25e98ed35b24614ef790e73454d07334da3b2048
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_remove_mask_watchpoint) (struct target_ops *,
482 CORE_ADDR, CORE_ADDR, int);
483 int (*to_stopped_by_watchpoint) (struct target_ops *)
484 TARGET_DEFAULT_RETURN (0);
485 int to_have_steppable_watchpoint;
486 int to_have_continuable_watchpoint;
487 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
488 TARGET_DEFAULT_RETURN (0);
489 int (*to_watchpoint_addr_within_range) (struct target_ops *,
490 CORE_ADDR, CORE_ADDR, int)
491 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
492
493 /* Documentation of this routine is provided with the corresponding
494 target_* macro. */
495 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
496 CORE_ADDR, int)
497 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
498
499 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
500 CORE_ADDR, int, int,
501 struct expression *)
502 TARGET_DEFAULT_RETURN (0);
503 int (*to_masked_watch_num_registers) (struct target_ops *,
504 CORE_ADDR, CORE_ADDR);
505 void (*to_terminal_init) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_inferior) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours_for_output) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_save_ours) (struct target_ops *)
514 TARGET_DEFAULT_IGNORE ();
515 void (*to_terminal_info) (struct target_ops *, const char *, int)
516 TARGET_DEFAULT_FUNC (default_terminal_info);
517 void (*to_kill) (struct target_ops *);
518 void (*to_load) (struct target_ops *, char *, int)
519 TARGET_DEFAULT_NORETURN (tcomplain ());
520 void (*to_create_inferior) (struct target_ops *,
521 char *, char *, char **, int);
522 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
523 TARGET_DEFAULT_IGNORE ();
524 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_follow_fork) (struct target_ops *, int, int);
533 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_set_syscall_catchpoint) (struct target_ops *,
538 int, int, int, int, int *)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_has_exited) (struct target_ops *, int, int, int *)
541 TARGET_DEFAULT_RETURN (0);
542 void (*to_mourn_inferior) (struct target_ops *);
543 int (*to_can_run) (struct target_ops *);
544
545 /* Documentation of this routine is provided with the corresponding
546 target_* macro. */
547 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
548
549 /* Documentation of this routine is provided with the
550 corresponding target_* function. */
551 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
552
553 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
554 void (*to_find_new_threads) (struct target_ops *);
555 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
556 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
559 TARGET_DEFAULT_RETURN (0);
560 void (*to_stop) (struct target_ops *, ptid_t)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_rcmd) (struct target_ops *,
563 char *command, struct ui_file *output)
564 TARGET_DEFAULT_FUNC (default_rcmd);
565 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
566 TARGET_DEFAULT_RETURN (0);
567 void (*to_log_command) (struct target_ops *, const char *)
568 TARGET_DEFAULT_IGNORE ();
569 struct target_section_table *(*to_get_section_table) (struct target_ops *);
570 enum strata to_stratum;
571 int (*to_has_all_memory) (struct target_ops *);
572 int (*to_has_memory) (struct target_ops *);
573 int (*to_has_stack) (struct target_ops *);
574 int (*to_has_registers) (struct target_ops *);
575 int (*to_has_execution) (struct target_ops *, ptid_t);
576 int to_has_thread_control; /* control thread execution */
577 int to_attach_no_wait;
578 /* ASYNC target controls */
579 int (*to_can_async_p) (struct target_ops *)
580 TARGET_DEFAULT_FUNC (find_default_can_async_p);
581 int (*to_is_async_p) (struct target_ops *)
582 TARGET_DEFAULT_FUNC (find_default_is_async_p);
583 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
584 TARGET_DEFAULT_NORETURN (tcomplain ());
585 int (*to_supports_non_stop) (struct target_ops *);
586 /* find_memory_regions support method for gcore */
587 int (*to_find_memory_regions) (struct target_ops *,
588 find_memory_region_ftype func, void *data)
589 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
590 /* make_corefile_notes support method for gcore */
591 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
592 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
593 /* get_bookmark support method for bookmarks */
594 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* goto_bookmark support method for bookmarks */
597 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
598 TARGET_DEFAULT_NORETURN (tcomplain ());
599 /* Return the thread-local address at OFFSET in the
600 thread-local storage for the thread PTID and the shared library
601 or executable file given by OBJFILE. If that block of
602 thread-local storage hasn't been allocated yet, this function
603 may return an error. */
604 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
605 ptid_t ptid,
606 CORE_ADDR load_module_addr,
607 CORE_ADDR offset);
608
609 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
610 OBJECT. The OFFSET, for a seekable object, specifies the
611 starting point. The ANNEX can be used to provide additional
612 data-specific information to the target.
613
614 Return the transferred status, error or OK (an
615 'enum target_xfer_status' value). Save the number of bytes
616 actually transferred in *XFERED_LEN if transfer is successful
617 (TARGET_XFER_OK) or the number unavailable bytes if the requested
618 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
619 smaller than LEN does not indicate the end of the object, only
620 the end of the transfer; higher level code should continue
621 transferring if desired. This is handled in target.c.
622
623 The interface does not support a "retry" mechanism. Instead it
624 assumes that at least one byte will be transfered on each
625 successful call.
626
627 NOTE: cagney/2003-10-17: The current interface can lead to
628 fragmented transfers. Lower target levels should not implement
629 hacks, such as enlarging the transfer, in an attempt to
630 compensate for this. Instead, the target stack should be
631 extended so that it implements supply/collect methods and a
632 look-aside object cache. With that available, the lowest
633 target can safely and freely "push" data up the stack.
634
635 See target_read and target_write for more information. One,
636 and only one, of readbuf or writebuf must be non-NULL. */
637
638 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
639 enum target_object object,
640 const char *annex,
641 gdb_byte *readbuf,
642 const gdb_byte *writebuf,
643 ULONGEST offset, ULONGEST len,
644 ULONGEST *xfered_len)
645 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
646
647 /* Returns the memory map for the target. A return value of NULL
648 means that no memory map is available. If a memory address
649 does not fall within any returned regions, it's assumed to be
650 RAM. The returned memory regions should not overlap.
651
652 The order of regions does not matter; target_memory_map will
653 sort regions by starting address. For that reason, this
654 function should not be called directly except via
655 target_memory_map.
656
657 This method should not cache data; if the memory map could
658 change unexpectedly, it should be invalidated, and higher
659 layers will re-fetch it. */
660 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
661
662 /* Erases the region of flash memory starting at ADDRESS, of
663 length LENGTH.
664
665 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
666 on flash block boundaries, as reported by 'to_memory_map'. */
667 void (*to_flash_erase) (struct target_ops *,
668 ULONGEST address, LONGEST length);
669
670 /* Finishes a flash memory write sequence. After this operation
671 all flash memory should be available for writing and the result
672 of reading from areas written by 'to_flash_write' should be
673 equal to what was written. */
674 void (*to_flash_done) (struct target_ops *);
675
676 /* Describe the architecture-specific features of this target.
677 Returns the description found, or NULL if no description
678 was available. */
679 const struct target_desc *(*to_read_description) (struct target_ops *ops);
680
681 /* Build the PTID of the thread on which a given task is running,
682 based on LWP and THREAD. These values are extracted from the
683 task Private_Data section of the Ada Task Control Block, and
684 their interpretation depends on the target. */
685 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
686 long lwp, long thread)
687 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
688
689 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
690 Return 0 if *READPTR is already at the end of the buffer.
691 Return -1 if there is insufficient buffer for a whole entry.
692 Return 1 if an entry was read into *TYPEP and *VALP. */
693 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
694 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
695
696 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
697 sequence of bytes in PATTERN with length PATTERN_LEN.
698
699 The result is 1 if found, 0 if not found, and -1 if there was an error
700 requiring halting of the search (e.g. memory read error).
