change delegation for to_read_description
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int)
413 TARGET_DEFAULT_NORETURN (tcomplain ());
414 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
415 TARGET_DEFAULT_NORETURN (noprocess ());
416 ptid_t (*to_wait) (struct target_ops *,
417 ptid_t, struct target_waitstatus *, int)
418 TARGET_DEFAULT_NORETURN (noprocess ());
419 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_IGNORE ();
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
424 TARGET_DEFAULT_NORETURN (noprocess ());
425
426 /* Transfer LEN bytes of memory between GDB address MYADDR and
427 target address MEMADDR. If WRITE, transfer them to the target, else
428 transfer them from the target. TARGET is the target from which we
429 get this function.
430
431 Return value, N, is one of the following:
432
433 0 means that we can't handle this. If errno has been set, it is the
434 error which prevented us from doing it (FIXME: What about bfd_error?).
435
436 positive (call it N) means that we have transferred N bytes
437 starting at MEMADDR. We might be able to handle more bytes
438 beyond this length, but no promises.
439
440 negative (call its absolute value N) means that we cannot
441 transfer right at MEMADDR, but we could transfer at least
442 something at MEMADDR + N.
443
444 NOTE: cagney/2004-10-01: This has been entirely superseeded by
445 to_xfer_partial and inferior inheritance. */
446
447 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
448 int len, int write,
449 struct mem_attrib *attrib,
450 struct target_ops *target);
451
452 void (*to_files_info) (struct target_ops *)
453 TARGET_DEFAULT_IGNORE ();
454 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
455 struct bp_target_info *)
456 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
457 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
458 struct bp_target_info *)
459 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
460 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
461 TARGET_DEFAULT_RETURN (0);
462 int (*to_ranged_break_num_registers) (struct target_ops *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_insert_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467 int (*to_remove_hw_breakpoint) (struct target_ops *,
468 struct gdbarch *, struct bp_target_info *)
469 TARGET_DEFAULT_RETURN (-1);
470
471 /* Documentation of what the two routines below are expected to do is
472 provided with the corresponding target_* macros. */
473 int (*to_remove_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476 int (*to_insert_watchpoint) (struct target_ops *,
477 CORE_ADDR, int, int, struct expression *)
478 TARGET_DEFAULT_RETURN (-1);
479
480 int (*to_insert_mask_watchpoint) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR, int)
482 TARGET_DEFAULT_RETURN (1);
483 int (*to_remove_mask_watchpoint) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR, int)
485 TARGET_DEFAULT_RETURN (1);
486 int (*to_stopped_by_watchpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
488 int to_have_steppable_watchpoint;
489 int to_have_continuable_watchpoint;
490 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
491 TARGET_DEFAULT_RETURN (0);
492 int (*to_watchpoint_addr_within_range) (struct target_ops *,
493 CORE_ADDR, CORE_ADDR, int)
494 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
495
496 /* Documentation of this routine is provided with the corresponding
497 target_* macro. */
498 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
499 CORE_ADDR, int)
500 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
501
502 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
503 CORE_ADDR, int, int,
504 struct expression *)
505 TARGET_DEFAULT_RETURN (0);
506 int (*to_masked_watch_num_registers) (struct target_ops *,
507 CORE_ADDR, CORE_ADDR)
508 TARGET_DEFAULT_RETURN (-1);
509 void (*to_terminal_init) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_inferior) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_ours_for_output) (struct target_ops *)
514 TARGET_DEFAULT_IGNORE ();
515 void (*to_terminal_ours) (struct target_ops *)
516 TARGET_DEFAULT_IGNORE ();
517 void (*to_terminal_save_ours) (struct target_ops *)
518 TARGET_DEFAULT_IGNORE ();
519 void (*to_terminal_info) (struct target_ops *, const char *, int)
520 TARGET_DEFAULT_FUNC (default_terminal_info);
521 void (*to_kill) (struct target_ops *)
522 TARGET_DEFAULT_NORETURN (noprocess ());
523 void (*to_load) (struct target_ops *, char *, int)
524 TARGET_DEFAULT_NORETURN (tcomplain ());
525 void (*to_create_inferior) (struct target_ops *,
526 char *, char *, char **, int);
527 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
528 TARGET_DEFAULT_IGNORE ();
529 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_follow_fork) (struct target_ops *, int, int)
538 TARGET_DEFAULT_FUNC (default_follow_fork);
539 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
542 TARGET_DEFAULT_RETURN (1);
543 int (*to_set_syscall_catchpoint) (struct target_ops *,
544 int, int, int, int, int *)
545 TARGET_DEFAULT_RETURN (1);
546 int (*to_has_exited) (struct target_ops *, int, int, int *)
547 TARGET_DEFAULT_RETURN (0);
548 void (*to_mourn_inferior) (struct target_ops *)
549 TARGET_DEFAULT_FUNC (default_mourn_inferior);
550 int (*to_can_run) (struct target_ops *)
551 TARGET_DEFAULT_RETURN (0);
552
553 /* Documentation of this routine is provided with the corresponding
554 target_* macro. */
555 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
556 TARGET_DEFAULT_IGNORE ();
557
558 /* Documentation of this routine is provided with the
559 corresponding target_* function. */
560 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
561 TARGET_DEFAULT_IGNORE ();
562
563 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
564 TARGET_DEFAULT_RETURN (0);
565 void (*to_find_new_threads) (struct target_ops *)
566 TARGET_DEFAULT_IGNORE ();
567 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
568 TARGET_DEFAULT_FUNC (default_pid_to_str);
569 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (0);
571 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
572 TARGET_DEFAULT_RETURN (0);
573 void (*to_stop) (struct target_ops *, ptid_t)
574 TARGET_DEFAULT_IGNORE ();
575 void (*to_rcmd) (struct target_ops *,
576 char *command, struct ui_file *output)
577 TARGET_DEFAULT_FUNC (default_rcmd);
578 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
579 TARGET_DEFAULT_RETURN (0);
580 void (*to_log_command) (struct target_ops *, const char *)
581 TARGET_DEFAULT_IGNORE ();
582 struct target_section_table *(*to_get_section_table) (struct target_ops *)
583 TARGET_DEFAULT_RETURN (0);
584 enum strata to_stratum;
585 int (*to_has_all_memory) (struct target_ops *);
586 int (*to_has_memory) (struct target_ops *);
587 int (*to_has_stack) (struct target_ops *);
588 int (*to_has_registers) (struct target_ops *);
589 int (*to_has_execution) (struct target_ops *, ptid_t);
590 int to_has_thread_control; /* control thread execution */
591 int to_attach_no_wait;
592 /* ASYNC target controls */
593 int (*to_can_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_can_async_p);
595 int (*to_is_async_p) (struct target_ops *)
596 TARGET_DEFAULT_FUNC (find_default_is_async_p);
597 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
598 TARGET_DEFAULT_NORETURN (tcomplain ());
599 int (*to_supports_non_stop) (struct target_ops *);
600 /* find_memory_regions support method for gcore */
601 int (*to_find_memory_regions) (struct target_ops *,
602 find_memory_region_ftype func, void *data)
603 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
604 /* make_corefile_notes support method for gcore */
605 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
606 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
607 /* get_bookmark support method for bookmarks */
608 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
609 TARGET_DEFAULT_NORETURN (tcomplain ());
610 /* goto_bookmark support method for bookmarks */
611 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
612 TARGET_DEFAULT_NORETURN (tcomplain ());
613 /* Return the thread-local address at OFFSET in the
614 thread-local storage for the thread PTID and the shared library
615 or executable file given by OBJFILE. If that block of
616 thread-local storage hasn't been allocated yet, this function
617 may return an error. */
618 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
619 ptid_t ptid,
620 CORE_ADDR load_module_addr,
621 CORE_ADDR offset);
622
623 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
624 OBJECT. The OFFSET, for a seekable object, specifies the
625 starting point. The ANNEX can be used to provide additional
626 data-specific information to the target.
627
628 Return the transferred status, error or OK (an
629 'enum target_xfer_status' value). Save the number of bytes
630 actually transferred in *XFERED_LEN if transfer is successful
631 (TARGET_XFER_OK) or the number unavailable bytes if the requested
632 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
633 smaller than LEN does not indicate the end of the object, only
634 the end of the transfer; higher level code should continue
635 transferring if desired. This is handled in target.c.
