Disable -Wformat-nonliteral in parts of printcmd.c
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "vec.h"
78 #include "gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* Traceframe info, in XML format. */
189 TARGET_OBJECT_TRACEFRAME_INFO,
190 /* Load maps for FDPIC systems. */
191 TARGET_OBJECT_FDPIC,
192 /* Darwin dynamic linker info data. */
193 TARGET_OBJECT_DARWIN_DYLD_INFO,
194 /* OpenVMS Unwind Information Block. */
195 TARGET_OBJECT_OPENVMS_UIB,
196 /* Branch trace data, in XML format. */
197 TARGET_OBJECT_BTRACE,
198 /* Branch trace configuration, in XML format. */
199 TARGET_OBJECT_BTRACE_CONF,
200 /* The pathname of the executable file that was run to create
201 a specified process. ANNEX should be a string representation
202 of the process ID of the process in question, in hexadecimal
203 format. */
204 TARGET_OBJECT_EXEC_FILE,
205 /* Possible future objects: TARGET_OBJECT_FILE, ... */
206 };
207
208 /* Possible values returned by target_xfer_partial, etc. */
209
210 enum target_xfer_status
211 {
212 /* Some bytes are transferred. */
213 TARGET_XFER_OK = 1,
214
215 /* No further transfer is possible. */
216 TARGET_XFER_EOF = 0,
217
218 /* The piece of the object requested is unavailable. */
219 TARGET_XFER_UNAVAILABLE = 2,
220
221 /* Generic I/O error. Note that it's important that this is '-1',
222 as we still have target_xfer-related code returning hardcoded
223 '-1' on error. */
224 TARGET_XFER_E_IO = -1,
225
226 /* Keep list in sync with target_xfer_status_to_string. */
227 };
228
229 /* Return the string form of STATUS. */
230
231 extern const char *
232 target_xfer_status_to_string (enum target_xfer_status status);
233
234 typedef enum target_xfer_status
235 target_xfer_partial_ftype (struct target_ops *ops,
236 enum target_object object,
237 const char *annex,
238 gdb_byte *readbuf,
239 const gdb_byte *writebuf,
240 ULONGEST offset,
241 ULONGEST len,
242 ULONGEST *xfered_len);
243
244 enum target_xfer_status
245 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
246 const gdb_byte *writebuf, ULONGEST memaddr,
247 LONGEST len, ULONGEST *xfered_len);
248
249 /* Request that OPS transfer up to LEN addressable units of the target's
250 OBJECT. When reading from a memory object, the size of an addressable unit
251 is architecture dependent and can be found using
252 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
253 byte long. BUF should point to a buffer large enough to hold the read data,
254 taking into account the addressable unit size. The OFFSET, for a seekable
255 object, specifies the starting point. The ANNEX can be used to provide
256 additional data-specific information to the target.
257
258 Return the number of addressable units actually transferred, or a negative
259 error code (an 'enum target_xfer_error' value) if the transfer is not
260 supported or otherwise fails. Return of a positive value less than
261 LEN indicates that no further transfer is possible. Unlike the raw
262 to_xfer_partial interface, callers of these functions do not need
263 to retry partial transfers. */
264
265 extern LONGEST target_read (struct target_ops *ops,
266 enum target_object object,
267 const char *annex, gdb_byte *buf,
268 ULONGEST offset, LONGEST len);
269
270 struct memory_read_result
271 {
272 memory_read_result (ULONGEST begin_, ULONGEST end_,
273 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
274 : begin (begin_),
275 end (end_),
276 data (std::move (data_))
277 {
278 }
279
280 ~memory_read_result () = default;
281
282 memory_read_result (memory_read_result &&other) = default;
283
284 DISABLE_COPY_AND_ASSIGN (memory_read_result);
285
286 /* First address that was read. */
287 ULONGEST begin;
288 /* Past-the-end address. */
289 ULONGEST end;
290 /* The data. */
291 gdb::unique_xmalloc_ptr<gdb_byte> data;
292 };
293
294 extern std::vector<memory_read_result> read_memory_robust
295 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
296
297 /* Request that OPS transfer up to LEN addressable units from BUF to the
298 target's OBJECT. When writing to a memory object, the addressable unit
299 size is architecture dependent and can be found using
300 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
301 byte long. The OFFSET, for a seekable object, specifies the starting point.
302 The ANNEX can be used to provide additional data-specific information to
303 the target.
304
305 Return the number of addressable units actually transferred, or a negative
306 error code (an 'enum target_xfer_status' value) if the transfer is not
307 supported or otherwise fails. Return of a positive value less than
308 LEN indicates that no further transfer is possible. Unlike the raw
309 to_xfer_partial interface, callers of these functions do not need to
310 retry partial transfers. */
311
312 extern LONGEST target_write (struct target_ops *ops,
313 enum target_object object,
314 const char *annex, const gdb_byte *buf,
315 ULONGEST offset, LONGEST len);
316
317 /* Similar to target_write, except that it also calls PROGRESS with
318 the number of bytes written and the opaque BATON after every
319 successful partial write (and before the first write). This is
320 useful for progress reporting and user interaction while writing
321 data. To abort the transfer, the progress callback can throw an
322 exception. */
323
324 LONGEST target_write_with_progress (struct target_ops *ops,
325 enum target_object object,
326 const char *annex, const gdb_byte *buf,
327 ULONGEST offset, LONGEST len,
328 void (*progress) (ULONGEST, void *),
329 void *baton);
330
331 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
332 using OPS. The return value will be uninstantiated if the transfer fails or
333 is not supported.
334
335 This method should be used for objects sufficiently small to store
336 in a single xmalloc'd buffer, when no fixed bound on the object's
337 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
338 through this function. */
339
340 extern gdb::optional<gdb::byte_vector> target_read_alloc
341 (struct target_ops *ops, enum target_object object, const char *annex);
342
343 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
344 (therefore usable as a NUL-terminated string). If an error occurs or the
345 transfer is unsupported, the return value will be uninstantiated. Empty
346 objects are returned as allocated but empty strings. Therefore, on success,
347 the returned vector is guaranteed to have at least one element. A warning is
348 issued if the result contains any embedded NUL bytes. */
349
350 extern gdb::optional<gdb::char_vector> target_read_stralloc
351 (struct target_ops *ops, enum target_object object, const char *annex);
352
353 /* See target_ops->to_xfer_partial. */
354 extern target_xfer_partial_ftype target_xfer_partial;
355
356 /* Wrappers to target read/write that perform memory transfers. They
357 throw an error if the memory transfer fails.
358
359 NOTE: cagney/2003-10-23: The naming schema is lifted from
360 "frame.h". The parameter order is lifted from get_frame_memory,
361 which in turn lifted it from read_memory. */
362
363 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
364 gdb_byte *buf, LONGEST len);
365 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
366 CORE_ADDR addr, int len,
367 enum bfd_endian byte_order);
368 \f
369 struct thread_info; /* fwd decl for parameter list below: */
370
371 /* The type of the callback to the to_async method. */
372
373 typedef void async_callback_ftype (enum inferior_event_type event_type,
374 void *context);
375
376 /* Normally target debug printing is purely type-based. However,
377 sometimes it is necessary to override the debug printing on a
378 per-argument basis. This macro can be used, attribute-style, to
379 name the target debug printing function for a particular method
380 argument. FUNC is the name of the function. The macro's
381 definition is empty because it is only used by the
382 make-target-delegates script. */
383
384 #define TARGET_DEBUG_PRINTER(FUNC)
385
386 /* These defines are used to mark target_ops methods. The script
387 make-target-delegates scans these and auto-generates the base
388 method implementations. There are four macros that can be used:
389
390 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
391 does nothing. This is only valid if the method return type is
392 'void'.
393
394 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
395 'tcomplain ()'. The base method simply makes this call, which is
396 assumed not to return.
397
398 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
399 base method returns this expression's value.
400
401 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
402 make-target-delegates does not generate a base method in this case,
403 but instead uses the argument function as the base method. */
404
405 #define TARGET_DEFAULT_IGNORE()
406 #define TARGET_DEFAULT_NORETURN(ARG)
407 #define TARGET_DEFAULT_RETURN(ARG)
408 #define TARGET_DEFAULT_FUNC(ARG)
409
410 /* Each target that can be activated with "target TARGET_NAME" passes
411 the address of one of these objects to add_target, which uses the
412 object's address as unique identifier, and registers the "target
413 TARGET_NAME" command using SHORTNAME as target name. */
414
415 struct target_info
416 {
417 /* Name of this target. */
418 const char *shortname;
419
420 /* Name for printing. */
421 const char *longname;
422
423 /* Documentation. Does not include trailing newline, and starts
424 with a one-line description (probably similar to longname). */
425 const char *doc;
426 };
427
428 struct target_ops
429 {
430 /* To the target under this one. */
431 target_ops *beneath () const;
432
433 /* Free resources associated with the target. Note that singleton
434 targets, like e.g., native targets, are global objects, not
435 heap allocated, and are thus only deleted on GDB exit. The
436 main teardown entry point is the "close" method, below. */
437 virtual ~target_ops () {}
438
439 /* Return a reference to this target's unique target_info
440 object. */
441 virtual const target_info &info () const = 0;
442
443 /* Name this target type. */
444 const char *shortname ()
445 { return info ().shortname; }
446
447 const char *longname ()
448 { return info ().longname; }
449
450 /* Close the target. This is where the target can handle
451 teardown. Heap-allocated targets should delete themselves
452 before returning. */
453 virtual void close ();
454
455 /* Attaches to a process on the target side. Arguments are as
456 passed to the `attach' command by the user. This routine can
457 be called when the target is not on the target-stack, if the
458 target_ops::can_run method returns 1; in that case, it must push
459 itself onto the stack. Upon exit, the target should be ready
460 for normal operations, and should be ready to deliver the
461 status of the process immediately (without waiting) to an
462 upcoming target_wait call. */
463 virtual bool can_attach ();
464 virtual void attach (const char *, int);
465 virtual void post_attach (int)
466 TARGET_DEFAULT_IGNORE ();
467 virtual void detach (inferior *, int)
468 TARGET_DEFAULT_IGNORE ();
469 virtual void disconnect (const char *, int)
470 TARGET_DEFAULT_NORETURN (tcomplain ());
471 virtual void resume (ptid_t,
472 int TARGET_DEBUG_PRINTER (target_debug_print_step),
473 enum gdb_signal)
474 TARGET_DEFAULT_NORETURN (noprocess ());
475 virtual void commit_resume ()
476 TARGET_DEFAULT_IGNORE ();
477 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
478 int TARGET_DEBUG_PRINTER (target_debug_print_options))
479 TARGET_DEFAULT_FUNC (default_target_wait);
480 virtual void fetch_registers (struct regcache *, int)
481 TARGET_DEFAULT_IGNORE ();
482 virtual void store_registers (struct regcache *, int)
483 TARGET_DEFAULT_NORETURN (noprocess ());
484 virtual void prepare_to_store (struct regcache *)
485 TARGET_DEFAULT_NORETURN (noprocess ());
486
487 virtual void files_info ()
488 TARGET_DEFAULT_IGNORE ();
489 virtual int insert_breakpoint (struct gdbarch *,
490 struct bp_target_info *)
491 TARGET_DEFAULT_NORETURN (noprocess ());
492 virtual int remove_breakpoint (struct gdbarch *,
493 struct bp_target_info *,
494 enum remove_bp_reason)
495 TARGET_DEFAULT_NORETURN (noprocess ());
496
497 /* Returns true if the target stopped because it executed a
498 software breakpoint. This is necessary for correct background
499 execution / non-stop mode operation, and for correct PC
500 adjustment on targets where the PC needs to be adjusted when a
501 software breakpoint triggers. In these modes, by the time GDB
502 processes a breakpoint event, the breakpoint may already be
503 done from the target, so GDB needs to be able to tell whether
504 it should ignore the event and whether it should adjust the PC.