701 If the pattern is found the address is recorded in FOUND_ADDRP. */
702 int (*to_search_memory) (struct target_ops *ops,
703 CORE_ADDR start_addr, ULONGEST search_space_len,
704 const gdb_byte *pattern, ULONGEST pattern_len,
705 CORE_ADDR *found_addrp);
706
707 /* Can target execute in reverse? */
708 int (*to_can_execute_reverse) (struct target_ops *)
709 TARGET_DEFAULT_RETURN (0);
710
711 /* The direction the target is currently executing. Must be
712 implemented on targets that support reverse execution and async
713 mode. The default simply returns forward execution. */
714 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
715 TARGET_DEFAULT_FUNC (default_execution_direction);
716
717 /* Does this target support debugging multiple processes
718 simultaneously? */
719 int (*to_supports_multi_process) (struct target_ops *)
720 TARGET_DEFAULT_RETURN (0);
721
722 /* Does this target support enabling and disabling tracepoints while a trace
723 experiment is running? */
724 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
725 TARGET_DEFAULT_RETURN (0);
726
727 /* Does this target support disabling address space randomization? */
728 int (*to_supports_disable_randomization) (struct target_ops *);
729
730 /* Does this target support the tracenz bytecode for string collection? */
731 int (*to_supports_string_tracing) (struct target_ops *)
732 TARGET_DEFAULT_RETURN (0);
733
734 /* Does this target support evaluation of breakpoint conditions on its
735 end? */
736 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
737 TARGET_DEFAULT_RETURN (0);
738
739 /* Does this target support evaluation of breakpoint commands on its
740 end? */
741 int (*to_can_run_breakpoint_commands) (struct target_ops *)
742 TARGET_DEFAULT_RETURN (0);
743
744 /* Determine current architecture of thread PTID.
745
746 The target is supposed to determine the architecture of the code where
747 the target is currently stopped at (on Cell, if a target is in spu_run,
748 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
749 This is architecture used to perform decr_pc_after_break adjustment,
750 and also determines the frame architecture of the innermost frame.
751 ptrace operations need to operate according to target_gdbarch ().
752
753 The default implementation always returns target_gdbarch (). */
754 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
755 TARGET_DEFAULT_FUNC (default_thread_architecture);
756
757 /* Determine current address space of thread PTID.
758
759 The default implementation always returns the inferior's
760 address space. */
761 struct address_space *(*to_thread_address_space) (struct target_ops *,
762 ptid_t);
763
764 /* Target file operations. */
765
766 /* Open FILENAME on the target, using FLAGS and MODE. Return a
767 target file descriptor, or -1 if an error occurs (and set
768 *TARGET_ERRNO). */
769 int (*to_fileio_open) (struct target_ops *,
770 const char *filename, int flags, int mode,
771 int *target_errno);
772
773 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
774 Return the number of bytes written, or -1 if an error occurs
775 (and set *TARGET_ERRNO). */
776 int (*to_fileio_pwrite) (struct target_ops *,
777 int fd, const gdb_byte *write_buf, int len,
778 ULONGEST offset, int *target_errno);
779
780 /* Read up to LEN bytes FD on the target into READ_BUF.
781 Return the number of bytes read, or -1 if an error occurs
782 (and set *TARGET_ERRNO). */
783 int (*to_fileio_pread) (struct target_ops *,
784 int fd, gdb_byte *read_buf, int len,
785 ULONGEST offset, int *target_errno);
786
787 /* Close FD on the target. Return 0, or -1 if an error occurs
788 (and set *TARGET_ERRNO). */
789 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
790
791 /* Unlink FILENAME on the target. Return 0, or -1 if an error
792 occurs (and set *TARGET_ERRNO). */
793 int (*to_fileio_unlink) (struct target_ops *,
794 const char *filename, int *target_errno);
795
796 /* Read value of symbolic link FILENAME on the target. Return a
797 null-terminated string allocated via xmalloc, or NULL if an error
798 occurs (and set *TARGET_ERRNO). */
799 char *(*to_fileio_readlink) (struct target_ops *,
800 const char *filename, int *target_errno);
801
802
803 /* Implement the "info proc" command. */
804 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
805
806 /* Tracepoint-related operations. */
807
808 /* Prepare the target for a tracing run. */
809 void (*to_trace_init) (struct target_ops *)
810 TARGET_DEFAULT_NORETURN (tcomplain ());
811
812 /* Send full details of a tracepoint location to the target. */
813 void (*to_download_tracepoint) (struct target_ops *,
814 struct bp_location *location)
815 TARGET_DEFAULT_NORETURN (tcomplain ());
816
817 /* Is the target able to download tracepoint locations in current
818 state? */
819 int (*to_can_download_tracepoint) (struct target_ops *)
820 TARGET_DEFAULT_RETURN (0);
821
822 /* Send full details of a trace state variable to the target. */
823 void (*to_download_trace_state_variable) (struct target_ops *,
824 struct trace_state_variable *tsv)
825 TARGET_DEFAULT_NORETURN (tcomplain ());
826
827 /* Enable a tracepoint on the target. */
828 void (*to_enable_tracepoint) (struct target_ops *,
829 struct bp_location *location)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
831
832 /* Disable a tracepoint on the target. */
833 void (*to_disable_tracepoint) (struct target_ops *,
834 struct bp_location *location)
835 TARGET_DEFAULT_NORETURN (tcomplain ());
836
837 /* Inform the target info of memory regions that are readonly
838 (such as text sections), and so it should return data from
839 those rather than look in the trace buffer. */
840 void (*to_trace_set_readonly_regions) (struct target_ops *)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Start a trace run. */
844 void (*to_trace_start) (struct target_ops *)
845 TARGET_DEFAULT_NORETURN (tcomplain ());
846
847 /* Get the current status of a tracing run. */
848 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
849 TARGET_DEFAULT_RETURN (-1);
850
851 void (*to_get_tracepoint_status) (struct target_ops *,
852 struct breakpoint *tp,
853 struct uploaded_tp *utp)
854 TARGET_DEFAULT_NORETURN (tcomplain ());
855
856 /* Stop a trace run. */
857 void (*to_trace_stop) (struct target_ops *)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Ask the target to find a trace frame of the given type TYPE,
861 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
862 number of the trace frame, and also the tracepoint number at
863 TPP. If no trace frame matches, return -1. May throw if the
864 operation fails. */
865 int (*to_trace_find) (struct target_ops *,
866 enum trace_find_type type, int num,
867 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
868 TARGET_DEFAULT_RETURN (-1);
869
870 /* Get the value of the trace state variable number TSV, returning
871 1 if the value is known and writing the value itself into the
872 location pointed to by VAL, else returning 0. */
873 int (*to_get_trace_state_variable_value) (struct target_ops *,
874 int tsv, LONGEST *val)
875 TARGET_DEFAULT_RETURN (0);
876
877 int (*to_save_trace_data) (struct target_ops *, const char *filename)
878 TARGET_DEFAULT_NORETURN (tcomplain ());
879
880 int (*to_upload_tracepoints) (struct target_ops *,
881 struct uploaded_tp **utpp)
882 TARGET_DEFAULT_RETURN (0);
883
884 int (*to_upload_trace_state_variables) (struct target_ops *,
885 struct uploaded_tsv **utsvp)
886 TARGET_DEFAULT_RETURN (0);
887
888 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
889 ULONGEST offset, LONGEST len)
890 TARGET_DEFAULT_NORETURN (tcomplain ());
891
892 /* Get the minimum length of instruction on which a fast tracepoint
893 may be set on the target. If this operation is unsupported,
894 return -1. If for some reason the minimum length cannot be
895 determined, return 0. */
896 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
897 TARGET_DEFAULT_RETURN (-1);
898
899 /* Set the target's tracing behavior in response to unexpected
900 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
901 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
902 TARGET_DEFAULT_IGNORE ();
903 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
904 TARGET_DEFAULT_IGNORE ();
905 /* Set the size of trace buffer in the target. */
906 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
907 TARGET_DEFAULT_IGNORE ();
908
909 /* Add/change textual notes about the trace run, returning 1 if
910 successful, 0 otherwise. */
911 int (*to_set_trace_notes) (struct target_ops *,
912 const char *user, const char *notes,
913 const char *stopnotes)
914 TARGET_DEFAULT_RETURN (0);
915
916 /* Return the processor core that thread PTID was last seen on.
