331050108ed018bb270bc218c801dd9aff0cefc5
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *);
539 void (*to_mourn_inferior) (struct target_ops *);
540 int (*to_can_run) (struct target_ops *);
541
542 /* Documentation of this routine is provided with the corresponding
543 target_* macro. */
544 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
545
546 /* Documentation of this routine is provided with the
547 corresponding target_* function. */
548 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
549
550 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
551 void (*to_find_new_threads) (struct target_ops *);
552 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
553 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
554 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
555 void (*to_stop) (struct target_ops *, ptid_t);
556 void (*to_rcmd) (struct target_ops *,
557 char *command, struct ui_file *output)
558 TARGET_DEFAULT_FUNC (default_rcmd);
559 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
560 void (*to_log_command) (struct target_ops *, const char *);
561 struct target_section_table *(*to_get_section_table) (struct target_ops *);
562 enum strata to_stratum;
563 int (*to_has_all_memory) (struct target_ops *);
564 int (*to_has_memory) (struct target_ops *);
565 int (*to_has_stack) (struct target_ops *);
566 int (*to_has_registers) (struct target_ops *);
567 int (*to_has_execution) (struct target_ops *, ptid_t);
568 int to_has_thread_control; /* control thread execution */
569 int to_attach_no_wait;
570 /* ASYNC target controls */
571 int (*to_can_async_p) (struct target_ops *)
572 TARGET_DEFAULT_FUNC (find_default_can_async_p);
573 int (*to_is_async_p) (struct target_ops *)
574 TARGET_DEFAULT_FUNC (find_default_is_async_p);
575 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
576 TARGET_DEFAULT_NORETURN (tcomplain ());
577 int (*to_supports_non_stop) (struct target_ops *);
578 /* find_memory_regions support method for gcore */
579 int (*to_find_memory_regions) (struct target_ops *,
580 find_memory_region_ftype func, void *data);
581 /* make_corefile_notes support method for gcore */
582 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
583 /* get_bookmark support method for bookmarks */
584 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
585 /* goto_bookmark support method for bookmarks */
586 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
587 /* Return the thread-local address at OFFSET in the
588 thread-local storage for the thread PTID and the shared library
589 or executable file given by OBJFILE. If that block of
590 thread-local storage hasn't been allocated yet, this function
591 may return an error. */
592 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
593 ptid_t ptid,
594 CORE_ADDR load_module_addr,
595 CORE_ADDR offset);
596
597 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
598 OBJECT. The OFFSET, for a seekable object, specifies the
599 starting point. The ANNEX can be used to provide additional
600 data-specific information to the target.
601
602 Return the transferred status, error or OK (an
603 'enum target_xfer_status' value). Save the number of bytes
604 actually transferred in *XFERED_LEN if transfer is successful
605 (TARGET_XFER_OK) or the number unavailable bytes if the requested
606 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
607 smaller than LEN does not indicate the end of the object, only
608 the end of the transfer; higher level code should continue
609 transferring if desired. This is handled in target.c.
610
611 The interface does not support a "retry" mechanism. Instead it
612 assumes that at least one byte will be transfered on each
613 successful call.
614
615 NOTE: cagney/2003-10-17: The current interface can lead to
616 fragmented transfers. Lower target levels should not implement
617 hacks, such as enlarging the transfer, in an attempt to
618 compensate for this. Instead, the target stack should be
619 extended so that it implements supply/collect methods and a
620 look-aside object cache. With that available, the lowest
621 target can safely and freely "push" data up the stack.
622
623 See target_read and target_write for more information. One,
624 and only one, of readbuf or writebuf must be non-NULL. */
625
626 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
627 enum target_object object,
628 const char *annex,
629 gdb_byte *readbuf,
630 const gdb_byte *writebuf,
631 ULONGEST offset, ULONGEST len,
632 ULONGEST *xfered_len)
633 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
634
635 /* Returns the memory map for the target. A return value of NULL
636 means that no memory map is available. If a memory address
637 does not fall within any returned regions, it's assumed to be
638 RAM. The returned memory regions should not overlap.
639
640 The order of regions does not matter; target_memory_map will
641 sort regions by starting address. For that reason, this
642 function should not be called directly except via
643 target_memory_map.
644
645 This method should not cache data; if the memory map could
646 change unexpectedly, it should be invalidated, and higher
647 layers will re-fetch it. */
648 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
649
650 /* Erases the region of flash memory starting at ADDRESS, of
651 length LENGTH.
652
653 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
654 on flash block boundaries, as reported by 'to_memory_map'. */
655 void (*to_flash_erase) (struct target_ops *,
656 ULONGEST address, LONGEST length);
657
658 /* Finishes a flash memory write sequence. After this operation
659 all flash memory should be available for writing and the result
660 of reading from areas written by 'to_flash_write' should be
661 equal to what was written. */
662 void (*to_flash_done) (struct target_ops *);
663
664 /* Describe the architecture-specific features of this target.
665 Returns the description found, or NULL if no description
666 was available. */
667 const struct target_desc *(*to_read_description) (struct target_ops *ops);
668
669 /* Build the PTID of the thread on which a given task is running,
670 based on LWP and THREAD. These values are extracted from the
671 task Private_Data section of the Ada Task Control Block, and
672 their interpretation depends on the target. */
673 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
674 long lwp, long thread);
675
676 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
677 Return 0 if *READPTR is already at the end of the buffer.
678 Return -1 if there is insufficient buffer for a whole entry.
679 Return 1 if an entry was read into *TYPEP and *VALP. */
680 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
681 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
682
683 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
684 sequence of bytes in PATTERN with length PATTERN_LEN.
685
686 The result is 1 if found, 0 if not found, and -1 if there was an error
687 requiring halting of the search (e.g. memory read error).
688 If the pattern is found the address is recorded in FOUND_ADDRP. */
689 int (*to_search_memory) (struct target_ops *ops,
690 CORE_ADDR start_addr, ULONGEST search_space_len,
691 const gdb_byte *pattern, ULONGEST pattern_len,
692 CORE_ADDR *found_addrp);
693
694 /* Can target execute in reverse? */
695 int (*to_can_execute_reverse) (struct target_ops *);
696
697 /* The direction the target is currently executing. Must be
698 implemented on targets that support reverse execution and async
699 mode. The default simply returns forward execution. */
700 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
701
702 /* Does this target support debugging multiple processes
703 simultaneously? */
704 int (*to_supports_multi_process) (struct target_ops *);
705
706 /* Does this target support enabling and disabling tracepoints while a trace
707 experiment is running? */
708 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
709
710 /* Does this target support disabling address space randomization? */
711 int (*to_supports_disable_randomization) (struct target_ops *);
712
713 /* Does this target support the tracenz bytecode for string collection? */
714 int (*to_supports_string_tracing) (struct target_ops *);
715
716 /* Does this target support evaluation of breakpoint conditions on its
717 end? */
718 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
719
720 /* Does this target support evaluation of breakpoint commands on its
721 end? */
722 int (*to_can_run_breakpoint_commands) (struct target_ops *);
723
724 /* Determine current architecture of thread PTID.
725
726 The target is supposed to determine the architecture of the code where
727 the target is currently stopped at (on Cell, if a target is in spu_run,
728 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
729 This is architecture used to perform decr_pc_after_break adjustment,
730 and also determines the frame architecture of the innermost frame.