505 See adjust_pc_after_break. */
506 virtual bool stopped_by_sw_breakpoint ()
507 TARGET_DEFAULT_RETURN (false);
508 /* Returns true if the above method is supported. */
509 virtual bool supports_stopped_by_sw_breakpoint ()
510 TARGET_DEFAULT_RETURN (false);
511
512 /* Returns true if the target stopped for a hardware breakpoint.
513 Likewise, if the target supports hardware breakpoints, this
514 method is necessary for correct background execution / non-stop
515 mode operation. Even though hardware breakpoints do not
516 require PC adjustment, GDB needs to be able to tell whether the
517 hardware breakpoint event is a delayed event for a breakpoint
518 that is already gone and should thus be ignored. */
519 virtual bool stopped_by_hw_breakpoint ()
520 TARGET_DEFAULT_RETURN (false);
521 /* Returns true if the above method is supported. */
522 virtual bool supports_stopped_by_hw_breakpoint ()
523 TARGET_DEFAULT_RETURN (false);
524
525 virtual int can_use_hw_breakpoint (enum bptype, int, int)
526 TARGET_DEFAULT_RETURN (0);
527 virtual int ranged_break_num_registers ()
528 TARGET_DEFAULT_RETURN (-1);
529 virtual int insert_hw_breakpoint (struct gdbarch *,
530 struct bp_target_info *)
531 TARGET_DEFAULT_RETURN (-1);
532 virtual int remove_hw_breakpoint (struct gdbarch *,
533 struct bp_target_info *)
534 TARGET_DEFAULT_RETURN (-1);
535
536 /* Documentation of what the two routines below are expected to do is
537 provided with the corresponding target_* macros. */
538 virtual int remove_watchpoint (CORE_ADDR, int,
539 enum target_hw_bp_type, struct expression *)
540 TARGET_DEFAULT_RETURN (-1);
541 virtual int insert_watchpoint (CORE_ADDR, int,
542 enum target_hw_bp_type, struct expression *)
543 TARGET_DEFAULT_RETURN (-1);
544
545 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
546 enum target_hw_bp_type)
547 TARGET_DEFAULT_RETURN (1);
548 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
549 enum target_hw_bp_type)
550 TARGET_DEFAULT_RETURN (1);
551 virtual bool stopped_by_watchpoint ()
552 TARGET_DEFAULT_RETURN (false);
553 virtual int have_steppable_watchpoint ()
554 TARGET_DEFAULT_RETURN (false);
555 virtual bool stopped_data_address (CORE_ADDR *)
556 TARGET_DEFAULT_RETURN (false);
557 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
558 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
559
560 /* Documentation of this routine is provided with the corresponding
561 target_* macro. */
562 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
563 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
564
565 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
566 struct expression *)
567 TARGET_DEFAULT_RETURN (false);
568 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
569 TARGET_DEFAULT_RETURN (-1);
570
571 /* Return 1 for sure target can do single step. Return -1 for
572 unknown. Return 0 for target can't do. */
573 virtual int can_do_single_step ()
574 TARGET_DEFAULT_RETURN (-1);
575
576 virtual bool supports_terminal_ours ()
577 TARGET_DEFAULT_RETURN (false);
578 virtual void terminal_init ()
579 TARGET_DEFAULT_IGNORE ();
580 virtual void terminal_inferior ()
581 TARGET_DEFAULT_IGNORE ();
582 virtual void terminal_save_inferior ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_ours_for_output ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_ours ()
587 TARGET_DEFAULT_IGNORE ();
588 virtual void terminal_info (const char *, int)
589 TARGET_DEFAULT_FUNC (default_terminal_info);
590 virtual void kill ()
591 TARGET_DEFAULT_NORETURN (noprocess ());
592 virtual void load (const char *, int)
593 TARGET_DEFAULT_NORETURN (tcomplain ());
594 /* Start an inferior process and set inferior_ptid to its pid.
595 EXEC_FILE is the file to run.
596 ALLARGS is a string containing the arguments to the program.
597 ENV is the environment vector to pass. Errors reported with error().
598 On VxWorks and various standalone systems, we ignore exec_file. */
599 virtual bool can_create_inferior ();
600 virtual void create_inferior (const char *, const std::string &,
601 char **, int);
602 virtual void post_startup_inferior (ptid_t)
603 TARGET_DEFAULT_IGNORE ();
604 virtual int insert_fork_catchpoint (int)
605 TARGET_DEFAULT_RETURN (1);
606 virtual int remove_fork_catchpoint (int)
607 TARGET_DEFAULT_RETURN (1);
608 virtual int insert_vfork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int remove_vfork_catchpoint (int)
611 TARGET_DEFAULT_RETURN (1);
612 virtual int follow_fork (int, int)
613 TARGET_DEFAULT_FUNC (default_follow_fork);
614 virtual int insert_exec_catchpoint (int)
615 TARGET_DEFAULT_RETURN (1);
616 virtual int remove_exec_catchpoint (int)
617 TARGET_DEFAULT_RETURN (1);
618 virtual void follow_exec (struct inferior *, char *)
619 TARGET_DEFAULT_IGNORE ();
620 virtual int set_syscall_catchpoint (int, bool, int,
621 gdb::array_view<const int>)
622 TARGET_DEFAULT_RETURN (1);
623 virtual void mourn_inferior ()
624 TARGET_DEFAULT_FUNC (default_mourn_inferior);
625
626 /* Note that can_run is special and can be invoked on an unpushed
627 target. Targets defining this method must also define
628 to_can_async_p and to_supports_non_stop. */
629 virtual bool can_run ();
630
631 /* Documentation of this routine is provided with the corresponding
632 target_* macro. */
633 virtual void pass_signals (int,
634 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
635 TARGET_DEFAULT_IGNORE ();
636
637 /* Documentation of this routine is provided with the
638 corresponding target_* function. */
639 virtual void program_signals (int,
640 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
641 TARGET_DEFAULT_IGNORE ();
642
643 virtual bool thread_alive (ptid_t ptid)
644 TARGET_DEFAULT_RETURN (false);
645 virtual void update_thread_list ()
646 TARGET_DEFAULT_IGNORE ();
647 virtual const char *pid_to_str (ptid_t)
648 TARGET_DEFAULT_FUNC (default_pid_to_str);
649 virtual const char *extra_thread_info (thread_info *)
650 TARGET_DEFAULT_RETURN (NULL);
651 virtual const char *thread_name (thread_info *)
652 TARGET_DEFAULT_RETURN (NULL);
653 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
654 int,
655 inferior *inf)
656 TARGET_DEFAULT_RETURN (NULL);
657 virtual void stop (ptid_t)
658 TARGET_DEFAULT_IGNORE ();
659 virtual void interrupt ()
660 TARGET_DEFAULT_IGNORE ();
661 virtual void pass_ctrlc ()
662 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
663 virtual void rcmd (const char *command, struct ui_file *output)
664 TARGET_DEFAULT_FUNC (default_rcmd);
665 virtual char *pid_to_exec_file (int pid)
666 TARGET_DEFAULT_RETURN (NULL);
667 virtual void log_command (const char *)
668 TARGET_DEFAULT_IGNORE ();
669 virtual struct target_section_table *get_section_table ()
670 TARGET_DEFAULT_RETURN (NULL);
671 enum strata to_stratum;
672
673 /* Provide default values for all "must have" methods. */
674 virtual bool has_all_memory () { return false; }
675 virtual bool has_memory () { return false; }
676 virtual bool has_stack () { return false; }
677 virtual bool has_registers () { return false; }
678 virtual bool has_execution (ptid_t) { return false; }
679
680 /* Control thread execution. */
681 virtual thread_control_capabilities get_thread_control_capabilities ()
682 TARGET_DEFAULT_RETURN (tc_none);
683 virtual bool attach_no_wait ()
684 TARGET_DEFAULT_RETURN (0);
685 /* This method must be implemented in some situations. See the
686 comment on 'can_run'. */
687 virtual bool can_async_p ()
688 TARGET_DEFAULT_RETURN (false);
689 virtual bool is_async_p ()
690 TARGET_DEFAULT_RETURN (false);
691 virtual void async (int)
692 TARGET_DEFAULT_NORETURN (tcomplain ());
693 virtual void thread_events (int)
694 TARGET_DEFAULT_IGNORE ();
695 /* This method must be implemented in some situations. See the
696 comment on 'can_run'. */
697 virtual bool supports_non_stop ()
698 TARGET_DEFAULT_RETURN (false);
699 /* Return true if the target operates in non-stop mode even with
700 "set non-stop off". */
701 virtual bool always_non_stop_p ()
702 TARGET_DEFAULT_RETURN (false);
703 /* find_memory_regions support method for gcore */
704 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
705 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
706 /* make_corefile_notes support method for gcore */
707 virtual char *make_corefile_notes (bfd *, int *)
708 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
709 /* get_bookmark support method for bookmarks */
710 virtual gdb_byte *get_bookmark (const char *, int)
711 TARGET_DEFAULT_NORETURN (tcomplain ());
712 /* goto_bookmark support method for bookmarks */
713 virtual void goto_bookmark (const gdb_byte *, int)
714 TARGET_DEFAULT_NORETURN (tcomplain ());
715 /* Return the thread-local address at OFFSET in the
716 thread-local storage for the thread PTID and the shared library
717 or executable file given by OBJFILE. If that block of
718 thread-local storage hasn't been allocated yet, this function
719 may return an error. LOAD_MODULE_ADDR may be zero for statically
720 linked multithreaded inferiors. */
721 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
722 CORE_ADDR load_module_addr,
723 CORE_ADDR offset)
724 TARGET_DEFAULT_NORETURN (generic_tls_error ());
725
726 /* Request that OPS transfer up to LEN addressable units of the target's
727 OBJECT. When reading from a memory object, the size of an addressable
728 unit is architecture dependent and can be found using
729 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
730 1 byte long. The OFFSET, for a seekable object, specifies the
731 starting point. The ANNEX can be used to provide additional
732 data-specific information to the target.
733
734 Return the transferred status, error or OK (an
735 'enum target_xfer_status' value). Save the number of addressable units
736 actually transferred in *XFERED_LEN if transfer is successful
737 (TARGET_XFER_OK) or the number unavailable units if the requested
738 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
739 smaller than LEN does not indicate the end of the object, only
740 the end of the transfer; higher level code should continue
741 transferring if desired. This is handled in target.c.