917 This information is updated only when:
918 - update_thread_list is called
919 - thread stops
920 If the core cannot be determined -- either for the specified
921 thread, or right now, or in this debug session, or for this
922 target -- return -1. */
923 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
924
925 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
926 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
927 a match, 0 if there's a mismatch, and -1 if an error is
928 encountered while reading memory. */
929 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
930 CORE_ADDR memaddr, ULONGEST size);
931
932 /* Return the address of the start of the Thread Information Block
933 a Windows OS specific feature. */
934 int (*to_get_tib_address) (struct target_ops *,
935 ptid_t ptid, CORE_ADDR *addr)
936 TARGET_DEFAULT_NORETURN (tcomplain ());
937
938 /* Send the new settings of write permission variables. */
939 void (*to_set_permissions) (struct target_ops *)
940 TARGET_DEFAULT_IGNORE ();
941
942 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
943 with its details. Return 1 on success, 0 on failure. */
944 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
945 struct static_tracepoint_marker *marker)
946 TARGET_DEFAULT_RETURN (0);
947
948 /* Return a vector of all tracepoints markers string id ID, or all
949 markers if ID is NULL. */
950 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
951 TARGET_DEFAULT_NORETURN (tcomplain ());
952
953 /* Return a traceframe info object describing the current
954 traceframe's contents. If the target doesn't support
955 traceframe info, return NULL. If the current traceframe is not
956 selected (the current traceframe number is -1), the target can
957 choose to return either NULL or an empty traceframe info. If
958 NULL is returned, for example in remote target, GDB will read
959 from the live inferior. If an empty traceframe info is
960 returned, for example in tfile target, which means the
961 traceframe info is available, but the requested memory is not
962 available in it. GDB will try to see if the requested memory
963 is available in the read-only sections. This method should not
964 cache data; higher layers take care of caching, invalidating,
965 and re-fetching when necessary. */
966 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
967 TARGET_DEFAULT_RETURN (0);
968
969 /* Ask the target to use or not to use agent according to USE. Return 1
970 successful, 0 otherwise. */
971 int (*to_use_agent) (struct target_ops *, int use)
972 TARGET_DEFAULT_NORETURN (tcomplain ());
973
974 /* Is the target able to use agent in current state? */
975 int (*to_can_use_agent) (struct target_ops *)
976 TARGET_DEFAULT_RETURN (0);
977
978 /* Check whether the target supports branch tracing. */
979 int (*to_supports_btrace) (struct target_ops *)
980 TARGET_DEFAULT_RETURN (0);
981
982 /* Enable branch tracing for PTID and allocate a branch trace target
983 information struct for reading and for disabling branch trace. */
984 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
985 ptid_t ptid);
986
987 /* Disable branch tracing and deallocate TINFO. */
988 void (*to_disable_btrace) (struct target_ops *,
989 struct btrace_target_info *tinfo);
990
991 /* Disable branch tracing and deallocate TINFO. This function is similar
992 to to_disable_btrace, except that it is called during teardown and is
993 only allowed to perform actions that are safe. A counter-example would
994 be attempting to talk to a remote target. */
995 void (*to_teardown_btrace) (struct target_ops *,
996 struct btrace_target_info *tinfo);
997
998 /* Read branch trace data for the thread indicated by BTINFO into DATA.
999 DATA is cleared before new trace is added.
1000 The branch trace will start with the most recent block and continue
1001 towards older blocks. */
1002 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1003 VEC (btrace_block_s) **data,
1004 struct btrace_target_info *btinfo,
1005 enum btrace_read_type type);
1006
1007 /* Stop trace recording. */
1008 void (*to_stop_recording) (struct target_ops *);
1009
1010 /* Print information about the recording. */
1011 void (*to_info_record) (struct target_ops *);
1012
1013 /* Save the recorded execution trace into a file. */
1014 void (*to_save_record) (struct target_ops *, const char *filename);
1015
1016 /* Delete the recorded execution trace from the current position onwards. */
1017 void (*to_delete_record) (struct target_ops *);
1018
1019 /* Query if the record target is currently replaying. */
1020 int (*to_record_is_replaying) (struct target_ops *);
1021
1022 /* Go to the begin of the execution trace. */
1023 void (*to_goto_record_begin) (struct target_ops *);
1024
1025 /* Go to the end of the execution trace. */
1026 void (*to_goto_record_end) (struct target_ops *);
1027
1028 /* Go to a specific location in the recorded execution trace. */
1029 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1030
1031 /* Disassemble SIZE instructions in the recorded execution trace from
1032 the current position.
1033 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1034 disassemble SIZE succeeding instructions. */
1035 void (*to_insn_history) (struct target_ops *, int size, int flags);
1036
1037 /* Disassemble SIZE instructions in the recorded execution trace around
1038 FROM.
1039 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1040 disassemble SIZE instructions after FROM. */
1041 void (*to_insn_history_from) (struct target_ops *,
1042 ULONGEST from, int size, int flags);
1043
1044 /* Disassemble a section of the recorded execution trace from instruction
1045 BEGIN (inclusive) to instruction END (inclusive). */
1046 void (*to_insn_history_range) (struct target_ops *,
1047 ULONGEST begin, ULONGEST end, int flags);
1048
1049 /* Print a function trace of the recorded execution trace.
1050 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1051 succeeding functions. */
1052 void (*to_call_history) (struct target_ops *, int size, int flags);
1053
1054 /* Print a function trace of the recorded execution trace starting
1055 at function FROM.
1056 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1057 SIZE functions after FROM. */
1058 void (*to_call_history_from) (struct target_ops *,
1059 ULONGEST begin, int size, int flags);
1060
1061 /* Print a function trace of an execution trace section from function BEGIN
1062 (inclusive) to function END (inclusive). */
1063 void (*to_call_history_range) (struct target_ops *,
1064 ULONGEST begin, ULONGEST end, int flags);
1065
1066 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1067 non-empty annex. */
1068 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1069 TARGET_DEFAULT_RETURN (0);
1070
1071 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1072 it is not used. */
1073 const struct frame_unwind *to_get_unwinder;
1074 const struct frame_unwind *to_get_tailcall_unwinder;
1075
1076 /* Return the number of bytes by which the PC needs to be decremented
1077 after executing a breakpoint instruction.
1078 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1079 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1080 struct gdbarch *gdbarch);
1081
1082 int to_magic;
1083 /* Need sub-structure for target machine related rather than comm related?
1084 */
1085 };
1086
1087 /* Magic number for checking ops size. If a struct doesn't end with this
1088 number, somebody changed the declaration but didn't change all the
1089 places that initialize one. */
1090
1091 #define OPS_MAGIC 3840
1092
1093 /* The ops structure for our "current" target process. This should
1094 never be NULL. If there is no target, it points to the dummy_target. */
1095
1096 extern struct target_ops current_target;
1097
1098 /* Define easy words for doing these operations on our current target. */
1099
1100 #define target_shortname (current_target.to_shortname)
1101 #define target_longname (current_target.to_longname)
1102
1103 /* Does whatever cleanup is required for a target that we are no
1104 longer going to be calling. This routine is automatically always
1105 called after popping the target off the target stack - the target's
1106 own methods are no longer available through the target vector.