636
637 The interface does not support a "retry" mechanism. Instead it
638 assumes that at least one byte will be transfered on each
639 successful call.
640
641 NOTE: cagney/2003-10-17: The current interface can lead to
642 fragmented transfers. Lower target levels should not implement
643 hacks, such as enlarging the transfer, in an attempt to
644 compensate for this. Instead, the target stack should be
645 extended so that it implements supply/collect methods and a
646 look-aside object cache. With that available, the lowest
647 target can safely and freely "push" data up the stack.
648
649 See target_read and target_write for more information. One,
650 and only one, of readbuf or writebuf must be non-NULL. */
651
652 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
653 enum target_object object,
654 const char *annex,
655 gdb_byte *readbuf,
656 const gdb_byte *writebuf,
657 ULONGEST offset, ULONGEST len,
658 ULONGEST *xfered_len)
659 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
660
661 /* Returns the memory map for the target. A return value of NULL
662 means that no memory map is available. If a memory address
663 does not fall within any returned regions, it's assumed to be
664 RAM. The returned memory regions should not overlap.
665
666 The order of regions does not matter; target_memory_map will
667 sort regions by starting address. For that reason, this
668 function should not be called directly except via
669 target_memory_map.
670
671 This method should not cache data; if the memory map could
672 change unexpectedly, it should be invalidated, and higher
673 layers will re-fetch it. */
674 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
675 TARGET_DEFAULT_RETURN (0);
676
677 /* Erases the region of flash memory starting at ADDRESS, of
678 length LENGTH.
679
680 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
681 on flash block boundaries, as reported by 'to_memory_map'. */
682 void (*to_flash_erase) (struct target_ops *,
683 ULONGEST address, LONGEST length)
684 TARGET_DEFAULT_NORETURN (tcomplain ());
685
686 /* Finishes a flash memory write sequence. After this operation
687 all flash memory should be available for writing and the result
688 of reading from areas written by 'to_flash_write' should be
689 equal to what was written. */
690 void (*to_flash_done) (struct target_ops *)
691 TARGET_DEFAULT_NORETURN (tcomplain ());
692
693 /* Describe the architecture-specific features of this target. If
694 OPS doesn't have a description, this should delegate to the
695 "beneath" target. Returns the description found, or NULL if no
696 description was available. */
697 const struct target_desc *(*to_read_description) (struct target_ops *ops)
698 TARGET_DEFAULT_RETURN (0);
699
700 /* Build the PTID of the thread on which a given task is running,
701 based on LWP and THREAD. These values are extracted from the
702 task Private_Data section of the Ada Task Control Block, and
703 their interpretation depends on the target. */
704 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
705 long lwp, long thread)
706 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
707
708 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
709 Return 0 if *READPTR is already at the end of the buffer.
710 Return -1 if there is insufficient buffer for a whole entry.
711 Return 1 if an entry was read into *TYPEP and *VALP. */
712 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
713 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
714 TARGET_DEFAULT_FUNC (default_auxv_parse);
715
716 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
717 sequence of bytes in PATTERN with length PATTERN_LEN.
718
719 The result is 1 if found, 0 if not found, and -1 if there was an error
720 requiring halting of the search (e.g. memory read error).
721 If the pattern is found the address is recorded in FOUND_ADDRP. */
722 int (*to_search_memory) (struct target_ops *ops,
723 CORE_ADDR start_addr, ULONGEST search_space_len,
724 const gdb_byte *pattern, ULONGEST pattern_len,
725 CORE_ADDR *found_addrp)
726 TARGET_DEFAULT_FUNC (default_search_memory);
727
728 /* Can target execute in reverse? */
729 int (*to_can_execute_reverse) (struct target_ops *)
730 TARGET_DEFAULT_RETURN (0);
731
732 /* The direction the target is currently executing. Must be
733 implemented on targets that support reverse execution and async
734 mode. The default simply returns forward execution. */
735 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
736 TARGET_DEFAULT_FUNC (default_execution_direction);
737
738 /* Does this target support debugging multiple processes
739 simultaneously? */
740 int (*to_supports_multi_process) (struct target_ops *)
741 TARGET_DEFAULT_RETURN (0);
742
743 /* Does this target support enabling and disabling tracepoints while a trace
744 experiment is running? */
745 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Does this target support disabling address space randomization? */
749 int (*to_supports_disable_randomization) (struct target_ops *);
750
751 /* Does this target support the tracenz bytecode for string collection? */
752 int (*to_supports_string_tracing) (struct target_ops *)
753 TARGET_DEFAULT_RETURN (0);
754
755 /* Does this target support evaluation of breakpoint conditions on its
756 end? */
757 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
758 TARGET_DEFAULT_RETURN (0);
759
760 /* Does this target support evaluation of breakpoint commands on its
761 end? */
762 int (*to_can_run_breakpoint_commands) (struct target_ops *)
763 TARGET_DEFAULT_RETURN (0);
764
765 /* Determine current architecture of thread PTID.
766
767 The target is supposed to determine the architecture of the code where
768 the target is currently stopped at (on Cell, if a target is in spu_run,
769 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
770 This is architecture used to perform decr_pc_after_break adjustment,
771 and also determines the frame architecture of the innermost frame.
772 ptrace operations need to operate according to target_gdbarch ().
773
774 The default implementation always returns target_gdbarch (). */
775 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
776 TARGET_DEFAULT_FUNC (default_thread_architecture);
777
778 /* Determine current address space of thread PTID.
779
780 The default implementation always returns the inferior's
781 address space. */
782 struct address_space *(*to_thread_address_space) (struct target_ops *,
783 ptid_t);
784
785 /* Target file operations. */
786
787 /* Open FILENAME on the target, using FLAGS and MODE. Return a
788 target file descriptor, or -1 if an error occurs (and set
789 *TARGET_ERRNO). */
790 int (*to_fileio_open) (struct target_ops *,
791 const char *filename, int flags, int mode,
792 int *target_errno);
793
794 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
795 Return the number of bytes written, or -1 if an error occurs
796 (and set *TARGET_ERRNO). */
797 int (*to_fileio_pwrite) (struct target_ops *,
798 int fd, const gdb_byte *write_buf, int len,
799 ULONGEST offset, int *target_errno);
800
801 /* Read up to LEN bytes FD on the target into READ_BUF.
