057 For this reason, GDB will still evaluate the condition expression when
2058 the watchpoint triggers. */
2059 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2060 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2061
2062 /* Return number of debug registers needed for a masked watchpoint,
2063 -1 if masked watchpoints are not supported or -2 if the given address
2064 and mask combination cannot be used. */
2065
2066 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2067
2068 /* Target can execute in reverse? */
2069 #define target_can_execute_reverse \
2070 current_top_target ()->can_execute_reverse ()
2071
2072 extern const struct target_desc *target_read_description (struct target_ops *);
2073
2074 #define target_get_ada_task_ptid(lwp, tid) \
2075 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2076
2077 /* Utility implementation of searching memory. */
2078 extern int simple_search_memory (struct target_ops* ops,
2079 CORE_ADDR start_addr,
2080 ULONGEST search_space_len,
2081 const gdb_byte *pattern,
2082 ULONGEST pattern_len,
2083 CORE_ADDR *found_addrp);
2084
2085 /* Main entry point for searching memory. */
2086 extern int target_search_memory (CORE_ADDR start_addr,
2087 ULONGEST search_space_len,
2088 const gdb_byte *pattern,
2089 ULONGEST pattern_len,
2090 CORE_ADDR *found_addrp);
2091
2092 /* Target file operations. */
2093
2094 /* Return nonzero if the filesystem seen by the current inferior
2095 is the local filesystem, zero otherwise. */
2096 #define target_filesystem_is_local() \
2097 current_top_target ()->filesystem_is_local ()
2098
2099 /* Open FILENAME on the target, in the filesystem as seen by INF,
2100 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2101 by the debugger (GDB or, for remote targets, the remote stub).
2102 Return a target file descriptor, or -1 if an error occurs (and
2103 set *TARGET_ERRNO). */
2104 extern int target_fileio_open (struct inferior *inf,
2105 const char *filename, int flags,
2106 int mode, int *target_errno);
2107
2108 /* Like target_fileio_open, but print a warning message if the
2109 file is being accessed over a link that may be slow. */
2110 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2111 const char *filename,
2112 int flags,
2113 int mode,
2114 int *target_errno);
2115
2116 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2117 Return the number of bytes written, or -1 if an error occurs
2118 (and set *TARGET_ERRNO). */
2119 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2120 ULONGEST offset, int *target_errno);
2121
2122 /* Read up to LEN bytes FD on the target into READ_BUF.
2123 Return the number of bytes read, or -1 if an error occurs
2124 (and set *TARGET_ERRNO). */
2125 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2126 ULONGEST offset, int *target_errno);
2127
2128 /* Get information about the file opened as FD on the target
2129 and put it in SB. Return 0 on success, or -1 if an error
2130 occurs (and set *TARGET_ERRNO). */
2131 extern int target_fileio_fstat (int fd, struct stat *sb,
2132 int *target_errno);
2133
2134 /* Close FD on the target. Return 0, or -1 if an error occurs
2135 (and set *TARGET_ERRNO). */
2136 extern int target_fileio_close (int fd, int *target_errno);
2137
2138 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2139 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2140 for remote targets, the remote stub). Return 0, or -1 if an error
2141 occurs (and set *TARGET_ERRNO). */
2142 extern int target_fileio_unlink (struct inferior *inf,
2143 const char *filename,
2144 int *target_errno);
2145
2146 /* Read value of symbolic link FILENAME on the target, in the
2147 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2148 by the debugger (GDB or, for remote targets, the remote stub).
2149 Return a null-terminated string allocated via xmalloc, or NULL if
2150 an error occurs (and set *TARGET_ERRNO). */
2151 extern gdb::optional<std::string> target_fileio_readlink
2152 (struct inferior *inf, const char *filename, int *target_errno);
2153
2154 /* Read target file FILENAME, in the filesystem as seen by INF. If
2155 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2156 remote targets, the remote stub). The return value will be -1 if
2157 the transfer fails or is not supported; 0 if the object is empty;
2158 or the length of the object otherwise. If a positive value is
2159 returned, a sufficiently large buffer will be allocated using
2160 xmalloc and returned in *BUF_P containing the contents of the
2161 object.