1107 Closing file descriptors and freeing all memory allocated memory are
1108 typical things it should do. */
1109
1110 void target_close (struct target_ops *targ);
1111
1112 /* Attaches to a process on the target side. Arguments are as passed
1113 to the `attach' command by the user. This routine can be called
1114 when the target is not on the target-stack, if the target_can_run
1115 routine returns 1; in that case, it must push itself onto the stack.
1116 Upon exit, the target should be ready for normal operations, and
1117 should be ready to deliver the status of the process immediately
1118 (without waiting) to an upcoming target_wait call. */
1119
1120 void target_attach (char *, int);
1121
1122 /* Some targets don't generate traps when attaching to the inferior,
1123 or their target_attach implementation takes care of the waiting.
1124 These targets must set to_attach_no_wait. */
1125
1126 #define target_attach_no_wait \
1127 (current_target.to_attach_no_wait)
1128
1129 /* The target_attach operation places a process under debugger control,
1130 and stops the process.
1131
1132 This operation provides a target-specific hook that allows the
1133 necessary bookkeeping to be performed after an attach completes. */
1134 #define target_post_attach(pid) \
1135 (*current_target.to_post_attach) (&current_target, pid)
1136
1137 /* Takes a program previously attached to and detaches it.
1138 The program may resume execution (some targets do, some don't) and will
1139 no longer stop on signals, etc. We better not have left any breakpoints
1140 in the program or it'll die when it hits one. ARGS is arguments
1141 typed by the user (e.g. a signal to send the process). FROM_TTY
1142 says whether to be verbose or not. */
1143
1144 extern void target_detach (const char *, int);
1145
1146 /* Disconnect from the current target without resuming it (leaving it
1147 waiting for a debugger). */
1148
1149 extern void target_disconnect (char *, int);
1150
1151 /* Resume execution of the target process PTID (or a group of
1152 threads). STEP says whether to single-step or to run free; SIGGNAL
1153 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1154 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1155 PTID means `step/resume only this process id'. A wildcard PTID
1156 (all threads, or all threads of process) means `step/resume
1157 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1158 matches) resume with their 'thread->suspend.stop_signal' signal
1159 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1160 if in "no pass" state. */
1161
1162 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1163
1164 /* Wait for process pid to do something. PTID = -1 to wait for any
1165 pid to do something. Return pid of child, or -1 in case of error;
1166 store status through argument pointer STATUS. Note that it is
1167 _NOT_ OK to throw_exception() out of target_wait() without popping
1168 the debugging target from the stack; GDB isn't prepared to get back
1169 to the prompt with a debugging target but without the frame cache,
1170 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1171 options. */
1172
1173 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1174 int options);
1175
1176 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1177
1178 extern void target_fetch_registers (struct regcache *regcache, int regno);
1179
1180 /* Store at least register REGNO, or all regs if REGNO == -1.
1181 It can store as many registers as it wants to, so target_prepare_to_store
1182 must have been previously called. Calls error() if there are problems. */
1183
1184 extern void target_store_registers (struct regcache *regcache, int regs);
1185
1186 /* Get ready to modify the registers array. On machines which store
1187 individual registers, this doesn't need to do anything. On machines
1188 which store all the registers in one fell swoop, this makes sure
1189 that REGISTERS contains all the registers from the program being
1190 debugged. */
1191
1192 #define target_prepare_to_store(regcache) \
1193 (*current_target.to_prepare_to_store) (&current_target, regcache)
1194
1195 /* Determine current address space of thread PTID. */
1196
1197 struct address_space *target_thread_address_space (ptid_t);
1198
1199 /* Implement the "info proc" command. This returns one if the request
1200 was handled, and zero otherwise. It can also throw an exception if
1201 an error was encountered while attempting to handle the
1202 request. */
1203
1204 int target_info_proc (char *, enum info_proc_what);
1205
1206 /* Returns true if this target can debug multiple processes
1207 simultaneously. */
1208
1209 #define target_supports_multi_process() \
1210 (*current_target.to_supports_multi_process) (&current_target)
1211
1212 /* Returns true if this target can disable address space randomization. */
1213
1214 int target_supports_disable_randomization (void);
1215
1216 /* Returns true if this target can enable and disable tracepoints
1217 while a trace experiment is running. */
1218
1219 #define target_supports_enable_disable_tracepoint() \
1220 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1221
1222 #define target_supports_string_tracing() \
1223 (*current_target.to_supports_string_tracing) (&current_target)
1224
1225 /* Returns true if this target can handle breakpoint conditions
1226 on its end. */
1227
1228 #define target_supports_evaluation_of_breakpoint_conditions() \
1229 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1230
1231 /* Returns true if this target can handle breakpoint commands
1232 on its end. */
1233
1234 #define target_can_run_breakpoint_commands() \
1235 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1236
1237 extern int target_read_string (CORE_ADDR, char **, int, int *);
1238
1239 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1240 ssize_t len);
1241
1242 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1243 ssize_t len);
1244
1245 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1246
1247 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1248
1249 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1250 ssize_t len);
1251
1252 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1253 ssize_t len);
1254
1255 /* Fetches the target's memory map. If one is found it is sorted
1256 and returned, after some consistency checking. Otherwise, NULL
1257 is returned. */
1258 VEC(mem_region_s) *target_memory_map (void);
1259
1260 /* Erase the specified flash region. */
1261 void target_flash_erase (ULONGEST address, LONGEST length);
1262
1263 /* Finish a sequence of flash operations. */
1264 void target_flash_done (void);
1265
1266 /* Describes a request for a memory write operation. */
1267 struct memory_write_request
1268 {
1269 /* Begining address that must be written. */
1270 ULONGEST begin;
1271 /* Past-the-end address. */
1272 ULONGEST end;
1273 /* The data to write. */
1274 gdb_byte *data;
1275 /* A callback baton for progress reporting for this request. */
1276 void *baton;
1277 };
1278 typedef struct memory_write_request memory_write_request_s;
1279 DEF_VEC_O(memory_write_request_s);
1280
1281 /* Enumeration specifying different flash preservation behaviour. */
1282 enum flash_preserve_mode
1283 {
1284 flash_preserve,
1285 flash_discard
1286 };
1287
1288 /* Write several memory blocks at once. This version can be more
1289 efficient than making several calls to target_write_memory, in
1290 particular because it can optimize accesses to flash memory.
1291
1292 Moreover, this is currently the only memory access function in gdb
1293 that supports writing to flash memory, and it should be used for
1294 all cases where access to flash memory is desirable.
1295
1296 REQUESTS is the vector (see vec.h) of memory_write_request.
1297 PRESERVE_FLASH_P indicates what to do with blocks which must be
1298 erased, but not completely rewritten.
1299 PROGRESS_CB is a function that will be periodically called to provide
1300 feedback to user. It will be called with the baton corresponding
1301 to the request currently being written. It may also be called
1302 with a NULL baton, when preserved flash sectors are being rewritten.
1303
1304 The function returns 0 on success, and error otherwise. */
1305 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1306 enum flash_preserve_mode preserve_flash_p,
1307 void (*progress_cb) (ULONGEST, void *));
1308
1309 /* Print a line about the current target. */
1310
1311 #define target_files_info() \
1312 (*current_target.to_files_info) (&current_target)
1313
1314 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1315 the target machine. Returns 0 for success, and returns non-zero or
1316 throws an error (with a detailed failure reason error code and
1317 message) otherwise. */
1318
1319 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1320 struct bp_target_info *bp_tgt);
1321
1322 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1323 machine. Result is 0 for success, non-zero for error. */
1324
1325 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1326 struct bp_target_info *bp_tgt);
1327
1328 /* Initialize the terminal settings we record for the inferior,
1329 before we actually run the inferior. */
1330
1331 #define target_terminal_init() \
1332 (*current_target.to_terminal_init) (&current_target)
1333
1334 /* Put the inferior's terminal settings into effect.