731 ptrace operations need to operate according to target_gdbarch ().
732
733 The default implementation always returns target_gdbarch (). */
734 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
735
736 /* Determine current address space of thread PTID.
737
738 The default implementation always returns the inferior's
739 address space. */
740 struct address_space *(*to_thread_address_space) (struct target_ops *,
741 ptid_t);
742
743 /* Target file operations. */
744
745 /* Open FILENAME on the target, using FLAGS and MODE. Return a
746 target file descriptor, or -1 if an error occurs (and set
747 *TARGET_ERRNO). */
748 int (*to_fileio_open) (struct target_ops *,
749 const char *filename, int flags, int mode,
750 int *target_errno);
751
752 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
753 Return the number of bytes written, or -1 if an error occurs
754 (and set *TARGET_ERRNO). */
755 int (*to_fileio_pwrite) (struct target_ops *,
756 int fd, const gdb_byte *write_buf, int len,
757 ULONGEST offset, int *target_errno);
758
759 /* Read up to LEN bytes FD on the target into READ_BUF.
760 Return the number of bytes read, or -1 if an error occurs
761 (and set *TARGET_ERRNO). */
762 int (*to_fileio_pread) (struct target_ops *,
763 int fd, gdb_byte *read_buf, int len,
764 ULONGEST offset, int *target_errno);
765
766 /* Close FD on the target. Return 0, or -1 if an error occurs
767 (and set *TARGET_ERRNO). */
768 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
769
770 /* Unlink FILENAME on the target. Return 0, or -1 if an error
771 occurs (and set *TARGET_ERRNO). */
772 int (*to_fileio_unlink) (struct target_ops *,
773 const char *filename, int *target_errno);
774
775 /* Read value of symbolic link FILENAME on the target. Return a
776 null-terminated string allocated via xmalloc, or NULL if an error
777 occurs (and set *TARGET_ERRNO). */
778 char *(*to_fileio_readlink) (struct target_ops *,
779 const char *filename, int *target_errno);
780
781
782 /* Implement the "info proc" command. */
783 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
784
785 /* Tracepoint-related operations. */
786
787 /* Prepare the target for a tracing run. */
788 void (*to_trace_init) (struct target_ops *);
789
790 /* Send full details of a tracepoint location to the target. */
791 void (*to_download_tracepoint) (struct target_ops *,
792 struct bp_location *location);
793
794 /* Is the target able to download tracepoint locations in current
795 state? */
796 int (*to_can_download_tracepoint) (struct target_ops *);
797
798 /* Send full details of a trace state variable to the target. */
799 void (*to_download_trace_state_variable) (struct target_ops *,
800 struct trace_state_variable *tsv);
801
802 /* Enable a tracepoint on the target. */
803 void (*to_enable_tracepoint) (struct target_ops *,
804 struct bp_location *location);
805
806 /* Disable a tracepoint on the target. */
807 void (*to_disable_tracepoint) (struct target_ops *,
808 struct bp_location *location);
809
810 /* Inform the target info of memory regions that are readonly
811 (such as text sections), and so it should return data from
812 those rather than look in the trace buffer. */
813 void (*to_trace_set_readonly_regions) (struct target_ops *);
814
815 /* Start a trace run. */
816 void (*to_trace_start) (struct target_ops *);
817
818 /* Get the current status of a tracing run. */
819 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
820
821 void (*to_get_tracepoint_status) (struct target_ops *,
822 struct breakpoint *tp,
823 struct uploaded_tp *utp);
824
825 /* Stop a trace run. */
826 void (*to_trace_stop) (struct target_ops *);
827
828 /* Ask the target to find a trace frame of the given type TYPE,
829 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
830 number of the trace frame, and also the tracepoint number at
831 TPP. If no trace frame matches, return -1. May throw if the
832 operation fails. */
833 int (*to_trace_find) (struct target_ops *,
834 enum trace_find_type type, int num,
835 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
836
837 /* Get the value of the trace state variable number TSV, returning
838 1 if the value is known and writing the value itself into the
839 location pointed to by VAL, else returning 0. */
840 int (*to_get_trace_state_variable_value) (struct target_ops *,
841 int tsv, LONGEST *val);
842
843 int (*to_save_trace_data) (struct target_ops *, const char *filename);
844
845 int (*to_upload_tracepoints) (struct target_ops *,
846 struct uploaded_tp **utpp);
847
848 int (*to_upload_trace_state_variables) (struct target_ops *,
849 struct uploaded_tsv **utsvp);
850
851 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
852 ULONGEST offset, LONGEST len);
853
854 /* Get the minimum length of instruction on which a fast tracepoint
855 may be set on the target. If this operation is unsupported,
856 return -1. If for some reason the minimum length cannot be
857 determined, return 0. */
858 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
859
860 /* Set the target's tracing behavior in response to unexpected
861 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
862 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
863 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
864 /* Set the size of trace buffer in the target. */
865 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
866
867 /* Add/change textual notes about the trace run, returning 1 if
868 successful, 0 otherwise. */
869 int (*to_set_trace_notes) (struct target_ops *,
870 const char *user, const char *notes,
871 const char *stopnotes);
872
873 /* Return the processor core that thread PTID was last seen on.
874 This information is updated only when:
875 - update_thread_list is called
876 - thread stops
877 If the core cannot be determined -- either for the specified
878 thread, or right now, or in this debug session, or for this
879 target -- return -1. */
880 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
881
882 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
883 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
884 a match, 0 if there's a mismatch, and -1 if an error is
885 encountered while reading memory. */
886 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
887 CORE_ADDR memaddr, ULONGEST size);
888
889 /* Return the address of the start of the Thread Information Block
890 a Windows OS specific feature. */
891 int (*to_get_tib_address) (struct target_ops *,
892 ptid_t ptid, CORE_ADDR *addr);
893
894 /* Send the new settings of write permission variables. */
895 void (*to_set_permissions) (struct target_ops *);
896
897 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
898 with its details. Return 1 on success, 0 on failure. */
899 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
900 struct static_tracepoint_marker *marker);
901
902 /* Return a vector of all tracepoints markers string id ID, or all
903 markers if ID is NULL. */
904 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
905 (struct target_ops *, const char *id);
906
907 /* Return a traceframe info object describing the current
908 traceframe's contents. If the target doesn't support
909 traceframe info, return NULL. If the current traceframe is not
910 selected (the current traceframe number is -1), the target can
911 choose to return either NULL or an empty traceframe info. If
912 NULL is returned, for example in remote target, GDB will read
913 from the live inferior. If an empty traceframe info is
914 returned, for example in tfile target, which means the
915 traceframe info is available, but the requested memory is not
916 available in it. GDB will try to see if the requested memory
917 is available in the read-only sections. This method should not
918 cache data; higher layers take care of caching, invalidating,
919 and re-fetching when necessary. */
920 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
921
922 /* Ask the target to use or not to use agent according to USE. Return 1
923 successful, 0 otherwise. */
924 int (*to_use_agent) (struct target_ops *, int use);
925
926 /* Is the target able to use agent in current state? */
927 int (*to_can_use_agent) (struct target_ops *);
928
929 /* Check whether the target supports branch tracing. */
930 int (*to_supports_btrace) (struct target_ops *)
931 TARGET_DEFAULT_RETURN (0);
932
933 /* Enable branch tracing for PTID and allocate a branch trace target
934 information struct for reading and for disabling branch trace. */
935 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
936 ptid_t ptid);
937
938 /* Disable branch tracing and deallocate TINFO. */
939 void (*to_disable_btrace) (struct target_ops *,
940 struct btrace_target_info *tinfo);
941
942 /* Disable branch tracing and deallocate TINFO. This function is similar
943 to to_disable_btrace, except that it is called during teardown and is
944 only allowed to perform actions that are safe. A counter-example would
945 be attempting to talk to a remote target. */
946 void (*to_teardown_btrace) (struct target_ops *,
947 struct btrace_target_info *tinfo);
948
949 /* Read branch trace data for the thread indicated by BTINFO into DATA.