742
743 The interface does not support a "retry" mechanism. Instead it
744 assumes that at least one addressable unit will be transfered on each
745 successful call.
746
747 NOTE: cagney/2003-10-17: The current interface can lead to
748 fragmented transfers. Lower target levels should not implement
749 hacks, such as enlarging the transfer, in an attempt to
750 compensate for this. Instead, the target stack should be
751 extended so that it implements supply/collect methods and a
752 look-aside object cache. With that available, the lowest
753 target can safely and freely "push" data up the stack.
754
755 See target_read and target_write for more information. One,
756 and only one, of readbuf or writebuf must be non-NULL. */
757
758 virtual enum target_xfer_status xfer_partial (enum target_object object,
759 const char *annex,
760 gdb_byte *readbuf,
761 const gdb_byte *writebuf,
762 ULONGEST offset, ULONGEST len,
763 ULONGEST *xfered_len)
764 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
765
766 /* Return the limit on the size of any single memory transfer
767 for the target. */
768
769 virtual ULONGEST get_memory_xfer_limit ()
770 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
771
772 /* Returns the memory map for the target. A return value of NULL
773 means that no memory map is available. If a memory address
774 does not fall within any returned regions, it's assumed to be
775 RAM. The returned memory regions should not overlap.
776
777 The order of regions does not matter; target_memory_map will
778 sort regions by starting address. For that reason, this
779 function should not be called directly except via
780 target_memory_map.
781
782 This method should not cache data; if the memory map could
783 change unexpectedly, it should be invalidated, and higher
784 layers will re-fetch it. */
785 virtual std::vector<mem_region> memory_map ()
786 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
787
788 /* Erases the region of flash memory starting at ADDRESS, of
789 length LENGTH.
790
791 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
792 on flash block boundaries, as reported by 'to_memory_map'. */
793 virtual void flash_erase (ULONGEST address, LONGEST length)
794 TARGET_DEFAULT_NORETURN (tcomplain ());
795
796 /* Finishes a flash memory write sequence. After this operation
797 all flash memory should be available for writing and the result
798 of reading from areas written by 'to_flash_write' should be
799 equal to what was written. */
800 virtual void flash_done ()
801 TARGET_DEFAULT_NORETURN (tcomplain ());
802
803 /* Describe the architecture-specific features of this target. If
804 OPS doesn't have a description, this should delegate to the
805 "beneath" target. Returns the description found, or NULL if no
806 description was available. */
807 virtual const struct target_desc *read_description ()
808 TARGET_DEFAULT_RETURN (NULL);
809
810 /* Build the PTID of the thread on which a given task is running,
811 based on LWP and THREAD. These values are extracted from the
812 task Private_Data section of the Ada Task Control Block, and
813 their interpretation depends on the target. */
814 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
815 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
816
817 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
818 Return 0 if *READPTR is already at the end of the buffer.
819 Return -1 if there is insufficient buffer for a whole entry.
820 Return 1 if an entry was read into *TYPEP and *VALP. */
821 virtual int auxv_parse (gdb_byte **readptr,
822 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
823 TARGET_DEFAULT_FUNC (default_auxv_parse);
824
825 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
826 sequence of bytes in PATTERN with length PATTERN_LEN.
827
828 The result is 1 if found, 0 if not found, and -1 if there was an error
829 requiring halting of the search (e.g. memory read error).
830 If the pattern is found the address is recorded in FOUND_ADDRP. */
831 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
832 const gdb_byte *pattern, ULONGEST pattern_len,
833 CORE_ADDR *found_addrp)
834 TARGET_DEFAULT_FUNC (default_search_memory);
835
836 /* Can target execute in reverse? */
837 virtual bool can_execute_reverse ()
838 TARGET_DEFAULT_RETURN (false);
839
840 /* The direction the target is currently executing. Must be
841 implemented on targets that support reverse execution and async
842 mode. The default simply returns forward execution. */
843 virtual enum exec_direction_kind execution_direction ()
844 TARGET_DEFAULT_FUNC (default_execution_direction);
845
846 /* Does this target support debugging multiple processes
847 simultaneously? */
848 virtual bool supports_multi_process ()
849 TARGET_DEFAULT_RETURN (false);
850
851 /* Does this target support enabling and disabling tracepoints while a trace
852 experiment is running? */
853 virtual bool supports_enable_disable_tracepoint ()
854 TARGET_DEFAULT_RETURN (false);
855
856 /* Does this target support disabling address space randomization? */
857 virtual bool supports_disable_randomization ()
858 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
859
860 /* Does this target support the tracenz bytecode for string collection? */
861 virtual bool supports_string_tracing ()
862 TARGET_DEFAULT_RETURN (false);
863
864 /* Does this target support evaluation of breakpoint conditions on its
865 end? */
866 virtual bool supports_evaluation_of_breakpoint_conditions ()
867 TARGET_DEFAULT_RETURN (false);
868
869 /* Does this target support evaluation of breakpoint commands on its
870 end? */
871 virtual bool can_run_breakpoint_commands ()
872 TARGET_DEFAULT_RETURN (false);
873
874 /* Determine current architecture of thread PTID.
875
876 The target is supposed to determine the architecture of the code where
877 the target is currently stopped at (on Cell, if a target is in spu_run,
878 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
879 This is architecture used to perform decr_pc_after_break adjustment,
880 and also determines the frame architecture of the innermost frame.
881 ptrace operations need to operate according to target_gdbarch ().
882
883 The default implementation always returns target_gdbarch (). */
884 virtual struct gdbarch *thread_architecture (ptid_t)
885 TARGET_DEFAULT_FUNC (default_thread_architecture);
886
887 /* Determine current address space of thread PTID.
888
889 The default implementation always returns the inferior's
890 address space. */
891 virtual struct address_space *thread_address_space (ptid_t)
892 TARGET_DEFAULT_FUNC (default_thread_address_space);
893
894 /* Target file operations. */
895
896 /* Return nonzero if the filesystem seen by the current inferior
897 is the local filesystem, zero otherwise. */
898 virtual bool filesystem_is_local ()
899 TARGET_DEFAULT_RETURN (true);
900
901 /* Open FILENAME on the target, in the filesystem as seen by INF,
902 using FLAGS and MODE. If INF is NULL, use the filesystem seen
903 by the debugger (GDB or, for remote targets, the remote stub).
904 If WARN_IF_SLOW is nonzero, print a warning message if the file
905 is being accessed over a link that may be slow. Return a
906 target file descriptor, or -1 if an error occurs (and set
907 *TARGET_ERRNO). */
908 virtual int fileio_open (struct inferior *inf, const char *filename,
909 int flags, int mode, int warn_if_slow,
910 int *target_errno);
911
912 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
913 Return the number of bytes written, or -1 if an error occurs
914 (and set *TARGET_ERRNO). */
915 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
916 ULONGEST offset, int *target_errno);
917
918 /* Read up to LEN bytes FD on the target into READ_BUF.
919 Return the number of bytes read, or -1 if an error occurs
920 (and set *TARGET_ERRNO). */
921 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
922 ULONGEST offset, int *target_errno);
923
924 /* Get information about the file opened as FD and put it in
925 SB. Return 0 on success, or -1 if an error occurs (and set
926 *TARGET_ERRNO). */
927 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
928
929 /* Close FD on the target. Return 0, or -1 if an error occurs
930 (and set *TARGET_ERRNO). */
931 virtual int fileio_close (int fd, int *target_errno);
932
933 /* Unlink FILENAME on the target, in the filesystem as seen by
934 INF. If INF is NULL, use the filesystem seen by the debugger
935 (GDB or, for remote targets, the remote stub). Return 0, or
936 -1 if an error occurs (and set *TARGET_ERRNO). */
937 virtual int fileio_unlink (struct inferior *inf,
938 const char *filename,
939 int *target_errno);
940
941 /* Read value of symbolic link FILENAME on the target, in the
942 filesystem as seen by INF. If INF is NULL, use the filesystem
943 seen by the debugger (GDB or, for remote targets, the remote
944 stub). Return a string, or an empty optional if an error
945 occurs (and set *TARGET_ERRNO). */
946 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
947 const char *filename,
948 int *target_errno);
949
950 /* Implement the "info proc" command. Returns true if the target
951 actually implemented the command, false otherwise. */
952 virtual bool info_proc (const char *, enum info_proc_what);
953
954 /* Tracepoint-related operations. */
955
956 /* Prepare the target for a tracing run. */
957 virtual void trace_init ()
958 TARGET_DEFAULT_NORETURN (tcomplain ());
959
960 /* Send full details of a tracepoint location to the target. */
961 virtual void download_tracepoint (struct bp_location *location)
962 TARGET_DEFAULT_NORETURN (tcomplain ());
963
964 /* Is the target able to download tracepoint locations in current
965 state? */
966 virtual bool can_download_tracepoint ()
967 TARGET_DEFAULT_RETURN (false);
968
969 /* Send full details of a trace state variable to the target. */
970 virtual void download_trace_state_variable (const trace_state_variable &tsv)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Enable a tracepoint on the target. */
974 virtual void enable_tracepoint (struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Disable a tracepoint on the target. */
978 virtual void disable_tracepoint (struct bp_location *location)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Inform the target info of memory regions that are readonly
982 (such as text sections), and so it should return data from
983 those rather than look in the trace buffer. */
984 virtual void trace_set_readonly_regions ()
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Start a trace run. */
988 virtual void trace_start ()
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Get the current status of a tracing run. */
992 virtual int get_trace_status (struct trace_status *ts)
993 TARGET_DEFAULT_RETURN (-1);
994
995 virtual void get_tracepoint_status (struct breakpoint *tp,
996 struct uploaded_tp *utp)
997 TARGET_DEFAULT_NORETURN (tcomplain ());
998
999 /* Stop a trace run. */
1000 virtual void trace_stop ()
1001 TARGET_DEFAULT_NORETURN (tcomplain ());
1002
1003 /* Ask the target to find a trace frame of the given type TYPE,
1004 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1005 number of the trace frame, and also the tracepoint number at
1006 TPP. If no trace frame matches, return -1. May throw if the
1007 operation fails. */
1008 virtual int trace_find (enum trace_find_type type, int num,
1009 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1010 TARGET_DEFAULT_RETURN (-1);
1011
1012 /* Get the value of the trace state variable number TSV, returning
1013 1 if the value is known and writing the value itself into the
1014 location pointed to by VAL, else returning 0. */
1015 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1016 TARGET_DEFAULT_RETURN (false);
1017
1018 virtual int save_trace_data (const char *filename)
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1022 TARGET_DEFAULT_RETURN (0);
1023
1024 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1025 TARGET_DEFAULT_RETURN (0);
1026
1027 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1028 ULONGEST offset, LONGEST len)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Get the minimum length of instruction on which a fast tracepoint
1032 may be set on the target. If this operation is unsupported,
1033 return -1. If for some reason the minimum length cannot be
1034 determined, return 0. */
1035 virtual int get_min_fast_tracepoint_insn_len ()
1036 TARGET_DEFAULT_RETURN (-1);
1037
1038 /* Set the target's tracing behavior in response to unexpected
1039 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1040 virtual void set_disconnected_tracing (int val)
1041 TARGET_DEFAULT_IGNORE ();
1042 virtual void set_circular_trace_buffer (int val)
1043 TARGET_DEFAULT_IGNORE ();
1044 /* Set the size of trace buffer in the target. */
1045 virtual void set_trace_buffer_size (LONGEST val)
1046 TARGET_DEFAULT_IGNORE ();
1047
1048 /* Add/change textual notes about the trace run, returning 1 if
1049 successful, 0 otherwise. */
1050 virtual bool set_trace_notes (const char *user, const char *notes,
1051 const char *stopnotes)
1052 TARGET_DEFAULT_RETURN (false);
1053
1054 /* Return the processor core that thread PTID was last seen on.