1335 This is preparation for starting or resuming the inferior. */
1336
1337 extern void target_terminal_inferior (void);
1338
1339 /* Put some of our terminal settings into effect,
1340 enough to get proper results from our output,
1341 but do not change into or out of RAW mode
1342 so that no input is discarded.
1343
1344 After doing this, either terminal_ours or terminal_inferior
1345 should be called to get back to a normal state of affairs. */
1346
1347 #define target_terminal_ours_for_output() \
1348 (*current_target.to_terminal_ours_for_output) (&current_target)
1349
1350 /* Put our terminal settings into effect.
1351 First record the inferior's terminal settings
1352 so they can be restored properly later. */
1353
1354 #define target_terminal_ours() \
1355 (*current_target.to_terminal_ours) (&current_target)
1356
1357 /* Save our terminal settings.
1358 This is called from TUI after entering or leaving the curses
1359 mode. Since curses modifies our terminal this call is here
1360 to take this change into account. */
1361
1362 #define target_terminal_save_ours() \
1363 (*current_target.to_terminal_save_ours) (&current_target)
1364
1365 /* Print useful information about our terminal status, if such a thing
1366 exists. */
1367
1368 #define target_terminal_info(arg, from_tty) \
1369 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1370
1371 /* Kill the inferior process. Make it go away. */
1372
1373 extern void target_kill (void);
1374
1375 /* Load an executable file into the target process. This is expected
1376 to not only bring new code into the target process, but also to
1377 update GDB's symbol tables to match.
1378
1379 ARG contains command-line arguments, to be broken down with
1380 buildargv (). The first non-switch argument is the filename to
1381 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1382 0)), which is an offset to apply to the load addresses of FILE's
1383 sections. The target may define switches, or other non-switch
1384 arguments, as it pleases. */
1385
1386 extern void target_load (char *arg, int from_tty);
1387
1388 /* Start an inferior process and set inferior_ptid to its pid.
1389 EXEC_FILE is the file to run.
1390 ALLARGS is a string containing the arguments to the program.
1391 ENV is the environment vector to pass. Errors reported with error().
1392 On VxWorks and various standalone systems, we ignore exec_file. */
1393
1394 void target_create_inferior (char *exec_file, char *args,
1395 char **env, int from_tty);
1396
1397 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1398 notification of inferior events such as fork and vork immediately
1399 after the inferior is created. (This because of how gdb gets an
1400 inferior created via invoking a shell to do it. In such a scenario,
1401 if the shell init file has commands in it, the shell will fork and
1402 exec for each of those commands, and we will see each such fork
1403 event. Very bad.)
1404
1405 Such targets will supply an appropriate definition for this function. */
1406
1407 #define target_post_startup_inferior(ptid) \
1408 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1409
1410 /* On some targets, we can catch an inferior fork or vfork event when
1411 it occurs. These functions insert/remove an already-created
1412 catchpoint for such events. They return 0 for success, 1 if the
1413 catchpoint type is not supported and -1 for failure. */
1414
1415 #define target_insert_fork_catchpoint(pid) \
1416 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1417
1418 #define target_remove_fork_catchpoint(pid) \
1419 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1420
1421 #define target_insert_vfork_catchpoint(pid) \
1422 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1423
1424 #define target_remove_vfork_catchpoint(pid) \
1425 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1426
1427 /* If the inferior forks or vforks, this function will be called at
1428 the next resume in order to perform any bookkeeping and fiddling
1429 necessary to continue debugging either the parent or child, as
1430 requested, and releasing the other. Information about the fork
1431 or vfork event is available via get_last_target_status ().
1432 This function returns 1 if the inferior should not be resumed
1433 (i.e. there is another event pending). */
1434
1435 int target_follow_fork (int follow_child, int detach_fork);
1436
1437 /* On some targets, we can catch an inferior exec event when it
1438 occurs. These functions insert/remove an already-created
1439 catchpoint for such events. They return 0 for success, 1 if the
1440 catchpoint type is not supported and -1 for failure. */
1441
1442 #define target_insert_exec_catchpoint(pid) \
1443 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1444
1445 #define target_remove_exec_catchpoint(pid) \
1446 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1447
1448 /* Syscall catch.
1449
1450 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1451 If NEEDED is zero, it means the target can disable the mechanism to
1452 catch system calls because there are no more catchpoints of this type.
1453
1454 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1455 being requested. In this case, both TABLE_SIZE and TABLE should
1456 be ignored.
1457
1458 TABLE_SIZE is the number of elements in TABLE. It only matters if
1459 ANY_COUNT is zero.
1460
1461 TABLE is an array of ints, indexed by syscall number. An element in
1462 this array is nonzero if that syscall should be caught. This argument
1463 only matters if ANY_COUNT is zero.
1464
1465 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1466 for failure. */
1467
1468 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1469 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1470 pid, needed, any_count, \
1471 table_size, table)
1472
1473 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1474 exit code of PID, if any. */
1475
1476 #define target_has_exited(pid,wait_status,exit_status) \
1477 (*current_target.to_has_exited) (&current_target, \
1478 pid,wait_status,exit_status)
1479
1480 /* The debugger has completed a blocking wait() call. There is now
1481 some process event that must be processed. This function should
1482 be defined by those targets that require the debugger to perform
1483 cleanup or internal state changes in response to the process event. */
1484
1485 /* The inferior process has died. Do what is right. */
1486
1487 void target_mourn_inferior (void);
1488
1489 /* Does target have enough data to do a run or attach command? */
1490
1491 #define target_can_run(t) \
1492 ((t)->to_can_run) (t)
1493
1494 /* Set list of signals to be handled in the target.
1495
1496 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1497 (enum gdb_signal). For every signal whose entry in this array is
1498 non-zero, the target is allowed -but not required- to skip reporting
1499 arrival of the signal to the GDB core by returning from target_wait,
1500 and to pass the signal directly to the inferior instead.
1501
1502 However, if the target is hardware single-stepping a thread that is
1503 about to receive a signal, it needs to be reported in any case, even
1504 if mentioned in a previous target_pass_signals call. */
1505
1506 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1507
1508 /* Set list of signals the target may pass to the inferior. This
1509 directly maps to the "handle SIGNAL pass/nopass" setting.