950 DATA is cleared before new trace is added.
951 The branch trace will start with the most recent block and continue
952 towards older blocks. */
953 enum btrace_error (*to_read_btrace) (struct target_ops *self,
954 VEC (btrace_block_s) **data,
955 struct btrace_target_info *btinfo,
956 enum btrace_read_type type);
957
958 /* Stop trace recording. */
959 void (*to_stop_recording) (struct target_ops *);
960
961 /* Print information about the recording. */
962 void (*to_info_record) (struct target_ops *);
963
964 /* Save the recorded execution trace into a file. */
965 void (*to_save_record) (struct target_ops *, const char *filename);
966
967 /* Delete the recorded execution trace from the current position onwards. */
968 void (*to_delete_record) (struct target_ops *);
969
970 /* Query if the record target is currently replaying. */
971 int (*to_record_is_replaying) (struct target_ops *);
972
973 /* Go to the begin of the execution trace. */
974 void (*to_goto_record_begin) (struct target_ops *);
975
976 /* Go to the end of the execution trace. */
977 void (*to_goto_record_end) (struct target_ops *);
978
979 /* Go to a specific location in the recorded execution trace. */
980 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
981
982 /* Disassemble SIZE instructions in the recorded execution trace from
983 the current position.
984 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
985 disassemble SIZE succeeding instructions. */
986 void (*to_insn_history) (struct target_ops *, int size, int flags);
987
988 /* Disassemble SIZE instructions in the recorded execution trace around
989 FROM.
990 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
991 disassemble SIZE instructions after FROM. */
992 void (*to_insn_history_from) (struct target_ops *,
993 ULONGEST from, int size, int flags);
994
995 /* Disassemble a section of the recorded execution trace from instruction
996 BEGIN (inclusive) to instruction END (inclusive). */
997 void (*to_insn_history_range) (struct target_ops *,
998 ULONGEST begin, ULONGEST end, int flags);
999
1000 /* Print a function trace of the recorded execution trace.
1001 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1002 succeeding functions. */
1003 void (*to_call_history) (struct target_ops *, int size, int flags);
1004
1005 /* Print a function trace of the recorded execution trace starting
1006 at function FROM.
1007 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1008 SIZE functions after FROM. */
1009 void (*to_call_history_from) (struct target_ops *,
1010 ULONGEST begin, int size, int flags);
1011
1012 /* Print a function trace of an execution trace section from function BEGIN
1013 (inclusive) to function END (inclusive). */
1014 void (*to_call_history_range) (struct target_ops *,
1015 ULONGEST begin, ULONGEST end, int flags);
1016
1017 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1018 non-empty annex. */
1019 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1020
1021 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1022 it is not used. */
1023 const struct frame_unwind *to_get_unwinder;
1024 const struct frame_unwind *to_get_tailcall_unwinder;
1025
1026 /* Return the number of bytes by which the PC needs to be decremented
1027 after executing a breakpoint instruction.
1028 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1029 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1030 struct gdbarch *gdbarch);
1031
1032 int to_magic;
1033 /* Need sub-structure for target machine related rather than comm related?
1034 */
1035 };
1036
1037 /* Magic number for checking ops size. If a struct doesn't end with this
1038 number, somebody changed the declaration but didn't change all the
1039 places that initialize one. */
1040
1041 #define OPS_MAGIC 3840
1042
1043 /* The ops structure for our "current" target process. This should
1044 never be NULL. If there is no target, it points to the dummy_target. */
1045
1046 extern struct target_ops current_target;
1047
1048 /* Define easy words for doing these operations on our current target. */
1049
1050 #define target_shortname (current_target.to_shortname)
1051 #define target_longname (current_target.to_longname)
1052
1053 /* Does whatever cleanup is required for a target that we are no
1054 longer going to be calling. This routine is automatically always
1055 called after popping the target off the target stack - the target's
1056 own methods are no longer available through the target vector.
1057 Closing file descriptors and freeing all memory allocated memory are
1058 typical things it should do. */
1059
1060 void target_close (struct target_ops *targ);
1061
1062 /* Attaches to a process on the target side. Arguments are as passed
1063 to the `attach' command by the user. This routine can be called
1064 when the target is not on the target-stack, if the target_can_run
1065 routine returns 1; in that case, it must push itself onto the stack.
1066 Upon exit, the target should be ready for normal operations, and
1067 should be ready to deliver the status of the process immediately
1068 (without waiting) to an upcoming target_wait call. */
1069
1070 void target_attach (char *, int);
1071
1072 /* Some targets don't generate traps when attaching to the inferior,
1073 or their target_attach implementation takes care of the waiting.
1074 These targets must set to_attach_no_wait. */
1075
1076 #define target_attach_no_wait \
1077 (current_target.to_attach_no_wait)
1078
1079 /* The target_attach operation places a process under debugger control,
1080 and stops the process.
1081
1082 This operation provides a target-specific hook that allows the
1083 necessary bookkeeping to be performed after an attach completes. */
1084 #define target_post_attach(pid) \
1085 (*current_target.to_post_attach) (&current_target, pid)
1086
1087 /* Takes a program previously attached to and detaches it.
1088 The program may resume execution (some targets do, some don't) and will
1089 no longer stop on signals, etc. We better not have left any breakpoints
1090 in the program or it'll die when it hits one. ARGS is arguments
1091 typed by the user (e.g. a signal to send the process). FROM_TTY
1092 says whether to be verbose or not. */
1093
1094 extern void target_detach (const char *, int);
1095
1096 /* Disconnect from the current target without resuming it (leaving it
1097 waiting for a debugger). */
1098
1099 extern void target_disconnect (char *, int);
1100
1101 /* Resume execution of the target process PTID (or a group of
1102 threads). STEP says whether to single-step or to run free; SIGGNAL
1103 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1104 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1105 PTID means `step/resume only this process id'. A wildcard PTID
1106 (all threads, or all threads of process) means `step/resume
1107 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1108 matches) resume with their 'thread->suspend.stop_signal' signal
1109 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1110 if in "no pass" state. */
1111
1112 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1113
1114 /* Wait for process pid to do something. PTID = -1 to wait for any
1115 pid to do something. Return pid of child, or -1 in case of error;
1116 store status through argument pointer STATUS. Note that it is
1117 _NOT_ OK to throw_exception() out of target_wait() without popping
1118 the debugging target from the stack; GDB isn't prepared to get back
1119 to the prompt with a debugging target but without the frame cache,
1120 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1121 options. */
1122
1123 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1124 int options);
1125
1126 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1127
1128 extern void target_fetch_registers (struct regcache *regcache, int regno);
1129
1130 /* Store at least register REGNO, or all regs if REGNO == -1.