802 Return the number of bytes read, or -1 if an error occurs
803 (and set *TARGET_ERRNO). */
804 int (*to_fileio_pread) (struct target_ops *,
805 int fd, gdb_byte *read_buf, int len,
806 ULONGEST offset, int *target_errno);
807
808 /* Close FD on the target. Return 0, or -1 if an error occurs
809 (and set *TARGET_ERRNO). */
810 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
811
812 /* Unlink FILENAME on the target. Return 0, or -1 if an error
813 occurs (and set *TARGET_ERRNO). */
814 int (*to_fileio_unlink) (struct target_ops *,
815 const char *filename, int *target_errno);
816
817 /* Read value of symbolic link FILENAME on the target. Return a
818 null-terminated string allocated via xmalloc, or NULL if an error
819 occurs (and set *TARGET_ERRNO). */
820 char *(*to_fileio_readlink) (struct target_ops *,
821 const char *filename, int *target_errno);
822
823
824 /* Implement the "info proc" command. */
825 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
826
827 /* Tracepoint-related operations. */
828
829 /* Prepare the target for a tracing run. */
830 void (*to_trace_init) (struct target_ops *)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Send full details of a tracepoint location to the target. */
834 void (*to_download_tracepoint) (struct target_ops *,
835 struct bp_location *location)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Is the target able to download tracepoint locations in current
839 state? */
840 int (*to_can_download_tracepoint) (struct target_ops *)
841 TARGET_DEFAULT_RETURN (0);
842
843 /* Send full details of a trace state variable to the target. */
844 void (*to_download_trace_state_variable) (struct target_ops *,
845 struct trace_state_variable *tsv)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Enable a tracepoint on the target. */
849 void (*to_enable_tracepoint) (struct target_ops *,
850 struct bp_location *location)
851 TARGET_DEFAULT_NORETURN (tcomplain ());
852
853 /* Disable a tracepoint on the target. */
854 void (*to_disable_tracepoint) (struct target_ops *,
855 struct bp_location *location)
856 TARGET_DEFAULT_NORETURN (tcomplain ());
857
858 /* Inform the target info of memory regions that are readonly
859 (such as text sections), and so it should return data from
860 those rather than look in the trace buffer. */
861 void (*to_trace_set_readonly_regions) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Start a trace run. */
865 void (*to_trace_start) (struct target_ops *)
866 TARGET_DEFAULT_NORETURN (tcomplain ());
867
868 /* Get the current status of a tracing run. */
869 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
870 TARGET_DEFAULT_RETURN (-1);
871
872 void (*to_get_tracepoint_status) (struct target_ops *,
873 struct breakpoint *tp,
874 struct uploaded_tp *utp)
875 TARGET_DEFAULT_NORETURN (tcomplain ());
876
877 /* Stop a trace run. */
878 void (*to_trace_stop) (struct target_ops *)
879 TARGET_DEFAULT_NORETURN (tcomplain ());
880
881 /* Ask the target to find a trace frame of the given type TYPE,
882 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
883 number of the trace frame, and also the tracepoint number at
884 TPP. If no trace frame matches, return -1. May throw if the
885 operation fails. */
886 int (*to_trace_find) (struct target_ops *,
887 enum trace_find_type type, int num,
888 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
889 TARGET_DEFAULT_RETURN (-1);
890
891 /* Get the value of the trace state variable number TSV, returning
892 1 if the value is known and writing the value itself into the
893 location pointed to by VAL, else returning 0. */
894 int (*to_get_trace_state_variable_value) (struct target_ops *,
895 int tsv, LONGEST *val)
896 TARGET_DEFAULT_RETURN (0);
897
898 int (*to_save_trace_data) (struct target_ops *, const char *filename)
899 TARGET_DEFAULT_NORETURN (tcomplain ());
900
901 int (*to_upload_tracepoints) (struct target_ops *,
902 struct uploaded_tp **utpp)
903 TARGET_DEFAULT_RETURN (0);
904
905 int (*to_upload_trace_state_variables) (struct target_ops *,
906 struct uploaded_tsv **utsvp)
907 TARGET_DEFAULT_RETURN (0);
908
909 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
910 ULONGEST offset, LONGEST len)
911 TARGET_DEFAULT_NORETURN (tcomplain ());
912
913 /* Get the minimum length of instruction on which a fast tracepoint
914 may be set on the target. If this operation is unsupported,
915 return -1. If for some reason the minimum length cannot be
916 determined, return 0. */
917 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
918 TARGET_DEFAULT_RETURN (-1);
919
920 /* Set the target's tracing behavior in response to unexpected
921 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
922 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
923 TARGET_DEFAULT_IGNORE ();
924 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
925 TARGET_DEFAULT_IGNORE ();
926 /* Set the size of trace buffer in the target. */
927 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
928 TARGET_DEFAULT_IGNORE ();
929
930 /* Add/change textual notes about the trace run, returning 1 if
931 successful, 0 otherwise. */
932 int (*to_set_trace_notes) (struct target_ops *,
933 const char *user, const char *notes,
934 const char *stopnotes)
935 TARGET_DEFAULT_RETURN (0);
936
937 /* Return the processor core that thread PTID was last seen on.
938 This information is updated only when:
939 - update_thread_list is called
940 - thread stops
941 If the core cannot be determined -- either for the specified
942 thread, or right now, or in this debug session, or for this
943 target -- return -1. */
944 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
945 TARGET_DEFAULT_RETURN (-1);
946
947 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
948 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
949 a match, 0 if there's a mismatch, and -1 if an error is
950 encountered while reading memory. */
951 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
952 CORE_ADDR memaddr, ULONGEST size)
953 TARGET_DEFAULT_NORETURN (tcomplain ());
954
955 /* Return the address of the start of the Thread Information Block
956 a Windows OS specific feature. */
957 int (*to_get_tib_address) (struct target_ops *,
958 ptid_t ptid, CORE_ADDR *addr)
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Send the new settings of write permission variables. */
962 void (*to_set_permissions) (struct target_ops *)
963 TARGET_DEFAULT_IGNORE ();
964
965 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
966 with its details. Return 1 on success, 0 on failure. */
967 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
968 struct static_tracepoint_marker *marker)
969 TARGET_DEFAULT_RETURN (0);
970
971 /* Return a vector of all tracepoints markers string id ID, or all
972 markers if ID is NULL. */
973 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
974 TARGET_DEFAULT_NORETURN (tcomplain ());
975
976 /* Return a traceframe info object describing the current
977 traceframe's contents. If the target doesn't support
978 traceframe info, return NULL. If the current traceframe is not
979 selected (the current traceframe number is -1), the target can
980 choose to return either NULL or an empty traceframe info. If
981 NULL is returned, for example in remote target, GDB will read
982 from the live inferior. If an empty traceframe info is
983 returned, for example in tfile target, which means the
984 traceframe info is available, but the requested memory is not
985 available in it. GDB will try to see if the requested memory
986 is available in the read-only sections. This method should not
987 cache data; higher layers take care of caching, invalidating,
988 and re-fetching when necessary. */
989 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
990 TARGET_DEFAULT_RETURN (0);
991
992 /* Ask the target to use or not to use agent according to USE. Return 1
993 successful, 0 otherwise. */
994 int (*to_use_agent) (struct target_ops *, int use)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Is the target able to use agent in current state? */
998 int (*to_can_use_agent) (struct target_ops *)
999 TARGET_DEFAULT_RETURN (0);
1000
1001 /* Check whether the target supports branch tracing. */
1002 int (*to_supports_btrace) (struct target_ops *)
1003 TARGET_DEFAULT_RETURN (0);
1004
1005 /* Enable branch tracing for PTID and allocate a branch trace target
1006 information struct for reading and for disabling branch trace. */
1007 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1008 ptid_t ptid)
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Disable branch tracing and deallocate TINFO. */
1012 void (*to_disable_btrace) (struct target_ops *,
1013 struct btrace_target_info *tinfo)
1014 TARGET_DEFAULT_NORETURN (tcomplain ());
1015
1016 /* Disable branch tracing and deallocate TINFO. This function is similar
1017 to to_disable_btrace, except that it is called during teardown and is
1018 only allowed to perform actions that are safe. A counter-example would
1019 be attempting to talk to a remote target. */
1020 void (*to_teardown_btrace) (struct target_ops *,
1021 struct btrace_target_info *tinfo)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1025 DATA is cleared before new trace is added.
1026 The branch trace will start with the most recent block and continue
1027 towards older blocks. */
1028 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1029 VEC (btrace_block_s) **data,
1030 struct btrace_target_info *btinfo,
1031 enum btrace_read_type type)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Stop trace recording. */
1035 void (*to_stop_recording) (struct target_ops *)
1036 TARGET_DEFAULT_IGNORE ();
1037
1038 /* Print information about the recording. */
1039 void (*to_info_record) (struct target_ops *);
1040
1041 /* Save the recorded execution trace into a file. */
1042 void (*to_save_record) (struct target_ops *, const char *filename)
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Delete the recorded execution trace from the current position onwards. */
1046 void (*to_delete_record) (struct target_ops *)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Query if the record target is currently replaying. */
1050 int (*to_record_is_replaying) (struct target_ops *)
1051 TARGET_DEFAULT_RETURN (0);
1052
1053 /* Go to the begin of the execution trace. */
1054 void (*to_goto_record_begin) (struct target_ops *)
1055 TARGET_DEFAULT_NORETURN (tcomplain ());
1056
1057 /* Go to the end of the execution trace. */
1058 void (*to_goto_record_end) (struct target_ops *)
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1060
1061 /* Go to a specific location in the recorded execution trace. */
1062 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1063 TARGET_DEFAULT_NORETURN (tcomplain ());
1064
1065 /* Disassemble SIZE instructions in the recorded execution trace from
1066 the current position.