2162
2163 This method should be used for objects sufficiently small to store
2164 in a single xmalloc'd buffer, when no fixed bound on the object's
2165 size is known in advance. */
2166 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2167 const char *filename,
2168 gdb_byte **buf_p);
2169
2170 /* Read target file FILENAME, in the filesystem as seen by INF. If
2171 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2172 remote targets, the remote stub). The result is NUL-terminated and
2173 returned as a string, allocated using xmalloc. If an error occurs
2174 or the transfer is unsupported, NULL is returned. Empty objects
2175 are returned as allocated but empty strings. A warning is issued
2176 if the result contains any embedded NUL bytes. */
2177 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2178 (struct inferior *inf, const char *filename);
2179
2180
2181 /* Tracepoint-related operations. */
2182
2183 #define target_trace_init() \
2184 (current_top_target ()->trace_init) ()
2185
2186 #define target_download_tracepoint(t) \
2187 (current_top_target ()->download_tracepoint) (t)
2188
2189 #define target_can_download_tracepoint() \
2190 (current_top_target ()->can_download_tracepoint) ()
2191
2192 #define target_download_trace_state_variable(tsv) \
2193 (current_top_target ()->download_trace_state_variable) (tsv)
2194
2195 #define target_enable_tracepoint(loc) \
2196 (current_top_target ()->enable_tracepoint) (loc)
2197
2198 #define target_disable_tracepoint(loc) \
2199 (current_top_target ()->disable_tracepoint) (loc)
2200
2201 #define target_trace_start() \
2202 (current_top_target ()->trace_start) ()
2203
2204 #define target_trace_set_readonly_regions() \
2205 (current_top_target ()->trace_set_readonly_regions) ()
2206
2207 #define target_get_trace_status(ts) \
2208 (current_top_target ()->get_trace_status) (ts)
2209
2210 #define target_get_tracepoint_status(tp,utp) \
2211 (current_top_target ()->get_tracepoint_status) (tp, utp)
2212
2213 #define target_trace_stop() \
2214 (current_top_target ()->trace_stop) ()
2215
2216 #define target_trace_find(type,num,addr1,addr2,tpp) \
2217 (current_top_target ()->trace_find) (\
2218 (type), (num), (addr1), (addr2), (tpp))
2219
2220 #define target_get_trace_state_variable_value(tsv,val) \
2221 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2222
2223 #define target_save_trace_data(filename) \
2224 (current_top_target ()->save_trace_data) (filename)
2225
2226 #define target_upload_tracepoints(utpp) \
2227 (current_top_target ()->upload_tracepoints) (utpp)
2228
2229 #define target_upload_trace_state_variables(utsvp) \
2230 (current_top_target ()->upload_trace_state_variables) (utsvp)
2231
2232 #define target_get_raw_trace_data(buf,offset,len) \
2233 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2234
2235 #define target_get_min_fast_tracepoint_insn_len() \
2236 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2237
2238 #define target_set_disconnected_tracing(val) \
2239 (current_top_target ()->set_disconnected_tracing) (val)
2240
2241 #define target_set_circular_trace_buffer(val) \
2242 (current_top_target ()->set_circular_trace_buffer) (val)
2243
2244 #define target_set_trace_buffer_size(val) \
2245 (current_top_target ()->set_trace_buffer_size) (val)
2246
2247 #define target_set_trace_notes(user,notes,stopnotes) \
2248 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2249
2250 #define target_get_tib_address(ptid, addr) \
2251 (current_top_target ()->get_tib_address) ((ptid), (addr))
2252
2253 #define target_set_permissions() \
2254 (current_top_target ()->set_permissions) ()
2255
2256 #define target_static_tracepoint_marker_at(addr, marker) \
2257 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2258
2259 #define target_static_tracepoint_markers_by_strid(marker_id) \
2260 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2261
2262 #define target_traceframe_info() \
2263 (current_top_target ()->traceframe_info) ()
2264
2265 #define target_use_agent(use) \
2266 (current_top_target ()->use_agent) (use)
2267
2268 #define target_can_use_agent() \
2269 (current_top_target ()->can_use_agent) ()
2270
2271 #define target_augmented_libraries_svr4_read() \
2272 (current_top_target ()->augmented_libraries_svr4_read) ()
2273
2274 /* Command logging facility. */
2275
2276 #define target_log_command(p) \
2277 (current_top_target ()->log_command) (p)
2278
2279
2280 extern int target_core_of_thread (ptid_t ptid);
2281
2282 /* See to_get_unwinder in struct target_ops. */
2283 extern const struct frame_unwind *target_get_unwinder (void);
2284
2285 /* See to_get_tailcall_unwinder in struct target_ops. */
2286 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2287
2288 /* This implements basic memory verification, reading target memory
2289 and performing the comparison here (as opposed to accelerated
2290 verification making use of the qCRC packet, for example). */
2291
2292 extern int simple_verify_memory (struct target_ops* ops,
2293 const gdb_byte *data,
2294 CORE_ADDR memaddr, ULONGEST size);
2295
2296 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2297 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2298 if there's a mismatch, and -1 if an error is encountered while
2299 reading memory. Throws an error if the functionality is found not
2300 to be supported by the current target. */
2301 int target_verify_memory (const gdb_byte *data,
2302 CORE_ADDR memaddr, ULONGEST size);
2303
2304 /* Routines for maintenance of the target structures...