1510
1511 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1512 number (enum gdb_signal). For every signal whose entry in this
1513 array is non-zero, the target is allowed to pass the signal to the
1514 inferior. Signals not present in the array shall be silently
1515 discarded. This does not influence whether to pass signals to the
1516 inferior as a result of a target_resume call. This is useful in
1517 scenarios where the target needs to decide whether to pass or not a
1518 signal to the inferior without GDB core involvement, such as for
1519 example, when detaching (as threads may have been suspended with
1520 pending signals not reported to GDB). */
1521
1522 extern void target_program_signals (int nsig, unsigned char *program_signals);
1523
1524 /* Check to see if a thread is still alive. */
1525
1526 extern int target_thread_alive (ptid_t ptid);
1527
1528 /* Query for new threads and add them to the thread list. */
1529
1530 extern void target_find_new_threads (void);
1531
1532 /* Make target stop in a continuable fashion. (For instance, under
1533 Unix, this should act like SIGSTOP). This function is normally
1534 used by GUIs to implement a stop button. */
1535
1536 extern void target_stop (ptid_t ptid);
1537
1538 /* Send the specified COMMAND to the target's monitor
1539 (shell,interpreter) for execution. The result of the query is
1540 placed in OUTBUF. */
1541
1542 #define target_rcmd(command, outbuf) \
1543 (*current_target.to_rcmd) (&current_target, command, outbuf)
1544
1545
1546 /* Does the target include all of memory, or only part of it? This
1547 determines whether we look up the target chain for other parts of
1548 memory if this target can't satisfy a request. */
1549
1550 extern int target_has_all_memory_1 (void);
1551 #define target_has_all_memory target_has_all_memory_1 ()
1552
1553 /* Does the target include memory? (Dummy targets don't.) */
1554
1555 extern int target_has_memory_1 (void);
1556 #define target_has_memory target_has_memory_1 ()
1557
1558 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1559 we start a process.) */
1560
1561 extern int target_has_stack_1 (void);
1562 #define target_has_stack target_has_stack_1 ()
1563
1564 /* Does the target have registers? (Exec files don't.) */
1565
1566 extern int target_has_registers_1 (void);
1567 #define target_has_registers target_has_registers_1 ()
1568
1569 /* Does the target have execution? Can we make it jump (through
1570 hoops), or pop its stack a few times? This means that the current
1571 target is currently executing; for some targets, that's the same as
1572 whether or not the target is capable of execution, but there are
1573 also targets which can be current while not executing. In that
1574 case this will become true after target_create_inferior or
1575 target_attach. */
1576
1577 extern int target_has_execution_1 (ptid_t);
1578
1579 /* Like target_has_execution_1, but always passes inferior_ptid. */
1580
1581 extern int target_has_execution_current (void);
1582
1583 #define target_has_execution target_has_execution_current ()
1584
1585 /* Default implementations for process_stratum targets. Return true
1586 if there's a selected inferior, false otherwise. */
1587
1588 extern int default_child_has_all_memory (struct target_ops *ops);
1589 extern int default_child_has_memory (struct target_ops *ops);
1590 extern int default_child_has_stack (struct target_ops *ops);
1591 extern int default_child_has_registers (struct target_ops *ops);
1592 extern int default_child_has_execution (struct target_ops *ops,
1593 ptid_t the_ptid);
1594
1595 /* Can the target support the debugger control of thread execution?
1596 Can it lock the thread scheduler? */
1597
1598 #define target_can_lock_scheduler \
1599 (current_target.to_has_thread_control & tc_schedlock)
1600
1601 /* Should the target enable async mode if it is supported? Temporary
1602 cludge until async mode is a strict superset of sync mode. */
1603 extern int target_async_permitted;
1604
1605 /* Can the target support asynchronous execution? */
1606 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1607
1608 /* Is the target in asynchronous execution mode? */
1609 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1610
1611 int target_supports_non_stop (void);
1612
1613 /* Put the target in async mode with the specified callback function. */
1614 #define target_async(CALLBACK,CONTEXT) \
1615 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1616
1617 #define target_execution_direction() \
1618 (current_target.to_execution_direction (&current_target))
1619
1620 /* Converts a process id to a string. Usually, the string just contains
1621 `process xyz', but on some systems it may contain
1622 `process xyz thread abc'. */
1623
1624 extern char *target_pid_to_str (ptid_t ptid);
1625
1626 extern char *normal_pid_to_str (ptid_t ptid);
1627
1628 /* Return a short string describing extra information about PID,
1629 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1630 is okay. */
1631
1632 #define target_extra_thread_info(TP) \
1633 (current_target.to_extra_thread_info (&current_target, TP))
1634
1635 /* Return the thread's name. A NULL result means that the target
1636 could not determine this thread's name. */
1637
1638 extern char *target_thread_name (struct thread_info *);
1639
1640 /* Attempts to find the pathname of the executable file
1641 that was run to create a specified process.
1642
1643 The process PID must be stopped when this operation is used.
1644
1645 If the executable file cannot be determined, NULL is returned.
1646
1647 Else, a pointer to a character string containing the pathname
1648 is returned. This string should be copied into a buffer by
1649 the client if the string will not be immediately used, or if
1650 it must persist. */
1651
1652 #define target_pid_to_exec_file(pid) \
1653 (current_target.to_pid_to_exec_file) (&current_target, pid)
1654
1655 /* See the to_thread_architecture description in struct target_ops. */
1656
1657 #define target_thread_architecture(ptid) \
1658 (current_target.to_thread_architecture (&current_target, ptid))
1659
1660 /*
1661 * Iterator function for target memory regions.
1662 * Calls a callback function once for each memory region 'mapped'
1663 * in the child process. Defined as a simple macro rather than
1664 * as a function macro so that it can be tested for nullity.
1665 */
1666
1667 #define target_find_memory_regions(FUNC, DATA) \
1668 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1669
1670 /*
1671 * Compose corefile .note section.
1672 */
1673
1674 #define target_make_corefile_notes(BFD, SIZE_P) \
1675 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1676
1677 /* Bookmark interfaces. */
1678 #define target_get_bookmark(ARGS, FROM_TTY) \
1679 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1680
1681 #define target_goto_bookmark(ARG, FROM_TTY) \
1682 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1683
1684 /* Hardware watchpoint interfaces. */
1685
1686 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1687 write). Only the INFERIOR_PTID task is being queried. */
1688
1689 #define target_stopped_by_watchpoint() \
1690 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1691
1692 /* Non-zero if we have steppable watchpoints */
1693
1694 #define target_have_steppable_watchpoint \
1695 (current_target.to_have_steppable_watchpoint)
1696
1697 /* Non-zero if we have continuable watchpoints */
1698
1699 #define target_have_continuable_watchpoint \
1700 (current_target.to_have_continuable_watchpoint)
1701
1702 /* Provide defaults for hardware watchpoint functions. */
1703
1704 /* If the *_hw_beakpoint functions have not been defined
1705 elsewhere use the definitions in the target vector. */
1706
1707 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1708 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1709 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1710 (including this one?). OTHERTYPE is who knows what... */
1711
1712 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1713 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1714 TYPE, CNT, OTHERTYPE);
1715
1716 /* Returns the number of debug registers needed to watch the given
1717 memory region, or zero if not supported. */
1718
1719 #define target_region_ok_for_hw_watchpoint(addr, len) \
1720 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1721 addr, len)
1722
1723
1724 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1725 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1726 COND is the expression for its condition, or NULL if there's none.
1727 Returns 0 for success, 1 if the watchpoint type is not supported,
1728 -1 for failure. */
1729
1730 #define target_insert_watchpoint(addr, len, type, cond) \
1731 (*current_target.to_insert_watchpoint) (&current_target, \
1732 addr, len, type, cond)
1733
1734 #define target_remove_watchpoint(addr, len, type, cond) \
1735 (*current_target.to_remove_watchpoint) (&current_target, \
1736 addr, len, type, cond)
1737
1738 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1739 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1740 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1741 masked watchpoints are not supported, -1 for failure. */
1742
1743 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1744
1745 /* Remove a masked watchpoint at ADDR with the mask MASK.
1746 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1747 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1748 for failure. */
1749
1750 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1751
1752 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1753 the target machine. Returns 0 for success, and returns non-zero or
1754 throws an error (with a detailed failure reason error code and
1755 message) otherwise. */
1756
1757 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1758 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1759 gdbarch, bp_tgt)
1760
1761 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1762 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1763 gdbarch, bp_tgt)
1764
1765 /* Return number of debug registers needed for a ranged breakpoint,
1766 or -1 if ranged breakpoints are not supported. */
1767
1768 extern int target_ranged_break_num_registers (void);
1769
1770 /* Return non-zero if target knows the data address which triggered this
1771 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1772 INFERIOR_PTID task is being queried. */
1773 #define target_stopped_data_address(target, addr_p) \
1774 (*target.to_stopped_data_address) (target, addr_p)
1775
1776 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1777 LENGTH bytes beginning at START. */
1778 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1779 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1780
1781 /* Return non-zero if the target is capable of using hardware to evaluate
1782 the condition expression. In this case, if the condition is false when
1783 the watched memory location changes, execution may continue without the
1784 debugger being notified.