1067 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1068 disassemble SIZE succeeding instructions. */
1069 void (*to_insn_history) (struct target_ops *, int size, int flags)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Disassemble SIZE instructions in the recorded execution trace around
1073 FROM.
1074 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1075 disassemble SIZE instructions after FROM. */
1076 void (*to_insn_history_from) (struct target_ops *,
1077 ULONGEST from, int size, int flags)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Disassemble a section of the recorded execution trace from instruction
1081 BEGIN (inclusive) to instruction END (inclusive). */
1082 void (*to_insn_history_range) (struct target_ops *,
1083 ULONGEST begin, ULONGEST end, int flags)
1084 TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086 /* Print a function trace of the recorded execution trace.
1087 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1088 succeeding functions. */
1089 void (*to_call_history) (struct target_ops *, int size, int flags)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Print a function trace of the recorded execution trace starting
1093 at function FROM.
1094 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1095 SIZE functions after FROM. */
1096 void (*to_call_history_from) (struct target_ops *,
1097 ULONGEST begin, int size, int flags)
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Print a function trace of an execution trace section from function BEGIN
1101 (inclusive) to function END (inclusive). */
1102 void (*to_call_history_range) (struct target_ops *,
1103 ULONGEST begin, ULONGEST end, int flags)
1104 TARGET_DEFAULT_NORETURN (tcomplain ());
1105
1106 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1107 non-empty annex. */
1108 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1109 TARGET_DEFAULT_RETURN (0);
1110
1111 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1112 it is not used. */
1113 const struct frame_unwind *to_get_unwinder;
1114 const struct frame_unwind *to_get_tailcall_unwinder;
1115
1116 /* Return the number of bytes by which the PC needs to be decremented
1117 after executing a breakpoint instruction.
1118 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1119 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1120 struct gdbarch *gdbarch);
1121
1122 int to_magic;
1123 /* Need sub-structure for target machine related rather than comm related?
1124 */
1125 };
1126
1127 /* Magic number for checking ops size. If a struct doesn't end with this
1128 number, somebody changed the declaration but didn't change all the
1129 places that initialize one. */
1130
1131 #define OPS_MAGIC 3840
1132
1133 /* The ops structure for our "current" target process. This should
1134 never be NULL. If there is no target, it points to the dummy_target. */
1135
1136 extern struct target_ops current_target;
1137
1138 /* Define easy words for doing these operations on our current target. */
1139
1140 #define target_shortname (current_target.to_shortname)
1141 #define target_longname (current_target.to_longname)
1142
1143 /* Does whatever cleanup is required for a target that we are no
1144 longer going to be calling. This routine is automatically always
1145 called after popping the target off the target stack - the target's
1146 own methods are no longer available through the target vector.
1147 Closing file descriptors and freeing all memory allocated memory are
1148 typical things it should do. */
1149
1150 void target_close (struct target_ops *targ);
1151
1152 /* Attaches to a process on the target side. Arguments are as passed
1153 to the `attach' command by the user. This routine can be called
1154 when the target is not on the target-stack, if the target_can_run
1155 routine returns 1; in that case, it must push itself onto the stack.
1156 Upon exit, the target should be ready for normal operations, and
1157 should be ready to deliver the status of the process immediately
1158 (without waiting) to an upcoming target_wait call. */
1159
1160 void target_attach (char *, int);
1161
1162 /* Some targets don't generate traps when attaching to the inferior,
1163 or their target_attach implementation takes care of the waiting.
1164 These targets must set to_attach_no_wait. */
1165
1166 #define target_attach_no_wait \
1167 (current_target.to_attach_no_wait)
1168
1169 /* The target_attach operation places a process under debugger control,
1170 and stops the process.
1171
1172 This operation provides a target-specific hook that allows the
1173 necessary bookkeeping to be performed after an attach completes. */
1174 #define target_post_attach(pid) \
1175 (*current_target.to_post_attach) (&current_target, pid)
1176
1177 /* Takes a program previously attached to and detaches it.
1178 The program may resume execution (some targets do, some don't) and will
1179 no longer stop on signals, etc. We better not have left any breakpoints
1180 in the program or it'll die when it hits one. ARGS is arguments
1181 typed by the user (e.g. a signal to send the process). FROM_TTY
1182 says whether to be verbose or not. */
1183
1184 extern void target_detach (const char *, int);
1185
1186 /* Disconnect from the current target without resuming it (leaving it
1187 waiting for a debugger). */
1188
1189 extern void target_disconnect (char *, int);
1190
1191 /* Resume execution of the target process PTID (or a group of
1192 threads). STEP says whether to single-step or to run free; SIGGNAL
1193 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1194 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1195 PTID means `step/resume only this process id'. A wildcard PTID
1196 (all threads, or all threads of process) means `step/resume
1197 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1198 matches) resume with their 'thread->suspend.stop_signal' signal
1199 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1200 if in "no pass" state. */
1201
1202 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1203
1204 /* Wait for process pid to do something. PTID = -1 to wait for any
1205 pid to do something. Return pid of child, or -1 in case of error;
1206 store status through argument pointer STATUS. Note that it is
1207 _NOT_ OK to throw_exception() out of target_wait() without popping
1208 the debugging target from the stack; GDB isn't prepared to get back
1209 to the prompt with a debugging target but without the frame cache,
1210 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1211 options. */
1212
1213 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1214 int options);
1215
1216 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1217
1218 extern void target_fetch_registers (struct regcache *regcache, int regno);
1219
1220 /* Store at least register REGNO, or all regs if REGNO == -1.
1221 It can store as many registers as it wants to, so target_prepare_to_store
1222 must have been previously called. Calls error() if there are problems. */
1223
1224 extern void target_store_registers (struct regcache *regcache, int regs);
1225
1226 /* Get ready to modify the registers array. On machines which store
1227 individual registers, this doesn't need to do anything. On machines
1228 which store all the registers in one fell swoop, this makes sure
1229 that REGISTERS contains all the registers from the program being
1230 debugged. */
1231
1232 #define target_prepare_to_store(regcache) \
1233 (*current_target.to_prepare_to_store) (&current_target, regcache)
1234
1235 /* Determine current address space of thread PTID. */
1236
1237 struct address_space *target_thread_address_space (ptid_t);
1238
1239 /* Implement the "info proc" command. This returns one if the request
1240 was handled, and zero otherwise. It can also throw an exception if
1241 an error was encountered while attempting to handle the
1242 request. */
1243
1244 int target_info_proc (char *, enum info_proc_what);
1245
1246 /* Returns true if this target can debug multiple processes
1247 simultaneously. */
1248
1249 #define target_supports_multi_process() \
1250 (*current_target.to_supports_multi_process) (&current_target)
1251
1252 /* Returns true if this target can disable address space randomization. */
1253
1254 int target_supports_disable_randomization (void);
1255
1256 /* Returns true if this target can enable and disable tracepoints
1257 while a trace experiment is running. */
1258
1259 #define target_supports_enable_disable_tracepoint() \
1260 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1261
1262 #define target_supports_string_tracing() \
1263 (*current_target.to_supports_string_tracing) (&current_target)
1264
1265 /* Returns true if this target can handle breakpoint conditions
1266 on its end. */
1267
1268 #define target_supports_evaluation_of_breakpoint_conditions() \
1269 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1270
1271 /* Returns true if this target can handle breakpoint commands
1272 on its end. */
1273
1274 #define target_can_run_breakpoint_commands() \
1275 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1276
1277 extern int target_read_string (CORE_ADDR, char **, int, int *);
1278
1279 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1280 ssize_t len);
1281
1282 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1283 ssize_t len);
1284
1285 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1286
1287 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1288
1289 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1290 ssize_t len);
1291
1292 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1293 ssize_t len);
1294
1295 /* Fetches the target's memory map. If one is found it is sorted
1296 and returned, after some consistency checking. Otherwise, NULL
1297 is returned. */
1298 VEC(mem_region_s) *target_memory_map (void);
1299
1300 /* Erase the specified flash region. */
1301 void target_flash_erase (ULONGEST address, LONGEST length);
1302
1303 /* Finish a sequence of flash operations. */
1304 void target_flash_done (void);
1305
1306 /* Describes a request for a memory write operation. */
1307 struct memory_write_request
1308 {
1309 /* Begining address that must be written. */
1310 ULONGEST begin;
1311 /* Past-the-end address. */
1312 ULONGEST end;
1313 /* The data to write. */
1314 gdb_byte *data;
1315 /* A callback baton for progress reporting for this request. */
1316 void *baton;
1317 };
1318 typedef struct memory_write_request memory_write_request_s;
1319 DEF_VEC_O(memory_write_request_s);
1320
1321 /* Enumeration specifying different flash preservation behaviour. */
1322 enum flash_preserve_mode
1323 {
1324 flash_preserve,
1325 flash_discard
1326 };
1327
1328 /* Write several memory blocks at once. This version can be more
1329 efficient than making several calls to target_write_memory, in
1330 particular because it can optimize accesses to flash memory.