2305
2306 add_target: Add a target to the list of all possible targets.
2307 This only makes sense for targets that should be activated using
2308 the "target TARGET_NAME ..." command.
2309
2310 push_target: Make this target the top of the stack of currently used
2311 targets, within its particular stratum of the stack. Result
2312 is 0 if now atop the stack, nonzero if not on top (maybe
2313 should warn user).
2314
2315 unpush_target: Remove this from the stack of currently used targets,
2316 no matter where it is on the list. Returns 0 if no
2317 change, 1 if removed from stack. */
2318
2319 /* Type of callback called when the user activates a target with
2320 "target TARGET_NAME". The callback routine takes the rest of the
2321 parameters from the command, and (if successful) pushes a new
2322 target onto the stack. */
2323 typedef void target_open_ftype (const char *args, int from_tty);
2324
2325 /* Add the target described by INFO to the list of possible targets
2326 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2327 as the command's completer if not NULL. */
2328
2329 extern void add_target (const target_info &info,
2330 target_open_ftype *func,
2331 completer_ftype *completer = NULL);
2332
2333 /* Adds a command ALIAS for the target described by INFO and marks it
2334 deprecated. This is useful for maintaining backwards compatibility
2335 when renaming targets. */
2336
2337 extern void add_deprecated_target_alias (const target_info &info,
2338 const char *alias);
2339
2340 extern void push_target (struct target_ops *);
2341
2342 /* An overload that deletes the target on failure. */
2343 extern void push_target (target_ops_up &&);
2344
2345 extern int unpush_target (struct target_ops *);
2346
2347 extern void target_pre_inferior (int);
2348
2349 extern void target_preopen (int);
2350
2351 /* Does whatever cleanup is required to get rid of all pushed targets. */
2352 extern void pop_all_targets (void);
2353
2354 /* Like pop_all_targets, but pops only targets whose stratum is at or
2355 above STRATUM. */
2356 extern void pop_all_targets_at_and_above (enum strata stratum);
2357
2358 /* Like pop_all_targets, but pops only targets whose stratum is
2359 strictly above ABOVE_STRATUM. */
2360 extern void pop_all_targets_above (enum strata above_stratum);
2361
2362 extern int target_is_pushed (struct target_ops *t);
2363
2364 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2365 CORE_ADDR offset);
2366
2367 /* Struct target_section maps address ranges to file sections. It is
2368 mostly used with BFD files, but can be used without (e.g. for handling
2369 raw disks, or files not in formats handled by BFD). */
2370
2371 struct target_section
2372 {
2373 CORE_ADDR addr; /* Lowest address in section */
2374 CORE_ADDR endaddr; /* 1+highest address in section */
2375
2376 struct bfd_section *the_bfd_section;
2377
2378 /* The "owner" of the section.
2379 It can be any unique value. It is set by add_target_sections
2380 and used by remove_target_sections.
2381 For example, for executables it is a pointer to exec_bfd and
2382 for shlibs it is the so_list pointer. */
2383 void *owner;
2384 };
2385
2386 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2387
2388 struct target_section_table
2389 {
2390 struct target_section *sections;
2391 struct target_section *sections_end;
2392 };
2393
2394 /* Return the "section" containing the specified address. */
2395 struct target_section *target_section_by_addr (struct target_ops *target,
2396 CORE_ADDR addr);
2397
2398 /* Return the target section table this target (or the targets
2399 beneath) currently manipulate. */
2400
2401 extern struct target_section_table *target_get_section_table
2402 (struct target_ops *target);
2403
2404 /* From mem-break.c */
2405
2406 extern int memory_remove_breakpoint (struct target_ops *,
2407 struct gdbarch *, struct bp_target_info *,
2408 enum remove_bp_reason);
2409
2410 extern int memory_insert_breakpoint (struct target_ops *,
2411 struct gdbarch *, struct bp_target_info *);
2412
2413 /* Convenience template use to add memory breakpoints support to a
2414 target. */
2415
2416 template <typename BaseTarget>
2417 struct memory_breakpoint_target : public BaseTarget
2418 {
2419 int insert_breakpoint (struct gdbarch *gdbarch,
2420 struct bp_target_info *bp_tgt) override
2421 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2422
2423 int remove_breakpoint (struct gdbarch *gdbarch,
2424 struct bp_target_info *bp_tgt,
2425 enum remove_bp_reason reason) override
2426 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2427 };
2428
2429 /* Check whether the memory at the breakpoint's placed address still
2430 contains the expected breakpoint instruction. */
2431
2432 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2433 struct bp_target_info *bp_tgt);
2434
2435 extern int default_memory_remove_breakpoint (struct gdbarch *,