1131 It can store as many registers as it wants to, so target_prepare_to_store
1132 must have been previously called. Calls error() if there are problems. */
1133
1134 extern void target_store_registers (struct regcache *regcache, int regs);
1135
1136 /* Get ready to modify the registers array. On machines which store
1137 individual registers, this doesn't need to do anything. On machines
1138 which store all the registers in one fell swoop, this makes sure
1139 that REGISTERS contains all the registers from the program being
1140 debugged. */
1141
1142 #define target_prepare_to_store(regcache) \
1143 (*current_target.to_prepare_to_store) (&current_target, regcache)
1144
1145 /* Determine current address space of thread PTID. */
1146
1147 struct address_space *target_thread_address_space (ptid_t);
1148
1149 /* Implement the "info proc" command. This returns one if the request
1150 was handled, and zero otherwise. It can also throw an exception if
1151 an error was encountered while attempting to handle the
1152 request. */
1153
1154 int target_info_proc (char *, enum info_proc_what);
1155
1156 /* Returns true if this target can debug multiple processes
1157 simultaneously. */
1158
1159 #define target_supports_multi_process() \
1160 (*current_target.to_supports_multi_process) (&current_target)
1161
1162 /* Returns true if this target can disable address space randomization. */
1163
1164 int target_supports_disable_randomization (void);
1165
1166 /* Returns true if this target can enable and disable tracepoints
1167 while a trace experiment is running. */
1168
1169 #define target_supports_enable_disable_tracepoint() \
1170 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1171
1172 #define target_supports_string_tracing() \
1173 (*current_target.to_supports_string_tracing) (&current_target)
1174
1175 /* Returns true if this target can handle breakpoint conditions
1176 on its end. */
1177
1178 #define target_supports_evaluation_of_breakpoint_conditions() \
1179 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1180
1181 /* Returns true if this target can handle breakpoint commands
1182 on its end. */
1183
1184 #define target_can_run_breakpoint_commands() \
1185 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1186
1187 extern int target_read_string (CORE_ADDR, char **, int, int *);
1188
1189 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1190 ssize_t len);
1191
1192 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1193 ssize_t len);
1194
1195 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1196
1197 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1198
1199 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1200 ssize_t len);
1201
1202 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1203 ssize_t len);
1204
1205 /* Fetches the target's memory map. If one is found it is sorted
1206 and returned, after some consistency checking. Otherwise, NULL
1207 is returned. */
1208 VEC(mem_region_s) *target_memory_map (void);
1209
1210 /* Erase the specified flash region. */
1211 void target_flash_erase (ULONGEST address, LONGEST length);
1212
1213 /* Finish a sequence of flash operations. */
1214 void target_flash_done (void);
1215
1216 /* Describes a request for a memory write operation. */
1217 struct memory_write_request
1218 {
1219 /* Begining address that must be written. */
1220 ULONGEST begin;
1221 /* Past-the-end address. */
1222 ULONGEST end;
1223 /* The data to write. */
1224 gdb_byte *data;
1225 /* A callback baton for progress reporting for this request. */
1226 void *baton;
1227 };
1228 typedef struct memory_write_request memory_write_request_s;
1229 DEF_VEC_O(memory_write_request_s);
1230
1231 /* Enumeration specifying different flash preservation behaviour. */
1232 enum flash_preserve_mode
1233 {
1234 flash_preserve,
1235 flash_discard
1236 };
1237
1238 /* Write several memory blocks at once. This version can be more
1239 efficient than making several calls to target_write_memory, in
1240 particular because it can optimize accesses to flash memory.
1241
1242 Moreover, this is currently the only memory access function in gdb
1243 that supports writing to flash memory, and it should be used for
1244 all cases where access to flash memory is desirable.
1245
1246 REQUESTS is the vector (see vec.h) of memory_write_request.
1247 PRESERVE_FLASH_P indicates what to do with blocks which must be
1248 erased, but not completely rewritten.
1249 PROGRESS_CB is a function that will be periodically called to provide
1250 feedback to user. It will be called with the baton corresponding
1251 to the request currently being written. It may also be called
1252 with a NULL baton, when preserved flash sectors are being rewritten.
1253
1254 The function returns 0 on success, and error otherwise. */
1255 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1256 enum flash_preserve_mode preserve_flash_p,
1257 void (*progress_cb) (ULONGEST, void *));
1258
1259 /* Print a line about the current target. */
1260
1261 #define target_files_info() \
1262 (*current_target.to_files_info) (&current_target)
1263
1264 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1265 the target machine. Returns 0 for success, and returns non-zero or
1266 throws an error (with a detailed failure reason error code and
1267 message) otherwise. */
1268
1269 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1270 struct bp_target_info *bp_tgt);
1271
1272 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1273 machine. Result is 0 for success, non-zero for error. */
1274
1275 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1276 struct bp_target_info *bp_tgt);
1277
1278 /* Initialize the terminal settings we record for the inferior,
1279 before we actually run the inferior. */
1280
1281 #define target_terminal_init() \
1282 (*current_target.to_terminal_init) (&current_target)
1283
1284 /* Put the inferior's terminal settings into effect.
1285 This is preparation for starting or resuming the inferior. */
1286
1287 extern void target_terminal_inferior (void);
1288
1289 /* Put some of our terminal settings into effect,
1290 enough to get proper results from our output,
1291 but do not change into or out of RAW mode
1292 so that no input is discarded.
1293
1294 After doing this, either terminal_ours or terminal_inferior
1295 should be called to get back to a normal state of affairs. */
1296
1297 #define target_terminal_ours_for_output() \
1298 (*current_target.to_terminal_ours_for_output) (&current_target)
1299
1300 /* Put our terminal settings into effect.
1301 First record the inferior's terminal settings
1302 so they can be restored properly later. */
1303
1304 #define target_terminal_ours() \
1305 (*current_target.to_terminal_ours) (&current_target)
1306
1307 /* Save our terminal settings.
1308 This is called from TUI after entering or leaving the curses
1309 mode. Since curses modifies our terminal this call is here
1310 to take this change into account. */
1311
1312 #define target_terminal_save_ours() \
1313 (*current_target.to_terminal_save_ours) (&current_target)
1314
1315 /* Print useful information about our terminal status, if such a thing
1316 exists. */
1317
1318 #define target_terminal_info(arg, from_tty) \
1319 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1320
1321 /* Kill the inferior process. Make it go away. */
1322
1323 extern void target_kill (void);
1324
1325 /* Load an executable file into the target process. This is expected
1326 to not only bring new code into the target process, but also to
1327 update GDB's symbol tables to match.
1328
1329 ARG contains command-line arguments, to be broken down with
1330 buildargv (). The first non-switch argument is the filename to
1331 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1332 0)), which is an offset to apply to the load addresses of FILE's
1333 sections. The target may define switches, or other non-switch
1334 arguments, as it pleases. */
1335
1336 extern void target_load (char *arg, int from_tty);
1337
1338 /* Start an inferior process and set inferior_ptid to its pid.