1331
1332 Moreover, this is currently the only memory access function in gdb
1333 that supports writing to flash memory, and it should be used for
1334 all cases where access to flash memory is desirable.
1335
1336 REQUESTS is the vector (see vec.h) of memory_write_request.
1337 PRESERVE_FLASH_P indicates what to do with blocks which must be
1338 erased, but not completely rewritten.
1339 PROGRESS_CB is a function that will be periodically called to provide
1340 feedback to user. It will be called with the baton corresponding
1341 to the request currently being written. It may also be called
1342 with a NULL baton, when preserved flash sectors are being rewritten.
1343
1344 The function returns 0 on success, and error otherwise. */
1345 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1346 enum flash_preserve_mode preserve_flash_p,
1347 void (*progress_cb) (ULONGEST, void *));
1348
1349 /* Print a line about the current target. */
1350
1351 #define target_files_info() \
1352 (*current_target.to_files_info) (&current_target)
1353
1354 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1355 the target machine. Returns 0 for success, and returns non-zero or
1356 throws an error (with a detailed failure reason error code and
1357 message) otherwise. */
1358
1359 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1360 struct bp_target_info *bp_tgt);
1361
1362 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1363 machine. Result is 0 for success, non-zero for error. */
1364
1365 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1366 struct bp_target_info *bp_tgt);
1367
1368 /* Initialize the terminal settings we record for the inferior,
1369 before we actually run the inferior. */
1370
1371 #define target_terminal_init() \
1372 (*current_target.to_terminal_init) (&current_target)
1373
1374 /* Put the inferior's terminal settings into effect.
1375 This is preparation for starting or resuming the inferior. */
1376
1377 extern void target_terminal_inferior (void);
1378
1379 /* Put some of our terminal settings into effect,
1380 enough to get proper results from our output,
1381 but do not change into or out of RAW mode
1382 so that no input is discarded.
1383
1384 After doing this, either terminal_ours or terminal_inferior
1385 should be called to get back to a normal state of affairs. */
1386
1387 #define target_terminal_ours_for_output() \
1388 (*current_target.to_terminal_ours_for_output) (&current_target)
1389
1390 /* Put our terminal settings into effect.
1391 First record the inferior's terminal settings
1392 so they can be restored properly later. */
1393
1394 #define target_terminal_ours() \
1395 (*current_target.to_terminal_ours) (&current_target)
1396
1397 /* Save our terminal settings.
1398 This is called from TUI after entering or leaving the curses
1399 mode. Since curses modifies our terminal this call is here
1400 to take this change into account. */
1401
1402 #define target_terminal_save_ours() \
1403 (*current_target.to_terminal_save_ours) (&current_target)
1404
1405 /* Print useful information about our terminal status, if such a thing
1406 exists. */
1407
1408 #define target_terminal_info(arg, from_tty) \
1409 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1410
1411 /* Kill the inferior process. Make it go away. */
1412
1413 extern void target_kill (void);
1414
1415 /* Load an executable file into the target process. This is expected
1416 to not only bring new code into the target process, but also to
1417 update GDB's symbol tables to match.
1418
1419 ARG contains command-line arguments, to be broken down with
1420 buildargv (). The first non-switch argument is the filename to
1421 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1422 0)), which is an offset to apply to the load addresses of FILE's
1423 sections. The target may define switches, or other non-switch
1424 arguments, as it pleases. */
1425
1426 extern void target_load (char *arg, int from_tty);
1427
1428 /* Start an inferior process and set inferior_ptid to its pid.
1429 EXEC_FILE is the file to run.
1430 ALLARGS is a string containing the arguments to the program.
1431 ENV is the environment vector to pass. Errors reported with error().
1432 On VxWorks and various standalone systems, we ignore exec_file. */
1433
1434 void target_create_inferior (char *exec_file, char *args,
1435 char **env, int from_tty);
1436
1437 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1438 notification of inferior events such as fork and vork immediately
1439 after the inferior is created. (This because of how gdb gets an
1440 inferior created via invoking a shell to do it. In such a scenario,
1441 if the shell init file has commands in it, the shell will fork and
1442 exec for each of those commands, and we will see each such fork
1443 event. Very bad.)
1444
1445 Such targets will supply an appropriate definition for this function. */
1446
1447 #define target_post_startup_inferior(ptid) \
1448 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1449
1450 /* On some targets, we can catch an inferior fork or vfork event when
1451 it occurs. These functions insert/remove an already-created
1452 catchpoint for such events. They return 0 for success, 1 if the
1453 catchpoint type is not supported and -1 for failure. */
1454
1455 #define target_insert_fork_catchpoint(pid) \
1456 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1457
1458 #define target_remove_fork_catchpoint(pid) \
1459 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1460
1461 #define target_insert_vfork_catchpoint(pid) \
1462 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1463
1464 #define target_remove_vfork_catchpoint(pid) \
1465 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1466
1467 /* If the inferior forks or vforks, this function will be called at
1468 the next resume in order to perform any bookkeeping and fiddling
1469 necessary to continue debugging either the parent or child, as
1470 requested, and releasing the other. Information about the fork
1471 or vfork event is available via get_last_target_status ().
1472 This function returns 1 if the inferior should not be resumed
1473 (i.e. there is another event pending). */
1474
1475 int target_follow_fork (int follow_child, int detach_fork);
1476
1477 /* On some targets, we can catch an inferior exec event when it
1478 occurs. These functions insert/remove an already-created
1479 catchpoint for such events. They return 0 for success, 1 if the
1480 catchpoint type is not supported and -1 for failure. */
1481
1482 #define target_insert_exec_catchpoint(pid) \
1483 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1484
1485 #define target_remove_exec_catchpoint(pid) \
1486 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1487
1488 /* Syscall catch.
1489
1490 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1491 If NEEDED is zero, it means the target can disable the mechanism to
1492 catch system calls because there are no more catchpoints of this type.
1493
1494 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1495 being requested. In this case, both TABLE_SIZE and TABLE should
1496 be ignored.
1497
1498 TABLE_SIZE is the number of elements in TABLE. It only matters if
1499 ANY_COUNT is zero.
1500
1501 TABLE is an array of ints, indexed by syscall number. An element in
1502 this array is nonzero if that syscall should be caught. This argument
1503 only matters if ANY_COUNT is zero.
1504
1505 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1506 for failure. */
1507
1508 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1509 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1510 pid, needed, any_count, \
1511 table_size, table)
1512
1513 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1514 exit code of PID, if any. */
1515
1516 #define target_has_exited(pid,wait_status,exit_status) \
1517 (*current_target.to_has_exited) (&current_target, \
1518 pid,wait_status,exit_status)
1519
1520 /* The debugger has completed a blocking wait() call. There is now
1521 some process event that must be processed. This function should
1522 be defined by those targets that require the debugger to perform
1523 cleanup or internal state changes in response to the process event. */
1524
1525 /* The inferior process has died. Do what is right. */
1526
1527 void target_mourn_inferior (void);
1528
1529 /* Does target have enough data to do a run or attach command? */
1530
1531 #define target_can_run(t) \
1532 ((t)->to_can_run) (t)
1533
1534 /* Set list of signals to be handled in the target.
1535
1536 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1537 (enum gdb_signal). For every signal whose entry in this array is
1538 non-zero, the target is allowed -but not required- to skip reporting
1539 arrival of the signal to the GDB core by returning from target_wait,
1540 and to pass the signal directly to the inferior instead.