2436 struct bp_target_info *);
2437
2438 extern int default_memory_insert_breakpoint (struct gdbarch *,
2439 struct bp_target_info *);
2440
2441
2442 /* From target.c */
2443
2444 extern void initialize_targets (void);
2445
2446 extern void noprocess (void) ATTRIBUTE_NORETURN;
2447
2448 extern void target_require_runnable (void);
2449
2450 /* Find the target at STRATUM. If no target is at that stratum,
2451 return NULL. */
2452
2453 struct target_ops *find_target_at (enum strata stratum);
2454
2455 /* Read OS data object of type TYPE from the target, and return it in XML
2456 format. The return value follows the same rules as target_read_stralloc. */
2457
2458 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2459
2460 /* Stuff that should be shared among the various remote targets. */
2461
2462 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2463 information (higher values, more information). */
2464 extern int remote_debug;
2465
2466 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2467 extern int baud_rate;
2468
2469 /* Parity for serial port */
2470 extern int serial_parity;
2471
2472 /* Timeout limit for response from target. */
2473 extern int remote_timeout;
2474
2475 \f
2476
2477 /* Set the show memory breakpoints mode to show, and return a
2478 scoped_restore to restore it back to the current value. */
2479 extern scoped_restore_tmpl<int>
2480 make_scoped_restore_show_memory_breakpoints (int show);
2481
2482 extern bool may_write_registers;
2483 extern bool may_write_memory;
2484 extern bool may_insert_breakpoints;
2485 extern bool may_insert_tracepoints;
2486 extern bool may_insert_fast_tracepoints;
2487 extern bool may_stop;
2488
2489 extern void update_target_permissions (void);
2490
2491 \f
2492 /* Imported from machine dependent code. */
2493
2494 /* See to_enable_btrace in struct target_ops. */
2495 extern struct btrace_target_info *
2496 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2497
2498 /* See to_disable_btrace in struct target_ops. */
2499 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2500
2501 /* See to_teardown_btrace in struct target_ops. */
2502 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2503
2504 /* See to_read_btrace in struct target_ops. */
2505 extern enum btrace_error target_read_btrace (struct btrace_data *,
2506 struct btrace_target_info *,
2507 enum btrace_read_type);
2508
2509 /* See to_btrace_conf in struct target_ops. */
2510 extern const struct btrace_config *
2511 target_btrace_conf (const struct btrace_target_info *);
2512
2513 /* See to_stop_recording in struct target_ops. */
2514 extern void target_stop_recording (void);
2515
2516 /* See to_save_record in struct target_ops. */
2517 extern void target_save_record (const char *filename);
2518
2519 /* Query if the target supports deleting the execution log. */
2520 extern int target_supports_delete_record (void);
2521
2522 /* See to_delete_record in struct target_ops. */
2523 extern void target_delete_record (void);
2524
2525 /* See to_record_method. */
2526 extern enum record_method target_record_method (ptid_t ptid);
2527
2528 /* See to_record_is_replaying in struct target_ops. */
2529 extern int target_record_is_replaying (ptid_t ptid);
2530
2531 /* See to_record_will_replay in struct target_ops. */
2532 extern int target_record_will_replay (ptid_t ptid, int dir);
2533
2534 /* See to_record_stop_replaying in struct target_ops. */
2535 extern void target_record_stop_replaying (void);
2536
2537 /* See to_goto_record_begin in struct target_ops. */
2538 extern void target_goto_record_begin (void);
2539
2540 /* See to_goto_record_end in struct target_ops. */
2541 extern void target_goto_record_end (void);
2542
2543 /* See to_goto_record in struct target_ops. */
2544 extern void target_goto_record (ULONGEST insn);
2545
2546 /* See to_insn_history. */
2547 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2548
2549 /* See to_insn_history_from. */
2550 extern void target_insn_history_from (ULONGEST from, int size,
2551 gdb_disassembly_flags flags);
2552
2553 /* See to_insn_history_range. */
2554 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2555 gdb_disassembly_flags flags);
2556
2557 /* See to_call_history. */
2558 extern void target_call_history (int size, record_print_flags flags);
2559
2560 /* See to_call_history_from. */
2561 extern void target_call_history_from (ULONGEST begin, int size,
2562 record_print_flags flags);
2563
2564 /* See to_call_history_range. */
2565 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2566 record_print_flags flags);
2567
2568 /* See to_prepare_to_generate_core. */
2569 extern void target_prepare_to_generate_core (void);
2570
2571 /* See to_done_generating_core. */
2572 extern void target_done_generating_core (void);
2573
2574 #endif /* !defined (TARGET_H) */
This page took 0.121106 seconds and 4 git commands to generate.