1785
1786 Due to limitations in the hardware implementation, it may be capable of
1787 avoiding triggering the watchpoint in some cases where the condition
1788 expression is false, but may report some false positives as well.
1789 For this reason, GDB will still evaluate the condition expression when
1790 the watchpoint triggers. */
1791 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1792 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1793 addr, len, type, cond)
1794
1795 /* Return number of debug registers needed for a masked watchpoint,
1796 -1 if masked watchpoints are not supported or -2 if the given address
1797 and mask combination cannot be used. */
1798
1799 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1800
1801 /* Target can execute in reverse? */
1802 #define target_can_execute_reverse \
1803 current_target.to_can_execute_reverse (&current_target)
1804
1805 extern const struct target_desc *target_read_description (struct target_ops *);
1806
1807 #define target_get_ada_task_ptid(lwp, tid) \
1808 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1809
1810 /* Utility implementation of searching memory. */
1811 extern int simple_search_memory (struct target_ops* ops,
1812 CORE_ADDR start_addr,
1813 ULONGEST search_space_len,
1814 const gdb_byte *pattern,
1815 ULONGEST pattern_len,
1816 CORE_ADDR *found_addrp);
1817
1818 /* Main entry point for searching memory. */
1819 extern int target_search_memory (CORE_ADDR start_addr,
1820 ULONGEST search_space_len,
1821 const gdb_byte *pattern,
1822 ULONGEST pattern_len,
1823 CORE_ADDR *found_addrp);
1824
1825 /* Target file operations. */
1826
1827 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1828 target file descriptor, or -1 if an error occurs (and set
1829 *TARGET_ERRNO). */
1830 extern int target_fileio_open (const char *filename, int flags, int mode,
1831 int *target_errno);
1832
1833 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1834 Return the number of bytes written, or -1 if an error occurs
1835 (and set *TARGET_ERRNO). */
1836 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1837 ULONGEST offset, int *target_errno);
1838
1839 /* Read up to LEN bytes FD on the target into READ_BUF.
1840 Return the number of bytes read, or -1 if an error occurs
1841 (and set *TARGET_ERRNO). */
1842 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1843 ULONGEST offset, int *target_errno);
1844
1845 /* Close FD on the target. Return 0, or -1 if an error occurs
1846 (and set *TARGET_ERRNO). */
1847 extern int target_fileio_close (int fd, int *target_errno);
1848
1849 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1850 occurs (and set *TARGET_ERRNO). */
1851 extern int target_fileio_unlink (const char *filename, int *target_errno);
1852
1853 /* Read value of symbolic link FILENAME on the target. Return a
1854 null-terminated string allocated via xmalloc, or NULL if an error
1855 occurs (and set *TARGET_ERRNO). */
1856 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1857
1858 /* Read target file FILENAME. The return value will be -1 if the transfer
1859 fails or is not supported; 0 if the object is empty; or the length
1860 of the object otherwise. If a positive value is returned, a
1861 sufficiently large buffer will be allocated using xmalloc and
1862 returned in *BUF_P containing the contents of the object.
1863
1864 This method should be used for objects sufficiently small to store
1865 in a single xmalloc'd buffer, when no fixed bound on the object's
1866 size is known in advance. */
1867 extern LONGEST target_fileio_read_alloc (const char *filename,
1868 gdb_byte **buf_p);
1869
1870 /* Read target file FILENAME. The result is NUL-terminated and
1871 returned as a string, allocated using xmalloc. If an error occurs
1872 or the transfer is unsupported, NULL is returned. Empty objects
1873 are returned as allocated but empty strings. A warning is issued
1874 if the result contains any embedded NUL bytes. */
1875 extern char *target_fileio_read_stralloc (const char *filename);
1876
1877
1878 /* Tracepoint-related operations. */
1879
1880 #define target_trace_init() \
1881 (*current_target.to_trace_init) (&current_target)
1882
1883 #define target_download_tracepoint(t) \
1884 (*current_target.to_download_tracepoint) (&current_target, t)
1885
1886 #define target_can_download_tracepoint() \
1887 (*current_target.to_can_download_tracepoint) (&current_target)
1888
1889 #define target_download_trace_state_variable(tsv) \
1890 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1891
1892 #define target_enable_tracepoint(loc) \
1893 (*current_target.to_enable_tracepoint) (&current_target, loc)
1894
1895 #define target_disable_tracepoint(loc) \
1896 (*current_target.to_disable_tracepoint) (&current_target, loc)
1897
1898 #define target_trace_start() \
1899 (*current_target.to_trace_start) (&current_target)
1900
1901 #define target_trace_set_readonly_regions() \
1902 (*current_target.to_trace_set_readonly_regions) (&current_target)
1903
1904 #define target_get_trace_status(ts) \
1905 (*current_target.to_get_trace_status) (&current_target, ts)
1906
1907 #define target_get_tracepoint_status(tp,utp) \
1908 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1909
1910 #define target_trace_stop() \
1911 (*current_target.to_trace_stop) (&current_target)
1912
1913 #define target_trace_find(type,num,addr1,addr2,tpp) \
1914 (*current_target.to_trace_find) (&current_target, \
1915 (type), (num), (addr1), (addr2), (tpp))
1916
1917 #define target_get_trace_state_variable_value(tsv,val) \
1918 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1919 (tsv), (val))
1920
1921 #define target_save_trace_data(filename) \
1922 (*current_target.to_save_trace_data) (&current_target, filename)
1923
1924 #define target_upload_tracepoints(utpp) \
1925 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1926
1927 #define target_upload_trace_state_variables(utsvp) \
1928 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1929
1930 #define target_get_raw_trace_data(buf,offset,len) \
1931 (*current_target.to_get_raw_trace_data) (&current_target, \
1932 (buf), (offset), (len))
1933
1934 #define target_get_min_fast_tracepoint_insn_len() \
1935 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1936
1937 #define target_set_disconnected_tracing(val) \
1938 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1939
1940 #define target_set_circular_trace_buffer(val) \
1941 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1942
1943 #define target_set_trace_buffer_size(val) \
1944 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1945
1946 #define target_set_trace_notes(user,notes,stopnotes) \
1947 (*current_target.to_set_trace_notes) (&current_target, \
1948 (user), (notes), (stopnotes))
1949
1950 #define target_get_tib_address(ptid, addr) \
1951 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1952
1953 #define target_set_permissions() \
1954 (*current_target.to_set_permissions) (&current_target)
1955
1956 #define target_static_tracepoint_marker_at(addr, marker) \
1957 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1958 addr, marker)
1959
1960 #define target_static_tracepoint_markers_by_strid(marker_id) \
1961 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1962 marker_id)
1963
1964 #define target_traceframe_info() \
1965 (*current_target.to_traceframe_info) (&current_target)
1966
1967 #define target_use_agent(use) \
1968 (*current_target.to_use_agent) (&current_target, use)
1969
1970 #define target_can_use_agent() \
1971 (*current_target.to_can_use_agent) (&current_target)
1972
1973 #define target_augmented_libraries_svr4_read() \
1974 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1975
1976 /* Command logging facility. */
1977
1978 #define target_log_command(p) \
1979 (*current_target.to_log_command) (&current_target, p)
1980
1981
1982 extern int target_core_of_thread (ptid_t ptid);
1983
1984 /* See to_get_unwinder in struct target_ops. */
1985 extern const struct frame_unwind *target_get_unwinder (void);
1986
1987 /* See to_get_tailcall_unwinder in struct target_ops. */
1988 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1989
1990 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1991 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1992 if there's a mismatch, and -1 if an error is encountered while
1993 reading memory. Throws an error if the functionality is found not
1994 to be supported by the current target. */
1995 int target_verify_memory (const gdb_byte *data,
1996 CORE_ADDR memaddr, ULONGEST size);
1997
1998 /* Routines for maintenance of the target structures...