1541
1542 However, if the target is hardware single-stepping a thread that is
1543 about to receive a signal, it needs to be reported in any case, even
1544 if mentioned in a previous target_pass_signals call. */
1545
1546 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1547
1548 /* Set list of signals the target may pass to the inferior. This
1549 directly maps to the "handle SIGNAL pass/nopass" setting.
1550
1551 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1552 number (enum gdb_signal). For every signal whose entry in this
1553 array is non-zero, the target is allowed to pass the signal to the
1554 inferior. Signals not present in the array shall be silently
1555 discarded. This does not influence whether to pass signals to the
1556 inferior as a result of a target_resume call. This is useful in
1557 scenarios where the target needs to decide whether to pass or not a
1558 signal to the inferior without GDB core involvement, such as for
1559 example, when detaching (as threads may have been suspended with
1560 pending signals not reported to GDB). */
1561
1562 extern void target_program_signals (int nsig, unsigned char *program_signals);
1563
1564 /* Check to see if a thread is still alive. */
1565
1566 extern int target_thread_alive (ptid_t ptid);
1567
1568 /* Query for new threads and add them to the thread list. */
1569
1570 extern void target_find_new_threads (void);
1571
1572 /* Make target stop in a continuable fashion. (For instance, under
1573 Unix, this should act like SIGSTOP). This function is normally
1574 used by GUIs to implement a stop button. */
1575
1576 extern void target_stop (ptid_t ptid);
1577
1578 /* Send the specified COMMAND to the target's monitor
1579 (shell,interpreter) for execution. The result of the query is
1580 placed in OUTBUF. */
1581
1582 #define target_rcmd(command, outbuf) \
1583 (*current_target.to_rcmd) (&current_target, command, outbuf)
1584
1585
1586 /* Does the target include all of memory, or only part of it? This
1587 determines whether we look up the target chain for other parts of
1588 memory if this target can't satisfy a request. */
1589
1590 extern int target_has_all_memory_1 (void);
1591 #define target_has_all_memory target_has_all_memory_1 ()
1592
1593 /* Does the target include memory? (Dummy targets don't.) */
1594
1595 extern int target_has_memory_1 (void);
1596 #define target_has_memory target_has_memory_1 ()
1597
1598 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1599 we start a process.) */
1600
1601 extern int target_has_stack_1 (void);
1602 #define target_has_stack target_has_stack_1 ()
1603
1604 /* Does the target have registers? (Exec files don't.) */
1605
1606 extern int target_has_registers_1 (void);
1607 #define target_has_registers target_has_registers_1 ()
1608
1609 /* Does the target have execution? Can we make it jump (through
1610 hoops), or pop its stack a few times? This means that the current
1611 target is currently executing; for some targets, that's the same as
1612 whether or not the target is capable of execution, but there are
1613 also targets which can be current while not executing. In that
1614 case this will become true after target_create_inferior or
1615 target_attach. */
1616
1617 extern int target_has_execution_1 (ptid_t);
1618
1619 /* Like target_has_execution_1, but always passes inferior_ptid. */
1620
1621 extern int target_has_execution_current (void);
1622
1623 #define target_has_execution target_has_execution_current ()
1624
1625 /* Default implementations for process_stratum targets. Return true
1626 if there's a selected inferior, false otherwise. */
1627
1628 extern int default_child_has_all_memory (struct target_ops *ops);
1629 extern int default_child_has_memory (struct target_ops *ops);
1630 extern int default_child_has_stack (struct target_ops *ops);
1631 extern int default_child_has_registers (struct target_ops *ops);
1632 extern int default_child_has_execution (struct target_ops *ops,
1633 ptid_t the_ptid);
1634
1635 /* Can the target support the debugger control of thread execution?
1636 Can it lock the thread scheduler? */
1637
1638 #define target_can_lock_scheduler \
1639 (current_target.to_has_thread_control & tc_schedlock)
1640
1641 /* Should the target enable async mode if it is supported? Temporary
1642 cludge until async mode is a strict superset of sync mode. */
1643 extern int target_async_permitted;
1644
1645 /* Can the target support asynchronous execution? */
1646 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1647
1648 /* Is the target in asynchronous execution mode? */
1649 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1650
1651 int target_supports_non_stop (void);
1652
1653 /* Put the target in async mode with the specified callback function. */
1654 #define target_async(CALLBACK,CONTEXT) \
1655 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1656
1657 #define target_execution_direction() \
1658 (current_target.to_execution_direction (&current_target))
1659
1660 /* Converts a process id to a string. Usually, the string just contains
1661 `process xyz', but on some systems it may contain
1662 `process xyz thread abc'. */
1663
1664 extern char *target_pid_to_str (ptid_t ptid);
1665
1666 extern char *normal_pid_to_str (ptid_t ptid);
1667
1668 /* Return a short string describing extra information about PID,
1669 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1670 is okay. */
1671
1672 #define target_extra_thread_info(TP) \
1673 (current_target.to_extra_thread_info (&current_target, TP))
1674
1675 /* Return the thread's name. A NULL result means that the target
1676 could not determine this thread's name. */
1677
1678 extern char *target_thread_name (struct thread_info *);
1679
1680 /* Attempts to find the pathname of the executable file
1681 that was run to create a specified process.
1682
1683 The process PID must be stopped when this operation is used.
1684
1685 If the executable file cannot be determined, NULL is returned.
1686
1687 Else, a pointer to a character string containing the pathname
1688 is returned. This string should be copied into a buffer by
1689 the client if the string will not be immediately used, or if
1690 it must persist. */
1691
1692 #define target_pid_to_exec_file(pid) \
1693 (current_target.to_pid_to_exec_file) (&current_target, pid)
1694
1695 /* See the to_thread_architecture description in struct target_ops. */
1696
1697 #define target_thread_architecture(ptid) \
1698 (current_target.to_thread_architecture (&current_target, ptid))
1699
1700 /*
1701 * Iterator function for target memory regions.
1702 * Calls a callback function once for each memory region 'mapped'
1703 * in the child process. Defined as a simple macro rather than
1704 * as a function macro so that it can be tested for nullity.
1705 */
1706
1707 #define target_find_memory_regions(FUNC, DATA) \
1708 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1709
1710 /*
1711 * Compose corefile .note section.
1712 */
1713
1714 #define target_make_corefile_notes(BFD, SIZE_P) \
1715 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1716
1717 /* Bookmark interfaces. */
1718 #define target_get_bookmark(ARGS, FROM_TTY) \
1719 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1720
1721 #define target_goto_bookmark(ARG, FROM_TTY) \
1722 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1723
1724 /* Hardware watchpoint interfaces. */
1725
1726 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1727 write). Only the INFERIOR_PTID task is being queried. */
1728
1729 #define target_stopped_by_watchpoint() \
1730 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1731
1732 /* Non-zero if we have steppable watchpoints */
1733
1734 #define target_have_steppable_watchpoint \
1735 (current_target.to_have_steppable_watchpoint)
1736
1737 /* Non-zero if we have continuable watchpoints */
1738
1739 #define target_have_continuable_watchpoint \
1740 (current_target.to_have_continuable_watchpoint)
1741
1742 /* Provide defaults for hardware watchpoint functions. */
1743
1744 /* If the *_hw_beakpoint functions have not been defined
1745 elsewhere use the definitions in the target vector. */
1746
1747 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1748 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1749 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1750 (including this one?). OTHERTYPE is who knows what... */
1751
1752 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1753 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1754 TYPE, CNT, OTHERTYPE);
1755
1756 /* Returns the number of debug registers needed to watch the given
1757 memory region, or zero if not supported. */
1758
1759 #define target_region_ok_for_hw_watchpoint(addr, len) \
1760 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1761 addr, len)
1762
1763
1764 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1765 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1766 COND is the expression for its condition, or NULL if there's none.
1767 Returns 0 for success, 1 if the watchpoint type is not supported,
1768 -1 for failure. */
1769
1770 #define target_insert_watchpoint(addr, len, type, cond) \
1771 (*current_target.to_insert_watchpoint) (&current_target, \
1772 addr, len, type, cond)
1773
1774 #define target_remove_watchpoint(addr, len, type, cond) \
1775 (*current_target.to_remove_watchpoint) (&current_target, \
1776 addr, len, type, cond)
1777
1778 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1779 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1780 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1781 masked watchpoints are not supported, -1 for failure. */
1782
1783 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1784
1785 /* Remove a masked watchpoint at ADDR with the mask MASK.