1339 EXEC_FILE is the file to run.
1340 ALLARGS is a string containing the arguments to the program.
1341 ENV is the environment vector to pass. Errors reported with error().
1342 On VxWorks and various standalone systems, we ignore exec_file. */
1343
1344 void target_create_inferior (char *exec_file, char *args,
1345 char **env, int from_tty);
1346
1347 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1348 notification of inferior events such as fork and vork immediately
1349 after the inferior is created. (This because of how gdb gets an
1350 inferior created via invoking a shell to do it. In such a scenario,
1351 if the shell init file has commands in it, the shell will fork and
1352 exec for each of those commands, and we will see each such fork
1353 event. Very bad.)
1354
1355 Such targets will supply an appropriate definition for this function. */
1356
1357 #define target_post_startup_inferior(ptid) \
1358 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1359
1360 /* On some targets, we can catch an inferior fork or vfork event when
1361 it occurs. These functions insert/remove an already-created
1362 catchpoint for such events. They return 0 for success, 1 if the
1363 catchpoint type is not supported and -1 for failure. */
1364
1365 #define target_insert_fork_catchpoint(pid) \
1366 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1367
1368 #define target_remove_fork_catchpoint(pid) \
1369 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1370
1371 #define target_insert_vfork_catchpoint(pid) \
1372 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1373
1374 #define target_remove_vfork_catchpoint(pid) \
1375 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1376
1377 /* If the inferior forks or vforks, this function will be called at
1378 the next resume in order to perform any bookkeeping and fiddling
1379 necessary to continue debugging either the parent or child, as
1380 requested, and releasing the other. Information about the fork
1381 or vfork event is available via get_last_target_status ().
1382 This function returns 1 if the inferior should not be resumed
1383 (i.e. there is another event pending). */
1384
1385 int target_follow_fork (int follow_child, int detach_fork);
1386
1387 /* On some targets, we can catch an inferior exec event when it
1388 occurs. These functions insert/remove an already-created
1389 catchpoint for such events. They return 0 for success, 1 if the
1390 catchpoint type is not supported and -1 for failure. */
1391
1392 #define target_insert_exec_catchpoint(pid) \
1393 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1394
1395 #define target_remove_exec_catchpoint(pid) \
1396 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1397
1398 /* Syscall catch.
1399
1400 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1401 If NEEDED is zero, it means the target can disable the mechanism to
1402 catch system calls because there are no more catchpoints of this type.
1403
1404 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1405 being requested. In this case, both TABLE_SIZE and TABLE should
1406 be ignored.
1407
1408 TABLE_SIZE is the number of elements in TABLE. It only matters if
1409 ANY_COUNT is zero.
1410
1411 TABLE is an array of ints, indexed by syscall number. An element in
1412 this array is nonzero if that syscall should be caught. This argument
1413 only matters if ANY_COUNT is zero.
1414
1415 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1416 for failure. */
1417
1418 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1419 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1420 pid, needed, any_count, \
1421 table_size, table)
1422
1423 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1424 exit code of PID, if any. */
1425
1426 #define target_has_exited(pid,wait_status,exit_status) \
1427 (*current_target.to_has_exited) (&current_target, \
1428 pid,wait_status,exit_status)
1429
1430 /* The debugger has completed a blocking wait() call. There is now
1431 some process event that must be processed. This function should
1432 be defined by those targets that require the debugger to perform
1433 cleanup or internal state changes in response to the process event. */
1434
1435 /* The inferior process has died. Do what is right. */
1436
1437 void target_mourn_inferior (void);
1438
1439 /* Does target have enough data to do a run or attach command? */
1440
1441 #define target_can_run(t) \
1442 ((t)->to_can_run) (t)
1443
1444 /* Set list of signals to be handled in the target.
1445
1446 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1447 (enum gdb_signal). For every signal whose entry in this array is
1448 non-zero, the target is allowed -but not required- to skip reporting
1449 arrival of the signal to the GDB core by returning from target_wait,
1450 and to pass the signal directly to the inferior instead.
1451
1452 However, if the target is hardware single-stepping a thread that is
1453 about to receive a signal, it needs to be reported in any case, even
1454 if mentioned in a previous target_pass_signals call. */
1455
1456 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1457
1458 /* Set list of signals the target may pass to the inferior. This
1459 directly maps to the "handle SIGNAL pass/nopass" setting.
1460
1461 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1462 number (enum gdb_signal). For every signal whose entry in this
1463 array is non-zero, the target is allowed to pass the signal to the
1464 inferior. Signals not present in the array shall be silently
1465 discarded. This does not influence whether to pass signals to the
1466 inferior as a result of a target_resume call. This is useful in
1467 scenarios where the target needs to decide whether to pass or not a
1468 signal to the inferior without GDB core involvement, such as for
1469 example, when detaching (as threads may have been suspended with
1470 pending signals not reported to GDB). */
1471
1472 extern void target_program_signals (int nsig, unsigned char *program_signals);
1473
1474 /* Check to see if a thread is still alive. */
1475
1476 extern int target_thread_alive (ptid_t ptid);
1477
1478 /* Query for new threads and add them to the thread list. */
1479
1480 extern void target_find_new_threads (void);
1481
1482 /* Make target stop in a continuable fashion. (For instance, under
1483 Unix, this should act like SIGSTOP). This function is normally
1484 used by GUIs to implement a stop button. */
1485
1486 extern void target_stop (ptid_t ptid);
1487
1488 /* Send the specified COMMAND to the target's monitor
1489 (shell,interpreter) for execution. The result of the query is
1490 placed in OUTBUF. */
1491
1492 #define target_rcmd(command, outbuf) \
1493 (*current_target.to_rcmd) (&current_target, command, outbuf)
1494
1495
1496 /* Does the target include all of memory, or only part of it? This
1497 determines whether we look up the target chain for other parts of
1498 memory if this target can't satisfy a request. */
1499
1500 extern int target_has_all_memory_1 (void);
1501 #define target_has_all_memory target_has_all_memory_1 ()
1502
1503 /* Does the target include memory? (Dummy targets don't.) */
1504
1505 extern int target_has_memory_1 (void);
1506 #define target_has_memory target_has_memory_1 ()
1507
1508 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1509 we start a process.) */
1510
1511 extern int target_has_stack_1 (void);
1512 #define target_has_stack target_has_stack_1 ()
1513
1514 /* Does the target have registers? (Exec files don't.) */
1515
1516 extern int target_has_registers_1 (void);
1517 #define target_has_registers target_has_registers_1 ()
1518
1519 /* Does the target have execution? Can we make it jump (through
1520 hoops), or pop its stack a few times? This means that the current
1521 target is currently executing; for some targets, that's the same as
1522 whether or not the target is capable of execution, but there are
1523 also targets which can be current while not executing. In that
1524 case this will become true after target_create_inferior or
1525 target_attach. */
1526
1527 extern int target_has_execution_1 (ptid_t);
1528
1529 /* Like target_has_execution_1, but always passes inferior_ptid. */
1530
1531 extern int target_has_execution_current (void);
1532
1533 #define target_has_execution target_has_execution_current ()
1534
1535 /* Default implementations for process_stratum targets. Return true
1536 if there's a selected inferior, false otherwise. */
1537
1538 extern int default_child_has_all_memory (struct target_ops *ops);
1539 extern int default_child_has_memory (struct target_ops *ops);
1540 extern int default_child_has_stack (struct target_ops *ops);
1541 extern int default_child_has_registers (struct target_ops *ops);
1542 extern int default_child_has_execution (struct target_ops *ops,
1543 ptid_t the_ptid);
1544
1545 /* Can the target support the debugger control of thread execution?