1055 This information is updated only when:
1056 - update_thread_list is called
1057 - thread stops
1058 If the core cannot be determined -- either for the specified
1059 thread, or right now, or in this debug session, or for this
1060 target -- return -1. */
1061 virtual int core_of_thread (ptid_t ptid)
1062 TARGET_DEFAULT_RETURN (-1);
1063
1064 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1065 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1066 a match, 0 if there's a mismatch, and -1 if an error is
1067 encountered while reading memory. */
1068 virtual int verify_memory (const gdb_byte *data,
1069 CORE_ADDR memaddr, ULONGEST size)
1070 TARGET_DEFAULT_FUNC (default_verify_memory);
1071
1072 /* Return the address of the start of the Thread Information Block
1073 a Windows OS specific feature. */
1074 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Send the new settings of write permission variables. */
1078 virtual void set_permissions ()
1079 TARGET_DEFAULT_IGNORE ();
1080
1081 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1082 with its details. Return true on success, false on failure. */
1083 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1084 static_tracepoint_marker *marker)
1085 TARGET_DEFAULT_RETURN (false);
1086
1087 /* Return a vector of all tracepoints markers string id ID, or all
1088 markers if ID is NULL. */
1089 virtual std::vector<static_tracepoint_marker>
1090 static_tracepoint_markers_by_strid (const char *id)
1091 TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093 /* Return a traceframe info object describing the current
1094 traceframe's contents. This method should not cache data;
1095 higher layers take care of caching, invalidating, and
1096 re-fetching when necessary. */
1097 virtual traceframe_info_up traceframe_info ()
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Ask the target to use or not to use agent according to USE.
1101 Return true if successful, false otherwise. */
1102 virtual bool use_agent (bool use)
1103 TARGET_DEFAULT_NORETURN (tcomplain ());
1104
1105 /* Is the target able to use agent in current state? */
1106 virtual bool can_use_agent ()
1107 TARGET_DEFAULT_RETURN (false);
1108
1109 /* Enable branch tracing for PTID using CONF configuration.
1110 Return a branch trace target information struct for reading and for
1111 disabling branch trace. */
1112 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1113 const struct btrace_config *conf)
1114 TARGET_DEFAULT_NORETURN (tcomplain ());
1115
1116 /* Disable branch tracing and deallocate TINFO. */
1117 virtual void disable_btrace (struct btrace_target_info *tinfo)
1118 TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120 /* Disable branch tracing and deallocate TINFO. This function is similar
1121 to to_disable_btrace, except that it is called during teardown and is
1122 only allowed to perform actions that are safe. A counter-example would
1123 be attempting to talk to a remote target. */
1124 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1125 TARGET_DEFAULT_NORETURN (tcomplain ());
1126
1127 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1128 DATA is cleared before new trace is added. */
1129 virtual enum btrace_error read_btrace (struct btrace_data *data,
1130 struct btrace_target_info *btinfo,
1131 enum btrace_read_type type)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Get the branch trace configuration. */
1135 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1136 TARGET_DEFAULT_RETURN (NULL);
1137
1138 /* Current recording method. */
1139 virtual enum record_method record_method (ptid_t ptid)
1140 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1141
1142 /* Stop trace recording. */
1143 virtual void stop_recording ()
1144 TARGET_DEFAULT_IGNORE ();
1145
1146 /* Print information about the recording. */
1147 virtual void info_record ()
1148 TARGET_DEFAULT_IGNORE ();
1149
1150 /* Save the recorded execution trace into a file. */
1151 virtual void save_record (const char *filename)
1152 TARGET_DEFAULT_NORETURN (tcomplain ());
1153
1154 /* Delete the recorded execution trace from the current position
1155 onwards. */
1156 virtual bool supports_delete_record ()
1157 TARGET_DEFAULT_RETURN (false);
1158 virtual void delete_record ()
1159 TARGET_DEFAULT_NORETURN (tcomplain ());
1160
1161 /* Query if the record target is currently replaying PTID. */
1162 virtual bool record_is_replaying (ptid_t ptid)
1163 TARGET_DEFAULT_RETURN (false);
1164
1165 /* Query if the record target will replay PTID if it were resumed in
1166 execution direction DIR. */
1167 virtual bool record_will_replay (ptid_t ptid, int dir)
1168 TARGET_DEFAULT_RETURN (false);
1169
1170 /* Stop replaying. */
1171 virtual void record_stop_replaying ()
1172 TARGET_DEFAULT_IGNORE ();
1173
1174 /* Go to the begin of the execution trace. */
1175 virtual void goto_record_begin ()
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Go to the end of the execution trace. */
1179 virtual void goto_record_end ()
1180 TARGET_DEFAULT_NORETURN (tcomplain ());
1181
1182 /* Go to a specific location in the recorded execution trace. */
1183 virtual void goto_record (ULONGEST insn)
1184 TARGET_DEFAULT_NORETURN (tcomplain ());
1185
1186 /* Disassemble SIZE instructions in the recorded execution trace from
1187 the current position.
1188 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1189 disassemble SIZE succeeding instructions. */
1190 virtual void insn_history (int size, gdb_disassembly_flags flags)
1191 TARGET_DEFAULT_NORETURN (tcomplain ());
1192
1193 /* Disassemble SIZE instructions in the recorded execution trace around
1194 FROM.
1195 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1196 disassemble SIZE instructions after FROM. */
1197 virtual void insn_history_from (ULONGEST from, int size,
1198 gdb_disassembly_flags flags)
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Disassemble a section of the recorded execution trace from instruction
1202 BEGIN (inclusive) to instruction END (inclusive). */
1203 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1204 gdb_disassembly_flags flags)
1205 TARGET_DEFAULT_NORETURN (tcomplain ());
1206
1207 /* Print a function trace of the recorded execution trace.
1208 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1209 succeeding functions. */
1210 virtual void call_history (int size, record_print_flags flags)
1211 TARGET_DEFAULT_NORETURN (tcomplain ());
1212
1213 /* Print a function trace of the recorded execution trace starting
1214 at function FROM.
1215 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1216 SIZE functions after FROM. */
1217 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1218 TARGET_DEFAULT_NORETURN (tcomplain ());
1219
1220 /* Print a function trace of an execution trace section from function BEGIN
1221 (inclusive) to function END (inclusive). */
1222 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1226 non-empty annex. */
1227 virtual bool augmented_libraries_svr4_read ()
1228 TARGET_DEFAULT_RETURN (false);
1229
1230 /* Those unwinders are tried before any other arch unwinders. If
1231 SELF doesn't have unwinders, it should delegate to the
1232 "beneath" target. */
1233 virtual const struct frame_unwind *get_unwinder ()
1234 TARGET_DEFAULT_RETURN (NULL);
1235
1236 virtual const struct frame_unwind *get_tailcall_unwinder ()
1237 TARGET_DEFAULT_RETURN (NULL);
1238
1239 /* Prepare to generate a core file. */
1240 virtual void prepare_to_generate_core ()
1241 TARGET_DEFAULT_IGNORE ();
1242
1243 /* Cleanup after generating a core file. */
1244 virtual void done_generating_core ()
1245 TARGET_DEFAULT_IGNORE ();
1246 };
1247
1248 /* Deleter for std::unique_ptr. See comments in
1249 target_ops::~target_ops and target_ops::close about heap-allocated
1250 targets. */
1251 struct target_ops_deleter
1252 {
1253 void operator() (target_ops *target)
1254 {
1255 target->close ();
1256 }
1257 };
1258
1259 /* A unique pointer for target_ops. */
1260 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1261
1262 /* Native target backends call this once at initialization time to
1263 inform the core about which is the target that can respond to "run"
1264 or "attach". Note: native targets are always singletons. */
1265 extern void set_native_target (target_ops *target);
1266
1267 /* Get the registered native target, if there's one. Otherwise return
1268 NULL. */
1269 extern target_ops *get_native_target ();
1270
1271 /* Type that manages a target stack. See description of target stacks
1272 and strata at the top of the file. */
1273
1274 class target_stack
1275 {
1276 public:
1277 target_stack () = default;
1278 DISABLE_COPY_AND_ASSIGN (target_stack);
1279
1280 /* Push a new target into the stack of the existing target
1281 accessors, possibly superseding some existing accessor. */
1282 void push (target_ops *t);
1283
1284 /* Remove a target from the stack, wherever it may be. Return true
1285 if it was removed, false otherwise. */
1286 bool unpush (target_ops *t);
1287
1288 /* Returns true if T is pushed on the target stack. */
1289 bool is_pushed (target_ops *t) const
1290 { return at (t->to_stratum) == t; }
1291
1292 /* Return the target at STRATUM. */
1293 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1294
1295 /* Return the target at the top of the stack. */
1296 target_ops *top () const { return at (m_top); }
1297
1298 /* Find the next target down the stack from the specified target. */
1299 target_ops *find_beneath (const target_ops *t) const;
1300
1301 private:
1302 /* The stratum of the top target. */
1303 enum strata m_top {};
1304
1305 /* The stack, represented as an array, with one slot per stratum.
1306 If no target is pushed at some stratum, the corresponding slot is
1307 null. */
1308 target_ops *m_stack[(int) debug_stratum + 1] {};
1309 };
1310
1311 /* The ops structure for our "current" target process. This should
1312 never be NULL. If there is no target, it points to the dummy_target. */
1313
1314 extern target_ops *current_top_target ();
1315
1316 /* Define easy words for doing these operations on our current target. */
1317
1318 #define target_shortname (current_top_target ()->shortname ())
1319 #define target_longname (current_top_target ()->longname ())
1320
1321 /* Does whatever cleanup is required for a target that we are no
1322 longer going to be calling. This routine is automatically always
1323 called after popping the target off the target stack - the target's
1324 own methods are no longer available through the target vector.
1325 Closing file descriptors and freeing all memory allocated memory are
1326 typical things it should do. */
1327
1328 void target_close (struct target_ops *targ);
1329
1330 /* Find the correct target to use for "attach". If a target on the
1331 current stack supports attaching, then it is returned. Otherwise,
1332 the default run target is returned. */
1333
1334 extern struct target_ops *find_attach_target (void);
1335
1336 /* Find the correct target to use for "run". If a target on the
1337 current stack supports creating a new inferior, then it is
1338 returned. Otherwise, the default run target is returned. */
1339
1340 extern struct target_ops *find_run_target (void);
1341
1342 /* Some targets don't generate traps when attaching to the inferior,
1343 or their target_attach implementation takes care of the waiting.