1786 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1787 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1788 for failure. */
1789
1790 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1791
1792 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1793 the target machine. Returns 0 for success, and returns non-zero or
1794 throws an error (with a detailed failure reason error code and
1795 message) otherwise. */
1796
1797 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1798 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1799 gdbarch, bp_tgt)
1800
1801 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1802 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1803 gdbarch, bp_tgt)
1804
1805 /* Return number of debug registers needed for a ranged breakpoint,
1806 or -1 if ranged breakpoints are not supported. */
1807
1808 extern int target_ranged_break_num_registers (void);
1809
1810 /* Return non-zero if target knows the data address which triggered this
1811 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1812 INFERIOR_PTID task is being queried. */
1813 #define target_stopped_data_address(target, addr_p) \
1814 (*target.to_stopped_data_address) (target, addr_p)
1815
1816 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1817 LENGTH bytes beginning at START. */
1818 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1819 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1820
1821 /* Return non-zero if the target is capable of using hardware to evaluate
1822 the condition expression. In this case, if the condition is false when
1823 the watched memory location changes, execution may continue without the
1824 debugger being notified.
1825
1826 Due to limitations in the hardware implementation, it may be capable of
1827 avoiding triggering the watchpoint in some cases where the condition
1828 expression is false, but may report some false positives as well.
1829 For this reason, GDB will still evaluate the condition expression when
1830 the watchpoint triggers. */
1831 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1832 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1833 addr, len, type, cond)
1834
1835 /* Return number of debug registers needed for a masked watchpoint,
1836 -1 if masked watchpoints are not supported or -2 if the given address
1837 and mask combination cannot be used. */
1838
1839 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1840
1841 /* Target can execute in reverse? */
1842 #define target_can_execute_reverse \
1843 current_target.to_can_execute_reverse (&current_target)
1844
1845 extern const struct target_desc *target_read_description (struct target_ops *);
1846
1847 #define target_get_ada_task_ptid(lwp, tid) \
1848 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1849
1850 /* Utility implementation of searching memory. */
1851 extern int simple_search_memory (struct target_ops* ops,
1852 CORE_ADDR start_addr,
1853 ULONGEST search_space_len,
1854 const gdb_byte *pattern,
1855 ULONGEST pattern_len,
1856 CORE_ADDR *found_addrp);
1857
1858 /* Main entry point for searching memory. */
1859 extern int target_search_memory (CORE_ADDR start_addr,
1860 ULONGEST search_space_len,
1861 const gdb_byte *pattern,
1862 ULONGEST pattern_len,
1863 CORE_ADDR *found_addrp);
1864
1865 /* Target file operations. */
1866
1867 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1868 target file descriptor, or -1 if an error occurs (and set
1869 *TARGET_ERRNO). */
1870 extern int target_fileio_open (const char *filename, int flags, int mode,
1871 int *target_errno);
1872
1873 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1874 Return the number of bytes written, or -1 if an error occurs
1875 (and set *TARGET_ERRNO). */
1876 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1877 ULONGEST offset, int *target_errno);
1878
1879 /* Read up to LEN bytes FD on the target into READ_BUF.
1880 Return the number of bytes read, or -1 if an error occurs
1881 (and set *TARGET_ERRNO). */
1882 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1883 ULONGEST offset, int *target_errno);
1884
1885 /* Close FD on the target. Return 0, or -1 if an error occurs
1886 (and set *TARGET_ERRNO). */
1887 extern int target_fileio_close (int fd, int *target_errno);
1888
1889 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1890 occurs (and set *TARGET_ERRNO). */
1891 extern int target_fileio_unlink (const char *filename, int *target_errno);
1892
1893 /* Read value of symbolic link FILENAME on the target. Return a
1894 null-terminated string allocated via xmalloc, or NULL if an error
1895 occurs (and set *TARGET_ERRNO). */
1896 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1897
1898 /* Read target file FILENAME. The return value will be -1 if the transfer
1899 fails or is not supported; 0 if the object is empty; or the length
1900 of the object otherwise. If a positive value is returned, a
1901 sufficiently large buffer will be allocated using xmalloc and
1902 returned in *BUF_P containing the contents of the object.
1903
1904 This method should be used for objects sufficiently small to store
1905 in a single xmalloc'd buffer, when no fixed bound on the object's
1906 size is known in advance. */
1907 extern LONGEST target_fileio_read_alloc (const char *filename,
1908 gdb_byte **buf_p);
1909
1910 /* Read target file FILENAME. The result is NUL-terminated and
1911 returned as a string, allocated using xmalloc. If an error occurs
1912 or the transfer is unsupported, NULL is returned. Empty objects
1913 are returned as allocated but empty strings. A warning is issued
1914 if the result contains any embedded NUL bytes. */
1915 extern char *target_fileio_read_stralloc (const char *filename);
1916
1917
1918 /* Tracepoint-related operations. */
1919
1920 #define target_trace_init() \
1921 (*current_target.to_trace_init) (&current_target)
1922
1923 #define target_download_tracepoint(t) \
1924 (*current_target.to_download_tracepoint) (&current_target, t)
1925
1926 #define target_can_download_tracepoint() \
1927 (*current_target.to_can_download_tracepoint) (&current_target)
1928
1929 #define target_download_trace_state_variable(tsv) \
1930 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1931
1932 #define target_enable_tracepoint(loc) \
1933 (*current_target.to_enable_tracepoint) (&current_target, loc)
1934
1935 #define target_disable_tracepoint(loc) \
1936 (*current_target.to_disable_tracepoint) (&current_target, loc)
1937
1938 #define target_trace_start() \
1939 (*current_target.to_trace_start) (&current_target)
1940
1941 #define target_trace_set_readonly_regions() \
1942 (*current_target.to_trace_set_readonly_regions) (&current_target)
1943
1944 #define target_get_trace_status(ts) \
1945 (*current_target.to_get_trace_status) (&current_target, ts)
1946
1947 #define target_get_tracepoint_status(tp,utp) \
1948 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1949
1950 #define target_trace_stop() \
1951 (*current_target.to_trace_stop) (&current_target)
1952
1953 #define target_trace_find(type,num,addr1,addr2,tpp) \
1954 (*current_target.to_trace_find) (&current_target, \
1955 (type), (num), (addr1), (addr2), (tpp))
1956
1957 #define target_get_trace_state_variable_value(tsv,val) \
1958 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1959 (tsv), (val))
1960
1961 #define target_save_trace_data(filename) \
1962 (*current_target.to_save_trace_data) (&current_target, filename)
1963
1964 #define target_upload_tracepoints(utpp) \
1965 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1966
1967 #define target_upload_trace_state_variables(utsvp) \
1968 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1969
1970 #define target_get_raw_trace_data(buf,offset,len) \
1971 (*current_target.to_get_raw_trace_data) (&current_target, \
1972 (buf), (offset), (len))
1973
1974 #define target_get_min_fast_tracepoint_insn_len() \
1975 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1976
1977 #define target_set_disconnected_tracing(val) \
1978 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1979
1980 #define target_set_circular_trace_buffer(val) \
1981 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1982
1983 #define target_set_trace_buffer_size(val) \
1984 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1985
1986 #define target_set_trace_notes(user,notes,stopnotes) \
1987 (*current_target.to_set_trace_notes) (&current_target, \
1988 (user), (notes), (stopnotes))
1989
1990 #define target_get_tib_address(ptid, addr) \
1991 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1992
1993 #define target_set_permissions() \
1994 (*current_target.to_set_permissions) (&current_target)
1995
1996 #define target_static_tracepoint_marker_at(addr, marker) \
1997 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1998 addr, marker)
1999
2000 #define target_static_tracepoint_markers_by_strid(marker_id) \
2001 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2002 marker_id)
2003
2004 #define target_traceframe_info() \
2005 (*current_target.to_traceframe_info) (&current_target)
2006
2007 #define target_use_agent(use) \
2008 (*current_target.to_use_agent) (&current_target, use)
2009
2010 #define target_can_use_agent() \
2011 (*current_target.to_can_use_agent) (&current_target)
2012
2013 #define target_augmented_libraries_svr4_read() \
2014 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2015
2016 /* Command logging facility. */
2017
2018 #define target_log_command(p) \
2019 (*current_target.to_log_command) (&current_target, p)
2020
2021
2022 extern int target_core_of_thread (ptid_t ptid);
2023
2024 /* See to_get_unwinder in struct target_ops. */
2025 extern const struct frame_unwind *target_get_unwinder (void);
2026
2027 /* See to_get_tailcall_unwinder in struct target_ops. */
2028 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2029
2030 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2031 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2032 if there's a mismatch, and -1 if an error is encountered while
2033 reading memory. Throws an error if the functionality is found not
2034 to be supported by the current target. */
2035 int target_verify_memory (const gdb_byte *data,
2036 CORE_ADDR memaddr, ULONGEST size);
2037
2038 /* Routines for maintenance of the target structures...