1546 Can it lock the thread scheduler? */
1547
1548 #define target_can_lock_scheduler \
1549 (current_target.to_has_thread_control & tc_schedlock)
1550
1551 /* Should the target enable async mode if it is supported? Temporary
1552 cludge until async mode is a strict superset of sync mode. */
1553 extern int target_async_permitted;
1554
1555 /* Can the target support asynchronous execution? */
1556 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1557
1558 /* Is the target in asynchronous execution mode? */
1559 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1560
1561 int target_supports_non_stop (void);
1562
1563 /* Put the target in async mode with the specified callback function. */
1564 #define target_async(CALLBACK,CONTEXT) \
1565 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1566
1567 #define target_execution_direction() \
1568 (current_target.to_execution_direction (&current_target))
1569
1570 /* Converts a process id to a string. Usually, the string just contains
1571 `process xyz', but on some systems it may contain
1572 `process xyz thread abc'. */
1573
1574 extern char *target_pid_to_str (ptid_t ptid);
1575
1576 extern char *normal_pid_to_str (ptid_t ptid);
1577
1578 /* Return a short string describing extra information about PID,
1579 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1580 is okay. */
1581
1582 #define target_extra_thread_info(TP) \
1583 (current_target.to_extra_thread_info (&current_target, TP))
1584
1585 /* Return the thread's name. A NULL result means that the target
1586 could not determine this thread's name. */
1587
1588 extern char *target_thread_name (struct thread_info *);
1589
1590 /* Attempts to find the pathname of the executable file
1591 that was run to create a specified process.
1592
1593 The process PID must be stopped when this operation is used.
1594
1595 If the executable file cannot be determined, NULL is returned.
1596
1597 Else, a pointer to a character string containing the pathname
1598 is returned. This string should be copied into a buffer by
1599 the client if the string will not be immediately used, or if
1600 it must persist. */
1601
1602 #define target_pid_to_exec_file(pid) \
1603 (current_target.to_pid_to_exec_file) (&current_target, pid)
1604
1605 /* See the to_thread_architecture description in struct target_ops. */
1606
1607 #define target_thread_architecture(ptid) \
1608 (current_target.to_thread_architecture (&current_target, ptid))
1609
1610 /*
1611 * Iterator function for target memory regions.
1612 * Calls a callback function once for each memory region 'mapped'
1613 * in the child process. Defined as a simple macro rather than
1614 * as a function macro so that it can be tested for nullity.
1615 */
1616
1617 #define target_find_memory_regions(FUNC, DATA) \
1618 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1619
1620 /*
1621 * Compose corefile .note section.
1622 */
1623
1624 #define target_make_corefile_notes(BFD, SIZE_P) \
1625 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1626
1627 /* Bookmark interfaces. */
1628 #define target_get_bookmark(ARGS, FROM_TTY) \
1629 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1630
1631 #define target_goto_bookmark(ARG, FROM_TTY) \
1632 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1633
1634 /* Hardware watchpoint interfaces. */
1635
1636 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1637 write). Only the INFERIOR_PTID task is being queried. */
1638
1639 #define target_stopped_by_watchpoint() \
1640 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1641
1642 /* Non-zero if we have steppable watchpoints */
1643
1644 #define target_have_steppable_watchpoint \
1645 (current_target.to_have_steppable_watchpoint)
1646
1647 /* Non-zero if we have continuable watchpoints */
1648
1649 #define target_have_continuable_watchpoint \
1650 (current_target.to_have_continuable_watchpoint)
1651
1652 /* Provide defaults for hardware watchpoint functions. */
1653
1654 /* If the *_hw_beakpoint functions have not been defined
1655 elsewhere use the definitions in the target vector. */
1656
1657 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1658 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1659 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1660 (including this one?). OTHERTYPE is who knows what... */
1661
1662 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1663 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1664 TYPE, CNT, OTHERTYPE);
1665
1666 /* Returns the number of debug registers needed to watch the given
1667 memory region, or zero if not supported. */
1668
1669 #define target_region_ok_for_hw_watchpoint(addr, len) \
1670 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1671 addr, len)
1672
1673
1674 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1675 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1676 COND is the expression for its condition, or NULL if there's none.
1677 Returns 0 for success, 1 if the watchpoint type is not supported,
1678 -1 for failure. */
1679
1680 #define target_insert_watchpoint(addr, len, type, cond) \
1681 (*current_target.to_insert_watchpoint) (&current_target, \
1682 addr, len, type, cond)
1683
1684 #define target_remove_watchpoint(addr, len, type, cond) \
1685 (*current_target.to_remove_watchpoint) (&current_target, \
1686 addr, len, type, cond)
1687
1688 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1689 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1690 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1691 masked watchpoints are not supported, -1 for failure. */
1692
1693 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1694
1695 /* Remove a masked watchpoint at ADDR with the mask MASK.
1696 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1697 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1698 for failure. */
1699
1700 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1701
1702 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1703 the target machine. Returns 0 for success, and returns non-zero or
1704 throws an error (with a detailed failure reason error code and
1705 message) otherwise. */
1706
1707 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1708 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1709 gdbarch, bp_tgt)
1710
1711 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1712 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1713 gdbarch, bp_tgt)
1714
1715 /* Return number of debug registers needed for a ranged breakpoint,
1716 or -1 if ranged breakpoints are not supported. */
1717
1718 extern int target_ranged_break_num_registers (void);
1719
1720 /* Return non-zero if target knows the data address which triggered this
1721 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1722 INFERIOR_PTID task is being queried. */
1723 #define target_stopped_data_address(target, addr_p) \
1724 (*target.to_stopped_data_address) (target, addr_p)
1725
1726 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1727 LENGTH bytes beginning at START. */
1728 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1729 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1730
1731 /* Return non-zero if the target is capable of using hardware to evaluate
1732 the condition expression. In this case, if the condition is false when
1733 the watched memory location changes, execution may continue without the
1734 debugger being notified.
1735
1736 Due to limitations in the hardware implementation, it may be capable of
1737 avoiding triggering the watchpoint in some cases where the condition
1738 expression is false, but may report some false positives as well.