1344 These targets must set to_attach_no_wait. */
1345
1346 #define target_attach_no_wait() \
1347 (current_top_target ()->attach_no_wait ())
1348
1349 /* The target_attach operation places a process under debugger control,
1350 and stops the process.
1351
1352 This operation provides a target-specific hook that allows the
1353 necessary bookkeeping to be performed after an attach completes. */
1354 #define target_post_attach(pid) \
1355 (current_top_target ()->post_attach) (pid)
1356
1357 /* Display a message indicating we're about to detach from the current
1358 inferior process. */
1359
1360 extern void target_announce_detach (int from_tty);
1361
1362 /* Takes a program previously attached to and detaches it.
1363 The program may resume execution (some targets do, some don't) and will
1364 no longer stop on signals, etc. We better not have left any breakpoints
1365 in the program or it'll die when it hits one. FROM_TTY says whether to be
1366 verbose or not. */
1367
1368 extern void target_detach (inferior *inf, int from_tty);
1369
1370 /* Disconnect from the current target without resuming it (leaving it
1371 waiting for a debugger). */
1372
1373 extern void target_disconnect (const char *, int);
1374
1375 /* Resume execution (or prepare for execution) of a target thread,
1376 process or all processes. STEP says whether to hardware
1377 single-step or to run free; SIGGNAL is the signal to be given to
1378 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1379 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1380 process id'. A wildcard PTID (all threads, or all threads of
1381 process) means `step/resume INFERIOR_PTID, and let other threads
1382 (for which the wildcard PTID matches) resume with their
1383 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1384 is in "pass" state, or with no signal if in "no pass" state.
1385
1386 In order to efficiently handle batches of resumption requests,
1387 targets may implement this method such that it records the
1388 resumption request, but defers the actual resumption to the
1389 target_commit_resume method implementation. See
1390 target_commit_resume below. */
1391 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1392
1393 /* Commit a series of resumption requests previously prepared with
1394 target_resume calls.
1395
1396 GDB always calls target_commit_resume after calling target_resume
1397 one or more times. A target may thus use this method in
1398 coordination with the target_resume method to batch target-side
1399 resumption requests. In that case, the target doesn't actually
1400 resume in its target_resume implementation. Instead, it prepares
1401 the resumption in target_resume, and defers the actual resumption
1402 to target_commit_resume. E.g., the remote target uses this to
1403 coalesce multiple resumption requests in a single vCont packet. */
1404 extern void target_commit_resume ();
1405
1406 /* Setup to defer target_commit_resume calls, and reactivate
1407 target_commit_resume on destruction, if it was previously
1408 active. */
1409 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1410
1411 /* For target_read_memory see target/target.h. */
1412
1413 /* The default target_ops::to_wait implementation. */
1414
1415 extern ptid_t default_target_wait (struct target_ops *ops,
1416 ptid_t ptid,
1417 struct target_waitstatus *status,
1418 int options);
1419
1420 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1421
1422 extern void target_fetch_registers (struct regcache *regcache, int regno);
1423
1424 /* Store at least register REGNO, or all regs if REGNO == -1.
1425 It can store as many registers as it wants to, so target_prepare_to_store
1426 must have been previously called. Calls error() if there are problems. */
1427
1428 extern void target_store_registers (struct regcache *regcache, int regs);
1429
1430 /* Get ready to modify the registers array. On machines which store
1431 individual registers, this doesn't need to do anything. On machines
1432 which store all the registers in one fell swoop, this makes sure
1433 that REGISTERS contains all the registers from the program being
1434 debugged. */
1435
1436 #define target_prepare_to_store(regcache) \
1437 (current_top_target ()->prepare_to_store) (regcache)
1438
1439 /* Determine current address space of thread PTID. */
1440
1441 struct address_space *target_thread_address_space (ptid_t);
1442
1443 /* Implement the "info proc" command. This returns one if the request
1444 was handled, and zero otherwise. It can also throw an exception if
1445 an error was encountered while attempting to handle the
1446 request. */
1447
1448 int target_info_proc (const char *, enum info_proc_what);
1449
1450 /* Returns true if this target can disable address space randomization. */
1451
1452 int target_supports_disable_randomization (void);
1453
1454 /* Returns true if this target can enable and disable tracepoints
1455 while a trace experiment is running. */
1456
1457 #define target_supports_enable_disable_tracepoint() \
1458 (current_top_target ()->supports_enable_disable_tracepoint) ()
1459
1460 #define target_supports_string_tracing() \
1461 (current_top_target ()->supports_string_tracing) ()
1462
1463 /* Returns true if this target can handle breakpoint conditions
1464 on its end. */
1465
1466 #define target_supports_evaluation_of_breakpoint_conditions() \
1467 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1468
1469 /* Returns true if this target can handle breakpoint commands
1470 on its end. */
1471
1472 #define target_can_run_breakpoint_commands() \
1473 (current_top_target ()->can_run_breakpoint_commands) ()
1474
1475 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1476 int, int *);
1477
1478 /* For target_read_memory see target/target.h. */
1479
1480 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1481 ssize_t len);
1482
1483 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1484
1485 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1486
1487 /* For target_write_memory see target/target.h. */
1488
1489 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1490 ssize_t len);
1491
1492 /* Fetches the target's memory map. If one is found it is sorted
1493 and returned, after some consistency checking. Otherwise, NULL
1494 is returned. */
1495 std::vector<mem_region> target_memory_map (void);
1496
1497 /* Erases all flash memory regions on the target. */
1498 void flash_erase_command (const char *cmd, int from_tty);
1499
1500 /* Erase the specified flash region. */
1501 void target_flash_erase (ULONGEST address, LONGEST length);
1502
1503 /* Finish a sequence of flash operations. */
1504 void target_flash_done (void);
1505
1506 /* Describes a request for a memory write operation. */
1507 struct memory_write_request
1508 {
1509 memory_write_request (ULONGEST begin_, ULONGEST end_,
1510 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1511 : begin (begin_), end (end_), data (data_), baton (baton_)
1512 {}
1513
1514 /* Begining address that must be written. */
1515 ULONGEST begin;
1516 /* Past-the-end address. */
1517 ULONGEST end;
1518 /* The data to write. */
1519 gdb_byte *data;
1520 /* A callback baton for progress reporting for this request. */
1521 void *baton;
1522 };
1523
1524 /* Enumeration specifying different flash preservation behaviour. */
1525 enum flash_preserve_mode
1526 {
1527 flash_preserve,
1528 flash_discard
1529 };
1530
1531 /* Write several memory blocks at once. This version can be more
1532 efficient than making several calls to target_write_memory, in
1533 particular because it can optimize accesses to flash memory.
1534
1535 Moreover, this is currently the only memory access function in gdb
1536 that supports writing to flash memory, and it should be used for
1537 all cases where access to flash memory is desirable.
1538
1539 REQUESTS is the vector (see vec.h) of memory_write_request.
1540 PRESERVE_FLASH_P indicates what to do with blocks which must be
1541 erased, but not completely rewritten.
1542 PROGRESS_CB is a function that will be periodically called to provide
1543 feedback to user. It will be called with the baton corresponding
1544 to the request currently being written. It may also be called
1545 with a NULL baton, when preserved flash sectors are being rewritten.
1546
1547 The function returns 0 on success, and error otherwise. */
1548 int target_write_memory_blocks
1549 (const std::vector<memory_write_request> &requests,
1550 enum flash_preserve_mode preserve_flash_p,
1551 void (*progress_cb) (ULONGEST, void *));
1552
1553 /* Print a line about the current target. */
1554
1555 #define target_files_info() \
1556 (current_top_target ()->files_info) ()
1557
1558 /* Insert a breakpoint at address BP_TGT->placed_address in
1559 the target machine. Returns 0 for success, and returns non-zero or
1560 throws an error (with a detailed failure reason error code and
1561 message) otherwise. */
1562
1563 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1564 struct bp_target_info *bp_tgt);
1565
1566 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1567 machine. Result is 0 for success, non-zero for error. */
1568
1569 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1570 struct bp_target_info *bp_tgt,
1571 enum remove_bp_reason reason);
1572
1573 /* Return true if the target stack has a non-default
1574 "terminal_ours" method. */
1575
1576 extern int target_supports_terminal_ours (void);
1577
1578 /* Kill the inferior process. Make it go away. */
1579
1580 extern void target_kill (void);
1581
1582 /* Load an executable file into the target process. This is expected
1583 to not only bring new code into the target process, but also to
1584 update GDB's symbol tables to match.
1585
1586 ARG contains command-line arguments, to be broken down with
1587 buildargv (). The first non-switch argument is the filename to
1588 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1589 0)), which is an offset to apply to the load addresses of FILE's
1590 sections. The target may define switches, or other non-switch
1591 arguments, as it pleases. */
1592
1593 extern void target_load (const char *arg, int from_tty);
1594
1595 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1596 notification of inferior events such as fork and vork immediately
1597 after the inferior is created. (This because of how gdb gets an
1598 inferior created via invoking a shell to do it. In such a scenario,
1599 if the shell init file has commands in it, the shell will fork and
1600 exec for each of those commands, and we will see each such fork
1601 event. Very bad.)
1602
1603 Such targets will supply an appropriate definition for this function. */
1604
1605 #define target_post_startup_inferior(ptid) \
1606 (current_top_target ()->post_startup_inferior) (ptid)
1607
1608 /* On some targets, we can catch an inferior fork or vfork event when
1609 it occurs. These functions insert/remove an already-created
1610 catchpoint for such events. They return 0 for success, 1 if the
1611 catchpoint type is not supported and -1 for failure. */
1612
1613 #define target_insert_fork_catchpoint(pid) \
1614 (current_top_target ()->insert_fork_catchpoint) (pid)
1615
1616 #define target_remove_fork_catchpoint(pid) \
1617 (current_top_target ()->remove_fork_catchpoint) (pid)
1618
1619 #define target_insert_vfork_catchpoint(pid) \
1620 (current_top_target ()->insert_vfork_catchpoint) (pid)
1621
1622 #define target_remove_vfork_catchpoint(pid) \
1623 (current_top_target ()->remove_vfork_catchpoint) (pid)
1624
1625 /* If the inferior forks or vforks, this function will be called at
1626 the next resume in order to perform any bookkeeping and fiddling
1627 necessary to continue debugging either the parent or child, as
1628 requested, and releasing the other. Information about the fork
1629 or vfork event is available via get_last_target_status ().
1630 This function returns 1 if the inferior should not be resumed
1631 (i.e. there is another event pending). */
1632
1633 int target_follow_fork (int follow_child, int detach_fork);
1634
1635 /* Handle the target-specific bookkeeping required when the inferior
1636 makes an exec call. INF is the exec'd inferior. */
1637
1638 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1639
1640 /* On some targets, we can catch an inferior exec event when it
1641 occurs. These functions insert/remove an already-created
1642 catchpoint for such events. They return 0 for success, 1 if the
1643 catchpoint type is not supported and -1 for failure. */
1644
1645 #define target_insert_exec_catchpoint(pid) \
1646 (current_top_target ()->insert_exec_catchpoint) (pid)
1647
1648 #define target_remove_exec_catchpoint(pid) \
1649 (current_top_target ()->remove_exec_catchpoint) (pid)
1650
1651 /* Syscall catch.