2039
2040 complete_target_initialization: Finalize a target_ops by filling in
2041 any fields needed by the target implementation.
2042
2043 add_target: Add a target to the list of all possible targets.
2044
2045 push_target: Make this target the top of the stack of currently used
2046 targets, within its particular stratum of the stack. Result
2047 is 0 if now atop the stack, nonzero if not on top (maybe
2048 should warn user).
2049
2050 unpush_target: Remove this from the stack of currently used targets,
2051 no matter where it is on the list. Returns 0 if no
2052 change, 1 if removed from stack. */
2053
2054 extern void add_target (struct target_ops *);
2055
2056 extern void add_target_with_completer (struct target_ops *t,
2057 completer_ftype *completer);
2058
2059 extern void complete_target_initialization (struct target_ops *t);
2060
2061 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2062 for maintaining backwards compatibility when renaming targets. */
2063
2064 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2065
2066 extern void push_target (struct target_ops *);
2067
2068 extern int unpush_target (struct target_ops *);
2069
2070 extern void target_pre_inferior (int);
2071
2072 extern void target_preopen (int);
2073
2074 /* Does whatever cleanup is required to get rid of all pushed targets. */
2075 extern void pop_all_targets (void);
2076
2077 /* Like pop_all_targets, but pops only targets whose stratum is
2078 strictly above ABOVE_STRATUM. */
2079 extern void pop_all_targets_above (enum strata above_stratum);
2080
2081 extern int target_is_pushed (struct target_ops *t);
2082
2083 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2084 CORE_ADDR offset);
2085
2086 /* Struct target_section maps address ranges to file sections. It is
2087 mostly used with BFD files, but can be used without (e.g. for handling
2088 raw disks, or files not in formats handled by BFD). */
2089
2090 struct target_section
2091 {
2092 CORE_ADDR addr; /* Lowest address in section */
2093 CORE_ADDR endaddr; /* 1+highest address in section */
2094
2095 struct bfd_section *the_bfd_section;
2096
2097 /* The "owner" of the section.
2098 It can be any unique value. It is set by add_target_sections
2099 and used by remove_target_sections.
2100 For example, for executables it is a pointer to exec_bfd and
2101 for shlibs it is the so_list pointer. */
2102 void *owner;
2103 };
2104
2105 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2106
2107 struct target_section_table
2108 {
2109 struct target_section *sections;
2110 struct target_section *sections_end;
2111 };
2112
2113 /* Return the "section" containing the specified address. */
2114 struct target_section *target_section_by_addr (struct target_ops *target,
2115 CORE_ADDR addr);
2116
2117 /* Return the target section table this target (or the targets
2118 beneath) currently manipulate. */
2119
2120 extern struct target_section_table *target_get_section_table
2121 (struct target_ops *target);
2122
2123 /* From mem-break.c */
2124
2125 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2126 struct bp_target_info *);
2127
2128 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2129 struct bp_target_info *);
2130
2131 extern int default_memory_remove_breakpoint (struct gdbarch *,
2132 struct bp_target_info *);
2133
2134 extern int default_memory_insert_breakpoint (struct gdbarch *,
2135 struct bp_target_info *);
2136
2137
2138 /* From target.c */
2139
2140 extern void initialize_targets (void);
2141
2142 extern void noprocess (void) ATTRIBUTE_NORETURN;
2143
2144 extern void target_require_runnable (void);
2145
2146 extern void find_default_attach (struct target_ops *, char *, int);
2147
2148 extern void find_default_create_inferior (struct target_ops *,
2149 char *, char *, char **, int);
2150
2151 extern struct target_ops *find_target_beneath (struct target_ops *);
2152
2153 /* Find the target at STRATUM. If no target is at that stratum,
2154 return NULL. */
2155
2156 struct target_ops *find_target_at (enum strata stratum);
2157
2158 /* Read OS data object of type TYPE from the target, and return it in
2159 XML format. The result is NUL-terminated and returned as a string,
2160 allocated using xmalloc. If an error occurs or the transfer is
2161 unsupported, NULL is returned. Empty objects are returned as
2162 allocated but empty strings. */
2163
2164 extern char *target_get_osdata (const char *type);
2165
2166 \f
2167 /* Stuff that should be shared among the various remote targets. */
2168
2169 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2170 information (higher values, more information). */
2171 extern int remote_debug;
2172
2173 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2174 extern int baud_rate;
2175 /* Timeout limit for response from target. */
2176 extern int remote_timeout;
2177
2178 \f
2179
2180 /* Set the show memory breakpoints mode to show, and installs a cleanup
2181 to restore it back to the current value. */
2182 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2183
2184 extern int may_write_registers;
2185 extern int may_write_memory;
2186 extern int may_insert_breakpoints;
2187 extern int may_insert_tracepoints;
2188 extern int may_insert_fast_tracepoints;
2189 extern int may_stop;
2190
2191 extern void update_target_permissions (void);
2192
2193 \f
2194 /* Imported from machine dependent code. */
2195
2196 /* Blank target vector entries are initialized to target_ignore. */
2197 void target_ignore (void);
2198
2199 /* See to_supports_btrace in struct target_ops. */
2200 #define target_supports_btrace() \
2201 (current_target.to_supports_btrace (&current_target))
2202
2203 /* See to_enable_btrace in struct target_ops. */
2204 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2205
2206 /* See to_disable_btrace in struct target_ops. */
2207 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2208
2209 /* See to_teardown_btrace in struct target_ops. */
2210 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2211
2212 /* See to_read_btrace in struct target_ops. */
2213 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2214 struct btrace_target_info *,
2215 enum btrace_read_type);
2216
2217 /* See to_stop_recording in struct target_ops. */
2218 extern void target_stop_recording (void);
2219
2220 /* See to_info_record in struct target_ops. */
2221 extern void target_info_record (void);
2222
2223 /* See to_save_record in struct target_ops. */
2224 extern void target_save_record (const char *filename);
2225
2226 /* Query if the target supports deleting the execution log. */
2227 extern int target_supports_delete_record (void);
2228
2229 /* See to_delete_record in struct target_ops. */
2230 extern void target_delete_record (void);
2231
2232 /* See to_record_is_replaying in struct target_ops. */
2233 extern int target_record_is_replaying (void);
2234
2235 /* See to_goto_record_begin in struct target_ops. */
2236 extern void target_goto_record_begin (void);
2237
2238 /* See to_goto_record_end in struct target_ops. */
2239 extern void target_goto_record_end (void);
2240
2241 /* See to_goto_record in struct target_ops. */
2242 extern void target_goto_record (ULONGEST insn);
2243
2244 /* See to_insn_history. */
2245 extern void target_insn_history (int size, int flags);
2246
2247 /* See to_insn_history_from. */
2248 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2249
2250 /* See to_insn_history_range. */
2251 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2252
2253 /* See to_call_history. */
2254 extern void target_call_history (int size, int flags);
2255
2256 /* See to_call_history_from. */
2257 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2258
2259 /* See to_call_history_range. */
2260 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2261
2262 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2263 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2264 struct gdbarch *gdbarch);
2265
2266 /* See to_decr_pc_after_break. */
2267 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2268
2269 #endif /* !defined (TARGET_H) */
This page took 0.075501 seconds and 4 git commands to generate.