1739 For this reason, GDB will still evaluate the condition expression when
1740 the watchpoint triggers. */
1741 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1742 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1743 addr, len, type, cond)
1744
1745 /* Return number of debug registers needed for a masked watchpoint,
1746 -1 if masked watchpoints are not supported or -2 if the given address
1747 and mask combination cannot be used. */
1748
1749 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1750
1751 /* Target can execute in reverse? */
1752 #define target_can_execute_reverse \
1753 (current_target.to_can_execute_reverse ? \
1754 current_target.to_can_execute_reverse (&current_target) : 0)
1755
1756 extern const struct target_desc *target_read_description (struct target_ops *);
1757
1758 #define target_get_ada_task_ptid(lwp, tid) \
1759 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1760
1761 /* Utility implementation of searching memory. */
1762 extern int simple_search_memory (struct target_ops* ops,
1763 CORE_ADDR start_addr,
1764 ULONGEST search_space_len,
1765 const gdb_byte *pattern,
1766 ULONGEST pattern_len,
1767 CORE_ADDR *found_addrp);
1768
1769 /* Main entry point for searching memory. */
1770 extern int target_search_memory (CORE_ADDR start_addr,
1771 ULONGEST search_space_len,
1772 const gdb_byte *pattern,
1773 ULONGEST pattern_len,
1774 CORE_ADDR *found_addrp);
1775
1776 /* Target file operations. */
1777
1778 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1779 target file descriptor, or -1 if an error occurs (and set
1780 *TARGET_ERRNO). */
1781 extern int target_fileio_open (const char *filename, int flags, int mode,
1782 int *target_errno);
1783
1784 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1785 Return the number of bytes written, or -1 if an error occurs
1786 (and set *TARGET_ERRNO). */
1787 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1788 ULONGEST offset, int *target_errno);
1789
1790 /* Read up to LEN bytes FD on the target into READ_BUF.
1791 Return the number of bytes read, or -1 if an error occurs
1792 (and set *TARGET_ERRNO). */
1793 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1794 ULONGEST offset, int *target_errno);
1795
1796 /* Close FD on the target. Return 0, or -1 if an error occurs
1797 (and set *TARGET_ERRNO). */
1798 extern int target_fileio_close (int fd, int *target_errno);
1799
1800 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1801 occurs (and set *TARGET_ERRNO). */
1802 extern int target_fileio_unlink (const char *filename, int *target_errno);
1803
1804 /* Read value of symbolic link FILENAME on the target. Return a
1805 null-terminated string allocated via xmalloc, or NULL if an error
1806 occurs (and set *TARGET_ERRNO). */
1807 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1808
1809 /* Read target file FILENAME. The return value will be -1 if the transfer
1810 fails or is not supported; 0 if the object is empty; or the length
1811 of the object otherwise. If a positive value is returned, a
1812 sufficiently large buffer will be allocated using xmalloc and
1813 returned in *BUF_P containing the contents of the object.
1814
1815 This method should be used for objects sufficiently small to store
1816 in a single xmalloc'd buffer, when no fixed bound on the object's
1817 size is known in advance. */
1818 extern LONGEST target_fileio_read_alloc (const char *filename,
1819 gdb_byte **buf_p);
1820
1821 /* Read target file FILENAME. The result is NUL-terminated and
1822 returned as a string, allocated using xmalloc. If an error occurs
1823 or the transfer is unsupported, NULL is returned. Empty objects
1824 are returned as allocated but empty strings. A warning is issued
1825 if the result contains any embedded NUL bytes. */
1826 extern char *target_fileio_read_stralloc (const char *filename);
1827
1828
1829 /* Tracepoint-related operations. */
1830
1831 #define target_trace_init() \
1832 (*current_target.to_trace_init) (&current_target)
1833
1834 #define target_download_tracepoint(t) \
1835 (*current_target.to_download_tracepoint) (&current_target, t)
1836
1837 #define target_can_download_tracepoint() \
1838 (*current_target.to_can_download_tracepoint) (&current_target)
1839
1840 #define target_download_trace_state_variable(tsv) \
1841 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1842
1843 #define target_enable_tracepoint(loc) \
1844 (*current_target.to_enable_tracepoint) (&current_target, loc)
1845
1846 #define target_disable_tracepoint(loc) \
1847 (*current_target.to_disable_tracepoint) (&current_target, loc)
1848
1849 #define target_trace_start() \
1850 (*current_target.to_trace_start) (&current_target)
1851
1852 #define target_trace_set_readonly_regions() \
1853 (*current_target.to_trace_set_readonly_regions) (&current_target)
1854
1855 #define target_get_trace_status(ts) \
1856 (*current_target.to_get_trace_status) (&current_target, ts)
1857
1858 #define target_get_tracepoint_status(tp,utp) \
1859 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1860
1861 #define target_trace_stop() \
1862 (*current_target.to_trace_stop) (&current_target)
1863
1864 #define target_trace_find(type,num,addr1,addr2,tpp) \
1865 (*current_target.to_trace_find) (&current_target, \
1866 (type), (num), (addr1), (addr2), (tpp))
1867
1868 #define target_get_trace_state_variable_value(tsv,val) \
1869 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1870 (tsv), (val))
1871
1872 #define target_save_trace_data(filename) \
1873 (*current_target.to_save_trace_data) (&current_target, filename)
1874
1875 #define target_upload_tracepoints(utpp) \
1876 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1877
1878 #define target_upload_trace_state_variables(utsvp) \
1879 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1880
1881 #define target_get_raw_trace_data(buf,offset,len) \
1882 (*current_target.to_get_raw_trace_data) (&current_target, \
1883 (buf), (offset), (len))
1884
1885 #define target_get_min_fast_tracepoint_insn_len() \
1886 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1887
1888 #define target_set_disconnected_tracing(val) \
1889 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1890
1891 #define target_set_circular_trace_buffer(val) \
1892 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1893
1894 #define target_set_trace_buffer_size(val) \
1895 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1896
1897 #define target_set_trace_notes(user,notes,stopnotes) \
1898 (*current_target.to_set_trace_notes) (&current_target, \
1899 (user), (notes), (stopnotes))
1900
1901 #define target_get_tib_address(ptid, addr) \
1902 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1903
1904 #define target_set_permissions() \
1905 (*current_target.to_set_permissions) (&current_target)
1906
1907 #define target_static_tracepoint_marker_at(addr, marker) \
1908 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1909 addr, marker)
1910
1911 #define target_static_tracepoint_markers_by_strid(marker_id) \
1912 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1913 marker_id)
1914
1915 #define target_traceframe_info() \
1916 (*current_target.to_traceframe_info) (&current_target)
1917
1918 #define target_use_agent(use) \
1919 (*current_target.to_use_agent) (&current_target, use)
1920
1921 #define target_can_use_agent() \
1922 (*current_target.to_can_use_agent) (&current_target)
1923
1924 #define target_augmented_libraries_svr4_read() \
1925 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1926
1927 /* Command logging facility. */
1928
1929 #define target_log_command(p) \
1930 do \
1931 if (current_target.to_log_command) \
1932 (*current_target.to_log_command) (&current_target, \
1933 p); \
1934 while (0)
1935
1936
1937 extern int target_core_of_thread (ptid_t ptid);
1938
1939 /* See to_get_unwinder in struct target_ops. */
1940 extern const struct frame_unwind *target_get_unwinder (void);
1941
1942 /* See to_get_tailcall_unwinder in struct target_ops. */
1943 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1944
1945 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1946 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1947 if there's a mismatch, and -1 if an error is encountered while
1948 reading memory. Throws an error if the functionality is found not
1949 to be supported by the current target. */
1950 int target_verify_memory (const gdb_byte *data,
1951 CORE_ADDR memaddr, ULONGEST size);
1952
1953 /* Routines for maintenance of the target structures...