1652
1653 NEEDED is true if any syscall catch (of any kind) is requested.
1654 If NEEDED is false, it means the target can disable the mechanism to
1655 catch system calls because there are no more catchpoints of this type.
1656
1657 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1658 being requested. In this case, SYSCALL_COUNTS should be ignored.
1659
1660 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1661 element in this array is nonzero if that syscall should be caught.
1662 This argument only matters if ANY_COUNT is zero.
1663
1664 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1665 for failure. */
1666
1667 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1668 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1669 syscall_counts)
1670
1671 /* The debugger has completed a blocking wait() call. There is now
1672 some process event that must be processed. This function should
1673 be defined by those targets that require the debugger to perform
1674 cleanup or internal state changes in response to the process event. */
1675
1676 /* For target_mourn_inferior see target/target.h. */
1677
1678 /* Does target have enough data to do a run or attach command? */
1679
1680 extern int target_can_run ();
1681
1682 /* Set list of signals to be handled in the target.
1683
1684 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1685 (enum gdb_signal). For every signal whose entry in this array is
1686 non-zero, the target is allowed -but not required- to skip reporting
1687 arrival of the signal to the GDB core by returning from target_wait,
1688 and to pass the signal directly to the inferior instead.
1689
1690 However, if the target is hardware single-stepping a thread that is
1691 about to receive a signal, it needs to be reported in any case, even
1692 if mentioned in a previous target_pass_signals call. */
1693
1694 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1695
1696 /* Set list of signals the target may pass to the inferior. This
1697 directly maps to the "handle SIGNAL pass/nopass" setting.
1698
1699 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1700 number (enum gdb_signal). For every signal whose entry in this
1701 array is non-zero, the target is allowed to pass the signal to the
1702 inferior. Signals not present in the array shall be silently
1703 discarded. This does not influence whether to pass signals to the
1704 inferior as a result of a target_resume call. This is useful in
1705 scenarios where the target needs to decide whether to pass or not a
1706 signal to the inferior without GDB core involvement, such as for
1707 example, when detaching (as threads may have been suspended with
1708 pending signals not reported to GDB). */
1709
1710 extern void target_program_signals (int nsig, unsigned char *program_signals);
1711
1712 /* Check to see if a thread is still alive. */
1713
1714 extern int target_thread_alive (ptid_t ptid);
1715
1716 /* Sync the target's threads with GDB's thread list. */
1717
1718 extern void target_update_thread_list (void);
1719
1720 /* Make target stop in a continuable fashion. (For instance, under
1721 Unix, this should act like SIGSTOP). Note that this function is
1722 asynchronous: it does not wait for the target to become stopped
1723 before returning. If this is the behavior you want please use
1724 target_stop_and_wait. */
1725
1726 extern void target_stop (ptid_t ptid);
1727
1728 /* Interrupt the target. Unlike target_stop, this does not specify
1729 which thread/process reports the stop. For most target this acts
1730 like raising a SIGINT, though that's not absolutely required. This
1731 function is asynchronous. */
1732
1733 extern void target_interrupt ();
1734
1735 /* Pass a ^C, as determined to have been pressed by checking the quit
1736 flag, to the target, as if the user had typed the ^C on the
1737 inferior's controlling terminal while the inferior was in the
1738 foreground. Remote targets may take the opportunity to detect the
1739 remote side is not responding and offer to disconnect. */
1740
1741 extern void target_pass_ctrlc (void);
1742
1743 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1744 target_interrupt. */
1745 extern void default_target_pass_ctrlc (struct target_ops *ops);
1746
1747 /* Send the specified COMMAND to the target's monitor
1748 (shell,interpreter) for execution. The result of the query is
1749 placed in OUTBUF. */
1750
1751 #define target_rcmd(command, outbuf) \
1752 (current_top_target ()->rcmd) (command, outbuf)
1753
1754
1755 /* Does the target include all of memory, or only part of it? This
1756 determines whether we look up the target chain for other parts of
1757 memory if this target can't satisfy a request. */
1758
1759 extern int target_has_all_memory_1 (void);
1760 #define target_has_all_memory target_has_all_memory_1 ()
1761
1762 /* Does the target include memory? (Dummy targets don't.) */
1763
1764 extern int target_has_memory_1 (void);
1765 #define target_has_memory target_has_memory_1 ()
1766
1767 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1768 we start a process.) */
1769
1770 extern int target_has_stack_1 (void);
1771 #define target_has_stack target_has_stack_1 ()
1772
1773 /* Does the target have registers? (Exec files don't.) */
1774
1775 extern int target_has_registers_1 (void);
1776 #define target_has_registers target_has_registers_1 ()
1777
1778 /* Does the target have execution? Can we make it jump (through
1779 hoops), or pop its stack a few times? This means that the current
1780 target is currently executing; for some targets, that's the same as
1781 whether or not the target is capable of execution, but there are
1782 also targets which can be current while not executing. In that
1783 case this will become true after to_create_inferior or
1784 to_attach. */
1785
1786 extern int target_has_execution_1 (ptid_t);
1787
1788 /* Like target_has_execution_1, but always passes inferior_ptid. */
1789
1790 extern int target_has_execution_current (void);
1791
1792 #define target_has_execution target_has_execution_current ()
1793
1794 /* Default implementations for process_stratum targets. Return true
1795 if there's a selected inferior, false otherwise. */
1796
1797 extern int default_child_has_all_memory ();
1798 extern int default_child_has_memory ();
1799 extern int default_child_has_stack ();
1800 extern int default_child_has_registers ();
1801 extern int default_child_has_execution (ptid_t the_ptid);
1802
1803 /* Can the target support the debugger control of thread execution?
1804 Can it lock the thread scheduler? */
1805
1806 #define target_can_lock_scheduler \
1807 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1808
1809 /* Controls whether async mode is permitted. */
1810 extern int target_async_permitted;
1811
1812 /* Can the target support asynchronous execution? */
1813 #define target_can_async_p() (current_top_target ()->can_async_p ())
1814
1815 /* Is the target in asynchronous execution mode? */
1816 #define target_is_async_p() (current_top_target ()->is_async_p ())
1817
1818 /* Enables/disabled async target events. */
1819 extern void target_async (int enable);
1820
1821 /* Enables/disables thread create and exit events. */
1822 extern void target_thread_events (int enable);
1823
1824 /* Whether support for controlling the target backends always in
1825 non-stop mode is enabled. */
1826 extern enum auto_boolean target_non_stop_enabled;
1827
1828 /* Is the target in non-stop mode? Some targets control the inferior
1829 in non-stop mode even with "set non-stop off". Always true if "set
1830 non-stop" is on. */
1831 extern int target_is_non_stop_p (void);
1832
1833 #define target_execution_direction() \
1834 (current_top_target ()->execution_direction ())
1835
1836 /* Converts a process id to a string. Usually, the string just contains
1837 `process xyz', but on some systems it may contain
1838 `process xyz thread abc'. */
1839
1840 extern const char *target_pid_to_str (ptid_t ptid);
1841
1842 extern const char *normal_pid_to_str (ptid_t ptid);
1843
1844 /* Return a short string describing extra information about PID,
1845 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1846 is okay. */
1847
1848 #define target_extra_thread_info(TP) \
1849 (current_top_target ()->extra_thread_info (TP))
1850
1851 /* Return the thread's name, or NULL if the target is unable to determine it.
1852 The returned value must not be freed by the caller. */
1853
1854 extern const char *target_thread_name (struct thread_info *);
1855
1856 /* Given a pointer to a thread library specific thread handle and
1857 its length, return a pointer to the corresponding thread_info struct. */
1858
1859 extern struct thread_info *target_thread_handle_to_thread_info
1860 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1861
1862 /* Attempts to find the pathname of the executable file
1863 that was run to create a specified process.
1864
1865 The process PID must be stopped when this operation is used.
1866
1867 If the executable file cannot be determined, NULL is returned.
1868
1869 Else, a pointer to a character string containing the pathname
1870 is returned. This string should be copied into a buffer by
1871 the client if the string will not be immediately used, or if
1872 it must persist. */
1873
1874 #define target_pid_to_exec_file(pid) \
1875 (current_top_target ()->pid_to_exec_file) (pid)
1876
1877 /* See the to_thread_architecture description in struct target_ops. */
1878
1879 #define target_thread_architecture(ptid) \
1880 (current_top_target ()->thread_architecture (ptid))
1881
1882 /*
1883 * Iterator function for target memory regions.
1884 * Calls a callback function once for each memory region 'mapped'
1885 * in the child process. Defined as a simple macro rather than
1886 * as a function macro so that it can be tested for nullity.
1887 */
1888
1889 #define target_find_memory_regions(FUNC, DATA) \
1890 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1891
1892 /*
1893 * Compose corefile .note section.
1894 */
1895
1896 #define target_make_corefile_notes(BFD, SIZE_P) \
1897 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1898
1899 /* Bookmark interfaces. */
1900 #define target_get_bookmark(ARGS, FROM_TTY) \
1901 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1902
1903 #define target_goto_bookmark(ARG, FROM_TTY) \
1904 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1905
1906 /* Hardware watchpoint interfaces. */
1907
1908 /* GDB's current model is that there are three "kinds" of watchpoints,
1909 with respect to when they trigger and how you can move past them.
1910
1911 Those are: continuable, steppable, and non-steppable.
1912
1913 Continuable watchpoints are like x86's -- those trigger after the
1914 memory access's side effects are fully committed to memory. I.e.,
1915 they trap with the PC pointing at the next instruction already.
1916 Continuing past such a watchpoint is doable by just normally
1917 continuing, hence the name.
1918
1919 Both steppable and non-steppable watchpoints trap before the memory
1920 access. I.e, the PC points at the instruction that is accessing
1921 the memory. So GDB needs to single-step once past the current
1922 instruction in order to make the access effective and check whether
1923 the instruction's side effects change the watched expression.
1924
1925 Now, in order to step past that instruction, depending on
1926 architecture and target, you can have two situations:
1927
1928 - steppable watchpoints: you can single-step with the watchpoint
1929 still armed, and the watchpoint won't trigger again.
1930
1931 - non-steppable watchpoints: if you try to single-step with the
1932 watchpoint still armed, you'd trap the watchpoint again and the
1933 thread wouldn't make any progress. So GDB needs to temporarily
1934 remove the watchpoint in order to step past it.