1999
2000 complete_target_initialization: Finalize a target_ops by filling in
2001 any fields needed by the target implementation.
2002
2003 add_target: Add a target to the list of all possible targets.
2004
2005 push_target: Make this target the top of the stack of currently used
2006 targets, within its particular stratum of the stack. Result
2007 is 0 if now atop the stack, nonzero if not on top (maybe
2008 should warn user).
2009
2010 unpush_target: Remove this from the stack of currently used targets,
2011 no matter where it is on the list. Returns 0 if no
2012 change, 1 if removed from stack. */
2013
2014 extern void add_target (struct target_ops *);
2015
2016 extern void add_target_with_completer (struct target_ops *t,
2017 completer_ftype *completer);
2018
2019 extern void complete_target_initialization (struct target_ops *t);
2020
2021 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2022 for maintaining backwards compatibility when renaming targets. */
2023
2024 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2025
2026 extern void push_target (struct target_ops *);
2027
2028 extern int unpush_target (struct target_ops *);
2029
2030 extern void target_pre_inferior (int);
2031
2032 extern void target_preopen (int);
2033
2034 /* Does whatever cleanup is required to get rid of all pushed targets. */
2035 extern void pop_all_targets (void);
2036
2037 /* Like pop_all_targets, but pops only targets whose stratum is
2038 strictly above ABOVE_STRATUM. */
2039 extern void pop_all_targets_above (enum strata above_stratum);
2040
2041 extern int target_is_pushed (struct target_ops *t);
2042
2043 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2044 CORE_ADDR offset);
2045
2046 /* Struct target_section maps address ranges to file sections. It is
2047 mostly used with BFD files, but can be used without (e.g. for handling
2048 raw disks, or files not in formats handled by BFD). */
2049
2050 struct target_section
2051 {
2052 CORE_ADDR addr; /* Lowest address in section */
2053 CORE_ADDR endaddr; /* 1+highest address in section */
2054
2055 struct bfd_section *the_bfd_section;
2056
2057 /* The "owner" of the section.
2058 It can be any unique value. It is set by add_target_sections
2059 and used by remove_target_sections.
2060 For example, for executables it is a pointer to exec_bfd and
2061 for shlibs it is the so_list pointer. */
2062 void *owner;
2063 };
2064
2065 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2066
2067 struct target_section_table
2068 {
2069 struct target_section *sections;
2070 struct target_section *sections_end;
2071 };
2072
2073 /* Return the "section" containing the specified address. */
2074 struct target_section *target_section_by_addr (struct target_ops *target,
2075 CORE_ADDR addr);
2076
2077 /* Return the target section table this target (or the targets
2078 beneath) currently manipulate. */
2079
2080 extern struct target_section_table *target_get_section_table
2081 (struct target_ops *target);
2082
2083 /* From mem-break.c */
2084
2085 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2086 struct bp_target_info *);
2087
2088 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2089 struct bp_target_info *);
2090
2091 extern int default_memory_remove_breakpoint (struct gdbarch *,
2092 struct bp_target_info *);
2093
2094 extern int default_memory_insert_breakpoint (struct gdbarch *,
2095 struct bp_target_info *);
2096
2097
2098 /* From target.c */
2099
2100 extern void initialize_targets (void);
2101
2102 extern void noprocess (void) ATTRIBUTE_NORETURN;
2103
2104 extern void target_require_runnable (void);
2105
2106 extern void find_default_attach (struct target_ops *, char *, int);
2107
2108 extern void find_default_create_inferior (struct target_ops *,
2109 char *, char *, char **, int);
2110
2111 extern struct target_ops *find_target_beneath (struct target_ops *);
2112
2113 /* Find the target at STRATUM. If no target is at that stratum,
2114 return NULL. */
2115
2116 struct target_ops *find_target_at (enum strata stratum);
2117
2118 /* Read OS data object of type TYPE from the target, and return it in
2119 XML format. The result is NUL-terminated and returned as a string,
2120 allocated using xmalloc. If an error occurs or the transfer is
2121 unsupported, NULL is returned. Empty objects are returned as
2122 allocated but empty strings. */
2123
2124 extern char *target_get_osdata (const char *type);
2125
2126 \f
2127 /* Stuff that should be shared among the various remote targets. */
2128
2129 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2130 information (higher values, more information). */
2131 extern int remote_debug;
2132
2133 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2134 extern int baud_rate;
2135 /* Timeout limit for response from target. */
2136 extern int remote_timeout;
2137
2138 \f
2139
2140 /* Set the show memory breakpoints mode to show, and installs a cleanup
2141 to restore it back to the current value. */
2142 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2143
2144 extern int may_write_registers;
2145 extern int may_write_memory;
2146 extern int may_insert_breakpoints;
2147 extern int may_insert_tracepoints;
2148 extern int may_insert_fast_tracepoints;
2149 extern int may_stop;
2150
2151 extern void update_target_permissions (void);
2152
2153 \f
2154 /* Imported from machine dependent code. */
2155
2156 /* Blank target vector entries are initialized to target_ignore. */
2157 void target_ignore (void);
2158
2159 /* See to_supports_btrace in struct target_ops. */
2160 #define target_supports_btrace() \
2161 (current_target.to_supports_btrace (&current_target))
2162
2163 /* See to_enable_btrace in struct target_ops. */
2164 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2165
2166 /* See to_disable_btrace in struct target_ops. */
2167 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2168
2169 /* See to_teardown_btrace in struct target_ops. */
2170 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2171
2172 /* See to_read_btrace in struct target_ops. */
2173 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2174 struct btrace_target_info *,
2175 enum btrace_read_type);
2176
2177 /* See to_stop_recording in struct target_ops. */
2178 extern void target_stop_recording (void);
2179
2180 /* See to_info_record in struct target_ops. */
2181 extern void target_info_record (void);
2182
2183 /* See to_save_record in struct target_ops. */
2184 extern void target_save_record (const char *filename);
2185
2186 /* Query if the target supports deleting the execution log. */
2187 extern int target_supports_delete_record (void);
2188
2189 /* See to_delete_record in struct target_ops. */
2190 extern void target_delete_record (void);
2191
2192 /* See to_record_is_replaying in struct target_ops. */
2193 extern int target_record_is_replaying (void);
2194
2195 /* See to_goto_record_begin in struct target_ops. */
2196 extern void target_goto_record_begin (void);
2197
2198 /* See to_goto_record_end in struct target_ops. */
2199 extern void target_goto_record_end (void);
2200
2201 /* See to_goto_record in struct target_ops. */
2202 extern void target_goto_record (ULONGEST insn);
2203
2204 /* See to_insn_history. */
2205 extern void target_insn_history (int size, int flags);
2206
2207 /* See to_insn_history_from. */
2208 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2209
2210 /* See to_insn_history_range. */
2211 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2212
2213 /* See to_call_history. */
2214 extern void target_call_history (int size, int flags);
2215
2216 /* See to_call_history_from. */
2217 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2218
2219 /* See to_call_history_range. */
2220 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2221
2222 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2223 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2224 struct gdbarch *gdbarch);
2225
2226 /* See to_decr_pc_after_break. */
2227 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2228
2229 #endif /* !defined (TARGET_H) */
This page took 0.075482 seconds and 4 git commands to generate.