1954
1955 complete_target_initialization: Finalize a target_ops by filling in
1956 any fields needed by the target implementation.
1957
1958 add_target: Add a target to the list of all possible targets.
1959
1960 push_target: Make this target the top of the stack of currently used
1961 targets, within its particular stratum of the stack. Result
1962 is 0 if now atop the stack, nonzero if not on top (maybe
1963 should warn user).
1964
1965 unpush_target: Remove this from the stack of currently used targets,
1966 no matter where it is on the list. Returns 0 if no
1967 change, 1 if removed from stack. */
1968
1969 extern void add_target (struct target_ops *);
1970
1971 extern void add_target_with_completer (struct target_ops *t,
1972 completer_ftype *completer);
1973
1974 extern void complete_target_initialization (struct target_ops *t);
1975
1976 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1977 for maintaining backwards compatibility when renaming targets. */
1978
1979 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1980
1981 extern void push_target (struct target_ops *);
1982
1983 extern int unpush_target (struct target_ops *);
1984
1985 extern void target_pre_inferior (int);
1986
1987 extern void target_preopen (int);
1988
1989 /* Does whatever cleanup is required to get rid of all pushed targets. */
1990 extern void pop_all_targets (void);
1991
1992 /* Like pop_all_targets, but pops only targets whose stratum is
1993 strictly above ABOVE_STRATUM. */
1994 extern void pop_all_targets_above (enum strata above_stratum);
1995
1996 extern int target_is_pushed (struct target_ops *t);
1997
1998 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1999 CORE_ADDR offset);
2000
2001 /* Struct target_section maps address ranges to file sections. It is
2002 mostly used with BFD files, but can be used without (e.g. for handling
2003 raw disks, or files not in formats handled by BFD). */
2004
2005 struct target_section
2006 {
2007 CORE_ADDR addr; /* Lowest address in section */
2008 CORE_ADDR endaddr; /* 1+highest address in section */
2009
2010 struct bfd_section *the_bfd_section;
2011
2012 /* The "owner" of the section.
2013 It can be any unique value. It is set by add_target_sections
2014 and used by remove_target_sections.
2015 For example, for executables it is a pointer to exec_bfd and
2016 for shlibs it is the so_list pointer. */
2017 void *owner;
2018 };
2019
2020 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2021
2022 struct target_section_table
2023 {
2024 struct target_section *sections;
2025 struct target_section *sections_end;
2026 };
2027
2028 /* Return the "section" containing the specified address. */
2029 struct target_section *target_section_by_addr (struct target_ops *target,
2030 CORE_ADDR addr);
2031
2032 /* Return the target section table this target (or the targets
2033 beneath) currently manipulate. */
2034
2035 extern struct target_section_table *target_get_section_table
2036 (struct target_ops *target);
2037
2038 /* From mem-break.c */
2039
2040 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2041 struct bp_target_info *);
2042
2043 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2044 struct bp_target_info *);
2045
2046 extern int default_memory_remove_breakpoint (struct gdbarch *,
2047 struct bp_target_info *);
2048
2049 extern int default_memory_insert_breakpoint (struct gdbarch *,
2050 struct bp_target_info *);
2051
2052
2053 /* From target.c */
2054
2055 extern void initialize_targets (void);
2056
2057 extern void noprocess (void) ATTRIBUTE_NORETURN;
2058
2059 extern void target_require_runnable (void);
2060
2061 extern void find_default_attach (struct target_ops *, char *, int);
2062
2063 extern void find_default_create_inferior (struct target_ops *,
2064 char *, char *, char **, int);
2065
2066 extern struct target_ops *find_target_beneath (struct target_ops *);
2067
2068 /* Find the target at STRATUM. If no target is at that stratum,
2069 return NULL. */
2070
2071 struct target_ops *find_target_at (enum strata stratum);
2072
2073 /* Read OS data object of type TYPE from the target, and return it in
2074 XML format. The result is NUL-terminated and returned as a string,
2075 allocated using xmalloc. If an error occurs or the transfer is
2076 unsupported, NULL is returned. Empty objects are returned as
2077 allocated but empty strings. */
2078
2079 extern char *target_get_osdata (const char *type);
2080
2081 \f
2082 /* Stuff that should be shared among the various remote targets. */
2083
2084 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2085 information (higher values, more information). */
2086 extern int remote_debug;
2087
2088 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2089 extern int baud_rate;
2090 /* Timeout limit for response from target. */
2091 extern int remote_timeout;
2092
2093 \f
2094
2095 /* Set the show memory breakpoints mode to show, and installs a cleanup
2096 to restore it back to the current value. */
2097 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2098
2099 extern int may_write_registers;
2100 extern int may_write_memory;
2101 extern int may_insert_breakpoints;
2102 extern int may_insert_tracepoints;
2103 extern int may_insert_fast_tracepoints;
2104 extern int may_stop;
2105
2106 extern void update_target_permissions (void);
2107
2108 \f
2109 /* Imported from machine dependent code. */
2110
2111 /* Blank target vector entries are initialized to target_ignore. */
2112 void target_ignore (void);
2113
2114 /* See to_supports_btrace in struct target_ops. */
2115 #define target_supports_btrace() \
2116 (current_target.to_supports_btrace (&current_target))
2117
2118 /* See to_enable_btrace in struct target_ops. */
2119 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2120
2121 /* See to_disable_btrace in struct target_ops. */
2122 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2123
2124 /* See to_teardown_btrace in struct target_ops. */
2125 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2126
2127 /* See to_read_btrace in struct target_ops. */
2128 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2129 struct btrace_target_info *,
2130 enum btrace_read_type);
2131
2132 /* See to_stop_recording in struct target_ops. */
2133 extern void target_stop_recording (void);
2134
2135 /* See to_info_record in struct target_ops. */
2136 extern void target_info_record (void);
2137
2138 /* See to_save_record in struct target_ops. */
2139 extern void target_save_record (const char *filename);
2140
2141 /* Query if the target supports deleting the execution log. */
2142 extern int target_supports_delete_record (void);
2143
2144 /* See to_delete_record in struct target_ops. */
2145 extern void target_delete_record (void);
2146
2147 /* See to_record_is_replaying in struct target_ops. */
2148 extern int target_record_is_replaying (void);
2149
2150 /* See to_goto_record_begin in struct target_ops. */
2151 extern void target_goto_record_begin (void);
2152
2153 /* See to_goto_record_end in struct target_ops. */
2154 extern void target_goto_record_end (void);
2155
2156 /* See to_goto_record in struct target_ops. */
2157 extern void target_goto_record (ULONGEST insn);
2158
2159 /* See to_insn_history. */
2160 extern void target_insn_history (int size, int flags);
2161
2162 /* See to_insn_history_from. */
2163 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2164
2165 /* See to_insn_history_range. */
2166 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2167
2168 /* See to_call_history. */
2169 extern void target_call_history (int size, int flags);
2170
2171 /* See to_call_history_from. */
2172 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2173
2174 /* See to_call_history_range. */
2175 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2176
2177 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2178 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2179 struct gdbarch *gdbarch);
2180
2181 /* See to_decr_pc_after_break. */
2182 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2183
2184 #endif /* !defined (TARGET_H) */
This page took 0.077375 seconds and 4 git commands to generate.