1935
1936 If your target/architecture does not signal that it has either
1937 steppable or non-steppable watchpoints via either
1938 target_have_steppable_watchpoint or
1939 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1940 watchpoints. */
1941
1942 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1943 write). Only the INFERIOR_PTID task is being queried. */
1944
1945 #define target_stopped_by_watchpoint() \
1946 ((current_top_target ()->stopped_by_watchpoint) ())
1947
1948 /* Returns non-zero if the target stopped because it executed a
1949 software breakpoint instruction. */
1950
1951 #define target_stopped_by_sw_breakpoint() \
1952 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1953
1954 #define target_supports_stopped_by_sw_breakpoint() \
1955 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1956
1957 #define target_stopped_by_hw_breakpoint() \
1958 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1959
1960 #define target_supports_stopped_by_hw_breakpoint() \
1961 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1962
1963 /* Non-zero if we have steppable watchpoints */
1964
1965 #define target_have_steppable_watchpoint \
1966 (current_top_target ()->have_steppable_watchpoint ())
1967
1968 /* Provide defaults for hardware watchpoint functions. */
1969
1970 /* If the *_hw_beakpoint functions have not been defined
1971 elsewhere use the definitions in the target vector. */
1972
1973 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1974 Returns negative if the target doesn't have enough hardware debug
1975 registers available. Return zero if hardware watchpoint of type
1976 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1977 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1978 CNT is the number of such watchpoints used so far, including this
1979 one. OTHERTYPE is the number of watchpoints of other types than
1980 this one used so far. */
1981
1982 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1983 (current_top_target ()->can_use_hw_breakpoint) ( \
1984 TYPE, CNT, OTHERTYPE)
1985
1986 /* Returns the number of debug registers needed to watch the given
1987 memory region, or zero if not supported. */
1988
1989 #define target_region_ok_for_hw_watchpoint(addr, len) \
1990 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1991
1992
1993 #define target_can_do_single_step() \
1994 (current_top_target ()->can_do_single_step) ()
1995
1996 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1997 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1998 COND is the expression for its condition, or NULL if there's none.
1999 Returns 0 for success, 1 if the watchpoint type is not supported,
2000 -1 for failure. */
2001
2002 #define target_insert_watchpoint(addr, len, type, cond) \
2003 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2004
2005 #define target_remove_watchpoint(addr, len, type, cond) \
2006 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2007
2008 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2009 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2010 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2011 masked watchpoints are not supported, -1 for failure. */
2012
2013 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2014 enum target_hw_bp_type);
2015
2016 /* Remove a masked watchpoint at ADDR with the mask MASK.
2017 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2018 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2019 for failure. */
2020
2021 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2022 enum target_hw_bp_type);
2023
2024 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2025 the target machine. Returns 0 for success, and returns non-zero or
2026 throws an error (with a detailed failure reason error code and
2027 message) otherwise. */
2028
2029 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2030 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2031
2032 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2033 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2034
2035 /* Return number of debug registers needed for a ranged breakpoint,
2036 or -1 if ranged breakpoints are not supported. */
2037
2038 extern int target_ranged_break_num_registers (void);
2039
2040 /* Return non-zero if target knows the data address which triggered this
2041 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2042 INFERIOR_PTID task is being queried. */
2043 #define target_stopped_data_address(target, addr_p) \
2044 (target)->stopped_data_address (addr_p)
2045
2046 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2047 LENGTH bytes beginning at START. */
2048 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2049 (target)->watchpoint_addr_within_range (addr, start, length)
2050
2051 /* Return non-zero if the target is capable of using hardware to evaluate
2052 the condition expression. In this case, if the condition is false when
2053 the watched memory location changes, execution may continue without the
2054 debugger being notified.
2055
2056 Due to limitations in the hardware implementation, it may be capable of
2057 avoiding triggering the watchpoint in some cases where the condition
2058 expression is false, but may report some false positives as well.
2059 For this reason, GDB will still evaluate the condition expression when
2060 the watchpoint triggers. */
2061 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2062 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2063
2064 /* Return number of debug registers needed for a masked watchpoint,
2065 -1 if masked watchpoints are not supported or -2 if the given address
2066 and mask combination cannot be used. */
2067
2068 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2069
2070 /* Target can execute in reverse? */
2071 #define target_can_execute_reverse \
2072 current_top_target ()->can_execute_reverse ()
2073
2074 extern const struct target_desc *target_read_description (struct target_ops *);
2075
2076 #define target_get_ada_task_ptid(lwp, tid) \
2077 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2078
2079 /* Utility implementation of searching memory. */
2080 extern int simple_search_memory (struct target_ops* ops,
2081 CORE_ADDR start_addr,
2082 ULONGEST search_space_len,
2083 const gdb_byte *pattern,
2084 ULONGEST pattern_len,
2085 CORE_ADDR *found_addrp);
2086
2087 /* Main entry point for searching memory. */
2088 extern int target_search_memory (CORE_ADDR start_addr,
2089 ULONGEST search_space_len,
2090 const gdb_byte *pattern,
2091 ULONGEST pattern_len,
2092 CORE_ADDR *found_addrp);
2093
2094 /* Target file operations. */
2095
2096 /* Return nonzero if the filesystem seen by the current inferior
2097 is the local filesystem, zero otherwise. */
2098 #define target_filesystem_is_local() \
2099 current_top_target ()->filesystem_is_local ()
2100
2101 /* Open FILENAME on the target, in the filesystem as seen by INF,
2102 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2103 by the debugger (GDB or, for remote targets, the remote stub).
2104 Return a target file descriptor, or -1 if an error occurs (and
2105 set *TARGET_ERRNO). */
2106 extern int target_fileio_open (struct inferior *inf,
2107 const char *filename, int flags,
2108 int mode, int *target_errno);
2109
2110 /* Like target_fileio_open, but print a warning message if the
2111 file is being accessed over a link that may be slow. */
2112 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2113 const char *filename,
2114 int flags,
2115 int mode,
2116 int *target_errno);
2117
2118 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2119 Return the number of bytes written, or -1 if an error occurs
2120 (and set *TARGET_ERRNO). */
2121 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2122 ULONGEST offset, int *target_errno);
2123
2124 /* Read up to LEN bytes FD on the target into READ_BUF.
2125 Return the number of bytes read, or -1 if an error occurs
2126 (and set *TARGET_ERRNO). */
2127 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2128 ULONGEST offset, int *target_errno);
2129
2130 /* Get information about the file opened as FD on the target
2131 and put it in SB. Return 0 on success, or -1 if an error
2132 occurs (and set *TARGET_ERRNO). */
2133 extern int target_fileio_fstat (int fd, struct stat *sb,
2134 int *target_errno);
2135
2136 /* Close FD on the target. Return 0, or -1 if an error occurs
2137 (and set *TARGET_ERRNO). */
2138 extern int target_fileio_close (int fd, int *target_errno);
2139
2140 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2141 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2142 for remote targets, the remote stub). Return 0, or -1 if an error
2143 occurs (and set *TARGET_ERRNO). */
2144 extern int target_fileio_unlink (struct inferior *inf,
2145 const char *filename,
2146 int *target_errno);
2147
2148 /* Read value of symbolic link FILENAME on the target, in the
2149 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2150 by the debugger (GDB or, for remote targets, the remote stub).
2151 Return a null-terminated string allocated via xmalloc, or NULL if
2152 an error occurs (and set *TARGET_ERRNO). */
2153 extern gdb::optional<std::string> target_fileio_readlink
2154 (struct inferior *inf, const char *filename, int *target_errno);
2155
2156 /* Read target file FILENAME, in the filesystem as seen by INF. If
2157 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2158 remote targets, the remote stub). The return value will be -1 if
2159 the transfer fails or is not supported; 0 if the object is empty;
2160 or the length of the object otherwise. If a positive value is
2161 returned, a sufficiently large buffer will be allocated using
2162 xmalloc and returned in *BUF_P containing the contents of the
2163 object.
2164
2165 This method should be used for objects sufficiently small to store
2166 in a single xmalloc'd buffer, when no fixed bound on the object's
2167 size is known in advance. */
2168 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2169 const char *filename,
2170 gdb_byte **buf_p);
2171
2172 /* Read target file FILENAME, in the filesystem as seen by INF. If
2173 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2174 remote targets, the remote stub). The result is NUL-terminated and
2175 returned as a string, allocated using xmalloc. If an error occurs
2176 or the transfer is unsupported, NULL is returned. Empty objects
2177 are returned as allocated but empty strings. A warning is issued
2178 if the result contains any embedded NUL bytes. */
2179 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2180 (struct inferior *inf, const char *filename);
2181
2182
2183 /* Tracepoint-related operations. */
2184
2185 #define target_trace_init() \
2186 (current_top_target ()->trace_init) ()
2187
2188 #define target_download_tracepoint(t) \
2189 (current_top_target ()->download_tracepoint) (t)
2190
2191 #define target_can_download_tracepoint() \
2192 (current_top_target ()->can_download_tracepoint) ()
2193
2194 #define target_download_trace_state_variable(tsv) \
2195 (current_top_target ()->download_trace_state_variable) (tsv)
2196
2197 #define target_enable_tracepoint(loc) \
2198 (current_top_target ()->enable_tracepoint) (loc)
2199
2200 #define target_disable_tracepoint(loc) \
2201 (current_top_target ()->disable_tracepoint) (loc)
2202
2203 #define target_trace_start() \
2204 (current_top_target ()->trace_start) ()
2205
2206 #define target_trace_set_readonly_regions() \
2207 (current_top_target ()->trace_set_readonly_regions) ()
2208
2209 #define target_get_trace_status(ts) \
2210 (current_top_target ()->get_trace_status) (ts)
2211
2212 #define target_get_tracepoint_status(tp,utp) \
2213 (current_top_target ()->get_tracepoint_status) (tp, utp)
2214
2215 #define target_trace_stop() \
2216 (current_top_target ()->trace_stop) ()
2217
2218 #define target_trace_find(type,num,addr1,addr2,tpp) \
2219 (current_top_target ()->trace_find) (\
2220 (type), (num), (addr1), (addr2), (tpp))
2221
2222 #define target_get_trace_state_variable_value(tsv,val) \
2223 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2224
2225 #define target_save_trace_data(filename) \
2226 (current_top_target ()->save_trace_data) (filename)
2227
2228 #define target_upload_tracepoints(utpp) \
2229 (current_top_target ()->upload_tracepoints) (utpp)
2230
2231 #define target_upload_trace_state_variables(utsvp) \
2232 (current_top_target ()->upload_trace_state_variables) (utsvp)
2233
2234 #define target_get_raw_trace_data(buf,offset,len) \
2235 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2236
2237 #define target_get_min_fast_tracepoint_insn_len() \
2238 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2239
2240 #define target_set_disconnected_tracing(val) \
2241 (current_top_target ()->set_disconnected_tracing) (val)
2242
2243 #define target_set_circular_trace_buffer(val) \
2244 (current_top_target ()->set_circular_trace_buffer) (val)
2245
2246 #define target_set_trace_buffer_size(val) \
2247 (current_top_target ()->set_trace_buffer_size) (val)
2248
2249 #define target_set_trace_notes(user,notes,stopnotes) \
2250 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2251
2252 #define target_get_tib_address(ptid, addr) \
2253 (current_top_target ()->get_tib_address) ((ptid), (addr))
2254
2255 #define target_set_permissions() \
2256 (current_top_target ()->set_permissions) ()
2257
2258 #define target_static_tracepoint_marker_at(addr, marker) \
2259 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2260
2261 #define target_static_tracepoint_markers_by_strid(marker_id) \
2262 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2263
2264 #define target_traceframe_info() \
2265 (current_top_target ()->traceframe_info) ()
2266
2267 #define target_use_agent(use) \
2268 (current_top_target ()->use_agent) (use)
2269
2270 #define target_can_use_agent() \
2271 (current_top_target ()->can_use_agent) ()
2272
2273 #define target_augmented_libraries_svr4_read() \
2274 (current_top_target ()->augmented_libraries_svr4_read) ()
2275
2276 /* Command logging facility. */
2277
2278 #define target_log_command(p) \
2279 (current_top_target ()->log_command) (p)
2280
2281
2282 extern int target_core_of_thread (ptid_t ptid);
2283
2284 /* See to_get_unwinder in struct target_ops. */
2285 extern const struct frame_unwind *target_get_unwinder (void);
2286
2287 /* See to_get_tailcall_unwinder in struct target_ops. */
2288 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2289
2290 /* This implements basic memory verification, reading target memory
2291 and performing the comparison here (as opposed to accelerated
2292 verification making use of the qCRC packet, for example). */
2293
2294 extern int simple_verify_memory (struct target_ops* ops,
2295 const gdb_byte *data,
2296 CORE_ADDR memaddr, ULONGEST size);
2297
2298 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2299 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2300 if there's a mismatch, and -1 if an error is encountered while
2301 reading memory. Throws an error if the functionality is found not
2302 to be supported by the current target. */
2303 int target_verify_memory (const gdb_byte *data,
2304 CORE_ADDR memaddr, ULONGEST size);
2305
2306 /* Routines for maintenance of the target structures...
2307
2308 add_target: Add a target to the list of all possible targets.
2309 This only makes sense for targets that should be activated using
2310 the "target TARGET_NAME ..." command.
2311
2312 push_target: Make this target the top of the stack of currently used
2313 targets, within its particular stratum of the stack. Result
2314 is 0 if now atop the stack, nonzero if not on top (maybe
2315 should warn user).
2316
2317 unpush_target: Remove this from the stack of currently used targets,
2318 no matter where it is on the list. Returns 0 if no
2319 change, 1 if removed from stack. */
2320
2321 /* Type of callback called when the user activates a target with
2322 "target TARGET_NAME". The callback routine takes the rest of the
2323 parameters from the command, and (if successful) pushes a new
2324 target onto the stack. */
2325 typedef void target_open_ftype (const char *args, int from_tty);
2326
2327 /* Add the target described by INFO to the list of possible targets
2328 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2329 as the command's completer if not NULL. */
2330
2331 extern void add_target (const target_info &info,
2332 target_open_ftype *func,
2333 completer_ftype *completer = NULL);
2334
2335 /* Adds a command ALIAS for the target described by INFO and marks it
2336 deprecated. This is useful for maintaining backwards compatibility
2337 when renaming targets. */
2338
2339 extern void add_deprecated_target_alias (const target_info &info,
2340 const char *alias);
2341
2342 extern void push_target (struct target_ops *);
2343
2344 extern int unpush_target (struct target_ops *);
2345
2346 extern void target_pre_inferior (int);
2347
2348 extern void target_preopen (int);
2349
2350 /* Does whatever cleanup is required to get rid of all pushed targets. */
2351 extern void pop_all_targets (void);
2352
2353 /* Like pop_all_targets, but pops only targets whose stratum is at or
2354 above STRATUM. */
2355 extern void pop_all_targets_at_and_above (enum strata stratum);
2356
2357 /* Like pop_all_targets, but pops only targets whose stratum is
2358 strictly above ABOVE_STRATUM. */
2359 extern void pop_all_targets_above (enum strata above_stratum);
2360
2361 extern int target_is_pushed (struct target_ops *t);
2362
2363 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2364 CORE_ADDR offset);
2365
2366 /* Struct target_section maps address ranges to file sections. It is
2367 mostly used with BFD files, but can be used without (e.g. for handling
2368 raw disks, or files not in formats handled by BFD). */
2369
2370 struct target_section
2371 {
2372 CORE_ADDR addr; /* Lowest address in section */
2373 CORE_ADDR endaddr; /* 1+highest address in section */
2374
2375 struct bfd_section *the_bfd_section;
2376
2377 /* The "owner" of the section.
2378 It can be any unique value. It is set by add_target_sections
2379 and used by remove_target_sections.
2380 For example, for executables it is a pointer to exec_bfd and
2381 for shlibs it is the so_list pointer. */
2382 void *owner;
2383 };
2384
2385 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2386
2387 struct target_section_table
2388 {
2389 struct target_section *sections;
2390 struct target_section *sections_end;
2391 };
2392
2393 /* Return the "section" containing the specified address. */
2394 struct target_section *target_section_by_addr (struct target_ops *target,
2395 CORE_ADDR addr);
2396
2397 /* Return the target section table this target (or the targets
2398 beneath) currently manipulate. */
2399
2400 extern struct target_section_table *target_get_section_table
2401 (struct target_ops *target);
2402
2403 /* From mem-break.c */
2404
2405 extern int memory_remove_breakpoint (struct target_ops *,
2406 struct gdbarch *, struct bp_target_info *,
2407 enum remove_bp_reason);
2408
2409 extern int memory_insert_breakpoint (struct target_ops *,
2410 struct gdbarch *, struct bp_target_info *);
2411
2412 /* Convenience template use to add memory breakpoints support to a
2413 target. */
2414
2415 template <typename BaseTarget>
2416 struct memory_breakpoint_target : public BaseTarget
2417 {
2418 int insert_breakpoint (struct gdbarch *gdbarch,
2419 struct bp_target_info *bp_tgt) override
2420 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2421
2422 int remove_breakpoint (struct gdbarch *gdbarch,
2423 struct bp_target_info *bp_tgt,
2424 enum remove_bp_reason reason) override
2425 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2426 };
2427
2428 /* Check whether the memory at the breakpoint's placed address still
2429 contains the expected breakpoint instruction. */
2430
2431 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2432 struct bp_target_info *bp_tgt);
2433
2434 extern int default_memory_remove_breakpoint (struct gdbarch *,
2435 struct bp_target_info *);
2436
2437 extern int default_memory_insert_breakpoint (struct gdbarch *,
2438 struct bp_target_info *);
2439
2440
2441 /* From target.c */
2442
2443 extern void initialize_targets (void);
2444
2445 extern void noprocess (void) ATTRIBUTE_NORETURN;
2446
2447 extern void target_require_runnable (void);
2448
2449 /* Find the target at STRATUM. If no target is at that stratum,
2450 return NULL. */
2451
2452 struct target_ops *find_target_at (enum strata stratum);
2453
2454 /* Read OS data object of type TYPE from the target, and return it in XML
2455 format. The return value follows the same rules as target_read_stralloc. */
2456
2457 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2458
2459 /* Stuff that should be shared among the various remote targets. */
2460
2461 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2462 information (higher values, more information). */
2463 extern int remote_debug;
2464
2465 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2466 extern int baud_rate;
2467
2468 /* Parity for serial port */
2469 extern int serial_parity;
2470
2471 /* Timeout limit for response from target. */
2472 extern int remote_timeout;
2473
2474 \f
2475
2476 /* Set the show memory breakpoints mode to show, and return a
2477 scoped_restore to restore it back to the current value. */
2478 extern scoped_restore_tmpl<int>
2479 make_scoped_restore_show_memory_breakpoints (int show);
2480
2481 extern int may_write_registers;
2482 extern int may_write_memory;
2483 extern int may_insert_breakpoints;
2484 extern int may_insert_tracepoints;
2485 extern int may_insert_fast_tracepoints;
2486 extern int may_stop;
2487
2488 extern void update_target_permissions (void);
2489
2490 \f
2491 /* Imported from machine dependent code. */
2492
2493 /* See to_enable_btrace in struct target_ops. */
2494 extern struct btrace_target_info *
2495 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2496
2497 /* See to_disable_btrace in struct target_ops. */
2498 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2499
2500 /* See to_teardown_btrace in struct target_ops. */
2501 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2502
2503 /* See to_read_btrace in struct target_ops. */
2504 extern enum btrace_error target_read_btrace (struct btrace_data *,
2505 struct btrace_target_info *,
2506 enum btrace_read_type);
2507
2508 /* See to_btrace_conf in struct target_ops. */
2509 extern const struct btrace_config *
2510 target_btrace_conf (const struct btrace_target_info *);
2511
2512 /* See to_stop_recording in struct target_ops. */
2513 extern void target_stop_recording (void);
2514
2515 /* See to_save_record in struct target_ops. */
2516 extern void target_save_record (const char *filename);
2517
2518 /* Query if the target supports deleting the execution log. */
2519 extern int target_supports_delete_record (void);
2520
2521 /* See to_delete_record in struct target_ops. */
2522 extern void target_delete_record (void);
2523
2524 /* See to_record_method. */
2525 extern enum record_method target_record_method (ptid_t ptid);
2526
2527 /* See to_record_is_replaying in struct target_ops. */
2528 extern int target_record_is_replaying (ptid_t ptid);
2529
2530 /* See to_record_will_replay in struct target_ops. */
2531 extern int target_record_will_replay (ptid_t ptid, int dir);
2532
2533 /* See to_record_stop_replaying in struct target_ops. */
2534 extern void target_record_stop_replaying (void);
2535
2536 /* See to_goto_record_begin in struct target_ops. */
2537 extern void target_goto_record_begin (void);
2538
2539 /* See to_goto_record_end in struct target_ops. */
2540 extern void target_goto_record_end (void);
2541
2542 /* See to_goto_record in struct target_ops. */
2543 extern void target_goto_record (ULONGEST insn);
2544
2545 /* See to_insn_history. */
2546 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2547
2548 /* See to_insn_history_from. */
2549 extern void target_insn_history_from (ULONGEST from, int size,
2550 gdb_disassembly_flags flags);
2551
2552 /* See to_insn_history_range. */
2553 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2554 gdb_disassembly_flags flags);
2555
2556 /* See to_call_history. */
2557 extern void target_call_history (int size, record_print_flags flags);
2558
2559 /* See to_call_history_from. */
2560 extern void target_call_history_from (ULONGEST begin, int size,
2561 record_print_flags flags);
2562
2563 /* See to_call_history_range. */
2564 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2565 record_print_flags flags);
2566
2567 /* See to_prepare_to_generate_core. */
2568 extern void target_prepare_to_generate_core (void);
2569
2570 /* See to_done_generating_core. */
2571 extern void target_done_generating_core (void);
2572
2573 #if GDB_SELF_TEST
2574 namespace selftests {
2575
2576 /* A mock process_stratum target_ops that doesn't read/write registers
2577 anywhere. */
2578
2579 class test_target_ops : public target_ops
2580 {
2581 public:
2582 test_target_ops ()
2583 : target_ops {}
2584 {
2585 to_stratum = process_stratum;
2586 }
2587
2588 const target_info &info () const override;
2589
2590 bool has_registers () override
2591 {
2592 return true;
2593 }
2594
2595 bool has_stack () override
2596 {
2597 return true;
2598 }
2599
2600 bool has_memory () override
2601 {
2602 return true;
2603 }
2604
2605 void prepare_to_store (regcache *regs) override
2606 {
2607 }
2608
2609 void store_registers (regcache *regs, int regno) override
2610 {
2611 }
2612 };
2613
2614
2615 } // namespace selftests
2616 #endif /* GDB_SELF_TEST */
2617
2618 #endif /* !defined (TARGET_H) */
This page took 0.087036 seconds and 4 git commands to generate.